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a b s t r a c t

Infants born preterm are at high risk of long-term motor and neurocognitive deficits. In the

majority of these infants structural MRI at the time of normal birth does not predict motor

or cognitive outcomes accurately, and many infants without apparent brain lesions later

develop motor and cognitive deficits. Thalamocortical connections are known to be

necessary for normal brain function; they develop during late fetal life and are vulnerable

to perinatal adversity. This study addressed the hypothesis that abnormalities in the

functional connectivity between cortex and thalamus underlie neurocognitive impair-

ments seen after preterm birth. Using resting state functional connectivity magnetic

resonance imaging (fMRI) in a group of 102 very preterm infants without major focal brain

lesions, we used partial correlations between thalamus and functionally-derived cortical

areas to determine significant connectivity between cortical areas and thalamus, and

correlated the parameter estimates of these connections with standardised neurocognitive

assessments in each infant at 20 months of age. Pre-motor association cortex connectivity

to thalamus correlates with motor function, while connectivity between primary sensory-

motor cortex and thalamus correlates with cognitive scores. These results demonstrate the
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importance and vulnerability of functional thalamocortical connectivity development in

the perinatal period for later neurocognitive functioning.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Preterm birth is the leading cause of child deaths in high-

income countries (Litt et al., 2012) and has lifelong neu-

rodevelopmental effects and increased risk of chronic

disease stretching into adulthood (Aarnoudse-Moens,

Weisglas-Kuperus, van Goudoever, & Oosterlaan, 2009;

Boardman et al., 2010; Dyet et al., 2006; Linsell, Malouf,

Morris, Kurinczuk, & Marlow, 2015; Nagy, Lagercrantz, &

Hutton, 2011; Nosarti et al., 2014; Wood et al., 2005). In-

fants born extremely preterm (22e27 weeks gestational

age) represent the severe end of a spectrum of health and

developmental adversity with 57e72% of survivors expe-

riencing motor, cognitive or language impairments by

secondary school or adolescence (Hutchinson et al., 2013;

Johnson & Marlow, 2017; Marlow, 2004; Moore et al., 2012;

Saigal & Doyle, 2008).

T1 and T2 weighted MR imaging at the time of normal

birth is not precising in detecting infants who develop later

neuromotor or neurocognitive problems, failing to detect

around 1/3 of the children with impairments (Edwards et

al., 2018). These infants who do not have major struc-

tural abnormalities at birth are also at high risk of motor

(Grunewaldt et al., 2014; Spittle et al., 2013), cognitive and

language (Larroque et al., 2008; Moore et al., 2012), social,

emotional and psychiatric problems (Delobel-Ayoub et al.,

2006; Kuzniewicz et al., 2014), difficulties which persists

into late childhood and adult life (Akshoomoff et al., 2017;

Johnson et al., 2009; Linsell et al., 2018; Litt et al., 2012;

Northam et al., 2012; Nosarti et al., 2012). The complexity

of these impairments, without obvious macrostructural

predictors, argues for fundamental changes in brain cir-

cuitry and connectivity, which may be reflected in mea-

sures of resting state functional connectivity.

Functional connectivity between thalamus and cortex de-

velops rapidly between 30- and 40-weeks’ gestational age and

has been shown to be disrupted in preterm infants using

functional magnetic resonance imaging (fMRI) (Toulmin et al.,

2015). We hypothesised that abnormal functional thalamo-

cortical connectivity leads to long-term neurocognitive

impairment after preterm birth. We performed fMRI assess-

ments of functional thalamocortical connectivity in 102 pre-

term infants born at less than 33 weeks’ gestation, together

with data on neurocognitive abilities at 20 months of age in

order to address the question: does the strength of thalamo-

cortical connectivity at the time of normal birth correlate with

motor, cognitive or language capabilities at the age of 20

months in a cohort of infants without structural

abnormalities?
2. Materials and methods

The work was reviewed and approved by the National

Research Ethics Service (UK) and all infants were studied with

written consent of their parents obtained according to the

Declaration of Helsinki. Over a period of three years

2010e2013, preterm participants were recruited at birth as

part of the Evaluation of Preterm Imaging Study (e-Prime)

(NCT01049594) from hospitals in the North and Southwest

London Perinatal Network (Edwards et al., 2018). Eligibility

included birth before 33 weeks gestational age to a mother

who was aged over 16 and able to speak English. Infants were

excluded if they had major congenital abnormalities or

metallic in-plants. Full eligibility criteria can be found in

Edwards et al., 2018. MRI were carried out at a single neonatal

imaging centrewhen the infantwas a gestational age of 38e44

weeks. The neurodevelopmental outcomes of these 511 in-

fants are typical of populations in major studies of preterm

outcomes, such as EPIPAGE (Larroque et al., 2008).

2.1. Imaging acquisition

All imageswere acquired on a 3 T Philips AchievaMRI scanner

(Best, Netherlands) under sedation using oral chloral hydrate

25e50 mg kg (Finnemore et al., 2014), supervised by an expe-

rienced paediatrician. Pulse oximetry, temperature and elec-

trocardiography data monitored throughout. Ear protection

was provided with silicone-based putty placed in the external

ear (President Putty, Coltene, Whaledent, Mahwah, NJ) and

Minimuffs (Natus Medical Inc, San Carlos, CA).

Whole-brain functional imaging was performed using a

T2* gradient echo planar image acquisition (sequence pa-

rameters: TR ¼ 1.5 sec; TE ¼ 45 ms; flip angle ¼ 90�, 256 vol-

umes, slice thickness 3.25 mm, in-plane resolution 2.5 mm2,

22 slices, scan duration ¼ 6.4 min) with an 8 channel phased

array head coil. T2-weighted fast-spin echo MRI was acquired

using TR: 8670 ms; TE: 160 ms; flip angle 90�; slice thickness

2 mm; field of view: 220 mm matrix: 256 � 256 (voxel size:

.86 � .86 � 1 mm).

2.2. Cohort

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study as follows. All

inclusion/exclusion criteria were established prior to data

analysis. The 511 infants recruited into the EPRIME cohort

were born at less than 33 weeks completed gestation (GA) and

http://creativecommons.org/licenses/by/4.0/
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were scanned once at term equivalent age. 275 infants had full

MRI including resting state functional connectivity data and

had complete follow-up (including MCHAT). Datasets with a

relative mean displacement of >.08 mm were excluded as

were remaining datasets with absolute motion of >2 mm. 15

further subjects were excluded as they had been scanned at >
44 weeks postmenstrual age. Of the remaining 107 infants, 5

had structural brain abnormalities, defined as abnormality

scores of greater than 12 (categorised as severe) according to

criteria in Woodward et al., 2006. There were therefore 102

preterm infants suitable for functional connectivity analysis.

Table 1 gives clinical and demographic data for this cohort of

102 infants.

There was no relationship between gestational age at birth

and motion (r ¼ .03, df 100, p > .5) or between motion and the

three variables of motor, cognitive or language scores: motor

score and motion (r ¼ .01, df 100, p > .5), cognitive score and

motion (r ¼ .088, df 100, p > .5) or language score (r ¼ .134, df

101, p ¼ .179).

2.3. Image processing

The first six volumes of each subject were removed to allow

time for equilibration of T1 magnetisation, and motion

correction using MCFLIRT was applied (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012). Single sub-

ject ICA was performed on each dataset with automatic

dimensionality using MELODIC (Beckmann & Smith, 2004)

high pass temporal filtering of 125s, without slice-timing

correction or spatial smoothing to preserve the high-

frequency spatial and temporal signal. This was followed

by FIX (FSL) for automatic de-noising and artefact removal

(Salimi-Khorshidi et al., 2014). The standard FIX processing

steps involved masking of datasets in standard space using

the adult MNI152 atlas was modified to use a population-

specific neonatal template with tissue priors rather than

registration to the adult MNI152 atlas (Serag et al., 2012).

MELODIC provides components which undergo automatic

component classification by FIX, which allows the unique

variance of each noise component to be regressed out of the

data alongside the full variance of the motion parameters

and derivatives (Salimi-Khorshidi et al., 2014; Satterthwaite

et al., 2012). This has been shown to be an effective method

in infants (Ball et al., 2016).
Table 1 e Demographic details of the cohort.

Mean gestational age in weeks at birth (range)

Mean birth weight in grams (range)

Mean numbers of days ventilated (range)

Mean gestational age (in weeks) at scan (range)

Mean score for prognosis on term MRI scan (range) (Woodward et al., 200

no abnormality ¼ 9

mild abnormality ¼ 79

moderate abnormality ¼ 14.

Mean gestational age in months at neurodevelopmental follow up

Sex (% female)

Gross Motor composite score (range)

Cognitive composite score (range)

Language score (range)
2.4. Group ICA

To generate functionally defined regions of interest in each

subject to use for seedebased correlation analysis, the

following process was followed. Functional volumes were

registered to the subject's T2-weighted structural image

(Jenkinson, Bannister, Brady, & Smith, 2002) with boundary-

based registration (Greve & Fischl, 2009) as implemented by

FMRIB's boundary-based registration (FSL-BBR) optimised for

neonatal tissue contrasts. These images were then trans-

formed to a population-based neonatal template (Kuklisova-

Murgasova et al., 2011) using nonlinear registration

(Jenkinson et al., 2012). It is not possible to reliably identify

single voxels of cerebrospinal fluid from the echo planar

image of an infant at the time of normal birth to model time

course regressors as is done in adult studies, as ventricles are

too small to avoid partial volume effects. Therefore, a mask of

cerebrospinal fluid, defined using the high-resolution image,

was applied to individual datasets at this point and data from

voxels corresponding to these areas were discarded. Cortical

regions of interest were defined using components from in-

dependent component analysis as follows. Pre-processed

functional data containing 250 contiguous time points per

subject were temporally concatenated across subjects to

produce a single 4D data set and resting state components

common to the group were defined using MELODIC

(Beckmann, DeLuca, Devlin, & Smith, 2005) with a fixed

dimensionality of 25 which achieves a good balance between

interpretability and robustness as used in adults datasets

(Smith et al., 2012). ICA maps were thresholded using an

alternative hypothesis test based on fitting a Gaussian/

Gamma mixture model to the distribution of voxel intensities

within spatial maps and controlling the local false discovery

rate at p < .05 (Beckmann et al., 2005). The resulting maps and

full ICA decomposition are shown in Fig. 1.

2.5. Cortical component selection

Non-overlapping cortical areas were defined by assigning

each voxel to a specific resting state component depending on

which network had the highest z-score at that voxel. The

result is shown in Fig. 2. The spatial correlation with adult

networkswas tested using cross correlations after registration

of infant data to an adult template and with previous work in
30 (24.43e32.86)

1360.3 (600e2510)

1.74 (0e16)

41.9 (38.29e44)

6). 8 (5e12)

19.91 (19e23)

44 (45 female, 57 male)

96.10 (range 61e118)

94.22 (range 65e130)

16.67 (4e31)
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Fig. 1 e Temporal concatenation ICA-estimated resting pattern in the group of 102 subjects. Sagittal, coronal and axial views

of the spatial map for each component. Images are z statistics overlaid on the template 41-week brain. Red to yellow

indicates z values ranging from 3 to 12. The right hemisphere of the brain corresponds to the left sides of the coronal and

axial images. Components 1e11 correspond to functional cortical components described in Table 3.

Fig. 2 e Significant correlations between thalamus (A) and 11 cortical regions of interest (B) in 102 preterm infants at the time

of birth. Partial correlations (group mean) are thresholded at a significance of p < .05 (family-wise error corrected). Colours

and order as per Table 3. Images are displayed as per radiological convention.

c o r t e x 1 3 5 ( 2 0 2 1 ) 1 7e2 920
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Table 2 e Cortical components used in the analysis and their anatomical correlations with adult (Smith et al., 2012) and
infant (Toulmin et al., 2015) resting state networks.

Infant resting state
network in cohort

two (numbers as per Tab 8.1)

Corresponding adult
resting state network
(Smith et al., 2012)

Correlation with
Smith et al., 2012

Correlations with infant
resting state networks in

cohort of 66 term and preterm
infants (Toulmin et al., 2015)

1 Posterior cingulate 16 .44 (also 17 .40) .6, .52

2 Lateral parietal 12 .35 .8

3 Fronto-parietal-insula 7 .65 .62

4 Primary sensory motor (medial) 5 .56 .46

5 Motor association 9 .39 .69

6 Superior frontal 15 .43 .68

7 Orbito-frontal 18 .32 .69

8 Visual 2 .63 .34

9 Pre-frontal 18 .54 .61

10 Lateral pre-frontal 20 .49 .38

11 Anterior cingulate 16 .28 .5

Table 3 e 11 bilateral regions of interest: functional cortical components defined using independent component analysis in
the cohort of 102 preterm infants (full list of 25 components from the ICA in Fig. 1).

c o r t e x 1 3 5 ( 2 0 2 1 ) 1 7e2 9 21
preterm and term infants and the results shown in Table 2. As

there is no clear consensus as to how to interpret laterality at

the time of birth, and the underlying architecture of thala-

mocortical connectivity is of reciprocal connections with inter

hemispheric cortico-cortical reciprocity (Jones, 2007; Sherman

& Guillery, 2013), it was decided to model bilateral cortical

inputs to the thalamus. In addition, this allows the use of a

cortical parcellation based on ICA and unbiased by assump-

tions of future adult function. Consequently, the 11 cortical

areas with bilateral hemispheric representations in the group

ICA were used for further analysis. Of note, therefore, are the
omission of the unilateral components, all of which had

symmetrical counterparts in the contralateral hemisphere:

numbered 14 and 16 (medial visual), 18 and 21 (auditory) and

22 and 23 (sensory-motor lateral portion). The mask for the

thalamus was created using a neonatal-specific template

(Makropoulos et al., 2014) and includes right and left thalami.

Voxels in cortical components adjacent to subcortical seed

masks were removed to ensure that no cortical component

was directly adjacent to the thalamus mask.

Within a group-defined cortical functional area, there is

likely to be some heterogeneity at the subject level. For each

https://doi.org/10.1016/j.cortex.2020.09.022
https://doi.org/10.1016/j.cortex.2020.09.022
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individual subject, each component identified at the group

level was mapped back to each subject's data set through a

spatial regression of the group ICA maps on the individual

fMRI dataset, followed by a regression of the resulting time

series on the same dataset (Filippini et al., 2009). To ensure

that the first eigentimeseries at the subject specific level best

represented the function determined by the group analysis

rather than to another functional area within the same group

defined cortical region, for each subject, the components were

thresholded at z ¼ 1.96 and the remaining voxels used as the

cortical target from which the first eigentimeseries was

defined. The resulting componentmaps in individual subjects

derived using this dual regression approach were used as re-

gions of interest and for each thalamic voxel, partial correla-

tion between this voxel and all the cortical eigentimeseries

were calculated (O'Reilly, Beckmann, Tomassini, Ramnani, &

Johansen-Berg, 2010). The cortical regions analysed are

described in Table 3.

2.6. Neurodevelopmental examination

Neurological and developmental testing was performed at 20

months of age, corrected for gestational age at birth, using

the Bayley Scales of Infant and Toddler Development, Third

Edition known as Bayley-III (Bayley, 2005) by researchers

experienced in neurodevelopmental testing. The Bayley III

scores allow comparison of children tested at different ages

and have a mean of 100 with a standard deviation of 15. The

average scores for this cohort are motor composite score

96.10 (range 61.00e118.00), cognitive composite score 94.22
Fig. 3 e Significant correlations with outcome at 2 years. (Ai) sh

correlation coefficients with the premotor region of interest at t

motor outcome at 2 years old. (Aii) shows the area of the right th

motor region of interest at the time of normal birth is correlated w

the association between correlation scores between thalamus a

subject (horizontal axis). Images are shown as per radiological

shown at p < .05 (family-wise error corrected) using a general l

correlation coefficients at the time of normal birth and outcome

these results also retain significance with voxel-wise testing. Co

shown in the same colours as per Table 3.
(range 65.00e130.00) and language sum scaled score 16.67

(range 4.00e31.00).

2.7. Group analysis

Using a general linearmodel which includes gestational age at

birth, gender and age at scan as explanatory variables, the

corticothalamic correlations were tested voxel-wise for sta-

tistically significant associations with neurodevelopmental

scores at 2 years of age using nonparametric permutation

testing (Nichols&Holmes, 2002) tested at a significance p < .05

corrected for multiple comparisons after threshold-free clus-

ter enhancement (Smith & Nichols, 2009). This resulted in

spatial maps characterising the effect of prematurity on con-

nections between cortical areas and thalamus (Fig. 3).
3. Results

Fig. 1 shows the temporal concatenated ICA-estimated resting

pattern in the group of 102 preterm infants, from which the

cortical regions of infants were defined. Hard-thresholding

the functional connectivity estimates of the 11 functionally-

defined cortical areas (Table 3) revealed a predominantly

symmetrical topographical representation of these cortical

regions in the thalamus at the time of normal birth (Fig. 2), in

linewith previouswork (Cai,Wu, Su, Shi,&Gao, 2017; Ferradal

et al., 2019; Toulmin et al., 2015). The exception to this is the

lateral prefrontal component which has a larger cortical rep-

resentation on the left in the group independent component
ows the bilateral locations in the thalamus where the

he time of normal birth are significantly correlated with

alamus where the correlation coefficients with the sensory-

ith cognitive scores at 2 years old. (B) Scatterplots showing

nd cortical area (vertical axis) and outcome score for that

convention. Significance testing using randomisation is

inear model to determine the relationship between

at 2 years old. In addition to family-wise error correction,

rtical regions of interest and thalamus statistical images are

https://doi.org/10.1016/j.cortex.2020.09.022
https://doi.org/10.1016/j.cortex.2020.09.022


c o r t e x 1 3 5 ( 2 0 2 1 ) 1 7e2 9 23
analysis (Fig. 1) and a predominantly left-sided representation

in Fig. 2. The cortical areas including primary motor cortex

and supplementary cortex (cortical component 4 -royal blue

and cortical component 5 burgundy), both have widespread

connectivity throughout the thalamus, with the contribution

of cortical component 5 being slightly more restricted.

The scoring of structural MRI at birth using criteria

described by Woodward et al., 2006 did not correlate with

motor outcome at two years in this cohort. In detail, with

regards to Bayley III motor composite score at 20 months, 9

children had scores of less than 85 at 20 months (cohort mean

of 96.1 range 61e118) of whom 4 had a GMFCS classification of

2. Only one of these 4 infants had been classified using MRI at

the time of birth as having ‘moderate abnormality’ (in this

case a score of 10) on MRI at birth using the classification by

Woodward et al., 2006. All other infants had a GMFCS classi-

fication of 1. In post hoc analysis, there was no correlation

between the classification of no/mild/moderate abnormality

on MRI at birth and motor outcome: this was true for those

classified as having moderate abnormality at term compared

with those with no abnormality (p ¼ .31) as well as for mod-

erate abnormality compared with mild abnormality (p ¼ .49)

and mild compared with no abnormality (p ¼ .52).

The Bayley cognitive and motor scores were correlated

with connectivity at the time of normal birth (Fig. 3). The

motor score correlated with the premotor thalamocortical

connectivity (Fig. 3, royal blue) at a significance of p¼ < .05 and

an effect size (r2) of .16. The area showing difference with

motor outcome is a large bilateral area of the frontal and

medial thalamus in the area of the ventral anterior and

ventral lateral nucleus of the thalamus on the left side,

extending into the medial and anterior nuclei. On the right

side, the area of correlation with outcome excludes the

medial-fronto-lateral portion of the thalamus in the area of

the ventral anterior nucleus. A unilateral area of left medial

thalamus stretching the whole anterior-posterior length of

the thalamus is significant at a level of p < .01.

Cognitive outcome correlated with the primary sensory-

motor thalamocortical connectivity in the right anterior

thalamus only (Fig. 3 burgundy colour, Aii). The area is

discrete from, but adjacent to, the motor correlations statistic

(blue). The contralateral thalamus does not reach significance

at p < .05, but there is an area of the left thalamus which lies

posterior to this position, which approaches significance

(p < .06). The effect size (r2) is .08 which is smaller than that

seen for motor outcome. These results are confined to the

anterior portion of the thalamus, in the area of the ventral

nuclear groups, medial nuclei and anterior nuclei.
4. Discussion

In the absence of overt injury, prognostic markers of later

child outcome in the preterm born brain are lacking. These

results demonstrate the vulnerability of functional thalamo-

cortical connections to the effects of preterm birth and

therefore the possibility of using this mechanism to predict

outcomes for children who are currently known to be at risk

from adverse neurodevelopmental outcome due to

prematurity.
4.1. Development of thalamocortical connectivity

Thalamocortical connectivity develops largely during the

third trimester of pregnancy, the period when children born

preterm no longer experience the protective and nurturing

intrauterine environment but instead are prematurely

exposed to extrauterine life. Cortical projection neurons are

generated in the ventricular zone (VZ) and subsequently in the

sub ventricular zone (SVZ) (Bystron, Blakemore, & Rakic, 2008)

and follow a stereotyped radial pattern of migration leading to

the inside out patterning of the neocortex (Angevine &

Sidman, 1961; Sauer, 1935). The process of correct topo-

graphic patterning requires participation of the cortical sub-

plate, a transient structure which hosts thalamocortical pro-

jections before they penetrate the cortical plate (Allendoerfer

& Shatz, 1994; Bystron et al., 2008; Kostovi�c, Juda�s, & Judas,

2010). In human, the subplate reaches maximum thickness

between 17 and 24 weeks post-menstrual age, depending on

the cortical area investigated, and remains approximately at

this thickness until 37 weeks due to the in-growth of fibres

from many different systems including basal forebrain fibres,

thalamic afferents and axons originating in ipsilateral cortex

(Kostovic& Rakic, 1990). The vulnerability of subplate neurons

is thought to occur in the form of dysmaturation rather than

cell death, with reduced basal dendritic arbor complexity

associated with the level of hypoxaemia and metabolic stress

in a model of preterm sheep (McClendon et al., 2017). The

process of establishing thalamocortical connections appears

necessary for subsequent normal morphogenesis to take

place (Constantinople & Bruno, 2013; P. O.; Kanold, Kara, Reid,

& Shatz, 2003; Li et al., 2013) and is disrupted by preterm birth

(Malik et al., 2013).

4.2. Neonatal thalamocortical connectivity using
magnetic resonance imaging at birth

The disruption to thalamocortical connections in those born

preterm has been shown previously using measures from

structural magnetic resonance imaging, with reduced

thalamic volumes more marked both with increasing pre-

maturity andwith diffuse whitematter injury (Ball et al., 2011;

Boardman et al., 2006; Loh et al., 2017) associatedwith reduced

volume in frontal and temporal lobes (Ball et al., 2011). Con-

nectivity between thalamus and multiple cortical regions was

reduced (Ball et al., 2013; Duerden et al., 2019). Altered func-

tional connectivity has also been found between bilateral

areas of the thalamus connecting with frontal-parietal-insula

cortex and anterior cingulate cortex (Toulmin et al., 2015).

4.3. How might preterm birth affect thalamocortical
connectivity?

The mechanism of change to thalamocortical circuits is not

clear, but reduced arborisation of subplate neurons and the

altered environment experienced by the preterm infant may

both play a role. Prior to the establishment of sensory in-

formation processing, that is, sensory processing based on

external stimuli, spontaneous thalamic calcium waves from

sensory thalamic nuclei appear to regulate the size of their

cortical area in mouse (Moreno-Juan et al., 2017). The onset
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of central responses to external sensory input has been

widely debated in the context of consciousness: even prior

to the establishment of definitive circuits, neurons in the

subplate are formed as early as the second trimester

(Kostovic & Juda�s, 2006; Vanhatalo & Kaila, 2006) with neu-

rons in the subplate of ferrets responding to auditory

stimuli, as recorded using electrophysiological methods

(Wess, Isaiah, Watkins, & Kanold, 2017). The exact timings

in response to different sensory modalities are not known,

but auropalpebral (‘blink-startle’) reflexes to sound can be

seen on ultrasound scans between 24 and 25 weeks gesta-

tional age (Birnholz & Benacerraf, 1983). Circuits involving

primary cortex, such as primary motor, visual, auditory and

sensory cortex, are known to be refined via sensory expe-

rience in the time period after the thalamic axons grow into

cortical layer IV (Allendoerfer & Shatz, 1994; Friauf & Shatz,

1991; Patrick O.; Kanold & Shatz, 2006), that is during the

third trimester, giving rise to the suggestion that abnormal

auditory, sensory and painful experiences of the preterm

infant might have an effect on the balance of these circuits

(Duerden et al., 2018; Slater et al., 2012). With global con-

nections and involvement in multiple cognitive functions

(Hwang, Bertolero, Liu, & D'Esposito, 2017), the thalamus has

been shown to be a critical hub for information processing

and integration, with an intact system of thalamocortical

connectivity in adults proving essential for maintaining

cognitive performance (Hughes et al., 2012; Hwang et al.,

2017; Ystad et al., 2011).

4.4. How do changes in functional connectivity noted at
birth relate to performance at two years old

We found that thalamic connectivity to Primary Sensory-

Motor and Motor Association components was correlated

with neurocognitive outcome. The Primary Sensory-Motor

component does not include the whole primary sensory-

motor cortex, but only the medial portion, containing areas

concerned with sensation and motor control of limbs and

trunk but excluding those concerning swallowing, tongue and

face. Primary sensory-motor cortex concerning swallowing,

tongue and face was not included in the analysis as this

network split between two separate components in this group

at the time of normal birth. Themotor association component

encompasses both the premotor cortex and the supplemen-

tary motor area. The location of the difference in connectivity

according to outcome score is in the medial and anterior

portion of the thalamus and although specific nuclei cannot

be defined, this is the location of inputs from the globus pal-

lidus internal segment and substia nigra of the basal ganglia

(Mai & Paxinos, 2012) which sends direct efferents to the

premotor cortex including the supplementary motor cortex

(Morel, Liu, Wannier, Jeanmonod, & Rouiller, 2005; Strick,

1976) and to the primary motor cortex (Kultas-Ilinsky, Sivan-

Loukianova, & Ilinsky, 2003). This motor area of the thal-

amus is part of the cortico-striatal-thalamo-cortical circuits

described by Alexander et al. (Alexander, DeLong, & Strick,

1986) which help to prompt, enact and guide different as-

pects of voluntarymovements (Middleton& Strick, 2000, 2002)

and are essential for motor learning (Tanaka et al., 2018).
4.5. How successful are functional connectivity
estimates with regards to outcome at two years

These difference in connectivity accounted for 16% of the

variance in motor score and 8% in cognitive score. The most

comparable cohort with data available with which to make a

comparison, finds mean thalamocortical connectivity across

the whole cortex explains 11% of the variance in cognitive

scores at two years, with the addition of socio-economic sta-

tus increasing this to 30% (Ball et al., 2015). With regards to the

Bayley motor scale itself, when assessing preterm children

without cerebral palsy, as in this study, it has a predictive

value for motor functioning at early school age of r ¼ .34,

equating to an explained variance of 12% (Luttikhuizen dos

Santos, de Kieviet, K€onigs, van Elburg, & Oosterlaan, 2013). It

is often commented that preterm infants have performed

within the normal ranges stated in the Bayley III tests but that

their scores are significantly lower than their term counter-

parts (Bapat, Narayana, Zhou, & Parikh, 2014; Kendall et al.,

2014; Ski€old et al., 2012). This may indicate that the diffi-

culties in multiple domains experienced by children born

preterm is not well-captured by the scoring system of the

Bayley III which, performed at two years, underestimates

motor deficits by the age of four (Spittle et al., 2013).

4.6. Why are motor areas affected in preterm infants?

Is it possible that success in many neurodevelopmental tests

at two years old is mediated by motor skills, but impairments

to motor circuits are also involved in disorders which have

been more traditionally thought to be behavioural or psychi-

atric and the results presented here may be early markers of

non-motor impairments. In addition to an increased risk of

autism and anxiety disorders (D'Onofrio et al., 2013; Treyvaud

et al., 2013), preterm infants are at increased risk of behav-

ioural difficulties such as attention deficit hyperactivity dis-

order (Delobel-Ayoub et al., 2006; Jaekel, Wolke, & Bartmann,

2013; Månsson, Stjernqvist, & B€ackstr€om, 2014; Marret et al.,

2013; Spittle et al., 2009; Treyvaud et al., 2013) where disor-

dered development of motor skills are seen (Mostofsky et al.,

2006). Motor delays are often the first area of concern (mean

age of 14.7 months) reported by parents of children with

Autism SpectrumDisorders (Chawarska et al., 2007) and lower

gross motor function (Estes et al., 2015; Lloyd, MacDonald, &

Lord, 2013; Marrus et al., 2018) are early risk markers. Others

identify difficulty with motor planning and impaired fine

motor control as the most prevalent and earliest identifiable

motor deficits in children with autism (Fournier, Hass, Naik,

Lodha, & Cauraugh, 2010; Green et al., 2009; Teitelbaum,

Teitelbaum, Nye, Fryman, & Maurer, 1998). Indeed, sensori-

motor difficulties, defined as ‘an impairment in the pathway

involving motor activity triggered by sensory stimuli and re-

petitive motor movements’ are included in the diagnostic

criteria for autism (American Psychiatric Association., &

American Psychiatric Association. DSM-5 Task Force, 2013).

It has also been hypothesised that difficulties with motor co-

ordination and sensory difficulties may underlie the social

and communication deficits, for example impairments in

skilled motor gestures (Mostofsky et al., 2009).
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4.7. Limitations

This work has some limitations. There are challenges in

acquiring excellent quality functional MRI data in infants, and

chloral hydrate sedation was used as it has been inmany other

studies (Brouwer et al., 2017; Kidokoro et al., 2014; Kidokoro,

Neil, & Inder, 2013). This may be a limitation however it is not

clear that sedation affects resting state fMRI data: oculomotor,

somatomotor, visual and default mode networks have all been

shown to be coherent even under anaesthetic levels which

induce a profound loss of consciousness (Vincent et al., 2007).

Indeed, changes of vigilance and arousal in adult subjects

during the course of a scan may have a greater effect (Deco,

Hagmann, Hudetz, & Tononi, 2014; Massimini et al., 2005;

Saper, Scammell, & Lu, 2005). Acknowledging the sensitivity of

functional data to motion, (for a review of the issues see

Murphy et al., 2013; Van Dijk et al., 2012), and with the aim of

investigating small subcortical structures in infants, only

datasets with very low motion were eligible for inclusion. A

limit of a relative mean displacement of .08 mm was chosen,

but additional data sets which met this criterion but contained

absolute motion of >2 mm were excluded as there can be a

prolonged effect from a single episode of motion (Power et al.,

2014). The inclusion of only the bilateral cortical regions of in-

terest, whilst allowing an unbiased method for selecting

cortical regions of interest for use in analysis, does not allow for

analysis of all cortical regions. This methodology was adopted

to avoid making a priori assumptions about neonatal function

based on knowledge of the functions of the mature brain. Also,

as poormotor scores at two years old do not capture all infants

whowill go on to havemotor difficulties, it will be important to

test functional connectivity with motor outcome scores in

older, un-sedated children as data becomes available.
5. Conclusion

This study shows altered connectivity between cortical areas

and thalamus in infants born very preterm and relates this to

their abilities at two years old as assessed by a standardised

neurodevelopmental assessment. We find differences in

anatomically plausible corticothalamic pairings associated

with increased difficulties withmotor and cognitive outcomes

at two years old. Future work should investigate the outcome

of these children at a later age and investigate whether early

interventions based on these metrics gathered at the time of

normal birth could support the development of at-risk

children.
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Månsson, J., Stjernqvist, K., & B€ackstr€om, M. (2014). Behavioral
outcomes at corrected age 2.5 years in children born
extremely preterm. Journal of Developmental and Behavioral
Pediatrics : JDBP, 35(7), 435e442. https://doi.org/10.1097/
DBP.0000000000000082

Marlow, N. (2004). Neurocognitive outcome after very preterm
birth. Archives of Disease in Childhood. Archives of Disease in
Childhood. Fetal and Neonatal Edition, 89(3), F224eF228.

Marret, S., Marchand-Martin, L., Picaud, J.-C., Hasco€et, J.-M.,
Arnaud, C., Roz�e, J.-C., et al. (2013). Brain injury in very
preterm children and neurosensory and cognitive disabilities
during childhood: The EPIPAGE cohort study. Plos One, 8(5),
Article e62683. https://doi.org/10.1371/journal.pone.0062683

Marrus, N., Eggebrecht, A. T., Todorov, A., Elison, J. T., Wolff, J. J.,
Cole, L., et al. (2018). Walking, gross motor development, and
brain functional connectivity in infants and toddlers. Cerebral
Cortex, 28(2), 750e763. https://doi.org/10.1093/cercor/bhx313

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., &
Tononi, G. (2005). Breakdown of cortical effective connectivity
during sleep. Science (New York, N.Y.), 309(5744), 2228e2232.
https://doi.org/10.1126/science.1117256

McClendon, E., Shaver, D. C., Degener-O’Brien, K., Gong, X.,
Nguyen, T., Hoerder-Suabedissen, A., et al. (2017). Transient
hypoxemia chronically disrupts maturation of preterm fetal
ovine subplate neuron arborization and activity. The Journal of
Neuroscience : The Official Journal of the Society for Neuroscience,
37(49), 11912e11929. https://doi.org/10.1523/JNEUROSCI.2396-
17.2017

Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar
loops: Motor and cognitive circuits. Brain research. Brain
Research Reviews, 31(2e3), 236e250.

Middleton, F. A., & Strick, P. L. (2002). Basal-ganglia “projections”
to the prefrontal cortex of the primate. Cerebral Cortex, 12(9),
926e935. https://doi.org/10.1093/cercor/12.9.926

Moore, T., Hennessy, E. M., Myles, J., Johnson, S. J., Draper, E. S.,
Costeloe, K. L., et al. (2012). Neurological and developmental
outcome in extremely preterm children born in england in
1995 and 2006: The EPICure studies. BMJ (Clinical Research Ed.),
345(dec04_3), Article e7961. https://doi.org/10.1136/bmj.e7961

Morel, A., Liu, J., Wannier, T., Jeanmonod, D., & Rouiller, E. M.
(2005). Divergence and convergence of thalamocortical
projections to premotor and supplementary motor cortex: A
multiple tracing study in the macaque monkey. European
Journal of Neuroscience, 21(4), 1007e1029. https://doi.org/
10.1111/j.1460-9568.2005.03921.x

Moreno-Juan, V., Filipchuk, A., Ant�on-Bola~nos, N., Mezzera, C.,
Gezelius, H., Andr�es, B., et al. (2017). Prenatal thalamic waves
regulate cortical area size prior to sensory processing. Nature
Communications, 8, 14172. https://doi.org/10.1038/
ncomms14172

Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C.,
Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and
cerebellar activity in autism during motor task performance.
Brain : A Journal of Neurology, 132(Pt 9), 2413e2425. https://
doi.org/10.1093/brain/awp088

Mostofsky, S. H., Rimrodt, S. L., Schafer, J. G. B., Boyce, A.,
Goldberg, M. C., Pekar, J. J., et al. (2006). Atypical motor and
sensory cortex activation in attention-deficit/hyperactivity
disorder: A functional magnetic resonance imaging study of
simple sequential finger tapping. Biological Psychiatry, 59(1),
48e56. https://doi.org/10.1016/j.biopsych.2005.06.011

Murphy, K., Birn, R. M., & Bandettini, P. A. (2013). Resting-state
fMRI confounds and clearnup. NeuroImage, 80, 349e359.

Nagy, Z., Lagercrantz, H., & Hutton, C. (2011). Effects of preterm
birth on cortical thickness measured in adolescence. Cerebral
Cortex, 21(2), 300e306. https://doi.org/10.1093/cercor/bhq095

Nichols, T. E., & Holmes, A. (2002). Nonparametric permutation tests
for functional neuroimaging: A primer with examples.

Northam, G. B., Li�egeois, F., Tournier, J.-D. J.-D., Croft, L. J.,
Johns, P. N., Chong, W. K., et al. (2012). Interhemispheric
temporal lobe connectivity predicts language impairment in
adolescents born preterm. Brain: a Journal of Neurology, 135(12),
3781e3798. https://doi.org/10.1093/brain/aws276

Nosarti, C., Nam, K. W., Walshe, M., Murray, R. M., Cuddy, M.,
Rifkin, L., et al. (2014). Preterm birth and structural brain
alterations in early adulthood. NeuroImage: Clinical, 6, 180e191.
https://doi.org/10.1016/j.nicl.2014.08.005

Nosarti, C., Reichenberg, A., Murray, R. M., Cnattingius, S.,
Lambe, M. P., Yin, L., et al. (2012). Preterm birth and psychiatric

https://doi.org/10.1016/j.jpeds.2013.09.021
https://doi.org/10.1016/j.jpeds.2013.09.021
https://doi.org/10.1016/S0140-6736(08)60380-3
https://doi.org/10.1016/S0140-6736(08)60380-3
https://doi.org/10.1016/j.neuron.2013.06.043
https://doi.org/10.1016/j.neuron.2013.06.043
https://doi.org/10.1136/archdischild-2017-313414
https://doi.org/10.1136/archdischild-2017-313414
https://doi.org/10.1001/jamapediatrics.2015.2175
https://doi.org/10.1001/jamapediatrics.2015.2175
https://doi.org/10.1111/j.1651-2227.2012.02790.x
https://doi.org/10.1111/j.1651-2227.2012.02790.x
https://doi.org/10.1177/1362361311402230
https://doi.org/10.1038/pr.2017.161
https://doi.org/10.1038/pr.2017.161
https://doi.org/10.1016/j.earlhumdev.2013.03.008
https://doi.org/10.1016/j.earlhumdev.2013.03.008
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref66
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref66
https://doi.org/10.1109/TMI.2014.2322280
https://doi.org/10.1109/TMI.2014.2322280
https://doi.org/10.1523/JNEUROSCI.4445-12.2013
https://doi.org/10.1523/JNEUROSCI.4445-12.2013
https://doi.org/10.1097/DBP.0000000000000082
https://doi.org/10.1097/DBP.0000000000000082
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref70
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref70
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref70
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref70
https://doi.org/10.1371/journal.pone.0062683
https://doi.org/10.1093/cercor/bhx313
https://doi.org/10.1126/science.1117256
https://doi.org/10.1523/JNEUROSCI.2396-17.2017
https://doi.org/10.1523/JNEUROSCI.2396-17.2017
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref75
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref75
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref75
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref75
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref75
https://doi.org/10.1093/cercor/12.9.926
https://doi.org/10.1136/bmj.e7961
https://doi.org/10.1111/j.1460-9568.2005.03921.x
https://doi.org/10.1111/j.1460-9568.2005.03921.x
https://doi.org/10.1038/ncomms14172
https://doi.org/10.1038/ncomms14172
https://doi.org/10.1093/brain/awp088
https://doi.org/10.1093/brain/awp088
https://doi.org/10.1016/j.biopsych.2005.06.011
http://refhub.elsevier.com/S0010-9452(20)30366-X/optf7Eisqp9qM
http://refhub.elsevier.com/S0010-9452(20)30366-X/optf7Eisqp9qM
http://refhub.elsevier.com/S0010-9452(20)30366-X/optf7Eisqp9qM
https://doi.org/10.1093/cercor/bhq095
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref83
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref83
https://doi.org/10.1093/brain/aws276
https://doi.org/10.1016/j.nicl.2014.08.005
https://doi.org/10.1016/j.cortex.2020.09.022
https://doi.org/10.1016/j.cortex.2020.09.022


c o r t e x 1 3 5 ( 2 0 2 1 ) 1 7e2 9 29
disorders in young adult life. Archives of General Psychiatry,
69(6), E1eE8. https://doi.org/10.1001/
archgenpsychiatry.2011.1374

O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., &
Johansen-Berg, H. (2010). Distinct and overlapping functional
zones in the cerebellum defined by resting state functional
connectivity. Cerebral Cortex (New York, N.Y. : 1991), 20(4),
953e965. https://doi.org/10.1093/cercor/bhp157

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z.,
Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect,
characterize, and removed motion arifact in resting state
fMRI. NeuroImage, 84, 320e341.

Saigal, S., & Doyle, L. W. (2008). An overview of mortality and
sequelae of preterm birth from infancy to adulthood. Lance,
371(9608), 261e269.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,
Griffanti, L., & Smith, S. M. (2014). Automatic denoising of
functional MRI data: Combining independent component
analysis and hierarchical fusion of classifiers. Neuroimage,
90, 449e468. https://doi.org/10.1016/
j.neuroimage.2013.11.046

Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic
regulation of sleep and circadian rhythms. Nature, 437(7063),
1257e1263. https://doi.org/10.1038/nature04284

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K.,
Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-
scanner head motion on multiple measures of functional
connectivity: Relevance for studies of neurodevelopment in
youth. Neuroimage, 60(1), 623e632. https://doi.org/10.1016/
j.neuroimage.2011.12.063. Impact.

Sauer, F. C. (1935). Mitosis in the neural tube. The Journal of
Comparative Neurology, 62(2), 377e405. https://doi.org/10.1002/
cne.900620207

Serag, A., Aljabar, P., Ball, G., Counsell, S. J., Boardman, J. P.,
Rutherford, M. A., et al. (2012). Construction of a consistent
high-definition spatio-temporal atlas of the developing brain
using adaptive kernel regression. Neuroimage, 59(3),
2255e2265. https://doi.org/10.1016/j.neuroimage.2011.09.062

Sherman, S. M., & Guillery, R. (2013). Functional connections of
cortical areas: A new view from the thalamus. MIT Press.

Ski€old, B., Vollmer, B., B€ohm, B., Hallberg, B.,
Horsch, S.Mosskin, M., … (2012). Neonatal magnetic
resonance imaging and outcome at age 30 Months in
extremely preterm infants. The Journal of Pediatrics, 160(4),
559e566. https://doi.org/10.1016/j.jpeds.2011.09.053. e1.

Slater, L., Asmerom, Y., Boskovic, D. S., Bahjri, K., Plank, M. S.,
Angeles, K. R., et al. (2012). Procedural pain and oxidative
stress in premature neonates. The Journal of Pain, 13(6),
590e597. https://doi.org/10.1016/j.jpain.2012.03.010

Smith, S. M., Miller, K. L., Moeller, S., Xu, J., Auerbach, E. J.,
Woolrich, M. W., et al. (2012). Temporally-independent
functional modes of spontaneous brain activity. Proceedings of
the National Academy of Sciences of the United States of America,
109(8), 3131e3136. https://doi.org/10.1073/pnas.1121329109

Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster
enhancement: Addressing problems of smoothing, threshold
dependence and localisation in cluster inference. Neuroimage,
44(1), 83e98. https://doi.org/10.1016/j.neuroimage.2008.03.061

Spittle, A. J., Spencer-Smith, M. M., Eeles, A. L., Lee, K. J.,
Lorefice, L. E., Anderson, P. J., et al. (2013). Does the Bayley-III
Motor Scale at 2 years predict motor outcome at 4 years in
very preterm children? Developmental Medicine and Child
Neurology, 55(5), 448e452. https://doi.org/10.1111/dmcn.12049

Spittle, A. J., Treyvaud, K., Doyle, L. W., Roberts, G., Lee, K. J.,
Inder, T. E., et al. (2009). Early emergence of behavior and
social-emotional problems in very preterm infants. Journal of
the American Academy of Child and Adolescent Psychiatry, 48(9),
909e918. https://doi.org/10.1097/CHI.0b013e3181af8235

Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic
input to primate motor cortex. Journal of Neurophysiology, 39(5),
1020e1031. https://doi.org/10.1152/jn.1976.39.5.1020

Tanaka, Y. H., Tanaka, Y. R., Kondo, M., Terada, S.-I.,
Kawaguchi, Y., & Matsuzaki, M. (2018). Thalamocortical
axonal activity in motor cortex exhibits layer-specific
dynamics during motor learning. Neuron, 100(1), 244e258.
https://doi.org/10.1016/j.neuron.2018.08.016. e12.

Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., & Maurer, R. G.
(1998). Movement analysis in infancy may be useful for early
diagnosis of autism. Proceedings of the National Academy of
Sciences of the United States of America, 95(23), 13982e13987.

Toulmin, H., Beckmann, C. F., O'Muircheartaigh, J., Ball, G.,
Nongena, P., Makropoulos, A., et al. (2015). Specialization
and integration of functional thalamocortical connectivity in
the human infant. Proceedings of the National Academy of
Sciences, 112(20), 201422638. https://doi.org/10.1073/
pnas.1422638112

Treyvaud, K., Ure, A., Doyle, L. W., Lee, K. J., Rogers, C. E.,
Kidokoro, H., et al. (2013). Psychiatric outcomes at age seven
for very preterm children: Rates and predictors. Journal of Child
Psychology and Psychiatry, and Allied Disciplines, 54(7), 772e779.
https://doi.org/10.1111/jcpp.12040

Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The
influence of head motion on intrinsic functional connectivity
MR. NeuroImage, 59, 413e418.

Vanhatalo, S., & Kaila, K. (2006). Development of neonatal EEG
activity: From phenomenology to physiology. Seminars in Fetal
& Neonatal Medicine, 11(6), 471e478. https://doi.org/10.1016/
j.siny.2006.07.008

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van
Essen, D. C., et al. (2007). Intrinsic functional architecture in
the anaesthetized monkey brain. Nature, 447(7140), 83e86.
https://doi.org/10.1038/nature05758

Wess, J. M., Isaiah, A., Watkins, P. V., & Kanold, P. O. (2017).
Subplate neurons are the first cortical neurons to respond to
sensory stimuli. Proceedings of the National Academy of Sciences,
114(47), 12602e12607. https://doi.org/10.1073/pnas.1710793114

Wood, N. S., Costeloe, K., Gibson, A. T., Hennessy, E. M.,
Marlow, N., Wilkinson, A. R., & EPICure Study Group. (2005).
The EPICure study: Associations and antecedents of
neurological and developmental disability at 30 months of age
following extremely preterm birth. Archives of Disease in
Childhood. Fetal and Neonatal Edition, 90(2), F134eF140. https://
doi.org/10.1136/adc.2004.052407

Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K., &
Inder, T. E. (2006). Neonatal MRI to predict
neurodevelopmental outcomes in preterm infants. New
England Jounral of Medicine, 355, 685e694.

Ystad, M., Hodneland, E., Adolfsdottir, S., Ha�asz, J.,
Lundervold, A. J., Eichele, T., et al. (2011). Cortico-striatal
connectivity and cognition in normal aging: A combined DTI
and resting state fMRI study. Neuroimage, 55(1), 24e31. https://
doi.org/10.1016/j.neuroimage.2010.11.016

https://doi.org/10.1001/archgenpsychiatry.2011.1374
https://doi.org/10.1001/archgenpsychiatry.2011.1374
https://doi.org/10.1093/cercor/bhp157
http://refhub.elsevier.com/S0010-9452(20)30366-X/optQ4cPdjnrUO
http://refhub.elsevier.com/S0010-9452(20)30366-X/optQ4cPdjnrUO
http://refhub.elsevier.com/S0010-9452(20)30366-X/optQ4cPdjnrUO
http://refhub.elsevier.com/S0010-9452(20)30366-X/optQ4cPdjnrUO
http://refhub.elsevier.com/S0010-9452(20)30366-X/optQ4cPdjnrUO
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref88
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref88
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref88
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref88
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1038/nature04284
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1002/cne.900620207
https://doi.org/10.1002/cne.900620207
https://doi.org/10.1016/j.neuroimage.2011.09.062
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref94
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref94
https://doi.org/10.1016/j.jpeds.2011.09.053
https://doi.org/10.1016/j.jpain.2012.03.010
https://doi.org/10.1073/pnas.1121329109
https://doi.org/10.1016/j.neuroimage.2008.03.061
https://doi.org/10.1111/dmcn.12049
https://doi.org/10.1097/CHI.0b013e3181af8235
https://doi.org/10.1152/jn.1976.39.5.1020
https://doi.org/10.1016/j.neuron.2018.08.016
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref103
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref103
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref103
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref103
http://refhub.elsevier.com/S0010-9452(20)30366-X/sref103
https://doi.org/10.1073/pnas.1422638112
https://doi.org/10.1073/pnas.1422638112
https://doi.org/10.1111/jcpp.12040
http://refhub.elsevier.com/S0010-9452(20)30366-X/optzbiAN7z6gF
http://refhub.elsevier.com/S0010-9452(20)30366-X/optzbiAN7z6gF
http://refhub.elsevier.com/S0010-9452(20)30366-X/optzbiAN7z6gF
http://refhub.elsevier.com/S0010-9452(20)30366-X/optzbiAN7z6gF
https://doi.org/10.1016/j.siny.2006.07.008
https://doi.org/10.1016/j.siny.2006.07.008
https://doi.org/10.1038/nature05758
https://doi.org/10.1073/pnas.1710793114
https://doi.org/10.1136/adc.2004.052407
https://doi.org/10.1136/adc.2004.052407
http://refhub.elsevier.com/S0010-9452(20)30366-X/optU3VFuGgnwx
http://refhub.elsevier.com/S0010-9452(20)30366-X/optU3VFuGgnwx
http://refhub.elsevier.com/S0010-9452(20)30366-X/optU3VFuGgnwx
http://refhub.elsevier.com/S0010-9452(20)30366-X/optU3VFuGgnwx
http://refhub.elsevier.com/S0010-9452(20)30366-X/optU3VFuGgnwx
https://doi.org/10.1016/j.neuroimage.2010.11.016
https://doi.org/10.1016/j.neuroimage.2010.11.016
https://doi.org/10.1016/j.cortex.2020.09.022
https://doi.org/10.1016/j.cortex.2020.09.022

	Functional thalamocortical connectivity at term equivalent age and outcome at 2 years in infants born preterm
	1. Introduction
	2. Materials and methods
	2.1. Imaging acquisition
	2.2. Cohort
	2.3. Image processing
	2.4. Group ICA
	2.5. Cortical component selection
	2.6. Neurodevelopmental examination
	2.7. Group analysis

	3. Results
	4. Discussion
	4.1. Development of thalamocortical connectivity
	4.2. Neonatal thalamocortical connectivity using magnetic resonance imaging at birth
	4.3. How might preterm birth affect thalamocortical connectivity?
	4.4. How do changes in functional connectivity noted at birth relate to performance at two years old
	4.5. How successful are functional connectivity estimates with regards to outcome at two years
	4.6. Why are motor areas affected in preterm infants?
	4.7. Limitations

	5. Conclusion
	CRediT author statement
	Data availability
	Analysis code used
	Preregistration
	Funding information
	Declaration of competing interest
	Acknowledgements
	References


