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universal and is related to the central charge c. In d = 4 the vacuum energy depends on

the regularization scheme and has no intrinsic value. We show that this property extends

to infinitesimally deformed cylinders and support this conclusion with a holographic check.

However, for N = 1 supersymmetric CFTs, a natural analog of the Casimir energy turns

out to be scheme independent and thus intrinsic. We give two proofs of this result. We

compute the Casimir energy for such theories by reducing to a problem in supersymmetric

quantum mechanics. For the round cylinder the vacuum energy is proportional to a+ 3c.

We also compute the dependence of the Casimir energy on the squashing parameter of

the cylinder. Finally, we revisit the problem of supersymmetric regularization of the path

integral on Hopf surfaces.
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1 Introduction and summary

The quantum anomalies appearing in the trace of the energy-momentum tensor encode

universal information about Conformal Field Theories (CFTs) in even space-time dimen-

sions. In d = 2 the conformal anomaly c characterizes conformal field theories [1], and

constrains the renormalization group (RG) flows between them [2]. In four-dimensional

CFTs, there are two trace anomaly coefficients, c and a. They appear in many applica-

tions. In particular, Cardy conjectured [3] that there exists a decreasing function along

RG flows, reducing to a at the fixed points [4–6].

Here we will be interested in the following question. Given a conformal field theory in

R
d, d = 2n, we can use a Weyl transformation and study the theory on Sd−1 × R. This is

– 1 –
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often referred to as “radial quantization.” Denoting the noncompact coordinate by τ , we

can ask about the energy of the ground state E0, defined as

E0 =

∫

Sd−1

dd−1x
√
g 〈Tττ 〉 . (1.1)

The expectation value of the energy-momentum tensor is taken in the ground state of the

CFT on the cylinder. We refer to E0 as the Casimir energy.

It is crucial for the analysis below to understand whether E0 is well defined, namely,

scheme independent. In d = 2 the only dimensionless counterterm is

∫
d2x

√
gR , (1.2)

where R denotes the Ricci scalar. This vanishes on the cylinder and thus does not shift

the vacuum energy.1 In d = 4 there are several dimensionless counterterms. A basis is

given by the Euler density E(4), the square of the Weyl tensor W 2, the Pontryagin density

Tr(R ∧ R), and R2. Of those four dimensionless counterterms only
∫
d4x

√
gR2 does not

vanish on S3 × R. We could thus add this counterterm to the action with some scheme-

dependent coefficient b

δS = − b

12(4π)2

∫
d4x

√
gR2 . (1.3)

The curvature of the three-sphere of radius r3 is R = 6
r23

in our conventions. As a con-

sequence, integrating the counterterm above we get δS = − 3b
8r3

∫
dτ . Interpreting the

coefficient of
∫
dτ as the ground state energy we see that E0 is ambiguous. An equivalent

way to understand this ambiguity is to note that (1.3) leads to a scheme-dependent term

in the trace of the energy-momentum tensor

〈Tµ
µ 〉 =

1

(4π)2
(
aE(4) − cW 2 + b�R

)
. (1.4)

Since 〈Tµ
µ 〉 is modified, this affects the other components of 〈Tµν〉 and in particular the

vacuum energy. By contrast, in d = 2 no dimension 2 term can be added to the right-hand

side of 〈Tµ
µ 〉 = − c

24πR.

We see that, without additional assumptions, the ground state energy on S3×R is not

an intrinsic property of the CFT. It depends on the regularization scheme, i.e. the precise

way in which the CFT is defined (different definitions lead to different values of b). On the

other hand, the Casimir energy on S1 × R is an intrinsic observable that does not depend

on the ultraviolet completion.

For completeness, let us quote the results for E0 in d = 2 and in d = 4. In d = 4 below

we use the general scheme with some b. We present a self-contained derivation of these

1More precisely, since there is the cosmological constant counterterm Λ2
UV

∫

d2x
√
g, the vacuum energy

would generally have power divergent pieces E0 ∼ Λ2
UV r1 (with r1 the radius of the S1 and ΛUV the UV

cut-off) which are non-universal. So when we discuss the scheme-independence of the vacuum energy, we

always have in mind the piece that remains finite when the cut-off is removed. In d = 2n dimensions, only

counterterms with d-derivatives of the metric are thus relevant to us.

– 2 –
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results in appendix A. The Casimir energy on S1 × R is

E0 = − c

12r1
, (1.5)

where r1 is the radius of the circle. The Casimir energy on S3 × R is

E0 =
3

4r3

(
a− b

2

)
, (1.6)

where r3 is the radius of the three-sphere. In fact, as we show in appendix A, the result

in d = 4 remains ambiguous even if one allows for an infinitesimal deformation of the

three-sphere. By this we mean that the linear response to an infinitesimal deformation is

still proportional to a− b
2 . We also provide a holographic test of this claim, by checking it

against the linearized holographic Casimir energy of the supergravity solution of [7].

The three main points of the present paper are

• There is a natural generalization of the notion of Casimir energy for N = 1 super-

symmetric field theories on S3 × R.

• It turns out that this Casimir energy is physical, i.e. scheme independent. We will

give two proofs of this assertion and then we will evaluate the Casimir energy exactly.

One proof is based on [8] and the other is based on ideas related to Chern-Simons

terms in quantum mechanics. The Casimir energy comes out proportional to the

linear combination a+ 3c of the conformal anomalies.

• When one computes supersymmetric partition functions on manifolds with S3 × S1

topology, the answer is given in terms of a product of the Casimir factor and the

usual supersymmetric index. This leads to consistent results in various limits of the

partition function.

Let us now briefly explain why it might be useful to understand the Casimir factor for

four-dimensional theories. Recall that in d = 2, in order for the torus partition function

to be modular invariant, it is necessary to include the Casimir prefactor e
cβ

12r1 (where β

is the length of the thermal circle). The Casimir prefactor in four dimensions might be

similarly important to manifest various relations between different path integrals such as

those analogous to [9] and e.g. [10]. The Casimir prefactor might be also relevant for a

better understanding of the role of the modular-like transformations in four dimensions

discussed in [11, 12] (and see references therein).

So let us begin by discussing how we put supersymmetric N = 1 theories on S3 × R.

For theories with an R-symmetry (such as any SCFT) one can follow the procedure of [13]

whereby one couples the theory to background new minimal supergravity. New minimal

supergravity [14] contains the bosonic fields gµν , Aµ, Bµν , where Aµ is the R-gauge field and

Bµν is a two-form.2 The procedure works both in Lorentzian and in Euclidean signature;

here we refer to the Euclidean case for definiteness.
2One is allowed to discuss the R-symmetry in curved space without any significant modifications because

its gravitational anomaly vanishes under very general assumptions [15].

– 3 –
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It turns out that for every complex manifold with a Hermitian metric one can find

appropriate Aµ and Bµν such that one preserves at least one rigid supercharge [16, 17]. This

can be viewed as a generalization of the notion of twisting [18]. Furthermore, the partition

function is independent of the Hermitian metric; it only depends on the complex structure of

the underlying complex manifold [19]. A particularly interesting class of complex manifolds

are primary Hopf surfaces, which are topologically equivalent to S3 × S1. In this case, the

relevant branch of the moduli space of complex structures is two-complex dimensional,

parameterized by complex numbers p, q.

For the special case of the round metric on S3×S1, the complex structure parameters

are given in terms of the S1-length β and the S3-radius r3 as p = q = e
− β

r3 . This geometry

preserves in fact four supercharges and in addition to the round metric we need to activate

the background fields Aτ = Vτ = i
r3
, where Vµ = 1

4ǫµνρσ∇νBρσ. The two-form Bµν couples

to a redundant operator in conformal field theories and is not so important. However, the

flat gauge field A along the Euclidean time direction implies that the Hamiltonian, Hsusy,

is shifted with respect to what we would get from radial quantization according to

Hsusy = ∆− 1

2r3
R . (1.7)

Above ∆ is the time translation operator that is obtained by mapping the dilatation oper-

ator in flat space to the cylinder (equivalently, ∆ is the canonical Hamiltonian for a theory

on the cylinder with Aτ = 3i
2r3

, Vτ = i
r3
). The Hamiltonian (1.7) commutes with the four

supercharges on the round S3×S1 and so the Hilbert space is organized in representations

of the appropriate superalgebra.

The Casimir energy, Esusy, is thus naturally defined from the large β limit of the

partition function [20]

Zsusy
S3×S1

β

∼ e−βEsusy for β → ∞ . (1.8)

In other words, Esusy is the lowest eigenvalue of the Hamiltonian (1.7). See also appendix B.

This definition can be extended to manifolds M3 × S1, with M3 a Seifert manifold (a

Seifert manifold is, loosely speaking, a circle bundle over a Riemann surface). For primary

Hopf surfaces, we will deform the three-sphere with some squashing parameter b, related

to the underlying complex structure parameters p, q, and study Esusy(b). Our final result

for the round sphere (b = 1) with radius r3 is3

Esusy =
4

27r3
(a+ 3c) , (1.9)

in agreement with [21]. The partition function is therefore given by

Zsusy
S3×S1

β

= e
− 4β

27r3
(a+3c)IS3×S1

β
, (1.10)

with IS3×S1
β
being the usual supersymmetric index [22–25]. The results of [26–29] are

consistent with (1.10).

3The formula also applies to non-conformal theories by replacing a and c with the appropriate linear

combinations of traces over the fermion R-charges TrR and TrR3 (see (2.53)).

– 4 –
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Since the Casimir energy is not well defined without supersymmetry, one has to develop

a supersymmetric method to regularize the a priori divergent Casimir energy. As we will

explain in the following subsection, the main idea is that the expectation value of (1.7)

can be related to the expectation value of the R-charge in the vacuum. The latter can be

thought of as a Chern-Simons term in quantum mechanics and this leads to a determination

of the ordering ambiguities (see also [30]).

Let us mention that recovering (1.9) from a holographic computation remains an open

problem. Recall that for four-dimensional SCFTs admitting a weakly coupled gravity dual,

at leading order in the large N limit, one has a = c and thus we predict Esusy = 16
27r3

a ∼
O(N2). Therefore this should be reproduced by the on-shell action of an appropriate

supergravity solution. It was noted in [7] that an obvious candidate for such a solution

is AdS5, with the addition of an appropriate flat background gauge field; however, its

renormalised on-shell action is the same as that of pure AdS5, which agrees with (1.6) (with

b = 0) [31], and does not agree with (1.9). It is clearly worthwhile to revisit this problem.

In the next subsection we briefly summarize the derivation of (1.9). Section 2 contains

the detailed derivation of (1.9) and section 3 contains the generalization to squashed cylin-

ders. Appendix A contains a study (which is mostly a review) of the non-supersymmetric

Casimir energy. In appendix B we include some details about the identification of Esusy

with the VEV of the Hamiltonian. Finally, in appendix C we reconsider the full partition

function on S3×S1. We revisit the regularization of one-loop determinants and determine

the relation of the partition function and the supersymmetric index for all p, q, a study

initiated in [20] (see also [32]), thereby generalizing (1.10). The correct regularization of

the one-loop determinants leads to results consistent with the Cardy-like formula [26] (see

also [27]), namely

Zsusy
S3×S1

β

∼ exp

(
−16π2r3

3β
(a− c)

)
for β → 0 , (1.11)

as advertised in [26, 30].

1.1 Outline of the derivation

Let us now summarize the main points in the derivation of the supersymmetric Casimir

energy for SCFTs.

In section 2 we consider an N = 1 theory with an R-symmetry on the conformally flat

background S3×R, with round metric on S3. We work in Lorentzian signature and denote

the real time t = iτ . Preserving supersymmetry requires to turn on background fields

of the new minimal supergravity multiplet At = Vt =
1
r3
. Focusing on two supercharges

of opposite R-charge (out of the four preserved by the background), the supersymmetry

algebra on S3 × R takes the form

1

2
{Q,Q†} = Hsusy −

1

r3
(R+ 2J3) , [Hsusy, Q] = [R+ 2J3, Q] = 0 . (1.12)

Here R is the generator of U(1)R symmetry while J3 is a Cartan generator of the

isometries of the three-sphere. The Casimir energy is given by the VEV of the Hamiltonian

– 5 –
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appearing in the algebra, Esusy = 〈Hsusy〉. Here, the expectation value is evaluated in the

vacuum of the theory coupled to the various background fields. Since the supercharge is

time-independent, we can then Wick rotate and compactify the time direction on a circle

of length β, and Esusy gives the dominant contribution to the supersymmetric partition

function for β → ∞ as in (1.8).

Because of the separation of scales between the radius of the three-sphere and the

radius of the circle, it is natural to study the reduction of the theory on the three-sphere.

The result of this reduction is a supersymmetric quantum mechanics with infinitely many

degrees of freedom. We are thus led to consider a 1d system with Hamiltonian Hsusy, a

global symmetry with charge Σ and a supersymmetry algebra of the form

{Q,Q†} = 2

(
Hsusy −

1

r3
Σ

)
, [Hsusy, Q] = [Σ, Q] = 0 . (1.13)

Unbroken supersymmetry implies that r3〈Hsusy〉 = 〈Σ〉. When we reduce to 1d, the effective

action that computes 〈Σ〉 is given by

W[AΣ
t ] = 〈Σ〉

∫
dt AΣ

t , (1.14)

where AΣ is the background gauge field for the symmetry generated by Σ. This is a 1d

Chern-Simons (CS) term associated to the VEV of Σ, i.e. the charge of the vacuum.

In quantum mechanics (1.14) can in principle be completed to a supersymmetric coun-

terterm, involving the 1d metric gtt as well as other background supergravity fields. Such

a counterterm would reflect the fact that 〈Hsusy〉 and 〈Σ〉 can be shifted by an arbitrary

amount, preserving the relation r3〈Hsusy〉 = 〈Σ〉 imposed by the superalgebra (1.13). By

contrast, if the quantum mechanical model arises from a local higher-dimensional model,

the allowed counterterms must descend from local higher-dimensional counterterms. It

easy to see that the quantum-mechanical CS term (1.14) cannot descend from a higher-

dimensional counterterm and thus it is scheme independent. As a consequence, since the

vacuum energy is fixed by supersymmetry to be the same as the 1d CS term, the vacuum

energy is physical. Furthermore, since the CS term cannot depend on continuous coupling

constants, the vacuum energy is also independent of continuous coupling constants. If

we further assume the existence of a weakly coupled point, we can reliably compute the

Casimir energy using a free field theory.

We can then consider a free chiral multiplet. Supersymmetry implies that upon re-

duction on the S3 the resulting Lagrangian and supersymmetry transformations must be

organized in terms of 1d multiplets and Lagrangians. In particular, there are two types

of multiplets, that we will call “short.” These are the chiral (φ, ψ) and the Fermi (λ, f)

multiplets. A key point is that the combination of the two multiplets can form a reducible

but indecomposable representation of supersymmetry. Thus they can join to form a “long”

multiplet, with the coupling between the short components controlled by a parameter p.

When p = 0, the short multiplets are decoupled.

The scalar fields of the 1d chiral multiplets arise from “Fourier modes” of the scalar

fields in the 4d chiral multiplet. For example, on the round sphere we can use the spher-

ical harmonics and write φ =
∑

φℓ,m,nYℓ,m,n . Here ℓ,m, n are the usual SU(2)l × SU(2)r

– 6 –
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quantum numbers. Similarly, one can expand the two-component fermion of the 4d chiral

multiplet in spinorial harmonics, and the 1d fermions ψ and λ may be identified with linear

combinations of its components. The deformation parameter p that governs the shortening

of the multiplets is related to the 4d quantum number as p2 = (ℓ− 2m)(ℓ+2+2m), hence

the shortening condition p = 0 is satisfied if and only if m = ℓ/2 or m = −ℓ/2− 1.

We will see that in the correct renormalization scheme (whose existence we established

above), the Hamiltonian of a long multiplet exactly vanishes on the vacuum, while for the

short multiplets we find

chiral

(
m =

ℓ

2

)
: 〈Hchiral〉 =

1

2r3
(ℓ+ r) ,

Fermi

(
m = − ℓ

2
− 1

)
: 〈HFermi〉 = − 1

2r3
(ℓ+ 2− r) , (1.15)

where r is the R-charge of the 4d chiral multiplet. Thus, given that the long multiplets do

not contribute, the expectation value of the total Hamiltonian is

〈Hsusy〉 =
∑

chiral

〈Hchiral〉+
∑

Fermi

〈HFermi〉 . (1.16)

The two infinite sums can be regularized using different methods, for example using the

Hurwitz zeta function, or a cut-off method, (see also [20] and [30]) yielding in any case the

result4

〈Hsusy〉 = Esusy =
4

27r3
(a+ 3c) . (1.17)

Using a similar strategy, in section 3 we compute the supersymmetric Casimir energy

for anN = 1 theory (with anR-symmetry) on a class of Hopf surfaces with U(1)3 symmetry,

considered in [20]. Let us describe this briefly. Again we start from the free chiral multiplet

Lagrangian in four dimensions, and reduce this to an infinite set of fields in 1d, comprising

long and short multiplets. Since the quantized Hamiltonian of long multiplets vanishes on

the vacuum, we can focus on the short multiplets. The shortening conditions are expressed

as first-order differential equations for the eigenstates of the Hamiltonians for chiral and

Fermi multiplets, which are labeled by two non-negative integers n1, n2. This can be seen

using the method of [34] or, equivalently, utilising the variables of [32]. Each chiral and

Fermi multiplet contributes as

chiral : 〈Hchiral〉=
1

2r3

(
|b|n1 + |b−1|n2 +

r

2
(|b|+ |b−1|)

)
,

Fermi : 〈HFermi〉= − 1

2r3

(
|b|n1 + |b−1|n2 +

2− r

2
(|b|+ |b−1|)

)
, (1.18)

where b is a parameter deforming the complex structure of the Hopf surface. Again the

two sums in (1.16) must be regulated separately. This can be done using the Barnes double

4In this paper we do not carry out the explicit analysis for the vector multiplets; the results would be

consistent with our conclusions. Additionally, the combination a + 3c has an interesting interpretation in

terms of the anomaly polynomial [33].

– 7 –
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zeta function, which is a two-parameter generalization of the Hurwitz zeta function. In the

end, we obtain

〈Hsusy〉 =
2

3r3

(
|b|+ |b|−1

)
(a− c) +

2

27r3
(|b|+ |b|−1)3(3 c− 2 a) , (1.19)

which is the expression (5.10) in [20] (with the redefinition b1 =
βb

2πr3
and b2 =

βb−1

2πr3
).

2 Supersymmetric Casimir energy

In this section we perform a manifestly supersymmetric analysis of the Casimir energy prob-

lem on S3×R. Our strategy is to reduce to a one-dimensional quantum mechanical problem.

Using the same idea, in section 3 we will discuss the more general case leading to (1.19).

2.1 Definition

Consider an N = 1 theory with an R-symmetry. The energy-momentum tensor can be

embedded in the so-called R-multiplet (see, for instance, [35]), hence the theory can be

coupled canonically to new minimal supergravity. The bosonic part of the supergravity

multiplet consists of the metric gµν and two auxiliary fields, the R-gauge field Aµ and a

conserved one-form Vµ, ∇µV
µ = 0, dual to the field strength of a two-form gauge field Bµν .

Gravity can then be made non-dynamical by taking a rigid limit, so that one is left with an

ordinary field theory on a four-manifold M4. In this limit generically all the supergravity

fields above are turned on, and play the role of background fields. For particular choices

of background fields and manifolds M4 one can show that the theory on M4 preserves

some rigid supersymmetry. The condition is that there exists a nontrivial solution to the

generalized Killing spinor equation [13]

(∇µ − iAµ)ζα + iVµζα + iV ν(σµνζ)α = 0 , (2.1)

and its conjugate equation. In Lorentzian signature, these equations admit a solution if and

only if the background admits a null Killing vector [36]. In Euclidean signature, solutions

were classified in [16, 17]. It turns out that a solution exists if and only if the manifold is

complex, with a Hermitian metric. For some special cases (and the cases we analyze in this

paper are of this type) one can naturally Wick rotate from the Euclidean to the Minkowski

solution. Examples of such backgrounds are M4 = M3 × S1, with M3 a Seifert manifold

(examples include spheres and Lens spaces).

AnN = 1 theory on a curved manifoldM4 presents the same short-distance behavior as

in flat space. So in general there will be divergences in the computation of e.g. the partition

function on M4, which need to be renormalized. Assuming that the theory is regularized

in a way which respects both supersymmetry and the R-symmetry, we infer that two

different regularization schemes differ by some local counterterm, namely some local action

constructed using the background new minimal supergravity fields,
∫
d4x

√
gL(gµν , Aµ, Vµ).

This has to respect supersymmetry and gauge invariance. Local terms of dimension four

affect the finite part of the partition function, as they remain finite when the UV cut-off

is removed. In [8] it was shown that when there exist two Killing spinors of opposite

– 8 –
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chirality, then all local counterterms of dimension four evaluate to zero. This means that

such partition functions are in fact scheme-independent.5

The results of [18, 19] tell us that Zsusy
M3×S1

β

is independent of coupling constants and

only depends on complex structure parameters of the underlying complex four-manifold

M3 × S1. The findings of this work are consistent with that.

The partition function can be interpreted as usual as a trace over the Hilbert space

Zsusy
M3×S1

β

= Tr
[
(−)F e−βHsusy

]
, where Hsusy generates the time evolution along S1. Then

the Casimir energy is extracted from the large circle limit as

Esusy = − lim
β→∞

d

dβ
logZsusy

M3×S1
β

. (2.2)

The scheme-independence of the partition function implies that the vacuum energy is

universal (below we will also give a new proof of this fact). This should be contrasted with

the non-universality of the ordinary Casimir energy E0 discussed in the introduction.

2.2 Consequences of the supersymmetry algebra

In this section we make a few observations based on the supersymmetry algebra. In

Lorentzian signature, let us consider the simple case M4 = S3 × R, where S3 is a round

three-sphere of radius r3 and R is the time direction parameterized by t (this is related to

the Euclidean time τ in the introduction by t = iτ). By fixing the other background fields

to At = Vt =
1
r3
, with all other components vanishing, we can preserve four supercharges6

for any N = 1 theory with an R-symmetry [13]. In fact one could take any constant At

for the flat gauge field. However, only in the case that At =
1
r3

one gets time-independent

supercharges. So we will make this choice throughout.

The superalgebra preserved by the background is [22]

1

2
{Qα, Q

†β} = δβα

(
Hsusy −

1

r3
R

)
− 2

r3
σi β

αJ
i
l ,

[Hsusy, Qα] = 0 , [R,Qα] = −Qα , [J i
l , Qα] =

1

2
Qβ σ

i β
α , (2.3)

where Hsusy is the generator of translations along the circle, R is the R-charge, the J i
l ,

i = 1, 2, 3, are the generators of the SU(2)l ⊂ SU(2)l × SU(2)r isometry of the sphere and

σi are the Pauli matrices. The supercharges Qα, α = 1, 2, form a doublet of SU(2)l, while

the SU(2)r subgroup does not appear in the superalgebra.

A first remark is that we assume the vacuum does not break supersymmetry. Suppose

the vacuum were not supersymmetric, in which case either Q1, or Q2 (or both) would

not annihilate the vacuum. Then, Q|VAC〉 is a new state with the same value of Hsusy,

but contributing with an opposite sign to the index or partition function. Therefore if

5As in footnote 1, one should bear in mind that there is a dimension < 4 counterterm that does not

vanish in general, but this contains a positive power of the cut-off. We will use such divergent counterterm

in appendix C to regularize the partition function.
6This requires making a special choice of the so-called κ parameter [30]. For generic choices of κ, the

background preserves only two supercharges.
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supersymmetry were broken, the index on S3 × R would not receive a contribution from

the unit operator. In the case of SCFTs, the fact that supersymmetry is unbroken on

S3 × R is a simple consequence of radial quantization. Indeed, in this case, the spectrum

of Hsusy is identical to the spectrum of ∆− 1
2r3

R, which has a gap above the unit operator.

Another simple observation is that J3
l annihilates the vacuum, J3

l |VAC〉 = 0. Indeed,

J3
l appears with different signs on the right hand side of {Q1, Q

†
1} and {Q2, Q

†
2}. Hence, it

must vanish or one of the Q’s does not annihilate the vacuum. (Also, if J3
l were nonzero

on the vacuum, the vacuum would not be unique.)

It is useful to focus on the algebra of one specific supercharge, say Q1. We will also

rescale R and J3
l to reabsorb the radius r3 of S3. Then the Q1-algebra reads

{Q1, Q
†
1} = 2

(
Hsusy −R− 2J3

l

)
, Q2

1 = 0 ,

[Hsusy, Q1] = [R+ 2J3
l , Q1] = 0 . (2.4)

From this we conclude that

〈Hsusy〉 = 〈R〉 . (2.5)

However, the algebra (2.4) is invariant under shifting Hsusy and the R-charge by some c-

number ǫ so we cannot yet determine the actual expectation value of Hsusy in the vacuum.

Notice that an equivalent way to express the Ward identity (2.5) is in terms of the vacuum

expectation value of ∆, defined in (1.7):

〈∆〉 = 3

2
〈R〉 . (2.6)

Equation (2.6) takes the form of the familiar BPS relation. Here we interpret it on the

cylinder, where both sides have nonzero vacuum expectation values.

We will approach the problem of determining 〈Hsusy〉 by reducing the theory on the

three-sphere. In this way we get a quantum mechanics (QM) theory with infinitely many

degrees of freedom. The theory has four supercharges, Q1, Q2 and their Hermitian con-

jugates. The R-symmetry group is SU(2)l × U(1) and the supercharges furnish the (2, 1)

representation. SU(2)r is a global symmetry in the quantum mechanics theory.

The generating functional of R-current connected correlators discussed in (1.14) is

specifically given by

W[At] = 〈R〉
∫

dt At , (2.7)

where At is the component along S1 of the four-dimensional R-symmetry gauge field.

This term is a 1d Chern-Simons term fixing the R-charge of the vacuum. Given that

〈Hsusy〉 = 〈R〉, this also fixes the Casimir energy. Since the relation 〈Hsusy〉 = 〈R〉 is

a consequence of supersymmetry, the one-dimensional local term (2.7) must be part of a

supersymmetric term in a one-dimensional supergravity, obtained by dimensional reduction

of 4d new minimal supergravity on S3. In fact, in the specific case of round S1 × S3 that

we are discussing here, it is easy to see that a plausible candidate for the completion of the

CS term (2.7) to a 1d supergravity invariant is given by

W = 〈R〉
∫

dt

(
At +

3

2r3

√
|gtt| −

3

2
Vt

)
, (2.8)

– 10 –



J
H
E
P
0
7
(
2
0
1
5
)
0
4
3

where gtt and Vt are simply the components of the respective background fields in four

dimensions. This expression does not depend on the choice of the parameter κ and correctly

reproduces (2.6) in a SCFT. However, we leave the systematic study of such terms for the

future.

Equation (2.7) implies that 〈Hsusy〉 is physical (i.e. scheme independent) without rely-

ing on the classification of four-derivatives counterterms of [8]. The idea is that if we just

studied a quantum mechanics theory of finitely many degrees of freedom, then there would

be no meaningful way to compute 〈Hsusy〉 itself. Indeed, we could always add a counterterm

of the form (2.7) with an arbitrary coefficient, shifting the values of 〈Hsusy〉 and 〈R〉 at will,
while preserving 〈Hsusy〉 = 〈R〉.7 So without additional assumptions, there is no possible

way to fix 〈Hsusy〉 itself at the level of quantum mechanics. However, it is crucial that

in the present study the quantum mechanics theory derives from a four-dimensional local

quantum field theory. Then, the Chern-Simons counterterm (2.7) would be admissible only

if it came from a local term in four dimensions. It is easy to convince oneself that there

is no way to derive (2.7) — with its specific normalization — by dimensional reduction of

a four-dimensional counterterm on S3 × R. Indeed to get the normalization right for the

Chern-Simons term, it needs to come from a term in four dimensions of mass dimension

four. But then it is straightforward to see that one cannot write anything, regardless of

supersymmetry, that would look like
∫
dtAt after integrating over the sphere with radius

r3. Therefore, the charge of the vacuum becomes physical and so does the ground state

energy by the relation 〈Hsusy〉 = 〈R〉.
Another observation that follows directly from (2.7) is that the Casimir energy cannot

depend on continuous coupling constants (and hence on the RG scale). This follows from

the fact that 〈Hsusy〉 = 〈R〉 and that to compute 〈R〉 we need to evaluate the coefficient of∫
dtAt. If the coefficient of At had depended on continuous coupling constants, we could

have promoted them to time-dependent fields and lose the gauge invariance under small R-

symmetry gauge transformations (and this cannot be accounted for by any anomaly). This

is similar to the arguments in [26] (and references therein). This conclusion is consistent

with the arguments of [18, 19].

An important consequence of this observation is that it is sufficient to calculate the

Casimir energy starting from a free field theory in 4d. We henceforth assume that such a

free point exists in the space of continuous coupling constants. It would be very interesting

to generalize our considerations to non-Lagrangian theories. (It is not currently clear to us

how to do so.)

To summarize, by considering the supersymmetry algebra and reducing to a quantum

mechanical problem, we established that what we need to compute is the coefficient of the

generating functional (2.7) in quantum mechanics. We perform this computation below,

after having introduced some notions of supersymmetric quantum mechanics.

7This freedom is constrained when the R-symmetry is compact. In this case, we can only add (2.7) with

an integer coefficient. Thus, we can only change the R charge by an integer amount, such that e2πiR = 1

on all the states is retained. So if the R-symmetry were compact, then the ambiguity in the vacuum energy

would be only by an integer, even in quantum mechanics.
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Before coming to these issues, let us comment about the case in which two supercharges

are preserved instead of four. This is in fact the generic supersymmetric case, pertinent

to various deformations of S3 (these will be discussed in section 3) as well as to other

topologies. In this case, some of the claims above are valid while some others are not

necessarily true. An important difference is that there is no SU(2)l algebra in general,

rather, there is just some U(1) isometry of M3, generated by J3. Thus, a simple argument

that J3 vanishes in the vacuum does not exist. The QM algebra, inherited from the

4d deformed algebra [17, 20], now takes the form (1.13), so that in the vacuum we have

〈Hsusy〉 = 〈Σ〉, with Σ a QM flavor symmetry. A quantum mechanical term like (2.7) would

still exist, with At replaced by the gauge field AΣ
t for the flavor symmetry Σ, and the claims

made below eq. (2.7) still apply. In particular, the vacuum energy is still independent of

the renormalization scheme and of the coupling constants. We will use this to compute

Esusy for N = 1 theories with an R-symmetry on M3 × S1, where M3 has S3 topology.

2.3 Supersymmetric quantum mechanics

Let us model the situation above, governed by the two supercharges algebra (2.4), with

{Q,Q†} = 2(H − Σ) , Q2 = 0 ,

[H,Q] = [Σ, Q] = 0 , (2.9)

where H generates time translations, while Σ is some Hermitian conserved charge. At

the formal level, we can just redefine H by Σ. However, in order to be able to connect

more easily to the reduction over S3, we will keep the algebra in the form (2.4). Similar

supersymmetric systems were studied in [37, 38].

We can define two types of multiplets: a chiral multiplet (φ, ψ), and a Fermi multiplet

(λ, f), where φ, f are complex and commuting while ψ, λ are complex and anti-commuting.

These two multiplets have the following supersymmetry transformations

chiral : δφ =
√
2ζψ , δψ = −

√
2iζ†Dtφ ,

Fermi : δλ =
√
2ζf + p

√
2ζ†φ , δf = −

√
2iζ†Dtλ− p

√
2ζ†ψ , (2.10)

where on all the fields we define Dt = ∂t − iσ, with σ the charge of the field under Σ. The

complex parameter ζ is independent of time and uncharged under Σ. In the variations

of the Fermi multiplet there appears a parameter p. When p = 0, the chiral and Fermi

multiplets are independent of each other. We will refer to each of the decoupled multiplets

as “short.” When instead p 6= 0 the two multiplets form one reducible but indecomposable

representation of supersymmetry. Thus, for p 6= 0 we call the combined chiral and Fermi

multiplets a “long” multiplet.

On each component of a multiplet with charge σ, the transformations (2.10) give

{δ1, δ2} = −2i
(
ζ†1ζ2 + ζ†2ζ1

)
Dt , (2.11)

which is consistent with the algebra (2.9) when H is represented as −i∂t.
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The supersymmetric Lagrangian of a long multiplet takes the form

L = |Dtφ|2 − iµ(φDtφ
† − φ†Dtφ) + iψ†Dtψ − 2µψψ†

+ iλ†Dtλ+ |f |2

− p2|φ|2 − p(λψ† + ψλ†) , (2.12)

where µ is an additional free parameter, giving a mass to ψ. For p = 0, the first and the

second lines are the Lagrangians of a free chiral and free Fermi multiplet, respectively, and

are separately supersymmetric.8

We now pass to Hamiltonian formalism and quantize the theory. The canonical mo-

menta are

Πφ = (Dt + iµ)φ† , Πψ = −iψ† , Πλ = −iλ† , Πf = 0 . (2.13)

The canonical (anti-)commutation relations are

[φ,Πφ] = i , {ψ,Πψ} ≡ −i{ψ, ψ†} = −i , {λ,Πλ} ≡ −i{λ, λ†} = −i , (2.14)

together with their Hermitian conjugates.

The Hamiltonian reads

H = |Πφ|2 + i(µ+ σ)(Πφφ− φ†Πφ†) + µ2|φ|2 + (σ + 2µ)ψψ†

+σλλ†

+ p2|φ|2 + p(λψ† + ψλ†) + α̃ , (2.15)

where again when p = 0 the first line gives the Hamiltonian of a chiral multiplet, while the

second line is the Hamiltonian of a Fermi multiplet. The field f has been set to zero by its

equation of motion. Note that we have introduced a constant α̃, parameterizing the usual

ordering ambiguity.

In terms of canonical variables, the charge Σ reads

Σ = iσ
(
Πφφ− φ†Πφ†

)
+ σ

(
ψψ† + λλ†)+ α , (2.16)

where α parameterizes the ordering ambiguity in this operator. The supercharge is

Q =
√
2i ψ

(
Πφ − iµφ†)+

√
2 p φ†λ , (2.17)

and is free of ordering ambiguities. Evaluating {Q,Q†} we find that (2.9) is upheld provided

we take

α̃ = α− 2µ . (2.18)

Hence supersymmetry fixes the ordering ambiguity in H−Σ. Of course, after having solved

for α̃ we still have the freedom to shift H and Σ by an equal amount, corresponding to

8When p = 0 an additional term like δ(λW (φ)) can be introduced, in case the total charge under Σ

vanishes. We will not need to consider this term.
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the remaining parameter α. Without additional assumptions, this freedom would have

remained in the framework of ordinary quantum mechanics in one dimension.

In order to explain how to fix the ordering ambiguity that is left, it is useful to recall

that we are computing the coefficient of a CS term in the low-energy 1d effective action.

This term takes the form

k

∫
dt AΣ

t , (2.19)

where AΣ
t is the background gauge field associated to the charge Σ. A single fermion of

mass M and charge q shifts the coefficient of the Chern-Simons term by q
2sgn(M) [39]. We

can think about that as if we are starting from some theory in the UV with Chern-Simons

coefficient kuv and then we integrate out the massive fermion leading to a Chern-Simons

coefficient in the infrared kir (this interpretation was elaborated upon in [40])9

kir − kuv = −q

2
sgn(M) . (2.22)

From the point of view of the quantum mechanics, the arbitrariness in the charge of

the vacuum corresponds to the arbitrariness in the UV coefficient kuv. However, our theory

arises from a higher-dimensional model. As already observed, it is easy to convince oneself

that a term like (2.19) cannot be generated by dimensional reduction of a four-dimensional

local term. So we must take

kuv = 0 , (2.23)

i.e. no Chern-Simons contact term in the UV generating functional. This key requirement

fixes the ordering ambiguity in H. Together with (2.22), this implies that multiplets

containing pairs of fermions with masses of opposite sign do not contribute to the Casimir

energy. We will see below that as long as the Hamiltonian is bounded from below, a long

multiplet necessarily contains fermions with masses of opposite sign. As a result, the choice

of the ordering coefficient must be such that H and Σ vanish in the ground state of a long

multiplet. This leads to the conclusion that the correct choice of the ordering constant is

α = −2σ . (2.24)

9A simple way to derive (2.22) is as follows. First, from dimensional analysis and the fact that M and

k are odd under charge conjugation we infer

kir − kuv = x sgn(M) , (2.20)

where x is a coefficient, independent of M . To fix x we can consider a free fermion with mass M and charge

q with a constant background gauge field AΣ
t . This has Hamiltonian H = (M + qAΣ

t )(ψψ
† + α̂), where α̂

is an arbitrary ordering constant. The partition function is given by

Z = e
−β(M+qAΣ

t
)α̂

(

1 + e
−β(M+qAΣ

t
)
)

. (2.21)

The idea now is that we can keep the ultraviolet fixed and consider two different RG flows, one with positive

M and one with negative M . By subtracting the resulting Chern-Simons terms in the infrared (which we

will read out from the charge of the vacuum), we will find 2x. If M > 0 then taking M → ∞ we can read off

the CS term (i.e. charge) in the IR to be qα̂
∫

dtAΣ
t . On the other hand, if M < 0 we read out the CS term

in the IR by taking the limit M → −∞ and we find q(α̂+ 1)
∫

dtAΣ
t . Subtracting these yields 2x = −q.
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We will use this choice in the following and one can verify that in all cases the results

are consistent with (2.23). Incidentally, it turns out that (2.24) also corresponds to Weyl

ordering for the Hamiltonian.10

2.4 Spectrum of the Hamiltonian

We now study the spectrum of the Hamiltonian and determine the vacuum state.

Long multiplet. Let us start from the bosonic sector of (2.15):

Hbosonic = |Πφ|2 + i(µ+ σ)(Πφφ− φ†Πφ†) + (µ2 + p2)|φ2| − µ− σ , (2.25)

where we have included half of the ordering constant appearing there (the other half will

enter in the fermionic sector). This ensures Weyl ordering. We can introduce creation

operators a†, b† and annihilation operators a, b via

φ =
(µ2 + p2)−1/4

√
2

(
a+ b†

)
, Πφ =

i(µ2 + p2)1/4√
2

(
a† − b

)
. (2.26)

The canonical commutation relations between φ and Πφ (and their Hermitian conjugates)

imply that these satisfy [a, a†] = [b, b†] = 1, [a, b] = [a†, b] = [a, b†] = [a†, b†] = 0. Then the

bosonic Hamiltonian can be written as

Hbosonic =
√
µ2 + p2

(
a†a+ b†b+ 1

)
+ (σ + µ)

(
b†b− a†a

)

=
1

2

√
µ2 + p2

(
{a, a†}+ {b, b†}

)
+

1

2
(σ + µ)

(
{b, b†} − {a, a†}

)
, (2.27)

where in the second line we have emphasized that Hbosonic is Weyl ordered. The state

annihilated by a and b has energy
√
µ2 + p2 . Acting on this with (a†)m(b†)n (with m,n

positive integers) we obtain a state with energy

Hbosonic(m,n) =
√

µ2 + p2 +m
(√

µ2 + p2 − µ− σ
)
+ n

(√
µ2 + p2 + µ+ σ

)
. (2.28)

We see that in order for the Hamiltonian to have a spectrum that is bounded from below we

need to assume
√
µ2 + p2 > |µ+ σ|.11 Hence the state of minimum energy in the bosonic

sector is the one with m = n = 0.

Next we address the fermionic sector. The Hamiltonian reads

Hfermionic = p(λψ† + ψλ†) + (2µ+ σ)ψψ† + σλλ† − µ− σ

=
(
ψ λ

)
(
2µ+ σ p

p σ

)(
ψ†

λ†

)
− µ− σ , (2.29)

10This explains why our final result is identical to that of [30] for the VEV of H. But, unlike [30], our

result for the VEV of Σ in the vacuum manifestly respects the BPS condition H = Σ.
11Allowing for

√

µ2 + p2 = |µ+σ| yields a Hamiltonian bounded from below but introduces a degenerate

vacuum. Let us discard this case.
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where we have kept the ordering constant that ensures Weyl ordering. We can make a

unitary U(2) rotation to diagonalize the above matrix. This preserves the anti-commutation

relations. The eigenvalues are

x± = µ+ σ ±
√
µ2 + p2 . (2.30)

Denoting the eigenvectors u+, u−, u
†
+, u

†
−, the Hamiltonian is thus

Hfermionic = x+u+u
†
+ + x−u−u

†
− − µ− σ

=
x+
2

[u+, u
†
+] +

x−
2

[u−, u
†
−] , (2.31)

with {u±, u†±} = 1. The charge operator Σ takes the form

Σfermionic = σ
(
u+u

†
+ + u−u

†
− − 1

)

= σ [u+, u
†
+] + σ [u−, u

†
−] . (2.32)

Starting with the state |0〉 which is annihilated by both u†±, we can act with u−, u+ or

u−u+. The spectrum therefore consists of four states with the following energy and charge:

state |0〉 u−|0〉 u+|0〉 u+u−|0〉

energy −µ− σ −
√
µ2 + p2

√
µ2 + p2 µ+ σ

charge −σ 0 0 σ

(2.33)

Since we assumed
√
µ2 + p2 > |µ+ σ|, the state of lowest energy is u−|0〉.

We now combine the information obtained studying the bosonic and fermionic sectors

of the Hamiltonian and identify a state with minimum energy that respects supersymmetry.

Adding Hbosonic and Hfermionic, the complete Hamiltonian is

H =
√

µ2 + p2
(
a†a+ b†b+ 1

)
+ (σ + µ)

(
b†b− a†a

)

+x+u+u
†
+ + x−u−u

†
− − µ− σ . (2.34)

One can also check that the full charge operator reads

Σ = σ
(
b†b− a†a+ u+u

†
+ + u−u

†
− − 1

)
. (2.35)

From the discussion above, the state with minimum energy is clearly

|VAC〉 ≡ |m = 0, n = 0, x−〉 , (2.36)

where m = 0, n = 0 indicates that no bosonic oscillators are excited, and by x− we mean

that we excite one fermionic oscillator with eigenvalue x−. Its total energy is

H =
√

µ2 + p2 −
√
µ2 + p2 = 0 , (2.37)
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and thus vanishes due to an exact cancellation between the bosonic and the fermionic contri-

butions. Since we have just one fermionic oscillator the charge is Σ = 0 , hence the relation

(H−Σ)|VAC〉 = 0 is satisfied and supersymmetry is unbroken in the vacuum, as expected.

We conclude that the long multiplets yield a vanishing contribution to the vacuum

energy and charge:

〈Hlong〉 = 〈Σlong〉 = 0 . (2.38)

Note that this is a consequence of our choice of ordering constant, and as argued at the

end of the previous subsection this is the correct choice for a quantum mechanics arising

from a higher-dimensional theory.

If we had a theory of long multiplets only, the vacuum energy would just be zero.

However, if short multiplets are also present, this is not the case, as we now show.

Fermi multiplet. Consider the Fermi multiplet. Then the supercharge identically van-

ishes. The Hamiltonian and the charge generator take the same form,

HFermi = ΣFermi = σ
(
λλ† − 1

2

)
. (2.39)

The only two states have energy −1
2σ and +1

2σ. The contribution of a Fermi multiplet to

the vacuum energy and charge is thus

〈HFermi〉 = 〈ΣFermi〉 = −|σ|
2

. (2.40)

Chiral multiplet. The bosonic sector of the chiral multiplet can be treated as we did

for the long multiplet, setting p = 0. The full Hamiltonian and charge operator can thus

be written as

Hchiral = |µ|
(
a†a+ b†b+ 1

)
+ (σ + µ)

(
b†b− a†a

)
+ (2µ+ σ)ψψ† − µ− σ

2
, (2.41)

Σchiral = σ
(
b†b− a†a

)
+ σψψ† − 1

2
σ . (2.42)

Since p = 0, the condition for the Hamiltonian to be bound from below becomes

|µ| > |µ+ σ| . (2.43)

In the vacuum all bosonic oscillators are zero. Then we have two possible states:

1. the state annihilated by ψ†, with H = |µ| − µ− 1
2σ and Σ = −1

2σ ;

2. the state with an oscillator ψ excited, with H = |µ|+ µ+ 1
2σ and Σ = +1

2σ .

Which state has minimum energy depends on the values of µ and σ. Note that (2.43)

requires µ and σ to have opposite signs. If µ > 0, σ < 0, then (2.43) implies −2µ < σ < 0,

and the state number 1 has minimum energy H = −1
2σ; since H = Σ, this state is

supersymmetric, while the state 2 is non-supersymmetric. Conversely, if µ < 0 and σ > 0,

then from (2.43) we deduce 0 < σ < −2µ, hence the state number 1 now has higher energy

and the state 2 is the supersymmetric vacuum, with H = 1
2σ.
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Thus, a chiral multiplet contributes to the vacuum energy and charge as

〈Hchiral〉 = 〈Σchiral〉 =
|σ|
2

. (2.44)

In conclusion, the analysis in supersymmetric quantum mechanics establishes that a

long multiplet yields a vanishing contribution to the vacuum energy and charge, that a

Fermi multiplet contributes as in (2.40) while a chiral multiplet contributes as in (2.44).

2.5 Dimensional reduction of a 4d chiral multiplet

Consider a free four-dimensional chiral multiplet (φ, ψα, F ) on S3 × R. The Lagrangian

and supersymmetry transformations can be found in [13]. The only parameter appearing

in the Lagrangian is the charge r under the background R-symmetry gauge field. Here

we will restrict to 0 < r ≤ 2.12 This range is compatible with the inequalities mentioned

in the previous subsection, ensuring that the spectrum of the Hamiltonian is bounded

from below. Expanding in appropriate spherical harmonics, the chiral multiplet reduces to

a one-dimensional theory with infinitely many fields. These organize in one-dimensional

multiplets with different values of the parameters µ, p, σ introduced above. Some have

p 6= 0 and are thus long multiplets, while some others have p = 0 and are thus short

multiplets, either chiral or Fermi.

More explicitly, we can expand the scalars in spherical harmonics Yℓ,m,n transforming

in representations ( ℓ2 ,
ℓ
2) of SU(2)l × SU(2)r. The quantum number ℓ is a non-negative

integer. For a fixed ℓ, the quantum numbers m,n of the scalar harmonic Yℓ,m,n range in

− ℓ
2 ≤ m,n ≤ ℓ

2 . So we can write

φ =
∑

ℓ,m,n

φℓ,m,nYℓ,m,n , (2.45)

and similarly for the auxiliary field F . The fermionic field ψα can be expanded in spinorial

harmonics. A review of spinor spherical harmonics on S3 can be found in [30, 41]. A

single 4d fermion reduces to two infinite series of 1d fermions furnishing the representation∑
l(

ℓ−1
2 , ℓ

2)⊕ ( ℓ+1
2 , ℓ

2) of SU(2)l × SU(2)r .
13

Integrating over S3 and using the orthonormality of the spherical harmonics, the action

of a four-dimensional chiral multiplet gives rise to a one-dimensional action for an infinite

number of fields. These arrange in multiplets of supersymmetric quantum mechanics la-

beled by ℓ,m, n, and one can check that the Lagrangian of each of these multiplets takes

the form (2.12). Here we do not need to present all details of the reduction. All we need

to know is how the R-charge r and the quantum numbers ℓ,m, n map into the parameters

σ, p, µ entering in (2.12) and characterizing each multiplet in supersymmetric quantum

mechanics. Actually, the discussion in subsection 2.4 shows that for the purpose of deter-

mining the vacuum energy we just need to know when a multiplet is shortened (namely

when p = 0), if it is a chiral or a Fermi multiplet, and what is the value of its charge σ.

12Outside this range there are complications, see [41]. Here we see additional complications, for example,

the cancelation previously discussed for long multiplets would fail.
13The symmetry between left and right is broken by the choice of spin bundle.
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By comparing the four-dimensional algebra (2.4) with (2.9), we deduce that we must

identify (restoring the S3 radius r3) Σ = 1
r3
(R+ 2J3

l ), and therefore

σ =
1

r3
(r + 2m) . (2.46)

Moreover, reducing the four-dimensional Lagrangian to one dimension, one finds14

p2 =
1

r23
(ℓ− 2m)(ℓ+ 2 + 2m) ,

µ = − 1

r3
(2m+ 1) , (2.47)

hence the shortening condition p = 0 is satisfied if and only if m = ℓ/2 or m = −ℓ/2 − 1.

In the former case a chiral multiplet is obtained, with charge σ = 1
r3
(ℓ + r). In the latter

case a Fermi multiplet is obtained, with charge σ = − 1
r3
(ℓ+2− r). Recalling (2.40), (2.44)

we conclude that the respective contribution to the vacuum energy is:

chiral

(
m =

ℓ

2

)
: 〈Hchiral〉 =

1

2r3
(ℓ+ r) ,

Fermi

(
m = − ℓ

2
− 1

)
: 〈HFermi〉 = − 1

2r3
(ℓ+ 2− r) .

(2.48)

The expectation value of the Hamiltonian is obtained by adding up the contributions of all

chiral and Fermi multiplets:

〈Hsusy〉 =
∑

chiral

〈Hchiral〉+
∑

Fermi

〈HFermi〉

=
∑

ℓ≥0

1

2r3
(ℓ+ 1)(ℓ+ r)−

∑

ℓ≥0

1

2r3
(ℓ+ 1)(ℓ+ 2− r) , (2.49)

where the (ℓ+ 1) factor comes from the degeneracy associated with SU(2)r.

To regularize the sum, we dress the terms in the sum with some decreasing weights.

To do this in a supersymmetric fashion, we can decompose H as a sum of Hamiltonians

acting on the Hilbert space of a single free 1d multiplet

Hsusy =
∑

ℓ,m,n

Hℓ,m,n , (2.50)

and regularize the sum with a function of the Hℓ,m,n operators, for instance

Hsusy =
∑

ℓ,m,n

Hℓ,m,ne
−2 t r3|Hℓ,m,n| , (2.51)

14More generally, one could easily restore the dependence on the parameter κ. This affects only µ but

not p2 and σ. In the notation of [30] one finds that the parameter µ is related with the parameters in the

four-dimensional Lagrangian as r3µ = −2m− 3
2
r − κ( 3

2
r − ǫ).
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with t a positive number. This yields

〈Hsusy〉 =
∑

ℓ≥0

1

2r3
(ℓ+ 1)(ℓ+ r)e−t(ℓ+r) −

∑

ℓ≥0

1

2r3
(ℓ+ 1)(ℓ+ 2− r)e−t(ℓ+2−r) . (2.52)

Taking the small t limit and dropping the diverging term in t−2,15 we obtain a regularized

result for the vacuum energy that, after recalling the trace anomaly coefficients [42]

a =
3

32

[
3(r − 1)3 − (r − 1)

]
, c =

1

32

[
9(r − 1)3 − 5(r − 1)

]
, (2.53)

reads

Esusy = 〈Hsusy〉 =
4

27r3
(a+ 3c) . (2.54)

This is the result advertised in eq. (1.9) of the introduction.

One could consider a supersymmetric regularization with a different function

f(tHℓ,m,n) of the Hℓ,m,n operators. It can be shown, using an Euler-MacLaurin expan-

sion (see appendix C for a related application) that for all smooth functions f such that

f(0) = 1 (and such that the series converges), one obtains the same result for the finite

piece in the small t expansion. This is in agreement with the fact that the supersymmetric

Casimir energy is unambiguous. The regularization using the Hurwitz zeta function [30]

also reproduces the same result.

It is possible to contrast our results with several previous works in which localization

techniques on S3 × S1 were utilized. Comparing with [20] (see also [32] and [43] where

similar localization techniques are used in other topologies), one finds agreement regarding

the vacuum energy. However, as we will briefly discuss in appendix C, the regularization

scheme of [20] in fact does not preserve supersymmetry, as it violates certain SUSY Ward

identities in the small circle limit. Our result for the vacuum energy also agrees with that

of [30] (this method is a Hamiltonian version of [21]), but as mentioned in footnote 10 the

result of [30] does not preserve some SUSY Ward identities as well.

3 Supersymmetric Casimir energy on a deformed three-sphere

In this section we study the chiral multiplet on a supersymmetric S3 × S1 background

with more general metric and complex structure. We will use results known from the

computation of the partition function on these spaces, based on localization, to implement

the Hamiltonian approach to the evaluation of the Casimir energy.

3.1 Shortening conditions on chiral multiplets

We start by reviewing some results of [32], where the fermionic degrees of freedom in the

chiral multiplet were conveniently redefined. This made it particularly easy to show that

in backgrounds preserving two supercharges of opposite R-charge, the modes contributing

15The diverging term can be associated to the four-dimensional Einstein-Hilbert counterterm. We will

discuss this more in appendix C.
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to the partition function solve first-order differential equations that can be interpreted as

shortening conditions.

We work in Euclidean signature and follow the conventions of [20].16 We assume the

existence of at least one positive-chirality spinor ζα and one negative-chirality spinor ζ̃α̇

satisfying the Killing spinor equations

(∇µ − iAµ) ζ + iVµζ + iV νσµνζ = 0 ,

(∇µ + iAµ) ζ̃ − iVµζ̃ − iV ν σ̃µν ζ̃ = 0 . (3.1)

These independent equations are the Euclidean version of the supersymmetry condition

given in (2.1). Note that ζ has R-charge +1 while ζ̃ has R-charge −1. In Euclidean

signature the chiral multiplet is made of (φ, ψα, F ) with R-charge (r, r − 1, r − 2) and of

the independent fields (φ̃, ψ̃α̇, F̃ ) with R-charge (−r,−r + 1,−r + 2). The supersymmetry

transformations are

δφ =
√
2 ζψ , δφ̃ =

√
2 ζ̃ψ̃ ,

δψ =
√
2Fζ +

√
2iσµζ̃Dµφ , δψ̃ =

√
2 F̃ ζ̃ +

√
2i σ̃µζDµφ̃ ,

δF =
√
2iDµ

(
ζ̃ σ̃µψ

)
, δF̃ =

√
2iDµ

(
ζσµψ̃

)
, (3.2)

where on a field of R-charge q the covariant derivative Dµ is defined as

Dµ = ∇µ − iqAµ , (3.3)

with ∇µ the Levi-Civita connection. A supersymmetric Lagrangian is

L = Dµφ̃D
µφ+ V µ

(
iDµφ̃ φ− iφ̃Dµφ

)
+

r

4
(R+ 6VµV

µ) φ̃φ− F̃F

+ iψ̃ σ̃µDµψ +
1

2
V µψ̃ σ̃µψ , (3.4)

where R is the Ricci scalar on the four-manifold.

Following [32] (see section 5 therein), we decompose the fermion fields ψ, ψ̃ in anti-

commuting scalars as17

B =
1√
2

ζ†ψ
|ζ|2 , C =

√
2 ζψ ⇔ ψα =

√
2 ζαB − 1√

2

εαβζ
†β

|ζ|2 C , (3.5)

B̃ =
1√
2

ζ̃†ψ̃

|ζ̃|2
, C̃ =

√
2 ζ̃ψ̃ ⇔ ψ̃α̇ =

√
2 ζ̃α̇B̃ − 1√

2

εα̇β̇ ζ̃ †
β̇

|ζ̃|2
C̃ . (3.6)

Note that B has R-charge r− 2 while C has R-charge r. Similarly, B̃ has R-charge −r+2

while C̃ has R-charge −r. We also introduce the complex vectors

Kµ = ζ̃ σ̃µζ , Kµ =
ζ̃†σ̃µζ†

4|ζ|2|ζ̃|2
, Y µ =

ζ̃†σ̃µζ

2|ζ|2 , Y µ = − ζ̃ σ̃µζ†

2|ζ|2 , (3.7)

16We could also work in Lorentzian signature, building on the results of [36]. One reason for choosing

the Euclidean signature is that it allows to make contact with the computation of the partition function

via localization.
17Note that ζα and εαβ(ζ

†)β form a basis of chiral spinors.
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which define a complex frame. These satisfyKµK
µ = YµY

µ = 1
2 , with all other contractions

vanishing. The vectors K, K have vanishing R-charge, while Y has R-charge +2 and Y

has R-charge −2. They satisfy

∇(µKν) = 0 , ∇µK
µ = 0 , DµY

µ = 0 , DµY
µ = 0 , (3.8)

hence K is a (complex) Killing vector. Finally, we define the differential operators

L̂K = KµDµ , L̂K = KµDµ , L̂Y = Y µDµ , L̂Y = Y µDµ . (3.9)

In the new variables the supersymmetry transformations (3.2) take the form (here we

distinguish between δ ≡ δζ and δ̃ ≡ δ
ζ̃
):

δφ = C , δ̃φ = 0 ,

δC = 0 , δ̃C = 2i L̂Kφ ,

δB = F , δ̃B = −2i L̂Y φ ,

δF = 0 , δ̃F = 2i
(
L̂KB + L̂Y C

)
, (3.10)

with similar transformations for the tilded fields. The Lagrangian (3.4) can then be rewrit-

ten as

L = 4LK φ̃ L̂Kφ+ 4LY φ̃ L̂Y φ+ iκ
(
L̂K φ̃ φ− φ̃L̂Kφ

)
− F̃F

+2iB̃L̂KB + 2i C̃L̂KC + 2i B̃L̂Y C − 2i C̃L̂Y B − κC̃C . (3.11)

Here, κ is a function describing a redundancy in the choice of the background fields [17];

it will play no important role for us as it drops from the final answer.

In [32] it was showed that in a background with two supercharges ζ, ζ̃, the partition

function of a chiral multiplet reduces to

Z =

∏
λB

∏
λφ

, (3.12)

where λB, λφ are eigenvalues determined by the first-order differential conditions

L̂Y B = 0 , iL̂KB = λBB , (3.13)

and

L̂Y φ = 0 , iL̂Kφ = λφφ . (3.14)

The equations on the left can be read as shortening conditions for the chiral multiplet.

Indeed, L̂Y B = 0 allows to set C (and φ) to zero consistently with its equation of motion.

Similarly, L̂Y φ = 0 permits to set B to zero consistently with its supersymmetry transfor-

mation in (3.10). In order to set B = 0 consistently with its equation of motion one also

needs L̂Y C = 0; this condition is also needed to set F = 0 respecting its supersymmetry
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variation. Similar considerations apply to the tilded fields. (In [32], the latter were related

to the untilded fields via Hermitian conjugation).

These shortenings are better understood by reducing to lower dimensions, where (B,F )

and (φ,C) define irreducible representations of supersymmetry. In [32], this was done in an

S2×T
2 background by expanding in monopole harmonics on S2 and noting that the afore-

mentioned equations correspond to shortenings of the (0, 2) supersymmetry multiplets on

T
2. Therefore only modes in shortened multiplets contribute to the one-loop determinant

of the chiral multiplet partition function. The long multiplets lead to paired bosonic and

fermionic eigenmodes and hence yield a trivial contribution.

Similarly, in the following we consider S3×S1 with a general metric and reduce on S3

to supersymmetric quantum mechanics. This allows to make contact with the approach to

the computation of the Casimir energy developed in section 2.

3.2 Reduction on deformed three-sphere

We consider the class of supersymmetric backgrounds studied in [20]. These are complex

manifolds with the topology of S3×S1 known as primary Hopf surfaces. The complex struc-

ture moduli space is described by two parameters p, q. In the notation of [20], p = e−2π|b1|,
q = e−2π|b2| and b1, b2 are chosen real. The circle S1 is parameterized by τ ∼ τ + 2π. The

three-sphere is described as a torus fibration over an interval: the torus angular coordinates

are ϕ1 ∼ ϕ1+2π and ϕ2 ∼ ϕ2+2π, while the interval coordinate is ρ ∈ [0, 1]. The metric is

ds2 = Ω2dτ2 + ds2(M3) = Ω2dτ2 + f2dρ2 +mIJdϕIdϕJ , (3.15)

where I, J = 1, 2. Supersymmetry imposes the constraint

Ω2 = bImIJb
J , (3.16)

which ensures Hermiticity of the metric. f and mIJ are arbitrary functions of ρ, except

that mIJ must be positive definite and suitable boundary conditions need to be satisfied

at the extrema of the interval. As ρ → 0, we require that

f → f2 , m11 → m11(0) , m22 = (f2ρ)
2 +O(ρ3) , m12 = O(ρ2) , (3.17)

where f2 > 0 and m11(0) > 0 are constants. Similar boundary conditions are taken at

ρ → 1. The background field A is given by

A =
|b1b2|
2Ω2f

(
Ω
√
m
)′
(
dϕ1

b1
− dϕ2

b2

)
+

1

2
dω , (3.18)

where m = detmIJ , a prime denotes derivative with respect to ρ, and

ω = sgn(b1)ϕ1 + sgn(b2)ϕ2 . (3.19)

We will not need the expression of the remaining background field V .

The class of three-sphere metrics ds2(M3) in (3.15) includes the elliptically squashed

three-sphere S3
b
, first studied in the context of localization in [44]. This is obtained by
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setting b1 = βb
2πr3

, b2 = β
2πr3b

, redefining the coordinate ρ into a coordinate ϑ ∈ [0, π/2]

such that fdρ = [b−2 sin2 ϑ+b
2 cos2 ϑ]1/2 dϑ, and taking m11 = b

−2 cos2 ϑ, m22 = b
2 sin2 ϑ,

m12 = 0. With these choices, Ω = ( β
2πr3

)2 and the expressions of the background fields also

simplify. Everything that we will say applies to this particular case.

The complex vectors K and Y defined in (3.7) take the form

K =
1

2

[
b1

∂

∂ϕ1
+ b2

∂

∂ϕ2
− i

∂

∂τ

]
, (3.20)

Y = −eiω

2

[
1

f

∂

∂ρ
+ i

sgn(b1b2)

Ω
√
m

bImIJε
JK ∂

∂ϕK

]
, (3.21)

where εJK is the antisymmetric symbol, with ε12 = +1. In order to evaluate the differential

operators (3.9) it will be useful to record that

Y µAµ =
i

4
eiω

[
1

f

(
log(Ω

√
m)

)′ − sgn(b1b2)

Ω
√
m

bImIJε
JKsgn(bK)

]
, (3.22)

KµAµ =
1

2
Kµ∂µω =

|b1|+ |b2|
4

. (3.23)

In principle, the action of the 4d chiral multiplet can be reduced to one dimension by

expanding all the fields in an orthonormal basis of eigenfunctions of the relevant differential

operators, and performing the integral over the three-manifold M3. This yields a 1d action

for infinitely many 1d multiplets. In practice, carrying out this reduction on a general

background such as the one above is not feasible, as the eigenfunctions are not known.

However, for the purpose of computing the Casimir energy there is no need to perform

the complete reduction. Indeed, comparing the supersymmetry transformations (3.10)

with the one-dimensional ones in (2.10), it is clear that the modes that do not satisfy

the shortening conditions in (3.13), (3.14) are going to produce long multiplets in 1d. As

explained in section 2.4, these do not contribute to the Casimir energy. Therefore we can

focus our attention on the subsector that does satisfy either one of the shortening conditions

in (3.13), (3.14). Let us study the two cases in turn.

Reduction to 1d Fermi multiplets. We start analyzing the conditions (3.13), which

lead to 1d Fermi multiplets. We Fourier expand the dependence of B on the torus coordi-

nates ϕ1, ϕ2 as

B(ρ, ϕ1, ϕ2, τ) =
∑

n1,n2

bn1,n2(τ)Bn1,n2(ρ) e
−in1ϕ1−in2ϕ2 , (3.24)

where n1, n2 are integer. Recalling (3.21), (3.22) and that B has R-charge r − 2, one can

see that the condition L̂Y B = 0 yields for each choice of n1, n2:

1

f
B′

n1,n2
=

[
r − 2

2

(log(Ω
√
m))

′

f
− sgn(b1b2)

Ω
√
m

bImIJε
JK

(
nK +

r − 2

2
sgn(bK)

)]
Bn1,n2 .

(3.25)

This differential equation determines Bn1,n2(ρ). The actual solution depends on the form

of the metric functions and is not important. For our purposes it is sufficient to impose
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that the solution is normalizable, and thus find a restriction for the allowed values of n1,

n2. To this end, it is sufficient to study the equation near the extrema of the interval

parameterized by ρ ∈ [0, 1] and make sure that it does not develop singularities. Recalling

the boundary conditions (3.17), we find that near ρ = 0 the equation is solved by

Bn1,n2 = k ρ−n2 sgn(b2) + . . . (3.26)

for some constant k. This is normalizable when n2 sgn(b2) ≤ 0. A similar analysis of the

behavior near ρ = 1 leads to require n1 sgn(b1) ≤ 0. It is thus convenient to redefine

n1 → −n1 sgn(b1), n2 → −n2 sgn(b2). After this redefinition, the integers n1, n2 must take

non-negative values, and the expansion (3.24) becomes

B =
∑

n1,n2≥0

bn1,n2(τ)Bn1,n2(ρ) e
in1sgn(b1)ϕ1+in2sgn(b2)ϕ2 . (3.27)

Recalling (3.20), (3.23), we can also compute

L̂KB = − i

2

∑

n1,n2≥0

Dτ bn1,n2(τ)Bn1,n2(ρ) e
in1sgn(b1)ϕ1+in2sgn(b2)ϕ2 , (3.28)

with

Dτ bn1,n2 =
(
∂τ + λB

n1,n2

)
bn1,n2 , (3.29)

and

λB
n1,n2

= −|b1|n1 − |b2|n2 +
r − 2

2
(|b1|+ |b2|) . (3.30)

We are now ready to perform the reduction to one dimension. Setting L̂Y B = 0 and

φ = C = 0, the chiral multiplet Lagrangian (3.11) becomes

L = 2iB̃L̂KB − F̃F , (3.31)

and the supersymmetry variations simplify to

δB = F , δ̃B = 0 ,

δF = 0 , δ̃F = 2i L̂KB . (3.32)

We can expand F as

F =
∑

n1,n2≥0

fn1,n2(τ)Bn1,n2(ρ) e
in1sgn(b1)ϕ1+in2sgn(b2)ϕ2 (3.33)

(note that the dependence on ρ, ϕ1, ϕ2 is chosen the same as that of B, so F also satisfies

L̂Y F = 0). Similar expansions hold for B̃ and F̃ . The action associated with the La-

grangian (3.31) reduces to an action for an infinite set of Fermi multiplets in one dimension:

S =

∫
dτ

∫

M3

d3x
√
gL =

∫
dτ

∑

n1,n2≥0

(
b̃n1,n2Dτ bn1,n2 − f̃n1,n2fn1,n2

)
. (3.34)
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This is an infinite set of decoupled 1d multiplets, labeled by n1, n2. It is also straightfor-

ward to see that the 4d supersymmetry variations decompose into a set of 1d variations

for the Fermi multiplets:

δbn1,n2 = fn1,n2 , δ̃bn1,n2 = 0 ,

δfn1,n2 = 0 , δ̃fn1,n2 = Dτ bn1,n2 . (3.35)

From the form of the covariant derivative in (3.29), we see that λB
n1,n2

should be identified

with the charge σ in section 2. More precisely, σFermi =
2π
β λB

n1,n2
.18 Recalling eq. (2.40),

the contribution of the infinitely many Fermi multiplets to the vacuum expectation values

of Σ and H is thus

〈HFermi〉 = 〈ΣFermi〉 =
π

β

∑

n1,n2≥0

λB
n1,n2

. (3.36)

Reduction to 1d chiral multiplets. In the same way we can study the condi-

tions (3.14), which define a reduction to 1d chiral multiplets. With some foresight, we

expand

φ(ρ, ϕ1, ϕ2, τ) =
∑

n1,n2

φn1,n2(τ)Φn1,n2(ρ) e
−in1sgn(b1)ϕ1−in2sgn(b2)ϕ2 . (3.37)

Recalling (3.21), (3.22), the condition L̂Y φ = 0 yields for each choice of n1, n2:

1

f
Φ′
n1,n2

=

[
−r

2

(log(Ω
√
m))

′

f
+

sgn(b1b2)

Ω
√
m

bImIJε
JK

(
nKsgn(bK) +

r

2
sgn(bK)

)]
Φn1,n2 .

(3.38)

This determines Φn1,n2(ρ). By studying the equation near ρ = 0 and ρ = 1, we see that

normalizability requires n1 ≥ 0, n2 ≥ 0. We also compute

L̂Kφ = − i

2

∑

n1,n2≥0

Dτφn1,n2(τ)Φn1,n2(ρ) e
−in1sgn(b1)ϕ1−in2sgn(b2)ϕ2 , (3.39)

with

Dτφn1,n2 =
(
∂τ + λφ

n1,n2

)
φn1,n2 , (3.40)

and

λφ
n1,n2

= |b1|n1 + |b2|n2 +
r

2
(|b1|+ |b2|) . (3.41)

Setting L̂Y φ = L̂Y C = B = F = 0, the 4d Lagrangian (3.11) becomes

L = 4LK φ̃ L̂Kφ+ iκ
(
L̂K φ̃ φ− φ̃L̂Kφ

)
+ 2i C̃L̂KC − κC̃C , (3.42)

with supersymmetry variations

δφ = C , δ̃φ = 0 ,

δC = 0 , δ̃C = 2i L̂Kφ . (3.43)

18In order to compare with section 2, we must first rescale the S1 coordinate as τnew = β

2π
τold, so that

it has period β. Then we implement a Wick rotation t = iτnew. Overall this gives (∂τ + λ) = i(∂t − 2πi
β
λ).
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By expanding C as

C =
∑

n1,n2≥0

cn1,n2(τ)Φn1,n2(ρ) e
−in1sgn(b1)ϕ1−in2sgn(b2)ϕ2 , (3.44)

performing similar expansions for φ̃, C̃ and integrating over the four-manifold, we ob-

tain an infinite set of decoupled one-dimensional chiral multiplets. However, the essential

information that we need is more straightforwardly extracted from the supersymmetry

transformations. For any choice of n1, n2, these read

δφn1,n2 = cn1,n2 , δ̃φn1,n2 = 0 ,

δcn1,n2 = 0 , δ̃cn1,n2 = Dτφn1,n2 . (3.45)

By comparing with the supersymmetry variations given in (2.10), we see that λφ
n1,n2 is

proportional to the charge σ of the 1d chiral multiplet: σchiral =
2π
β λφ

n1,n2 . Then using (2.44)

the contribution of the 1d chiral multiplets to the vacuum expectation value of Σ and H is

〈Hchiral〉 = 〈Σchiral〉 =
π

β

∑

n1,n2≥0

λφ
n1,n2

. (3.46)

The vacuum energy. The VEV of the full one-dimensional Hamiltonian is given by

〈Hsusy〉 =
π

β

∑

n1,n2≥0

λφ
n1,n2

+
π

β

∑

n1,n2≥0

λB
n1,n2

, (3.47)

with

λφ
n1,n2

= |b1|n1 + |b2|n2 +
r

2
(|b1|+ |b2|) ,

λB
n1,n2

= −|b1|n1 − |b2|n2 +
r − 2

2
(|b1|+ |b2|) . (3.48)

These infinite sums are divergent and require regularization. As in subsection 2.5, we will

regularize the two sums separately, using the Barnes double zeta function. For simplicity in

the next expressions we assume b1 > 0, b2 > 0; the formulae however hold more generally,

with b1, b2 replaced by |b1|, |b2|.
The sum (3.47) can be written as

〈Hsusy〉 =
1

2
ζ2

(
−1; b1, b2,

r

2
(b1 + b2)

)
− 1

2
ζ2

(
−1; b1, b2,

2− r

2
(b1 + b2)

)
, (3.49)

where ζ2 is the Barnes double zeta function, defined as

ζ2(s; b1, b2, x) =
∑

n1,n2≥0

(b1n1 + b2n2 + x)−s , (3.50)

with b1, b2, x real and positive. At s = −1, it evaluates to (see e.g. [45])

ζ2(−1; b1, b2, x) = −b1 + b2
24

+

(
3 +

b1
b2

+
b2
b1

)
x

12
−
(

1

b1
+

1

b2

)
x2

4
+

x3

6b1b2
. (3.51)
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This gives for the vacuum energy

〈Hsusy〉 =
4π

3β
(b1 + b2) (a− c) +

4π

27β

(b1 + b2)
3

b1b2
(3c− 2a) . (3.52)

This is the same expression appearing in eq. (5.10) of [20]. Redefining b1 = βb
2πr3

and

b2 = βb−1

2πr3
, where β coincides with the length of S1, gives the result (1.19) advertised in

the introduction.

Back to the round case. Let us conclude by coming back to the S3 × S1 background

with SU(2)l × SU(2)r × U(1) symmetry discussed in subsection 2.5. The round sphere is

just S3
b
with b = 1. In this case |b1| = |b2| = β

2πr3
and the result above for the Casimir

energy simplifies to the result in subsection 2.5. In more detail, the sum (3.47) becomes

〈Hsusy〉 =
1

2r3

∑

n1,n2≥0

(n1 + n2 + r) +
1

2r3

∑

n1,n2≥0

(−n1 − n2 + r − 2)

=
1

2r3

∑

ℓ≥0

(ℓ+ 1) (ℓ+ r)− 1

2r3

∑

ℓ≥0

(ℓ+ 1) (ℓ+ 2− r) , (3.53)

where in the second line we have defined ℓ = n1 + n2. So the regularization used above

and the one used in subsection 2.5 are compatible.

It is also straightforward to see that the shortening conditions match. When expanding

the chiral multiplet (φ,C,B, F ) in scalar spherical harmonics, the differential operators

discussed above become

L̂Y = iL−
l , L̂K = − i

2

(
L3
l +∇τ +

qR
2

)
, (3.54)

where qR is the charge of the field the operator is acting on, and we introduced the SU(2)l
generators L±

l , L3. Then the condition L̂Y φ = 0 is nothing but L+
l Yℓ,m,n = 0, which selects

the harmonics with highest quantum number m, namely Yℓ, ℓ
2
,n. The condition L̂Y B = 0

translates into L−
l Yℓ,m,n = 0 and thus selects Yℓ,− ℓ

2
,n.
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A Casimir energy in CFT in d = 2 and d = 4

In this appendix we consider a CFT, not necessarily supersymmetric, in d dimensions

coupled to a background metric gµν with Euclidean signature. We denote the generating

functional of connected correlation functions byW[g] = − logZ[g]. Derivatives with respect

to the metric give insertions of the energy-momentum tensor

〈√g Tµν〉 = 2
δW
δgµν

. (A.1)

Under an infinitesimal Weyl transformations gµν → (1+2σ)gµν , the transformation of

W is given by the Weyl anomaly. In d = 2 and d = 4 respectively we get

δσW =

∫
d2x

√
g σ

(
− c

24π
R
)
, (A.2)

δσW =
1

(4π)2

∫
d4x

√
g σ

(
aE(4) − cW 2

)
. (A.3)

We have set the coefficient b that appears in (1.3) to zero. The above infinitesimal Weyl

transformations can be integrated to the so-called Dilaton action,19 see e.g. [46–48]:

W[e2σg]−W[g] = −SD[−σ, g] = SD[σ, e
2σg] , (A.4)

where SD has the following explicit expressions in d = 2 and d = 4

Sd=2
D [σ, gµν ] =

c

24π

∫
d2x

√
g
(
−σR+ (∂µσ)

2
)
, (A.5)

Sd=4
D [σ, gµν ] =

a

(4π)2

∫
d4x

√
g

(
σE4 + 4∂µσ∂νσ

(
Rµν − 1

2
gµνR

)
− 4(∂σ)2�σ + 2(∂σ)4

)

− c

(4π)2

∫
d4x

√
g σW 2 . (A.6)

Taking a derivative of (A.4) with respect to the metric, we find

edσ〈Tµ
ν〉e2σg − 〈Tµ

ν〉g =
2√
g
gνλ

δ(−SD)

δgµλ
[−σ, g] . (A.7)

We see that the change in the VEV of the energy-momentum tensor under Weyl rescaling

is fixed by the Dilaton action.

A.1 The cylinder and its infinitesimal deformation

In the case of a conformally flat geometry with metric e2σδµν (such as Sd−1 × R) we can

use the fact that the VEV in flat space is unambiguously fixed to vanish, i.e. 〈Tµ
ν〉Rd = 0.

One then finds for the energy-momentum tensor on this space

〈T ν
µ〉(d=2)

e2σδ
=

c

12π
e−2σ

(
�σδνµ − ∂ν∂µσ + ∂νσ∂µσ − 1

2
δνµ(∂σ)

2

)
, (A.8)

19We thank Adam Schwimmer for discussions.
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〈T ν
µ〉(d=4)

e2σδ
= − a

(4π)2

[
δνµ

(
RρτRρτ −

1

2
R2

)
− 2RνρRρµ +

4

3
RRν

µ

]∣∣∣∣
e2σδ

. (A.9)

These results were first derived in [49] using a different method.

Consider in particular the round cylinder Sd−1 × R with the conformally flat metric

ds2Sd−1×R
= dτ2 + r2d−1dΩ

2
d−1 =

(rd−1

r

)2
(dr2 + r2dΩ2

d−1) . (A.10)

Here dΩ2
d−1 denotes the metric on a (d− 1)-sphere with unit radius, and rd−1 is the radius

of the sphere. Evaluating the energy-momentum tensor in this case, one finds the following

non-zero components of 〈Tµ
ν〉 in d = 2:

T τ
τ = − c

24πr21
, T θ

θ =
c

24πr21
, (A.11)

and in d = 4:

T τ
τ =

3a

8π2r43
, T i

j = − a

8π2r43
δij . (A.12)

Note that 〈Tµ
µ〉S3×R = 0, because the Weyl anomalies evaluate to zero on the cylinder.

We can easily reintroduce the b dependence of the result in d = 4 by taking a functional

derivative of the associated counterterm − b
12(4π)2

∫
d4x

√
gR2. This results in a shift of the

coefficient a → a− b
2 .

Integrating 〈T τ
τ 〉 over S1 and S3 respectively gives the Casimir energies quoted in the

text (1.5) and (1.6).

Above we have reviewed how to compute the Casimir energy on a conformally flat

background e2σδµν . We will now slightly extend our considerations by taking a geometry

that is a generic small perturbation of a conformally flat one, i.e. gµν = e2σδµν + hµν . Let

us compute the change in the ground state energy to first order in hµν . The idea is that we

can infer the ground state energy from the change in the partition function W as a result

of the perturbation.

This can be approached as follows: from the definition (A.1) we have

δW =
1

2

∫
d4x

√
g 〈Tµν〉e2σδ hµν +O(h2) , (A.13)

so we just need to know 〈Tµν〉e2σδ, i.e. the VEV in the conformally flat original space.

For instance, consider the round cylinder S3×R with a time-independent perturbation

hij of the metric on the three-sphere. The result for the VEV of the energy-momentum

tensor on the cylinder was given in equation (A.12). Therefore we find that

δW = −(2a− b)

32π2r43

∫
d4x

√
g hii . (A.14)

Since the metric perturbation is assumed time-independent, we can interpret this integral as

− (2a− b)

32π2r43

∫
d4x

√
g hii = −(2a− b)

32π2r43

∫
d3x

√
g hii

∫
dτ (A.15)
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and the coefficient of
∫
dτ gives the correction to the energy of the ground state. The final

result for the Casimir energy is

E0 = (2a− b)

(
3

8r3
− 1

32π2r43

∫
d3x

√
g hii

)
+O(h2) . (A.16)

We see that to order O(h) the Casimir energy is still scheme dependent, being proportional

to the same combination 2a − b as the leading order result. However, the ratio of the

leading term and the subleading term is unambiguous (in fact, the ratio is fixed by

imagining a small perturbation that only changes the radius of the three-sphere).

One can speculate that going to second order in the perturbation O(h2) the c-anomaly

will also appear and that some terms will be scheme independent. Notice, however, that

at this order a new counterterm, proportional to
∫
d4x

√
gW 2, could contribute.

A.2 The Casimir energy and holography

We now summarize the status of the Casimir energy in the context of the gauge/gravity

duality. We will mainly focus on four-dimensional CFTs admitting a dual description in

terms of solutions of type IIB supergravity of the type AdS5×M5, and their deformations.

Similar considerations can be made for six-dimensional CFTs with AdS7 gravity duals.

The comparison of the Casimir energy of a four-dimensional CFT on S3 × R with

the expectation value of the holographic energy-momentum tensor was first made in [50],

although in this reference the authors focussed on N = 4 SYM and its AdS5×S5 dual, and

some of the comments made there apply only to this example. Let us review the discussion

of [50]. Using the holographic energy-momentum tensor, computed in global AdS5, one

obtains for the Casimir energy, defined exactly as in (1.1), the expression20

Eholo
0 =

3N2

16ℓ
. (A.17)

It is important to note that this result is obtained using a minimal holographic renormal-

ization scheme, where there are no finite counterterms ∆Sct added to the on-shell action.

This corresponds to the absence of the �R term in the holographic trace anomaly 〈Tµ
µ 〉.

In other words, it corresponds to the scheme b = 0.

The expression (A.17) is compared with a Casimir energy in a free CFT, comprising

n0 real scalars, n1/2 Weyl fermions, and n1 Abelian gauge fields. In particular, the scalar

fields considered are conformally coupled, and the fermions are massless. This results in

the expression

Efree
0 =

1

960r3
(4n0 + 17n1/2 + 88n1) , (A.18)

obtained summing up the contributions of the single fields, which in turn are regularised

using zeta function. For the specific case of the N = 4 SYM theory, we have

Efree
0 =

3(N2 − 1)

16r3
=

3

4r3
a for N = 4 SYM , (A.19)

which agrees with (A.17) at leading order in N [50].

20This was referred to as “mass of global AdS5” in [50]. We have used the standard formula for the

Newton constant G−1
5 = 2N2

ℓ3
π4vol′(M5), where ℓ is the AdS radius and in the specific case vol′(S5) = π3.
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However, the agreement of Eholo
0 with Efree

0 is, in some sense, accidental, and may

be misleading. Indeed for generic n0, n1/2, n1, the expression (A.18) for Efree
0 is not

proportional to the a anomaly: it also includes a contribution from b. In fact, the scheme

leading to (A.18) generically also gives a �R contribution to the trace anomaly. Once the

particular matter content of N = 4 SYM is specified, the coefficient b happens to vanish

(see e.g. [46]) and the scheme leading to (A.18) effectively coincides with the scheme b = 0

which was used in the holographic computation.

More generally, one can ask whether the computation of the Casimir energy in a

deformed cylinder can be reproduced by a five-dimensional supergravity solution deforming

AdS5. At least at leading order in the deformation, there exists a holographic counterpart

to the formula (A.13). Consider a one-parameter family of deformations of the boundary

metric, with parameter µ. Then by simply applying the chain rule to the renormalised

on-shell action one obtains21

d

dµ
Sren =

∫

∂M5

d4x
√
g

(
−1

2
〈Tµν〉

dgµν

dµ

)
, (A.20)

where gµν is the finite metric on the boundary, and 〈Tµν〉 is the holographic energy-

momentum tensor. Setting g = g(0) + µh, with µ infinitesimal, and expanding (A.20)

at first order in µ leads exactly to the holographic version of the formula (A.13). Thus, the

holographic Casimir energy on an infinitesimally squashed cylinder is guaranteed to agree

with the field theory result. In the next subsection, we verify this in an explicit example.

For the supersymmetric version of the Casimir energy the situation is different. One

of the main points emphasized in this paper is that on the field theory side, computing

in the free limit gives a reliable result for Esusy, valid also at strongly coupled points.

However, how to reproduce this in the gravity side remains an open problem. In [7]

it was suggested that a supersymmetric treatment of holographic renormalization might

reveal the existence of new boundary terms, that would lead to a matching of the on-

shell action of existing solutions with Esusy. Another possibility is that there exist other

(Euclidean) supersymmetric solutions, whose on-shell action would match with Esusy, using

the standard holographic renormalization technology. In light of the results of the present

paper, it will be very interesting to revisit this problem.

Let us also mention that there exists a similar open problem in the context of SCFTs on

the six-dimensional cylinder S5 ×R. A supersymmetric version of the Casimir energy was

discussed in [21], where it was also noted that it does not match the standard holographic

Casimir energy in AdS7. It may be useful to prove that this quantity is physical in 6d

SCFTs by performing an analysis like the one in the present paper, and to investigate the

seven-dimensional holographic dual.

A.3 Holographic check of E0 on a squashed cylinder

Below we will compare the result of the first-order correction to the ordinary Casimir

energy due to a non-conformally flat geometry (A.16), with a corresponding holographic

21In [7] this identity was written to include the variation of the boundary gauge field. However, if we are

not interested in supersymmetry, we can vary the metric independently.
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result, that can be easily extracted from the gravity solution presented in [7]. Although

the solution in [7] is supersymmetric, we can obtain from this an expression for the Casimir

energy, that is valid independently of supersymmetry. In order to make the discussion as

self-contained as possible, we will begin recalling relevant aspects of the solution in [7],

referring the reader to this reference for more details.

This is a one-parameter family of supersymmetric solutions deforming AdS5, con-

structed as an asymptotically locally anti de Sitter (AlAdS) solution of five-dimensional

minimal gauged supergravity.

An analytic continuation to Euclidean signature yields the gravity dual to a class

of four-dimensional N = 1 supersymmetric gauge theories on a curved manifold with

topology S3 × S1. In particular, the boundary metric is that of a squashed three-sphere

preserving SU(2) × U(1) isometry, and there is a non-trivial background gauge field

coupling to the R-symmetry current. So, this is an instance of a Hopf surface, as discussed

in the main part of the text [7].

In a coordinate system, the five-dimensional metric and the graviphoton field take the

following asymptotic form near to the boundary, corresponding to ρ → ∞:

ds25d = dρ2 + e2ρ/ℓ ds2bdry + . . . ,

A5d = Abdry + O(e−ρ) , (A.21)

where the boundary values read

ds2bdry = (2a0)
2

[
− 1

v2
dt2 +

ℓ2

4

(
σ 2
1 + σ 2

2 + v2σ 2
3

)]
, (A.22)

and

Abdry =
1

2
√
3

[
dt

ℓ
+ (v2 − 1)σ3

]
, (A.23)

respectively. Here ℓ is the AdS radius, that can be identified with the radius of the S3, and

the left-invariant one-forms σa’s are defined as usual (see [7]). The full five-dimensional

solution is determined in terms of the single parameter v, measuring the squashing of the

boundary metric. For v2 = 1 the solution reduces to AdS5 and the boundary metric is con-

formally flat. The parameter 2a0 is an overall scale, that can be set to any value by simply

shifting the radial coordinate ρ.22 Notice that the background gauge field in (A.23) com-

prises a constant part along dt, that is necessary to have well defined supercharges in the

compactified geometry, as discussed around (2.3). However, in order to compare with the

result above, which is valid in the absence of such term23 (and independently of supersym-

metry), we should remove this by shifting the graviphoton field as A5d → A5d− 1
2
√
3ℓ
dt. It is

simple to check that the solution with this new gauge field is still non-singular, and its rele-

vant properties may be extracted from [7], by following through this simple change of gauge.

22In [7] the parameter a0 is chosen to be a convenient function of v (so that the solution ends at ρ = 0).

However, this is irrelevant for the present discussion.
23This term maps to a gauge field A ∼ dr

r
that is singular at the origin of R4; this is why we do not

include it in our treatment.
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After Wick rotating to Euclidean signature, and setting v = 1 + ǫ, we have at leading

order the following boundary metric

ds2bdry = ds2(0) + ds2(1) +O(ǫ2) , (A.24)

with

ds2(0) = g(0)µν dx
µdxν = dτ2 +

ℓ2

4

(
σ2
1 + σ2

2 + σ2
3

)
,

ds2(1) = hµνdx
µdxν = ǫ

[
−2dτ2 +

ℓ2

2
σ2
3

]
, (A.25)

and background gauge field

Abdry =
ǫ√
3
σ3 +O(ǫ2) . (A.26)

In particular, this implies that the contribution of the background R-symmetry current to

the Casimir energy through a term of the type
∫
S3 d

3x
√
g 〈Jµ

R〉Aµ can only affect the result

at order O(ǫ2). Therefore at linearized order we can neglect the background gauge field.

Using (A.12), (A.13) we can evaluate the correction to the Casimir energy due to the

perturbation in (A.25). We obtain

δE0 =
1

2
(2π2ℓ3)

(
−ǫ

a

π2ℓ4

)
= −ǫ

a

ℓ
, (A.27)

where the factor 2π2ℓ3 comes from the integration over the three-sphere. Thus, the Casimir

energy at first order in the squashing reads

E0 =

(
3

4
− ǫ

)
a

ℓ
. (A.28)

This can be compared with the result of the holographic computation. The Euclidean

on-shell action of five-dimensional supergravity was computed exactly as a function of the

parameter v in [7], and reads

S =
8a

ℓ

(
2

27v2
+

2

27
− 13

108
v2 +

19

288
v4
)∫

dτ , (A.29)

where we rewrote the five-dimensional Newton constant in terms of the a anomaly of the

dual CFT. This was obtained in a gauge such that Abdry
τ 6= 0, so we should shift the gauge to

Abdry
τ = 0 and correspondingly the on-shell action using eq. (4.14) therein. In fact, the shift

due to the change of gauge is proportional to ǫ2, so at linear order, this shift is immaterial.

In any case, after doing this shift, we obtain exactly the expression appearing in (4.35)

therein for E0, times
∫
dτ . The on-shell action (A.29) expanded at first order in ǫ, gives

S =

(
3

4
− ǫ

)
a

ℓ

∫
dτ , (A.30)

thus we get perfect agreement with the dual field theory result (A.28). Note that (A.29)

has been evaluated using a holographic renormalization scheme without the
∫
d4x

√
gR2

counterterm, precisely as in the conformally flat background.
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B Esusy and the Hamiltonian

In this appendix we show that the supersymmetric vacuum energy Esusy, defined within

the path integral approach as

Esusy = − lim
β→∞

d

dβ
logZsusy

M3×S1
β

, (B.1)

coincides with the VEV of the charge associated to the time translation symmetry. In

other words, Esusy is the VEV of the Hamiltonian, Esusy = 〈Hsusy〉 . This is well-known, in
particular in the context of quantum field theories at non-zero temperature. Nevertheless

in the presence of additional non-dynamical background fields it may be useful to spell out

some details.

Esusy can be expressed in terms of the energy-momentum tensor and the currents

appearing in the R-multiplet in the following way. Consider a background M3 × S1
β as in

the main text, then perform a trivial rescaling of the S1 coordinate τ so that τ ∼ τ + 1

and the background fields gττ , Aτ and Vτ acquire a dependence on β. Applying the chain

rule to the variation of − logZ with respect to β, Esusy can be written as

Esusy = lim
β→∞

〈∫
d4x

√
g

(
−1

2
Tµν

dgµν

dβ
+ Jµ

R

dAµ

dβ
− 3

2
Jµ
FZ

dVµ

dβ

)〉

= lim
β→∞

1

β

〈∫
d4x

√
g

(
T τ

τ + Jτ
RAτ −

3

2
Jτ
FZ Vτ

)〉
, (B.2)

where the energy-momentum tensor Tµν , the R-current Jµ
R and the Ferrara-Zumino current

Jµ
FZ are defined as

Tµν = − 2√
g

δS

δgµν
, Jµ

R =
1√
g

δS

δAµ
, −3

2
Jµ
FZ =

1√
g

δS

δVµ
. (B.3)

These are components of the R-multiplet, which at the linear level have canonical couplings

to the metric, to A and to V , respectively. However, we remark that we do not set A and

V to zero after having taken the variation, so these are currents in the presence of sources.

The expression in (B.2) shows that Esusy receives a contribution from the current in the

R-multiplet in addition to the one from the temporal component of the energy-momentum

tensor. This is an alternate way to see that Esusy is different from the ordinary Casimir

energy E0 defined in eq. (1.1).

We now construct the charge associated with the time translation symmetry and com-

pare it with (B.2). Recall that in the presence of background fields other than the metric,

the energy-momentum tensor Tµν is in general not conserved, ∇µTµν 6= 0. This can be eas-

ily seen by revisiting the standard conservation proof (see e.g. appendix E of [51]) allowing

for fields that do not satisfy their Euler-Lagrange equation. In particular, this applies to a

supersymmetric field theory defined via the rigid limit of new minimal supergravity. One

can see that the non-conservation equation of the energy-momentum tensor reads

∇µTµν = (dA)νµJ
µ
R − 3

2
(dV )νµJ

µ
FZ +

3

2
Vν∇µJ

µ
FZ , (B.4)

where we used that the R-current is conserved, ∇µJ
µ
R = 0, while generically ∇µJ

µ
FZ 6= 0.
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Although Tµν is not conserved, when the background admits a Killing symmetry gen-

erated by a vector ξµ one can introduce a modified energy-momentum current

Y µ
ξ = ξν

(
Tν

µ + Jµ
RAν −

3

2
Jµ
FZVν

)
, (B.5)

that is conserved, ∇µY
µ
ξ = 0. This is easily seen using Lξg = LξA = LξV = 0. One can

show that Y µ
ξ is just the canonical Noether current associated to the symmetry generated

by ξ. Thus a conserved charge can be defined in the usual way.

We recall that two such Killing vectors exist in Euclidean backgrounds preserving two

supercharges of opposite R-charge [16, 17]. In Lorentzian signature, at least one null Killing

vector exists [36]. Our M3×S1
β background admits a Killing vector generating (Euclidean)

time translations, ξ = ∂
∂τ . The associated conserved charge, to be identified with the

Hamiltonian, is

H =

∫

M3

d3x
√
g(3) uµY

µ

ξ= ∂
∂τ

=
1

β

∫

M4

d4x
√
g(4)

(
T τ

τ + Jτ
RAτ −

3

2
Jτ
FZVτ

)
, (B.6)

where uµ is the unit time-like vector, that in the second line we expressed as u =

uµdx
µ =

√
gττdτ (in the second line we also multiplied the three-dimensional integral

by 1 = 1
β

∫
S1 dτ ; since the charge is constant, this can be rewritten as a four-dimensional

integral). The VEV of the final expression in (B.6) for β → ∞ is immediately recognized

as the Esusy given in (B.2), that is what we wanted to show.

Finally, note that the Hamiltonian in (B.6) coincides with the supersymmetric Hsusy

used in section 2 only for the special choice Aτ = i/r3, which guarantees time-independent

supersymmetry.

C Regularization of one-loop determinant

In this appendix we reconsider the regularization of the one-loop determinant for a free

chiral multiplet on the Hopf surfaceM3×S1 (withM3 ≃ S3) computed in [20]. It was found

in [26] that the partition function on the Hopf surface has a universal behaviour in the small

β limit, where β is the length of S1. In the case of the round S3×S1, this takes the form24

logZsusy
S3×S1

β

=
16π2r3
3β

(c− a) +O(β0) , (C.1)

where r3 is the radius of S3. The result found in [20] are incompatible with this expansion,

as in [20] the order O(β−1) vanishes instead. We propose here an alternative method to

regularize one-loop determinant which on one hand agrees with the small beta expansion

of [26] and on the other hand reproduces the large β behaviour leading to the Casimir

energy (1.19). Moreover, we show that this regularization method is equivalent to a

24Subleading terms in the small β expansion were worked out in [29].
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cut-off regularization which manifestly preserves supersymmetry. The main difference

between the procedure discussed below and that in [20] is that here all the Kaluza-Klein

(KK) modes on S1 are dealt with in a manifestly symmetric way, while in [20] these were

somewhat artificially split and combined with the Fourier modes on the three-sphere, in

the triple gamma functions. However, the precise reason for the discrepancy of the two

methods remains unclear. While we were writing up this paper, [29] appeared, presenting

a similar regularization method of one-loop determinants, leading to the result (1.19) for

the general deformed sphere.

One-loop determinant regularizations are based on the use of multiple gamma func-

tions [52] and generalized zeta functions. The main mathematical tools that we will use

are presented in a convenient way in appendices A and B of [53]. We will also rely on [54].

The one-loop determinant suffers from UV divergences. It is given for a free chiral

multiplet25 by the formal expression

Zchiral
1-loop ≡ Z =

∏

n0∈Z

∏

n1,n2≥0

− r
2(a1 + a2)− n0 + (n1 + 1)a1 + (n2 + 1)a2

r
2(a1 + a2) + n0 + n1a1 + n2a2

, (C.2)

where a1 = ib1, a2 = ib2 in the notations of [20] and here we consider b1 > 0, b2 > 0. r is

the R-charge of the chiral multiplet. The analysis of this paper allows to re-interpret each

factor appearing in the numerator of (C.2) as the contribution from a single Fermi multiplet

to the one-loop determinant and each factor in the denominator as the contribution of a

single chiral multiplet. A crucial difference with the Hamiltonian quantization analysis is

that now we have a tower of KK modes on S1 with KK level parameterized by n0 ∈ Z.

C.1 Two-step regularization

Here we proceed by first regularizing the sum over n1, n2 ≥ 0 with double gamma functions

for a fixed n0, which corresponds to the one-loop determinant on M3 of the n0-th KK mode

along S1, and then regularizing the infinite sum over n0 ∈ Z. We start with

Z =
∏

n0∈Z
F [u+ n0]

F [v] =
∏

n1,n2≥0

−v + (n1 + 1)a1 + (n2 + 1)a2
v + n1a1 + n2a2

=
Γ2(v, a1, a2)

Γ2(a1 + a2 − v, a1, a2)

= Γh(v, a1, a2) , (C.3)

where u = r
2(a1 + a2) and the hyperbolic gamma function is defined by

Γh(v, a1, a2) = e
πi
2
B(v,a1,a2) (e

2πi(a1−v)/a2 ; e2πia1/a2)∞
(e−2πiv/a1 ; e−2πia2/a1)∞

(C.4)

(x, q)∞ =
∏

k≥0

(1− xqk) , B(v, a1, a2) =
1

a1a2

((
v − a1 + a2

2

)2

− a21 + a22
12

)
.

25Adding a gauge interaction with a flat gauge field as in the localization computation of [20] is straight-

forward.
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The hyperbolic gamma function admits also the following representation [53]

Γh(v, a1, a2) = e−
πi
2
B(v,a1,a2) (e

2πi(v−a2)/a1 ; e−2πia2/a1)∞
(e2πiv/a2 ; e2πia1/a2)∞

. (C.5)

Using (C.4) for n0 ≥ 1 and (C.5) for n0 ≤ 0, we obtain

Z = e
πi
2
C(u,a1,a2)

Γe

(
u
a2
,− 1

a2
, a1a2

)

Γe

(
u−a2
a1

,− 1
a1
,−a2

a1

) = e
πi
2
C(u,a1,a2) e

πi
2
D(u,a1,a2) Γe(u, a1, a2) , (C.6)

where the elliptic gamma function Γe is defined by

Γe(x, τ, σ) =
∏

n1,n2≥0

1− e2πi(−x+(n1+1)τ+(n2+1)σ)

1− e2πi(x+n1τ+n2σ)
. (C.7)

The last equality in (C.6) is obtained from the modular properties of the elliptic gamma

function [53, 54] and the functions C,D are given by

D(u, a1, a2) =
1

a1a2

(
2

3
(u′)3 + (u′)2 +

2− a21 − a22
6

u′ − a21 + a22
12

)
, (C.8)

C(u, a1, a2) =
1

a1a2



∑

n≥1

[
(u′ + n)2 − a21 + a22

12

]
−

∑

n≥0

[
(−u′ + n)2 − a21 + a22

12

]

 , (C.9)

with u′ = u− a1+a2
2 = r−1

2 (a1 + a2). Note that D(u, a1, a2) is a well defined function, but

C(u, a1, a2) involves an infinite sum over n, which needs to be regularized. We do this using

the standard Riemann zeta function,26 which is compatible with the partial cancellation

of terms between the two infinite sums:

C(u, a1, a2) =
1

a1a2


−(u′)2 +

a21 + a22
12

+ 4u′
∑

n≥1

n


 =

1

a1a2

(
−(u′)2 +

a21 + a22
12

− u′

3

)
,

(C.10)

where we used
∑

n≥1 n = ζ(−1) = − 1
12 . Notice that despite the formal similarity of the

infinite sums in (C.9) and (2.49), the regularization of the two sums is performed using

two different prescriptions. The final result is

Z = eiπΨ(u,a1,a2) Γe(u, a1, a2) , Ψ(u, a1, a2) =
(u′)3

3a1a2
− a21 + a22

12a1a2
u′ . (C.11)

This reproduces the supersymmetric Casimir energy (1.19) and it can be shown that is

compatible with the small β limit of [26], which is obtained by setting a1 = i β
2πr3

b, a2 =

i β
2πr3

b
−1 and keeping b fixed in the limit. The difference with the result of [20] is only the

absence of the term u′

6a1a2
= r−1

12
a1+a2
a1a2

in Ψ(u, a1, a2), which affects the small β limit, but

not the large β limit.

26This is similar to the regularization presented in appendix B of [55].
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C.2 Cut-off regularization

We present now a different method of regularization which uses a cut-off on the momentum

modes. The treatment of the KK modes in this method is more transparent and the result

agrees with (C.11), thus corroborating it.

A reliable way of regularizing the one-loop determinant is to introduce a cut-off on

the momentum of the modes or more generally a smooth truncation of the modes above

a momentum scale Λ (this means that the contributions of modes above Λ are counted

with decreasing weights). Note that this preserves supersymmetry since each momentum

in the product carries the contribution of a specific multiplet in supersymmetric quantum

mechanics. The (logarithm of the) regularized determinant can be expanded in powers of

the cut-off at large Λ. The diverging contributions are expected to be removed by local

supersymmetric counterterms, while the finite piece yields the regularized result, possibly

subject to ambiguities. In the case at hand we compute the partition function on a curved

manifold admitting two Killing spinors of new minimal supergravity of opposite chirality

and it was shown in [8] that there is no ambiguity in the finite result.

For simplicity, we focus here on the case of the round S3×S1, which amounts to setting

a1 = a2 = a ∈ iR>0. In this case, the chiral multiplet one-loop determinant simplifies to

Z =
∏

n0∈Z

∏

n1,n2≥0

−u− n0 + (n1 + n2 + 2)a

u+ n0 + (n1 + n2)a
=

∏

n0∈Z

∏

m≥0

(−u− n0 + (m+ 2)a

u+ n0 +ma

)m+1

=
∏

n0∈Z
F [u+ n0] , (C.12)

with u = ra and

logF [v] =
∑

m≥0

(m+ 1)
[
log(−v + (m+ 2)a)− log(v +ma)

]
. (C.13)

We regularize the sum by introducing a cut-off β
2πΛ on the S1

β KK momentum level n0 and
β

2π|a|Λ on the S3 KK momentum level m.27 To simplify slightly the notations we simply

set β = 2π in the following. The regularization is done by using any smooth decreasing

function f such that f(0) = 1 and going to zero at infinity sufficiently fast to make the

sum converge. The regularized sum over S3 modes is

logF [v] =
∑

m≥0

(m+ 1)
[
log(−v + (m+ 2)a)− log(v +ma)

]
f

(
m

Λ|a−1|

)
. (C.14)

We make use of the Euler-MacLaurin formula28 to work out the large Λ expansion

logF [v] = 2Λ|a−1|(1− va−1)

∫ ∞

0
f +O(Λ0)

= c1Λa
−2(v − a) +O(Λ0) , (C.16)

27The relative factor |a| = β

2πr3
takes into account the ratio of scales between S1

β and S3 KK modes.
28The Euler-MacLaurin formula for a convergent sum reads:

∑

n≥0

g(n) =

∫ ∞

0

g(x)dx+
1

2
g(0) +

∑

k≥1

ζ(1− 2k)

(2k − 1)!
g
(2k−1)(0) . (C.15)
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with c1 = 2i
∫∞
0 f . The finite part of the large Λ expansion is complicated as it receives an

infinite number of contributions from the Euler-MacLaurin expansion, however it is easy

to see that it is independent of the function f and we can trust that it will reproduce

the (logarithm of the) hyperbolic gamma function at a1 = a2, since this is the well-known

result for the 3d chiral multiplet one-loop determinant. We obtain

F [u+ n0] ≃ ec1Λa
−2(u−a+n0) Γh(u+ n0, a, a) , (C.17)

where ≃ indicates that we dropped the term O(Λ−1) in logF [u+ n0]. The same manipu-

lations as in the regularization above yield the result

Z = e
πi
2
C̃(u,a,a) e

πi
2
D(u,a,a) Γe(u, a, a) , (C.18)

with

C̃(u, a, a) =
1

a2

∑

n≥1

[
(u′ + n)2 − a2

6
+ c1Λ(u

′ + n)

]
f̂
(n

Λ

)

+
1

a2

∑

n≥0

[
− (u′ − n)2 +

a2

6
+ c1Λ(u

′ − n)

]
f̂
(n

Λ

)
, (C.19)

where u′ = u−a = (r−1)a and f̂ is a second regulating function implementing the smooth

cut-off on S1 KK modes. Applying again the Euler-MacLaurin formula we obtain

C̃(u, a, a) =
1

a2

(
c2 Λ

2u′ − u′2 − u′

3
+

a2

6

)
, (C.20)

with c2 = 4
∫∞
0 yf̂(y)dy + 8c1

iπ

∫∞
0 f̂(y)dy. The finite piece reproduces the result (C.10) for

a1 = a2 = a, so that the cut-off regularization result Zreg will match the regularization

described above. The diverging piece should be removed with a dimension two supersym-

metric counterterm constructed with new minimal supergravity background fields [8]. We

have obtained

logZ ≃ iπ

2
c2 Λ

2 (r − 1)a−1 + logZreg . (C.21)

There is a single supergravity term of mass dimension two in new minimal supergravity [8];

it is the usual Einstein-Hilbert new minimal supergravity action, that we can take with

coefficient Λ2. Its bosonic part is given by

S
(4)
R =

Λ2

2

∫
d4x

√
g (R+ 6VµV

µ − 8AµV
µ) . (C.22)

Its evaluation on the S3 × S1 background [17] yields29

S
(4)
R ∝ Λ2 a−2κ , (C.23)

where the constant κ parametrizes a freedom in the choice of background. The choice

κ = a is the most natural, because it preserves the SU(2)l × SU(2)r isometries of S3. This

is precisely the term needed to remove the divergent piece in (C.21). We conclude that the

cut-off regularization further validates the regularization method presented above.

29Note that the result is in units where the S1 radius is fixed to one. To reinstate the β dependence, one

can shift Λ → β

2π
Λ.
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