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QuickXsort – A Fast Sorting Scheme in
Theory and Practice∗

Stefan Edelkamp Armin Weiß Sebastian Wild

October 17, 2019

Abstract. QuickXsort is a highly efficient in-place sequential sorting scheme
that mixes Hoare’s Quicksort algorithm with X, where X can be chosen from a
wider range of other known sorting algorithms, like Heapsort, Insertionsort
and Mergesort. Its major advantage is that QuickXsort can be in-place even
if X is not. In this work we provide general transfer theorems expressing the
number of comparisons of QuickXsort in terms of the number of comparisons
of X. More specifically, if pivots are chosen as medians of (not too fast) growing
size samples, the average number of comparisons of QuickXsort and X differ
only by o(n)-terms. For median-of-k pivot selection for some constant k, the
difference is a linear term whose coefficient we compute precisely. For instance,
median-of-three QuickMergesort uses at most n lgn − 0.8358n + O(logn)
comparisons.

Furthermore, we examine the possibility of sorting base cases with some other
algorithm using even less comparisons. By doing so the average-case number
of comparisons can be reduced down to n lgn− 1.4112n+ o(n) for a remaining
gap of only 0.0315n comparisons to the known lower bound (while using only
O(logn) additional space and O(n logn) time overall).

Implementations of these sorting strategies show that the algorithms challenge
well-established library implementations like Musser’s Introsort.
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1. Introduction

Sorting a sequence of n elements remains one of the most frequent tasks carried out by
computers. In the comparisons model, the well-known lower bound for sorting n distinct
elements says that using fewer than lg(n!) = n lgn− lg e ·n±O(logn) ≈ n lgn−1.442695n±
O(logn)1 comparisons is not possible, both in the worst case and in the average case. The
average case refers to a uniform distribution of all input permutations (random-permutation
model).

In many practical applications of sorting, element comparisons have a similar running-
time cost as other operations (e.g., element moves or control-flow logic). Then, a method has
to balance costs to be overall efficient. This explains why Quicksort is generally considered
the fastest general purpose sorting method, despite the fact that its number of comparisons
is slightly higher than for other methods.

There are many other situations, however, where comparisons do have significant costs,
in particular, when complex objects are sorted w.r.t. a order relation defined by a custom
procedure. We are therefore interested in algorithms whose comparison count is optimal up
to lower order terms, i.e., sorting methods that use n lgn+ o(n logn) or better n lgn+O(n)
comparisons; moreover, we are interested in bringing the coefficient of the linear term as close
to the optimal −1.4427 as possible (since the linear term is not negligible for realistic input
sizes). Our focus lies on practical methods whose running time is competitive to standard
sorting methods even when comparisons are cheap. As a consequence, expected (rather than
worst case) performance is our main concern.

1We write lg for log2 and log for the logarithm with an unspecified constant base in the O notation. A term
±O(f(n)) indicates an error term with unspecified sign; formal details are given in Section 3.
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We propose QuickXsort as a general template for practical, comparison-efficient
internal2 sorting methods. QuickXsort uses the recursive scheme of ordinary Quicksort,
but instead of doing two recursive calls after partitioning, first one of the segments is
sorted by some other sorting method “X”. Only the second segment is recursively sorted by
QuickXsort. The key insight is that X can use the second segment as a temporary buffer
area; so X can be an external method, but the resulting QuickXsort is still an internal
method. QuickXsort only requires O(1) words of extra space, even when X itself requires
a linear-size buffer.

We discuss a few concrete candidates for X to illustrate the versatility of QuickXsort.
We provide a precise analysis of QuickXsort in the form of “transfer theorems”: we express
the costs of QuickXsort in terms of the costs of X, where generally the use of QuickXsort
adds a certain overhead to the lower order terms of the comparison counts. Unlike previous
analyses for special cases, our results give tight bounds.

A particularly promising (and arguably the most natural) candidate for X is Mergesort.
Mergesort is both fast in practice and comparison-optimal up to lower order terms; but
the linear-extra space requirement can make its usage impossible. With QuickMergesort
we describe an internal sorting algorithm that is competitive in terms of comparisons count
and running time.

Outline. The remainder of this section surveys previous work and summarizes the contri-
butions of this article. We describe QuickXsort in Section 2 and fix our mathematical
notation in in Section 3. Section 4 contains three “transfer theorems” that express the
cost of QuickXsort in terms of the costs of X; they consider, respectively, the average
case for growing size samples (Section 4.2), for constant size samples (Section 4.3), and the
variance for constant size samples (Section 4.4). We only sketch the proofs in this section
for readability; readers interested in the full proofs find them in Section 9, at the end of
this paper. In Section 5, we apply our transfer theorems to QuickMergesort and Quick-
Heapsort and discuss the results. Then, in Section 6, we discuss how QuickMergesort’s
comparison count can be improved by sorting small base cases with Insertionsort or
MergeInsertion, and we analyze the average costs of these algorithms. After that, in
Section 7 we present our experimental results including an extensive running time study.
We conclude with an outlook remark and open questions in Section 8. Section 9 contains
full proofs for all our analytical results.

For the reader’s convenience, Appendix A lists all used notations and Appendix B
collects mathematical preliminaries used in our analysis. Finally, Appendix C describes the
Mergesort variants used for QuickMergesort.

1.1. Related work

We pinpoint selected relevant works from the vast literature on sorting; our overview cannot
be comprehensive, though.

2 Throughout the text, we avoid the (in our context somewhat ambiguous) terms in-place or in-situ. We
instead call an algorithm internal if it needs at most O(logn) words of space (in addition to the array
to be sorted). In particular, Quicksort is an internal algorithm whereas standard Mergesort is not
(hence called external) since it uses a linear amount of buffer space for merges.
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Comparison-efficient sorting. There is a wide range of sorting algorithms achieving the
bound of n lgn+O(n) comparisons. The most prominent is Mergesort, which additionally
comes with a small coefficient in the linear term. Unfortunately, Mergesort requires linear
extra space. Concerning the space UltimateHeapsort [29] does better, however, with the
cost of a quite large linear term. Other algorithms, provide even smaller linear terms than
Mergesort. Table 1 lists some milestones in the race for reducing the coefficient in the
linear term. Despite the fundamental nature of the problem, little improvement has been
made (w.r.t. the worst-case comparisons count) over Ford and Johnson’s MergeInsertion
algorithm [18] – which was published 1959! MergeInsertion requires n lgn − 1.329n +
O(logn) comparisons in the worst case [32].

Table 1: Milestones of comparison-efficient sorting methods. The methods use (at most)
n lgn+ bn+ o(n) comparisons for the given b in worst (bwc) and/or average case
(bac). Space is given in machine words (unless indicated otherwise).

Algorithm bac bac empirical bwc Space Time

Lower bound −1.44 −1.44 O(1) O(n logn)
Mergesort [32] −1.24 −0.91 O(n) O(n logn)

Insertionsort [32] −1.38# −0.91 O(1) O(n2)�
MergeInsertion [32] −1.3999#× [−1.43,−1.41] −1.32 O(n) O(n2)�

MI+IS [28] −1.4106? O(n) O(n2)�
BottomUpHeapsort [50] ? [0.35, 0.39] ω(1) O(1) O(n logn)

WeakHeapsort [7, 9] ? [−0.46,−0.42] 0.09 O(n) bits O(n logn)
RelaxedWeakHeapsort [8] −0.91 −0.91 −0.91 O(n) O(n logn)

InPlaceMergesort [42] ? −1.32 O(1) O(n logn)
QuickHeapsort [3] −0.03≤ ≈ 0.20 ω(1) O(1) O(n logn)

Improved QuickHeapsort [4] −0.99≤ ≈ −1.24 ω(1) O(n) bits O(n logn)
UltimateHeapsort [29] O(1) ≈ 6 [4] O(1) O(1) O(n logn)

QuickMergesort # −1.24 [−1.29,−1.27] −0.32† O(1) O(n logn)
QuickMergesort (IS)#⊥ −1.38 −0.32† O(logn) O(n logn)

QuickMergesort (MI)#⊥ −1.3999× [−1.41,−1.40] −0.32† O(logn) O(n logn)
QuickMergesort (MI+IS)#⊥ −1.4106? −0.32† O(logn) O(n logn)
# in this paper
? bound recently improved to −1.4112 by [49]
× bound recently improved to −1.4005 by [49] (based on this work)
≤ only upper bound proven in cited source
† assuming InPlaceMergesort as a worst-case stopper; with median-of-medians fallback pivot
selection: O(1), without worst-case stopper: ω(1)
⊥ using given method for small subproblems; MI = MergeInsertion, IS = Insertionsort.
� using a rope data structure and allowing additional O(n) space in O(n log2 n).

MergeInsertion has a severe drawback that renders the algorithm completely imprac-
tical, though: in a direct implementation the number of element moves is quadratic in n. Its
running time can be improved to O(n log2 n) by using a rope data structure [2] (or a similar
data structure which allows random access and insertions in O(logn) time) for insertion
of elements (which, of course, induces additional constant-factor overhead); see [49]. The
same is true for Insertionsort, which, unless explicitly indicated otherwise, refers to the
algorithm that inserts elements successively into a sorted prefix by finding the insertion posi-
tion by binary search – as opposed to linear/sequential search in StraightInsertionsort.
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Note that MergeInsertion or Insertionsort can still be used as comparison-efficient
subroutines to sort base cases for Mergesort (and QuickMergesort) of size O(logn)
without affecting the overall running-time complexity of O(n logn).

Reinhardt [42] used this trick (among others) to design an internal Mergesort vari-
ant that needs n lgn − 1.329n ± O(logn) comparisons in the worst case. Unfortunately,
implementations of this InPlaceMergesort algorithm have not been documented. The
work of Katajainen et al. [30, 20, 16], inspired by Reinhardt, is practical, but the number of
comparisons is larger.

Improvements over MergeInsertion have been obtained for the average number of com-
parisons. A combination of MergeInsertion with a variant of Insertionsort (inserting
two elements simultaneously) by Iwama and Teruyama uses ≤ n lgn− 1.41064n comparisons
on average [28]; as for MergeInsertion, the overall complexity remains quadratic (resp.
Θ(n log2 n)), though. Since this article was submitted, a new improved upper bound for
MergeInsertion of n lgn− 1.4005n+O(logn) comparisons on average has been proven
by Stober and the second author in [49]. This new upper bound also allows us to strengthen
Iwama and Teruyama’s bound for their combined algorithm to n lgn− 1.4112n.

Previous work on QuickXsort. Cantone and Cincotti [3] were the first to explicitly give a
name to the mixture of Quicksort with another sorting method; they proposed Quick-
Heapsort. However, the concept of QuickXsort (without calling it like that) was first
used in UltimateHeapsort by Katajainen [29]. Both versions use an external Heapsort
variant in which a heap containing m elements is not stored compactly in the first m cells
of the array, but may be spread out over the whole array. This allows to restore the heap
property with dlgne comparisons after extracting some element by introducing a new gap
(we can think of it as an element of infinite weight) and letting it sink down to the bottom
of the heap. The extracted elements are stored in an output buffer.

In UltimateHeapsort, we first find the exact median of the array (using a linear-time
algorithm) and then partition the array into subarrays of equal size; this ensures that with
the above external Heapsort variant, the first half of the array (on which the heap is
built) does not contain gaps (Katajainen calls this a two-level heap); the other half of
the array is used as the output buffer. QuickHeapsort avoids the significant additional
effort for exact median computations by choosing the pivot as median of some smaller
sample. In our terminology, it applies QuickXsort where X is ExternalHeapsort.
UltimateHeapsort is inferior to QuickHeapsort in terms of the average case number
of comparisons, although, unlike QuickHeapsort, it allows an n lgn + O(n) bound for
the worst case number of comparisons. Diekert and Weiß [4] analyzed QuickHeapsort
more thoroughly and described some improvements requiring less than n lgn− 0.99n+ o(n)
comparisons on average (choosing the pivot as median of

√
n elements). However, both the

original analysis of Cantone and Cincotti and the improved analysis could not give tight
bounds for the average case of median-of-k QuickHeapsort.

In [16] Elmasry, Katajainen and Stenmark proposed InSituMergesort, following the
same principle as UltimateHeapsort, but with Mergesort replacing ExternalHeap-
sort. Also InSituMergesort only uses an expected-case linear-time algorithm for the
median computation.3

3The first two authors elaborate on how to make this approach worst-case efficient with little additional
overhead in a recent article [14].
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In the conference paper [11], the first and second author introduced the name QuickX-
sort and first considered QuickMergesort as an application (including weaker forms of
the results in Section 4.2 and Section 6 without proofs). In [52], the third author analyzed
QuickMergesort with constant-size pivot sampling (see Section 4.3). A weaker upper
bound for the median-of-3 case was also given by the first two authors in the preprint [13].
The present work is an extended version of [11] and [52]; it unifies and strengthens these
results, includes detailed proofs, and it complements the theoretical findings with extensive
running-time experiments.

1.2. Contributions
In this work, we describe QuickXsort as a general template for transforming an external
algorithm into an internal algorithm. As examples we consider QuickHeapsort and
QuickMergesort. For the reader’s convenience, we briefly list our results here (with
references to the corresponding sections).

1. If X is some sorting algorithm using x(n) = n lgn+ bn± o(n) comparisons on expecta-
tion, then, median-of-k(n) QuickXsort with k(n) ∈ ω(1) ∩ o(n) needs x(n) ± o(n)
comparisons in the average case (Theorem 4.1).

2. Under reasonable assumptions, sample sizes of Θ(
√
n) are optimal among all polynomial

size sample sizes.

3. The probability that median-of-
√
n QuickXsort needs more than xwc(n)+6n compar-

isons decreases exponentially in 4√n (Proposition 4.5). Here, xwc(n) is the worst-case
cost of X.

4. We introduce median-of-medians fallback pivot selection (a trick similar to Intro-
sort [40]) which guarantees n lgn+O(n) comparisons in the worst case while altering
the average case only by o(n)-terms (Theorem 4.7).

5. Let k be a fixed constant and let X be a sorting method that needs a buffer of bαnc
elements for some constant α ∈ [0, 1] to sort n elements and requires on average
x(n) = n lgn+ bn± o(n) comparisons to do so. Then median-of-k QuickXsort needs

c(n) = n lgn+ (P (k, α) + b) · n ± o(n),

comparisons on average where P (k, α) is some constant depending on k and α (The-
orem 4.8). We have P (1, 1) = 0.5070 (for median-of-3 QuickHeapsort or Quick-
Mergesort) and P (1, 1/2) = 0.4050 (for median-of-3 QuickMergesort).

6. We approximate the standard deviation of the number of comparisons of median-of-k
QuickMergesort for some small values of k. For k = 3 and α = 1

2 , the standard
deviation is close to 0.3268n (Section 4.4).

7. When sorting small subarrays of size O(logn) in QuickMergesort with some sorting
algorithm Z using z(n) = n lgn+ (b± ε)n+ o(n) comparisons on average and other
operations taking at most O(n2) time, then QuickMergesort needs z(n) + o(n)
comparisons on average (Corollary 6.2). In order to apply this result, we prove that
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• (Binary) Insertionsort needs n lgn− (1.3863± 0.005)n+ o(n) comparisons on
average (Proposition 6.3).

• (A simplified version of) MergeInsertion [19] needs at most n lgn− 1.3999n+
o(n) on average (Theorem 6.5).

Moreover, with Iwama and Teruyama’s algorithm [28] this can be sightly improved to
n lgn− 1.4112n+ o(n) comparisons (Corollary 6.10).

8. We run experiments confirming our theoretical estimates for the average number of
comparisons of QuickMergesort and our approximation for its standard deviation,
verifying that the sublinear terms are indeed negligible (Section 7).

9. From running-time studies comparing QuickMergesort with various other sorting
methods, we conclude that our QuickMergesort implementation is among the fastest
internal general-purpose sorting methods for both the regime of cheap and expensive
comparisons (Section 7).

To simplify the arguments, in all our analyses we assume that all elements in the input
are distinct. This is no severe restriction since duplicate elements can be handled well using
fat-pivot partitioning (which excludes elements equal to the pivot from recursive calls and
calls to X).

2. QuickXsort
In this section, we precisely describe QuickXsort. Let X be a sorting method that requires
buffer space for storing at most bαnc elements (for α ∈ [0, 1]) to sort n elements. The buffer
may only be accessed by swaps so that once X has finished its work, the buffer contains the
same elements as before, albeit (in general) in a different order than before.

sort by X

sort recursively

Figure 1: Schematic steps of QuickXsort. The pictures show
a sequence, where the vertical height corresponds to
key values. We start with an unsorted sequence (top),
and partition it around a pivot value (second from
top). Then one part is sorted by X (second from
bottom) using the other segment as buffer area (grey
shaded area). Note that this in general permutes the
elements there. Sorting is completed by applying the
same procedure recursively to the buffer (bottom).

QuickXsort now works as follows: First, we choose a pivot element; typically we use
the median of a random sample of the input. Next, we partition the array according to this
pivot element, i.e., we rearrange the array so that all elements left of the pivot are less or
equal and all elements on the right are greater or equal than the pivot element. This results
in two contiguous segments of J1 resp. J2 elements; we exclude the pivot here (since it will
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have reached its final position), so J1 + J2 = n− 1. Note that the (one-based) rank R of the
pivot is random, and so are the segment sizes J1 and J2; we have R = J1 + 1.

We then sort one segment by X using the other segment as a buffer. To guarantee a
sufficiently large buffer for X when it sorts Jr (r = 1 or 2), we must make sure that J3−r
(the other segment size) satisfies J3−r ≥ αJr. In case both segments could be sorted by X,
we use the larger of the two. After one part of the array has been sorted with X, we move
the pivot element to its correct position (right after/before the already sorted part) and
recurse on the other segment of the array. The process is illustrated in Figure 1.

The main advantage of this procedure is that the part of the array that is not currently
being sorted can be used as temporary buffer area for algorithm X. This yields fast internal
variants for various external sorting algorithms such as Mergesort. We have to make
sure, however, that the contents of the buffer is not lost. A simple sufficient condition is to
require that X maintains a permutation of the elements in the input and buffer: whenever a
data element should be moved to the external storage, it is swapped with the data element
occupying that respective position in the buffer area. For Mergesort, using swaps in the
merge (see Section 2.1) is sufficient. For other methods, we need further modifications.

Avoiding unnecessary copying. For some X, it is convenient to have the sorted sequence
reside in the buffer area instead of the input area. We can avoid unnecessary swaps for such
X by partitioning “in reverse order”, i.e., so that large elements are left of the pivot and
small elements right of the pivot.

Stable sorting. We point out that standard, efficient in-place partitioning is not a stable
method, i.e., elements that compare equal might not appear in the same relative order after
partitioning as in the original input. Moreover, elements in the part of the input used as
buffer for X can be reordered arbitrarily while executing X. As a consequence, and much
like standard Quicksort, QuickXsort is not a stable sorting algorithm, irrespective of
whether X alone is stable.

Pivot sampling. It is a standard strategy for Quicksort to choose pivots as the median of
some sample. This optimization is also effective for QuickXsort and we will study its effect
in detail. We assume that in each recursive call, we choose a sample of k elements, where
k = 2t+ 1, t ∈ N0 is an odd number. The sample can either be selected deterministically
(e.g., selecting fixed positions) or at random. Usually for the analysis we do not need random
selection; only if the algorithm X does not preserve randomness of the buffer element, we
have to assume randomness (see Section 9.2). However, notice that in any case random
selection might be beneficial as it protects against a potential adversary who provides a
worst-case input permutation.

Unlike for Quicksort, in QuickXsort pivot selection contributes only a minor term
to the overall running time (at least in the usual case that k � n). The reason is that
QuickXsort only makes an expected logarithmic number of partitioning rounds since in
expectation, after each partitioning round, a constant fraction of the input is excluded from
further consideration (after sorting it with X). This is in contrast to plain Quicksort, which
always uses a linear number of partitioning rounds; it makes randomizing pivot selection and
larger sample sizes practical in QuickXsort. For our analysis, we need not fix the precise
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details of how pivots are selected; we only assume that selecting the median of k elements
needs s(k) = Θ(k) comparisons on average (e.g., using Quickselect [25]).

We consider both the case where k is a fixed constant and where k = k(n) is an
increasing function of the (sub)problem size. Previous analytical results for Quicksort
and Quickselect [36] and empirical results for QuickHeapsort [4] clearly suggest that
sample sizes k(n) = Θ(

√
n) are optimal asymptotically, but most of the relative savings

for the expected case are already realized for k ≤ 10. It is quite natural to expect similar
behavior in QuickXsort, and it will be one goal of this article to precisely quantify these
statements.

2.1. QuickMergesort
A natural candidate for X is Mergesort: it is comparison-optimal up to the linear term
(and quite close to optimal in the linear term), and needs a Θ(n)-element-size buffer for
practical implementations of merging.4

Step 1:

swap

Step 2:

merge

Result:

Figure 2: Simple merging procedure where one of the two runs fits into the buffer. (Buffer
and input need not be adjacent in memory.)

Simple swap-based merge. To be usable in QuickXsort, we use a swap-based merge
procedure: for merging two sorted runs, we first move the smaller of the two runs to a buffer
using pairwise swaps (thereby bringing the buffer elements to the run’s range); see Figure 2.
Then, we merge the two runs back into the vacated slot. Pseudocode for this merge method
is given in Algorithm C.1. When the second run is shorter, we use a symmetric version of
Algorithm C.1. Using classical top-down or bottom-up Mergesort as described in any
algorithms textbook (e.g. [47]), we thus get along with α = 1

2 .
The code in Algorithm C.1 illustrates that very simple adaptations suffice for Quick-

Mergesort. This merge procedure leaves the merged result in the range previously occupied
by the two input runs. This “in-place”-style interface comes at the price of copying one run.

“Ping-pong” merge. Copying one run can be avoided if we instead write the merge result
into an output buffer (and leaving it there). This saves element moves, but uses buffer space
for all n elements, so we have α = 1 here. The Mergesort scaffold has to take care to

4Merging can be done in place using more advanced tricks (see, e.g., [20, 35]), but those tend not to be
competitive in terms of running time with other sorting methods. By changing the global structure, a
“pure” internal Mergesort variant [30, 42] can be achieved using part of the input as a buffer (as in
QuickMergesort) at the expense of occasionally having to merge runs of very different lengths.
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correctly orchestrate the merges, using the two arrays alternatingly; this alternating pattern
resembles the ping-pong game, hence the name.

“Ping-pong” merge with smaller buffer. It is also possible to implement the “ping-pong”
merge with α = 1

2 . Indeed, the copying in Algorithm C.1 can be avoided by sorting the
first subproblem recursively with “ping-pong” sort into the desired position in the buffer.
Then, merging can proceed as in Algorithm C.1. Figure 3 illustrates this idea, which is easily
realized with a recursive procedure; full code is given in Algorithm C.2. Our implementation
of QuickMergesort (both for α = 1 and α = 1/2) uses this variant.

Step 1:

ping-pong sort

Step 2:

ping-pong sort

Step 3:

merge

Result:

Figure 3: Mergesort with α = 1/2 using ping-pong merges. Note that the recursive calls
have a buffer area large enough to hold their entire subproblem at their disposal, so
they can use input and output area alternatingly, following the standard ping-pong
strategy.

Step 1:

merge front

Step 2:

merge back

Result:

Figure 4: Reinhardt’s merging procedure that needs only buffer space for half of the smaller
run. In the first step, the two sequences are merged starting with the smallest
elements until the empty space is filled. Then there is enough empty space to merge
the sequences from the right into the final position.
Note that – unlike for the other merge procedures – array and buffer area in
Reinhardt’s merge are assumed to be adjacent and a symmetric version of the above
is required when the buffer is initially located to the right of the input.
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Reinhardt’s merge. A third, less obvious alternative was proposed by Reinhardt [42], which
allows to use an even smaller α for merges where input and buffer area form a contiguous
region; see Figure 4. Assume we are given an array A with positions A[1, . . . , t] being
empty or containing dummy elements (to simplify the description, we assume the first case),
A[t+ 1, . . . , t+ `] and A[t+ `+ 1, . . . , t+ `+ r] containing two sorted sequences. We wish to
merge the two sequences into the space A[1, . . . , ` + r] (so that A[` + r + 1, . . . , t + ` + r]
becomes empty). We require that r/2 ≤ t < r. First we start from the left merging the
two sequences into the empty space until there is no space left between the last element of
the already merged part and the first element of the left sequence (first step in Figure 4).
At this point, we know that at least t elements of the right sequence have been introduced
into the merged part; so, the positions t + ` + 1 through ` + 2t are empty now. Since
`+ t+ 1 ≤ `+ r ≤ `+ 2t, in particular, A[`+ r] is empty now and we can start merging
the two sequences right-to-left into the now empty space (where the right-most element is
moved to position A[`+ r] – see the second step in Figure 4).

In order to have a balanced merge, we need ` = r and so t ≥ (` + r)/4. Therefore,
when applying this method in QuickMergesort, we have α = 1

4 . We give full code of the
merging procedure in Algorithm C.3. We also test an implementation of this variant in some
of our experiments.

Remark 2.1 (Even less buffer space?): Reinhardt goes even further: even with εn
space, we can merge in linear time when ε is fixed by moving one run whenever we run out
of space. Even though not more comparisons are needed, this method is quickly dominated
by the additional data movements when ε < 1

4 , so we do not discuss it in this article.
Another approach for dealing with less buffer space is to allow imbalanced merges: for

both Reinhardt’s merge and the simple swap-based merge, we need only additional space for
(half) the size of the smaller run. Hence, we can merge a short run into a long run with a
relatively small buffer. The price of this method is that the number of comparisons increases,
while the number of additional moves is better than with the previous method. We shed
some more light on this approach in [14].

Avoiding Stack Space. The standard version of Mergesort uses a top-down recursive
formulation. It requires a stack of logarithmic height, which is usually deemed acceptable
since it is dwarfed by the buffer space for merging. Since QuickMergesort removes the
need for the latter, one might prefer to also avoid the logarithmic stack space.

An elementary solution is bottom-up Mergesort, where we form pairs of runs and
merge them, except for, potentially, a lonely rightmost run. This variant occasionally merges
two runs of very different sizes, which affects the overall performance (see Section 3.2).

A simple (but less well-known) modification of bottom-up Mergesort allows us to get
the best of both worlds [21]: instead of always leaving a lonely rightmost run unmerged, we
decide based on the number of runs whether we merge it with the penultimate run before
proceeding with the next stage. The logic for handling these cases correctly makes this
method more involved than top-down Mergesort, but constant extra space can be achieved
without a loss in the number of comparisons, and with negligible running-time overhead.

2.2. QuickHeapsort
Another good option – and indeed the historically first one – for X is Heapsort.
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Why Heapsort? In light of the fact that Heapsort is the only textbook method with
reasonable overall performance that already sorts with constant extra space, this suggestion
might be surprising. Heapsort rather appears to be the candidate least likely to profit from
QuickXsort. Indeed, it is a refined variant of Heapsort that is an interesting candidate
for X.

To work in place, standard Heapsort has to maintain the heap in a very rigid shape to
store it in a contiguous region of the array. And this rigid structure comes at the price of
extra comparisons. Standard Heapsort requires up to 2(h− 1) comparisons to extract the
maximum from a heap of height h, for an overall 2n lgn±O(n) comparisons in the worst
case.

Comparisons can be saved by first finding the cascade of promotions (a.k.a. the special
path), i.e., the path from the root to a leaf, always choosing to the larger of the two children.
Then, in a second step, we find the correct insertion position along this line of the element
currently occupying the last position of the heap area. The standard procedure corresponds
to sequential search from the root. Floyd’s optimization (a.k.a. bottom-up Heapsort [50])
instead uses sequential search from the leaf. It has a substantially higher chance to succeed
early (in the second phase), and is probably optimal in that respect for the average case. If
a better worst case is desired, one can use binary search on the special path, or even more
sophisticated methods [22].

External Heapsort. In ExternalHeapsort, we avoid any such extra comparisons by
relaxing the heap’s shape. Extracted elements go to an output buffer and we only promote
the elements along the special path into the gap left by the maximum. This leaves a gap at
the leaf level, that we fill with a sentinel value smaller than any element’s value (in the case
of a max-heap). ExternalHeapsort uses n lgn±O(n) comparisons in the worst case, but
requires a buffer to hold n elements. By using it as our X in QuickXsort, we can avoid
the extra space requirement.

When using ExternalHeapsort as X, we cannot simply overwrite gaps with sentinel
values, though: we have to keep the buffer elements intact! Fortunately, the buffer elements
themselves happen to work as sentinel values. If we sort the segment of large elements
with ExternalHeapsort, we swap the max from the heap with a buffer element, which
automatically is smaller than any remaining heap element and will thus never be promoted
as long as any actual elements remain in the heap. We know when to stop since we know
the segment sizes; after that many extractions, the right segment is sorted and the heap area
contains only buffer elements.

We use a symmetric variant (with a min-oriented heap) if the left segment shall be sorted
by X. For detailed code for the above procedure, we refer to [3] or [4].

Trading space for comparisons. Many options to further reduce the number of comparisons
have been explored. Since these options demand extra space beyond an output buffer and
cannot restore the original contents of that extra space, using them in QuickXsort does
not yield an internal sorting method, but we briefly mention these variants here.

One option is to remember outcomes of sibling comparisons to avoid redundant compar-
isons in following steps [38]. In [4, Thm. 4], this is applied to QuickHeapsort together
with some further improvements using extra space.
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Another option is to modify the heap property itself. In a weak heap, the root of a
subtree is only larger than one of the subtrees, and we use an extra bit to store (and
modify) which one it is. The more liberal structure makes construction of weak heaps
more efficient: indeed, they can be constructed using n− 1 comparisons. WeakHeapsort
has been introduced by Dutton [7] and applied to QuickWeakHeapsort in [8]. We
introduced a refined version of ExternalWeakHeapsort in [11] that works by the
same principle as ExternalHeapsort; more details on this algorithm, its application in
QuickWeakHeapsort, and the relation to Mergesort can be found in our preprint [10].

Due to the additional bit-array, which is not only space-consuming, but also costs time to
access, WeakHeapsort and QuickWeakHeapsort are considerably slower than ordinary
Heapsort, Mergesort, or Quicksort; see the experiments in [8, 11]. Therefore, we do
not consider these variants here in more detail.

3. Preliminaries
In this section, we introduce some important notation and collect known results for reference.
A comprehensive list of notation is given in Appendix A. Appendix B recapitulates a few
mathematical preliminaries used in the analysis.

3.1. Notation
We use Iverson’s bracket, JstmtK, to mean 1 if stmt is true and 0 otherwise, as popularized
by [23]. We also follow their notation ab (resp. ab) for the falling (resp. rising) factorial
power a(a− 1) · · · (a− b+ 1) (resp. a(a+ 1) · · · (a+ b− 1)). P[E] denotes the probability of
event E, E[X] the expectation of random variable X. We write X D= Y to denote equality
in distribution.

With f(n) = g(n) ± h(n) we mean that |f(n)− g(n)| ≤ h(n) for all n, and we use
similar notation f(n) = g(n) ± O(h(n)) to state asymptotic bounds on the difference
|f(n)− g(n)| = O(h(n)). We remark that both use cases are examples of “one-way equalities”
that are in common use for notational convenience, even though ⊆ instead of = would be
formally more appropriate. Moreover, f(n) ∼ g(n) means f(n) = g(n)± o(g(n)). We use lg
for the logarithm base 2, and ln for the natural logarithm. We reserve log for an unspecified
base in O-notation.

In our analysis, we make frequent use of the beta distribution: For λ, ρ ∈ R>0, X D=
Beta(λ, ρ) if X admits the density fX(z) = zλ−1(1 − z)ρ−1/B(λ, ρ) where B(λ, ρ) =∫ 1

0 z
λ−1(1 − z)ρ−1 dz is the beta function. Moreover, for λ, ρ ∈ R>0 and n ∈ N0, we

say X has a beta-binomial distribution, X D= BetaBin(n, λ, ρ), when P[X = i] =
(n
i

) ·
B(λ+ i, ρ+ (n− i))/B(λ, ρ). We will also use the regularized incomplete beta function

Ix,y(λ, ρ) =
∫ y

x

zλ−1(1− z)ρ−1

B(λ, ρ) dz, (λ, ρ ∈ R+, 0 ≤ x ≤ y ≤ 1). (1)

Clearly I0,1(λ, ρ) = 1.

3.2. Average costs of Mergesort
We recapitulate some known facts about standard mergesort. The average number of
comparisons for Mergesort has the same – optimal – leading term n lgn in the worst and
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best case; this is true for both the top-down and bottom-up variants. The coefficient of the
linear term of the asymptotic expansion, though, is not a constant, but a bounded periodic
function with period lgn, and the functions differ for best, worst, and average case and the
variants of Mergesort [46, 17, 41, 26, 27].

For this paper, we confine ourselves to upper and lower bounds for the average case of the
form x(n) = an lgn+ bn±O(n1−ε) with constant b valid for all n. Setting b to the infimum
resp. supremum of the periodic function, we obtain the following lower resp. upper bounds
for top-down [27] and bottom-up [41] Mergesort

xtd(n) = n lgn−
{ 1.2645n

1.2408n + 2 ± O(n−1) (2)

= n lgn− (1.25265± 0.01185)n+ 2 ± O(n−1) and

xbu(n) = n lgn−
{ 1.2645n

0.2645n ± O(1)

= n lgn− (0.7645± 0.5)n ± O(1).

3.3. Variance in Mergesort

First note that since Mergesort’s costs differ by O(n) for the best5 and worst case, the
variance is obviously in O(n2). A closer look reveals that Mergesort’s costs are indeed
much more concentrated and the variance is of order Θ(n): For a given size n, the overall
costs are the sum of independent contributions from the individual merges, each of which
has constant variance. Indeed, the only source of variability in the merge costs is that we do
not need further comparisons once one of the two runs is exhausted.

More precisely, for standard top-down mergesort, Xn can be characterized by (see [17])

Xn
D= Xdn/2e +Xbn/2c + n− Ldn/2e,bn/2c

P[Lm,n ≤ `] =
(n+m−`

m

)
+
(n+m−`

n

)(n+m
m

) .

Following Mahmoud [34, eq. (10.3), eq. (10.1)], we find that the variance of the costs for a
single merge is constant:

E[Lm,n] = m

n+ 1 + n

m+ 1 = m1n−1 + n1m−1

E[L2
m,n] = 2m2n−2 + 2n2m−2

Var[Lm,n] = E[L2
m,n] + E[Lm,n]− E[Lm,n]2

= 2m2n−2 + 2n2m−2 +m1n−1 + n1m−1 −
(
m1n−1 + n1m−1

)2

≤ 2, for |m− n| ≤ 1

5We assume here an unmodified standard Mergesort variant that executes all merges in any case. In
particular we assume the following folklore trick is not used: One can check (with one comparison) whether
the two runs are already sorted prior to calling the merge routine and skip merging entirely if they are.
This optimization leads to a linear best case and will increase the variance.
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which gives an upper bound of 2n for the variance. Precise asymptotic expansions have been
computed by Hwang [27]:

Var[Xn] = nφ(lg(n))− 2 + o(1)

for a periodic function φ(x) ∈ [0.30, 0.37].

4. Transfer theorems for QuickXsort
In this section, we set up a recurrence equation for the costs of QuickXsort, and we
derive asymptotic transfer theorems for it, i.e., theorems that express the expected costs
of QuickXsort in terms of the costs of X (as if used in isolation). We can then directly
use known results about X from the literature; instantiations for actual choices for X are
deferred to Section 5.

We mainly focus on the number of key comparisons as our cost model; the transfer
theorems are, however, oblivious to this, and could easily be adapted for other cost measures.

As in plain Quicksort, the performance of QuickXsort is heavily influenced by the
method for choosing pivots (though the influence is only on the linear term of the number of
comparisons). We distinguish two regimes here. The first regime considers the case that the
median of a large sample is used; more precisely, the sample size is chosen as a growing but
sublinear function in the subproblem size. This method yields optimal asymptotic results
and allows a rather clean analysis; it is covered in Section 4.2.

The other regime is a fixed constant k, treating it as a design parameter of the algorithm
we choose once and for all. It is known for Quicksort that increasing the sample size yields
rapidly diminishing marginal returns [45], and it is natural to assume that QuickXsort
behaves similarly. Asymptotically, a growing sample size will eventually be better, but
the evidence in Section 7 shows that a small, fixed sample size gives the best practical
performance on realistic input sizes, so these variants deserve further study; unfortunately,
the analysis becomes a bit more involved. Our transfer theorem for fixed k is given in
Section 4.3.

In order to have a more concise presentation, we postpone the full proofs to Section 9
and give only some short sketches in this section. We start with some prerequisites and
assumptions about X.

4.1. Prerequisites
For simplicity, we assume that inputs of size below a (constant) threshold w are sorted with X
(using a constant amount of extra space). We require w ≥ k in the case of constant size-k
samples for pivot selection. We could use another algorithm like StraightInsertionsort
instead, but since QuickXsort recurses on only one subproblem, the base case only
influences the constant term of costs (unlike for standard Quicksort).

We further assume that selecting the pivot from a sample of size k costs s(k) comparisons,
where we usually assume s(k) = Θ(k), i.e., a (expected-case) linear selection method is used.

Now, let c(n) be the expected number of comparisons in QuickXsort on arrays of size
n, where the expectation is over the random choices for selecting the pivots for partitioning.
Our goal is to set up a recurrence equation for c(n). We will justify first that such a recursive
relation exists.
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Preservation of randomness? For the Quicksort part of QuickXsort, only the ranks
of the chosen pivot elements has an influence on the costs; partitioning itself always needs
precisely one comparison per element.6 When we choose the pivot elements randomly (from
a random sample), the order of the input does not influence the costs of the Quicksort
part of QuickXsort.

For general X, the sorting costs do depend on the order of the input, and we would like
to use the average-case bounds for X, when it is applied on a random permutation. We may
assume that our initial input is indeed a random permutation of the elements,7 but this is
not sufficient! We also have to guarantee that the inputs for recursive calls are again random
permutations of their elements.

A simple sufficient condition for this “randomness-preserving” property is that X may not
compare buffer contents. This is a natural requirement, e.g., for our Mergesort variants. If
no buffer elements are compared to each other and the original input is a random permutation
of its elements, so are the segments after partitioning, and so will be the buffer after X has
terminated. Then we can set up a recurrence equation for c(n) using the average-case cost
for X. We may also replace the random sampling of pivots by choosing any fixed positions
without affecting the average costs c(n).

However, not all candidates for X meet this requirement. (Basic) QuickHeapsort does
compare buffer elements to each other (see Section 2.2) and, indeed, the buffer elements
are not in random order when the Heapsort part has finished. For such X, we assume
that genuinely random samples for pivot selection are used. Moreover, we will have to use
conservative bounds for the number of comparisons incurred by X, e.g., worst or best case
results, as the input of X is not random anymore. This only allows to derive upper or lower
bounds for c(n), whereas for randomness preserving methods, the expected costs can be
characterized precisely by the recurrence.

In both cases, we use x(n) as (a bound for) the number of comparisons needed by X to
sort n elements, and we will assume that

x(n) = an lgn+ bn ± O(n1−ε), (n→∞),

for constants a, b and ε ∈ (0, 1].

4.1.1. The QuickXsort Recurrence

We can now describe the expected costs c(n) of QuickXsort by a recurrence relation; it
directly follows the recursive nature of the algorithm:

c(n) =
2∑
r=1

E[Ar c(Jr)] + t(n) (3)

6We remark that this is no longer true for multiway partitioning methods where the number of comparisons
per element is not necessarily the same for all possible outcomes. Similarly, the number of swaps in the
standard partitioning method depends not only on the rank of the pivot, but also on how “displaced” the
elements in the input are.

7 It is, indeed, a reasonable option to enforce this assumption in an implementation by an explicit
random shuffle of the input before we start sorting. Sedgewick and Wayne, for example, do this for the
implementation of Quicksort in their textbook [47]. In the context of QuickXsort, a full random
shuffle is overkill, though; see Remark 5.2 for more discussion.
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Here, A1 and A2 are indicator random variables with A1 = Jrecurse on left subproblemK
A2 = Jrecurse on right subproblemK, and t(n) is the “toll function” of the recurrence, i.e.,
the non-recursive costs, given by

t(n) = n− k(n)︸ ︷︷ ︸
partitioning

+ s
(
k(n)

)︸ ︷︷ ︸
pivot sampling

+ ∑2
r=1 E[Ar x(J3−r)]︸ ︷︷ ︸

calls to X

. (4)

A rigorous derivation and precise description of Ar is given in Section 9.2.

4.2. Growing sample sizes
In this section, we assume that the pivot is selected as the median of k = k(n) elements
where k(n) grows when n grows. We show that under natural assumptions the average
number of comparisons of X and of median-of-k(n) QuickXsort differ only by an o(n)-term.
After that, we give a bound on the probability for running into a worst case and discuss
some ideas to obtain a worst-case O(n logn)-algorithm.

4.2.1. Expected costs

The following theorem allows to transfer an asymptotic approximation for the costs of X to
an asymptotic approximation of the costs of QuickXsort. We will apply this theorem to
concrete methods X in Section 5.

Theorem 4.1 (Transfer theorem (expected costs, growing k)): Let c(n) be defined
by Equation (3) (the recurrence for the expected costs of QuickXsort) and assume x(n)
(the costs of X) and k = k(n) (the sample size) fulfill x(n) = an lgn+ bn± o(n) for constants
a ≥ 1 and b, and k = k(n) ∈ ω(1) ∩ o(n) as n→∞ with 1 ≤ k(n) ≤ n for all n.

Then, c(n) ≤ x(n)+o(n). For a = 1, the above holds with equality, i.e., c(n) = x(n)+c′(n)
with c′(n) = o(n). Moreover, in the typical case with k(n) = Θ(nκ) for κ ∈ (0, 1) and
x(n) = an lgn+ bn±O(nδ) with δ ∈ [0, 1), we have for any fixed ε > 0 that

c′(n) = Θ(nmax{κ,1−κ}) ± O(nmax{δ,1/2+ε}).

A fully detailed proof is given in Section 9.3; we given an overview of the main arguments
here. To prove Theorem 4.1, we consider the difference c′(n) = c(n)− x(n) and observe that
it fulfills a very similar recurrence as c(n) itself:

c′(n) = n− k(n) + s
(
k(n)

)
+ E

[
A1 ·

(
c′(J1) + x(J1) + x(J2)

)]
+ E

[
A2 ·

(
c′(J2) + x(J2) + x(J1)

)] − x(n)

= E
[
A1 c

′(J1)
]

+ E
[
A2 c

′(J2)
]

+ n− k(n) + s
(
k(n)

)
+ E

[
x(J1)

]
+ E

[
x(J2)

]− x(n)︸ ︷︷ ︸
t′(n)

.

(5)

Note how taking the difference here “magically” turns the complicated terms E[Arx(J3−r)]
from t(n) into the simpler E[x(Jr)] terms in t′(n).

The next step in the proof is to find a precise asymptotic approximation for t′(n), given
in the following lemma.
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Lemma 4.2 (Approximating t′(n)): Let t′(n) as in Equation (5). Then for ε > 0, we
have

t′(n) = (1− a)n + Θ
(
k(n) + n

k(n)

)
± O

(
ξ(n) + n1/2+ε

)
.

Moreover, if a = 1, k(n) = Θ(nκ) for κ ∈ (0, 1) and ξ(n) = O(nδ) for δ ∈ [0, 1), we have

t′(n) = Θ
(
nmax{κ,1−κ}

)
± O

(
nmax{δ,1/2+ε}

)
.

While it is obvious that the n lgn terms cancel, a much closer look and heavier mathematical
machinery is required to obtain the precise bound as stated; we defer the proof to Section 9.3.2.

It remains to bound c′(n); since c′(n) is only the error term, we can confine ourselves
with a simple upper bound. Since our sample size grows with n, the subproblem sizes J1
and J2 are concentrated around n

2 ; we can use this fact to treat Equation (5) (almost) like
a standard divide-and-conquer recurrence using the (textbook) recursion-tree method to
obtain the following result.

Lemma 4.3: Let t̂ : R≥0 → R≥0 be monotonically increasing and consider the recurrence

ĉ(n) = E
[
A1 ĉ(J1)

]
+ E

[
A2 ĉ(J2)

]
+ t̂(n)

with ĉ(n) = c0 for n ≤ 1. Then for any constant β ∈ (1
2 , 1) there is a constant C = C(β) > 0

such that

ĉ(n) ≤ C

dlog1/β(n)e∑
i=0

t̂(nβi)

In the application of Lemma 4.3 for our c′(n), additional care is needed since our t′(n) can,
in general, be positive or negative. Treating different regimes of the claim separately finally
yields Theorem 4.1.

∗ ∗ ∗
We note that our Theorem 4.1 considerably strengthens the error term from o(n) in versions
of this theorem in earlier work to O(n1/2+ε) (for k(n) =

√
n). Since this error term is the

only difference between the costs of QuickXsort and X (for a = 1), we feel that this
improved bound is not merely a technical contribution, but significantly strengthens our
confidence in the utility and practicality of QuickXsort as an algorithmic template.

Remark 4.4 (Optimal sample sizes): The experiments in [4] and the results for Quick-
sort in [36] suggest that sample sizes k(n) = Θ(

√
n) are likely to be optimal w.r.t. balancing

costs of pivot selection and benefit of better-quality pivots within the lower order terms
also for QuickXsort. Theorem 4.1 gives a proof for this in a special situation: assume
that a = 1, the error term ξ(n) ∈ O(nδ) for some δ ∈ [0, 1

2 ] and that we are restricted to
sample sizes k(n) = Θ(nκ), for κ ∈ (0, 1). For this case, Theorem 4.1 shows that κ = 1

2 is
the optimal choice, i.e., k(n) =

√
n has the “best polynomial growth” among all feasible

polynomial sample sizes.

Theorem 4.1 shows that for methods X that have optimal costs up to linear terms (a = 1),
also median-of-k(n) QuickXsort with k(n) = Θ(nκ) and κ ∈ (0, 1) as n→∞ is optimal
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up to linear terms. We obtain the best lower-order terms with median-of-
√
n QuickXsort,

namely c(n) = x(n)±O(n1/2+ε), and we will in the following focus on this case.
Note that our proof actually gives slightly more information than stated in the theorem

for the case that the cost of X are not optimal in the leading-term coefficient (a > 1). Then
QuickXsort uses asymptotically fewer comparisons than X, whereas for X with optimal
leading-term costs, QuickXsort uses slightly more comparisons.

4.2.2. Large-deviation bounds

Does QuickXsort provide a good bound for the worst case? The obvious answer is “no”. If
always the

√
n smallest elements are chosen for pivot selection, a running time of Θ(n3/2) is

obtained. Nevertheless, we can prove that such a worst case is very unlikely.

Proposition 4.5: Let xwc(n) be the worst case number of comparisons of the algorithm X
and let ε > 0. The probability that median-of-

√
n QuickXsort needs more than xwc(n)+6n

comparisons is less than (3/4 + ε) 4√n for n large enough.

The proof relies on a simple concentration inequality (Lemma 9.4) for the rank of the
pivots; full details of the computation are given in Section 9.4. Note that we do not aim for
a tight bound here.

4.2.3. Worst-case guarantees

In order to obtain a provable bound for the worst case complexity we apply a simple trick
similar to the one used in Introsort [40]. We choose some δ ∈ (0, 1/2). Now, whenever the
pivot is more than δn off from the median (i.e., if J1 ≤ (1/2− δ)n or J2 ≤ (1/2− δ)n), we
choose the next pivot as median of the whole array using the median-of-medians algorithm [1]
(or some other selection algorithm with a linear worst case). Afterwards we continue with
the usual sampling strategy. We call this strategy median-of-medians fallback pivot selection.

Remark 4.6 (Alternative: Fallback to different algorithm): Instead of choosing the
next pivot as median, we can also switch to an entirely different sorting algorithm – as
done in Introsort, and as the first two authors originally proposed in [11]. The advantage
is that better worst-case bounds can be achieved: we showed that the worst-case is only
n+o(n) comparisons above the worst case of the fallback algorithm. Thus, using Reinhardt’s
Mergesort [42], we obtain a worst case of n logn− 0.25n+ o(n).

However, here we follow a different approach for two reasons: first, we prefer the self-
contained description of the algorithm; second, we are not aware of a fallback algorithm which
in practice performs better than our approach: Heapsort and most internal Mergesort
variants are considerably slower. Furthermore, at the time of this writing, we were not aware
of any implementation of Reinhardt’s Mergesort.8

Theorem 4.7 (QuickXsort Worst-Case): Let X be a sorting algorithm with at most
x(n) = n lgn + bn + o(n) comparisons in the average case and xwc(n) = n lgn + O(n)
comparisons in the worst case and let k(n) ∈ ω(1) ∩ o(n) with 1 ≤ k(n) ≤ n for all n. If

8Meanwhile, an implementation has been created and made available at https://github.com/rbroesamle/
Implementierung-von-in-place-Mergesort-Algorithmen. Although it is surprisingly fast, the experi-
ments by its creators suggest that it does not beat our approach.

https://github.com/rbroesamle/Implementierung-von-in-place-Mergesort-Algorithmen
https://github.com/rbroesamle/Implementierung-von-in-place-Mergesort-Algorithmen
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k(n) = ω(
√
n), we additionally require that always some worst-case linear time algorithm is

used for pivot selection, (e.g., using IntroSelect [40] or the median-of-medians algorithm);
otherwise, the worst-case is allowed to be at most quadratic, (e.g., using Quickselect).

Then, median-of-k(n) QuickXsort with median-of-medians fallback pivot selection is a
sorting algorithm that performs x(n)+o(n) comparisons in the average case and n lgn+O(n)
comparisons in the worst case.

Again, the full proof is deferred to Section 9.4, and we sketch the main arguments here.
With our fallback, there can be at most max{2 lgn, log1/2+δ n} rounds of partitioning, so
the worst case is n lgn + O(n) comparisons (using the additional requirement that pivot
selection takes linear time in the worst case).

For the average case, we distinguish the cases where a pivot choice is “bad” (next pivot
selected as true median of the whole array) resp. “good” (otherwise). By Lemma 9.4 the
“bad” pivot choice occurs with a probability in o(1). This allows us to reduce the recurrence
to the one we already solved in the proof Theorem 4.1.

∗ ∗ ∗

By applying median-of-medians fallback pivot selection, the average case changes only in the
o(n)-terms, and we get a strong worst-case guarantee. Note, however, that the O(n)-term for
the worst case of QuickXsort is rather large because of the median-of-medians algorithm.
In [14], the first two authors further elaborate on the technique of median-of-medians
pivot selection and show how to bring down the O(n)-term for the worst case to 3.58n for
QuickMergesort.

4.3. Fixed sample sizes

We now consider the practically relevant version of QuickXsort, where we choose pivots
as the median of a sample of fixed size k. Setting k = 1 corresponds to selecting pivots
uniformly at random; good practical performance is often achieved for moderate values, say,
k = 3, . . . , 9.

For very small subproblems, when n ≤ w for a constant w ≥ k, we directly sort with
X (using constant extra space). Clearly this only influences the constant term of costs in
QuickXsort. Moreover, the costs of sampling pivots is O(logn) in expectation (for constant
k and w); we will see that the costs s(k) of finding the median of the k sample elements is
negligible here.

We now state our transfer theorem for median-of-k QuickXsort when k is fixed. Recall
that Ix,y(λ, ρ) denotes the regularized incomplete beta function (Equation (1) on page 13).

Theorem 4.8 (Transfer theorem (expected costs, fixed k)): Let c(n) be defined by
Equation (3), the recurrence for the expected costs of QuickXsort, and assume x(n), the
expected cost of X, fulfills x(n) = an lgn + bn ± O(n1−ε) for constants ε ∈ (0, 1], a ≥ 1
and b ∈ R. Assume further that the sample size k is a fixed odd constant k = 2t+ 1, t ∈ N0.
Then it holds that

c(n) = x(n) + q · n ± O(n1−ε + logn),
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where

q = 1
H
− a · Hk+1 −Ht+1

H ln 2
H = I0, α

1+α
(t+ 2, t+ 1) + I 1

2 ,
1

1+α
(t+ 2, t+ 1).

We start with Equation (5) on page 17, the recurrence for c′(n) = c(n)− x(n). By the same
arguments as in the proof of Theorem 4.1, we have

t′(n) =
(

1 + 2aE
[
J
n lg(Jn )

])
n ± O(n1−ε). (6)

The main complication for fixed k is that – unlike for the median-of-
√
n case, where pivots

are close to the overall median with high probability – J
n here has significant variance. We

will thus have to compute E
[
J
n lg(Jn )

]
more precisely and also solve the recurrence for c′(n)

precisely. For that, we need additional techniques over what we used in the previous section:
beta-integral approximations and Roura’s continuous master theorem [44]. The latter is
a tool to obtain precise asymptotic approximations (including constants) for certain full-
history recurrences. We restate the theorem in Appendix B for the reader’s convenience. The
detailed computations required for its application on Equation (5) are given in Section 9.5.

To obtain an asymptotic approximation of t′(n), we approximate J
n by a beta distributed

variable, relying on a local limit law for beta-binomial variables by the last author (Lemma 9.2
in this article). Carefully tracing the error of this approximation yields the following result;
its proof and the full details of the proof of Theorem 4.8 are given in Section 9.5.

Lemma 4.9 (Beta-integral approximation): Let J D= BetaBin(n − c1, λ, ρ) + c2 be a
random variable that differs by fixed constants c1 and c2 from a beta-binomial variable with
parameters n ∈ N and λ, ρ ∈ N≥1. Then for any η ∈ (0, 1) we have

E
[
J
n ln J

n

]
= λ

λ+ ρ
(Hλ −Hλ+ρ) ± O(n−η), (n→∞).

The QuickXsort penalty. Since all our choices for X are optimal up to linear terms, so will
QuickXsort be. We thus always have a = 1 in Theorem 4.8, whereas b (and the allowable
α) depend on X. Going from X to QuickXsort then adds a “penalty” q in the linear term
that depends on the sampling size (and α), but not on X itself. Table 2 shows that this
penalty is roughly n without sampling, but can be reduced drastically when choosing pivots
from a sample of 3 or 5 elements.

k = 1 k = 3 k = 5 k = 7 k = 21 t→∞
α = 1 1.1146 0.5070 0.3210 0.2328 0.07705 0
α = 1/2 0.9120 0.4050 0.2526 0.1815 0.05956 0
α = 1/4 0.6480 0.2967 0.1921 0.1431 0.05498 0

Table 2: QuickXsort penalty. QuickXsort with x(n) = n lgn+ bn yields c(n) = n lgn+
(q + b)n, where q, the QuickXsort penalty, is given in the table.

As we increase the sample size, we converge to the situation for growing sample sizes
where no linear-term penalty is left (recall Theorem 4.1). That q is less than 0.08 already



22 QuickXsort – A Fast Sorting Scheme in Theory and Practice

for a sample of 21 elements clearly indicates that most of the benefits of pivot sampling
are achieved for moderate sample sizes. It is noteworthy that the improvement from no
sampling to median-of-3 yields a reduction of q by more than 50%. By contrast, its effect on
Quicksort itself only reduces the leading term of costs by 15%, from 2n lnn to 12

7 n lnn.

4.4. Variance
If an algorithm’s cost regularly exceeds its expectation by far, good expected performance
is not enough. The purpose of this section is to explore what influence the distribution of
the costs of X have on QuickXsort. To that end, we study the variance of the number of
comparisons in QuickXsort; similar to the expected costs, we prove a transfer theorem for
a recurrence for the variance.

Despite the fact that our transfer theorem is not applicable for periodic linear terms in
x(n), it yields excellent approximations of the actual variances in QuickMergesort (see
Section 5.2), and shows that costs are indeed concentrated around their expectation.

We assume a constant sample size k in this section. Formally, our result is the following.

Theorem 4.10 (Variance of QuickXsort): Assume X is a sorting method whose com-
parison cost has expectation x(n) = an lgn + bn ±O(n1−ε) and variance vX(n) = avn

2 +
O(n2−ε) for a constant av and ε > 0; the case av = 0 is allowed. Moreover, assume
QuickXsort preserves randomness.

Under the technical conjecture tv(n) = O(n2) (as defined in the proof), median-of-k
QuickXsort is a sorting method whose comparison cost has variance v(n) ∼ cn2 for an
explicitly computable constant c that depends only on k, α and av.

This transfer theorem can be proven with similar techniques as for the expected value, but
the computations become more involved. We give the full details in Section 9.6, where we
first state a distributional recurrence for the random number of comparisons, from which a
recurrence for the second moment can be derived. An asymptotic solution of the recurrence
is found using beta-integral approximations and Roura’s continuous master theorem.

Remark 4.11: We could confirm the conjecture tv(n) = O(n2) for all tried combinations
of values for α and k, (in particular those in Table 3), but were not able to prove it in the
general setting, so we have to formally keep it as a prerequisite. We have no reason to believe
it is not always fulfilled.

k = 1 k = 3 k = 9
α = 1 0.4344 + 0.2000av 0.1119 + 0.2195av 0.01763 + 0.2477av
α = 1/2 0.4281 + 0.2941av 0.1068 + 0.3234av 0.01572 + 0.3632av
α = 1/4 0.3134 + 0.4413av 0.0728 + 0.4550av 0.00988 + 0.4483av

Table 3: Leading term coefficients of the variance of QuickXsort.

Variance for methods with optimal leading term. In Table 3, we give the leading-term
coefficient for the variance (i.e., c in the terminology of Theorem 4.10) for several values of α
and k. We fix a = 1, i.e., we consider methods X with optimal leading term; the constant b
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of the linear term in x(n) does not influence the leading term of the variance. In the results,
we keep av as a variable, although for the methods X of most interest, namely Mergesort
and ExternalHeapsort, we actually have av = 0.

5. Analysis of QuickMergesort and QuickHeapsort
In the previous section, we derived several general results about QuickXsort; we now
apply those to the concrete choices for X introduced in Section 2. Besides describing how to
overcome technical complications in the analysis, we also discuss our results. Comparing
with analyses and measured comparison counts from previous work, we find that our exact
solutions for the QuickXsort recurrence yield more accurate predictions for the overall
number of comparisons.

5.1. Expected costs of QuickMergesort
We use QuickMergesort here to mean the “ping-pong” variant with smaller buffer (α = 1

2)
as illustrated in Figure 3 (page 10). Among the variations of Mergesort (that are all
usable in QuickXsort) we discussed in Section 2.1, this is the most promising option in
terms of practical performance. The analysis of the other variants is very similar.

We further assume a variant of Mergesort that generates optimally balanced merges.
While top-down mergesort is the typical choice for that, recall that there are variations of
bottom-up mergesort that achieve the same result without logarithmic extra space for a
recursion stack.

Corollary 5.1 (Average Case QuickMergesort): The following results hold when sort-
ing a random permutation of n elements.

(a) Median-of-
√
n QuickMergesort is an internal sorting algorithm that performs

n lgn − (1.25265 ± 0.01185)n ± O(n1/2+ε) comparisons on average for any constant
ε > 0.

(b) Median-of-3 QuickMergesort (with α = 1/2) is an internal sorting algorithm that
performs n lgn− (0.84765± 0.01185)n±O(logn) comparisons on average.

Proof: We first note that Mergesort never compares buffer elements to each other; buffer
contents are only accessed in swap operations. Therefore, QuickMergesort preserves
randomness: if the original input is a random permutation, both the calls to Mergesort
and the recursive call operate on a random permutation of the respective elements. The
recurrence for c(n) thus gives the exact expected costs of QuickMergesort when we insert
for x(n) the expected number of comparisons used by Mergesort on a random permutation
of n elements. The latter is given in Equation (2) on page 14.

Note that these asymptotic approximations in Equation (2) are not of the form required
for our transfer theorems; we need a constant coefficient in the linear term. But since c(n) is
a monotonically increasing function in x(n), we can use upper and lower bounds on x(n)
to derive upper and lower bounds on c(n). We thus apply Theorem 4.1 and Theorem 4.8
separately with x(n) replaced by

x(n) = n lgn− 1.2645n−O(1) resp.
x(n) = n lgn− 1.2408n+O(1).
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For part (a), we find x(n) ± O(n1/2+ε) ≤ c(n) ≤ x(n) ± O(n1/2+ε) for any fixed ε > 0.
Comparing upper and lower bound yields the claim.

For part (b) we obtain with q = 0.4050 the bounds x(n) + qn ± O(logn) ≤ c(n) ≤
x(n) + qn±O(logn). �

Remark 5.2 (Randomization vs average case): We can also prove a bound for the
expected performance on any input, where the expectation is taken over the random choices for
pivot sampling. By using an upper bound for the worst case of Mergesort, x(n) = n lgn−
0.91392n+1, we find that the expected number of comparisons is at most n lgn−0.91392n±
O(n1/2+ε) for median-of-

√
n QuickMergesort and at most n lgn− 0.50892n+O(logn)

for median-of-3 QuickMergesort.
Of course, we could also obtain the bounds of Corollary 5.1 for any input by randomly

shuffling the array before sorting it. Note, however, that unlike for standard Quicksort,
using random samples in QuickMergesort involves much fewer calls to a random number
generator than a full shuffle since we expect only O(logn) sampling rounds.

24 25 26 27 28 29 210 211 212 213
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Figure 5: Exact comparison count of Mergesort (red), median-of-3 QuickMergesort
(black) and median-of-

√
nQuickMergesort (blue) for small input sizes, computed

from the recurrence. The information-theoretic lower bound (for the average case)
is also shown (gray). The x-axis shows n (logarithmic), the y-axis shows

(
c(n)−

n lgn
)
/n. The horizontal lines are the supremum and infimum of the asymptotic

periodic terms. (For median-of-
√
n QuickMergesort, these are the same as for

Mergesort.)

Given that the error term of our approximation for fixed k is only of logarithmic growth,
we can expect very good predictive quality for our asymptotic approximation. This is
confirmed by numbers reported in Section 7.1 below. The relative error between the exact
value of c(n) and the approximation n lgn− 0.84765n is below 1% for n ≥ 400.

Figure 5 gives a closer look for small n. The numbers are computed from the exact
recurrences for Mergesort (see Section 3.3) and QuickMergesort (Equation (3)) by
recursively tabulating c(n) for all n ≤ 213 = 8192. For the pivot sampling costs s(k), we
use the average cost of finding the median with Quickselect, which are known precisely [33,
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p. 14]. For the numbers for median-of-
√
n QuickMergesort, we use k(n) = 2b√n/2c+ 1.

The computations were done using Mathematica.
For standard Mergesort, the linear coefficient reaches its asymptotic regime rather

quickly; this is due to the absence of a logarithmic term. For median-of-3 QuickMergesort,
considerably larger inputs are needed, but for n ≥ 2000 we are again close to the asymptotic
regime. Median-of-

√
n QuickMergesort needs substantially larger inputs than considered

here to come close to Mergesort. It is interesting to note that for roughly n ≤ 100, the
median-of-3 variant is better, but from then onwards, the median-of-

√
n version uses fewer

comparisons.
Figure 5 shows the well-known periodic behavior for Mergesort. Oscillations are

clearly visible also for QuickMergesort, but compared to the rather sharp “bumps” in
Mergesort’s cost, QuickMergesort’s costs are smoothed out. Figure 5 also confirms
that the amplitude of the periodic term is very small in QuickMergesort.

Skewed Pivots for QuickMergesort? For Mergesort with α = 1
2 the largest fraction of

elements we can sort by Mergesort in one step is 2
3 ; could it hence be beneficial to use a

slightly skewed pivot, so as to increase the subproblem size for Mergesort and decrease
the size for recursive calls?

The answer is “no”. Even for α = 1
2 , the best choice is to use the median of the sample.

For QuickMergesort, skewed pivots turn out to be a pessimization, despite the fact that
we sort a larger part by Mergesort. Our analysis for fixed-size samples can be extended to
skewed sampling schemes, but to illustrate this point we confine ourselves to a short visit to
“wishful-thinking land”: Let us assume that we can find exact quantiles in the input for free.
We can then show (e.g., with Roura’s discrete master theorem [44]) that if we always pick
the exact ρ-quantile of the input, for ρ ∈ (0, 1), the overall costs are

cρ(n) =


n lgn+

(1− h(ρ)
1− ρ + b

)
n ± O(n1−ε) if ρ ∈ (1

3 ,
1
2) ∪ (2

3 , 1)

n lgn+
(1− h(ρ)

ρ
+ b

)
n ± O(n1−ε) otherwise

for h(x) = −x lg x− (1−x) lg(1−x). The coefficient of the linear term has a strict minimum
at ρ = 1

2 ; any choice other than the median makes QuickMergesort (asymptotically)
worse.

5.2. Variance in QuickMergesort

Since the variance of Mergesort is subquadratic, Theorem 4.10 would be applied with
av = 0, and we obtain, e.g., a variance of 0.4281n2 for k = 1 and 0.1068n2 for k = 3.
Interestingly, these results do not depend on our choice for the constant b of the linear term
of x(n).

They match empirical numbers quite well. There is still a noticeable difference in Figure 6,
which compares the above approximations with exact values for small n computed from the
recurrence. For larger n, though, the accuracy is stunningly good, see Figure 12 and Table 6
in the experiments section.
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Figure 6: Exact values for the normalized standard deviation in QuickMergesort (computed
from the exact recurrence for the second moment) and the asymptotic approximation
from Table 3 (gray line). The x-axis shows the inputs size n (logarithmic) and the
y-axis is the standard deviation of the number of comparisons divided by n. The
plots show different sample sizes.

Fine print. Although our transfer theorem is perfectly valid and fits Monte Carlo simulations
very well, it is not actually applicable to QuickMergesort. The reason for this are the
tiny periodic fluctuations (w.r.t. n) in the expected cost of Mergesort.

For the expectation, upper and lower bounds for x(n) were sufficient to derive upper and
lower bounds for the costs of QuickXsort. Determining the precise influence of fluctuations
in QuickXsort’s expected cost is an interesting topic for future research, but since the
bounds are so close, our approach taken in this paper is certainly sufficient on practical
grounds. For the variance, the situation is different. The variance of QuickMergesort is
influenced by the periodic terms of the expected costs of Mergesort, and simple arguments
do not yield rigorous bounds (in either direction).

Intuitively QuickMergesort acts as a smoothing on the costs of Mergesort since
subproblem sizes are random. It is therefore quite expected to find very smooth periodic
influences of small amplitude. The fact that our estimate does not depend on b or the precise
variance of Mergesort at all, gives hope that it is a very good approximation, but it
remains heuristic approximation. A rigorous analysis of the variance of QuickMergesort
remains the subject of future work.

5.3. QuickHeapsort
By QuickHeapsort we refer to QuickXsort using the basic ExternalHeapsort version
(as described in Section 2.2) as X. We have the following result.

Corollary 5.3 (Expected Case QuickHeapsort): The following results hold for the ex-
pected number of comparisons where the expectation is taken over the random choices of
the pivots.

(a) Median-of-
√
n QuickHeapsort is an internal sorting algorithm that performs n lgn+

(0.54305± 0.54305)n±O(n1/2+ε) comparisons for any constant ε > 0.
(b) Median-of-3 QuickHeapsort is an internal sorting algorithm that performs n lgn+

(1.05005± 0.54305)n±O(nε) comparisons for any constant ε > 0.
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Proof: ExternalHeapsort always traverses one path in the heap from root to bottom
and does one comparison for each edge followed, i.e., blgnc or blgnc−1 many per delete-max
operation. By counting how many leaves we have on each level one can show that we need

n
(blgnc − 1

)
+ 2

(
n− 2blgnc

) ± O(logn) ≤ n lgn− 0.913929n ± O(logn)

comparisons for the sort-down phase (both in the best and worst case) [4, Eq. 1]. The
constant of the given linear term is 1 − 1

ln 2 − lg(2 ln 2), the supremum of the periodic
function at the linear term. Using the classical heap construction method adds between
n− 1 and 2n comparisons and 1.8813726n comparisons on average [6]. We therefore find the
following upper bounds for the average and worst case resp. lower bound for the best case of
ExternalHeapsort:

xac(n) = n lgn+ 0.967444n ± O(nε)
xwc(n) = n lgn+ 1.086071n ± O(nε)
xbc(n) = n lgn ± O(nε)

for any ε > 0.
Notice that every deleteMax operation performs comparisons until the element inserted

at the top of the heap (replacing the maximum) reaches the bottom of the heap. That
means when the heap is already quite empty, some of those comparisons are between two
buffer elements and these buffer elements are exchanged according to the outcome of the
comparison. Therefore, ExternalHeapsort does not preserve the randomness of the buffer
elements. Our recurrence, Equation (3), is thus not valid for QuickHeapsort directly.

We can, however, study a hypothetical method X that always uses x(n) = xwc(n)
comparisons on an input of size n, and consider the costs c(n) of QuickXsort for this
method. This is clearly an upper bound for the cost of QuickHeapsort since c(n) is a
monotonically increasing function in x(n). Similarly, using x(n) = xbc(n) yields a lower
bound. The results then follow by applying Theorem 4.1 and Theorem 4.8. �

We note that our transfer theorems are only applicable to worst resp. best case bounds
for ExternalHeapsort, but nevertheless, using the average case xac(n) still might give us
a better (heuristic) approximation of the actual numbers.

Comparison with previously reported comparison counts. Both [3] and [4] report averaged
comparison counts from running time experiments. We compare them in Table 4 against
the estimates from our results and previous analyses. We compare both proven upper bound
from above and the heuristic estimate using ExternalHeapsort’s average case.

While the approximation is not very accurate for n = 100 (for all analyses), for larger n,
our estimate is correct up to the first three digits, whereas previous upper bounds have
almost one order of magnitude larger errors. Our provable upper bound is somewhere in
between. Note that we expect even our estimate to be still on the conservative side because
we used the supremum of the periodic linear term for ExternalHeapsort.

6. QuickMergesort with base cases
In QuickMergesort, we can improve the number of comparisons even further by sorting
small subarrays with yet another algorithm Z. The idea is to use Z only for tiny subproblems,
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Instance observed estimate upper bound CC DW

Fig. 4 [3], n = 102, k = 1 806 +67 +79 +158 +156
Fig. 4 [3], n = 102, k = 3 714 +98 +110 — +168
Fig. 4 [3], n = 105, k = 1 1 869 769 −600 +11 263 +90 795 +88 795
Fig. 4 [3], n = 105, k = 3 1 799 240 +9 165 +21 028 — +79 324
Fig. 4 [3], n = 106, k = 1 21 891 874 +121 748 +240 375 +1 035 695 +1 015 695
Fig. 4 [3], n = 106, k = 3 21 355 988 +49 994 +168 621 — +751 581
Tab. 2 [4], n = 104, k = 1 152 573 +1 125 +2 311 +10 264 +10 064
Tab. 2 [4], n = 104, k = 3 146 485 +1 136 +2 322 — +8 152
Tab. 2 [4], n = 106, k = 1 21 975 912 +37 710 +156 337 +951 657 +931 657
Tab. 2 [4], n = 106, k = 3 21 327 478 +78 504 +197 131 — +780 091

Table 4: Comparison of estimates from this paper where we use the average for External-
Heapsort (estimate) resp. the worst case for ExternalHeapsort (upper bound),
Theorem 6 of [3] (CC) and Theorem 1 of [4] (DW). The numbers give the difference
between the estimate and the observed average.

so that it is viable to use methods that require extra space and have otherwise prohibitive
cost for other operations like moves. Obvious candidates for Z are Insertionsort and
MergeInsertion.

If we use O(logn) elements for the base case of Mergesort, we have to call Z at most
O(n/ logn) times. In this case we can allow an overall O(n2) running time for Z and still
obtain only O((n/ logn) · log2 n) = O(n logn) overhead in QuickMergesort. We note
that for the following result, we only need that the size of the base cases grows with n, but
not faster than logarithmic.

We start by bounding the costs of Mergesort with base-case sorter Z. Reinhardt [42]
proposes this idea using MergeInsertion for base cases of constant size and essentially
states the following result, but does not provide a proof for it. In Section 9.7 we give the
proof, which is an easy induction.
Theorem 6.1 (Mergesort with Base Case): Let Z be a sorting algorithm using z(n) =
n lgn+ (b± ε)n+ o(n) comparisons on average and other operations taking at most O(n2)
time. If base cases of size ω(1) ∩ O(logn) are sorted with Z, Mergesort uses at most
n lgn+ (b± ε)n+ o(n) comparisons and O(n logn) other instructions on average.

Mergesort with base cases can thus be very efficient w.r.t. comparisons, but is an exter-
nal algorithm. By combining it with QuickMergesort, we obtain an internal method with
essentially the same comparison cost. Using the same route as in the proof of Corollary 5.1,
we obtain the following result.
Corollary 6.2 (QuickMergesort with Base Case): Let Z be some sorting algorithm
with z(n) = n lgn+ (b± ε)n+ o(n) comparisons on average and other operations taking at
most O(n2) time. If base cases of size Θ(logn) are sorted with Z, QuickMergesort uses
at most n lgn+ (b± ε)n+ o(n) comparisons and O(n logn) other instructions on average.

Base cases of size Θ(logn) always lead to a constant factor overhead in running time
if an algorithm Z with a quadratic number of total operations is used. Therefore, in the
experiments we also consider constant size base cases which offer a slightly worse bound for
the number of comparisons, but are faster in practice.9 A modification of our proof above

9We could also sort base cases of some slower growing size with Z, e.g., Θ(log logn). This avoids a constant
factor overhead, but still gives a non-negligible additional term in ω(n) ∩ o(n logn).
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allows to bound the impact on the number of comparisons, but we are facing a trade-off
between comparisons and other operations, so the best threshold for Z depends on the type
of data to be sorted and the system on which the algorithms run.

6.1. Insertionsort
We know study the average cost of the natural candidates for Z. We start with Insertionsort,
since it is an elementary method and its analysis is used as part of our average-case analysis
of MergeInsertion later. Recall that Insertionsort inserts the elements one by one into
the already sorted sequence by binary search. For the average number of comparisons we
obtain the following result.

Proposition 6.3 (Average Case of Insertionsort): The sorting algorithm Insertion-
sort needs n lgn − 2 ln 2 · n + c(n) · n + O(logn) comparisons on average where c(n) ∈
[−0.005, 0.005].

The proof of Proposition 6.3 is based on the observation that inserting one element by binary
insertion into k − 1 already sorted elements requires

xIns(k) = dlg ke+ 1− 2dlg ke
k

(7)

comparisons on average (assuming a uniform distribution). Summing this up, we obtain

xInsSort(n) = n · dlgne − 2dlgne + n− ln 2 · (2 + lgn− dlgne) · 2dlgne + O(logn)

comparisons on average for sorting n elements with Insertionsort. For the full proof,
see Section 9.7. In order to obtain an explicit bound on the linear term of xInsSort(n), we
compute (xInsSort(n)− n lgn)/n and then replace dlgne − lgn by x. This yields a function

x 7→ x− 2x + 1− ln 2 · (2− x) · 2x,

which oscillates between −1.381 and −1.389 for x ∈ [0, 1); see Figure 7. For x = 0, its value
is 2 ln 2 ≈ 1.386.
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−1.39

−1.388
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Figure 7: The periodic function in Insertionsort x 7→ x− 2x + 1− ln 2 · (2− x) · 2x for
x = lgn− blgnc ∈ [0, 1).

Sorting base cases of logarithmic size in QuickMergesort with Insertionsort, we
obtain the next result by Corollary 6.2:

Corollary 6.4 (QuickMergesort with Base Case Insertionsort):
Median-of-

√
n QuickMergesort with Insertionsort base cases uses at most n lgn −

1.381n+ o(n) comparisons and O(n logn) other instructions on average.



30 QuickXsort – A Fast Sorting Scheme in Theory and Practice

6.2. MergeInsertion

MergeInsertion by Ford and Johnson [18] is one of the best sorting algorithms in terms of
number of comparisons. Applying it for sorting base cases of QuickMergesort yields even
better results than Insertionsort. We give a brief description of the algorithm and analyze
its average case for a simplified version. Algorithmically, MergeInsertion (s0, . . . , sn−1)
can be described as follows (an intuitive example for n = 21 can be found in [32]):

1. Arrange the input such that si ≥ si+bn/2c for 0 ≤ i < bn/2c with one comparison per
pair. Let ai = si and bi = si+bn/2c for 0 ≤ i < bn/2c, and bbn/2c = sn−1 if n is odd.

2. Sort the values a0,...,abn/2c−1 recursively with MergeInsertion.

3. Rename the solution as follows: b0 ≤ a0 ≤ a1 ≤ · · · ≤ abn/2c−1 and insert the
elements b1, . . . , bdn/2e−1 via binary insertion, following the ordering b2, b1; b4, b3;
b10, b9, . . . , b5, . . . ; btk−1−1, . . . btk−2 ; btk−1, . . . into the main chain, where tk = (2k+1 +
(−1)k)/3 using (at most) k comparisons for the elements btk−1, . . . , btk−1 .

While the description is simple, MergeInsertion is not easy to implement efficiently
because of the different renamings, the recursion, and the insertion in the sorted list. Our
proposed implementation of MergeInsertion is based on a tournament tree representation
with weak heaps as in [7, 9]. It uses quadratic time and requires n lgn+ n extra bits (note
that in [49], an implementation with running time n log2 n was presented).

When inserting some of the bi with tk−1 ≤ i ≤ tk−1 in the already sorted chain, we know
that at most k comparisons are needed. During an actual execution of the algorithm, it might
happen, that only k − 1 comparisons are needed (if the insertion tree is balanced at least
k− 1 comparisons are needed). This decreases the average number of comparisons. Since the
analysis is involved, we analyze a simplified variant, where all elements of one insertion block
(i. e. elements btk−1, btk−1−1, . . . btk−1) are always inserted into the same number of elements.
Thus, for the elements of the k-th block always k comparisons are used – except for the last
block bdn/2e−1, . . . btk . In our experiments we evaluate the simplified and the original variant.

Theorem 6.5 (Average Case of MergeInsertion): Simplified MergeInsertion needs
n lgn− c(n) · n+O(logn) comparisons on average, where c(n) > 1.3999.

The proof of Theorem 6.5 can be found in Section 9.7. The key observation is that, if 3n
is not (approximately) a power of two, then the elements of the last block bdn/2e−1, . . . , tk
are inserted into less than 2k+1 elements, so on average less than k + 1 comparisons are
needed. These savings can be estimated using Equation (7). Here it is important to notice
that, although the different positions for insertion are not uniformly distributed, we can use
(7) as an upper bound because we know that the more likely positions are further to the left
and the less likely positions are further to the right (and we assume the algorithm uses a
decision tree with longer paths for the positions on the right).

The proof gives an upper bound of n lgn− c(n) · n+O(logn) comparisons on average
for MergeInsertion where

c(n) ≥ (3− lg 3)− (1− x+ 1− 21−x) + (1− 2−x) ·
( 3

2x + 1 − 1
)

> 1.3999 (8)
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Figure 8: The periodic function in MergeInsertion x 7→ (3− lg 3)− (2−x− 21−x) + (1−
2−x) ·

( 3
2x+1 − 1

)
for x = lg 3n− blg 3nc ∈ [0, 1). If n is a power of two, we have

x = lg 3− 1 ≈ 0.5850

for x = lg 3n− blg 3nc ∈ [0, 1). This function reaches its minimum in [0, 1) for

x = lg
(

ln 8− 1 +
√

(1− ln 8)2 − 1
)
≈ 0.5713.

When applying MergeInsertion to sort base cases of size O(logn) in QuickMerge-
sort, we obtain the next corollary from Corollary 6.2 and Theorem 6.5.

Corollary 6.6 (QuickMergesort with Base Case MergeInsertion):
Median-of-

√
n QuickMergesort with MergeInsertion for base cases needs at most

n lgn− 1.3999n+ o(n) comparisons and O(n logn) other instructions on average.

Instead of growing-size base cases, we can also sort constant-size base cases with MergeIn-
sertion. When the size of the base cases is reasonably small, we can hard-code the
MergeInsertion algorithm to get a good practical performance combined with a lower
number of comparisons than just QuickMergesort. In our experiments we also test one
variant where subarrays up to nine elements are sorted with MergeInsertion.

Remark 6.7 (Best/Worst n for MergeInsertion): For standard Mergesort, the op-
timal input sizes are powers of two. Is the same true for MergeInsertion? We know that
for the worst case, the best n are (close to) 1

3 ·2k for an integer k, which also gives the largest
value of c

(1
3 · 2k

) ≈ 1.4150 in our bound on the average case from Equation (8), which should
give a reasonable approximation.

If on the other hand n is a power of two, we have c(2k) = 1.4, which is close to – but
not exactly! – the minimal value for c(n). Thus, for powers of two the proof of Theorem 6.5
gives almost the worst bounds, so presumably these are among the worst input sizes for
MergeInsertion. This is in line with the empirical results shown in Figure 8.

Remark 6.8 (Better bounds?): Can one push the coefficient −1.3999 even further? For
the simplified version of MergeInsertion studied here, the empirical numbers from Section 7
seem to suggest that our bound is approximately tight. Moreover, there is only one step in
our analysis which is not tight (all others leading to an error term of O(logn)): to estimate
the costs of the binary search, we approximate the probability distribution of where elements
are inserted by the uniform distribution, where it actually (slightly) favors smallest indices
over larger ones. We conjecture that the difference between the approximation and the real
values is a very small linear term meaning that the actual coefficient of the linear term can
be still just above or below −1.4.
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As we can see in our experiments in Figure 9, the linear-term coefficient of the non-
simplified version of MergeInsertion seems to be noticeably below −1.4. Very recently, a
formal proof for this has been given [49], showing an upper bound of n lgn−1.4005n+O(logn)
comparisons. This is still quite far from the experimental results, but it breaks the barrier
of −1.4; (admittedly, this has mostly psychological relevance). The analysis in [49] is based
on our Theorem 6.5 and its proof.

We finally point out that the exact number of comparisons of the algorithm depends on
a (rather) small implementation detail: in the binary search, it is not completely specified
which is the first element to compare with.

6.3. Combination of (1,2)-Insertion and MergeInsertion
Iwama and Teruyama [28] propose an improvement of Insertionsort, which inserts a
(sorted) pair of elements in one shot. Their main observation is that standard binary searches
are good only if n is close to a power of two, but become more wasteful for other n. Inserting
two elements together helps in such cases.

On the other hand, MergeInsertion is much better than n lgn− 1.3999n+ o(n) when
n is close to 4

3 · 2k for an integer k (see Figure 8). By first sorting an optimal-size subarray
with MergeInsertion and then using their new (1,2)-Insertionsort for inserting the
remaining elements, Iwama and Teruyama obtain a portfolio algorithm “Combination”,
which needs n lgn− c(n) · n+O(logn) comparisons on average, where c(n) ≥ 1.4106.

Remark 6.9 (A slightly improved bound): Using the analysis in [49], we can improve
this bound slightly: [28] uses the worst-case bound for MergeInsertion for n close to 4

3 · 2k
for an integer k (which in this case equals the average-case bound in Theorem 6.5). By [49],
MergeInsertion needs at most n logn+ (3− lg 3− 1

764)n+O(log2 n) on average if n is
just above 4

3 · 2k for an integer k. This bound is by 1
764n better than the one used in [28].

Since in [28] an array of size between n/2 and n is sorted with MergeInsertion, the total
improvement compared to their analysis is (a staggering) 1

1528n ≈ 0.00065n.

The running time of the portfolio algorithm is at most O(n2) (in a naive implementation),
so that we can also use this algorithm as a base case sorter Z.

Corollary 6.10 (QuickMergesort with Base Case Combination):
Median-of-

√
n QuickMergesort with Iwama and Teruyama’s MergeInsertion/(1,2)-

Insertionsort method for base cases needs at most n lgn− 1.4112n+ o(n) comparisons
and O(n logn) other instructions on average.

In contrast to the original method of Iwama and Teruyama, QuickMergesort with their
method for base cases is an internal sorting method with O(n logn) running time.

With this present champion in terms of the average-case number of comparisons, we close
our investigation of asymptotically optimal sorting methods. In the following, we will take a
look at their actual running times on realistic input sizes.

7. Experiments
In this section, we report on studies with efficient implementations of our sorting methods.
We conducted two sets of experiments: First, we compare our asymptotic approximations
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with experimental averages for finite n to assess the influence of lower order terms for
realistic input sizes. Second, we conduct an extensive running-time study to compare
QuickMergesort with other sorting methods from the literature.

Experimental setup. We ran thorough experiments with implementations in C++ with
different kinds of input permutations. The experiments are run on an Intel Core i5-2500K
CPU (3.30GHz, 4 cores, 32KB L1 instruction and data cache, 256KB L2 cache per core
and 6MB L3 shared cache) with 16GB RAM and operating system Ubuntu Linux 64bit
version 14.04.4. We used GNU’s g++ (4.8.4); optimized with flags -O3 -march=native. For
time measurements, we used std::chrono::high_resolution_clock, for generating random
inputs, the Mersenne Twister pseudo-random generator std::mt19937. All experiments,
except those in Figure 16, were conducted with random permutations of 32-bit integers.

Implementation details. The code of our implementation of QuickMergesort as well as
the other algorithms and our running time experiments is available at https://github.com/
weissan/QuickXsort. In our implementation of QuickMergesort, we use the merging
procedure from [16], which avoids avoids branches based on comparisons altogether. We use
the partitioner from the GCC implementation of std::sort. For all running time experiments
in QuickMergesort we sort base cases up to 42 elements with StraightInsertionsort.
When counting the number of comparisons StraightInsertionsort is deactivated and
Mergesort is used down to arrays of size two. We also test one variant where base cases up
to nine elements are sorted by a hard-coded MergeInsertion variant. The median-of-

√
n

variants are always implemented with α = 1/2 (notice that different values for α make very
little difference as the pivot is almost always very close to the median). Moreover, they
switch to pseudomedian-of-25 (resp. pseudomedian-of-9, resp. median-of-3) pivot selection
for n below 20 000 (resp. 800, resp. 100).
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Figure 9: Coefficient of the linear term of the number of comparisons of MergeInsertion,
its simplified variant and Insertionsort (for the number of comparisons n lgn+bn
the value of b is displayed).
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7.1. Comparison counts
The first set of experiments uses our efficient implementations to obtain empirical estimates
for the number of comparisons used.

Base case sorters. First, we compare the different algorithms we use as base cases:
MergeInsertion, its simplified variant, and Insertionsort10. The results can be seen in
Figure 9. It shows that both Insertionsort and the simplified version of MergeInsertion
match the theoretical estimates very well. Moreover, MergeInsertion achieves results for
the coefficient of the linear term in the range of [−1.43,−1.41] (for some values of n are even
smaller than −1.43). We can see very well the oscillating linear term of Insertionsort (as
predicted in Proposition 6.3) and MergeInsertion ((8) for the simple variant).

Number of comparisons of QuickXsort variants. We counted the number of comparisons
of different QuickMergesort variants. We also include an implementation of top-down
Mergesort which agrees in all relevant details with the Mergesort part of our Quick-
Mergesort implementation. The results can be seen in Figure 10, Figure 11, and Table 5.
Here each data point is the average of 400 measurements (with deterministically chosen
seeds for the random generator) and for each measurement at least 128MB of data were
sorted – so the values for n ≤ 224 are actually averages of more than 400 runs. From the
actual number of comparisons we subtract n lgn and then divide by n. Thus, we get an
approximation of the linear term b in the number of comparisons n lgn+ bn+ o(n).
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Figure 10: Coefficient of the linear term of the number of comparisons ((comparisons −
n lgn)/n). Median-of

√
n QuickMergesort is always with α = 1/2.

In Table 5, we also show the theoretical values for b. We can see that the actual number
of comparisons matches the theoretical estimate very well. In particular, we experimentally
confirm that the sublinear terms in our estimates are negligible for the total number of
10For these experiments we use a different experimental setup: depending on the size of the arrays the

displayed numbers are averages over 10 – 10 000 runs.
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Figure 11: Detailed view of the coefficient of the linear term of the number of comparisons
((comparisons− n lgn)/n) for n ∈ [220..222]. Enlarged view of bottom part of the
plot.

Algorithm absolute empirical b theoretical b
n = 222 n = 228 n = 222 n = 228 (n→∞)

k = 1, α = 1/2 90 919 646 7 425 155 999 −0.323 −0.339± 0.037 −0.3407± 0.0119
mo3, α = 1 89 181 407 7 314 997 953 −0.737 −0.750± 0.017 −0.7456± 0.0119
mo3, α = 1/2 88 780 825 7 287 011 306 −0.833 −0.854± 0.016 −0.8476± 0.0119
mo3, α = 1/4 88 254 970 7 256 806 284 −0.958 −0.966± 0.013 −0.9560± 0.0119
mo-
√
n 87 003 696 7 177 302 635 −1.257 −1.262± 4.1 · 10−5 −1.2526± 0.0119

mo-
√
n, IS 86 527 879 7 146 103 511 −1.370 −1.379± 5.3 · 10−6 −1.3863± 0.005

mo-
√
n, MI 86 408 550 7 138 442 729 −1.399 −1.407± 4.6 · 10−6 ≤ −1.3999

Table 5: Absolute numbers of comparisons and linear term (b = (comparisons− n lgn)/n) of
QuickMergesort variants for n = 222 and n = 228. We also show the asymptotic
regime for b due to Table 2, Corollary 5.1, Corollary 6.4 and Corollary 6.6. The ±-terms
for the theoretical b represent our lower and upper bound. For the experimental b, the
±-terms are the standard error of the mean (standard deviation of the measurements
divided by the square-root of the number of measurements).
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comparisons (at least for larger values of n). The experimental number of comparisons of
QuickMergesort with MergeInsertion base cases is better than the theoretical estimate
because we analyzed only the simplified variant of MergeInsertion.

For constant-size samples we see that even with 400 measurements the plots still look a
bit bumpy, particularly for the largest inputs. Also the difference to the theoretical values is
larger for n = 228 than for n = 222 in Table 5 – presumably because the average is taken
over more measurements (see setup above). We note however that the deviations are still
within the range we could expect from the values of the standard deviation (both established
theoretically and experimentally – Table 6): for 400 runs, we obtain a standard deviation of
approximately 0.65n/

√
400 = 0.0325. Even the largest “bump” is thus only slightly over two

standard deviations.
In Figure 10, we see that median-of-

√
n QuickMergesort uses almost the same number

of comparisons as Mergesort for larger values of n. This shows that the error terms in
Theorem 4.1 are indeed negligible for practical issues. The difference between experimental
and theoretical values for median-of-

√
n QuickMergesort is due to the fact that the

bound holds for arbitrary n, but the average costs of Mergesort are actually minimal for
powers of two.

In Figure 11 we see experimental results for problem sizes which are not powers of
two. The periodic coefficients of the linear terms of Mergesort, Insertionsort and
MergeInsertion can be observed – even though these algorithms are only applied in
QuickXsort (and for the latter two even only as base cases in QuickMergesort). The
version with constant size 9 base cases seems to combine periodic terms of Mergesort
and MergeInsertion. For the median-of-three version, no significant periodic patterns are
visible. We conjecture that the higher variability of subproblem sizes makes the periodic
behavior disappear in the noise.

Standard deviation. Since not only the average running time (or number of comparisons)
is of interest, but also how far an algorithm deviates from the mean running time, we
also measure the standard deviation of the running time and number of comparisons of
QuickMergesort. For comparison we also measured two variants of Quicksort (which
has a standard deviation similar to QuickMergesort): the GCC implementation of the
C++ standard sorting function std::sort (GCC version 4.8.4) and a modified version where
the pivot is excluded from recursive calls and otherwise agreeing with std::sort. We call
the latter variant simply Quicksort as it is the more natural way to implement Quicksort.
Moreover, from both variants we remove the final StraightInsertionsort and instead
use Quicksort down to size three arrays.

In order to get a meaningful estimate of the standard deviation we need many more
measurements than for the mean values. Therefore, we ran each algorithm 40 000 times
(for every input size) and compute the standard deviation of these. Moreover, for every
measurement only one array of the respective size is sorted. For each measurement we use
a pseudo-random seed (generated with std::random_device). The results can be seen in
Table 6 and Figure 12.

In Table 6 we also compare the experiments to the theoretical values from Table 3.
Although these theoretical values are only approximate values (because Theorem 4.10 is
not applicable to QuickMergesort), they match the experimental values very well. This
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shows that increase in variance due to the periodic functions in the linear term of the average
number of comparisons is negligible.

Furthermore, we see that choosing the pivot as median-of-3 halves the standard deviation
compared to no sampling. This gives another good reason to always use at least the median-
of-3 version. While the difference between α = 1 and α = 1/2 is rather small, α = 1/4 gives a
considerably smaller standard deviation. Moreover, selecting the pivot as median-of-

√
n is far

better than median-of-3 (for N = 220 the standard deviation is only around one hundredth).
All algorithms have a rather large standard deviation of running times for small inputs

(which is no surprise because measurement imprecisions etc. play a bigger role here). There-
fore, we only show the results for n ≥ 218. Also, while QuickMergesort with α = 1/4 has
the smallest standard deviation for the number of comparisons (except median-of-

√
n) it

has the largest standard deviation for the running time for large n. This is probably due to
the fact that (our implementation of) Reinhardt’s merging method is not as efficient as the
standard merging method. Although median-of-

√
n QuickMergesort has the smallest

standard deviation of running times, the difference is by far not as large as for the number
of comparisons. This indicates that other factors than the number of comparisons are more
relevant for standard deviation of running times.

We also see that including the pivot into recursive calls in Quicksort should be avoided.
It increases the standard deviation of both the number of comparisons and the running time,
and also for the average number of comparisons (which we do not show here).

Algorithm empirical theoretical
n = 216 n = 220

Quicksort (mo3) 0.3385 0.3389 0.3390
Quicksort (std::sort, no SIS) 0.3662 0.3642 –
QuickMergesort (no sampling, α = 1/2) 0.6543 0.6540 0.6543
QuickMergesort (mo3, α = 1) 0.3353 0.3355 0.3345
QuickMergesort (mo3, α = 1/2) 0.3285 0.3257 0.3268
QuickMergesort (mo3, α = 1/4) 0.2643 0.2656 0.2698
QuickMergesort (mo-

√
n) 0.0172 0.00365 –

Table 6: Experimental and theoretical values for the standard deviation divided by n of Quick-
Mergesort and Quicksort (theoretical value for Quicksort by [24, p. 331]
and for QuickMergesort by Table 3). Recall that for QuickMergesort, the
theoretical value is only a heuristic approximation as Theorem 4.10 is not formally
applicable with periodic linear terms. In light of this, the high precision of all these
predictions is remarkable.

7.2. Running time experiments
We compare QuickMergesort and QuickHeapsort with Mergesort (our own imple-
mentations; Mergesort code is identical to the version used in QuickMergesort, but
with using an external buffer of length n/2), Wikisort [39] (in-place stable Mergesort
based on [31]), std::stable_sort (a bottom-up Mergesort, from GCC version 4.8.4),
InSituMergesort [16] (which is essentially QuickMergesort where always the median
is used as pivot), and std::sort (median-of-three Introsort, from GCC version 4.8.4).

All time measurements were repeated with the same 100 deterministically chosen seeds –
the displayed numbers are the averages of these 100 runs. Moreover, for each time measure-
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Figure 12: Standard deviation of the number of comparisons (left) and the running times
(right). For the number of comparisons, median-of-

√
n QuickMergesort and

QuickMergesort without pivot sampling are out of range.

ment, at least 128MB of data were sorted – if the array size is smaller, then for this time
measurement several arrays have been sorted and the total elapsed time measured. The
results for sorting 32-bit integers are displayed in Figure 14, Figure 13, and Figure 15, which
all contain the results of the same set of experiments – we use three different figures because
of the large number of algorithms and different scales on the y-axes.

Figure 13 compares different QuickMergesort variants to Mergesort and std::sort.
In particular, we compare median-of-3 QuickMergesort with different values of α. While
for the number of comparisons a smaller α was beneficial, it turns out that for the running
time the opposite is the case: the variant with α = 1 is the fastest. Notice, however, that
the difference is smaller than 1%. The reason is presumably that partitioning is faster than
merging: for large α the problem sizes sorted by Mergesort are reduced and more “sorting
work” is done by the partitioning. As we could expect our Mergesort implementation
is faster than all QuickMergesort variants – because it can do simply moves instead of
swaps. Except for small n, std::sort beats QuickMergesort. However, notice that for
n = 228 the difference between std::sort and QuickMergesort without sampling is only
approximately 5%, thus, can most likely be bridged with additional tuning efforts, (e.g.,
block partitioning [12]).

In Figure 14 we compare the QuickMergesort variants with base cases with Quick-
Heapsort and std::sort. While QuickHeapsort has still an acceptable speed for small n,
it becomes very slow when n grows. This is presumably due to the poor locality of memory
accesses in Heapsort. The variants of QuickMergesort with growing size base cases are
always quite slow. This could be improved by sorting smaller base cases with the respective
algorithm – but this opposes our other aim to minimize the number of comparisons. Only
the version with constant size MergeInsertion base cases reaches a speed comparable to
std::sort (as it can be seen also in Figure 13).



7. Experiments 39

210 213 216 219 222 225 228

number of elements n

2.95

3.00

3.05

3.10

3.15

3.20

tim
e
pe
rn

lg
n
[n
s]

QuickMergesort (mo-
√
n, MI up to 9 Elem)

QuickMergesort (mo-
√
n)

QuickMergesort (mo3, α = 1/4)
QuickMergesort (mo3, α = 1)

QuickMergesort (mo3, α = 1/2)
QuickMergesort (no sampling, α = 1/2)
Mergesort
std::sort

Figure 13: Running times of QuickMergesort variants, Mergesort, and std::sort
when sorting random permutations of integers.
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Figure 14: Running times of QuickMergesort variants with base cases and QuickHeap-
sort when sorting random permutations of integers.
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Figure 15: Running times when sorting random permutations of integers.

Figure 15 shows median-of-3 QuickMergesort together with the other algorithms
listed above. As we see, QuickMergesort beats the other in-place Mergesort variants
InSituMergesort and Wikisort by a fair margin. However, be aware that QuickMerge-
sort (as well as InSituMergesort) neither provides a guarantee for the worst case nor is
it a stable sorting algorithm.

Other data types. While all the previous running time measurements were for sorting
32-bit integers, in Figure 16 we also tested two other data types: (1) 32-bit integers with a
special comparison function which before every comparison computes the logarithm of the
operands, and (2) pointers to records of 40 bytes which are compared by the first 4 bytes.
Thus in both cases, comparisons are considerably more expensive than for standard integers.
Each record is allocated on the heap with new – since we do this in increasing order and
only shuffle the pointers, we expect them to reside memory in close-to-sorted order.

For both data types, QuickMergesort with constant size MergeInsertion base cases
is the fastest (except when sorting pointers for very large n). This is plausible since it combines
the best of two worlds: on one hand, it has an almost minimal number of comparisons,
on the other hand, it does not induce the additional overhead for growing size base cases.
Moreover, the bad behavior of the other QuickMergesort variants (“without” base cases)
is probably because we sort base cases up to 42 elements with StraightInsertionsort –
incurring many more comparisons (which we did not count in Section 7.1).

8. Conclusion
Sorting n elements remains a fascinating topic for computer scientists both from a theoretical
and from a practical point of view. With QuickXsort we have described a procedure to
convert an external sorting algorithm into an internal one introducing only a lower order
term of additional comparisons on average.

We examined QuickHeapsort and QuickMergesort as two examples for this construc-
tion. QuickMergesort is close to the lower bound for the average number of comparisons
and at the same time is efficient in terms of running time, even when the comparisons are
fast.
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Figure 16: Running times when sorting random permutations of ints with special comparison
function (computing the log in every comparison – left) and pointers to Records
(right). Wikisort did not run for sorting pointers and QuickMergesort with
Insertionsort base cases is out of range.

Using MergeInsertion to sort base cases of growing size for QuickMergesort, we
derive an upper bound of n lgn− 1.3999n+ o(n) comparisons for the average case. Using
the recent algorithm by Iwama and Teruyama [28], this can be improved even further
to n lgn − 1.4112n + o(n), without causing the overall operations to become more than
O(n logn). Thus, the average of our best implementation has a proven gap of at most
0.0321n+ o(n) comparisons to the lower bound. Of course, there is still room in closing the
gap to the lower bound of n lgn− 1.44n+O(logn) comparisons.

This illustrates one underlying strength of the framework architecture of QuickXsort:
by applying the transfer results as shown in this paper QuickXsort directly participates in
advances to the performance of algorithm X. Moreover, our experimental results suggest
that the bound of n lgn− 1.43n+O(logn) element comparisons may be beaten at least for
some values of n. This very close gap between the lower and upper bound manifested in the
second order (linear) term makes the sorting problem a fascinating topic and mainstay for
the analysis of algorithms in general.

We were also interested in the practical performance of QuickXsort and study variants
with smaller sampling sizes for the pivot in great detail. Besides average-cases analyses,
variances were analyzed. The established close mapping of the theoretical results with the
empirical findings should be taken as a convincing arguments for the preciseness of the
mathematical derivations.
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Open questions. Below, we list some possibilities for extensions of this work.

• By Theorem 4.1 for the average number of comparisons sample sizes of Θ(
√
n) are

optimal among all polynomial size samples. However, it remains open whether Θ(
√
n)

sample sizes are also optimal among all (also non-polynomial) sample sizes.

• In all theorems, we only use Θ (or O) notation for sublinear terms and only give upper
and lower bounds for the periodic linear terms. Exact formulas for the average number
of comparisons of QuickXsort are still open and also would be a tool to find the
exact optimal sample sizes.

• In this work, the focus was on expected behavior. Nevertheless, in practice often also
guarantees for the worst case are desired. In Theorem 4.7, we did a first step towards
such guarantees. Moreover, in [14], we examined the same approach in more detail.
Still there are many possibilities for good worst-case guarantees to investigate.

• In Theorem 4.10, we needed the technical conjecture that the variance is in O(n2)
since we only could show it for special values of k and α. Hence, it remains to find
a general proof (or disproof) that the variance is always in O(n2) for constant size
samples. This issue becomes even more interesting when fluctuations in the expected
costs of X are taken into account.

• What is the order of growth of the variance of QuickXsort for growing size samples
for pivot selection?

• We only analyzed the simplified variant of MergeInsertion. The average number of
comparisons of the original variant still is an open problem and seems rather difficult
to attack. Nevertheless, better bounds than just the simplified version should be within
reach.

• Further future research avenues are to improve the empirical behavior for large-scale
inputs and to study options for parallelization.

9. Full Proofs
In this section, we give the full details of the proofs skipped in the main text for readability.

9.1. Preliminaries
We begin by collecting preliminary results about the involved probability distributions.

9.1.1. Beta distribution

For λ, ρ ∈ R>0, a random variable X has the beta distribution X D= Beta(λ, ρ) if X admits
the density fX(z) = zλ−1(1− z)ρ−1/B(λ, ρ) where B(λ, ρ) =

∫ 1
0 z

λ−1(1− z)ρ−1 dz is the beta
function. It is a standard fact that for λ, ρ ∈ N≥1 we have

B(λ, ρ) = (λ− 1)!(ρ− 1)!
(λ+ ρ− 1)! ; (9)
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a generalization of this identity using the gamma function holds for any λ, ρ > 0 [5,
Eq. (5.12.1)].

Let us denote by h the function h : [0, 1] → R≥0 with h(x) = −x lg x. We have for a
beta-distributed random variable X D= Beta(λ, ρ) for λ, ρ ∈ N≥1 that

E[h(X)] = B(λ, ρ)
(
Hλ+ρ −Hλ

)
. (10)

This follows directly from a well-known closed form a “logarithmic beta integral” (see,
e.g., [51, Eq. (2.30)]).

∫ 1

0
ln(z) · zλ−1(1− z)ρ−1 dz = B(λ, ρ)

(
Hλ−1 −Hλ+ρ−1

)
We will make use of the following elementary properties of h later (towards applying
Lemma 9.3).

Lemma 9.1 (Elementary Properties of h): Let h : [0, 1]→ R≥0 with h(x) = −x lg(x).

(a) h is bounded by 0 ≤ h(x) ≤ lg e
e ≤ 0.54 for x ∈ [0, 1].

(b) g(x) := −x ln x = ln(2)h(x) is Hölder-continuous in [0, 1] for any exponent η ∈ (0, 1),
i.e., there is a constant C = Cη such that |g(y)− g(x)| ≤ Cη|y− x|η for all x, y ∈ [0, 1].
A possible choice for Cη is given by

Cη =
(∫ 1

0

∣∣ln(t) + 1
∣∣ 1

1−η

)1−η
(11)

For example, η = 0.99 yields Cη ≈ 37.61. �

A detailed proof for the second claim appears in [51, Lemma 2.13]. Hence, h is sufficiently
smooth to be used in Lemma 9.3.

9.1.2. Beta-binomial distribution

Moreover, we use the beta-binomial distribution, which is a conditional binomial distribution
with the success probability being a beta-distributed random variable. IfX D= BetaBin(n, λ, ρ)
then

P[X = i] =
(
n

i

)
B(λ+ i, ρ+ (n− i))

B(λ, ρ) .

Beta-binomial distributions are precisely the distribution of subproblem sizes after partition-
ing in Quicksort. We detail this in Section 9.2.1.

A property that we repeatedly use here is a local limit law showing that the normalized
beta-binomial distribution converges to the beta distribution. Using Chernoff bounds after
conditioning on the beta distributed success probability shows that BetaBin(n, λ, ρ)/n
converges to Beta(λ, ρ) (in a specific sense); but we obtain stronger error bounds for fixed
λ and ρ by directly comparing the probability density functions (PDFs). This yields the
following result; (a detailed proof appears in [51, Lemma 2.38]).

https://dlmf.nist.gov/5.12.E1
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf46
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf4b
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf66
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Lemma 9.2 (Local Limit Law for Beta-Binomial, [51]): Let (I(n))n∈N≥1 be a family
of random variables with beta-binomial distribution, I(n) D= BetaBin(n, λ, ρ) where λ, ρ ∈
{1}∪R≥2, and let fB(z) = zλ−1(1−z)ρ−1/B(λ, ρ) be the density of the Beta(λ, ρ) distribution.
Then we have uniformly in z ∈ (0, 1) that

n · P[I = bz(n+ 1)c] = fB(z) ± O(n−1), (n→∞).

That is, I(n)/n converges to Beta(λ, ρ) in distribution, and the probability weights converge
uniformly to the limiting density at rate O(n−1).

9.1.3. Transformed Chernoff bound

The standard Chernoff bound for binomial random variables is given in Appendix B. Based
on it, we can bound expectations of the form E[f(Xn )], by f(p) plus a small error term if f
is “sufficiently smooth”. Hölder-continuous (recapitulated in Appendix B) is an example for
such a criterion.

Lemma 9.3 (Expectation via Chernoff): Let p ∈ (0, 1) and X D= Bin(n, p), and let
f : [0, 1] → R be a function that is bounded by |f(x)| ≤ A and Hölder-continuous with
exponent η ∈ (0, 1] and constant C. Then it holds that

E
[
f

(
X

n

)]
= f(p) ± ρ,

where we have for any δ ≥ 0 that

ρ ≤ C

ln 2 · δ
η(1− 2e−2δ2n) + 4Ae−2δ2n

For any fixed ε > 1−η
2 , we obtain ρ = o(n−1/2+ε) as n→∞ for a suitable choice of δ.

A similar result appears in [51, Lemma 2.36] and [53, Lemma 2.7], but our application in
this paper requires a slight generalization.

Proof: By the Chernoff bound we have

P
[∣∣∣∣Xn − p

∣∣∣∣ ≥ δ
]
≤ 2u exp(−2δ2n). (12)

To use this on E
[∣∣f(Xn )− f(p)

∣∣], we divide the domain [0, 1] of Xn into the region of values
with distance at most δ from p, and all others. This yields

E
[∣∣∣∣f(Xn

)
− f(p)

∣∣∣∣] ≤
(12)

sup
ξ:|ξ|<δ

∣∣f(p+ ξ)− f(p)
∣∣ · (1− 2e−2δ2n

)
+ sup

x

∣∣f(x)− f(p)
∣∣ · 2e−2δ2n

≤
Lemma 9.1

C · δη ·
(
1− 2e−2δ2n

)
+ 2A · 2e−2δ2n.

This proves the first part of the claim.
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For the second part, we assume ε > 1−η
2 is given, so we can write η = 1 − 2ε + 4β

for a constant β > 0, and η = (1 − 2ε)/(1 − 2β′) for another constant β′ > 0. We may
further assume ε < 1

2 ; for larger values the claim is vacuous. We then choose δ = nc with
c =

(−1
2 −

1/2−ε
η

)
/2 = −1

4 − 1−2ε
4η . For large n we thus have

ρ · n1/2−ε ≤ Cδηn1/2−ε(1− 2 exp(−2δ2n)
)

+ 4An1/2−ε exp(−2δ2n)

= Cn−β︸ ︷︷ ︸
→0

·(1− 2 exp(−2nβ′)︸ ︷︷ ︸
→0

)
+ 4A exp

(
−2nβ′ + (1

2 − ε) ln(n)
)

︸ ︷︷ ︸
→0

→ 0

for n→∞, which implies the claim. �

9.2. The QuickXsort recurrence
We here give the recursive description of the expected costs c(n) of QuickXsort. Recall
that QuickXsort tries to sort the largest segment with X for which the other segment gives
sufficient buffer space. We first consider the case α = 1, in which this largest segment is
always the smaller of the two segments created.

Case α = 1. Let us consider the recurrence for c(n) (which holds for both constant and
growing size k = k(n)). We distinguish two cases: first, let α = 1. We obtain the recurrence

c(n) = x(n) ≥ 0, (for n ≤ w)
c(n) = n− k(n)︸ ︷︷ ︸

partitioning

+ s
(
k(n)

)︸ ︷︷ ︸
pivot sampling

+ E
[
JJ1 > J2K(x(J1) + c(J2))

]
+ E

[
JJ1 ≤ J2K(x(J2) + c(J1))

]︸ ︷︷ ︸
calls to X and QuickXsort (recurse)

(for n > w)

=
2∑
r=1

E[Ar(Jr)c(Jr)] + t(n)

where A1 (resp. A2) is the indicator random variable for the event “left (resp. right) segment
sorted recursively”,

A1(J1, J2) = JJ1 ≤ J2K, A2(J1, J2) = JJ2 < J1K,

and t(n) is the “toll function”

t(n) = n− k + s(k) + E[A2(J1, J2)x(J1)] + E[A1(J1, J2)x(J2)].

The expectation here is taken over the choice for the random pivot, i.e., over the segment
sizes J1 resp. J2. Note that we use both J1 and J2 to express the conditions in a convenient
form, but actually either one is fully determined by the other via J1 + J2 = n − 1. Note
how A1 and A2 change roles in recursive calls and toll functions, since we always sort one
segment recursively and the other segment by X.

General α. For α < 1, we obtain two cases: When the split induced by the pivot is
“uneven” – namely when min{J1, J2} < αmax{J1, J2}, i.e., max{J1, J2} > n−1

1+α – the smaller
segment is not large enough to be used as buffer. Then we can only assign the large segment



46 QuickXsort – A Fast Sorting Scheme in Theory and Practice

as a buffer and run X on the smaller segment. If however the split is “about even”, i.e.,
both segments are ≤ n−1

1+α we can sort the larger of the two segments by X. These cases also
show up in the recurrence of costs.

c(n) = x(n) ≥ 0, (for n ≤ w)

c(n) = (n− k) + s(k) + E
[q
J1, J2 ≤ 1

1+α(n− 1)
y
· JJ1 > J2K ·

(
x(J1) + c(J2)

)]
+ E

[q
J1, J2 ≤ 1

1+α(n− 1)
y
· JJ1 ≤ J2K ·

(
x(J2) + c(J1)

)]
+ E

[q
J2 >

1
1+α(n− 1)

y
· (x(J1) + c(J2)

)]
+ E

[q
J1 >

1
1+α(n− 1)

y
· (x(J2) + c(J1)

)]
(for n > w)

=
2∑
r=1

E[Ar(J1, J2)c(Jr)] + t(n)

where

A1(J1, J2) =
r
J1, J2 ≤ 1

1+α(n− 1)
z
· JJ1 ≤ J2K +

r
J1 >

1
1+α(n− 1)

z

A2(J1, J2) =
r
J1, J2 ≤ 1

1+α(n− 1)
z
· JJ2 < J1K +

r
J2 >

1
1+α(n− 1)

z

t(n) = n− k + s(k) + E[A2(J1, J2)x(J1)] + E[A1(J1, J2)x(J2)]

The above formulation actually covers α = 1 as a special case, so abbreviating Ar(J1, J2) by
Ar, we have in both cases

c(n) =
2∑
r=1

E[Ar c(Jr)] + t(n) (13)

t(n) = n− k + s(k) +
2∑
r=1

E[Ar x(J3−r)]. (14)

We note that the expected number of partitioning rounds is only Θ(logn) and hence also
the expected overall number of comparisons used in all pivot sampling rounds combined is
only O(k logn).

Recursion indicator variables. It will be convenient to rewrite A1 and A2 in terms of the
relative subproblem size:

A1 =
s

J1
n− 1 ∈

[ α

1 + α
,
1
2
]
∪
( 1

1 + α
, 1
]{
,

A2 =
s

J2
n− 1 ∈

[ α

1 + α
,
1
2
)
∪
( 1

1 + α
, 1
]{
.

Graphically, if we view J1/(n− 1) as a point in the unit interval, the following picture shows
which subproblem is sorted recursively for typical values of α; (the other subproblem is
sorted by X).
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Obviously, we have A1 +A2 = 1 for any choice of J1, which corresponds to having exactly
one recursive call in QuickXsort.

9.2.1. Distribution of subproblem sizes

A vital ingredient to our analyses below is to characterize the distribution of the subproblem
sizes J1 and J2.

Without pivot sampling, we have J1
D= U [0..n− 1], a discrete uniform distribution. In

this paper, though, we assume throughout that pivots are chosen as the me the median of a
random sample of k = 2t+ 1, elements, where t ∈ N0. k may or may not depend on n; we
write k = k(n) to emphasize a potential dependency.

By symmetry, the two subproblem sizes always have the same distribution, J1
D= J2. We

will therefore in the following simply write J instead of J1 when the distinction between left
and right subproblem is not important.

Combinatorial model. What is the probability P[J = j] to obtain a certain subproblem
size j? An elementary counting argument yields the result: For the pivot to rank (j+1)-st in
the input, the sample has to contain exactly t elements smaller than the pivot and t elements
larger than the pivot. There are

(n
k

)
possible choices for the k elements in the sample, among

which
(j
t

) · (n−1−j
t

)
choices make the (j + 1)-st smallest element the pivot. Thus,

P[J = j] =
(j
t

)(n−1−j
t

)(n
k

)
Note that this is 0 for j < t or j > n− 1− t, so we can always write J = I + t for a random
variable I ∈ [0..n− k] with P[I = i] = P[J = i+ t].

The following lemma can be derived by direct elementary calculations, showing that J is
concentrated around its expected value n−1

2 .

Lemma 9.4 ([4, Lemma2]): Let 0 < δ < 1
2 . If we choose the pivot as median of a random

sample of k = 2t+ 1 elements where k ≤ n
2 , then the rank of the pivot R = J1 + 1 satisfies

P
[
R ≤ n

2 − δn
]
< kρt and P

[
R ≥ n

2 + δn
]
< kρt

where ρ = 1− 4δ2 < 1. �
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Uniform model. There is a second view on the distribution of J that will turn out convenient
for our analysis. Here, our input consists of n real numbers drawn i.i.d. uniformly from (0, 1).
Since our algorithms are comparison based and the ranks of these numbers form a random
permutation almost surely, this assumption is without loss of generality for expected-case
considerations.

The vital aspect of this uniform model is that we can separate the value P ∈ (0, 1) of
the (first) pivot from its rank R ∈ [1..n]. In particular, P only depends on the values in
the random sample, whereas R necessarily depends on the values of all elements in the
input. It is a well-known result that the median of a sample of U(0, 1) random variates has
a beta distribution: P D= Beta(t+ 1, t+ 1). Indeed, the density of the beta distribution is
proportional to xt(1− x)t, which is the probability to have t of the U(0, 1) elements ≤ x and
t elements ≥ x (for a given value x of the sample median).

Now suppose the pivot value P is fixed. Then, conditional on P , all further (non-sample)
elements fall into the categories “smaller than P” resp. “larger than P” independently and
with probability P resp. 1 − P (almost surely there are no duplicates). Apart from the t
small elements from the sample, J1 precisely counts how many elements are less than P , so
we can write J1 = I1 + t where I1 is the number of elements that turned out to be smaller
than the pivot during partitioning.

Since each of the n − k non-sample elements is smaller than P with probability P
independent of all other elements, we have conditional on P that I1

D= Bin(n − k, P ). If
we drop the conditioning on P , we obtain the so-called beta-binomial distribution: I1

D=
BetaBin(n− k, t+ 1, t+ 1). By “integrating P out”, we obtain the probabilities as given in
Section 9.1.2; (for the explicit calculation, see [15]).

The uniform model is convenient since it allows to compute expectations involving J by
first conditioning on P , and then in a second step also taking expectations w.r.t. P , formally
using the law of total expectation. In the first step, we can make use of the simple Chernoff
bounds for the binomial distribution (Lemma B.3) instead of Lemma 9.4. The second step
is often much easier than the original problem and can use known formulas for integrals,
such as the ones given in Section 9.1.1. An easy calculation shows that, indeed, both models
yield the same probability for P[J = j].

9.3. Transfer theorem for growing sample sizes
In this section, we prove our asymptotic transfer theorem for the recurrence (13), thereby
expressing the expected costs of median-of-k(n) QuickXsort in terms of the costs of X.
Proof of Theorem 4.1: Let c(n) denote the average number of comparisons performed
by QuickXsort on an input array of length n and let x(n) = an lgn + bn ± ξ(n) with
ξ(n) ∈ o(n) be (upper and lower) bounds for the average number of comparisons performed
by the algorithm X on an input array of length n. Without loss of generality we may assume
that ξ(n) is monotone.

Let A1 be the indicator random variable for the event “left segment sorted recursively”
and A2 = 1−A1 similarly for the right segment. Recall that c(n) fulfills the recurrence

c(n) =
2∑
r=1

E[Ar c(Jr)] + t(n), where

t(n) = n− k(n) + s
(
k(n)

)
+

2∑
r=1

E[Ar x(J3−r)]



9. Full Proofs 49

and J1 and J2 are the sizes for the left resp. right segment created in the first partitioning
step and s(k) ∈ Θ(k) is the expected number of comparisons to find the median of the
sample of k elements.

9.3.1. Recurrence for the difference

To prove our claim, we will bound the difference c′(n) = c(n)− x(n); it satisfies a recurrence
very similar to the one for c(n): Recall (Equation (5) on page 17) that

c′(n) = E
[
A1 c

′(J1)
]

+ E
[
A2 c

′(J2)
]

+ n− k(n) + s
(
k(n)

)
+ E

[
x(J1)

]
+ E

[
x(J2)

]− x(n)︸ ︷︷ ︸
t′(n)

.

9.3.2. Approximating the toll function

The first step to bound c′(n) is a precise statement about the (asymptotic) behavior of the
residual toll function t′(n) given in Lemma 4.2 (page 18), which we now prove.

Proof of Lemma 4.2: We start with the simple observation that

J lg J = J
(
lg(Jn ) + lgn

)
= n ·

(
J
n lg J

n + J
n lgn

)
= J

n n lgn + J
n lg

(
J
n

)
n. (15)

With that, we can simplify t′(n) to (recall s(k) ∈ Θ(k))

t′(n) = n− k(n) + s
(
k(n)

)
+

2∑
r=1

E
[
aJr lg Jr + bJr ± ξ(Jr)

]− x(n)

= n +
2∑
r=1

(
aE[Jr] lgn+ aE[Jrn lg(Jrn )]n+ bE[Jr]± ξ(n)

)
− x(n) + Θ(k(n))

= n +
(
an lgn±O(logn)

)
+ 2aE

[
J1
n lg(J1

n )
]
n+ (bn±O(1))± 2ξ(n)

− (an lgn+ bn± ξ(n)
)

+ Θ(k(n))

=
(

1 + 2aE
[
J1
n lg(J1

n )
])
n + Θ

(
k(n)

)±O(ξ(n)) (16)

The expectation E
[
J1
n lg(J1

n )
]

= −E[h(J1/n)] is almost of the form addressed in Lemma 9.3
when we write the beta-binomial distribution of J1 as the mixed distribution J1 = t(n) + I1,
where I1

D= BetaBin(n−k, t+1, t+1): we only have to change the argument from −E[h(J1/n)]
to −E[h(I1/(n− k))]. The first step is to show that this can be done with a sufficiently small
error. For brevity we write J (resp. I) instead of J1 (resp. I1).

Let δ = δ(n) = 1/ 4
√
k(n). Thus, by Lemma 9.4 and 1 + x ≤ exp(x), we obtain

P[J ≤ (1/2− δ)n] ≤ k(n) ·
(

1− 4 · 1√
k(n)

)(k(n)−1)/2

≤ k(n) · exp
(
−2(k(n)− 1)√

k(n)

)
≤ k(n) · exp

(−√k(n)
)

= O(k(n)−2). (17)
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Notice that better bounds are easily possible, but do not affect the result. We need to
change the argument in the expectation from J/n to I/(n− k) where J = I + t. The idea
is that we split the expectation into two ranges: one for J ∈ {d(1

2 − δ)ne, . . . , b(1
2 + δ)nc}

and one outside. By Equation (17), the outer part has negligible contribution. For the inner
part, we will now show that the difference between J/n and I/(n− k) is very small. So let
j ∈ {d(1

2 − δ)ne, . . . , b(1
2 + δ)nc} and write j = i+ t. Then it holds that

j

n
− i

n− k = j(n− k)− (j − t)n
n(n− k) = tn− jk

n(n− k)

=
t− k · (1

2 ± (δ + 1
n)
)

n− k (because j = n/2± (δn+ 1))

=
−1

2 ± k(δ + 1
n)

n− k = O
(
k3/4

n

)
(because k = 2t+ 1)

(Note that this difference is Ω(k/n) for unrestricted values of j; only for the region close to
n/2, the above bound holds.)

Now, recall from Lemma 9.1 that h is Hölder-continuous for any exponent η ∈ (0, 1)
with Hölder constant Cη/ ln 2. Thus, |h(y)− h(z)| = O

((
k(n)3/4

n

)η)
for y, z ∈ [0, 1] with

|y − z| = O(k(n)3/4

n

)
. We use this observation to show:

E[−h(J/n)] = −
n∑
j=0

P[J = j]h(j/n)

=
Lemma 9.1–(a)

−
d(1/2+δ)ne∑
j=b(1/2−δ)nc

P[J = j] · h
(
j
n

)
± 2P

[
J ≤ (1/2− δ)n] · lg e

e

=
Hölder-cont.

−
d(1/2+δ)ne∑
j=b(1/2−δ)nc

P[J = j] · h
(
j−t
n−k

)
± 2P

[
J ≤ (1/2− δ)n] · lg e

e
± O

((
k(n)3/4

n

)η)

=
Lemma 9.1–(a)

−
n∑
j=0

P[J = j] · h
(
j−t
n−k

)
± 4P

[
J ≤ (1/2− δ)n] · lg e

e
± O

((
k(n)3/4

n

)η)
=
(17)

E
[

I
n−k lg( I

n−k )
]
± O

(
1

k(n)2 +
(
k(n)3/4

n

)η)
. (18)

Thus, it remains to examine E[−h(I/(n− k))] further. By the definition of the beta
binomial distribution, we have I D= Bin(n− k(n), P ) conditional on the value of the pivot
P D= Beta(t(n) + 1, t(n) + 1) (see Section 9.2.1). So we apply Lemma 9.3 on the conditional
expectation to get for any ζ ≥ 0:

E
[
h
(

I
n−k

) ∣∣∣ P ] = h(P )± ρ

where

ρ = Cη
ln 2 · ζ

η
(
1− 2e−2ζ2(n−k(n))

)
+ 4lg e

e
e−2ζ2(n−k(n)).
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By Equation (10) and the asymptotic expansion of the harmonic numbers (see, e.g., [23,
Eq. (9.89)]), we find

E
[
−h
(

I
n−k

)]
= −E[h(P )]± ρ

=
(10)
−

1
2(Hk(n)+1 −H(k(n)+1)/2)

ln 2 ± ρ

= −1
2 ·

ln 2−Θ(1/k(n))
ln 2 ± ρ

and using the choice for ζ from Lemma 9.3

= −1
2 +Θ

(
k(n)−1) ± O(n−1/2+ε)

for any fixed ε ∈ (0, 1
2) with ε > 1−η

2 (recall that still ε can be an arbitrarily small constant).
Together with (16) and (18) this allows us to estimate t′(n). Here, we set ε′ = 1− η:

t′(n) = (1− a)n + Θ
(
k(n) + n

k(n)

)
± O

(
ξ(n) +

√
n · nε + n

k(n)2 + k(n)3/4 · ( n

k(n)3/4

)ε′)
replacing ε and ε′ by their maximum, we obtain for any small enough ε > 0, that

t′(n) = (1− a)n + Θ
(
k(n) + n

k(n)

)
± O

(
ξ(n) + nε ·

(√
n+ k(n)3/4

)
+ n

k(n)2

)
= (1− a)n + Θ

(
k(n) + n

k(n)

)
± O

(
ξ(n) + n1/2+ε

)
.

To see the last step, let us verify that nεk(n)3/4 = O(n1/2+ε)+o(k(n)): we write N = N1∪N2
with N1 = {n ∈ N | k(n) ≤ √n } and N1 = {n ∈ N | k(n) ≥ √n }. For n ∈ N1 clearly we
have nεk(n)3/4 ≤ n1/2+ε. For n ∈ N2, we have 4

√
k(n) ≥ 8√n ≥ nε+ε

′′ for some small
ε′′ > 0 (here we need that ε is small); thus, nεk(n)3/4 ≤ k(n)n−ε′′ . Altogether, we obtain
nεk(n)3/4 = O(n1/2+ε) + o(k(n)).

In the case that a = 1, k(n) = Θ(nκ) for κ ∈ (0, 1) and ξ(n) = O(nδ) for δ ∈ [0, 1), we
have

t′(n) = Θ
(
nmax{κ,1−κ}

)
± O

(
nmax{δ,12 +ε}

)
That concludes the proof of Lemma 4.2. �

Note that t′(n) can be positive or negative (depending on x(n)), but the Θ-bound is
definitively a positive term, and it will be minimal for k(n) ∼ √n. Now that we know the
order of growth of t′(n), we can proceed to our recurrence for the difference c′(n).

9.3.3. Bounding the difference

The final step is to bound c′(n) from above. Recall that by (5), we have c′(n) = E
[
A1 c(J1)

]
+

E
[
A2 c′(J2)

]
+ t′(n). For the case a > 1, Lemma 4.2 tells us that t′(n) is eventually negative

and asymptotic to (1− a)n. Thus c′(n) is eventually negative, as well, i.e., c(n) ≤ x(n) for
large enough n. The claim follows.

We therefore are left with the case a = 1. Lemma 4.2 only gives us a bound in that case
and certainly t′(n) = o(n). The fact that t′(n) can in general be positive or negative and
need not be monotonic, makes solving the recurrence for c′(n) a formidable problem. Since
we are only interested in an upper bound, we can use the recursion-tree-style result stated
in Lemma 4.3 (page 18), which we now prove.
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Proof of Lemma 4.3: Since t̂(n) is non-negative and monotonically increasing, so is ĉ(n)
and we can bound

ĉ(n) ≤ E
[
ĉ(max{J1, J2})

]
+ t̂(n).

Let us abbreviate Ĵ = max{J1, J2}. For given constant β ∈ (1
2 , 1), we have by the law of

total expectation and monotonicity of ĉ that

ĉ(n) ≤ E
[
ĉ(Ĵ)

]
+ t̂(n)

= E
[
ĉ(Ĵ)

∣∣ Ĵ ≤ βn] · P[Ĵ ≤ βn] + E
[
ĉ(Ĵ)

∣∣ Ĵ > βn
] · P[Ĵ > βn

]
+ t̂(n)

≤ P
[
Ĵ ≤ βn] · ĉ(βn) + P

[
Ĵ > βn

] · ĉ(n) + t̂(n).

For fixed β > 1
2 , we can bound P

[
Ĵ ≤ βn] ≥ C > 0 for a constant C and all large enough n.

Hence for n large enough,

ĉ(n) ≤ P
[
Ĵ ≤ βn]

1− P
[
Ĵ > βn

] · ĉ(βn) + 1
1− P

[
Ĵ > βn

] · t̂(n)

≤ ĉ(βn) + 1
C
· t̂(n).

Iterating the last inequality dlog1/β(n)e times, we find ĉ(n) ≤ 1
C

∑dlog1/β(n)e
i=0 t̂(nβi). �

We can apply this lemma if we replace t′(n) by t̂(n) := maxm≤n |t′(m)|, which is both
non-negative and monotone. We clearly have t′(n) ≤ t̂(n) by definition. Moreover, if
t′(n) = O(g(n)) for a monotonically increasing function g, then also t̂(n) = O(g(n)), and
the same statement holds with O replaced by o.

Now let ĉ(n) be defined by the recurrence ĉ(n) = E
[
A1 ĉ(J1)

]
+E

[
A2 ĉ(J2)

]
+ t̂(n). Then,

we have |c′(n)| ≤ ĉ(n). We will now bound ĉ(n).

9.3.4. o(n) bound

We first show that ĉ(n) = o(n). By Lemma 4.2 we have t′(n) = o(n), and by the above
argument also t̂(n) = o(n). Since t̂(n) ∈ o(n), we know that for every ε > 0, there is some
Nε ∈ N such that for n ≥ Nε, we have t̂(n) ≤ nε. Let Dε = ∑Nε

i=0 t̂(i). Then, for any
β ∈ (1

2 , 1) by Lemma 4.3 there is some constant C such that for all n we have

|c′(n)| ≤ ĉ(n) ≤ C

dlog1/β(n)e∑
i=0

t̂(nβi) ≤ Dε + C

dlog1/β(n)e∑
i=0

εβin ≤ CDε + ε′n

for ε′ := C
1−β · ε ≥ Cε

∑dlog1/β(n)e
i=0 βi. Since we can hence find a suitable ε = ε(ε′) > 0 for

any given ε′ > 0, the above inequality holds for all ε′ > 0, and therefore ĉ(n) = o(n) holds.
This proves the first part of Theorem 4.1.

9.3.5. Refined bound

Now, consider the case that k(n) = Θ(nκ) for κ ∈ (0, 1) and ξ(n) ∈ O(nδ) with δ ∈ [0, 1).
Then, by Lemma 4.2, we have t′(n) = O(nγ) for some γ ∈ (0, 1), i.e., there is some constant
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Cγ such that t′(n) ≤ Cγnγ +O(1). By Lemma 4.3, we obtain

c′(n) ≤
dlog1/β(n)e∑

i=0
Cγ(nβi)γ +O(1) ≤ Cγn

γ
∑
i≥0

(βγ)i +O(1) = O(nγ).

Moreover, if t′(n) ∈ Θ(nγ) (the case that max{κ, 1 − κ} > max{δ, 1
2 + ε} in Lemma 4.2),

then also c′(n) ∈ Θ(nγ) as c′(n) ≥ t′(n). This concludes the proof of the last part of
Theorem 4.1. �

9.4. Large deviation and worst-case bounds
In this section, we prove our results on the likelihood of large deviations in the cost of
median-of-

√
n QuickXsort, and for the influence of median-of-medians pivot selection to

obtain strong worst-case guarantees.

Proof of Proposition 4.5: Let n be the size of the input. We say that we are in a good
case if an array of size m is partitioned in the interval [m/4..3m/4], i.e., if the pivot rank is
chosen in that interval. We can obtain a bound for the desired probability by estimating
the probability that we are always in such a good case until the array contains only

√
n

elements. For smaller arrays, we can assume an upper bound of
√
n

2 = n comparisons for
the worst case.

If we are always in a good case, all partitioning steps sums up to less than n ·∑i≥0(3/4)i =
4n comparisons. However, we also have to consider the number of comparisons required to
find the pivot element. At any stage the pivot is chosen as median of at most

√
n elements.

Since the median can be determined in linear time, for all stages together this sums up to
less than n comparisons if we are always in a good case and n is large enough. Finally, for all
the sorting phases with X, we need at most xwc(n) comparisons in total (that is only a rough
upper bound which could be improved). Hence, we need at most xwc(n) + 6n comparisons if
always a good case occurs.

Now, we only have to estimate the probability that always a good case occurs. By
Lemma 9.4, the probability for a good case in the first partitioning step is at least 1 −
d · √n · (3/4)

√
n for some constant d. We have to choose log3/4(

√
n/n) < 1.21 lgn times

a pivot in the interval [m/4..3m/4], then the array has size less than
√
n. We only have

to consider partitioning steps where the array has size greater than
√
n (if the size of the

array is already less than
√
n we define the probability of a good case as 1). Hence, for each

of these partitioning steps we obtain that the probability for a good case is greater than
1− d · 4√n · (3/4)

4√n. Therefore, we obtain

P[always good case] ≥
(
1− d · 4√n · (3/4)

4√n
)1.21 lg(n)

≥ 1− 1.21 lg(n) · d · 4√n · (3/4)
4√n

by Bernoulli’s inequality. For n large enough we have 1.21 lg(n) · d · 4√n · (3/4)
4√n ≤

(3/4 + ε) 4√n. �

Proof of Theorem 4.7: It is clear that the worst case is n lgn+O(n) comparisons since
there can be at most max{2 lgn, log1/2+δ n} rounds of partitioning (by the additional
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requirement, pivot selection takes at most linear time). Thus, it remains to consider
the average case – for which we follow the proof of Theorem 4.1. We say a pivot choice is
“bad” if the next pivot is selected as median of the whole array (i.e., if J1 ≤ (1/2− δ)n or
J2 ≤ (1/2− δ)n), otherwise we call the pivot “good”.

The difference to the situation in Theorem 4.1 is that now we have four segments to
distinguish instead of two: let A′1 be the indicator random variable for the event “left segment
sorted recursively” and A′2 similarly for the right segment – both for the case that the pivot
was good. Likewise, let A′′1 be the indicator random variable for the event “left segment
sorted recursively ” and A′′2 = 1−A′1 −A′2 −A′′1 “right segment sorted recursively” in the
case that the pivot was bad. Then, A1 = A′1 +A′′1 is the indicator random variable for the
event “left segment sorted recursively” and A2 = A′2 +A′′2 the same for the right segment.
Let c(n) denote the average number of comparisons of median-of-k(n) QuickXsort with
median-of-medians fallback pivot selection and c̃(n) the same but in the case that the first
pivot is selected with the median-of-medians algorithms. We obtain the following recurrence

c(n) = n− k(n)︸ ︷︷ ︸
partitioning

+ s
(
k(n)

)︸ ︷︷ ︸
pivot sampling

+ E
[
A′1 ·

(
c(J1) + x(J2)

)
+ A′2 ·

(
c(J2) + x(J1)

)]

+ E
[
A′′1 ·

(
c̃(J1) + x(J2)

)
+ A′′2 ·

(
c̃(J2) + x(J1)

)]
=

2∑
r=1

E[Ar c(Jr)] + t(n), where

t(n) = n− k(n) + s
(
k(n)

)
+

2∑
r=1

E[Ar x(Jr)] +
2∑
r=1

E[A′′r+2 (c̃(Jr)− c(Jr))].

As before s(k) is the number of comparisons to select the median from the k sample elements
and J1 and J2 are the sizes for the left resp. right segment created in the first partitioning
step. Since n logn − O(n) ≤ c̃(n) ≤ cwc(n) and cwc(n) = n logn + O(n), it follows that
c̃(n)− c(n) ∈ O(n). By Lemma 9.4 we have P[A′′1],P[A′′2] ∈ o(1). Thus,

ζ(n) :=
2∑
r=1

E[A′′r (c̃(Jr)− c(Jr))] ∈ o(n).

As for Theorem 4.1 we now consider c′(n) = c(n)− x(n) yielding

c′(n) = n− k(n) + s
(
k(n)

)
+ E

[
A1 ·

(
c′(J1) + x(J1) + x(J2)

)]
+ E

[
A2 ·

(
c′(J2) + x(J2) + x(J1)

)]
+ ζ(n) − x(n)

= E
[
A1 c

′(J1)
]

+ E
[
A2 c

′(J2)
]

+ t′(n)

for t′(n) = n− k(n) + s
(
k(n)

)
+ E

[
x(J1)

]
+ E

[
x(J2)

]
+ ζ(n)− x(n). Now the proof proceeds

exactly as for Theorem 4.1. �

9.5. Transfer theorem for fixed sample sizes
In this section, we prove our transfer theorem for median-of-k QuickXsort for k a fixed
constant.11
11Although the statement of our theorem is the same as for [52, Theorem 5.1], our proof here is significantly

shorter than the one given there. By first taking the difference c(n) − x(n), we turn the much more

https://www.wild-inter.net/publications/html/wild-2018a.pdf.html#pf5
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Proof of Theorem 4.8: Recall that c(n) denotes the expected number of comparisons
performed by QuickXsort. With x(n) = an lgn + bn ± ξ(n) for a monotonic function
ξ(n) = O(n1−ε), the same arguments as in the proof of Theorem 4.1 lead to

t′(n) =
(

1 + 2aE
[
J1
n lg(J1

n )
])
n + Θ

(
s(k(n))

)±O(ξ(n)) (16) revisited

=
(

1 + 2aE
[
J
n lg(Jn )

])
n ± O(n1−ε). (6) revisited

We will first derive an asymptotic approximation for t′(n), before we apply Roura’s continuous
master theorem (CMT, Theorem B.4) to solve the recurrence for c′(n).

9.5.1. Approximation by beta integrals

We begin by proving our beta-integral approximation.

Proof of Lemma 4.9: By the local limit law for beta binomials (Lemma 9.2), it is plausible
to expect a reasonably small error when we replace E

[
J lg J

]
by E

[
(Pn) lg(Pn)

]
where

P D= Beta(λ, ρ) is beta distributed. We bound the error in the following.
We first replace J by I D= BetaBin(n, λ, ρ) and argue later that this results in a sufficiently

small error.

E
[
I
n ln

(
I
n

)]
=

n∑
i=0

i
n ln

(
i
n

) · P[I = i]

= 1
n

n∑
i=0

i
n ln

(
i
n

) · nP[I = i]

=
Lemma 9.2

1
n

n∑
i=0

i
n ln i

n ·
((i/n)λ−1(1− (i/n))ρ−1

B(λ, ρ) ± O(n−1)
)

= − 1
B(λ, ρ) ·

1
n

n∑
i=0

f(i/n) ± O(n−1),

where f(z) = ln(1/z) · zλ(1 − z)ρ−1. Since the derivative is ∞ for z = 0, f cannot be
Lipschitz-continuous, but it is Hölder-continuous on [0, 1] for any exponent η ∈ (0, 1). This is
because z 7→ z ln(1/z) is Hölder-continuous (Lemma 9.1–(b)), products of Hölder-continuous
function remain so on bounded intervals and the remaining factor of f is a polynomial in z,
which is Lipschitz- and hence Hölder-continuous. By Lemma B.1 we then have

1
n

n∑
i=0

f(i/n) =
∫ 1

0
f(z) dz ± O(n−η).

Note that we can choose η as close to 1 as we wish; this will only affect the constant inside
O(n−η).

Changing from I back to J has no influence on the given approximation: To compensate
for the difference in the number of trials (n− c1 instead of n), we use the above formulas
for n− c1 instead of n; since we let n go to infinity anyway, this does not change the result.

complicated terms E[Arx(J3−r)] from t(n) into the simpler E[x(Jr)] in t′(n), which allows us to entirely
omit [52, Lemma E.1].

https://www.wild-inter.net/publications/html/wild-2018a.pdf.html#pf11
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Moreover, replacing I by I + c2 changes the value of the argument z = I/n of f by O(n−1);
since z 7→ z ln(1/z) is smooth, namely Hölder-continuous, this also changes z ln(1/z) by at
most O(n−η).

It remains to evaluate the beta integral; it is given in Equation (10). Inserting, we find

E[Jn ln J
n ] = E[ In ln I

n ] ± O(n−η)

= λ

λ+ ρ

(
Hλ −Hλ+ρ

) ± O(n−η)

for any η ∈ (0, 1). �

Remark 9.5 (General beta-integral approximation): The above technique directly
extends to E[g(Jn )] for any Hölder-continuous function g. For computing the variance in
Section 4.4, we will have to deal with more complicated functions including the indicator
variables A1(J1, J2) resp. A2(J1, J2). As long as g is piecewise Hölder-continuous, the same
arguments and error bounds apply: We can break the sums resp. integrals into several
parts and apply the above approximation to each part individually. The indicator variables
simply translate into restricted bounds of the integral. For example, we obtain for constants
0 ≤ x ≤ y ≤ 1 that

E
[
Jxn ≤ J ≤ ynK · J lg J

]
= λ

λ+ ρ
Ix,y(λ+ 1, ρ) · n lgn ± O(n), (n→∞).

9.5.2. The toll function

Building on the preparatory work from Lemma 4.9, we can easily determine an asymptotic
approximation for the toll function. We find

t′(n) =
(

1 + 2aE
[
J
n lg(Jn )

])
n ± O(n1−ε)

=
(

1 + 2a
E
[
J
n ln(Jn )

]
ln 2

)
n ± O(n1−ε)

=
Lemma 4.9

(
1 + 2a

ln 2

(
t+ 1

2(t+ 1)(Ht+1 −H2t+2)±O(n−η)
))

n ± O(n1−ε)

=
(

1− a
(
Hk+1 −Ht+1

)
ln 2

)
︸ ︷︷ ︸

q̂

n ± O(n1−ε + n1−η). (19)

9.5.3. The shape function

Towards applying Roura’s CMT, we first rewrite our recurrence in the form required by the
theorem.

The expectations E[Ar c′(Jr)] in Equation (5) (and in the same way for the original costs
in Equation (13)) are finite sums over the values 0, . . . , n− 1 that J := J1 can attain. Recall
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that J2 = n− 1− J1 and A1 +A2 = 1 for any value of J . With J = J1
D= J2, we find

2∑
r=1

E[Ar(Jr)c(Jr)] = E
[s

J

n− 1 ∈
[ α

1 + α
,
1
2
]
∪
( 1

1 + α
, 1
]{
· c(J)

]

+ E
[s

J

n− 1 ∈
[ α

1 + α
,
1
2
)
∪
( 1

1 + α
, 1
]{
· c(J)

]

=
n−1∑
j=0

wn,j · c(j), where

wn,j = P[J = j] ·
r

j
n−1 ∈ [ α

1+α ,
1
2 ] ∪ ( 1

1+α , 1]
z

+ P[J = j] ·
r

j
n−1 ∈ [ α

1+α ,
1
2) ∪ ( 1

1+α , 1]
z

=


2 · P[J = j] if j

n−1 ∈ [ α
1+α ,

1
2) ∪ ( 1

1+α , 1]
1 · P[J = j] if j

n−1 = 1
2

0 otherwise.

We thus have a recurrence of the form required by the CMT with the weights wn,j from
above. Figure 17 shows a specific example for how these weights look like.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

z

n · wn,zn vs. w(z) (n = 51, k = 3)

Figure 17: The weights wn,j (circles) for n = 51, t = 1 and α = 1
2 and the corresponding

shape function w(z) (fat gray line); note the singular point at j = 25.

It remains to determine P[J = j]. Recall that we choose the pivot as the median of
k = 2t+ 1 elements for a fixed constant t ∈ N0, and the subproblem size J fulfills J = t+ I
with I D= BetaBin(n− k, t+ 1, t+ 1). So we have for i ∈ [0, n− 1− t] by definition

P[I = i] =
(
n− k
i

)
B
(
i+ t+ 1, (n− k − i) + t+ 1

)
B(t+ 1, t+ 1)

=
(
n− k
i

)
(t+ 1)i(t+ 1)n−k−i

(k + 1)n−k
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The next step towards applying the CMT is to identify a shape function w(z) that ap-
proximates the relative subproblem size probabilities w(z) ≈ nwn,bznc for large n. Now the
local limit law for beta binomials (Lemma 9.2) says that the normalized beta binomial I/n
converges to a beta variable “in density”, and the convergence is uniform. With the beta
density fP (z) = zt(1− z)t/B(t+ 1, t+ 1), we thus find by Lemma 9.2 that

P[J = j] = P[I = j − t] = 1
n
fP (j/n) ± O(n−2), (n→∞).

The shift by the small constant t from (j − t)/n to j/n only changes the function value by
O(n−1) since fP is Lipschitz continuous on [0, 1] (see Section B.1).

With this observation, a natural candidate for the shape function of the recurrence is

w(z) = 2
r

α
1+α < z < 1

2 ∨ z > 1
1+α

z zt(1− z)t
B(t+ 1, t+ 1) . (20)

It remains to show that this is indeed a suitable shape function, i.e., that w(z) fulfills
Equation (28), the approximation-rate condition of the CMT.

We consider the following ranges for bzncn−1 = j
n−1 separately:

• bznc
n−1 <

α
1+α and 1

2 <
bznc
n−1 <

1
1+α .

Here wn,bznc = 0 and so is w(z). So actual value and approximation are exactly the
same.

• α
1+α <

bznc
n−1 <

1
2 and bzncn−1 >

1
1+α .

Here wn,j = 2P[J = j] and w(z) = 2fP (z) where fP (z) = zt(1 − z)t/B(t + 1, t + 1)
is twice the density of the beta distribution Beta(t+ 1, t+ 1). Since fP is Lipschitz-
continuous on the bounded interval [0, 1] (it is a polynomial) the uniform pointwise
convergence from above is enough to bound the sum of

∣∣wn,j −∫ (j+1)/n
j/n w(z) dz

∣∣ over
all j in the range by O(n−1).

• bznc
n−1 ∈ { α

1+α ,
1
2 ,

1
1+α}.

At these boundary points, the difference between wn,bznc and w(z) does not vanish (in
particularly 1

2 is a singular point for wn,bznc), but the absolute difference is bounded.
Since this case only concerns 3 out of n summands, the overall contribution to the
error is O(n−1).

Together, we find that Equation (28) is fulfilled as claimed:
n−1∑
j=0

∣∣∣∣wn,j − ∫ (j+1)/n

j/n
w(z) dz

∣∣∣∣ = O(n−1) (n→∞). (21)

Remark 9.6 (Relative subproblem sizes): The integral
∫ 1

0 zw(z) dz is precisely the ex-
pected relative subproblem size for the recursive call. This is of independent interest; while
it is intuitively clear that for t→∞, i.e., the case of exact medians as pivots, we must have
a relative subproblem size of exactly 1

2 , this convergence is not obvious from the behavior for
finite t: the mass of the integral

∫ 1
0 zw(z) dz concentrates at z = 1

2 , a point of discontinuity
in w(z). It is also worthy of note that for, e.g., α = 1

2 , the expected subproblem size is
initially larger than 1

2 (0.694 for t = 0), then decreases to ≈ 0.449124 around t = 20 and
then starts to slowly increase again (see Figure 18). This effect is even more pronounced for
α = 1

4 .
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0 10 20 30 40 50 60 70 80 90
0.4

0.5

0.6

0.7

t

relative subproblem size

α = 1
α = 1

2
α = 1

4

Figure 18:
∫ 1

0 zw(z) dz, the relative recursive subproblem size, as a function of t.

9.5.4. Which case of the CMT?

We are now ready to apply the CMT (Theorem B.4). Assume that a 6= ln 2/(Hk+1 −Ht+1);
the other (special) case will be addressed later. Then by Equation (19) our toll function
fulfills t′(n) ∼ q̂n for q̂ =

(
1 − a(Hk+1 −Ht+1)/ln 2

)
. Thus, we have σ = 1, τ = 0 and

K = q̂ 6= 0 and we compute

H = 1−
∫ 1

0
z w(z) dz

= 1−
∫ 1

0
2

r
α

1+α < z < 1
2 ∨ z > 1

1+α

z zt+1(1− z)t
B(t+ 1, t+ 1) dz

= 1− 2 t+ 1
k + 1

∫ 1

0

r
α

1+α < z < 1
2 ∨ z > 1

1+α

z zt+1(1− z)t
B(t+ 2, t+ 1) dz

= 1−
(
I α

1+α ,
1
2
(t+ 2, t+ 1) + I 1

1+α ,1
(t+ 2, t+ 1)

)
= I0, α

1+α
(t+ 2, t+ 1) + I 1

2 ,
1

1+α
(t+ 2, t+ 1) (22)

For any sampling parameters, we have H > 0, so by Case 1 of Theorem B.4, we have that

c′(n) ∼ t′(n)
H

∼ q̂n

H
= qn, (n→∞).

Special case for a. If a = ln 2/(Hk+1−Ht+1), i.e., q̂ = 0, then t′(n) = O(n1−ε). Then the
claim follows from a coarser bound for c′(n) = O(n1−ε + logn) which can be established by
the same arguments as in the proof of Theorem 4.1.

9.5.5. Error bound

Since our toll function is not given precisely, but only up to an error term O(n1−ε) for a
given fixed ε ∈ (0, 1], we also have to estimate the overall influence of this term. For that
we consider the recurrence for c(n) again, but replace t(n) (entirely) by C · n1−ε. If ε > 0,
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∫ 1
0 z

1−εw(z) dz <
∫ 1

0 w(z) dz = 1, so we still find H > 0 and apply case 1 of the CMT. The
overall contribution of the error term is then O(n1−ε). For ε = 1, we have H = 0 and case 2
applies, giving an overall error term of O(logn).

This completes the proof of Theorem 4.8. �

9.6. Transfer theorem for the variance

In this section, we give the detailed computations for the transfer theorem for the variance
of median-of-k QuickXsort.

Proof of Theorem 4.10: We begin by deriving a recurrence for the variance, which we then
solve using the CMT. The overall plan is similar as for Theorem 4.8, but the computations
become more involved.

9.6.1. Distributional recurrence

We can precisely characterize the distribution of the random number of comparisons, Cn, that
we need to sort an input of size n. We will generally denote the random variables by capital
letter Cn and their expectations by lowercase letters c(n). We describe the distribution of Cn
in the form of a distributional recurrence, i.e., a recursive description of the distribution of
the family of random variables (Cn)n∈N. From these, we can mechanically derive recurrence
equations for the moments of the distribution and in particular for the variance. We have

Cn
D= n− k + s(k) + A1 ·XJ2 +A2 · X̃J1︸ ︷︷ ︸

Tn

+A1 · CJ1 +A2 · C̃J2 , (n > w) (23)

for (Xn)n∈N the family of random variables given by the number of comparisons to sort a
random permutation of n elements with X. (C̃n)n∈N and (X̃n)n∈N are independent copies
of (Cn)n∈N and (Xn)n∈N, respectively, and these are also independent of (J1, J2); we will in
the following omit the tildes for legibility; we implicitly define all terms in an equation from
the same family as each coming from its own independent copy. Base cases for small n are
given by the recursion-stopper method and are immaterial for the asymptotic regime (for
constant w).

9.6.2. Recurrence for the second moment

We start with the elementary equation Var[Cn] = E[C2
n]−E[Cn]2. Of course, E[Cn]2 = c2(n),

which we already know by Theorem 4.8. From the distributional recurrence, we can compute
the second moment m2(n) = E[C2

n] as follows: Square both sides in Equation (23) and take
expectations; that leaves m2(n) on the left-hand side. To simplify the right-hand side, we
use the law of total expectation to first take expectations conditional on J1 (which also fixes
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J2 = n− 1− J1) and then take expectations over J1. We find

E[C2
n | J1] = E

[(
Tn +∑2

r=1ArCJr
)2 ∣∣∣∣ J1

]
= E

[
T 2
n

∣∣ J1
]

+
2∑
r=1

E
[
A2
r︸︷︷︸

=Ar

C2
Jr

∣∣∣ J1
]

+ E
[
2A1A2︸ ︷︷ ︸

=0

CJ1CJ2

∣∣∣ J1
]

+
2∑
r=1

E
[
2Tn ·ArCJr

∣∣ J1
]

since A1 and A2 are fully determined by J1; as Tn and CJr are conditionally independent
given J1, this is

= E
[
T 2
n

∣∣ J1
]

+
2∑
r=1

Arm2(Jr) + 2E[Tn | J1]
2∑
r=1

Ar c(Jr).

We now take expected values also w.r.t. J1 and exploit symmetries J1
D= J2. We will write

A := A1 and J := J1; we find

m2(n) = 2E[Am2(J)] + E
[
T 2
n

]
+ 2

2∑
r=1

EJ
[
Ar E[Tn | J1] c(Jr)

]
︸ ︷︷ ︸

tm2 (n)

.

To continue, we have to unfold tm2(n) a bit more. We start with the simplest one, the
conditional expectation of Tn. For constant k, we find

E[Tn | J ] = E
[
n±O(1) +∑2

r=1(1−Ar)XJr

∣∣∣ J]
= n+

2∑
r=1

(1−Ar)E[XJr | J ] ± O(1)

= n+
2∑
r=1

(1−Ar)x(Jr) ± O(1).

So we find for the last term in the equation for m2(n)

2
2∑
r=1

EJ
[
Ar E[Tn | J1] c(Jr)

]

= 2
2∑
r=1

EJ
[
Ar
(
n+∑2

`=1(1−A`)x(J`)±O(1)
)
c(Jr)

]

= 2n
2∑
r=1

E
[
Ar c(Jr)

]
+ 2

2∑
r=1

E
[
Ar x(J3−r) c(Jr)

] ± O(n logn)

= 4nE
[
Ac(J)

]
+ 4E

[
Ac(J)x(n− 1− J)

] ± O(n logn).
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It remains to compute the second moment of Tn:

E[T 2
n ] = E

[(
n
(
1±O(n−1)

)
+∑2

r=1(1−Ar)XJr

)2 ]
=

2∑
r=1

EJr
[
(1−Ar)E[X2

Jr | Jr]
]

+ n2(1±O(n−1)
)

+ 2n
(
1±O(n−1)

)
2E[(1−A)x(J)],

denoting Var[Xn] by vX(n) = Θ(n) and using E[X2] = E[X]2 + Var[X]

= 2E
[
(1−A)

(
x2(J) + vX(J)

)]
+ n2 ± O(n logn)

= 2E
[
(1−A)x2(J)

]
+ 2avE[(1−A)J2] + 4nE[(1−A)x(J)] + n2 ± O(n2−ε).

We can see here that the variance of X only influences lower order terms of the variance of
QuickXsort when vX(n) = o(n2).

9.6.3. Recurrence for the variance

We now have all ingredients together to compute an asymptotic solution of the recurrence for
m2(n), the second moment of costs for QuickMergesort. However, it is more economical
to first subtract c2(n) on the level of recurrences, since many terms will cancel. We thus
derive a direct recurrence for v(n) = Var[Cn].

v(n) = m2(n)− c2(n)
= 2E[Av(J)] + 2E[Ac2(J)]− c2(n) + tm2(n)︸ ︷︷ ︸

tv(n)

. (24)

For brevity, we write J = n− 1− J . Inserting c(n) = x(n) + qn±O(nδ) for a δ < 1, we find

tv(n) = 2E
[
x2(J)

]
+ 4E

[
Ax(J)x(J)

]
− x2(n)

+ 4nE[x(J)] + 4qE
[
AJ
(
x(J) + x(J)

)]− 2qx(n)n
+ n2 + 2q2E

[
AJ2]+ 2avE[(1−A)J2] + 4qnE[AJ ]− q2n2 ± O(n2−ε logn).

At this point, the only route to make progress seems to be to expand all occurrences of x
into x(n) = an lgn + bn + O(n1−ε) and compute the expectations. For that, we use the
approximation by incomplete beta integrals that we introduced in Section 9.5.1 to compute
the expectations of the form E[g(J)], where g only depends on J . All arising functions g are
Hölder-continuous in z ∈ [0, 1], and the same arguments as in Lemma 4.9 apply; see also
Remark 9.5. The expression for tv(n) is too big to state in full, but it can easily be computed
for given values of t by computer algebra. We provide a Mathematica notebook for this step
as supplementary material [54], and list numeric approximations for small sample sizes in
Table 3 (page 22).

9.6.4. Solving the recurrence

Although the expression for tv(n) contains terms of order n2 lg2 n and n2 lgn, in all examined
cases, these higher-order terms canceled and left tv(n) ∼ cn2 for an explicitly computable
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constant c > 0. We conjecture that this is always the case, but we did not find a simple
proof. We therefore need the technical assumption that indeed tv(n) = Θ(n2). Under that
assumption, we obtain an asymptotic approximation for v(n) from Equation (24) using the
CMT (Theorem B.4) with σ = 2 and τ = 0. Note that the shape function w(z) of the
recurrence is the same as for the expected costs (see Section 9.5.3). We thus compute

H = 1−
∫ 1

0
z2w(z) dz

= 1−
∫ 1

0
2

r
α

1+α < z < 1
2 ∨ z > 1

1+α

z zt+2(1− z)t
B(t+ 1, t+ 1) dz

= 1− 2 (t+ 1)2

(k + 1)2

∫ 1

0

r
α

1+α < z < 1
2 ∨ z > 1

1+α

z zt+2(1− z)t
B(t+ 3, t+ 1) dz

= 1− t+ 2
k + 2

(
I α

1+α ,
1
2
(t+ 3, t+ 1) + I 1

1+α ,1
(t+ 3, t+ 1)

)
. (25)

Since t+2
k+2 ≤ 2

3 and the integral over the entire unit interval would be exactly 1, we have
H > 0 for all α and t. So by Case 1 of the CMT, the variance of QuickXsort is

v(n) ∼ tv(n)
H

.

In particular, it is quadratic in n with a computable coefficient. That concludes the proof of
Theorem 4.10. �

9.7. Base cases for QuickMergesort

This section contains the proofs of Section 6: we prove the general transfer theorem for base
cases of Mergesort and analyze the average cases of Insertionsort and MergeInser-
tion.

Proof of Theorem 6.1: Since Z uses z(n) = n lgn+(b±ε)n+o(n) comparisons on average,
for every δ > 0 we have |z(n)− (n lgn+ bn)| ≤ (ε+ δ) · n for n large enough. Let k ≥ 6 be
large enough such that this bound is satisfied for all k/2 ≤ n ≤ k and let xk(m) denote the
average case number of comparisons of Mergesort with base cases of size k sorted with Z,
i.e., xk(n) = z(n) for n ≤ k.

We will show by induction that

|xk(n)− (n lgn+ bn)| ≤
(
ε+ δ + 8

k

)
· n− 4 =: ek(n)

for n ≥ k/2.
For k/2 ≤ n ≤ k this holds by hypothesis, so assume that n > k. We have

xk(n) = xk(dn/2e) + xk(bn/2c) + n− η(n)
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for some η with 1 ≤ η(n) ≤ 2 for all n (see, e.g., [17, p. 676]). It follows that

|xk(n)− (n lgn+ bn)| =
∣∣∣xk(dn/2e) + xk(bn/2c) + n− η(n)− (n lgn+ bn)

∣∣∣
≤

[inductive hypothesis]
ek(dn/2e) + ek(bn/2c) +

∣∣∣dn/2e(lgdn/2e+ b)

+ bn/2c(lgbn/2c+ b) + n− η(n)− (n lgn+ bn)
∣∣∣

≤ ek(n)− 4 +
∣∣∣dn/2e(lg(n/2) + b)

+ bn/2c(lg(n/2) + b) + n− η(n)− (n lgn+ bn)
∣∣∣+ 2

≤ ek(n)− 2 + η(n) ≤ ek(n)

Notice here that lgdn/2e − lg(n/2) ≤ 1
ln(2)·(n+1) ≤ 2

n . This can be easily seen by the series
expansion of the logarithm. By choosing k, the base case size for sorting n elements (e.g.
k = lgn), the theorem follows. �

Proof of Proposition 6.3: First, we take a look at the average number of comparisons
xIns(k) to insert one element into a sorted array of k − 1 elements by binary insertion.
To insert a new element into k − 1 elements either needs dlg ke − 1 or dlg ke comparisons.
There are k positions where the element to be inserted can end up, each of which is equally
likely. For 2dlg ke − k of these positions dlg ke − 1 comparisons are needed. For the other
k − (2dlg ke − k) = 2k − 2dlg ke positions dlg ke comparisons are needed. This means

xIns(k) = (2dlg ke − k) · (dlg ke − 1) + (2k − 2dlg ke) · dlg ke
k

= dlg ke+ 1− 2dlg ke
k

comparisons are needed on average. We obtain for the average case for sorting n elements:

xInsSort(n) =
n∑
k=1

xIns(k) =
n∑
k=1

(
dlg ke+ 1− 2dlg ke

k

)

=
[32, 5.3.1–(3)]

n · dlgne − 2dlgne + 1 + n−
n∑
k=1

2dlg ke
k

.

We examine the last sum separately. As before we write Hn = ∑n
k=1

1
k = lnn+ γ ±O( 1

n)
for the harmonic numbers where γ ∈ R is Euler’s constant.

n∑
k=1

2dlg ke
k

= 1 +
dlgne−2∑
i=0

2i∑
`=1

2i+1

2i + `
+

n∑
`=2dlgne−1+1

2dlgne
`

= 1 +

dlgne−2∑
i=0

2i+1 ·
(
H2i+1 −H2i

)+ 2dlgne · (Hn −H2dlgne−1)

=
dlgne−2∑
i=0

2i+1 ·
(
ln
(
2i+1

)
+ γ − ln

(
2i
)
− γ

)
+
(
ln(n) + γ − ln

(
2dlgne−1)− γ) · 2dlgne ± O(logn)
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= ln 2 ·
dlgne−2∑
i=0

2i+1 +
(
lg(n) · ln 2− (dlgne − 1) · ln 2

)
· 2dlgne ± O(logn)

= ln 2 ·
(
2 · (2dlgne−1 − 1

)
+ (lgn− dlgne+ 1) · 2dlgne

)
± O(logn)

= ln 2 · (2 + lgn− dlgne) · 2dlgne ± O(logn).

The error term of O(logn) is due to the fact that for any C we have ∑dlgne−2
i=0 2i+1 · C2i =

2C(dlgne − 2). Hence, we have

xInsSort(n) = n · dlgne − 2dlgne + n− ln 2 · (2 + lgn− dlgne) · 2dlgne + O(logn). �

Proof of Theorem 6.5: According to Knuth [32], MergeInsertion requires at most
W (n) = n lgn− (3− lg 3)n+ n(y + 1− 2y) +O(logn) comparisons in the worst case, where
y = y(n) = dlg(3n/4)e − lg(3n/4) ∈ [0, 1). In the following we want to analyze the average
savings relative to the worst case. We use the simplified version meaning that the average
differs from the worst case only for the insertion of the elements of the last block (in every
level of recursion). Therefore, let F (n) denote the average number of comparisons of the
insertion steps of MergeInsertion, i. e., all comparisons minus the number of comparisons
P (n) for forming pairs (during all recursion steps). It is easy to see that P (n) = n−O(logn)
(indeed, P (n) = n− 1 if n is a power of two); moreover, it is independent of the actual input
permutation. We obtain the recurrence relation

F (n) = F (bn/2c) +G(dn/2e), with

G(m) = (km − αm) · (m− tkm−1) +
km−1∑
j=1

j · (tj − tj−1),

with km such that tkm−1 ≤ m < tkm and some αm ∈ [0, 1] (recall that tk = (2k+1 +(−1)k)/3).
As we do not analyze the improved version of the algorithm, the insertion of elements with
index less or equal tkm−1 requires always the same number of comparisons. Thus, the term∑km−1
j=1 j · (tj − tj−1) is independent of the data. However, inserting an element after tkm−1

may either need km or km − 1 comparisons. This is where αm comes from. Note that αm
only depends on m. We split F (n) into F ′(n) + F ′′(n) with

F ′(n) = F ′(bn/2c) +G′(dn/2e) and
G′(m) = (km − αm) · (m− tkm−1) with km such that tkm−1 ≤ m < tkm ,

and

F ′′(n) = F ′′(bn/2c) +G′′(dn/2e) and

G′′(m) =
km−1∑
j=1

j · (tj − tj−1) with km such that tkm−1 ≤ m < tkm .

For the average case analysis, we have that F ′′(n) is independent of the data. For
n ≈ (4/3) · 2k we have G′(n) ≈ 0, and hence, F ′(n) ≈ 0. Since otherwise G′(n) is positive,
this shows that approximately for n ≈ (4/3) · 2k the average case matches the worst case
and otherwise it is better.
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Now, we have to estimate F ′(n) for arbitrary n. We have to consider the calls to binary
insertion more closely. To insert a new element into an array of m− 1 elements either needs
dlgme − 1 or dlgme comparisons. For a moment assume that the element is inserted at
every position with the same probability. Under this assumption the analysis in the proof of
Proposition 6.3 is valid, which states that

xIns(m) = dlgme+ 1− 2dlgme
m

comparisons are needed on average.
The problem is that in our case, the probability at which position an element is inserted

is not uniformly distributed. However, it is monotonically decreasing with the index in the
array (indices as in the description in Section 6.2). Informally speaking, this is because if
an element is inserted further to the left, then for the following elements there are more
possibilities to be inserted than if the element is inserted on the right.

Now, binary-insert can be implemented such that for an odd number of positions the
next comparison is made such that the larger half of the array is the one containing the
positions with lower probabilities. (In our case, this is the part with the higher indices.)
That means the less likely positions lie on longer paths in the search tree, and hence, the
average path length is better than in the uniform case. Therefore, we may assume a uniform
distribution as an upper bound in the following.

In each of the recursion steps we have dn/2e − tkdn/2e−1 calls to binary insertion into sets
of size dn/2e+ tkdn/2e−1 − 1 elements each where as before tkdn/2e−1 ≤ dn/2e < tkdn/2e . We
write udn/2e = tkdn/2e−1. Hence, for inserting one element, the difference between the average
and the worst case is

2dlg(dn/2e+udn/2e)e
dn/2e+ udn/2e

− 1.

Summing up, we obtain the following recurrence for the average savings S(n) = W (n) −
(F (n) + P (n))) over the worst case number W (n) (recall that P (n) is the number of
comparisons for forming pairs)

S(n) ≥ S(bn/2c) +
(dn/2e − udn/2e

) ·
2dlg(dn/2e+udn/2e)e
dn/2e+ udn/2e

− 1

.
For m ∈ R>0 we write m = 2`m−lg 3+x with `m ∈ Z and x ∈ [0, 1) and we set

f(m) = (m− 2`m−lg 3) ·
(

2`m
m+ 2`m−lg 3 − 1

)
.

Recall that we have tk = (2k+1 + (−1)k)/3 meaning that km − 1 is the largest exponent such
that 2km−log 3 + (−1)k/3 ≤ m. Therefore, um = 2`m−lg 3 and km− 1 = `m except for the case
m = tk for some odd k ∈ Z. Assume m 6= tk for any odd k ∈ Z; then we have

dlg(m+ um)e =
⌈
lg(2`m−lg 3+x + 2`m−lg 3)

⌉
= `m + dlg((2x + 1)/3))e = `m

and, hence, f(m) = (m− um) ·
(

2dlg(m+um)e

m+um − 1
)
. On the other hand, if m = tk for some odd

k ∈ Z, we have km = `m and

f(tk) ≤ tk ·
(

2k
tk + 2k/3 − 1

)
= tk ·

(
3 · 2k

2k+1 − 1 + 2k − 1
)

= tk
3 · 2k − 1 ≤ 1.
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Altogether this implies that f(m) and (m−um) ·
(

2dlg(m+um)e

m+um − 1
)
differ by at most some

constant (as before um = tkm−1). Furthermore, f(m) and f(m+ 1/2) differ by at most a
constant. Hence, we have:

S(n) ≥ S(n/2) + f(n/2) ± O(1).

Since we have f(n/2) = f(n)/2, this resolves to

S(n) ≥
∑
i>0

f(n/2i) ± O(logn) =
∑
i>0

f(n)/2i ± O(logn) = f(n) ± O(logn).

With n = 2k−lg 3+x this means

S(n)
n

= 2k−lg 3+x − 2k−lg 3

2k−lg 3+x ·
(

2k
2k−lg 3+x + 2k−lg 3 − 1

)
± O(logn/n)

= (1− 2−x) ·
( 3

2x + 1 − 1
)
± O(logn/n).

Recall that we wish to compute F (n) + P (n) ≤ W (n) − S(n). Writing F (n) + P (n) =
n lgn− c(n) · n with c(n) ∈ O(1), we obtain with [32, 5.3.1 Ex. 15]

c(n) ≥ −(F (n)− n lgn)/n = (3− lg 3)− (y + 1− 2y) + S(n)/n,

where y = dlg(3n/4)e − lg(3n/4) ∈ [0, 1), i. e., n = 2`−lg 3−y for some ` ∈ Z. With y = 1− x
it follows

c(n) ≥ (3− lg 3)− (1− x+ 1− 21−x) + (1− 2−x) ·
( 3

2x + 1 − 1
)

> 1.3999. �

Acknowledgments
We thank our anonymous reviewers for their thoughtful comments which significantly helped
improving the presentation.

References
[1] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert E.

Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–
461, 1973.

[2] Hans-Juergen Boehm, Russell R. Atkinson, and Michael F. Plass. Ropes: An alter-
native to strings. Softw., Pract. Exper., 25(12):1315–1330, 1995. doi:10.1002/spe.
4380251203.

[3] D. Cantone and G. Cincotti. Quickheapsort, an efficient mix of classical sorting
algorithms. Theoretical Computer Science, 285(1):25–42, August 2002. doi:10.1016/
S0304-3975(01)00288-2.

[4] Volker Diekert and Armin Weiß. QuickHeapsort: Modifications and improved anal-
ysis. Theory of Computing Systems, 59(2):209–230, August 2016. doi:10.1007/
s00224-015-9656-y.

http://dx.doi.org/10.1002/spe.4380251203
http://dx.doi.org/10.1002/spe.4380251203
http://dx.doi.org/10.1016/S0304-3975(01)00288-2
http://dx.doi.org/10.1016/S0304-3975(01)00288-2
http://dx.doi.org/10.1007/s00224-015-9656-y
http://dx.doi.org/10.1007/s00224-015-9656-y


68 QuickXsort – A Fast Sorting Scheme in Theory and Practice

[5] NIST Digital Library of Mathematical Functions. Release 1.0.10; Release date 2015-08-07.
URL: http://dlmf.nist.gov.

[6] Ernst E. Doberkat. An average case analysis of Floyd’s algorithm to construct heaps.
Information and Control, 61(2):114–131, May 1984. doi:10.1016/S0019-9958(84)
80053-4.

[7] Ronald D. Dutton. Weak-heap sort. BIT, 33(3):372–381, 1993.

[8] S. Edelkamp and P. Stiegeler. Implementing HEAPSORT with n logn − 0.9n and
QUICKSORT with n logn+ 0.2n comparisons. ACM Journal of Experimental Algorith-
mics, 10(5), 2002. doi:10.1145/944618.944623.

[9] Stefan Edelkamp and Ingo Wegener. On the performance of Weak-Heapsort. In
Symposium on Theoretical Aspects of Computer Science (STACS) 2000, volume 1770,
pages 254–266. Springer-Verlag, 2000. doi:10.1007/3-540-46541-3_21.

[10] Stefan Edelkamp and Armin Weiß. QuickXsort: Efficient Sorting with n logn−1.399n+
o(n) Comparisons on Average, 2013. arXiv:1307.3033.

[11] Stefan Edelkamp and Armin Weiß. QuickXsort: Efficient sorting with n logn− 1.399n+
o(n) comparisons on average. In International Computer Science Symposium in Russia,
pages 139–152. Springer, 2014. doi:10.1007/978-3-319-06686-8_11.

[12] Stefan Edelkamp and Armin Weiß. BlockQuicksort: Avoiding branch mispredictions
in Quicksort. In P. Sankowski and C. D. Zaroliagis, editors, European Symposium on
Algorithms (ESA) 2016, volume 57 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.38.

[13] Stefan Edelkamp and Armin Weiß. QuickMergesort: Practically efficient constant-factor
optimal sorting, 2018. arXiv:1804.10062.

[14] Stefan Edelkamp and Armin Weiß. Worst-case efficient sorting with quickmergesort. In
Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments,
ALENEX 2019, San Diego, CA, USA, January 7-8, 2019., pages 1–14, 2019. doi:
10.1137/1.9781611975499.1.

[15] Stefan Edelkamp, Armin Weiß, and Sebastian Wild. Quickxsort - A fast sorting scheme
in theory and practice. CoRR, abs/1811.01259, 2018. URL: http://arxiv.org/abs/
1811.01259, arXiv:1811.01259.

[16] Amr Elmasry, Jyrki Katajainen, and Max Stenmark. Branch mispredictions don’t affect
mergesort. In International Symposium on Experimental Algorithms (SEA) 2012, pages
160–171, 2012. doi:10.1007/978-3-642-30850-5_15.

[17] Philippe Flajolet and Mordecai Golin. Mellin transforms and asymptotics. Acta
Informatica, 31(7):673–696, July 1994. doi:10.1007/BF01177551.

[18] Jr. Ford, Lester R. and Selmer M. Johnson. A tournament problem. The American
Mathematical Monthly, 66(5):pp. 387–389, 1959. URL: http://www.jstor.org/stable/
2308750.

http://dlmf.nist.gov
http://dx.doi.org/10.1016/S0019-9958(84)80053-4
http://dx.doi.org/10.1016/S0019-9958(84)80053-4
http://dx.doi.org/10.1145/944618.944623
http://dx.doi.org/10.1007/3-540-46541-3_21
http://arxiv.org/abs/1307.3033
http://dx.doi.org/10.1007/978-3-319-06686-8_11
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.38
http://arxiv.org/abs/1804.10062
http://dx.doi.org/10.1137/1.9781611975499.1
http://dx.doi.org/10.1137/1.9781611975499.1
http://arxiv.org/abs/1811.01259
http://arxiv.org/abs/1811.01259
http://arxiv.org/abs/1811.01259
http://dx.doi.org/10.1007/978-3-642-30850-5_15
http://dx.doi.org/10.1007/BF01177551
http://www.jstor.org/stable/2308750
http://www.jstor.org/stable/2308750


References 69

[19] Lester R. Ford and Selmer M. Johnson. A tournament problem. The American
Mathematical Monthly, 66(5):387, May 1959. doi:10.2307/2308750.

[20] Viliam Geffert, Jyrki Katajainen, and Tomi Pasanen. Asymptotically efficient in-place
merging. Theor. Comput. Sci., 237(1-2):159–181, 2000. URL: https://doi.org/10.
1016/S0304-3975(98)00162-5, doi:10.1016/S0304-3975(98)00162-5.

[21] Mordecai J. Golin and Robert Sedgewick. Queue-mergesort. Information Processing
Letters, 48(5):253–259, December 1993. doi:10.1016/0020-0190(93)90088-q.

[22] Gaston H. Gonnet and J. Ian Munro. Heaps on heaps. SIAM Journal on Computing,
15(4):964–971, nov 1986. doi:10.1137/0215068.

[23] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation For Computer Science. Addison-Wesley, 1994.

[24] P. Hennequin. Combinatorial analysis of quicksort algorithm. RAIRO - Theoretical
Informatics and Applications - Informatique Théorique et Applications, 23(3):317–333,
1989. URL: http://eudml.org/doc/92337.

[25] C. A. R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961.
doi:10.1145/366622.366647.

[26] Hsien-Kuei Hwang. Limit theorems for mergesort. Random Structures and Algo-
rithms, 8(4):319–336, July 1996. doi:10.1002/(sici)1098-2418(199607)8:4<319::
aid-rsa3>3.0.co;2-0.

[27] Hsien-Kuei Hwang. Asymptotic expansions of the mergesort recurrences. Acta Infor-
matica, 35(11):911–919, November 1998. doi:10.1007/s002360050147.

[28] Kazuo Iwama and Junichi Teruyama. Improved average complexity for comparison-
based sorting. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack, editors,
Workshop on Algorithms and Data Structures (WADS), Proceedings, volume 10389 of
Lecture Notes in Computer Science, pages 485–496. Springer, 2017. doi:10.1007/
978-3-319-62127-2_41.

[29] Jyrki Katajainen. The ultimate heapsort. In Proceedings of the Computing: The 4th
Australasian Theory Symposium, Australian Computer Science Communications, pages
87–96. Springer-Verlag Singapore Pte. Ltd., 1998. URL: http://www.diku.dk/~jyrki/
Myris/Kat1998C.html.

[30] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. Practical in-place mergesort.
Nordic Journal of Computing, 3(1):27–40, 1996. URL: http://www.diku.dk/~jyrki/
Myris/KPT1996J.html.

[31] Pok-Son Kim and Arne Kutzner. Ratio based stable in-place merging. In Manin-
dra Agrawal, Ding-Zhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and
Applications of Models of Computation, 5th International Conference, TAMC 2008,
Xi’an, China, April 25-29, 2008. Proceedings, volume 4978 of Lecture Notes in Com-
puter Science, pages 246–257. Springer, 2008. URL: https://doi.org/10.1007/
978-3-540-79228-4, doi:10.1007/978-3-540-79228-4_22.

http://dx.doi.org/10.2307/2308750
https://doi.org/10.1016/S0304-3975(98)00162-5
https://doi.org/10.1016/S0304-3975(98)00162-5
http://dx.doi.org/10.1016/S0304-3975(98)00162-5
http://dx.doi.org/10.1016/0020-0190(93)90088-q
http://dx.doi.org/10.1137/0215068
http://eudml.org/doc/92337
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1002/(sici)1098-2418(199607)8:4<319::aid-rsa3>3.0.co;2-0
http://dx.doi.org/10.1002/(sici)1098-2418(199607)8:4<319::aid-rsa3>3.0.co;2-0
http://dx.doi.org/10.1007/s002360050147
http://dx.doi.org/10.1007/978-3-319-62127-2_41
http://dx.doi.org/10.1007/978-3-319-62127-2_41
http://www.diku.dk/~jyrki/Myris/Kat1998C.html
http://www.diku.dk/~jyrki/Myris/Kat1998C.html
http://www.diku.dk/~jyrki/Myris/KPT1996J.html
http://www.diku.dk/~jyrki/Myris/KPT1996J.html
https://doi.org/10.1007/978-3-540-79228-4
https://doi.org/10.1007/978-3-540-79228-4
http://dx.doi.org/10.1007/978-3-540-79228-4_22


70 QuickXsort – A Fast Sorting Scheme in Theory and Practice

[32] Donald E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison
Wesley, 2nd edition, 1998.

[33] Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of CSLI
Lecture Notes. Center for the Study of Language and Information Publications, 2000.

[34] Hosam M. Mahmoud. Sorting: A distribution theory. John Wiley & Sons, 2000.

[35] Heikki Mannila and Esko Ukkonen. A simple linear-time algorithm for in situ merging.
Information Processing Letters, 18(4):203–208, May 1984. doi:10.1016/0020-0190(84)
90112-1.

[36] Conrado Martínez and Salvador Roura. Optimal sampling strategies in Quicksort
and Quickselect. SIAM Journal on Computing, 31(3):683–705, 2001. doi:10.1137/
S0097539700382108.

[37] C. J. H. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages
195–248. Springer, Berlin, 1998.

[38] Colin J. H. McDiarmid and Bruce A. Reed. Building heaps fast. Journal of Algorithms,
pages 352–365, 1989.

[39] Mike McFadden. WikiSort. Github repository at https://github.com/
BonzaiThePenguin/WikiSort. URL: https://github.com/BonzaiThePenguin/
WikiSort.

[40] David R. Musser. Introspective sorting and selection algorithms. Software—Practice
and Experience, 27(8):983–993, 1997.

[41] Wolfgang Panny and Helmut Prodinger. Bottom-up mergesort—a detailed analysis.
Algorithmica, 14(4):340–354, October 1995. doi:10.1007/BF01294131.

[42] Klaus Reinhardt. Sorting in-place with a worst case complexity of n logn−1.3n+O(logn)
comparisons and εn logn+O(1) transports. In International Symposium on Algorithms
and Computation (ISAAC), pages 489–498, 1992. doi:10.1007/3-540-56279-6_101.

[43] Salvador Roura. Divide-and-Conquer Algorithms and Data Structures. Tesi doctoral
(Ph.D. thesis, Universitat Politècnica de Catalunya, 1997.

[44] Salvador Roura. Improved master theorems for divide-and-conquer recurrences. Journal
of the ACM, 48(2):170–205, 2001. doi:10.1145/375827.375837.

[45] Robert Sedgewick. The analysis of Quicksort programs. Acta Informatica, 7(4):327–355,
1977. doi:10.1007/BF00289467.

[46] Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley-Longman, 2nd edition, 2013.

[47] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 4th edition, 2011.

[48] Houshang H. Sohrab. Basic Real Analysis. Springer Birkhäuser, 2nd edition, 2014.

http://dx.doi.org/10.1016/0020-0190(84)90112-1
http://dx.doi.org/10.1016/0020-0190(84)90112-1
http://dx.doi.org/10.1137/S0097539700382108
http://dx.doi.org/10.1137/S0097539700382108
https://github.com/BonzaiThePenguin/WikiSort
https://github.com/BonzaiThePenguin/WikiSort
https://github.com/BonzaiThePenguin/WikiSort
https://github.com/BonzaiThePenguin/WikiSort
http://dx.doi.org/10.1007/BF01294131
http://dx.doi.org/10.1007/3-540-56279-6_101
http://dx.doi.org/10.1145/375827.375837
http://dx.doi.org/10.1007/BF00289467


References 71

[49] Florian Stober and Armin Weiß. On the average case of MergeInsertion. In International
Workshop on Combinatorial Algorithms (IWOCA) 2019, 2019. arXiv:1905.09656.

[50] Ingo Wegener. Bottom-up-Heapsort, a new variant of Heapsort beating, on an average,
Quicksort (if n is not very small). Theoretical Computer Science, 118(1):81–98, 1993.

[51] Sebastian Wild. Dual-Pivot Quicksort and Beyond: Analysis of Multiway Partition-
ing and Its Practical Potential. Doktorarbeit (Ph.D. thesis), Technische Universität
Kaiserslautern, 2016. ISBN 978-3-00-054669-3. URL: http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:hbz:386-kluedo-44682.

[52] Sebastian Wild. Average cost of QuickXsort with pivot sampling. In James Allen Fill and
Mark Daniel Ward, editors, International Conference on Probabilistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms (AofA 2018), LIPIcs, 2018.
doi:10.4230/LIPIcs.AofA.2018.36.

[53] Sebastian Wild. Quicksort is optimal for many equal keys. In Workshop on Analytic
Algorithmics and Combinatorics (ANALCO) 2018, pages 8–22. SIAM, January 2018.
arXiv:1608.04906, doi:10.1137/1.9781611975062.2.

[54] Sebastian Wild. Supplementary mathematica notebook for variance computation.
October 2018. doi:10.5281/zenodo.1463020.

http://arxiv.org/abs/1905.09656
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-44682
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-44682
http://dx.doi.org/10.4230/LIPIcs.AofA.2018.36
http://arxiv.org/abs/1608.04906
http://dx.doi.org/10.1137/1.9781611975062.2
http://dx.doi.org/10.5281/zenodo.1463020


72 QuickXsort – A Fast Sorting Scheme in Theory and Practice

Appendix

A. Notation
A.1. Generic mathematics
N, N0, Z, R . . . . . . . . . natural numbers N = {1, 2, 3, . . .}, N0 = N ∪ {0}, integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, real numbers R.

R>1, N≥3 etc. . . . . . . . restricted sets Xpred = {x ∈ X : x fulfills pred}.
ln(n), lg(n), logn . . . . natural and binary logarithm; ln(n) = loge(n), lg(n) = log2(n). We use log

for an unspecified (constant) base in O-terms

X . . . . . . . . . . . . . . . . . . to emphasize that X is a random variable it is Capitalized.

[a, b) . . . . . . . . . . . . . . . real intervals, the end points with round parentheses are excluded, those
with square brackets are included.

[m..n], [n] . . . . . . . . . . . integer intervals, [m..n] = {m,m+ 1, . . . , n}; [n] = [1..n].

JstmtK, Jx = yK . . . . . . Iverson bracket, Jstmt]K = 1 if stmt is true, JstmtK = 0 otherwise.

Hn . . . . . . . . . . . . . . . . .nth harmonic number; Hn =
∑n
i=1 1/i.

x± y . . . . . . . . . . . . . . .x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as
with O-terms, we use one-way equalities z = x± y instead of z ∈ x± y.

ab, ab . . . . . . . . . . . . . . . factorial powers; “a to the b falling resp. rising”; e.g., x3 = x(x− 1)(x− 2),
x−3 = 1/((x+ 1)(x+ 2)(x+ 3)).(

n
k

)
. . . . . . . . . . . . . . . . .binomial coefficients;

(
n
k

)
= nk

/
k!.

B(λ, ρ) . . . . . . . . . . . . . for λ, ρ ∈ R+; the beta function, B(λ, ρ) =
∫ 1

0 z
λ−1(1− z)ρ−1 dz; see also

Equation (9) on page 42.

Ix,y(λ, ρ) . . . . . . . . . . . . the regularized incomplete beta function; Ix,y(λ, ρ) =
∫ y
x
zλ−1(1−z)ρ−1

B(λ,ρ) dz

for λ, ρ ∈ R+, 0 ≤ x ≤ y ≤ 1.

A.2. Stochastics-related notation
P[E], P[X = x] . . . . . . probability of an event E resp. probability for random variable X to attain

value x.

E[X] . . . . . . . . . . . . . . . expected value of X; we write E[X | Y ] for the conditional expectation of
X given Y , and EX [f(X)] to emphasize that expectation is taken w.r.t.
random variable X.

X D= Y . . . . . . . . . . . . . equality in distribution; X and Y have the same distribution.

U(a, b) . . . . . . . . . . . . . .uniformly in (a, b) ⊂ R distributed random variable.

Beta(λ, ρ) . . . . . . . . . . .Beta distributed random variable with shape parameters λ ∈ R>0 and
ρ ∈ R>0.

Bin(n, p) . . . . . . . . . . . .binomial distributed random variable with n ∈ N0 trials and success
probability p ∈ [0, 1].

BetaBin(n, λ, ρ) . . . . . .beta-binomial distributed random variable; n ∈ N0, λ, ρ ∈ R>0;
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A.3. Specific notation for algorithms and analysis
n . . . . . . . . . . . . . . . . . . length of the input array, i.e., the input size.

k, t . . . . . . . . . . . . . . . . sample size k ∈ N≥1, odd; k = 2t+ 1, t ∈ N0; we write k(n) to emphasize
that k might depend on n.

w . . . . . . . . . . . . . . . . . . threshold for recursion, for n ≤ w, we sort inputs by X; we require
w ≥ k − 1.

α . . . . . . . . . . . . . . . . . .α ∈ [0, 1]; method X may use buffer space for bαnc elements.

c(n) . . . . . . . . . . . . . . . . expected costs of QuickXsort; see Section 9.2.

x(n), a, b . . . . . . . . . . . expected costs of X, x(n) = an lgn+ bn± o(n); see Section 9.2.

J1, J2 . . . . . . . . . . . . . . (random) subproblem sizes; J1 + J2 = n− 1; J1 = t+ I1;

I1, I2 . . . . . . . . . . . . . . . (random) segment sizes in partitioning; I1
D= BetaBin(n− k, t+ 1, t+ 1);

I2 = n− k − I1; J1 = t+ I1

R . . . . . . . . . . . . . . . . . . (one-based) rank of the pivot; R = J1 + 1.

s(k) . . . . . . . . . . . . . . . . (expected) cost for pivot sampling, i.e., cost for choosing median of k
elements.

A1, A2, A . . . . . . . . . . . indicator random variables; A1 = Jleft subproblem sorted recursivelyK; see
Section 9.2.

B. Mathematical Preliminaries
In this appendix, we restate some known results for the reader’s convenience.

B.1. Hölder continuity

A function f : I → R defined on a bounded interval I is Hölder-continuous with exponent
η ∈ (0, 1] if

∃C ∀x, y ∈ I :
∣∣f(x)− f(y)

∣∣ ≤ C|x− y|η.

Hölder-continuity is a notion of smoothness that is stricter than (uniform) continuity but
slightly more liberal than Lipschitz-continuity (which corresponds to η = 1). f : [0, 1]→ R
with f(z) = z ln(1/z) is a stereotypical function that is Hölder-continuous (for any η ∈ (0, 1))
but not Lipschitz (see Lemma 9.1 below).

One useful consequence of Hölder-continuity is given by the following lemma: an er-
ror bound on the difference between an integral and the Riemann sum ([51, Proposition
2.12–(b)]).

Lemma B.1 (Hölder integral bound): Let f : [0, 1] → R be Hölder-continuous with
exponent η. Then

∫ 1

0
f(x) dx = 1

n

n−1∑
i=0

f(i/n) ± O(n−η), (n→∞). �

https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf4a
https://www.wild-inter.net/publications/html/wild-2016.pdf.html#pf4a
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Remark B.2 (Properties of Hölder-continuity): We considered only the unit interval
as the domain of functions, but this is no restriction: Hölder-continuity (on bounded
domains) is preserved by addition, subtraction, multiplication and composition (see, e.g.,
[48, Section 4.6] for details). Since any linear function is Lipschitz, the result above holds for
Hölder-continuous functions f : [a, b]→ R.

If our functions are defined on a bounded domain, Lipschitz-continuity implies Hölder-
continuity and Hölder-continuity with exponent η implies Hölder-continuity with exponent
η′ < η. A real-valued, differentiable function is Lipschitz if its derivative is bounded.

B.2. Chernoff bound
We write X D= Bin(n, p) if X is has a binomial distribution with n ∈ N0 trials and success
probability p ∈ [0, 1]. Since X is a sum of independent random variables with bounded
influence on the result, Chernoff bounds imply strong concentration results for X. We will
only need a very basic variant given in the following lemma.

Lemma B.3 (Chernoff Bound, Theorem 2.1 of [37]): Let X D= Bin(n, p) and δ ≥ 0.
Then

P
[∣∣∣∣Xn − p

∣∣∣∣ ≥ δ
]
≤ 2 exp(−2δ2n). (26)

�

B.3. Continuous Master Theorem
For solving recurrences, we build upon Roura’s master theorems [44]. The relevant continuous
master theorem is restated here for convenience:

Theorem B.4 (Roura’s Continuous Master Theorem (CMT)):
Let Fn be recursively defined by

Fn =


bn , for 0 ≤ n < N ;

tn +
n−1∑
j=0

wn,j Fj , for n ≥ N ,
(27)

where tn, the toll function, satisfies tn ∼ Knσ logτ (n) as n→∞ for constants K 6= 0, σ ≥ 0
and τ > −1. Assume there exists a function w : [0, 1] → R≥0, the shape function, with∫ 1

0 w(z)dz ≥ 1 and

n−1∑
j=0

∣∣∣∣wn,j − ∫ (j+1)/n

j/n
w(z) dz

∣∣∣∣ = O(n−d), (n→∞), (28)

for a constant d > 0. With H := 1−
∫ 1

0
zσw(z) dz, we have the following cases:

1. If H > 0, then Fn ∼
tn
H

.

2. If H = 0, then Fn ∼
tn lnn
H̃

with H̃ = −(τ + 1)
∫ 1

0
zσ ln(z)w(z) dz.
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3. If H < 0, then Fn = O(nc) for the unique c ∈ R with
∫ 1

0
zcw(z) dz = 1. �

Theorem B.4 is the “reduced form” of the CMT, which appears as Theorem 1.3.2 in Roura’s
doctoral thesis [43], and as Theorem 18 of [36]. The full version (Theorem 3.3 in [44]) allows
us to handle sublogarithmic factors in the toll function, as well, which we do not need here.

C. Pseudocode

In this appendix, we list explicit pseudocode for the most important merging procedures.

C.1. Simple merge by swaps

Algorithm C.1 is a merging procedure with an in-place interface: upon termination, the
merge result is found in the same area previously occupied by the merged runs. The method
works by moving the left run into a buffer area first. More specifically, we move A[`..m− 1]
into the buffer area B[b..b+ n1 − 1] and then merge it with the second run A[m..r] – still
residing in the original array – into the empty slot left by the first run. By the time this
first half is filled, we either have consumed enough of the second run to have space to grow
the merged result, or the merging was trivial, i.e., all elements in the first run were smaller.

Algorithm C.1 Simple merging procedure that uses the buffer only by swaps.
SimpleMergeBySwaps(A[`..r],m,B[b..e])

// Merges runs A[`..m− 1] and A[m..r] in-place into A[`..r] using scratch space B[b..e].
1 n1 := m− `; n2 := r −m+ 1

// Requires A[`..m− 1] and A[m..r] to be sorted, n1 ≤ n2 and n1 ≤ e− b+ 1.
2 for i = 0, . . . , n1 − 1
3 Swap(A[`+ i], B[b+ i])
4 end for
5 i1 := b; i2 := m; o := `
6 while i1 < b+ n1 and i2 ≤ r
7 if B[i1] ≤ A[i2]
8 Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1
9 else

10 Swap(A[o], A[i1]); o := o+ 1; i2 := i2 + 1
11 end if
12 end while
13 while i1 < b+ n1
14 Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1
15 end while

This method is mostly for demonstration purposes, how little changes are required to
use Mergesort in QuickXsort. It is not the best solution, though.
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C.2. Ping-pong Mergesort

In this section, we give detailed code for the “ping-pong” Mergesort variant that we use
in our QuickMergesort implementation. It also uses α = 1

2 , i.e., buffer space to hold
half of the input. By using a special procedure, MergesortOuter, for the outermost call
following the strategy illustrated in Figure 3, we reduce the task to the case of α = 1 for two
subproblems. These are solved by moving elements from the input area to the output area
(while sorting them), which is easily achieved by a recursive procedure (MergesortInner).

Algorithm C.2 Recursive Ping-pong Mergesort with α = 1
2 .

MergesortOuter(A[`..r], B[b..e])
// Sort A[`..r] using B[b..e] as temporary space. Requires that e− b+ 1 ≥ d(r − `+ 1)/2e

1 if ` < r
2 n1 := b(r − `+ 1)/2c; n2 := (r − `+ 1)− n1
3 MergesortInner(A[r − n2 + 1..r], B[b..b+ n2 − 1])
4 MergesortInner(A[`..`+ n1 − 1], A[r − n1 + 1..r])
5 MergeBySwapsBtoA(A[`..r], r − n1 + 1, B[b..b+ n2 − 1],
6 end if

MergesortInner(A[`..r], B[b..e])
// Move the elements A[`..r] to B[b..e] in sorted order; assumes r − ` = e− b.

1 if ` = r
2 Swap(A[`], B[b])
3 else
4 n1 := b(r − `+ 1)/2c; n2 := (r − `+ 1)− n1
5 MergesortInner(A[r − n2 + 1..r], B[e− n2 + 1..e])
6 MergesortInner(A[`..`+ n1 − 1], A[r − n1 + 1..r])
7 MergeBySwapsBtoA(B[b..e], e− n2 + 1, A[r − n1 + 1..r])
8 end if

MergeBySwapsBtoA(A[`..r],m,B[b..e])
// Merges sorted runs B[b..e] and A[m..r] in-place into A[`..r]; requires e− b+ 1 = m− `.

1 i1 := b; i2 := m; o := `
2 while i1 ≤ e and i2 ≤ r
3 if B[i1] ≤ A[i2]
4 Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1
5 else
6 Swap(A[o], A[i1]); o := o+ 1; i2 := i2 + 1
7 end if
8 end while
9 while i1 ≤ e

10 Swap(A[o], B[i2]); o := o+ 1; i1 := i1 + 1
11 end while
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C.3. Reinhardt’s merge
In this section, we give the code for Reinhardt’s merge [42], which allows a smaller buffer
α = 1

4 . We do not present Reinhardt’s whole Mergesort algorithm based on it but merely
the actual merging routine as illustrated in Figure 4. The organization of the different calls
to merging is easy but requires many tedious index calculations, which do not add much
insight for the reader.

Algorithm C.3 Reinhardt’s merging method allowing Mergesort with α = 1
4 .

MergeBySwapsReinhard(A[`..r], k,m)
// Merges sorted runs A[k..m− 1] and A[m..r] into A[`..`+ r − k];
// requires (r −m+ 1)/2 ≤ k − ` < (r −m+ 1).

1 i1 := k; i2 := m; o := `
2 while i1 < m and o < i1
3 if A[i1] ≤ A[i2]
4 Swap(A[o], A[i2]); o := o+ 1; i1 := i1 + 1
5 else
6 Swap(A[o], A[i1]); o := o+ 1; i2 := i2 + 1
7 end if
8 end while
9 i′1 := m− 1; i′2 := r; o := `+ r − k

10 while i′1 ≥ i1 and i′2 ≥ i2
11 if A[i′1] ≥ A[i′2]
12 Swap(A[o], A[i′2]); o := o− 1; i′1 := i′1 − 1
13 else
14 Swap(A[o], A[i′1]); o := o− 1; i′2 := i′2 − 1
15 end if
16 end while
17 while i′2 ≥ i2
18 Swap(A[o], A[i′2]); o := o− 1; i′2 := i′2 − 1
19 end while
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