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We develop and extend a line of recent work on the design of mechanisms for two-sided markets. �e markets

we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve the

social welfare by arranging purchases and sales of the items. A mechanism is given prior distributions on the

agents’ valuations of the items, but not the actual valuations; thus the aim is to maximise the expected social

welfare over these distributions. As in previous work, we are interested in the worst-case ratio between the

social welfare achieved by a truthful mechanism, and the best social welfare possible.

Our main result is an incentive compatible and budget balanced constant-factor approximation mechanism

in a se�ing where buyers have XOS valuations and sellers’ valuations are additive. �is is the �rst such

approximation mechanism for a two-sided market se�ing where the agents have combinatorial valuation

functions. To achieve this result, we introduce a more general kind of demand query that seems to be needed

in this situation. In the simpler case that sellers have unit supply (each having just one item to sell), we give a

new mechanism whose welfare guarantee improves on a recent one in the literature. We also introduce a

more demanding version of the strong budget balance (SBB) criterion, aimed at ruling out certain “unnatural”

transactions satis�ed by SBB. We show that the stronger version is satis�ed by our mechanisms.

1 INTRODUCTION
One-sided markets have been studied in economics for several decades and more recently in

computer science. Mechanism design in one-sided markets aims to �nd an e�cient (high-welfare)

allocation of a set of items to a set of agents, while ensuring that truthfully reporting the input data

is the best strategy for the agents. �e cornerstone method in mechanism design is the Vickrey-

Clarke-Groves (VCG) mechanism [Clarke, 1971, Groves, 1973, Vickrey, 1961] that optimises the

social welfare while providing the right incentives for truth-telling: VCG mechanisms are dominant
strategy incentive compatible (DSIC), and in many mechanism design se�ings VCG is also individually
rational (IR). �e IR requirement demands that participating in the mechanism is not harmful to any

agent. �e DSIC requrement demands that truthfully reporting one’s preferences to the mechanism

is a dominant strategy for each agent, independently of what the other agents report.

Recently, increased a�ention has turned to the problems that arise in two-sided markets, in which

the set of agents is partitioned into buyers and sellers. In contrast with the one-sided se�ing (where

one could say that the mechanism itself initially holds the items), in the two-sided se�ing the items

are initially held by the sellers, who have valuations over the items they hold, and who are assumed

to act rationally and strategically. �e mechanism’s task is now to decide which buyers and sellers

should trade, and at which prices. �e growing interest in two-sided markets can be a�ributed to

various important applications. Relevant examples are selling display-ads on ad exchange platforms,

the US FCC spectrum license reallocation, and stock exchanges. Two-sided markets are usually

studied in a Bayesian se�ing: there is public knowledge of probability distributions, one for each

buyer and one for each seller, from which the valuations of the buyers and sellers are drawn.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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In two-sided markets, a further important requirement is strong budget balance (SBB), which

states that monetary transfers happen only among the agents in the market, i.e., the buyers and

sellers are allowed to trade without leaving to the mechanism any share of the payments, and

without the mechanism adding money to the market. A weaker version of SBB o�en considered

in the literature is weak budget balance (WBB), which only requires the mechanism not to inject

money into the market. However, it is known from the work of Myerson and Sa�erthwaite [1983]

that it is generally impossible for an IR, BIC, and WBB mechanism to maximise social welfare in

such a market, even in the bilateral trade se�ing, i.e., when there is just one seller and one buyer.
1

�e practical contexts noted above need the application of two-sided market mechanisms that

can work in a combinatorial se�ing, i.e., where there are multiple distinct items in the market

and agents having possibly complex valuations over the subsets of items that they may receive.

However, we are not aware of any such mechanism that approximates the social welfare while

meeting the IR, DSIC and SBB requirements. �e purpose of this paper is to provide mechanisms

that satisfy these requirements and achieve an O(1)-approximation to the social welfare for a

broad class of agents’ valuation functions. We do, in fact, design mechanisms that work under the

assumption of the valuations being fractionally subadditive (XOS), a generalisation of submodular

functions that are contained in the class of subadditive functions.

Our results extend and improve on previous work which targeted an important special case

of a two-sided market: each seller holds a single item, items are identical, and each agent is only

interested in holding a single item. In this se�ing, the valuations of the agents are thus given

by a single number, representing the agent’s utility for holding an item. A mechanism for this

se�ing is known in the literature as a double auction. �e goal of several works on double auctions

[McAfee, 1992, Sa�erthwaite and Williams, 1989, 2002] has been that of trading o� the achievable

social welfare with the strength of the incentive compatibility and budget balance constraints. In

our present work, we investigate this question for the much more general class of combinatorial

two-sided markets.

1.1 The Model
As stated above, the set of agents is partitioned into a set of sellers, each of which is initially endowed

with a set of heterogeneous items, and a set of buyers, having no items initially. Buyers have money

that can be used to pay for items. Every agent has its own, private valuation function, which maps

subsets of the items to numbers, and agents are assumed to optimise their (quasi-linear) utility,

which is given by the valuation of the set of items that the mechanism allocates to an agent, minus

the payment that the mechanism collects from the agent. A seller will typically receive money

(instead of pay money), which we treat as a negative payment.

For each agent we are given a (publicly known) probability distribution over a set of valuation

functions, from which we assume her valuation function is drawn. �e mechanism and the other

agents have no knowledge of the realized valuation function of the i-th agent, but only of her

probability distribution. �e general aim of the mechanism is to reallocate the items so as to

maximise the expected social welfare (the sum of the agents’ valuations of the resulting allocation).

Let OPT be the expected social welfare of an optimal allocation of the items. Note that this is a

well-de�ned quantity, even though computing an optimal allocation may be computationally hard,

and even though there might not exist an appropriate mechanism (satisfying IR, SBB, and DSIC),

that is guaranteed to always output an optimal allocation (as implied by the impossibility result of

Myerson and Sa�erthwaite [1983]).

1
�e VCG mechanism can also be applied to two-sided markets; however, in this se�ing, VCG is either not IR or it does not

satisfy WBB.
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We are interested in mechanisms that satisfy IR, SBB, and DSIC (or failing that, the weaker

notion of Bayesian incentive compatibility (BIC)), and that reallocate the items in such a way that

the expected social welfare is within some constant fraction of OPT, where expectation is taken

over the given probability distributions of the agents’ valuations, and over the randomness of

the allocation that the mechanism outputs. In contrast with one-sided combinatorial auction

design (where the main challenge is polynomial-time implementability), for the two-sided case our

primary goal is to design (and thus show the existence of) IR, SBB, and DSIC/BIC mechanisms that

O(1)-approximate OPT. Such mechanisms circumvent the aformentioned impossibility result of

Myerson and Sa�erthwaite [1983] by weakening the requirement of optimal social welfare to that

of approximately optimal social welfare (while nonetheless strengthening the WBB contraint into

SBB).

1.2 Our Results and their Significance
�e present paper starts o� by showing that there is a straightforward technical trick that one

may apply to turn any WBB mechanism into an SBB one, with a small loss in the approximation

factor. Technically, one could e.g. apply it to the WBB mechanism of Blumrosen and Dobzinski

[2014] for combinatorial exchange markets; however, the trick is unsatisfactory in practice as it

essentially consists of giving the le�over money to a random agent. �is demonstrates a weakness

in the current de�nition of SBB, which motivates the introduction of a strengthened version, that

we call direct-trade strong budget balance (DSBB).
Let us brie�y elaborate on why it is justi�ed to ask for a (D)SBB mechanism over a WBB one.

In many two-sided markets that one encounters in industry, it is true that the business running

the mechanism is interested in making some pro�t. However, the way in which pro�t is made is

usually not through running a mechanism with too large budget imbalance between the buyers and

sellers in the market. Rather, pro�t is made through entry fees or subscription fees (this happens

in e.g. stock exchanges), or through charging a relatively small commission for each transaction

or volume of transactions that is made (which also happens in some stock exchanges and many

two-sided market platforms in the sharing/access economy). Having an underlying (D)SBB pricing

mechanism is then desirable over a WBB mechanism, as the former mechanism can be presented

to its customers in a more transparent way, and the amount of pro�t made my the market platform

is now easy to describe and control on the side (whereas the amount of pro�t made by a WBB

mechanism can be di�cult to describe and control, and is o�en very instance-dependent). �erefore,

imposing the (D)SBB requirement results in mechanisms that capture the intended primary goal

in many practical mechanism design challenges: direct trades of goods for money between its

customers, which is essentially the product that a commercial two-sided market platform primarily

intends to o�er to its customers. �e way in which pro�t is made is then designed around such a

mechanism as a secondary step.

Our goal is the design of individually rational, incentive compatible, and direct-trade strongly

budget balanced mechanisms for combinatorial two-sided markets, that achieve a constant approx-

imation to the optimal social welfare. We present two mechanisms adhering to these constraints

for general families of combinatorial two-sided markets, as summarized in the table below.

OurM1-supply mechanism handles the se�ing where all sellers have a single item for sale, and

buyers have fractionally subadditive (XOS) valuation functions over the set of items in the market.

OurMadd mechanism can handle the more general case where sellers have multiple items for sale

and have additive valuation functions over the items they possess, thoughMadd satis�es weaker

IC and IR notions than M1-supply. More precisely, Madd is DSIC and IR on the sellers’ side and

BIC and interim-IR on the buyers’ side. However, for the special case where buyers have additive
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Mechanism
Buyers’

valuations

Sellers’

valuations

Approximation

ratio
IR IC BB

M1-supply XOS unit-supply 6 ex-post IR DSIC DSBB

Madd XOS additive 6 interim IR BIC DSBB

Madd additive additive 6 ex-post IR DSIC DSBB

Table 1. Summary of our results.

valuation functions,Madd does satisfy the stronger IC and IR notions for both buyers and sellers. In

all three cases, DSBB is satis�ed (a strengthened variant of SBB), and our mechanisms achieve an

O(1)-approximation to the optimal social welfare.

To our knowledge, these are the �rst mechanisms for combinatorial two-sided markets that

simultaneously are IC, (D)SBB, IR, and approximate the optimal social welfare to within a constant

factor. Notice that with non-unit-supply sellers, a constant approximation was not previously

known even in the context of WBB or standard SBB.
2

Furthermore, we note that our mechanisms

not only work for a more general se�ing than that of [Colini-Baldeschi et al., 2016], but also improve

the approximation ratio for double auctions from 16 to 6.

In the case ofMadd, buyers are required to answer a generalised type of demand query, in which

the mechanism gives prices for the items, and asks a buyer which bundle she would like if, for for
each seller j, the items of seller j in the bundle were to be received with probability 1/2. Although

we are not concerned here with that issue (we model agents as computationally unbounded as

well as rational), our apparent need for such queries highlights the general question of how agents’

computational limitations a�ect what outcomes can be achieved.
3

1.3 Overview of the Techniques
�e main challenge in two-sided market design is to �nd prices that stimulate truthful behavior

and are suitable for both buyers and sellers, which have contrasting interests. In fact, even in the

simplest imaginable se�ing – the bilateral trade – it is impossible to design a socially e�cient

mechanism satisfying IR, BIC and WBB [Myerson and Sa�erthwaite, 1983].

A �rst feature all our mechanisms share to guarantee DSBB is being a generalised version of

two-sided sequential posted price mechanisms (SPMs) [Colini-Baldeschi et al., 2016] for double

auctions to combinatorial two-sided markets. �ese mechanisms assign �xed, pre-computed prices

to each item so that these prices are the only ones for which the items can be traded. �is yields a

sequence of bilateral trades in which the amount paid by the buyer equals the amount received by

the seller.

While one-sided SPMs provide IR and IC for free, two-sided SPMs require additional conditions

to be met. In combinatorial two-sided markets, if prices are �xed for every single item, it cannot

be guaranteed that a bundle of items chosen by a buyer will surely be allocated to her, in case

at that point the corresponding seller has not been queried yet about her willingness to sell the

2
�e mechanism proposed in [Blumrosen and Dobzinski, 2014] achieves a constant approximation to the optimal social

welfare if the size of the initial endowment of each agent is bounded by a constant; otherwise the approximation factor is of

logarithmic order.

3
�is question also applies to standard demand queries [Feige and Joseph, 2014], which may be computationally hard to

answer or may involve a high communication complexity, depending on the computational model used and on the way in

which the valuation functions are represented.
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item. Symmetrically, when a seller would communicate to an SPM mechanism which bundle of

items she is willing to sell given the proposed item prices, then the mechanism cannot guarantee

to the seller that this bundle will surely be traded in case it has not yet queried the buyers which

item sets they demand. �e situation is further complicated by the fact that there may exist strong

interdependencies among items within an agent’s valuation function, which implies that the choice

of bundle that a buyer requests (or that a seller makes available) depends strongly on the set of

items that the sellers are prepared to sell (or that the buyers request). �erefore, a mechanism

designer needs to be careful in proposing prices that are suitable for both sides of the market, and

needs to be particularly careful in selecting the side of the market to process �rst. �e choice that

the mechanism made here can depend crucially on the types of valuation functions of the agents.

Indeed, one main di�erence between our two mechanisms lies in the choice of which market side

is processed �rst. Otherwise, all mechanisms proposed in this paper are oblivious to the order in

which sellers and buyers are presented.

To additionally achieve a mechanism that results in a high social welfare, we exclude some items

from trade and introduce randomness into the mechanism. �e main idea is to suppose that all

the items are available to the set of buyers as in a one-sided auction, and to compute the expected
marginal contribution of an item to the social welfare [Feldman et al., 2015] under this assumption.

�en, the mechanism compares this contribution to the seller’s value for the item: if the seller’s

value is much higher, then we exclude the item from trade and leave it with the seller. �us, the

mechanism only trades items that are of relatively high expected value to the buyers’ side of the

market.

To estimate the expected marginal contribution of an item to the social welfare,M1-supply and

Madd make use of an algorithm A that, given a buyers’ valuation pro�le and a set of items, allocates

the items to the buyers, without considering the sellers and their valuations. If one is not interested

in achieving a low runtime, one can take A to be an exact algorithm that outputs an optimal

allocation. Alternatively, by using a technique of Feldman et al. [2015], one may take for A a

polynomial time approximation algorithm and combine this with sampling a su�ciently large

number of valuation pro�les from the distribution, in order to estimate the expected marginal

contribution of an item to the social welfare accurately in polynomial time. �is yields polynomial-

time implementable approximation mechanisms. In particular, in the case where A is a polynomial

time α-approximation algorithm, it will run within time POLY (1/ϵ,n,m), and approximate the

optimal social welfare within an O(α) multiplicative factor and an ϵ additive term, where ϵ is a

parameter that results from the sampling procedure. �is technique is described in further detail in

[Feldman et al., 2015] and works for distributions with bounded support.

Randomness is added to make sure every seller independently sells her bundle of items with a

�xed probability of 1/2; which is used to bound the social welfare loss on both sides of the market

by no more than a constant factor.

To summarize, we utilize in the present paper an implicit generalization of two-sided sequential

posted pricing mechanisms of [Colini-Baldeschi et al., 2016]. We furthermore make use of the

posted pricing techniques and concepts introduced by [Feldman et al., 2015] as one important

component for achieving the correct item prices, and moreover we (indirectly) utilize the basic

idea of using the median of a probability distribution for pricing, a concept that also e.g. appears in

[McAfee, 2008] and has been used in plentiful other works. We then combine this with various

novel insights on the sequence of o�ers, the prices, the probabilities, and the item bundling, in

order to preserve incentive compatibility. �e technical contribution in our present paper thus

lies in the insights and techniques used by which we de�ne by which the pricing and selection

of proposed bundles is determined, and in the proofs that combine and connect these insights in
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order to establish the claimed approximation bounds. Lastly, on the conceptual side we introduce

the notions of probabilitic demand queries and direct-trade SBB, which we believe are interesting

concepts for future study.

1.4 Related Work
Due to the impossibility result of Myerson and Sa�erthwaite [1983], no two-sided mechanism can

simultaneously achieve optimal social welfare and satisfy the BIC, IR, WBB constraints, even in the

simple bilateral trade se�ing. Follow-up work thus had to focus on designing mechanisms that

trade o� among these properties.

�e following papers of the Economics literature studied the convergence rate to the optimal

social welfare as a function of the number of agents when all sellers’ and buyers’ valuations are

independently respectively drawn from identical regular distributions, while satisfying IR and

WBB. Gresik and Sa�erthwaite [1989] showed that duplicating the number of agents by τ results

in a market where the optimal IR, IC, WBB mechanism’s expected social welfare approximation

factor approaches 1 at a rate of O(logτ/τ 2). Rustichini et al. [1994] and Sa�erthwaite and Williams

[2002] investigated a family of non-IC double auctions, and study the ine�ciency and the extent to

which agents misreport their valuations in these double auctions. We remark that these results

only hold for unit-demand buyers and unit-supply sellers, identical valuation distributions, and

the hidden constants in these asymptotic results depend on the speci�c valuation distributions. In

contrast, our interest is in �nding universal constant approximation guarantees for combinatorial

se�ings and not necessarily identical distributions.

In McAfee [1992], an IC, WBB, IR double auction is proposed that extracts at least a (1 − 1/`)
fraction of the maximum gain from trade

4
, where ` is the number of traders in the optimal solution.

�e same type of approximation guarantee is obtained in [?] for a more general model modeling

spacially distributed markets, where there are multiple two-sided markets for the same good, and

shipping an item between markets is possible at a certain cost.

Optimal revenue-maximising Bayesian auctions were characterized in Myerson [1981], which

provides an elegant tool applicable to single-parameter, one-sided auctions. Various subsequent

articles dealt with extending these results. Related to our work is the work of Deng et al. [2014],

which studied maximising the auctioneer’s revenue in Bayesian double auctions. �e same objective

was studied by Deshmukh et al. [2002] yet in the prior-free model. In [Segal-Halevi et al., 2016],

mechanisms for some special cases of two-sided markets are presented that work by a combination

of random sampling and random serial dictatorship. �e mechanism is IR, SBB and DSIC and

its gain from trade approaches the optimum when the market is su�ciently large. Many other

papers studied the problem of approximating the gain from trade when the mechanisms are IC, IR,

and SBB or WBB [Babaio� et al., 2018, Blumrosen and Mizrahi, 2016, Brustle et al., 2017, Colini-

Baldeschi et al., 2017, McAfee, 2008, Segal-Halevi et al., 2016]. In [Brustle et al., 2017], a mechanism

is presented that guarantees 2-approximation to the gain from trade, under DSIC, IR, and WBB-

in-expectation. �is approximation guarantee is with respect to an alternative benchmark from

ours, called the second-best benchmark, where the mechanism is compared to the best possible

BIC, IR, WBB-in-expectation mechanism. Moreover, [?], proposes a mechanism that is shown to

achieve approximation guarantees to both benchmarks simultanously: a constant guarantee for

4
�e gain from trade (sometimes called incremental social-welfare) represents how much the total utility of all agents

increases with respect to the situation where no trade happens. �is is a meaningful objective in a two-sided market because

the sellers may have a positive utility even when no trade happens, simply because they possess some items. For this reason,

approximating the gain from trade is harder than approximating the social welfare.
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the second-best benchmark, while their mechanism also approximates full e�ciency as the market

get larger.

For the special case of bilateral trade, i.e., with one seller buyer and item, it was shown in

[Blumrosen and Dobzinski, 2016] that the gain from trade cannot be approximated within any

constant under the IC, IR, and SBB constraints, and the asymptotic approximability factor in this

se�ing was further characterized in [Colini-Baldeschi et al., 2017]. Note that this implies that the

constant approximation factors that we establish in the present paper rely crucially on taking

the easier-to-approximate social welfare as our objective function, instead of gain from trade.

Mechanisms that are IC, IR, and SBB have been given for bilateral trade in [Blumrosen and

Dobzinski, 2014]. In addition to this, the authors proposed a WBB mechanism for a general class of

combinatorial exchange markets. We will use this result to construct our initial mechanism.

Sequential posted price mechanisms (SPMs) in one-sided markets have been introduced by

Sandholm and Gilpin [2004] and have gained a�ention due to their simplicity, robustness to

collusion, and their easy implementability in practical applications. One of the �rst theoretical

results concerning SPMs is an asymptotic comparison among three di�erent types of single-

parameter mechanisms [Blumrosen and Holenstein, 2008]. �ey were later studied by Chawla et al.

[2010] for the objective of revenue maximisation. Additionally, Kleinberg and Weinberg [2012] and

Dü�ing and Kleinberg [2015] strengthen these results further. Very relevant to our work is the

paper of Feldman et al. [2015], showing that sequential posted price mechanisms can approximate

social welfare up to a constant factor of 1/2 for XOS valuation functions if the published price for

an item is equal to the expected additive contribution of the item to the social welfare.

A line of recent work addressed the problem of approximating social welfare in double auctions

and related problems under the WBB requirement. Dü�ing et al. [2014] indeed proposed a greedy

strategy that combines the one-sided VCG mechanism, independently applied to buyers and

to sellers with the trade-reduction mechanism of McAfee [1992]. �ey obtain IR, DSIC, WBB

mechanisms with a good approximation of the social welfare, for knapsack, matching and matroid

allocation constraints. More recently, Colini-Baldeschi et al. [2016] presented the �rst double

auction
5

that satis�es IR, DSIC, and SBB, and approximates the optimal (expected) social welfare

up to a constant factor. �ese results hold for any number of buyers and sellers with arbitrary,

independent distributions on valuations. �e mechanisms are also extended to the se�ing where

there is an additional matroid constraint on the set of buyers who can purchase an item. �e se�ing

we study in the present paper is more general than the double auction se�ing by considering buyers

and sellers with multiple distinct items and complex valuation functions.

Lastly, there is an alternative line of research where, among the desiderata of satisfying IC, IR,

SBB, and e�ciency (i.e., achieving optimal social welfare), the IC notion is weakened instead of

e�ciency: In [Lubin et al., 2008], for example, an e�cient iterative mechanism is proposed for

exchange markets that yields an outcome minimizing regret among the set of all budget-balanced

payment rules, when agents bid truthfully.

2 PRELIMINARIES
As a general convention, we use boldface notation for vectors and use [a] to denote the set {1, . . . ,a}.
We will use I(X ) to denote the indicator function that maps to 1 if and only if event/fact X holds.

5
Recall that in double auctions (following the de�nition used in the classical body of literature in economic theory), items

are identical and buyers and sellers are respectively assumed to have one unit of demand and supply respectively.
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2.1 Markets
A two-sided market comprises a set of two distinct types of agents: the sellers, who initially hold

items for sale, and the buyers, who are interested in buying the sellers’ items. All agents possess

a monotone and normalized valuation function, mapping subsets of items to R≥0.
6

Formally, we

represent a two-sided market as a tuple (n,m,k, I ,G, F ), where [n] denotes the set of buyers, [m]
denotes the set of sellers, [k] denotes the set of all items for sale, I := (I1, . . . , Im) is a vector of

(mutually disjoint) sets of items called the initial endowment, where Ij is the set of items that

is initially held by seller j ∈ [m]. It holds that

⋃m
j=1

Ij = [k]. Vectors G = (G1, . . . ,Gn) and

F = (F1, . . . , Fm) are vectors of probability distributions, from which the buyers’ and sellers’

valuation functions are assumed to be drawn: �e valuation function of buyer i ∈ [n] is drawn from

distribution Gi , and similarly the valuation function of seller j ∈ [m] is drawn from distribution Fj .
A (combinatorial) exchange market is a more general version of the above de�ned two-sided

market where an agent can act as both a buyer and a seller. �us, everyone may initially own items

and may both sell and buy items. As a result, in this se�ing, we override the notation and simply

use n to denote the total number of agents. Formally, an exchange market is thus a tuple (n,k, I , F ).
�roughout the paper, we reserve the usage of the le�er i to denote a single buyer, the le�er j to

denote a single seller, and the le�er ` to denote a single item. Moreover, we use vi to denote buyer

i’s valuation function and w j to denote seller j’s valuation function.

In two-sided markets, sellers are assumed to only value items in their initial bundle and are

therefore not interested in buying from other sellers, i.e., ∀j ∈ [m] and ∀S ⊆ [k], w j (S) = w j (S ∩ Ij ).
Conversely, in exchange markets, no such restriction on the valuation functions exists.

2.2 Mechanism Design Goals
�e following discussion is speci�c to two-sided markets (the main focus of this paper), but these

concepts can be extended straightforwardly to combinatorial exchange markets. Given a two-sided

market, our aim is to redistribute the items among the agents so as to maximise the social welfare
(the sum of the agents’ valuations). An allocation for a two-sided market (n,m,k, I ,G, F ) is a pair

of vectors (X ,Y ) = ((X1, . . . ,Xn), (Y1, . . . ,Ym)) such that the union of X1, . . . ,Xn ,Y1, . . . ,Ym is [k],
and X1, . . . ,Xn ,Y1, . . . ,Ym are mutually disjoint. When discussing a given two-sided market, we

will denote by A the set of all allocations for that market.

Redistribution of the items is done by running a mechanismM. A mechanism interacts with and

receives input from the agents, and outputs an outcome, consisting of an allocation (X ,Y ) and a

payment vector (ρB , ρS ) ∈ Rn × Rm , where ρB
refers to the buyers’ vector of payments and ρS to

the sellers’ one. An outcome is therefore a tuple (X ,Y , ρB , ρS ). Note that when an agent is charged

a negative payment, this should be interpreted as an agent receiving money. �e payment of a

seller is usually negative in a reasonable two-sided market mechanism, and this is also the case for

the mechanisms proposed in the present paper.

Agents are assumed to maximise their utility, which is de�ned as the valuation for the bundle of

items that they possess with respect to the allocation vector, minus the payment charged by the

mechanism. In particular, the utilityuBi (vi , (X ,Y , ρ
B , ρS )) of a buyer i ∈ [n]with valuation function

vi isvi (Xi )−ρ
B
i , whereas for a seller j ∈ [m]with valuation functionw j it isuSj (w j , (X ,Y , ρB , ρS )) =

w j (Yj ) − ρ
S
j .

7

Furthermore, agents are assumed to be fully rational, so that they will strategically interact with

the mechanism to achieve their goal of maximising utility. Our goal is to design a mechanism

6
By a monotone valuation function v we mean that v(S ) ≥ v(T ) for all sets of items T ⊆ S . �at is, ge�ing more items

cannot decrease an agent’s overall valuation. By normalized we mean that v(∅) = 0.

7
Note that Yj represents the bundle of items that remains in the seller’s possession a�er execution of the mechanism.
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such that there is a dominant strategy or Bayes-Nash equilibrium for the agents under which the

mechanism returns an allocation with a high social welfare. For an allocation (X ,Y ), the social

welfare SW(X ,Y ) is de�ned as

SW(X ,Y ) =
∑
i ∈[n]

vi (Xi ) +
∑
j ∈[m]

w j (Yj ).

We now describe three main economic properties our mechanisms must satisfy. For each of these

constraints we �rst introduce the strictest version and then a more relaxed one. We aim to satisfy

the strictest versions, whenever possible.

• Incentive compatibility (IC)8
– Dominant strategy incentive compatibility (DSIC): It is a dominant strategy for every

agent to report her true valuation sincerely. I.e., for every agent i and for every vector

of valuations of all other players, it is impossible for agent i to increase her expected

utility by misreporting her valuation.

– Bayesian incentive compatibility (BIC): It is a Bayes-Nash equilibrium (BNE) for the

agents to truthfully report their valuations to the mechanism. I.e., each agent i max-

imizes her expected utility by truthfully reporting her valuation if all other players

also truthfully report their valuations.

• Individual rationality (IR)
– Ex-post individual rationality (ex-post IR): It is not harmful for any agent to participate

in the mechanism, i.e., there is guaranteed to be a strategy for an agent that yields the

agent a utility that is not less than her initial utility. (�e initial utility of a seller with

bundle Ij is w j (Ij ), and the initial utility of a buyer is vi (∅) = 0.)

– Interim individual rationality (interim IR): �ere is a strategy for each agent that yields

her an expected utility that is not less than her initial utility (where expectation is over

the random outcome of the mechanism, resulting from internal randomness of the

mechanism and randomized strategies adopted by the agents).

• Budget balance (BB)
– Strong Budget Balance (SBB): �e sum of all agents’ payments output by the mechanism

is equal to zero. Conceptually, this means that no money ends up at an external party,

and no external party needs to subsidise the mechanism.

– Weak Budget Balance (WBB): �e sum of all payments is at least zero. In two sided-

markets, this generally means that the buyers’ payments are at least as large as the

payments received by the sellers. No external party needs to subsidise the mechanism.

For valuation pro�les (v,w), OPT(v,w) := max{SW(X ,Y ) : (X ,Y ) ∈ A} denotes the optimal
social welfare. �e expected optimal social welfare is the value OPT = Ev,w [OPT(v,w)]. We say

that a mechanism M α-approximates the optimal social welfare for some α > 1 if and only if

OPT ≤ αEv,w [SW(M(v,w))]. Our goal is to �nd mechanisms that α-approximate the optimal

social welfare for a low α , are DSIC (or BIC), SBB, and ex-post IR (or interim IR).

8
Technically, as can be inferred, the DSIC properties are reserved for direct revelation mechansims, i.e., where the buyer

solely interacts with the mechanism reporting her valuation function. It is well-known that mechanisms admi�ing a

dominant strategy can be transformed into DSIC direct revelation mechanisms, and those with a Bayes-Nash equilibrium

can be transformed into BIC direct revelation mechanisms. �is way, the DSIC and BIC de�nitions naturally extend to

non-direct revelation mechanisms.
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2.3 Valuation Functions
We will consider probability distributions over the following classes of valuation functions. Let

v : 2
[k ] → R≥0 be a valuation function. �en,

• v is additive if and only if there exist numbers α1, . . . αk ∈ R≥0 such that v(S) =
∑

j ∈S α j
for all S ⊆ [k].
• v is fractionally subadditive (or XOS) if and only if there exists a collection of additive

functions a1, . . . ,ad such that for every bundle S ⊆ [k] it holds that v(S) = maxi ∈[d ] ai (S).
• v is subadditive if and only if for for all S,T ⊆ [k] it holds that v(S ∪T ) ≤ v(S) +v(T ).

It is easy to see that every additive function is a XOS function. Further, it is well-known that the

class of submodular functions are contained in the class of XOS functions, and XOS functions are

contained in the class of the subadditive functions.

3 AN INITIAL MECHANISM AND DIRECT TRADE STRONG BUDGET BALANCE
Blumrosen and Dobzinski [2014] present a mechanism for exchange markets with subadditive

valuation functions. It works by partitioning the set of agents into two sets A and B uniformly at

random. For the agents in A, an agent i is o�ered a payment equal to his median valuation MEDi
for the whole bundle. All the agents of A that accept this payment hand in their items, and the total

set of collected items is then sold through a VCG auction to the agents in B. However, in running

this VCG auction, an objective function is maximized that is a modi�ed version of the regular social

welfare, where an amount of H (ti )MEDi is subtracted for each agent i ∈ A, where ti is the number

of agents in B holding an item from i . �e auctioneer potentially takes items away from agents

in A that subsequently remain unallocated a�er running the VCG mechanism. �ey prove the

following for this mechanism, which we nameMbd.

Theorem 3.1 (Blumrosen andDobzinski [2014]). MechanismMbd is a DSIC,WBB, ex-post IR ran-
domized direct revelationmechanism that 4H (s)-approximates the optimal social welfare for combinato-
rial exchange markets (n,k, I , F ) with subadditive valuation functions, where s = min{n, |Ii | : i ∈ [n]}
is the minimum of the number of agents and the number of items in an agent’s initial endowment,
and H (·) denotes the harmonic numbers.

�is mechanism gives us a constant approximation factor if the number of starting items of the

agents is bounded by a constant, in particular in the unit-supply case .

�e budget imbalance that Mbd may generate can be arbitrarily high and is highly instance-

dependent. We show now how we can use this mechanism as a black box in order to obtain an SBB

mechanism with only a slightly worse approximation ratio. De�ne mechanismMsbb as follows.

When given as input a combinatorial exchange market C = (n,k, I , F ),

(1) Select an agent in i ∈ [n] uniformly at random.

(2) Run MechanismMbd on the combinatorial exchange market

C−i = ([n] \ {i}, I−i = (I1, . . . , Ii−1, Ii+1, . . . , In), F−i = (F1, . . . , Fi−1, Fi+1, . . . , Fn)).

Let (X−i , ρ−i ) be the outcome that MechanismMbd outputs.

(3) Set Xi = Ii and set pi = −
∑

j ∈[n]\{i } pj . Output the allocation (Xi ,X−i ) and output payment

vector (pi , ρ−i ).

So MechanismMsbb essentially runs MechanismMbd where one random agent is removed from

the market. �is agent receives the le�over money that MechanismMbd generates, and does not

receive or lose any items. Note that if we would like to ensure that all items are allocated to the

agents (hence do not end up at the auctioneer) a�er running the mechanism, we may additionally
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allocate any le�over items to the agent that we removed a priori. �e following is a direct corollary

of the DSIC, WBB, and ex-post IR properties of mechanismMbd.

Theorem 3.2. MechanismMsbb is a DSIC, SBB, and ex-post IR mechanism for exchange markets
with subadditive valuation functions.

Secondly, the following theorem shows that the mechanism loses only a factor 2n/(n − 1) ≤ 3 in

the approximation ratio for n ≥ 3.
9

Theorem 3.3. MechanismMsbb achieves an 8nH (s)/(n − 1)-approximation to the optimal social
welfare for exchange markets with subadditive valuations and at least 3 agents.

Proof. Fix a valuation vector v of the agents, let X ∗∗v ⊆ A be the social welfare maximising

allocation when the agents have valuationsv . For an agent i ∈ [n], denote by X ∗∗
v,−i the allocation

for C−i where (X ∗∗
v,−i )j = (X

∗∗
v )j \ Ii for j ∈ [n] \ {i}, i.e., the allocation obtained from X ∗∗v when

i is removed, and all items of i are removed. Moreover let X ∗
v,−i be the optimal allocation of the

combinatorial exchange market C−i when the valuation function vector of the players [n] \ {i} is

�xed tov−i . MechanismMsbb selects i uniformly at random, so by �eorem 3.1, the expected social

welfare of MechanismMsbb is at least

1

4H (s)
Ei


∑

j ∈[n]\{i }

vj (X
∗
v,−i )

 ≥
1

4H (s)
Ei


∑

j ∈[n]\{i }

vj (X
∗∗
v,−i )


=

1

4nH (s)

∑
i ∈[n]

∑
j ∈[n]\{i }

vj ((X
∗∗
v )j \ Ii )

=
1

4nH (s)

∑
i ∈[n]

∑
j ∈[n]\{i }

vi ((X
∗∗
v )i \ Ij )

=
1

4nH (s)

∑
i ∈[n]

∑
{j, j′ }:j, j′∈[n]\{i }

∧j,j′

1

n − 2

(vi ((X
∗∗
v )i \ Ij ) +vi ((X

∗∗
v )i \ Ij′))

≥
1

4nH (s)

∑
i ∈[n]

∑
{j, j′ }:j, j′∈[n]\{i }∧j,j′

1

n − 2

vi (X
∗∗
v )

=
1

4nH (s)

∑
i ∈[n]

n − 1

2

vi (X
∗∗
v )

=
n − 1

8nH (s)

∑
i ∈[n]

vi (X
∗∗
v ),

where the second inequality follows from subadditivity, and the second-to-last equality is obtained

through the insight that the number of terms in the inner summation is

(n−1

2

)
= (n − 1)(n − 2)/2,

which yields the factor (n − 1)/2 when multiplied by the coe�cient 1/(n − 2). �is proves the claim,

since the above holds for every valuation vectorv . �

9
For n = 2 there exist alternative mechanisms that achieve a good approximation ratio. In this case, one may for example

restrict to a mechanism that either considers reallocating the whole bundle of Agent 1 to Agent 2, or vice versa. �e

mechanism selects one of the two alternatives uniformly at random, and then runs a 2-approximate DSIC, SBB, IR mechanism

for the bilateral trade se�ing (i.e., the se�ing with one buyer, one seller, one item) [Blumrosen and Dobzinski, 2016] where

the bundle of the selling agent is treated as a single item. �is yields a DSIC, SBB, IR mechanism where the random choice

in the �rst step introduces an additional factor of 2 to the approximation factor, so that we get an upper bound of 4 on the

total approximation factor.
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�is yields an ex-post IR, SBB, DSIC mechanism that O(1)-approximates the social welfare if the

number of items initially posessed by an agent is bounded by a constant.

�e principle that we used to construct Mechanism Msbb can more generally be used to turn

any WBB mechanism into an SBB one, while preserving the DSIC and ex-post IR properties. �is

principle also reveals a problematic aspect of the notion of SBB: it allows for agents to receive

money, while they are not involved in any trade. �is motivates a strengthened notion of strong

budget balance, which we call direct trade strong budget balance.

De�nition 3.4. A mechanism for an exchange market satis�es direct trade strong budget balance
(DSBB) if and only if the outcome it generates can be achieved by a set of bilateral trades, where

each trade consists of a reallocation of an item from an agent i to an agent j, and a monetary

transfer from agent j to agent i . Moreover, each item may only be traded once.

DSBB strengthens the traditional SBB notion and seems to be a reasonable requirement in most

two sided markets and exchange markets se�ings. Note that the way in which we strengthen SBB

is rather mild: DSBB still allows an arbitrarily large amount of money to be transfered from one

agent to another as long as at least one item is exchanged in the opposite direction. DSBB does not

even require such a bilateral exchange to be pro�table for both parties, but does nonetheless seem

to rule out the rather unsatisfactory type construction such as the one used inMsbb.

It can be seen that MechanismMsbb does not satisfy DSBB. In the remainder of the paper we

will proceed to design mechanisms for two-sided markets that do satisfy DSBB.
10

4 A MECHANISM FOR UNIT-SUPPLY SELLERS AND XOS BUYERS
In this section we present a DSIC, ex-post IR, and DSBB mechanism for two-sided markets, when

sellers initially possess a single item and buyers have XOS valuation functions. �is mechanism

achieves a constant approximation to the optimal social welfare. In this se�ing, we use [k] to

denote both the set of items and the set of sellers, where item j is owned by seller j (so Ij = {j}
for all j ∈ [k]). When clear from context, in this section we will use w j to denote the valuation of

seller j for his initial bundle {j}. For each seller j ∈ [k], we then treat Fj as a distribution over R≥0

instead of a distribution over functions.

We assume throughout this section that (n,k,k, I ,G, F ) is a given two-sided market, on which

we run the mechanism to be de�ned. For an allocation (X ,Y ) ∈ A, we shall use the notation

SWB , SWS
to respectively denote the buyers’ and the sellers’ contribution to the social welfare, i.e.,

SWB (X ,Y ) :=

n∑
i=1

vi (Xi ),

SWS (X ,Y ) :=

k∑
i=1

w j (Yj ) =
k∑
j=1

w j I[j ∈ Yj ].

(1)

Our mechanism requires �xing a price for every item in the market. For a bundle of available

items Λ and an item price vector p = (p1, . . . ,pk ) ∈ R
k
≥0

, we de�ne the demand correspondence of

buyer i ∈ [n] with valuation function vi as

D(vi ,p,Λ) :=

{
S ⊆ Λ : vi (S) −

∑
j ∈S

pj ≥ vi (T ) −
∑
j ∈T

pj for all T ⊆ Λ

}
,

10
We note that the double auctions given in [Colini-Baldeschi et al., 2016] also satisfy the DSBB property. Moreover, one

may de�ne analogously “direct-trade” version of weak budget balance, say DWBB, which turns out to be satis�ed by the

WBB mechanisms of [McAfee, 1992, ?, ?, ?].
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i.e., D(vi ,p,Λ) is the set of bundles of items in Λ that maximise i’s utility under the given item

prices.

For a buyer i with an XOS valuation function vi , we de�ne the additive representative function
for bundle T ⊆ [k] as any additive function a(vi ,T , ·) : 2

[k] → R≥0 such that vi (T ) = a(vi ,T ,T ),
and vi (S) ≥ a(vi ,T , S) for all S ⊆ [k]. An additive representative function of a bundle is guaranteed

to exist for each buyer i and for each valuation function in the support of Gi , by the de�nition

of XOS functions. Regarding the computational aspects of our mechanisms: �ey assume the

ability to compute an additive representative function of an XOS function for a given bundle of

items. Regarding the computational complexity of the la�er task, given value query access to an

XOS-function, computing an additive representative function for a bundle of items can be done

e�ciently for some special subclasses of XOS-functions, such as submodular functions.
11

To the

best of our knowledge for general XOS-functions, it is not known whether one can compute an

additive representative function in polynomial time for a given bundle. Various previous works

(e.g., [Dobzinski et al., 2010, Feldman et al., 2015])that deal with XOS functions simply assume the

existence of an XOS-oracle which performs this task without spending computational resources.

4.1 Mechanism
Let A be an algorithm that, given a buyers’ valuation pro�le v and a set of items [k], allocates

the items to the buyers, without considering the sellers and their valuations. A can either be an

exact algorithm that outputs an optimal allocation of [k] to the buyers (if one is not interested in

the runtime) or an approximately optimal one (in the case that one insists on polynomial-time

implementability). Our mechanism uses A as a black-box for the computation of item prices.

Let X all(v) = (X all

1
(v), . . . ,X all

n (v)) (where the superscript “all” stands for “allocation”) be the

output allocation of A(v). Let SW(X all(v)) be the total social welfare of the allocation X all(v).

We de�ne for each item j ∈ [k] its contribution SWB
j (v) to the social welfare SW(X

all(v)) as follows:

if there exists a buyer i that receives item j in allocation X all

i (v), then SWB
j (v) = a(vi ,X

all

i (v), {j}).

Otherwise, if j is not allocated to any buyer in X all

i (v), then SWB
j (v) = 0.

�is notion allows us to make a distinction between high welfare items and lowwelfare items,where

these notions are with respect to the ratio of the social welfare of the item on the buyer’s side, and

the seller’s social welfare. An item j ∈ [k] is said to have high welfare with respect to SW(X all

i (v)) if

and only if Ev [SWB
j (v)] ≥ 4E[w j ], i.e., the expected social welfare contribution of j if we would

allocate j according to X all(v) is at least four times as high as the social welfare that results from

leaving item j with its seller.

Formally, let H be the set of high welfare items, i.e., H := {` ∈ [k] : E[SWB
` (v)] ≥ 4E[w j ]},

and let L be the set of low welfare items, i.e. L := [k] \ H . For each high welfare item j ∈ H , the

mechanism makes use of the following associated item price pj :

pj :=
1

2

Ev [SWB
j (v)].

Observe that pj ≥ 2E[w j ] for all j ∈ H , by our de�nition of high welfare items.

�e reason why H is chosen in such a way is twofold: �rst, the items in L if kept by their sellers

provide a welfare loss of at most a constant factor; second, every item in H is guaranteed to be sold

(if sold) at a high price, to make sure that the buyer receiving the item has a high valuation for it.

11
For submodular functions one can order the items in the given bundle arbitrarily, set the coe�cients outside of the bundle

to 0, and set the coe�cient of each item inside of the bundle to the marginal increase in valuation with respect to the set of

predecessors in the ordering. It is then straightforward to prove that this yields the coe�cients of an additive representative

function for the given bundle, and requires at most k value queries to compute.



R. Colini-Baldeschi, P.W. Goldberg, B. de Keijzer, S. Leonardi, T. Roughgarden, and S. Turche�a 14

Our (randomized) mechanism does the following. First, it considers the sellers with an item in

H (in any order) and asks each of them whether they would sell their item for a price of pj . As

mentioned above, by de�nition of the prices, every seller j ∈ H accepts the price with probability

at least 1/2, by Markov’s inequality (recall that pj ≥ 2E[w j ] for all j ∈ H ).

To make sure that this probability is exactly 1/2, the seller j is only given the opportunity to

sell her item at the price pj with probability qj such that (in expectation) the o�er is accepted with

probability exactly 1/2. Formally this means that the mechanism makes an o�er to the seller j with

probability

qj :=
1

2Fj (pj )
, where Fj (pj ) = Pr[w j ≤ pj ].

An item in H is considered to be “in the market” if the mechanism makes an o�er to the corre-

sponding seller for this item, and the corresponding seller accepts the mechanism’s o�er. A�er the

mechanism has made the o�ers to the sellers of H , it knows which items are in the market and

then asks each buyer (sequentially, in any order) for her favourite bundle of items (given the price

vector p) among those items that are still in the market. If an item j is among the items requested

by a buyer, then j is transferred from its corresponding seller j, and the buyer pays pj to seller j.
Item j is then removed from the set of items in the market, and the mechanism proceeds to the

next buyer.

We call the mechanism sketched aboveM1-supply, which we now present more precisely:

(1) Let H := {j ∈ [k] : Ev [SWB
j (v)] ≥ 4E[w j ]}.

(2) For all j ∈ H , set pj := 1

2
Ev [SWB

j (v)].

(3) Let Λ1 := ∅,Xi := ∅ for all i ∈ [n] and Yj := {j} for all j ∈ [k].
(4) For all j ∈ H :

(a) Set qj := 1/(2Pr[w j ≤ pj ]).
(b) With probability qj , o�er payment pj in exchange for her item.

(c) If j accepts the o�er, set Λ1 := Λ1 ∪ {j}.
(5) For all i ∈ [n]:

(a) Buyer i chooses a bundle Bi ∈ D(vi ,p,Λi ) that maximises her utility.

(b) Allocate the accepted items to buyer i , i.e., Xi := Bi and Yj := ∅ for all j ∈ Bi .
(c) Remove the selected items from the available items, i.e., Λi+1 := Λi \ Bi .

(6) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB , ρS ), where ρBi =
∑
j ∈Xi pj for i ∈ [n] and ρSj = −pj I[Yj = ∅] for j ∈ [k].

Note that Algorithm A is only used in the �rst steps of mechanismM1-supply, where Ev [SWB
j (v)] is

computed. Let α be the factor by which A is guaranteed to approximate the social welfare of the

buyers.

4.2 Results
Now, we are ready to present the main result of this section:

Theorem 4.1. M1-supply is ex-post IR, DSIC, DSBB, and (2 + 4α)-approximates the optimal social
welfare.

In particular, taking for A an optimal algorithm (i.e., α = 1), we obtain that there exists a

mechanism that is ex-post IR, DSIC, DSBB, and 6-approximates the optimal social welfare. As

mentioned in Section 1.3, one may alternatively take for A a polynomial time α-approximation

algorithm and use the technique of [Feldman et al., 2015], to obtain a mechanism with runtime

POLY (1/ϵ,n,m) that approximates the optimal social welfare within a 2 + 4α multiplicative factor

and an ϵ additive term.
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We split the proof of �eorem 4.1 into two lemmas that separately bound the sellers’ and the buy-

ers’ relative contributions to the social welfare. We use the notation OPT as de�ned in Section 2, and

we use ALG to denote the expected social welfare of the mechanism, i.e., Ev,w [SW(M1-supply(v,w))].
Moreover, the superscripts S,B respectively denote the sellers’ and buyers’ contributions to the

social welfare, e.g., OPT = OPT
S + OPT

B
and ALG = ALG

S + ALG
B

, consistent with the notation

of (1).

�e following lemma is a simple consequence of the fact that M1-supply lets every seller in H
accept an o�er with probability exactly 1/2.

Lemma 4.2. If every seller j ∈ H puts her item into the market with probability exactly 1/2, then

2ALG
S ≥

k∑
j=1

E[w j ] ≥ OPT
S .

Proof. �e second inequality is trivial, so we focus on the �rst inequality. First, observe that

Pr[w j > pj ] ≤ Pr[w j > 2E[w j ]] <
1

2

,

where the �rst inequality holds because j ∈ H , and the second inequality follows by Markov’s

inequality. �us, with probability at least 1/2 a seller j is happy to sell her item at price pj . But every

seller receives an o�er from the mechanism with probability qj := 1/(2Pr[w j ≤ pj ]), so every seller

in H accepts to trade with probability exactly 1/2. �is implies that every seller j ∈ H contributes

in expectation at least E[w j ]/2 to the social welfare. Moreover, every seller in L never trades, so

that such a seller contributes her full expected valuation to the expected social welfare. �

Next, we provide a more di�cult bound that relates ALG
B

and ALG
S

to OPT
B

. �e proof of this

lemma is lengthy and therefore deferred to Appendix A.1.

Lemma 4.3. �e buyers’ contributions to the optimal social welfare is bounded by

4αALG = 4αALG
B + 4αALG

S ≥ OPT
B .

Intuitively, Lemma 4.3 uses two main ingredients:

• the partition of the items between high-welfare (H ) items and low-welfare items (L), and

• the de�nition of SWB
j (v) w.r.t. a one-sided (approximation) algorithm A.

�e la�er tells us that the sum of the expected contributions of all the items, i.e.

∑k
j=1
E[SWB

` (v)],

is an upper-bound on OPT
B/α . From the former we know that:

• the sellers do not trade items in L, and this is enough to ensure that their contribution to

the expected social welfare is greater than a constant fraction of the expected contribution

of the items in L, i.e. ALG
S > 1

4

∑
j ∈L E[SW

B
j (v)],

• the only items that the agents can trade are those that have a high welfare w.r.t. SW(X all

i (v)).

From that we can (not trivially, see Appendix A.1) infer that the contribution of the buyers to

the expected social welfare is greater than a constant fraction of the expected contribution

of the items in H , i.e. ALG
B > 1

4

∑
j ∈H E[SW

B
j (v)].

By combining these bounds, the claim of Lemma 4.3 follows. �eorem 4.1 is then obtained

straightforwardly from Lemma 4.2 and Lemma 4.3.

Proof of Theorem 4.1. �e bound on the approximation ratio follows from the sum of the

inequalities of Lemma 4.2 and Lemma 4.3. Moreover, it is a dominant strategy for a seller to accept
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if and only if the payment o�ered to her exceeds her valuation, and it is a dominant strategy for

a buyer to choose a utility-maximising bundle for the items and item prices o�ered to her. �us,

when viewed as a direct revelation mechanism,M1-supply is DSIC. It is clear that participating in the

mechanism can never lead to a decrease in utility when truthful for both buyers and sellers, and

therefore the mechanism is also ex-post IR. Lastly, it is straightforward to see that the mechanism is

DSBB, as the de�nition ofM1-supply which we gave in terms of sequential posted pricing naturally

yields us the required set of bilateral trades. �

5 A MECHANISM FOR ADDITIVE SELLERS AND XOS BUYERS
We now consider the se�ing in which sellers may own multiple distinct items and have an additive

valuation function over them. We design a DSBB mechanism that is DSIC and ex-post IR on the

sellers’ side, and BIC and interim IR on the buyers’ side. At the end of the section we show that, in

the case that both buyers and sellers have additive valuation functions, the mechanism we present

is DSIC and ex-post IR on both sides of the market.

Note that, if the coe�cients of the additive valuation functions of the sellers would be drawn

from independent distributions, the present se�ing can be handled satisfactorily by our previous

mechanism (i.e., by treating the individual items of a single seller as if they were all items held by

individual sellers) while preserving all desirable properties and the approximation ratio. However, in

the present se�ing there generally exists a correlation among the coe�cients of a seller’s valuation

function, which causes the incentive compatibility property of the �rst mechanism to not carry

through to this case where we have additive sellers with multiple items. An example of an instance

where theM1-supply mechanism would fail is when there is one buyer and one seller two items. �e

buyer holds (deterministically) a XOS valuation function consisting of two additive functions in its

support, with respectively the coe�cients (42, 0) and (0, 40). �e seller holds (deterministically)

an additive valuation function with coe�cients (10, 0). Both items would be classi�ed by the

mechanism as high welfare items, and prices of 21 and 20 would be o�ered for the two respective

items. If the seller would behave truthfully and accepts the o�ered price for both items, then the

buyer would request only the �rst item, leaving the seller with a utility of 21. On the other hand, if

the seller would only accept the price for the second item, the buyer would request that item, and

the seller obtains a utility of 30, which demonstrates thatM1-supply is not DSIC in this se�ing.

We assume throughout this section that (n,m,k, I ,G, F ) is a given two-sided market with XOS

buyers and additive sellers, on which we run the mechanism to be de�ned. Like in the previous

section, the buyers are still assumed to have XOS valuation functions over the items. Since now

the number of items and sellers is di�erent in general, we usem to denote the number of sellers

and k for the number of items. �e valuation w j of a seller j is now an additive function. We

reuse the following notation from Section 4: the allocation (X all

1
(v), . . . ,X all

n (v)) returned by an

allocation algorithm A on input v returns an allocation of [k] to [n]. We let α ≥ 1 again denote

the approximation factor by which A approximates the social welfare. For XOS valuation vi and

bundle T ⊆ [k] we use a(vi ,T , ·) to denote an additive representative function of vi for T . Also we

use the buyers’ social welfare contribution SWB
` (v) for item ` ∈ [k] and buyers’ valuation pro�le

v , as de�ned in Section 4.

Furthermore, we de�ne the sellers’ social welfare contribution SWS
`
(w) for item ` ∈ Ij and sellers’

valuation pro�le w as SWS
`
(w) := w j ({`}). Due to the fact that for j ∈ [m], w j is an additive

function, there is no need for de�ning the notion of an additive representative function for a seller.
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5.1 Mechanism
We aim to design a BIC, interim IR, and DSBB mechanism that approximates the optimal social

welfare within a constant. We propose the following mechanism, which we refer to asMadd. We let

Hj := {` ∈ Ij : E[SWB
` (v)] ≥ 4E[SWS

`
(w)]} and Lj := Ij \Hj for all j ∈ [m], and we letH :=

⋃m
j=1

Hj
and L := [k] \ H denote the sets of high-welfare items and low-welfare items, respectively. Our

mechanism will only allow trading items in H . We de�ne for ` ∈ H the item price

p` :=
1

2

E[SWB
` (v)],

similar to what we did forM1-supply.

An essential di�erence betweenMadd andM1-supply is that the order in which buyers and sellers

are processed is reversed. Mechanism Madd roughly works as follows. It �rst asks every buyer

which set of items it would like to receive (given the price vector p) from those items in H that

have not been requested yet. �enMadd o�ers every seller j ∈ [m] a payment in exchange for the

subset of all items in Ij that have been requested. �is o�er is made with probability qj , chosen in

such a way that the requested items of seller j are transferred to the buyers with probability 1/2.

�e items of the sellers accepting the o�er are transferred to the buyers for the corresponding item

prices. Buyers act strategically, and will request a bundle of items that maximises their expected

utility (given the price vector p), knowing that the item sets requested from each seller will be

assigned to them with probability 1/2.
12

In our mechanism, the sellers will each have a dominant

strategy, while the buyers’ aformentioned behaviour relies on the sellers playing their dominant

strategies. �is reliance results in a BIC (rather than a DSIC) mechanism. Below we describe the

mechanism in more detail and we subsequently provide an example of the mechanism’s execution

on a simple instance.

(1) For ` ∈ [k], compute E[SWB
`
(v)] and E[SWS

`
(w)].

(2) For all j ∈ [m], compute Hj .

(3) Compute H and L.

(4) Let Λ1 := H , Xi := ∅ for all i ∈ [n], and Yj := Ij for all j ∈ [m].
(5) For each buyer i ∈ [n]:

(a) Ask buyer i to select an expected-utility maximising bundle Bi ⊆ Λi given the prices {p` : ` ∈

Λi } from the set of available items Λi (where the expectation is taken w.r.t. the randomness

of the valuations and the mechanism).

(b) Update the set of available items Λi+1 := Λi \ Bi .
(6) Let B :=

⋃n
i=1

Bi be the set of all items demanded by the buyers.

(7) For each seller j ∈ [m]:
(a) Let Sj := B ∩ Hj be the set of items owned by seller j that are demanded.

(b) Let p(Sj ) :=
∑

`∈Sj p` and let qj = 1/(2Pr[w j (Sj ) ≤ p(Sj )]).

(c) With probability qj , o�er payment p(Sj ) in exchange for the bundle Sj . Otherwise, skip this

seller.

(d) If the seller accepts the o�er, allocate each item in Sj to the buyer that requested it (i.e., remove

Sj from Yj and add Sj ∩ Bi to Xi for all i ∈ [n])
(8) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB , ρS ), where ρBi =
∑

`∈Xi p` for i ∈ [n] and ρSj =
∑

`∈Ij \Yj −p` for j ∈ [m].

Notice the mechanismMadd runs in polynomial time, but it makes use of a variant of a standard

demand query in which the mechanism gives prices for the items, and asks a buyer which bundle

she would like if, for for each seller j, the items of seller j in that bundle were to be received with

12
Buyers may need to make complex calculations in order to establish which bundle maximises her expected utility.
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probability 1/2. Note that in answering such a query, a buyer has to take into the positive correlation
that exists between the presence of items in the market, as two items coming from the same seller
are always either both in the market or both not in the market. �is type of demand query places

a heavier computational and cognitive burden on the agent than with standard demand queries.

However, answering such a demand query gets more di�cult with increasing expressiveness of the

class of valuation functions considered, and this justi�es the restriction to XOS valuation functions

somewhat further. We will not address in the present paper the complexity aspects of the buyer’s

task to answer such queries, though we believe that it is an open question to investigate. �is might

be interesting even for a simpler type of probabilistic demand query where each item (rather than

seller’s bundles) are independently received with probability 1/2.

�e following example illustrates some important aspects of Madd, and the strategies of the

buyers under a BNE.

Example 5.1. �ere is one buyer and two unit-supply sellers. Each seller has one item. �e

buyer has two XOS valuation functions v1 and v2, each chosen with probability 1/2. Valuation v1

is composed of 3 additive functions a1, a2, and a3, i.e., v1(S) = max{a1(S),a2(S),a3(S)}. Valuation

v2 consists of a single additive function a4. Each seller j has a valuation function w j = 0. Recall

that a function a is additive if there exists α1, . . . ,αk such that a(S) =
∑

j ∈S α j for all S ⊆ [k]. �e

functions a1 to a4 are described in the table below by listing the values α1 and α2.

Function item 1 (α1) item 2 (α2)

a1 0 2

a2 8 0

a3 7 2

a4 1 6

Let us compute the prices o�ered by the mechanismMadd when A is an optimal algorithm. �us,

we need to compute the expected contribution to the optimal social welfare of every item. First,

notice that the optimum allocates the items 1 and 2 to the buyer when her valuation is v1. In this

case the contribution to the optimal social welfare of item 1 is 7, and the contribution of item 2 is 2.

Similarly, if the buyer has valuation v2, the optimum still allocates items 1 and 2 to her, but in this

case the contribution to the optimal social welfare of item 1 is 1, and the contribution of item 2 is 6.

�us, the expected contribution of every item to the optimal social welfare is 4, i.e., E[SWB
j (v)] = 4

for all j = 1, 2. Since the price pj of each item is de�ned to be half of the expected contribution to

the optimal social welfare, pj = 2 for all the items.

When the mechanism asks a buyer to select a bundle that maximizes her expected utility, the

buyer has to answer by taking into account the fact that each item in her requested bundle will be

allocated with probability 1/2. First, consider the case when the buyer has valuation v1. In this

case the expected utility for the di�erent bundles are:

u({1}) =
1

2

· (8 − 2) +
1

2

· 0 = 3,

u({2}) =
1

2

· (2 − 2) +
1

2

· 0 = 0,

u({1, 2}) =
1

4

· (8 − 2) +
1

4

· (2 − 2) +
1

4

· (9 − 4) +
1

4

· 0 =
11

4

.
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�e utility-maximising bundle that will be requested by the buyer in case ofv1 is {1}, in which case

the mechanism will let the buyer pay Seller 1 a price of 2 in exchange for the item. Instead, if the

valuation of the buyer is v2, then the requested bundle will be {2}, in which case the mechanism

will let the buyer pay seller 2 a price of 2 in exchange for item 2.

5.2 Results
Our main result forMadd is the following theorem.

Theorem 5.2. �emechanismMadd is interim IR, BIC, DSBB, and (2+4α)-approximates the optimal
social welfare.

By taking for A an optimal algorithm (i.e., α = 1), we obtain a mechanism that is ex-post IR,

DSIC, SBB, and 6-approximates the optimal social welfare. Again, we split the proof of this theorem

5.2 into two lemmas that separately bound the sellers’ and the buyers’ relative contributions to

the social welfare. Like the previous section, we use the notation OPT as de�ned in Section 2, and

we use ALG to denote the expected social welfare of the mechanism. Moreover, we use again the

superscripts B and S to refer to the buyers’ and sellers’ expected contribution to the social welfare

of a given allocation, as we did in Section 4.

Let us �rst discuss how we bound the sellers’ expected contribution to the optimal allocation.

Lemma 5.3.

2ALG
S ≥ OPT

S .

Proof. �e only items that our mechanisms potentially reallocates are the ones belonging to H .

Every item in L stays with its seller. For the items in H , the mechanism ensures every seller sells

her demanded bundle with probability exactly 1/2, so for each seller it holds that she retains her

full initial endowment with probability at least 1/2, which implies the claim. �

Similarly, we want to provide an upper bound on the buyers’ expected contribution to the optimal

allocation. To do that we need two auxiliary propositions.

�e �rst proposition exploits the partition of the items among high-welfare items and low-welfare

items. Since the low-welfare items are not traded, the sum of the expected contribution of the

buyers on the high-welfare items and the expected contribution of the sellers on the low-welfare

items gives us an upper bound on the buyers’ expected contribution in the allocation computed by

A.

Proposition 5.4.

∑̀
∈H

Ev [SWB
` (v)] + 4

∑̀
∈L

Ew [SWS
` (w)] >

n∑
i=1

Ev [vi (X
all

i (v))].
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Proof. Let a(vi ,X
all

i (v), ·) be an additive representative function of vi for the bundle X all

i (v).

�en,

n∑
i=1

E[vi (X
all

i (v))] =

n∑
i=1

E


∑

`∈X all

i (v )

a(vi ,X
all

i (v), {`})


=

n∑
i=1

k∑̀
=1

E[a(vi ,X
all

i (v), {`})I[` ∈ X
all

i (v)]]

=

k∑̀
=1

E[SWB
` (v)]

=
∑̀
∈H

E[SWB
` (v)] +

∑̀
∈L

E[SWB
` (v)]

<
∑̀
∈H

E[SWB
` (v)] + 4

∑̀
∈L

E[SWS
` (w)].

�e last inequality follows because by de�nition of L,

4

∑̀
∈L

E[SWS
` (w)] >

∑̀
∈L

E[SWB
` (v)].

�

Now, since buyers can obtain only high-welfare items, their contribution to the expected social

welfare ofMadd is greater than a constant fraction of the expected contribution of the high-welfare

items to the allocation computed by A. �e proof of Proposition 5.5 is deferred to Appendix A.2.

Proposition 5.5.

ALG
B ≥

1

4

∑̀
∈H

Ev [SWB
` (v)].

�us, using Proposition 5.4 and Proposition 5.5 we can prove that the sum of the buyers’ expected

contribution and the sellers’ expected contribution ofMadd provides a constant approximation to

the buyers’ expected contribution in the optimal allocation.

Lemma 5.6.

4αALG
B + 4αALG

S > OPT
B .

Proof. By Proposition 5.5, 4ALG
B ≥

∑
`∈H Ev [SW

B
` (v)]. Moreover, our mechanism leaves

every item ` ∈ L with its seller, and so ALG
S ≥

∑
`∈L Ew [SW

S
`
(w)]. �erefore,

4ALG
B + 4ALG

S ≥
∑̀
∈H

Ev [SWB
` (v)] + 4

∑̀
∈L

Ew [SWS
` (w)] >

n∑
i=1

Ev [vi (X
all

i (v))] ≥
1

α
OPT

B .

�e second inequality holds by Proposition 5.4, and the last inequality follows because we de�ned α
to be the approximation factor of algorithm A, which is the algorithm that we assumed to generate

allocation X all(v). �

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 5.2. On the sellers’ side, the mechanism is ex-post IR and DSIC: the sellers

solely have to decide between accepting or rejecting a single o�er to receive a proposed payment

in exchange for a bundle of items, and it is clearly a dominant strategy to accept if and only if
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such an exchange leads to an improvement in the seller’s utility. Every buyer chooses a bundle

that maximises her expected utility, and this choice depends solely on the choice of strategies of

the sellers. �erefore, the mechanism has a BNE in which the sellers play a dominant strategy,

and the mechanism is thus ex-interim IR and BIC. �e fact that the mechanism is DSBB follows

from its de�nition, which makes clear that payments are de�ned by the appropriate sequence of

trades and payments from buyers to sellers. �e approximation guarantee follows by the sum of

the inequalities of the above Lemmas 5.3 and 5.6. �

It is important to notice that the mechanismMadd turns into a DSIC and ex-post IR mechanism

if the buyers have additive valuations instead of XOS valuations.

Corollary 5.7. For the special case that for all i ∈ [n], distribution Gi is over additive valuation
functions,Madd is ex-post IR, DSIC, DSBB and (2 + 4α)-approximates the optimal social welfare.

Proof. If a buyer i ∈ [n] has an additive valuation function, it is a dominant strategy to request

the items in Λi (v<i )) for which it holds that vi ({`}) > p` . �is follows from the simple fact that by

additivity, the utility that a buyer has for any bundle of items S can be wri�en as

∑
`∈S vi ({`}) −p` .

�us, for every item ` ∈ [k] that a buyer requests (recall that this item is then allocated to her for

price p` with probability 1/2), a term of (1/2)(vi ({`}) − p`) gets added to her expected utility. So

including ` in her requested bundle is pro�table if and only if vi ({`}) − p` ≥ 0. Using the same

argument, the ex-post IR property is also satis�ed by following this strategy. �

6 DISCUSSION
An open problem is to extend or re�ne our mechanisms so that they satisfy the DSIC and ex-post

IR properties for the case of XOS buyers and additive sellers. �e �rst naive approach for doing so

might be trying to consider every additive seller as a set of distinct unit-supply sellers and then

runM1-supply. However, this is not guaranteed to work due to the fact that an additive valuation

function may have intrinsic interdependencies among the items (e.g. if there are duplicates among

the items) and so the independence of these distinct unit-supply sellers is not guaranteed.

Something we might additionally consider to do is to ask every seller for her favorite bundle

to place in the market, yet this may cause a seller to regret having chosen that particular bundle

a�er seeing the realizations of the buyers’ valuations. On the other hand, it also seems highly

challenging to establish any sort of impossibility result for any reasonably de�ned class of posted

price mechanisms for two-sided markets.

Another natural direction is to extend the above mechanism to the se�ing in which both buyers

and sellers possess an XOS valuation function over bundles of items. A �rst challenge consists

in �nding a suitable de�nition of the sellers’ social welfare contribution of an item using a corre-

sponding additive representative function.

We would also like to comment on the reason for why we choose, in our two mechanisms,

to scale down the probability of an item being “in the market” so that it is exactly 1/2. �e

reason for scaling down these probabilities as such is two-fold: First, it makes the de�nition of the

probabilistic demand queries cleaner and easier to comprehend. It might be easier for a buyer to

answer queries where the probability of an item being in the market is exactly 1/2 instead of any

arbitrary probability (although we do not yet have formal evidence for that). Secondly, our current

proof technique is to decompose the social welfare into the buyer’s and seller’s contribution and

show that both sides contribute a substantial amount. If our mechanisms would not ensure the

scaling of the probability parameters, then this proof technique does not generalize appropriately

because the sellers’ contribution to the social welfare cannot anymore be shown to be high enough.

�is loss can possibly be compensated for by the gain in social welfare on the buyer’s side, but we
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expect that proving this would need substantial modi�cations, resulting in a proof where there is

no split into two separate lemmas, as we do currently. We leave it as an open research direction to

investigate whether such a modi�cation can yield an improved approximation factor.

Finally, we think it is an interesting open question to design a mechanism for the case of additive

sellers and XOS buyers, where buyers do not need to answer the currently used probabilistic type

of demand queries, i.e., where a buyer has to specify a utility-maximizing bundle from a set of

presented items, given item prices, under the assumption that each seller’s bundle is allocated with

probability 1/2. Answering such a query places an additional burden on the buyer of which the

complexity is as of yet unclear. Can we remove this burden by removing entirely the need for these

demand queries, or can we replace those queries by a less demanding variant where e.g. a buyer

only needs to assume that each individual item is independently allocated with probability 1/2?
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A PROOFS
A.1 Proof of Lemma 4.3
In order to do prove Lemma 4.3, we �rst prove two propositions: one of them bounds the expected

sum of the buyers’ utilities, and one of them bounds the expected sum of the buyers’ payments. In

both propositions we only consider items in H .

Given a buyers’ valuation pro�lev , letv<i = (v1, . . . ,vi−1). Further, let Z be a random variable

that denotes the sellers that receive and accept an o�er from the mechanism, i.e., the set Λ1 at

step 5 of M1-supply. For i ∈ [n] let Λi (v<i ,Z ) be the set Λi as given in the de�nition of M1-supply

when the valuation pro�le of the buyers is v and Z are the sellers in the market. Note that this

implies that Xi ⊆ Λi (v<i ,Z ) ⊆ Z . Consequently, Λn+1(v,Z ) is the subset of items for which the

corresponding sellers have accepted the o�er made to them by the mechanism, but remain allocated

to the corresponding seller a�er execution.

Proposition A.1. �e total expected utility of the buyers for the allocation returned byM1-supply is
bounded from below by

E


∑
i ∈[n]

ui (M1-supply(v,w))

 ≥
1

2

∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z ) | j ∈ Z ]pj .

(Note that the random variables in this expression are v,w , and the decisions of the mechanism to
make o�ers to the sellers in H .)

Proof. First, note that for each j ∈ H it holds that Pr[j ∈ Z ] = 1/2. Recall that we de�ned

pj := (1/2)Ev [SWB
j (v)]. �us, observe that by de�nition of pj , SWB

j (v), and the law of total

probability, it holds for all j ∈ H that

pj = Ev [SWB
j (v) − pj ] =

n∑
i=1

Ev [(SWB
j (v) − pj )I[j ∈ X

all

i (v)]]. (2)

Fix i ∈ [n], buyers’ valuation pro�lev , and set Z ⊆ H of sellers who accepted the mechanism’s

o�er, and now consider the set Λi (v<i ,Z ) ⊆ H of available items that i can choose from. Notice that

these do not depend onvi since the buyers in {1, . . . , i − 1} select their favorite bundle regardless of

vi . Moreover, notice that since the sellers are processed before the buyers, Λ1(v<1,z) only contains

items whose sellers are willing to trade at the posted prices. Buyer i selects a bundle that maximises

her utility, i.e., that is in D(vi ,p,Λi (v<i ,Z )).
Now consider an additional randomly drawn pro�le of valuation functions ṽ−i for all buyers

except i , that is independent ofv . LetX all

i (vi , ṽ−i ) be the allocation of buyer i returned byA(vi , ṽ−i ).

For i ∈ [n], consider a corresponding additive representative function a(vi ,X
all

i (vi , ṽ−i ), ·), such

that a(vi ,X
all

i (vi , ṽ−i ), {j}) = SWB
j (vi , ṽ−i ). Let

Si (vi ,v−i , ṽ−i ,Z ) := X all

i (vi , ṽ−i ) ∩ Λi (v<i ,Z )

be the items in X all

i (vi , ṽ−i ) that buyer i may choose from under valuation pro�lev . As i chooses

a bundle Bi (v,Z ) ∈ D(vi ,p,Λi (v<i ,Z )) that maximises her utility, and Si (vi ,v−i , ṽ−i ,Z ) is in

Λi (v<i ,Z ), it follows that i’s utility for Bi (v,Z ) is at least the utility she would get for choosing
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Si (vi ,v−i , ṽ−i ,Z ). �at is, for allv and Z ⊆ H

vi (Bi (v,Z )) −
∑

j ∈Bi (v,Z )

pj ≥ Eṽ−i

vi (Si (vi ,v−i , ṽ−i ,Z )) −
∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

pj


≥ Eṽ−i


∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

(a(vi ,X
all

i (vi , ṽ−i ), {j}) − pj )


= Eṽ−i


∑

j ∈Si (vi ,v−i ,ṽ−i ,Z )

(SWB
j (vi , ṽ−i ) − pj )

 .
�e second-to-last inequality follows from the de�nition of the corresponding additive function

a(vi ,X
all

i (vi , ṽ−i ), ·); that is, vi (S) ≥ a(vi ,X
all

i (vi , ṽ−i ), S) for all S ⊆ [k].
Now summing the above expression over all i ∈ [n] and taking the expectation overv and Z , we

get

Ev,Z


n∑
i=1

©­«vi (Bi (v,Z )) −
∑

j ∈Bi (v,Z )

pj
ª®¬
 ≥ Ev,ṽ−i ,Z


n∑
i=1

∑
j ∈Si (vi ,v−i ,ṽ−i ,Z )

(SWB
j (vi , ṽ−i ) − pj )


= Ev,ṽ−i ,Z

[
n∑
i=1

∑
j ∈H

(SWB
j (vi , ṽ−i ) − pj )

·I[j ∈ X all

i (vi , ṽ−i )]I[j ∈ Λi (v<i ,Z )]

]
.

Note that we exploited the independence of the events (j ∈ X all

i (vi , ṽ−i )) and (j ∈ Λi (v<i ,z)). �us,

switching the order of the sums and using linearity of expectation, we get that

Ev,Z


n∑
i=1

©­«vi (Bi (v,Z )) −
∑

j ∈Bi (v,Z )

pj
ª®¬


≥
∑
j ∈H

n∑
i=1

Prv,Z [j ∈ Λi (v<i ,Z )]Evi ,ṽ−i [(SW
B
j (vi , ṽ−i ) − pj )I[j ∈ X

all

i (vi , ṽ−i )]]

≥
∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z )]
n∑
i=1

Ev [(SWB
j (v) − pj )I[j ∈ X

all

i (v)]]

=
∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z )]pj

=
∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z ) | j ∈ Z ]Pr[j ∈ Z ]pj

=
1

2

∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z ) | j ∈ Z ]pj .

For the �rst inequality, we simply renamed ṽ−i = v−i since they are equally distributed (and so

equal under expectation) and then used (2). For the last one, we used the fact that for any i ∈ [n] it

holds that Prv [j ∈ Λi (v<i ,Z )] ≥ Prv [j ∈ Λn+1(v,Z )]. �
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Proposition A.2. �e expected sum of the payments charged byM1-supply to the buyers is equal to

E


∑
i ∈[n]

ρBi

 =
1

2

∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) | j ∈ Z ]

Proof. �e revenue extracted by the mechanism, meaning the sum of the payments charged to

the buyers, is equal to∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) ∧ j ∈ Z ] =
∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) | j ∈ Z ]Pr[j ∈ Z ]

=
1

2

∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) | j ∈ Z ].

�

We now prove Lemma 4.3 using the above two propositions. Observe that the buyers’ contribution

to the social welfare ALG
B

extracted byM1-supply is equal to the sum of all the buyers’ utilities and

all the buyers’ payments.

Proof of Lemma 4.3. As just observed above, from Proposition A.1 and Proposition A.2, we

have that

ALG
B = E


∑
i ∈[n]

ui (M1-supply(v,w))

 +
∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) ∧ j ∈ Z ]

≥
1

2

∑
j ∈H

Prv,Z [j ∈ Λn+1(v,Z ) | j ∈ Z ]pj +
1

2

∑
j ∈H

pjPrv,Z [j < Λn+1(v,Z ) | j ∈ Z ]

=
1

2

∑
j ∈H

pj =
1

4

∑
j ∈H

E[SWB
j (v)].

By de�nition of L, for each j ∈ L it holds that 4E[w j ] > E[SWB
j (v)]. Every item in L stays unsold

so,

ALG
S ≥

∑
j ∈L

E[w j ] >
1

4

∑
j ∈L

E[SWB
j (v)].

�erefore,

ALG
B + ALG

S ≥
1

4

k∑
j=1

E[SWB
j (v)].

Now recall that E[SWB
j (v)] was de�ned by the allocation X all(v), being the one returned by

Algorithm A. So,

1

4

k∑
j=1

E[SWB
j (v)] =

1

4

n∑
i=1

Ev [vi (X
all

i (v))] ≥
1

4α
OPT

B .

�
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A.2 Proof of Proposition 5.5
Proposition A.3. Letv be a buyers’ valuation function pro�le and let (X ′

1
, . . . ,X ′n) be any allo-

cation of items to the buyers, let X ′i, j := X ′i ∩ Hj be the set of items in H that are allocated to buyer
i ∈ [n] and belonged to seller j ∈ [m]. For each seller j ∈ [m], let zj ∈ {0, 1} be a Bernoulli random
variable such that E[zj ] = 1/2. Let X ′′i (z) :=

⋃
j ∈[m]:zj=1

X ′i, j for all i ∈ [n]. �en, for all i ∈ [n] it
holds that

Ez [vi (X
′′
i (z))] ≥

1

2

vi (X
′
i ).

Moreover, given any vector p ∈ Rk of item prices, the inequality also holds on the utilities of the buyers:

Ez

vi (X ′′i (z)) −
∑

`∈X ′′i (z )

p`

 ≥
1

2

©­«vi (X ′i ) −
∑
`∈X ′i

p`
ª®¬ .

Proof. For the �rst claim, �rst note that due to subadditivity

Ez [vi (X
′′
i (z))] ≥ vi (X

′
i ) − Ez

vi ©­«
⋃

j ∈[m]:zj=0

X ′i, j
ª®¬
 .

Observe that

Ez [vi (X
′′
i (z))] = Ez

vi ©­«
⋃

j ∈[m]:zj=1

X ′i, j
ª®¬
 = Ez

vi ©­«
⋃

j ∈[m]:zj=0

X ′i, j
ª®¬
 ,

because the events zj = 0 and zj = 1 are equiprobable for all j ∈ [m]. Combining this with the

above inequality establishes the �rst claim.

�e second claim follows from the following derivation.

Ez

vi (X ′′i (z)) −
∑

`∈X ′′i (z )

p`

 = Ez [vi (X
′′
i (z))] − Ez


∑

j ∈[m]:zj=1

∑
`∈X ′i, j

p`


= Ez [vi (X

′′
i (z))] − Ez


m∑
j=1

©­«
∑

`∈X ′i, j

p`
ª®¬ I[zj = 1]


= Ez [vi (X

′′
i (z))] −

m∑
j=1

©­«
∑

`∈X ′i, j

p`
ª®¬Ez

[
I[zj = 1]

]
= Ez [vi (X

′′
i (z))] −

∑
`∈X ′i

p`
1

2

≥
1

2

vi (X
′
i ) −

1

2

∑
`∈X ′i

p`

�

Proposition A.4. Let j ∈ [m] be a seller. �e probability that the mechanismMadd makes in Step
7c an o�er to j that she accepts, is 1/2.
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Proof. For every j ∈ [m] and ` ∈ Hj , it holds by de�nition of p` and Hj that p` ≥ 2E[w j ({`})].
From Markov’s inequality it follows that

Pr

w j (S j ) >
∑̀
∈Sj

p`

 ≤ Pr[w j (S j ) > 2E[w j (S j )]] <
1

2

.

�us, Pr
[
w j (S j ) ≤

∑
`∈Sj p`

]
≥ 1/2, meaning that j accepts the o�er with probability at least 1/2,

in case she is made an o�er. �e mechanism makes the o�er with probability qj , and qj is de�ned

such that

qjPr

w j (S j ) ≤
∑̀
∈Sj

p`

 = 1/2.

�

For i ∈ [n + 1] and valuation pro�le v , let v<i = (v1, . . . ,vi−1) and let Λi (v<i ) be the set Λi
de�ned in Step 5b, whenMadd is run when the buyers in [i − 1] have valuation pro�lev<i . Given

this de�nition, the set Λn+1(v) are the items not requested by any buyer at the end of Step 5, when

the buyers’ valuation pro�le isv .

Lemma A.5. �e expected total utility of the buyers is at least

1

2

∑̀
∈H

Prv [` ∈ Λn+1(v)]p` .

Proof. First, let us consider a �xed buyer i ∈ [n] and a �xed buyers’ valuation pro�le v . Let

ṽ−i be an independently sampled valuation pro�le for the buyers in [n] \ {i}, and consider the

bundle X all

i (vi , ṽ−i ) that A allocates to i when the valuation pro�le is (vi , ṽ−i ). Let XH
i (v, ṽ−i ) =

X all

i (vi , ṽ−i )∩H ∩Λi (v<i ). Moreover, let z be a vector ofm Bernoulli random variables with E[zj ] =
1/2 and de�ne for a subset S(v) ⊆ Λi (v) the random variable S(v,z) =

⋃
j ∈[m]:zj=1

(S ∩Hj ). Particu-

larly, from this de�nition we obtain the random variableXi (v, ṽ−i ,z) =
⋃

j ∈[m]:zj=1
(XH

i (v, ṽ−i )∩Hj ).

Also, note that when the buyers’ valuations are v , the mechanism will let i choose to request a

bundle from the set Λi (v<i ) with item prices p. �e buyer maximises her expected utility and will

therefore request the bundle Bi (v) that maximises her expected utility, i.e.,

Ez

vi (B(v,z)) −
∑

`∈B(v,z )

p`

 .
By Proposition A.4 each seller’s requested items will be allocated with probability 1/2, as re�ected

by the Bernoulli random variables z.
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Since Bi (v) is an expected utility-maximising bundle and Xi (v, ṽ−i ,z) ⊆ Λi (v) is selectable by i ,
it holds that

Ez

vi (B(v,z)) −
∑

`∈B(v,z )

p`

 ≥ Eṽ−i ,z

vi (Xi (v, ṽ−i ,z)) −
∑

`∈Xi (v,ṽ−i ,z )

p`


≥

1

2

Eṽ−i

vi (XH
i (v, ṽ−i )) −

∑
`∈X L

i (v,ṽ−i )

p`


≥

1

2

Eṽ−i

a(vi ,X all

i (vi ,v−i ),X
H
i (v,v−i )) −

∑
`∈XH

i (v,ṽ−i )

p`


=

1

2

Eṽ−i


∑

`∈XH
i (v,ṽ−i )

(SWB
` (vi , ṽ−i ) − p`)

 .
where the second inequality follows from Proposition A.3, and the last inequality follows from the

de�nition of an additive representative function a(vi ,X
all

i (vi , ṽ−i , ·).
If we sum over all i ∈ [n] and take the expectation w.r.t. every vi , we obtain the following bound

on the total expected utility of the buyers.

Ev,z


n∑
i=1

(vi (B(v,z)) −
∑

`∈B(v,z )

p`)

 ≥
1

2

Ev,ṽ−i


n∑
i=1

∑
`∈XH

i (v,ṽ−i )

(SWB
` (vi , ṽ−i ) − p`)


=

1

2

Ev,ṽ−i

[
n∑
i=1

∑̀
∈H

(SWB
` (vi , ṽ−i ) − p`)I[` ∈ X

H
i (v, ṽ−i )]

]
=

1

2

Ev,ṽ−i

[
n∑
i=1

∑̀
∈H

(SWB
` (vi , ṽ−i ) − p`)I[` ∈ X

all

i (vi , ṽ−i )]I[` ∈ Λi (v<i )]

]
=

1

2

∑̀
∈H

n∑
i=1

Evi ,ṽ−i
[
(SWB

` (vi , ṽ−i ) − p`)I[` ∈ X
all

i (vi , ṽ−i )]
]
Ev−i [I[` ∈ Λi (v<i )]] .

For the second-to-last equality, we exploited the independence of the events (` ∈ X all

i (vi , ṽ−i ))
and (` ∈ Λi (v<i )). �en, Ev−i [I[` ∈ Λi (v<i )]] = Pr[` ∈ Λi (v<i )] and since L = Λ1(v<1) ⊇ . . . ⊇
Λn+1(v), it holds that Pr[` ∈ Λi (v<i )] ≥ Pr[` ∈ Λn+1(v)]. So, we have that the above expression is

at least

1

2

∑̀
∈H

Prv [` ∈ Λn+1(v)]

n∑
i=1

Evi ,ṽ−i [(SW
B
` (vi , ṽ−i ) − p`)I[` ∈ X

all

i (vi , ṽ−i )]]

=
1

2

∑̀
∈H

Prv [` ∈ Λn+1(v)]

n∑
i=1

Ev [(SWB
` (v) − p`)I[` ∈ X

all

i (v)]].

�e equality follows from renaming the random variable vj := ṽj for all j , i Now observe that by

de�nition of the prices, p` =
∑n

i=1
Ev [(SWB

` (v) − p`)I[` ∈ X
all

i (v)]]. Combining these derivations,
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we obtain the desired bound on the expected utilities

Ev,z


n∑
i=1

(vi (B(v,z)) −
∑

`∈B(v,z )

p`)

 ≥
1

2

∑̀
∈H

Prv [` ∈ Λn+1(v)]p` .

�

Lemma A.6. �e expected sum of payments made by the buyers is equal to
1

2

∑̀
∈H

Prv [` < Λn+1(v)]p` .

Proof. For j ∈ [m], let zj be the random (0, 1)-variable that indicates whether seller j has been

made an o�er and accepted it in Step 7c of MechanismMadd, so zj = 1 is a Bernoulli variable with

expected value 1/2. �e expected sum of payments made by the buyers is then

m∑
j=1

∑
`∈Hj

Pr[` < Λn+1(v) ∧ zj = 1]p` =

m∑
j=1

∑
`∈Hj

Pr[` < Λn+1(v)]Pr[zj = 1]p`

=
1

2

m∑
j=1

∑
`∈Hj

Pr[` < Λn+1(v)]p`

=
1

2

∑̀
∈H

Pr[` < Λn+1(v)]p`

�e second equality holds by the independence of the two events. �

Proof of Proposition 5.5. �e expected social welfare contribution of the buyers is equal to

the sum of the expected utilities and expected payments. By the above two lemmas, their sum is at

least

1

2

∑̀
∈H

Pr[` ∈ Λn+1(v)]p` +
1

2

∑̀
∈H

Pr[` < Λn+1(v)]p` =
1

2

∑̀
∈H

p` =
1

4

∑̀
∈H

Ev [SWB
` (v)],

by de�nition of p` . �
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