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ABSTRACT  

Background: Identifying the complete repertoire of genes that drive cancer in 

individual patients is crucial for precision oncology. Most established methods identify 

driver genes that are recurrently altered across patient cohorts. However, mapping 

these genes back to patients leaves a sizeable fraction with few or no drivers, 

hindering our understanding of cancer mechanisms and limiting the choice of 

therapeutic interventions.  

 

Results: We present sysSVM2, a machine learning software that integrates cancer 

genetic alterations with gene systems-level properties to predict drivers in individual 

patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to 

any cancer type. We benchmark its performance on real cancer data and validate its 

applicability to a rare cancer type with few known driver genes. We show that drivers 

predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-

known cancer-related pathways.  

 

Conclusions: sysSVM2 can be used to identify driver alterations in patients lacking 

sufficient canonical drivers or belonging to rare cancer types for which assembling a 

large enough cohort is challenging, furthering the goals of precision oncology. As 

resources for the community, we provide the code to implement sysSVM2 and the pre-

trained models in all TCGA cancer types (https://github.com/ciccalab/sysSVM2). 
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BACKGROUND 

Cancer is characterised by the acquisition of somatic alterations of the genome, 

the majority of which are thought to have little or no phenotypic consequence for the 

development of the disease. Identifying the genes whose alterations instead have a 

role in driving cancer (cancer drivers) is one of the major goals of cancer genomics 

and numerous methods have been developed so far to achieve this.  

Most of these methods work at the cohort-level, which means that they identify 

driver genes within a cohort of patients. For example, recurrence-based methods such 

as MutSigCV (1) and MuSiC (2) search for genes whose mutation rate (single 

nucleotide variants (SNVs) and small insertions or deletions (indels) per nucleotide) is 

above the background level. This is because mutations in cancer drivers are more 

likely to become fixed and recur across samples than those in non-driver genes. 

GISTIC2 (3) adopts a similar approach for recurrent copy number variants (CNVs). 

OncodriveCLUST (4) and ActiveDriver (5) look specifically for mutations clustering in 

hotspot positions or encoding post-translational modification sites. TUSON (6) and 

20/20+ (7) predict new drivers based on features of canonical oncogenes and tumour 

suppressors, including the proportion of missense or loss-of-function to silent 

mutations occurring across patients. dNdScv (8) computes the nonsilent to silent 

mutation ratio to identify gene mutations under positive selection, while OncodriveFM 

(9) focuses on biases towards variants of high functional impact. Finally, network-

based methods like HotNet2 (10) incorporate gene interaction networks to identify 

significantly altered modules of genes within the cohort. Albeit with different 

approaches, all these methods rely on the comparison of alterations and/or altered 

genes across patients. 

 Cohort-level methods have been of great value leading to the identification of 

more than 2,000 well-established (canonical) or candidate cancer driver genes (11, 

12). However, these approaches fail to identify rare driver events that occur in small 

cohorts or even in single patients because of low statistical power. Moreover, they are 

not ideal for application in the clinical setting because they return lists of drivers in 

entire cohorts, rather than predictions in individual patients. 

Patient-level methods ideally predict cancer drivers in each patient but are more 

challenging to implement. A few attempts such as OncoIMPACT (13), DriverNet (14) 



 4 

and DawnRank (15) combine transcriptomic and genomic data to identify gene 

network deregulations in individual samples. Such methods require user-specified 

gene networks and deregulation thresholds, which can affect their results (13). In 

addition, matched exome and transcriptome data from the same sample are not 

always available, especially in clinical settings where shotgun transcriptomic 

sequencing is still rare. Alternative approaches such as PHIAL (16) match the patient 

mutations with databases of known clinically actionable or driver alterations but have 

a limited capacity to identify as-yet unknown driver alterations. To overcome this 

limitation, iCAGES (17) combines deleteriousness predictions and curated database 

annotations to learn features of true positive and true negative driver alterations. 

We recently developed sysSVM, a patient-level driver detection method based 

on one-class support vector machines (SVMs) (18). sysSVM learns the distinct 

molecular features (damaging somatic alterations) and systems-level features (gene 

properties) of canonical drivers. It then predicts as drivers the altered genes in 

individual patients that best resemble these features. When applied to 261 patients 

with oesophageal adenocarcinomas, sysSVM successfully identified the driver events 

in every patient (18). 

Here, we further develop sysSVM to be applied to any cancer type and 

benchmark it against other available approaches, showing that it has a lower false 

positive rate and better patient coverage. We also develop optimal models for 

identifying driver genes in all 34 cancer types available in The Cancer Genome Atlas 

(TCGA) (19) and validate them in osteosarcoma, a rare cancer type that was not part 

of TCGA. The software, optimised models and their associated driver predictions are 

provided as a resource that can be used to identify and study driver events in cancers 

at the single patient resolution.  
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IMPLEMENTATION 

 The sysSVM approach to driver detection prioritises genes with features similar 

to those of canonical cancer drivers, i.e. genes whose modifications have 

experimentally proven roles in cancer initiation and progression (Additional File 1: 

Supplementary Note). Canonical drivers differ from other human genes by an array of 

systems-level properties that define them as a group and do not strictly depend on the 

function of the single gene. These properties include gene duplicability in the human 

genome (20) and through vertebrate whole-genome duplications (21); gene 

essentiality across cell lines (11); breadth of expression in healthy tissues at the gene 

and protein levels (11, 22, 23); protein connectivity and global topology in the protein-

protein interaction network (20); participation in protein complexes (22); number of 

targeting miRNAs (21); gene evolutionary origin (21); and  protein length and domain 

organisation (22, 23) (Additional File 2: Table S1). Canonical drivers can also be 

described using molecular properties that reflect the somatic alterations that they 

acquire in cancer. These include alterations with predicted damaging effects on 

protein function (copy number gains and losses as well as truncating, non-truncating 

damaging and hotspot mutations) and overall mutational burden and copy number of 

the gene (Additional File 2: Table S1). 

To leverage the systems-level and molecular properties of canonical drivers, 

sysSVM first identifies a set of true positive canonical drivers damaged within a cohort 

of patients (Figure 1A). It then uses the features of this positive set to train one-class 

SVMs based on four kernels (linear, radial, sigmoid, polynomial). Finally, it ranks the 

remaining damaged genes in individual cancer patients with a combined score that 

weights the kernels based on their sensitivity (Additional File 1: Supplementary Note). 

Highly ranked genes have the most similar properties to those of canonical drivers and 

will be then considered the cancer drivers for that patient. We use one-class SVMs for 

sysSVM because, while canonical drivers represent a reliable set of true positives, 

identifying a true negative set of non-cancer genes is not possible. For example, 

possible negative genes could be known false positives of driver gene detection 

methods (1, 22). However, these genes are representative of false positives rather 

than true negatives, so training a classifier on them is likely to introduce unwanted 

bias. A one-class support vector machine for novelty detection is therefore an optimal 

way to solve this issue.  
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RESULTS 

Simulation of pan-cancer datasets 

In order to optimise the use of sysSVM for any cancer type, we simulated 1,000 

cancer-agnostic samples starting from all TCGA tumours with matched mutation, CNV 

and gene expression data (Additional File 1: Supplementary Methods). We ensured 

that the tumour mutation and copy number burdens were similar between real and 

simulated samples (Figure 1B) and that gene mutation and copy number status in the 

simulated dataset was the same of TCGA (Additional File 1: Figure S1A). As a result, 

the frequency of damaging alterations in known oncogenes and tumour suppressors 

was comparable between the two datasets, with TP53, PIK3CA and CDKN2A among 

the most frequently altered genes in both (Figure 1C). We further verified that gene 

alteration frequencies in the simulated data were not significantly biased by cancer 

types with large cohort sizes in TCGA (Additional File 1: Figure S1B), confirming the 

suitability of the simulated data as a representative pan-cancer cohort. 

The simulated cohort for sysSVM optimisation (hereafter referred to as the 

reference cohort) was composed of 1,000 samples with 18,455 genes damaged 

309,427 times. Of these, 686 were canonical drivers with an experimentally proven 

role in cancer (12, 24), 1,605 were candidate cancer genes from 273 cancer screens 

(11), 43 were known false positive predictions of driver detection methods (1, 25) and 

16,121 were the remaining damaged genes (hereafter referred to as the rest of genes; 

Figure 1D, Additional File 2: Table S2). We annotated seven molecular and 25 

systems-level features of all damaged genes (Additional File 2: Table S1) and used 

these features for training and prediction. As a training set, we selected 457 of the 686 

canonical drivers with proven roles as oncogenes (236) or tumour suppressors (221). 

We restricted somatic alterations of oncogenes and tumour suppressors to gain-of-

function or loss-of-function alterations, respectively (Additional File 1: Supplementary 

Methods). Since we could not reliably define the remaining 229 damaged canonical 

drivers as either oncogenes or tumour suppressors, we could not restrict their somatic 

alterations to the appropriate type. Therefore, we did not use them for training but 

could still use them for prediction and performance assessment (Figure 1D), together 

with 43 false positives and 16,121 the rest of genes.  
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sysSVM optimisation on the pan-cancer reference cohort 

Using the reference cohort, we optimised sysSVM in terms of data 

normalisation, parameter tuning and feature selection (Figure 1A). So as not to bias 

the optimisation with a particular set of kernel parameters, we implemented 512 

models with parameter combinations representing a sparse coverage of a standard 

grid search (Additional File 1: Supplementary Note). We then measured the ability of 

each of these 512 models to prioritise the 229 canonical drivers not used for training 

over the rest of damaged genes or the false positives. We did this by computing the 

Area Under the Curve (AUC) in each sample and taking the median AUC as 

representative of the whole cohort (Additional File 1: Supplementary Methods). 

First, we derived the optimal settings for data normalisation in terms of centered 

and un-centered data (Additional File 1: Supplementary Note). All models robustly 

prioritised canonical drivers above the rest using either centered or un-centered data 

but showed lower performance in distinguishing canonical drivers from false positives 

(Figure 2A). We reasoned that false positives from recurrence-based driver detection 

methods (1) shared some features with canonical drivers. For example, they encoded 

long and multi-domain proteins. When removing protein length and number of 

domains from the feature list (Additional File 2: Table S2), the performance 

substantially improved particularly for un-centred data (Figure 2B). We therefore 

removed protein length and number of domains from the model. 

Second, we selected the optimal sets of parameters in each kernel. Hyper-

parameter choice is known to have substantial impacts on classification and it is an 

open problem for one-class SVMs (26). Since the parameters for each kernel needed 

to be selected separately (Additional File 1: Supplementary Note), we could not use 

AUC of the combined multi-kernel model for assessment. Instead, we used the 

sensitivity of each kernel to predict canonical drivers calculated from three-fold cross-

validation on the training set. Sensitivity was indeed a good predictor of the overall 

AUC of canonical drivers over the rest of genes (Figure 2C) and false positives (Figure 

2D). We therefore developed an approach to select the parameters that conferred the 

highest sensitivity in multiple iterations of cross-validation (Additional File 1: 

Supplementary Methods). In the reference cohort, parameters chosen in this way 

converged within 2,000 cross-validation iterations for all kernels (Additional File 1: 

Figure S3A). 
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Finally, since the presence of highly correlated features can hinder SVM 

performance (27), we performed systematic feature selection by assessing the 

pairwise correlations between all 25 systems-level features. Four features (gene 

expression in 1≤ tissues ≤6 and in ≥37 tissues; protein expression in 0≤ tissues ≤8 

and central position in the protein-protein interaction network) exhibited a significant 

degree of inter-correlation (Pearson |r| >0.5, FDR<0.05, Additional File 1: Figure S3B). 

Removing them led to faster convergence of kernel parameters (Additional File 1: 

Figure S3A) and improved performance overall (Additional File 1: Figure S3C). 

Based on these results, we chose the default settings for the cancer agnostic 

SVM classifier, which we named sysSVM2 (28). By default, data are un-centered but 

scaled to have unit standard deviation. Six of the original systems-level features are 

excluded resulting in a total of seven molecular and 19 systems-level features (Table 

1). Finally, kernel parameters optimised on the reference cohort are provided as a 

default (Additional File 1: Figure S3A), although users may perform specific cross-

validation iterations on their own cohorts. 

We then assessed the performance of sysSVM2 in prioritising cancer drivers 

over other genes. We confirmed that, overall, the prediction scores of 229 canonical 

drivers outside the training set were significantly higher than those of any other gene 

category (Figure 2E). Candidate cancer genes also scored significantly higher than 

the rest of genes, indicating that they were also in top ranking positions. We also 

measured the relative ranks of genes in individual samples using Receiver Operating 

Characteristic (ROC) curves. Comparing canonical drivers to the rest of genes and to 

false positives gave AUCs of 0.73 and 0.93, respectively (Figure 2F), demonstrating 

that canonical drivers were prioritised above the rest of genes and especially above 

false positives. This was not surprising as the properties of canonical drivers differ 

substantially from those of false positives (Additional File 1: Figure S3D), further 

supporting that known false positives are not representative of non-cancer genes. 

 

Effect of training cohort size on sysSVM2 performance  

The sample size of patient cohorts can highly vary across cancer types. For 

example, in TCGA it ranges from 32 samples for diffuse large B-cell lymphoma (DLBC) 

to 726 for breast cancer (BRCA, Additional File 2: Table S3), with a median of 201 
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samples. We therefore sought to address how the sample size of the training cohort 

affected sysSVM2 performance.  

Starting from all TCGA samples and using the previously described approach, 

we simulated 40 training cohorts, ten of which were composed of ten samples, ten of 

100 samples, ten of 200 samples and ten of 1,000 samples. We then trained sysSVM2 

on each of these 40 cohorts independently and used the resulting models to rank 

damaged genes in the reference cohort and to compare their performance.  

The distributions of AUCs of canonical drivers over the rest of genes or false 

positives were high for all four cohort sizes (Figure 3A). This suggested that sysSVM2 

was overall very effective in prioritising cancer genes independently of the training 

cohort size. We then compared the composition of the prioritised gene list in each 

sample across models of a given size. We measured a composition score of the top 

five genes accounting for the number and position of canonical drivers, candidate 

cancer genes and false positive genes (Additional File 1: Supplementary Methods). 

Similar to the AUC, the composition score of the top five genes was also very similar 

across training cohorts (Figure 3B). However, a few models trained on ten or 100 

samples returned false positives in the top five positions while no false positives were 

predicted by models trained on larger cohorts of 200 or 1,000 samples.  Finally, we 

measured the ratio between observed and expected canonical drivers and false 

positives in the top five genes (Figure 3C, Additional File 1: Supplementary Methods). 

Independently of the training cohort size, false positives in the top five genes were 

always lower than expected, confirming that sysSVM2 efficiently distinguished false 

positives from drivers. The number canonical drivers in the top five genes was more 

than twice the expected number in >85% of samples and more than five times the 

expected value in around 65% of samples. As with the other metrics, the performance 

of sysSVM2 did not change substantially with the size of the training cohort. 

Since we used the same reference cohort for prediction, we could directly 

compare the gene ranks in each patient across models, thus assessing their prediction 

stability. To do so, we measured the Rank-Biased Overlap (RBO) score that compares 

two ranked lists giving greater weight to the higher-ranked positions (29) (Additional 

File 1: Supplementary Methods).  The distributions of RBO scores of the top five genes 

were significantly higher for large training cohorts compared to those composed of ten 
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samples (Figure 3D). Moreover, models trained on large cohorts showed overall 

higher gene overlap in the top five genes (Figure 3E).  

These results showed that, although sysSVM2 successfully separates 

canonical drivers from other genes independently of the training cohort size, small 

cohorts lead to occasional false positive predictions and to unstable gene ranking. 

Since the median cohort size of TCGA cancers is 201 samples, sysSVM2 is likely to 

separate canonical drivers from the rest of genes with a very low false positive rate 

and stable gene rankings for most cancer cohorts.  

 

Benchmark of sysSVM2 against existing methods 

Next, we sought to compare the predictions of sysSVM2 on real cancer data to 

those of other driver detection methods. To do this, we used 657 Gastro-Intestinal (GI) 

adenocarcinomas from TCGA (73 oesophageal, 279 stomach, 219 colon and 86 rectal 

cancers, Additional File 2: Table S3). Overall, this cohort had 17,122 unique damaged 

genes, including 438 tumour suppressors and oncogenes used for sysSVM2 training 

(Additional File 2: Table S2). After ranking the remaining 16,684 damaged genes, we 

confirmed the overall ability of sysSVM2 to prioritise the 228 canonical drivers not used 

for training over the rest of damaged genes and false positives also in real data (Figure 

4A).  

To identify the list of cancer drivers of each patient, we adopted a top-up 

approach. Starting from the GI canonical drivers (11) damaged in each sample, we 

added sysSVM2 predictions progressively based on their rank to reach five drivers per 

patient (Additional File 1: Supplementary Methods). This was based on the 

assumption that each cancer requires at least five driver events to fully develop, in 

concordance with recent quantifications of the amount of excess mutations arising 

from positive selection in cancer (8, 30). While 154 patients had damaging alterations 

in five or more GI canonical drivers, 503 patients (77%) needed at least one prediction 

(Figure 4B), highlighting the need for additional cancer driver predictions. This resulted 

in 564 unique sysSVM2 drivers.  

We then predicted the drivers in the same GI samples using two cohort-level 

(PanSoftware (31) and dNdScv (8)) and two patient-level (OncoIMPACT (13) and 

DriverNet (14)) detection methods. PanSoftware integrated 26 computational driver 
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prediction tools and we took the list of 40 damaged drivers directly from the original 

publication (31), given that we used a large subset (87%) of the same TCGA GI 

samples. We ran the other three methods with default parameters (Additional File 1: 

Supplementary Methods) and obtained 25 predicted drivers with dNdScv, 607 with 

DriverNet and 1,345 with OncoIMPACT.  

We compared sysSVM2 to the four other methods in terms of recall rates of 

canonical drivers or false positives, proportion of novel predictions and patient driver 

coverage. Overall, cohort-level methods had higher recall rates of GI canonical 

drivers, fewer novel predictions and a comparably low false positive recall than 

sysSVM2 (Figure 4C). However, unlike sysSVM2, neither cohort-level method 

predicted drivers in all patients, leaving the vast majority of them with less than five 

predictions and some with no predictions (Figure 4D). 

Compared to sysSVM2, the other two patient-level methods had higher recall 

rates of the 228 canonical drivers, a comparably high proportion of novel predictions 

but higher false positive rate (Figure 4C). Namely, sysSVM2 made only one false 

positive prediction in one patient while DriverNet and OncoIMPACT predicted four and 

seven false positives in 124 and 306 patients, respectively (Additional File 1: Figure 

S4A). Overall, all three methods had high patient driver coverage, but sysSVM2 

outperformed the other two with only one sample where it predicted less than five 

drivers (Figure 4D). Interestingly, the overlap of predictions between sysSVM2 and 

the other patient-level methods was statistically significant (Additional File 1: Figure 

S4A) even when only top-up predictions were considered (Additional File 1: Figure 

S4B). This suggested that the majority of predictions converged to the same genes. 

These results showed that cohort-level methods have high specificity and 

sensitivity to identify cancer-specific canonical drivers but often fail to find drivers in a 

substantial subset of patients. Compared to other patient-level detection methods, 

sysSVM2 outperforms them in terms of specificity and patient coverage.  

 

Compendium of sysSVM2 models and patient-level drivers in 34 cancer types 

In order to provide a comprehensive resource of trained models (28) and 

patient-level drivers, we sought to apply sysSVM2 to 7,646 TCGA samples of 34 
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cancer types with at least one somatically damaged gene (Additional File 1: 

Supplementary Methods).  

To find the best training setting for the algorithm on real cancer samples, we 

compared the performance of sysSVM2 trained on the whole pan-cancer cohort as 

well as on the 34 cancer types separately. In the pan-cancer setting, we used all 477 

tumour suppressors and oncogenes damaged across the whole cohort. In the cancer-

specific setting, we used instead only the subsets of these genes damaged in each 

cancer type (Additional File 2: Table S3). We then predicted on the remaining 

damaged genes and applied the top-up approach as described above, starting from 

the cancer-specific canonical drivers damaged in each patient (Additional File 2: Table 

S3). We found that 6,067 samples (79%) required at least one sysSVM2 prediction in 

order to reach five drivers (Figure 5A). These corresponded to 4,369 and 4,548 unique 

genes in the pan-cancer and cancer-specific settings, respectively, with a significant 

overlap of predictions (3,896, p <2.2x10-16, two-sided Fisher’s exact test). 

We then compared the performance of pan-cancer and cancer-specific settings 

of sysSVM2 in prioritising canonical drivers over rest of genes or false positives. The 

AUCs differed significantly (FDR <0.05) and substantially (|difference in medians| 

>0.05) in only five cancer types (Figure 5B, Additional File 1: Figures S5A and S5B). 

All of them were composed of small cohorts with <200 samples and in all cases the 

pan-cancer setting showed better performance than the cancer-specific setting. The 

composition score of the top five predictions also differed significantly and 

substantially (|difference in medians| >1) in only three cancer types (Figure 5C, 

Additional File 1: Figure S5C). All these cancer types were again characterised by 

small training cohorts and showed higher performance in the pan-cancer setting. 

Predictions of cancer-specific models and the pan-cancer model were mostly similar, 

with the exception of cancer types with small training cohorts (Additional File 1: Figures 

S5D and S5E). Overall, these results confirmed the trend observed in the simulated 

data and indicated that the pan-cancer and cancer-specific settings performed 

similarly well in most cases, except for small cohorts where the pan-cancer model 

performed better. 

Based on these results, we used the pan-cancer setting for cancer types with 

small cohorts (N <200) and the cancer-specific setting for the others, as this could 

reflect cancer-type specific biology without jeopardising performance or stability. The 
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final list of patient-specific predictions in 34 cancer types was composed of 4,470 

unique genes, the vast majority of which (93%) were rare (<10 patients) or patient-

specific (Figure 5D, Additional File 2: Table S4). A gene set enrichment analysis on 

these genes revealed 984 enriched pathways overall (Reactome level 2 or above, 

FDR <0.01, Additional File 1: Supplementary Methods, Additional File 2: Table S5). 

Interestingly, when mapping these pathways to broader biological processes 

(Reactome level 1), a few processes were widely enriched in almost all cancer types 

(Figure 5E). These included well-known cancer-related processes such as chromatin 

organisation (32), DNA repair (33), cell cycle (34) and signal transduction (35). 

Therefore, although not recurring across patients, sysSVM2 predictions converged to 

perturb similar biological processes that are known to contribute to cancer. 

 

sysSVM2 predictions in an independent cancer cohort 

We finally sought to assess whether the sysSVM2 models trained on TCGA 

could be applied for driver prediction in a cancer type not included in TCGA. We 

therefore analysed 36 osteosarcomas from the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) consortium (30). Osteosarcoma is a rare, genetically 

heterogeneous bone cancer with poor prognosis and only six well-established 

canonical drivers (36, 37).  

We annotated the genomic data of the PCAWG cohort finding 4,969 damaged 

genes overall with a median of 93 damaged genes per sample (Additional File 2: Table 

S2). Only two of these samples had three damaged osteosarcoma canonical drivers 

while 19 (53%) of them had no canonical driver (Figure 6A), highlighting the need for 

further predictions. Given the small cohort size, we used the TCGA pan-cancer setting 

to rank the damaged genes in each osteosarcoma. Considering the top five predictions 

per sample, we got 129 unique genes (Additional File 2: Table S6), which were poorly 

recurrent across samples (Figure 6B), reflecting again the genetic heterogeneity of 

osteosarcoma. 

At the cohort level, sysSVM2 predictions included five of the six (83%) 

osteosarcoma canonical drivers (36, 37). At the patient level, the six osteosarcoma 

canonical drivers were damaged 27 times and in 14 of these cases (53%) they were 

in the top five predictions (Figure 6C). This proportion rose to 81% when considering 
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the top ten predictions. In addition to osteosarcoma canonical drivers, 26 sysSVM2 

predictions were canonical drivers in other cancer types, 16 were candidate cancer 

driver genes and 81 had no previously known involvement in cancer (Additional File 

2: Table S6). Despite this, these 81 genes were enriched in eight pathways (FDR 

<0.1), most of which have a known role in cancer (Figure 6D). Moreover, they included 

genes known to promote osteogenesis such as YAP1 and YES1 (38, 39). 

These results showed that sysSVM2 is able to identify reliable cancer drivers 

in individual patients even for cancer types not used for training. This has relevant 

implications particularly in the case of rare cancers that are poorly studied and have 

little genomic data available.  

 

DISCUSSION 

Identifying the complete repertoire of driver events in each cancer patient holds 

great potential for furthering the molecular understanding of cancer and ultimately for 

precision oncology. While many recurrent driver genes have now been identified, the 

highly heterogeneous long tail of rare drivers still poses great challenges for detection, 

validation and therapeutic intervention. 

Our method allows to identify driver genes in individual patients. These genes 

converged to well-known cancer-related biological processes and further studies could 

potentially use these predictions to investigate particular aspects of cancer biology, 

such as driver clonality and their progressive acquisition during cancer evolution. 

Extending the algorithm with additional sources of data is another avenue for future 

work. For example, transcriptomic and epigenomic data could enhance the ability of 

sysSVM2 to identify driver events. Additionally, recent efforts have identified a large 

number of driver events in non-coding genomic elements (30). Given such a training 

set of true positives, sysSVM2 could be further developed to identify non-coding 

drivers in individual patients, as long as appropriate features could be identified. The 

general approach of identifying drivers using a combination of molecular and systems-

level properties affords great flexibility for such developments.  

It is increasingly common for sequencing studies to integrate multiple tools for 

driver detection (31), since building a consensus can make results robust to the 

weaknesses of individual methods. sysSVM2 also has its weaknesses. For example, 
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while systems-level properties distinguish cancer genes as a set, there are some 

cancer genes that do not follow this trend (11) and are thus likely to be missed by the 

algorithm. Our approach in the current work of topping up known driver genes with 

predictions from sysSVM2 is a simple example of how sysSVM2 can be used in 

conjunction with other approaches. More broadly, it is likely the case that patient-level 

driver detection will eventually rely on an entire ecosystem of different methods. In this 

work, we have demonstrated that there is a place for sysSVM2 in such an ecosystem. 

 

CONCLUSIONS 

In this work, we developed a cancer-agnostic algorithm, sysSVM2, for 

identifying cancer driver in cancer individual patients (28). By refining the machine 

learning approach upon which the original algorithm was built (18), we broadened its 

applicability to the pan-cancer range of malignancies represented in TCGA. sysSVM2 

successfully and stably prioritises canonical driver genes for most publicly available 

cancer cohorts. For those composed of fewer samples, the models optimised on the 

whole pan-cancer dataset offer a valid alternative. Moreover, compared to other 

patient-level driver detection methods, sysSVM2 has better patient coverage and a 

particularly low rate of predicting established false positives. sysSVM2 can be used to 

identify driver alterations in individual patients and rare cancer types where canonical 

drivers are insufficient to explain the onset of disease, as we have validated in 

osteosarcoma. This potentially opens up further research and therapeutic 

opportunities. 
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Operating system: Platform independent 

Programming language: R 

Other requirements: R version greater than 3.5 

License: Crick Non-commercial License Agreement v2.0 

Any restrictions to use by non-academics: Commercial use will require a license 

from the rights-holder. For further information contact translation@crick.ac.uk. 

 

LIST OF ABBREVIATIONS 

SNV: Single nucleotide polymorphism 

Indel: Insertion or deletion 

CNV: Copy number variant 

SVM: Support vector machine 

TCGA: The Cancer Genome Atlas 

AUC: Area under the curve 

ROC: Receiver operating characteristic 

DLBC: Diffuse large B-cell lymphoma 
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Figure 1. sysSVM approach for driver prioritisation 

 

A. Overview of sysSVM. Molecular (somatic SNVs, indels and mutation burden) and 

systems-level features (Additional File 2: Table S1) of damaged canonical drivers in 

the analysed samples are used for training. The best models of support vector 

machines (SVMs) with four kernels are selected using cross-validation and trained on 

the whole set of damaged canonical drivers. Finally, a combined score is used to 

prioritise driver genes in individual patients. The SVM implementation was generalised 

for optimal performance on a simulated cancer-agnostic dataset through data 

normalisation, parameter tuning and feature selection.  

B. Generation of a simulated reference cohort from TCGA data. Values of damaging 

mutation burden and ploidy were randomly assigned to samples. Damaged genes 

were then extracted from real samples with similar values of damaging mutation 
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burden (+/-10% for mutations) and ploidy (+/-0.1 for CNVs). Dots represent individual 

TCGA (orange) or simulated (yellow) samples. Red lines indicate average numbers of 

genes with damaging mutations or CNVs in TCGA samples, for each given values of 

damaging mutation burden or ploidy.  

C. Frequencies of canonical drivers in real and simulated samples. Oncogene gain-

of-function, tumour suppressor loss-of-function and both types of TP53 alterations 

were considered. 

D. Gene sets used for sysSVM optimisation. The training set included oncogenes 

(OGs) and tumour suppressor genes (TSGs), as well as TP53. All other damaged 

genes were used for prediction and assessment. These included other canonical 

drivers (without a proven OG or TSG role), candidate cancer genes from published 

cancer sequencing screens, known false positives of established driver detection 

methods and the remaining damaged genes. Bars indicate the number of unique 

damaged genes across the reference cohort of 1,000 simulated samples.  
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Figure 2. sysSVM optimisation on the simulated reference cohort 

 

Model performances on the reference cohort using centered (left) and un-centered 

(right) data with all 25 systems-level features (A) or excluding protein length and 

number of protein domains (B). A sparse grid of 512 parameter combinations in the 

four kernels was tested. The performance of each model was measured using the 

Area Under the Curve (AUC), comparing the ranks of canonical drivers to the rest of 

genes and false positives. Median AUC values across all samples were plotted. Red 

dotted lines represent the minimum AUC values.  

Correlation between model average sensitivity and AUCs of canonical drivers over the 

rest of genes (C) or false positives (D). The sensitivity of each kernel was measured 

on the training set over 100 three-fold cross-validation iterations. The median values 

over the four kernels are plotted. R and p-values from Pearson’s correlation test are 

reported. Dotted red lines indicate the linear regression curves of best fit. 
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E. Distributions of sysSVM2 prediction scores for different types of damaged genes in 

the reference cohort. Whiskers extend to 1.5 times the Inter-Quartile Range (IQR). 

Statistical significance was measured using two-sided Wilcoxon tests. The median 

values of the distributions are labelled. **** = p <2.2x10-16.  

F. Receiver Operating Characteristic (ROC) curves, comparing canonical drivers to 

the rest of genes (green) and to false positives (brown). Recall rates were calculated 

for each sample separately and the median ROC curve across samples was plotted. 

Median Areas Under the Curve (AUCs) for both comparisons are also indicated.  
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Figure 3. Effect of cohort size on sysSVM2 performance 

 

A. Distributions of AUCs comparing the ranks of canonical drivers to the rest of genes 

(green) and False Positives (brown). Models were trained on ten simulated cohorts 

composed of ten, 100, 200 and 1,000, for a total of 40 simulated cohorts. These were 

then used to predict on the same reference cohort of 1,000 samples. The AUC was 

measured for each set of predictions in each sample. 

B. Distributions of composition scores of the top five predictions in terms of canonical 

drivers, candidate cancer genes, false positives and rest of genes (Additional File 1: 

Supplementary Methods). The composition score was measured for each set of 

predictions in each sample. Six training cohorts of size ten and two cohorts of size 100 

gave negative composition scores in at least one sample, indicating highly ranked 

false positive genes. 

C. Ratios between observed and expected numbers of canonical drivers and false 

positives in the top five predictions (O/E ratios). For each size of the training cohort, 

the percentages of samples with a false positive O/E ratio of zero and canonical driver 

O/E ratios greater that 2, 5 and 10 are shown (Additional File 1: Supplementary 

Methods). 

D. Rank-Biased Overlap (RBO) score of the top five predictions in each sample 

(Additional File 1: Supplementary Methods). RBO scores measured the similarity 
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between the predictions from every possible pair of models trained on cohorts of a 

particular sample size. Statistical significance was measured using two-sided 

Wilcoxon tests. **** = p <2.2x10-16. 

E. Distribution of the number of top five predictions shared between models trained 

with the same cohort size. The overlap was calculated between each pair of 

predictions in each sample.  
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Figure 4. sysSVM2 benchmark on TCGA gastro-intestinal cancers  

 

A. Median Receiver Operating Characteristic (ROC) curves across 657 Gastro-

Intestinal (GI) samples from TCGA. Curves compare the ranks of canonical drivers to 

the rest of genes or to false positives. The median Areas Under the Curve (AUCs) are 

also indicated. 

B. Distribution of GI canonical drivers across the GI cohort. Lists of canonical drivers 

for each GI cancer type were obtained from NCG6 (11) and mapped to samples of the 

corresponding cancer type where they were damaged. Numbers of samples are 

indicated above each bar. Samples with five or more GI drivers did not require 

additional driver predictions.  

C. Comparison of performance between sysSVM2 and four other driver detection 

methods. The set of unique drivers predicted by each approach were compared in 

terms of recall of GI canonical drivers, other canonical drivers (non-GI and outside the 

sysSVM2 training set) and false positives and proportion of novel predictions not 

previously associated with a cancer driver role. The number of genes in each category 

is reported in brackets. The recall of GI canonical drivers could not be assessed for 

sysSVM2 because these were part of the training set. They were however considered 

as drivers by default, rather than predicted by the algorithm. NA = Not Applicable. 
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D. Proportions of 657 GI samples left with no predicted drivers (left) or fewer than 5 

predictions. The one sample left with fewer than 5 predictions by sysSVM2 (TCGA-

FP-8210, stomach cancer) had four damaged genes overall.  
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Figure 5. sysSVM2 predictions in 34 cancer types  

 

A. Number of damaged canonical drivers per sample. Lists of canonical drivers for 

each cancer type were obtained from NCG (11) and mapped to samples of the 

corresponding cancer type. 6,067 samples with less than five canonical drivers 

damaged underwent the top-up procedure to reach five drivers. 

Difference in Areas Under the Curve (AUCs) between the pan-cancer and cancer-

specific settings in ranking canonical drivers over the rest of human genes and false 

positives (B) and in the composition score of the top five predictions (C). The median 

values of the distributions in each cancer type were used for comparison, with the 

yellow and blue regions indicating better performance in the pan-cancer and cancer-

specific settings, respectively. The number of samples used for training is indicated on 

the x-axis. Colour dots represent cancer types where the two settings differ both 
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significantly (FDR <0.05, Wilcoxon rank-sum test) and substantially (|difference in 

medians| >0.05 for AUCs, >1 for composition score). ACC, adrenocortical carcinoma; 

TGCT, testicular germ cell tumours; PAAD, pancreatic adenocarcinoma; READ, 

rectum adenocarcinoma; MESO, mesothelioma; UVM, uveal melanoma; and OSCC, 

oesophageal squamous cell carcinoma. 

D. Recurrence of damaging alterations in 282 canonical driver genes and 4,470 

sysSVM2 top-up predictions across 7,646 samples. 

E. Gene set enrichment analysis of sysSVM2 top-up genes, grouped in broad 

biological processes (Reactome level 1). Numbers of pathways enriched in at least 

one cancer type out of the total pathways tested are reported in brackets. Red vertical 

strokes indicate the mean number of cancer types that pathways from each broad 

process are enriched in (bottom x-axis). 
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Figure 6. Validation of sysSVM2 in osteosarcoma  

 

A. Distribution of osteosarcoma canonical drivers across the PCAWG osteosarcoma 

cohort. Lists of canonical drivers for osteosarcoma derived from the literature (36, 37) 

and mapped to samples where they were damaged. Numbers of samples are 

indicated above each bar.  

B. Recurrence of the 129 sysSVM2 predictions across the PCAWG osteosarcoma 

cohort. The percentages of genes that are predicted in 1, 2 and ≥3 are shown. 

C. Patient-level predictions of osteosarcoma canonical drivers by sysSVM2 when 

considering the top five genes. The number of samples in which each canonical driver 

is damaged (yellow) and predicted as a driver by sysSVM2 (pink) is shown. 

D. Gene set enrichment analysis of 81 sysSVM2 predictions with no previously 

reported involvement in cancer. Reactome level 2 and above were considered and 

pathways with FDR <0.1 are shown. 
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Category Property Feature Type 

Molecular 

Gene mutation 

Mutational load (n) Continuous 

Non-truncating damaging mutations (n)  Continuous 

Truncating mutations (n) Continuous 

Hotspot mutations (n) Continuous 

Gene copy number  

Gene copy number (n) Continuous 

Gene is amplified Binary 

Gene is deleted Binary 

Systems-level 

Gene duplication 
Gene is duplicated Binary 

Gene is an ohnolog  Binary 

Gene essentiality 
Cell lines in which gene is essential (%) Continuous 

Gene is essential  Binary 

Gene expression 

Tissues expressing gene (n) Continuous 

Gene is expressed in 0 tissues Binary 

Gene is expressed in 7≤ tissues≤ 36 Binary 

Protein expression 
Tissues expressing protein (n) Continuous 

Protein is expressed in ≥41 tissues Binary 

Protein-protein 
interaction network 
(PPIN) 

PPIN degree Continuous 

Protein is a PPIN hub Binary 

PPIN betweenness Continuous 

PPIN clustering coefficient Continuous 

Protein complexes Complexes the protein is part of (n) Continuous 

miRNA interactions miRNAs targeting the gene (n) Continuous 

Gene evolutionary 
origin 

Pre-metazoan origin Binary 

Metazoan origin Binary 

Vertebrate origin Binary 

Post-vertebrate origin Binary 

 

Table 1: Twenty-six features derived from molecular and systems-level properties of genes 

and used to predict cancer drivers in sysSVM2. Molecular properties describe gene alterations 

in individual cancer samples. Systems-level properties are global gene properties (see also 

Additional File 2: Table S1). PPIN: Protein-protein interaction network. miRNA: micro RNA.  

 

 

 

 

 

 
 


