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Abstract

This paper studies large dimensional factor models with threshold-type regime shifts in the load-

ings. We estimate the threshold by concentrated least squares, and factors and loadings by principal

components. The estimator for the threshold is superconsistent, with convergence rate that depends

on the time and cross-sectional dimensions of the panel, and it does not a¤ect the estimator for fac-

tors and loadings: this has the same convergence rate as in linear factor models. We propose model

selection criteria and a linearity test. Empirical application of the model shows that connectedness

in �nancial variables increases during periods of high economic policy uncertainty.
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1 Introduction

Factor models are widely used tools to explain the common variations in large scale macroeconomic

and �nancial data. An extensive literature analyzes factor models under the maintained assumption

of constant loadings over the entire sample period: see Connor and Korajczyk (1986; 1988; 1993), Forni

et al. (2000; 2004; 2015), Forni and Lippi (2001), Bai and Ng (2002), Stock and Watson (2002), and

Bai (2003) for seminal contributions on linear factor models. Economic models are however unlikely

to have constant parameters over time and factor models with time-dependent loadings are called for.

Time-dependence in the loadings may be easily implemented through a change-point mechanism: this

may be parameterized as either a structural break or a regime shift driven by the threshold principle,

depending on the underlying data generating process.

Structural breaks in the loadings may arise as a consequence of events such as technological or policy

changes. Several important contributions deal with large dimensional factor models subject to loadings

instabilities. Breitung and Eickmeier (2011) show that ignoring breaks leads to overestimation of the

number of factors and develop statistical tests for the null hypothesis of stability in the loadings. Bates

et al. (2013) study the robustness properties of the principal components estimator of the factors under

neglected loadings instability. Chen et al. (2014), Han and Inoue (2015) and Yamamoto and Tanaka

(2015) develop further statistical tools to detect breaks. Chen (2015) considers least squares estimation

of the break date. Cheng et al. (2015) propose shrinkage estimation of large dimensional factor models

with structural breaks.

Regime shift representations of the dependent variables are suitable when "history repeats", as with

�nancial returns (Timmermann (2008), and Ang and Timmermann (2012)). Ng and Wright (2013)

introduce a threshold mechanism in large dimensional factor models to simulate data and investigate the

e¤ects of nonlinearities on business cycle dynamics1 . We take Ng andWright (2013) intuition as a starting

point and propose a large dimensional factor model with regime changes in the loadings governed by the

threshold principle. We let the threshold value be unknown and focus on estimation, model selection

and linearity testing. To the very best of our knowledge, we are the �rst to tackle this problem.

Let R0 be the true number of factors. Under the maintained assumption that R0 is known, we

propose to estimate the threshold value by concentrated least squares, and factors and loadings by

1See Ng and Wright (2013), p. 1147.
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principal components (Hansen (2000), and Bai and Ng (2002)). We obtain a number of novel theoretical

results. Let N and T denote the cross-sectional and time series dimensions, respectively. We �rst

provide su¢ cient conditions to ensure that our model is identi�ed from a linear factor model: formally,

for 0:5 < �0 � 1, we require that at least a fraction O
�
N�0

�
of the N cross-sectional units experiences

a regime shift in the loadings, so that the shift resists to the aggregation induced by the principal

components estimator. We then show that the estimator for the threshold parameter is consistent at a

rate equal to N�0T : this depends on the time series dimension T and the number of cross-sectional units

N�0 subject to the threshold e¤ect. The convergence rate monotonically increases in �0 and it is such

that
p
NT < N�0T � NT : this shows the direct relationship between identi�cation of the model and

convergence rate of the estimator for the threshold. As a consequence of this superconsistency property,

we �nally show that the principal components estimator for both regime-speci�c loadings and factors

have convergence rate equal to CNT = min
np
N;
p
T
o
: despite the threshold e¤ect, the convergence

rate CNT is equal to the one derived in Bai and Ng (2002) for linear factor models.

We next let the true number of factors R0 be unknown so that it has to be estimated. Breitung and

Eickmeier (2011) show that structural instability in the loadings leads to a factor representation with a

higher dimensional factor space: due to an analogy argument, the same issue arises when a regime shift

drives time variation in the loadings. Since the convergence rate CNT of the estimator for loadings and

factors is the same as in linear factor models, we make Bai and Ng (2002) information criteria robust to

the threshold e¤ect by accounting for the induced higher dimensional factor space representation.

As a last theoretical contribution, we propose a linearity test. Following Chen et al. (2014), and Han

and Inoue (2015), we check whether the covariance matrix of the estimated factors is regime-dependent:

we use the regression approach of Chen et al. (2014) and extend Hansen (1996) seminal contribution to

derive the asymptotic distribution of the test statistic under the null hypothesis of linearity.

We �nally show how our theoretical framework may be used to measure connectedness in �nancial

markets (Acharya et al. (2010), Billio et al. (2012), Engle and Kelly (2012), Diebold and Yilmaz (2014),

and Adrian and Brunnermeier (2016)). We extend Billio et al. (2012) measure based on principal

components analysis to allow for regime-speci�c connectedness. Using Baker et al. (2016) index of

economic policy uncertainty as threshold variable, we show that connectedness in �nancial markets

increases during periods of high uncertainty: this may be relevant for risk measurement and management.
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The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 deals

with estimation. Section 4 looks at model selection. Section 5 develops a linearity test. Section 6 performs

a Monte Carlo analysis. Section 7 provides an empirical application. Section 8 outlines directions for

future research. Finally, Section 9 concludes. Appendix A provides technical proofs.

Concerning notation, I (�) denotes the indicator function; given a square matrix A, tr (A) denotes

the trace of A; the norm of a generic matrix A is kAk = [tr (A0A)]
1/2 ; for a given scalar A, jAj, IA and

0A are the absolute value of A, the A�A identity matrix and the zero matrix, respectively;
p! denotes

convergence in probability; d! denotes convergence in distribution; ) denotes weak convergence with

respect to the uniform metric.

2 The Approximate Threshold Factor Model

We consider the model

xt = I (zt � �)�1ft + I (zt > �)�2ft + et; t = 1; : : : ; T; (1)

where T denotes the time series dimension of the available sample; xt = (x1t; : : : ; xNt)
0 2 RN is the N�1

vector of observable dependent variables; ft = (f1t; : : : ; fRt)
0 2 RR is the R � 1 vector of latent factors;

zt 2 R is an observable covariate and � is the unknown threshold value; et = (e1t; : : : ; eNt)
0 2 RN is the

N � 1 vector of idiosyncratic errors; �j = (�j1; : : : ;�jN )0 is the N � R matrix of factor loadings with

i� th row de�ned as �ji = (�ji1; : : : ; �jiR)0, for j = 1; 2 and i = 1; : : : ; N .

The model in (1) belongs to the class of threshold models proposed in Tong and Lim (1980): see Tsay

(1989; 1998), Chan (1993) and Hansen (1996; 1999; 2000) for methodological contributions; and Hansen

(2011) for a survey of the literature. According to the threshold principle introduced in Pearson (1900),

the regime prevailing at time t depends on the position of zt with respect to the unknown threshold �.

Ng and Wright (2013) simulate data from a large dimensional threshold factor model to investigate the

e¤ects of nonlinearities on business cycle dynamics2 : we explicitly focus on estimation, model selection

and linearity testing. Our results extend to the case in which the threshold variable is more generally

de�ned as a linear combination of covariates (Massacci (2014)): this would be relevant when the driver

2See Ng and Wright (2013), p. 1147.
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of the regimes is not a priori known.

The model in (1) extends large dimensional linear factor models to allow for a threshold e¤ect on

the loadings. Given Assumption C3 stated in Section 3.1 below, we follow Chamberlain and Rothschild

(1983) and allow for some degree of correlation in the idiosyncratic components within each regime: (1)

then is an approximate threshold factor model ; it is more general than an exact threshold factor model,

which would extend the arbitrage pricing theory of Ross (1976) and would not allow for any correlation

in the idiosyncratic components in any regime.

3 Estimation

As in Stock and Watson (2002), we study estimation of (1) under the assumption that the true number

of factors R0 (i.e., the true dimension of ft) is known. We extend the theory in Bai and Ng (2002) based

on principal components estimation to allow for concentrated least squares estimation, as motivated in

Hansen (2000) for threshold regressions. The plan is as follows: Section 3.1 states the assumptions;

Section 3.2 deals with identi�cation; Section 3.3 describes the principal components estimator; Section

3.4 proves the consistency of the estimator; and Section 3.5 derives the convergence rates.

3.1 Assumptions

We group the assumptions into three sets, depending on the role they play to identify and estimate

the model, and to derive the convergence rates. Let I1t (�) = I (zt � �) and I2t (�) = I (zt > �). For

j = 1; 2, denote �0j =
�
�0j1; : : : ;�

0
jN

�0
, �0 and f0t the true values of �j , � and ft, respectively. De�ne

f0jt (�) = Ijt (�) f0t , for j = 1; 2 and t = 1; : : : ; T , and let �
0
i = �

0
2i � �01i, for i = 1; : : : ; N .

3.1.1 Identi�cation

Assumption I - Threshold Factor Model. For 0:5 < �0 � 1, �0i 6= 0 for i = 1; : : : ; N�0 , andPN
i=N�0+1 �

0
i = O (1).

Assumption I requires that at least a fraction O
�
N�0

�
of the N series experiences a threshold e¤ect,

for 0:5 < �0 � 1: this follows up on Bates et al. (2013), who show that if at most O
�
N0:5

�
series undergo

a break then the principal components estimator as applied to the misspeci�ed linear model achieves the

same Bai and Ng (2002) convergence rate. Assumption I ensures that enough series experience a regime
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shift so that (1) is identi�ed from a linear factor model when factors and loadings are estimated by

principal components. As shown in Theorem 3.4 below, �0 a¤ects the convergence rate of the estimator

for �0: the higher the former, the faster the latter. In this paper we do not aim at estimating �0 and

leave this interesting issue to future research.

3.1.2 Consistency

Assumption C1 - Factors. E
f0t 4 < 1; for j = 1; 2, T�1

PT
t=1 f

0
jt (�) f

0
jt

�
�0
�0 p! �0jf

�
�; �0

�
as

T !1 for all � and some positive de�nite matrix �0jf
�
�; �0

�
.

Assumption C2 - Factor Loadings. For j = 1; 2 and i = 1; : : : ; N ,
�0ji � �� <1, and �00j �0j /N �D0

�j

!
0 as N !1 for some R0 �R0 positive de�nite matrix D0

�j
.

Assumption C3 - Time and Cross-Section Dependence and Heteroskedasticity. There exists

a positive M <1 such that for j = 1; 2, for all � and for all (N;T ),

(a) E (eit) = 0 and E jeitj8 �M ;

(b) E [Ijt (�) Ijv (�) eiteiv] = � jitv (�) with j� jitv (�)j � j� jtvj for some � jtv and for all i, and

T�1
PT

t=1

PT
v=1 j� jtvj �M ;

(c) E
h
T�1

PT
t=1 Ijt (�) eitelt

i
= �jil (�), j�jll (�)j � M for all l, and N�1PN

i=1

PN
l=1 j�jil (�)j �

M ;

(d) E
���T�1/2 PT

t=1 Ijt (�) eitelt � E [Ijt (�) eitelt]
���4 �M for every (i; l).

Assumption C4 - Weak Dependence between f0t , zt and eit. There exists some positive constant

M <1 such that for all � and for all (N;T ),

E

(
N�1

NP
i=1

T�1/2 � TP
t=1
Ijt (�) f0t eit

�2
)
�M; j = 1; 2:

Assumptions C1 to C4 are the natural extensions of Assumptions A to D imposed on linear factor

models in Bai and Ng (2002) and accommodate the threshold e¤ect. Assumption C1 restricts the

sequences
�
f0t
	T
t=1

and fztgTt=1 so that appropriate second moments exist; it also imposes a full rank

condition that excludes multicollinearity in the factors. According to Assumption C2, factor loadings

are nonstochastic and each factor has a nonnegligible e¤ect on the variance of xt within each regime.
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Under Assumption C3, limited degrees of time-series and cross-section dependence in the idiosyncratic

components as well as heteroskedasticity are allowed. Finally, Assumption C4 provides an upper bound

to the degree of dependence between the factors, zt and the idiosyncratic components: Assumption C4

is stronger than Assumption D in Bai and Ng (2002), which only bounds the dependence between the

factors and the idiosyncratic components. Although we deal with a panel structure, we do not require

the threshold variable zt to be strictly exogenous as in Assumption 2 in Hansen (1999): in particular, zt

is allowed to be predetermined and equal to some lagged value of one of the elements of xt.

3.1.3 Convergence Rates

De�ne D0
f (�) = E

�
f0t f

00
t jzt = �

�
and denote by fZ (zt) the density function of zt.

Assumption CR - Stationarity, Moment Bound, Continuity and Full Rank.

(a)
�
f0t ; zt; et

	T
t=1

is strictly stationary, ergodic and ��mixing, with ��mixing coe¢ cients satisfy-

ing
P1

m=1 �
1/2
m <1;

(b) For all �, E
�f0t eit4 jzt = �� � C and E

�f0t 4 jzt = �� � C for some C < 1 and for

i = 1; : : : ; N , and fZ (�) � �f <1;

(c) fZ (�) and D0
f (�) are continuous at � = �

0;

(d) �00i D
0
f

�
�0
�
�0i > 0, i = 1; : : : ; N�0 and 0:5 < �0 � 1, and

PN
i=N�0+1 �

00
i D

0
f

�
�0
�
�0i = O (1);

fZ (�) > 0 for all �.

Assumption CR is analogous to Assumption 1 in Hansen (2000). Assumption CR(a) restricts the

memory of the sequence
�
f0t ; zt; et

	T
t=1
; it excludes trends and integrated processes. Assumption CR(b)

gives conditional moment bounds. Assumption CR(c) imposes a continuous support on zt. The full-rank

condition in Assumption CR(d) strengthens Assumption I and rules out the "continuous threshold" set

up of Chan and Tsay (1998), which arises in the one-factor model when the scalar factor f0t equals the

threshold variable zt and �
0 = 0: in this case, �0iE

�
f0t f

0
t

��zt = �0 � �0i = �0iE �f0t f0t ��f0t = �0 � �0i = 0, for
i = 1; : : : ; N , and Assumption CR(d) is violated.
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3.2 Identi�cation

Let �0 =
�
�01; : : : ; �

0
N

�0
and write the data generating process of xt as xt = �01f

0
t + I2t

�
�0
�
�0f0t + et.

De�ne F0 =
�
f01 ; : : : ; f

0
T

�
and denote ~�1 =

�
~�11; : : : ; ~�1N

�0
the principal components estimator for �01

from the misspeci�ed linear factor model xt = �1ft + et. Let ~V1 be the R0 �R0 diagonal matrix of the

�rst R0 largest eigenvalues of �̂x = (NT )
�1PT

t=1 xtx
0
t in decreasing order: the underlying optimization

problem requires the normalization N�1~�01~�1= IR0 . The following theorem states the properties of ~�1.

Theorem 3.1 There exists a R0 �R0 rotation matrix ~H1 with rank
�
~H1

�
= R0 such that

B2NT

�
1

N

NP
i=1

~�1i � ~H0
1�

0
1i

2� = Op (1) ;
as N;T !1, where

BNT = min
np
N;
p
T ;N1��0

o

and

~H1 =
F0F00

T

�001 ~�1
N

~V�1
1 :

Theorem 3.1 shows that the average squared deviations between the loadings estimated using a linear

factor model and those that lie in the true loading space vanish as N;T ! 1 at a rate equal to B2NT ,

which drives identi�cation. Under Assumption I, the model in (1) is identi�ed from the linear factor

model as the rate of convergence N1��0 of the principal components estimator is slower than it would

be under correct linear model speci�cation: the model in (1) would not be identi�ed from a linear factor

model if 0 � �0 � 0:5, since in this case B2NT = min fN;Tg, as derived in Bai and Ng (2002). If �0 = 1

and all cross-sectional units are subject to threshold e¤ect, B2NT = 1 and the principal components

estimator from the misspeci�ed linear model is asymptotically biased. As proved in Theorem 3.4, the

parameter �0 regulates the convergence rate of the estimator for the unknown threshold value �0: this

result shows the connection between identi�cation strength and estimation precision.

3.3 Principal Components Estimation

We estimate factors and loadings by principal components, and �0 by concentrated least squares: see Bai

and Ng (2002) and Hansen (2000), respectively. De�ne the N � 2R0 matrix of loadings � = (�1;�2)
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and the R0 � T matrix of factors F = (f1; : : : ; fT ). Let �0 =
�
�01;�

0
2

�
be the true value of �. The

objective function in terms of �, F and � is the sum of squared residuals (divided by NT )

S (�;F; �) = (NT )
�1 TP

t=1
[xt � I1t (�)�1ft � I2t (�)�2ft]0 [xt � I1t (�)�1ft � I2t (�)�2ft] : (2)

the estimators �̂ =
�
�̂1; �̂2

�
, F̂ =

�
f̂1; : : : ; f̂T

�
and �̂ for �0, F0and �0, respectively, with �̂j =�

�̂j1; : : : ; �̂jN

�0
, for j = 1; 2, jointly solve

�̂; F̂;�̂ = arg min
�;F;�

S (�;F; �) :

For given � and �, and subject to N�1 ��0j�j� = IR0 , for j = 1; 2, from (2) we have

f̂t (�; �) = N
�1 [I1t (�)�1 + I2t (�)�2]0 xt; t = 1; : : : ; T : (3)

replacing ft in (2) with f̂t (�; �) obtained in (3) leads to the concentrated objective function

SF (�; �) = (NT )
�1 TP

t=1
x0t
�
IN �N�1 [I1t (�)�1�01 + I2t (�)�2�02]

	
xt; (4)

and the estimators for �0 and �0 jointly solve

�̂; �̂ = argmin
�;�

SF (�; �) :

From (4), the estimator for �0 for given � is de�ned as

�̂ (�) =
h
�̂1 (�) ; �̂2 (�)

i
= argmax

�
VF (�; �) ; (5)

where

VF (�; �) = (NT )
�1 TP

t=1
fx0t [I1t (�) (�1�01) + I2t (�) (�2�02)]xtg

= (NT )
�1
�
tr

�
�01

�
TP
t=1
I1t (�)xtx0t

�
�1

�
+ tr

�
�02

�
TP
t=1
I2t (�)xtx0t

�
�2

��
:
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The problem

max
�
VF (�; �)

is equivalent to

max
�

h
�01�̂1x (�)�1 +�

0
2�̂2x (�)�2

i
; (6)

where

�̂jx (�) =

�
(NT )

�1 TP
t=1
Ijt (�)xtx0t

�
; j = 1; 2 : (7)

for j = 1; 2, and for given �, the estimator for�0j solving the problem in (6) is �̂j (�), where �̂j (�) is equal

to
p
N times the N � R0 matrix of eigenvectors of �̂jx (�) corresponding to its largest R0 eigenvalues.

Replacing �1 and �2 in (4) with �̂1 (�) and �̂2 (�) leads to the concentrated sum of squared residuals

(divided by NT )

SF� (�) = (NT )
�1 TP

t=1
x0t

n
IN �N�1

h
I1t (�) �̂1 (�) �̂1 (�)0 + I2t (�) �̂2 (�) �̂2 (�)0

io
xt : (8)

the estimator for �0 then solves

�̂ = argmin
�
SF� (�) :

Given �̂, the estimator for �0j is �̂j = �̂j
�
�̂
�
, for j = 1; 2. Finally, given �̂ and �̂ =

�
�̂1; �̂2

�
, from (3)

f̂t = f̂t

�
�̂; �̂

�
= N�1

h
I1t
�
�̂
�
�̂1 + I2t

�
�̂
�
�̂2

i0
xt; t = 1; : : : ; T:

3.4 Consistency

From Theorem 3.1, the two regimes described in (1) are separately identi�ed under Assumption 1.

De�ne the R0 � T matrices of regime-speci�c factors F0j (�) =
�
f0j1 (�) ; : : : ; f

0
jT (�)

�
, for j = 1; 2, such

that F01 (�) +F
0
2 (�) =

�
f01 ; : : : ; f

0
T

�
= F0 for any �, and F01

�
�0
�
F02
�
�0
�0
= 0R0 . Let Ĥjj (�) and Ĥmj (�)

be the rotation matrices

Ĥjj (�) =
F0j
�
�0
�
F0j (�)

0

T

�00j �̂j (�)

N
V̂j (�)

�1
; j = 1; 2; (9)

Ĥmj (�) =
F0m

�
�0
�
F0j (�)

0

T

�00m�̂j (�)

N
V̂j (�)

�1
; j;m = 1; 2; j 6= m; (10)
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where V̂j (�) is the R0 �R0 diagonal matrix of the �rst R0 largest eigenvalues of �̂jx (�) de�ned in (7)

in decreasing order: for � = �0 notice that Ĥjj (�) and Ĥmj (�) reduce to

Ĥjj

�
�0
�
=
F0j
�
�0
�
F0j
�
�0
�0

T

�00j �̂j
�
�0
�

N
V̂j

�
�0
��1

; Ĥmj

�
�0
�
= 0R0 j;m = 1; 2; j 6= m;

and Ĥjj

�
�0
�
becomes a regime-speci�c rotation matrix analogous to the one derived in Bai and Ng

(2002) for linear factor models3 . The following theorem shows the bias of the principal components

estimator induced by the presence of regimes when � 6= �0.

Theorem 3.2 There exist R0�R0 matrices Ĥjj (�) and Ĥmj (�) as de�ned in (9) and (10), respectively,

with rank
h
Ĥjj (�)

i
= R0 for all �, and rank

h
Ĥmj (�)

i
= R0 for � 6= �0, and CNT = min

np
N;
p
T
o
,

such that

C2NT

�
1

N

NP
i=1

�̂ji (�)� Ĥjj (�)
0
�0ji � Ĥmj (�)

0
�0mi

2� = Op (1) ; 8�; j;m = 1; 2; j 6= m:

Theorem 3.2 shows that the presence of regimes adds the asymptotic bias Ĥmj (�)
0
�0mi to the principal

components estimator �̂ji (�) for the space Ĥjj (�)
0
�0ji spanned by �

0
ji. As in linear factor models, the

rate of convergence is equal to C2NT = min fN;Tg and therefore depends on the panel structure. Taking

into account (10), it follows that for � = �0,

C2NT

�
1

N

NP
i=1

�̂ji ��0�� Ĥjj

�
�0
�0
�0ji

2� = Op (1) ; j = 1; 2; (11)

which extends the result in Theorem 1 in Bai and Ng (2002) to accommodate the presence of regimes

when the threshold �0 is known.

Theorem 3.2 plays a key role in proving the following theorem, which states the consistency of �̂ as

an estimator for �0.

Theorem 3.3 Under Assumptions I and C1-C4, �̂
p! �0 as N;T !1.

Theorems 3.2 and 3.3 imply a number of results analogous to those collected in Theorem 1 in Stock

and Watson (2002): these are stated in Corollary 3.1 below.

3See Bai and Ng (2002), p. 213.
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Corollary 3.1 For j = 1; 2, and under Assumptions I and C1-C4, as N;T !1:

(a) �̂ji
�
�̂
�

p! Ĥjj

�
�0
�0
�0ji;

(b) f̂t
p!
h
I1t
�
�0
�
Ĥ11

�
�0
��1

+ I2t
�
�0
�
Ĥ22

�
�0
��1i

f0t ;

(c)
1

N

NP
i=1

�̂ji ��̂�� Ĥjj

�
�0
�0
�0ji

2 p! 0;

(d)
1

T

TP
t=1

f̂t � hI1t ��0� Ĥ11

�
�0
��1

+ I2t
�
�0
�
Ĥ22

�
�0
��1i

f0t

2 p! 0.

3.5 Convergence Rates

The following theorem states the convergence rates of the concentrated least squares estimator for the

threshold �0 and of the principal components estimator for the loadings.

Theorem 3.4 Under Assumptions I, C1-C4 and CR,

N�0T
�
�̂ � �0

�
= Op (1)

and

C2NT

�
1

N

NP
i=1

�̂ji ��̂�� Ĥjj

�
�0
�0
�0ji

2� = Op (1) ; j = 1; 2:

Theorem 3.4 states the superconsistency of �̂ as an estimator for �0: it extends to an in�nite di-

mensional system the result in Chan (1993) seminal contribution. The convergence rate N�0T of �̂

depends on the time series dimension T and the number of cross-sectional units N�0 subject to thresh-

old e¤ect: the rate N�0T monotonically increases in �0; since 0:5 < �0 � 1 by Assumption I, then

p
NT < N�0T � NT ; N�0T is unknown since �0 is unknown. The higher �0, the stronger identi�cation

of (1) from a linear factor model, and the faster the convergence rate of �̂ to �0: this shows the connection

between identi�cation and estimation. When �0 = 1, all cross-sectional units are subject to threshold

e¤ect and the convergence rate is NT . Theorem 3.4 implies that the principal components estimator

for the loadings has the same convergence rate derived in Bai and Ng (2002) in the case of linear factor

models: the estimator for the threshold therefore does not a¤ect the estimator for the loadings. Corollary

3.2 below follows from Theorem 3.4.
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Corollary 3.2 Under Assumptions I, C1-C4 and CR,

C2NT

�
1

T

TP
t=1

f̂t � hI1t ��0� Ĥ11

�
�0
��1

+ I2t
�
�0
�
Ĥ22

�
�0
��1i

f0t

2� = Op (1) :
Corollary 3.2 shows that the convergence rate CNT also applies to the principal components estimator

for the factors; it also shows that the rotation induced by f̂t around f0t depends upon the regime. Corollary

3.2 justi�es the robust Bai and Ng (2002) information criteria proposed in Section 4.

4 Determining the Number of Factors

We now consider the case in which the true number of factors R0 in (1) (i.e., the true dimension of

f0t ) no longer is known and has to be determined. Breitung and Eickmeier (2011) show that neglecting

structural breaks in the factor loadings in�ates the estimated number of factors. Given the analogy

between factor models with structural instability and (1), the latter su¤ers from the same problem.

We rely on Corollary 3.2 and suggest a simple way to robustify Bai and Ng (2002) selection criteria to

account for the threshold e¤ect.

Given (1) and for �xed number of factors R, the loss function in (2) generalizes to

S
�
�R;FR; �

�
= (NT )

�1 TP
t=1

�
xt � I1t (�)�R1 fRt � I2t (�)�R2 fRt

�0 �
xt � I1t (�)�R1 fRt � I2t (�)�R2 fRt

�
;

(12)

where �R =
�
�R1 ;�

R
2

�
, FR =

�
fR1 ; : : : ; f

R
T

�
, and where the superscript R denotes the dependence on

the number of factors. The loss function in (12) depends on �. From Theorem 3.4, it easily follows

that for any a priori chosen number of factors R = �R such that �R � R0, the estimator �̂
�R
for �0 is

such that N�0T

�
�̂
�R
� �0

�
= Op (1), with �̂

R0
= �̂ (see Lemma A.9 in Appendix A.3): in practice, �R

may be chosen as discussed below. Given the convergence rate in Corollary 3.2, this naturally suggests

generalizing Bai and Ng (2002) criteria by �rst setting � = �̂
�R
in (12) to then select R̂ factors within

each mutually exclusive regime, and therefore
�
R̂+ R̂

�
factors in total.

Let �̂R (�) and F̂R (�) be the estimators for �R and FR, respectively, for any �. Given the loss

function in (12), and following Bai and Ng (2002), we want penalty functions g (N;T ) to obtain criteria
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of the form

PC (R;R) = S

�
�̂R

�
�̂
�R
�
; F̂R

�
�̂
�R
�
; �̂

�R
�
+ (R+R) � g (N;T ) ;

which consistently estimate the number of factors R0 in each regime and therefore
�
R0 +R0

�
factors in

total: the criterion PC (R;R) accounts for the fact that the threshold e¤ect leads to a factor representa-

tion with a higher dimensional factor space, namely to a representation with
�
R0 +R0

�
factors. Given

a bounded integer Rmax � R0, the true number of factors R0 is estimated as

R̂ = arg min
1�R�Rmax

PC (R;R) :

given the convergence rate CNT in Corollary 3.2, this leads to the threshold e¤ect robust Bai and Ng

(2002) information criteria

ICp1 (R;R) = lnS

�
�̂R

�
�̂
�R
�
; F̂R

�
�̂
�R
�
; �̂

�R
�
+ (R+R)

�
N + T

NT

�
ln

�
NT

N + T

�
;

ICp2 (R;R) = lnS

�
�̂R

�
�̂
�R
�
; F̂R

�
�̂
�R
�
; �̂

�R
�
+ (R+R)

�
N + T

NT

�
ln
�
C2NT

�
;

ICp3 (R;R) = lnS

�
�̂R

�
�̂
�R
�
; F̂R

�
�̂
�R
�
; �̂

�R
�
+ (R+R)

"
ln
�
C2NT

�
C2NT

#
:

(13)

In practice, to obtain the estimator �̂
�R
for �0, we may set �R = Rmax. The following theorem states the

validity of the proposed information criteria.

Theorem 4.1 Under Assumptions I, C1-C4 and CR, the criteria ICp1 (R;R), ICp2 (R;R) and ICp3 (R;R)

de�ned in (13) consistently estimate the number of factors R0.

The information criteria in (13) may be generalized by introducing a tuning multiplicative constant

in the penalty as proposed in Alessi et al. (2010), who followed an idea put forward in Hallin and Li�ka

(2007): it is high in our agenda to investigate the likely potential bene�ts of this method.

14



5 Testing for Linearity

5.1 Strategy and Test Statistic

Under Assumption I the model in (1) is identi�ed from a linear factor model. We now extend Hansen

(1996) seminal contribution to formally assess the validity of Assumption I.

Assumption LT1 - Linear Factor Model.
PN

i=N0:5+1 �
0
i = O (1).

Under Assumption LT1, no more than O
�
N0:5

�
series undergo a regime shift. From Theorem 3.1,

Assumption LT1 is the null hypothesis of linearity; Assumption I is the alternative. There exist several

tests to detect structural breaks in large dimensional factor models: see Breitung and Eickmeier (2011),

Han and Inoue (2015), and Yamamoto and Tanaka (2015). We follow Chen et al. (2014). Regime shifts

in the loadings induce a change in the covariance matrix of the estimated factors. Let ~R be the estimated

number of factors in the linear model xt = �1ft + et: under Assumption LT1, ~R is equal to the true

number of factors, namely ~R = R0; under Assumption I, ~R =
�
R0 +R0

�
due to neglected regime shifts.

If ~R = 1 a regime shift in the loadings is ruled out with probability one. If ~R > 1 we proceed as

follows. Let ~ft be the ~R�1 vector of estimated factors from xt = �1ft+et, for t = 1; : : : ; T : consistently

with Section 4, ~R may be obtained as in Bai and Ng (2002). Following Chen et al. (2014), we construct

the auxiliary threshold regression

~f1t = I1t (�)�01~f�1;t + I2t (�)�
0
2
~f�1;t + ut; t = 1; : : : ; T; (14)

where ~f1t 2 R is the �rst element of ~ft; ~f�1;t 2 R ~R�1 is the
�
~R� 1

�
� 1 vector containing the remaining

elements of ~ft; ut 2 R is the error term; �1 and �2 are
�
~R� 1

�
� 1 vectors of slope coe¢ cients. We

test Assumption LT1 in (1) by testing �01 = �02 in (14), where �
0
1 and �

0
2 are the true values of �1

and �2, respectively. This requires ruling out regime shifts in the covariance matrix of the factors. Let

�0 = E
�
I1t
�
�0
��
and recall �0jf

�
�; �0

�
in Assumption C1, for j = 1; 2.

Assumption LT2 - Threshold E¤ect in Factors. T�1
PT

t=1 f
0
t f
00
t

p! �0f as T !1, �01f
�
�0; �0

�
=

�0�0f and �
0
2f

�
�0; �0

�
=
�
1� �0

�
�0f , where �

0
f is a positive de�nite matrix.

Assumption LT2 is analogous to Assumption 2 in Chen et al. (2014): if it fails to hold, the covariance

matrix of the factors depends on the regimes and the test erroneously rejects the null hypothesis.
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We build a Lagrange multiplier statistic (Hansen (1996)). Under Assumption LT1 the auxiliary re-

gression in (14) reduces to ~f1t = �
0
1
~f�1;t + ut. The estimated factors are orthogonal to each other and

~f1t = ut: under the null hypothesis, the idiosyncratic component in (14) is generally serially correlated.

De�ne ~f�;t (�) =
h
I1t (�)~f 0�1;t; I2t (�)~f 0�1;t

i0
. For given �, consider the estimator for �0 =

�
�001 ;�

00
2

�0

�̂ (�) =
h
�̂1 (�)

0
; �̂2 (�)

0
i0
=

"
TX
t=1

~f�;t (�)~f�;t (�)
0
#�1 " TX

t=1

~f�;t (�) ~f1t

#
:

For any (�1; �2), de�ne the matrix M̂� (�1; �2) = T�1
PT

t=1
~f�;t (�1)~f�;t (�2)

0. The regression scores

k�;t (�) = ~f�;t (�)ut are estimated under the null hypothesis as ~k�;t (�) = ~f�;t (�) ~f1t. From Newey

and West (1987), de�ne: K̂�;d (�1; �2) = T�1
PT

t=d+1
~k�;t (�1) ~k�;t�d (�2)

0, for d = 0; : : : ; DT , with

DT = o
�
T 1/4

�
; 
̂� (�1; �2) = K̂�;0 (�1; �2) +

PDT

d=1 w (d;DT )
h
K̂�;d (�1; �2) + K̂�;d (�1; �2)

0
i
, where

w (d;DT ) = [1� d /(DT + 1) ] is the Bartlett kernel. De�ne G =
�
I ~R�1;�I ~R�1

�0
. For given �, the

heteroskedasticity and autocorrelation (HAC) robust Lagrange multiplier test statistic is

dLMHAC
(�) = T �̂ (�)

0
G
h
G0M̂� (�; �)

�1

̂� (�; �) M̂� (�; �)

�1
G
i�1

G0�̂ (�) :

For known �0 and under the null hypothesis, dLMHAC �
�0
�
has a �2 limiting distribution with

�
R0 � 1

�
degrees of freedom as N;T ! 1. However, �0 is generally unknown and not identi�ed under the null

hypothesis. Following Davies (1977; 1987), and as in Hansen (1996), we propose the statistic

supdLMHAC
= sup

�

dLMHAC
(�) : (15)

When factors are serially uncorrelated, it is easy to show that (15) can be simpli�ed to

supdLMHC
= sup

�

dLMHC
(�) ; (16)

with

dLMHC
(�) = T �̂ (�)

0
G
h
G0M̂� (�; �)

�1
K̂�;0 (�; �) M̂� (�; �)

�1
G
i�1

G0�̂ (�) :

The heteroskedasticity robust statistic supdLMHC
in (16) is analogous to the one studied in Hansen

(1996): we construct the more general heteroskedasticity and autocorrelation robust statistic in (15).
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5.2 Limiting Distribution under the Null Hypothesis

Let k̂� (�) = T�1/2
PT

t=1
~k�;t (�) and k0� (�) be a zero mean Gaussian process with covariance kernel


0� (�1; �2) = E
�
k0� (�1)k

0
� (�2)

0�. De�ne M̂ (�1; �2) = T
�1PT

t=1

�
I1t (�1) f00t ; I2t (�1) f00t

�0 �I1t (�2) f00t ; I2t (�2) f00t �
andM0 (�1; �2) = E

n�
I1t (�1) f00t ; I2t (�1) f00t

�0 �I1t (�2) f00t ; I2t (�2) f00t �o under Assumption LT5(a) below.
Assumption LT3 - Eigenvalues. The eigenvalues of the R0 �R0 matrix

�
�0f �D0

�1

�
are distinct.

Assumption LT4 - Convergence Rates.
p
T /N ! 0 as N !1 and T !1.

Assumption LT5 - Mixing Condition and Moment Bound.

(a)
�
f0t ; zt

	T
t=1

is strictly stationary and ��mixing, with ��mixing coe¢ cients satisfying �m =

O (m��) for some � > � /(� � 1) and r � � > 1;

(b) E
n��maxj=1;2 �sup� Ijt (�) f0t ���4ro <1.

Assumption LT6 - Bracketing. For all �, and for some M <1 and  > 0, there exists some �� such

that
n
E
��maxj=1;2 �Ijt (�)� Ijt ����� f0t f00t ��2�o1/(2�) �M ��� � ���� .

Assumption LT7 - Uniform Convergence. M̂ (�1; �2) and 
̂� (�1; �2) converge in probability to

M0 (�1; �2) and 
0� (�1; �2), respectively, uniformly over (�1; �2), whereM
0 (�1; �2) and 
0� (�1; �2)

are positive de�nite matrices.

Assumption LT3 is analogous to Assumption G in Bai (2003) and guarantees a unique probability limit

for
�
�001 ~�1 /N

�
. Assumption LT4 imposes a standard restriction on the convergence rates. Assumptions

LT5-LT7 are equivalent to Assumptions 1-3 in Hansen (1996), respectively. The uniform convergence

of 
̂� (�1; �2) to 
0� (�1; �2) is not stringent: factors are consistently estimated under Assumptions C1-

C4, LT1 and LT3; and 
̂� (�1; �2) is a HAC estimator for the covariance kernel 
0� (�1; �2) (see also

Assumption 11 in Chen et al. (2014)). Assumptions LT5 and LT7 jointly imply Assumption C1.

LetM0
� (�1; �2) be such that M̂� (�1; �2)

p!M0
� (�1; �2) for any (�1; �2) as N;T !1: the existence

of M0
� (�1; �2) is guaranteed by Assumption LT7. De�ne

LMHAC;0 (�) =
h
M0

� (�; �)
�1
k0� (�)

i0
G
h
G0M0

� (�; �)
�1

0� (�; �)M

0
� (�; �)

�1
G
i�1

G0
h
M0

� (�; �)
�1
k0� (�)

i
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and

supLMHAC;0 = sup
�
LMHAC;0 (�) :

Theorem 5.1 Under Assumptions C2-C4 and LT1-LT7, k̂� (�)) k0� (�), dLMHAC
(�)) LMHAC;0 (�),

and supdLMHAC d! supLMHAC;0, as N;T !1.

Theorem 5.1 implies that Hansen (1996) �xed regressor bootstrap approximates the asymptotic distri-

bution of supdLMHAC
in (15) under the null hypothesis4 . For b = 1; : : : ;�b: (i) generate u�bt � IIDN (0; 1);

(ii) de�ne k̂��;b (�) = T
�1/2 PT

t=1
~f�;t (�) ~f1tu

�
bt; (iii) let supdLMHAC;�

b = sup� dLMHAC;�
b (�), where

dLMHAC;�
b (�) =

h
M̂� (�; �)

�1
k̂��;b (�)

i0
G
h
G0M̂� (�; �)

�1

̂� (�; �) M̂� (�; �)

�1
G
i�1

G0
h
M̂� (�; �)

�1
k̂��;b (�)

i
:

The empirical distribution of
n
supdLMHAC;�

b

o�b
b=1

approximates the asymptotic distribution of supdLMHAC

under the null hypothesis of linearity as stated in Assumption LT1.

6 Monte Carlo Analysis

The experiments related to estimation, model selection and linearity testing are described in Sections

6.1, 6.2 and 6.3, respectively; the results are discussed in Section 6.4.

6.1 Estimation

In line with the results in Section 3, we assume a known number of factors. As in Breitung and Eickmeier

(2011), we analyze a one-factor model. We simulate the data using the Data Generating Process (DGP)

xsit = I
�
zst � �0

�
�01if

0s
t + I

�
zst > �

0
�
�02if

0s
t + esit; i = 1; : : : ; N; t = 1; : : : ; T;

where s = 1; : : : ; S refers to the replication and S is the total number of replications. We set S = 2000,

N = 25; 50; 100 and T = 100; 200; 400. We de�ne �0i = �
0
2i � �01i: we set �0i > 0 for i = 1; : : : ;

h
N�0

i
and

�0i = 0 for i =
h
N�0

i
+ 1; : : : ; N , where [�] denotes the integer part of the argument. We �x the factor

loadings �01i and �
0
2i and the threshold parameter �

0 throughout the replications, with �01i � N (1; 1) for

i = 1; : : : ; N as in the Monte Carlo experiment in Breitung and Eickmeier (2011), and �0 = 2. We control

4A formal proof would follow similar steps as that of Theorem 2 in Hansen (1996) and it is omitted.
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for: (i) the number of cross-sectional units
h
N�0

i
subject to a regime change by setting �0 = 0:60; 1:00;

and (ii) the magnitude of the threshold e¤ect by setting �0i = 0:25; 1:00; 1:75. We generate z
s
t as

zst = �z (1� �z) + �zzst�1 +
�
1� �2z

�1/2
�szt; zs�50 = �z; t = �49; : : : ; 0; : : : ; T; (17)

where �z and �z � U (0:05; 0:95) are �xed in repeated samples, and �szt � IIDN (0; 1): in this way

E (zst ) = �z and Var (z
s
t ) = 1. We let �

0 = P
�
zst � �0

�
= P

�
zst � �z � �0 � �z

�
= �

�
�0 � �z

�
= 0:50

and obtain �z = �
0 ���1

�
�0
�
= 2: the choice �0 = 0:50 is consistent with the existing literature (see

Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2015)).

We generate the factor f0st as

f0st = �ff
0s
t�1 +

�
1� �2f

�1/2
$s
ft�

s
ft; f0s�50 = 0; t = �49; : : : ; 0; : : : ; T; (18)

with �f � U (0:05; 0:95) �xed in repeated samples, E
�
$s
ft

�2
= 1 and �sft � IIDN (0; 1), so E

�
f0st
�
= 0

and Var
�
f0st
�
= 1. We allow for conditional heteroskedasticity in f0st through the GARCH(1; 1) process�

$s
ft

�2
= �f1 + �f2

�
$s
f;t�1

�2
+ �f3

�
$s
f;t�1�

s
f;t�1

�2
, with

�
$s
f;�50

�2
= E

�
$s
ft

�2
= 1.

We generate the idiosyncratic components esit as

esit = �ee
s
i;t�1 + �

1/2
ii

�
1� �2e

�1/2
$s
eit�

s
eit; esi;�50 = 0; i = 1; : : : ; N; t = �49; : : : ; 0; : : : ; T; (19)

with �e � U (0:05; 0:95) and �ii � � (1) �xed in repeated samples. Let �set =
�
�se1t; : : : ; �

s
eN t

�0
. We allow

for cross-sectional dependence through the �rst order spatial autoregressive process �set = �Q%
s
et, where

�Q = Q
h
N
.
tr
�
�
1/2
e;diag


1/2
e;diagQQ

0

1/2
e;diag�

1/2
e;diag

�i1/2
, �1/2e;diag = diag

��
�
1/2
11 ; : : : ; �

1/2
NN

�0�
, 
1/2e;diag =

diag

(�h
E
�
$s
e1t

�2i1/2
; : : : ;

h
E
�
$s
eN t

�2i1/2�0)
, %set � IIDN (0; IN ), and Q = (IN � �W)

�1 with

W =

0BBBBBBBBBBBBBB@

0 1 0 : : : 0

0:5 0 0:5 : : : 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . 0:5

0 : : : : : : 1 0

1CCCCCCCCCCCCCCA
:
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in this way Var (esit) = �iiE
�
$s
eit

�2.h
N�1PN

l=1 �llE
�
$s
elt

�2i
and N�1PN

i=1Var (e
s
it) = 1. We model

$s
eit as the GARCH(1; 1) process

�
$s
eit

�2
= �e1+�e2

�
$s
ei;t�1

�2
+�e3

�
$s
ei;t�1�

s
ei;t�1

�2
, with

�
$s
ei;�50

�2
=

E
�
$s
eit

�2
= 1: it follows that Var (esit)! �ii as N !1.

We consider three scenarios: (i) time homoskedastic factors and idiosyncratic components, and cross-

sectionally independent idiosyncratic components (CSI); (ii) time homoskedastic factors and idiosyn-

cratic components, and cross-sectionally dependent idiosyncratic components (CSD); and (iii) time het-

eroskedastic factors and idiosyncratic components, and cross-sectionally dependent idiosyncratic compo-

nents (CSDH). Under CSI, we set �f1 = �e1 = 1, �f2 = �e2 = 0, �f3 = �e3 = 0 and � = 0. We build

CSD by imposing �f1 = �e1 = 1, �f2 = �e2 = 0, �f3 = �e3 = 0 and � = 0:4. We parameterize CSDH by

setting �f1 = �e1 = 0:1, �f2 = �e2 = 0:8, �f3 = �e3 = 0:1 and � = 0:4.

To reduce the e¤ect induced by the initial values zs�50 = �z, f
0s
�50 = 0, $

s
f;�50 = 1, e

s
i;�50 = 0 and

$s
ei;�50 = 1, we discard the �rst 50 observations in the DGPs for z

s
t , f

0s
t , $

s
ft, e

s
it and $

s
eit. We estimate

factor and loadings as detailed in Section 3.3. Given the convergence rates Theorem 3.4, the estimator for

�0 is asymptotically independent of that for �01i, �
0
2i and f

0s
t . As in Tong and Lim (1980), Tsay (1989) and

Kapetanios (2000), we estimate �0 by grid search: we implement the algorithm by selecting 19 equally

spaced quantiles of the empirical distribution function of zst , namely f5%; 10%; 15%; : : : ; 85%; 90%; 95%g,

and the true value �0 = 2. Given the concentrated least squares estimator �̂
s
for �0, we estimate factor

and loadings by principal components. We assess �̂
s
by computing

bias = S�1
SP
s=1

�
�̂
s
� �0

�
; RMSE =

s
S�1

SP
s=1

�
�̂
s
� �0

�2
:

Finally, given the estimator ĉsit = I
�
zst � �̂

s
�
�̂
s

1if̂
s
t + I

�
zst > �̂

s
�
�̂
s

2if̂
s
t for the common component

c0sit = I
�
zst � �0

�
�01if

0s
t + I

�
zst > �

0
�
�02if

0s
t , we report

MSE = S�1
SP
s=1

�
(NT )

�1 NP
i=1

TP
t=1

�
ĉsit � c0sit

�2�
:
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6.2 Model Selection

We simulate the data using the two-factor DGP

xsit = I
�
zst � �0

� �
�011if

0s
1t + �

0
12if

0s
2t

�
+ I

�
zst > �

0
� �
�021if

0s
1t + �

0
22if

0s
2t

�
+ esit; i = 1; : : : ; N; t = 1; : : : ; T;

with �011i � N (1; 1), �012i � N (1; 1), �021i = �
0
11i + �

0
i and �

0
22i = �

0
12i + �

0
i . We set �

0
i = 0:25; 1:00; 1:75

for i = 1; : : : ; [N�0 ], and �0i = 0 for i = [N
�0 ] + 1; : : : ; N , with �0 = 0:60. The factors f0s1t and f

0s
2t are

generated as AR(1) processes analogous to (18); zst and e
s
it are as in (17) and (19), respectively. The

model has R0 = 2 factors and it is estimated with Rmax = 8. We assess the model selection criteria in

(13) by reporting the average number of estimated factors over the 2000 replications.

6.3 Linearity Testing

Under the null hypothesis, we simulate the data from the linear two-factor model

xsit = �
0
1if

0s
1t + �

0
2if

0s
2t + e

s
it; i = 1; : : : ; N; t = 1; : : : ; T;

with �01i � N (1; 1), �02i � N (1; 1). The factors f0s1t and f
0s
2t are generated as AR(1) processes analogous

to (18) and we look at two cases: (i) �f = 0, factors are serially uncorrelated and the heteroskedasticity

robust statistic in (16) is used; and (ii) �f = 0:5, factors have time dependence and the HAC statistic in

(15) is used with Barlett window DT = 5. Under the alternative hypothesis, we simulate the data from

the one-factor model in Section 6.1, with �0 = 0:60: we set �f = 0:5 in (18), factors are serially correlated

and the HAC statistic in (15) is used. We set the number of bootstrap replications to �b = 1000.

6.4 Results

The results are collected in four tables: Tables 1 and 2 focus on estimation; model selection criteria are

assessed in Table 3; size and power of the linearity test are shown in Table 4.

Table 1 about here

Table 2 about here
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Table 3 about here

Table 4 about here

Table 1 displays results for the concentrated least squares estimator �̂ for �0 = 2 when �0 = 0:60

(Panel A) and �0 = 1:00 (Panel B). Given Theorems 3.1 and 3.4, a higher �0 leads to stronger identi-

�cation of �0 and faster convergence rate of �̂ to �0, respectively: in line with these theoretical results,

the RMSE of �̂ when �0 = 1:00 is generally lower than the homologous value when �0 = 0:60 under

CSI, CSD and CSDH. The RMSE tends to decrease with N , T and �0i > 0. The RMSE also increases as

cross-sectional dependence and time heteroskedasticity are added to the DGP as compared to the CSI

scenario. The bias displays a pattern somehow similar to that of the RMSE.

Table 2 shows the MSE of the common components when �0 = 0:60 (Panels A) and �0 = 1:00

(Panels B). We assess the empirical validity of Theorem 3.4 by considering both unfeasible and feasible

estimators, the former and the latter being obtained by setting � = �0 and � = �̂, respectively. In line

with Theorem 3.4, the MSE of the feasible estimator converges to that of the unfeasible counterpart as

both N and T increase. The MSE monotonically decreases in N and T , and in �0i > 0 for N = 25,

whereas it does not exhibit any systematically noticeable di¤erence between �0 = 0:60 and �0 = 1:00.

The MSE also increases when cross-sectional dependence is added to the DGP, whereas it seems to be

less a¤ected by time heteroskedasticity.

Table 3 collects results for the selection criteria ICp1 (R;R), ICp2 (R;R) and ICp3 (R;R) (Panels

A, B and C, respectively) in (13) when �0 = 0:60. The criteria ICp1 (R;R) and ICp2 (R;R) display a

similar behavior under CSI, with the latter having a hedge over the former: they tend to overestimate

the number of factors for N = 25; 50, whereas they perform well for N = 100. The criterion ICp2 (R;R)

is the best under both CSD and CSDH, where the performance of ICp2 (R;R) slightly deteriorates as

compared to CSI. The criterion ICp3 (R;R) is the least accurate under all scenarios. Finally, unfeasible

and feasible estimators give similar results in terms of model selection performance.

Finally, Table 4 reports results for the linearity test at 5% and 10% level (Panels A and B, respec-

tively). Regardless of �f and N , the test is correctly sized for T = 400. It is undersized for lower values

of T , with the exception of scenario CSDH with �f = 0:00 and T = 200. The test has size properties

analogous to Breitung and Eickmeier (2011) Lagrange multiplier test under unknown break-point. The
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power increases in N , T and �0i > 0, though the e¤ect of size distortions ought to be taken into account.

In conclusion, the Monte Carlo �ndings corroborate the theoretical results stated in Theorems 3.1

and 3.4. They con�rm the validity of the information criteria in (13) and suggest using ICp2 (R;R).

Finally, they show that the proposed linearity test is able to detect regime shifts.

7 Empirical Application

We show how our framework may be used to measure connectedness in multivariate nonlinear dynamic

systems, with a focus on �nancial variables: a threshold factor speci�cation is suitable when "history

repeats", as in �nancial markets, which undergo regime shifts (Timmermann (2008), and Ang and

Timmermann (2012)). Section 7.1 proposes a measure of connectedness, Section 7.2 describes the data

and the empirical model, and Section 7.3 presents the results.

7.1 Measure of Connectedness

Connectedness is central to risk measurement and management. There exist several measures of connect-

edness, which are based on di¤erent underlying metrics: examples are the marginal expected shortfall

of Acharya et al. (2010), the equicorrelation approach of Engle and Kelly (2012), the network approach

of Diebold and Yilmaz (2014), and the CoVaR of Adrian and Brunnermeier (2016). In line with our

methodological contribution, we focus on the principal components approach of Billio et al. (2012).

Given the sequence of N�1 vectors fxtgTt=1, let f!rg
N
r=1 be the sequence of eigenvalues of the N�N

covariance matrix �̂x = (NT )
�1PT

t=1 xtx
0
t. In relation to �nancial markets, Billio et al. (2012) quantify

the degree of connectedness amongst the elements of xt as the risk associated to the �rst R eigenvalues

in relation to the overall risk of the system. Formally, they measure connectedness through5

C (R) =

PR
r=1 !rPN
r=1 !r

:

by construction C (R) is increasing in R; for given R, a higher C (R) denotes higher connectedness

amongst the underlying variables. The measure C (R) powerfully captures connectedness amongst ran-

dom variables. However, it su¤ers from two main drawbacks. First, the number of eigenvalues R is

5Billio et al. (2012) refer to C (R) as to the Cumulative Risk Fraction.
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chosen a priori and not according to a selection criterion. Second, C (R) refers to the entire time series

dimension T and is unable to detect variations in connectedness induced by a threshold e¤ect. Finan-

cial markets experience regimes shifts (Timmermann (2008), and Ang and Timmermann (2012)): the

measure C (R) may not accurately describe the dynamics in connectedness of the variables of interest6 .

Our methodology allows to build a connectedness measure that accommodates regime shifts and relies

on the optimally selected number of eigenvalues.

Let f!jrgNr=1 be the sequence of eigenvalues of the N � N covariance matrix �̂jx (�) de�ned in (7)

in decreasing order, for j = 1; 2. We generalize C (R) and measure connectedness through

Cj

�
R̂
�
=

PR̂
r=1 !jrPN
r=1 !jr

; j = 1; 2: (20)

Compared to C (R), the measure Cj
�
R̂
�
has two distinctive features: it quanti�es connectedness within

each regime; and the number of eigenvalues R̂ is optimally determined according to the criteria in (13).

7.2 Data and Model Speci�cation

We construct the vector of dependent variables from the updated monthly �nancial dataset employed

in Jurado et al. (2015) and, on a quarterly frequency, in Ludvigson and Ng (2007)7 : this consists of a

panel of 147 series related to the U.S. �nancial markets, as detailed in Ludvigson and Ng (2007).

We study how economic policy uncertainty a¤ects connectedness amongst �nancial variables. The

threshold variable is the lagged index of economic policy uncertainty proposed in Baker et al. (2016)8 :

a higher index value denotes higher uncertainty. Financial markets uncertainty leads to economic policy

uncertainty and the threshold variable is likely to be predetermined (see discussion in Section 3.1.2).

Due to data availability issues, we perform the empirical analysis over the period running from

January 1985 to December 2014, a total of 360 observations. The threshold variable has mean, standard

deviation, maximum and minimum equal to 107:640, 32:566, 245:127 and 57:203, respectively.

We �t a linear factor model to the data and select 8 factors using the ICp2 (R) criterion of Bai and

Ng (2002). Neither supdLMHAC
nor supdLMHC

in (15) and (16), respectively, reject the null of linearity:

6Billio et al. (2012) measure the dynamic degree of connectedness in �nancial returns by computing C (R) over rolling
windows.

7 I am very grateful to Sydney Ludvigson for providing me with the updated version of the dataset I am using in the
paper. See Jurado et al. (2015) for a more detailed description of the data.

8The index is made available at http://www.policyuncertainty.com/ .
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the tests are likely to have low power when applied to �nancial data, as market e¢ ciency limits factors

explanatory ability. As customary in empirical asset pricing, we still select two regimes (see Ang and

Timmermann (2012)). We consider Rmax = 10 and estimate the change-point by setting �R = Rmax;

we then construct a grid for the change-point with lowest and highest values equal to 5% and 95%,

respectively, and step equal to 0:5%. The number of factors are selected according to the criteria in (13).

7.3 Results

Results are collected in Table 5.

Table 5 about here

The point estimate for the threshold �0 is �̂ = 131:413: this splits the sample into low and high economic

policy uncertainty regimes, with frequencies equal to �̂ = 0:783 and 1� �̂ = 0:217, respectively. Figure

1 shows the high uncertainty regime, as identi�ed by I
�
zt > �̂

�
= 1, plotted against time.

Figure 1 about here

The criteria ICp1 (R;R) and ICp2 (R;R) select R̂ = 3 factors, with connectedness measures C1
�
R̂
�
=

0:678 and C2
�
R̂
�
= 0:865. Conversely, ICp3 (R;R) selects R̂1 = 6 factors: this is consistent with the

Monte Carlo results in Section 6.4, which show that ICp3 (R;R) overestimates the number of factors in

�nite samples. Our results show that connectedness amongst �nancial variables increases with economic

policy uncertainty: this likely to be relevant for risk measurement and management.

8 Directions for Future Research

We outline two directions for future research. It would be useful to apply to (1) the projected principal

components estimator of Fan et al. (2016a). By including additional covariates in the information set,

this would allow to consistently estimate factors and loadings without requiring T !1: this would be

important as the regimes in (1) e¤ectively reduce the available time dimension.

Following Fan et al. (2013; 2016b), and Bai and Liao (2016), it would be interesting to introduce

conditional sparsity in (1). Conditional sparsity allows to estimate the error covariance matrix in large

dimensional approximate factor models by imposing that many entries are zero or nearly zero. In a linear
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framework, Fan et al. (2013) develop a two-step procedure that �rst estimates factors and loadings by

principal components, and then applies a thresholding procedure to the remaining covariance matrix.

Bai and Liao (2016) propose a penalized maximum likelihood method that jointly estimates loadings and

error covariance matrix: the factors are then estimated by generalized least squares. Fan et al. (2016b)

robustify Fan et al. (2013) estimator to account for asymmetric and heavy tailed error distribution. As

applied to (1), conditional sparsity would have to be imposed within each regime: this would allow to

estimate regime-speci�c error covariance matrices; from the superconsistency property in Theorem 3.4,

the results in Fan et al. (2013; 2016b), and Bai and Liao (2016) would then apply within each regime.

9 Conclusions

We study least squares estimation of large dimensional factor models with threshold-type regime shifts

in the loadings. Our methodology handles the general case of unknown threshold parameter. The

concentrated least squares estimator for the threshold value is superconsistent: the convergence rate

depends on the time series dimension and on the number of cross-sectional units subject to threshold

e¤ect. The principal components estimator for factors and loadings has the same convergence rate as

in linear factor models: this allows to robustify Bai and Ng (2002) selection criteria by accounting

for the higher dimensional factor space representation induced by the regime shift. We also propose a

simple yet powerful linearity test to detect regime changes. In an application, we document an increase

in connectedness amongst �nancial variables during periods of high economic policy uncertainty: this

result is likely to be relevant for risk measurement and management.

A Proofs of Theorems

A.1 Proofs of Results in Section 3.4

We rely on the following lemmas.

Lemma A.1 Under Assumptions I and C1-C3, there exists some positive constant M <1 such that for all �, all (N;T )

and j = 1; 2:

(a) N�1PN
i=1

PN
l=1 �

2
jil (�) �M ;

(b) E
�
N�2PN

i=1

PN
l=1

h
T�1

PT
t=1 Ijt (�)xitxlt

i2�
�M ;
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(c) E
�
N�1PN

i=1

T�1/2 PT
t=1 Ijt (�) eit�

0
ji

2� �M .

Lemma A.2 Given Ĥjj (�) and Ĥmj (�) de�ned in (9) and (10), respectively, for j = 1; 2, and j 6= m, and for any �,

SF� (�)� SF

h
�01Ĥ11 (�) +�

0
2Ĥ21 (�) ;�

0
2Ĥ22 (�) +�

0
1Ĥ12 (�) ; �

i
= Op

�
C�1NT

�
:

Lemma A.3 There exists a � (�) > 0 such that

p lim inf
N;T!1

SF

h
�01Ĥ11 (�) +�02Ĥ21 (�) ;�02Ĥ22 (�) +�01Ĥ12 (�) ; �

i
� SF

�
�01;�

0
2; �

0
�
= � (�) ; 8� 6= �0:

Proof of Theorem 3.1. As de�ned in Section 3.2, ~V1 is the R0 �R0 diagonal matrix of the �rst R0 largest eigenvalues

of �̂x = (NT )�1
PT
t=1 xtx

0
t in decreasing order, and ~�1 is the estimator for �01 in the true data generating process

xt = �01f
0
t + I2t

�
�0
�
�0f0t + et from the misspeci�ed linear model xt = �1ft+ et: the equality �̂x~�1 = ~�1 ~V1 then holds

by the de�nitions of eigenvectors and eigenvalues. Applying the normalization N�1~�01
~�1 = IR0 to implement the principal

components estimator, it follows that N�1PN
i=1

~�1i2 = Op (1). By Lemma A.3 in Bai (2003), ~V1
p! V1 where V1 is a

positive de�nite matrix: we then focus on
~V1

�
~�1i � ~H0

1�
0
1i

�2. Theorem 3.1 relies on the identity

~V1

�
~�1i � ~H0

1�
0
1i

�
= N�1

NP
l=1

~�1l�1il
�
�0
�
+N�1

NP
l=1

~�1l{1il
�
�0
�

+N�1
NP
l=1

~�1l�2il
�
�0
�
+N�1

NP
l=1

~�1l{2il
�
�0
�

+N�1
NP
l=1

~�1l'il +N�1
NP
l=1

~�1l'li +N�1
NP
l=1

~�1l#il +N�1
NP
l=1

~�1l#li +N�1
NP
l=1

~�1l il;

where

{jil (�) = T�1
TP
t=1

Ijt (�) eitelt � �jil (�) ; j = 1; 2;

'jil (�) = T�1
TP
t=1

Ijt (�)
�
I1t
�
�0
�
�001if

0
t + I2t

�
�0
�
�002if

0
t

�
elt; j = 1; 2;

'il = '1il (�) + '2il (�) = T�1
TP
t=1

�
I1t
�
�0
�
�001if

0
t + I2t

�
�0
�
�002if

0
t

�
elt;

'jli (�) = T�1
TP
t=1

Ijt (�)
�
I1t
�
�0
�
�001lf

0
t + I2t

�
�0
�
�02lf

0
t

�0
eit; j = 1; 2;

'li = '1li (�) + '2li (�) = T�1
TP
t=1

�
I1t
�
�0
�
�001lf

0
t + I2t

�
�0
�
�02lf

0
t

�0
eit;

#il = T�1
TP
t=1

I2t
�
�0
�
�001if

0
t f

00
t �

0
l ; #li = T�1

TP
t=1

I2t
�
�0
�
�001lf

0
t f

00
t �

0
i ;

 il = T�1
TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l :

(21)

The matrix ~H1 depends on N and T : this dependence is implicitly suppressed to keep notation simple. Notice that

~H1

 � F0F00T

 �001 �01N

1/2
 ~�01~�1N


1/2 ~V�1

1

 = Op (1) ;

by Assumptions C1 and C2. By Loève�s inequality,

N�1
NP
i=1

~V1

�
~�1i � ~H0

1�
0
1i

�2 � 9N�1
NP
i=1

h
~�1i� (�) + ~{1i� (�) + ~�2i� (�) + ~{2i� (�) + ~'i� + ~'�i + ~#i� + ~#�i + ~ i�

i
;
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where

~�ji� (�) = N�2

 NP
l=1

~�1l�jil (�)


2

; ~{ji� (�) = N�2

 NP
l=1

~�1l{jil (�)


2

; j = 1; 2;

~'i� = N�2

 NP
l=1

~�1l'il


2

; ~'�i = N�2

 NP
l=1

~�1l'li


2

;

~#i� = N�2

 NP
l=1

~�1l#il


2

; ~#�i = N�2

 NP
l=1

~�1l#li


2

;

~ i� = N�2

 NP
l=1

~�1l il


2

:

We �rst consider ~�1i� (�): ~�2i� (�) is analogous and omitted. We have
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�
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by Lemma A.1(a). As for ~{ji� (�), for j = 1 (j = 2 is analogous),
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In a similar way, it can be proved that ~#�i = Op
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. Finally, under Assumptions C1 and C2,

~ i� = N�2

 NP
l=1

~�1l il


2

= N�2

 
NP
l=1

~�1l il

!0 
NP
l=1

~�1l il

!

= N�1

(
NP
l=1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#)0
N�1

(
NP
l=1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#)

= N�1

8<:N�0P
l=1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#
+

NP
l=N�0+1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#9=;
0

�N�1

8<:N�0P
l=1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#
+

NP
l=N�0+1

~�1l

"
T�1

TP
t=1

I2t
�
�0
�
�00i f

0
t f

00
t �

0
l

#9=;
= N�1Op

�
N�0

�
N�1Op

�
N�0

�
= Op

�
N2�0�2

�
:

Combining all above results, we have
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which completes the proof of the theorem.

Proof of Theorem 3.2. From Theorem 3.1, by Assumption I the regime indicator Ijt (�) is identi�ed, for j = 1; 2: we

can then split the sample according to the value of Ijt (�). We consider the case j = 1: the case j = 2 is analogous and

omitted. As de�ned in Section 3.4, V̂1 (�) is the R0 �R0 diagonal matrix of the �rst R0 largest eigenvalues of �̂1x (�) in

(7) in decreasing order: the equality �̂1x (�) �̂1 (�) = �̂1 (�) V̂1 (�) holds by the de�nitions of eigenvectors and eigenvalues.

From the normalization N�1�̂1 (�)
0 �̂1 (�) = IR0 , it follows that N
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�̂1i (�)2 = Op (1) for all �. By Lemma A.3

in Bai (2003), V̂1 (�)
p! V1 (�) where V1 (�) is a positive de�nite matrix for all �, and
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on
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where {1il (�), '1il (�) and '1li (�) are de�ned in (21). The matrices Ĥ11 (�) and Ĥ21 (�) both depend on N and T : this

dependence is implicitly suppressed to keep notation simple. Notice that
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by Assumptions C2 and C4. In an analogous way, it can be proved that
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Combining all results above, we have
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This completes the proof of the theorem.

Proof of Theorem 3.3. In order to prove the theorem, it is su¢ cient to prove that
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where SF (�; �) is de�ned in (4). By Lemma A.2, SF� (�) � SF
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�
�0
�
span the same column space as �01 and �

0
2,

respectively, we have

SF

h
�01Ĥ11
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has a positive limit by Lemma A.3. This

completes the proof of the theorem.

Proof of Corollary 3.1. Corollary 3.1 easily follows from Theorem 3.3 and the proof is omitted.
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Proof of Lemma A.1. Consider j = 1 (j = 2 is analogous and omitted). As for (a), let �1il (�) = �1il (�)
.
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Proof of Lemma A.2. Given �̂j (�) de�ned in (5), for j = 1; 2, de�ne
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where SF (�; �) and SF� (�) are de�ned in (4) and (8), respectively: it follows that
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so that for j = 1; 2 and j 6= m,

P�̂j
(�)�P�0j Ĥjj+�0mĤmj
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�0jĤjj (�) +�

0
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We consider the case j = 1: the case j = 2 is analogous and omitted. We have
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�01Ĥ11 (�) +�02Ĥ21 (�)
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0 �02i

2#1/2 Op (1) ;

33
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0 �02i

i0 �h
D�̂1

(�)
i�1

�
h
D�01Ĥ11+�
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also converges to a positive de�nite matrix: this implies that
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this completes the proof of the lemma.
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1Ĥ12

(�)
io
xt

= (NT )�1
TP
t=1

8>>>>><>>>>>:

�
I1t
�
�0
�
�01f

0
t + I2t

�
�0
�
�02f

0
t + et

�0
�
nh
I1t
�
�0
�
P�01

� I1t (�)P�01Ĥ11+�
0
2Ĥ21
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0
2Ĥ21

(�)�02f
0
t

i
+2 (NT )�1

TP
t=1

I2t (�) I2t
�
�0
� h
e0tP�02

�02f
0
t � e0tP�02Ĥ22+�
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0
2Ĥ21
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implies that p limN;T!1 b3 (�) � 0. This completes the proof of the lemma.

A.2 Proofs of Results in Section 3.5
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Lemma A.6 There exist constants B > 0 and 0 < d < 1 such that for all � > 0 and " > 0, there exists a �v < 1 such

that for all N and T ,

Pr

264 inf
�v

N�0T
�j���0j�B

w0
�
�0; �

���� � �0
�� < (1� �) d

375 � ":

Lemma A.7 For all � > 0 and " > 0, there exists some �v <1 such that for any B <1,

Pr

264 sup
�v

N�0T
�j���0j�B

h0 ��0; ��� h0 ��0; �0���� � �0
�� > �

375 � ":

Proof of Theorem 3.4. Let B and d be de�ned as in Lemma A.6. Pick � > 0 small enough so that

(1� �) d� 2� > 0: (25)
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Let ENT be the joint event that
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for j = 1; 2, i = 1; : : : ; N , t = 1; : : : ; T , it follows that

S
�
�0; �̂; F̂; �

�
� S

�
�0; �̂; F̂; �0

�
=

1

N�0T

TP
t=1

h
xt � �̂1 f̂t � �̂f̂2t (�)

i0 h
xt � �̂1 f̂t � �̂f̂2t (�)

i
� 1

N�0T

TP
t=1

h
xt � �̂1 f̂t � �̂f̂2t

�
�0
�i0 h

xt � �̂1 f̂t � �̂f̂2t
�
�0
�i

= D

8>>><>>>:
1

N�0T

TP
t=1

�
xt ��01f0t ��0f02t (�)

�0 �
xt ��01f0t ��0f02t (�)

�
� 1

N�0T

TP
t=1

�
xt ��01f0t ��0f02t

�
�0
��0 �

xt ��01f0t ��0f02t
�
�0
��
9>>>=>>>;

= D
�
S
�
�0;�0;F0; �

�
� S

�
�0;�0;F0; �0

��
;

(28)

for some D > 0, where f̂2t (�) = I2t (�) f̂t, �̂ = �̂2��̂1, f02t (�) = I2t (�) f0t and �0 = �02��01: the sign of S
�
�0; �̂; F̂; �

�
�

S
�
�0; �̂; F̂; �0

�
is then equal to the sign of S

�
�0;�0;F0; �

�
� S

�
�0;�0;F0; �0

�
. We have

S
�
�0;�0;F0; �

�
� S

�
�0;�0;F0; �0

�
=

1

N�0T
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t=1

�
f02t (�)� f02t

�
�0
��0
�00�0

�
f02t (�)� f02t

�
�0
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�2 1

N�0T

TP
t=1

�
f02t (�)� f02t

�
�0
��0
�00et

= S1
�
�0; �

�
+ S2

�
�0; �

�
and

S
�
�0;�0;F0; �

�
� S

�
�0;�0;F0; �0

���� � �0
�� =

1

N�0T
��� � �0

�� TP
t=1

�
f02t (�)� f02t

�
�0
��0
�00�0

�
f02t (�)� f02t

�
�0
��

�2 1

N�0T
��� � �0

�� TP
t=1

�
f02t (�)� f02t

�
�0
��0
�00et

=
S1
�
�0; �

���� � �0
�� +

S2
�
�0; �

���� � �0
�� :

(29)

Suppose � 2
h
�0 + �vN��0T�1; �0 +B

i
and that event ENT holds. It follows that

S1
�
�0; �

�
� � �0

=
1

N�0T
�
� � �0

� NP
i=1

TP
t=1

�
f02t (�)� f02t

�
�0
��0
�0i �

00
i

�
f02t (�)� f02t

�
�0
��

=
1

N�0T
�
� � �0

� NP
i=1

TP
t=1

��I2t (�)� I2t ��0��� ��00i f0t �2
=

w0
�
�0; �

�
� � �0

;

(30)
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and
S2
�
�0; �

�
� � �0

= �2 1

N�0T
��� � �0

�� TP
t=1

�
f02t (�)� f02t

�
�0
��0
�00et

= �2 1

N�0T
�
� � �0

� NP
i=1

TP
t=1

�
f02t (�)� f02t

�
�0
��0
�0i eit

� �2 1

� � �0

 1

N�0T

NP
i=1

TP
t=1

�
f02t (�)� f02t

�
�0
��0
�0i eit


= �2

h0 ��0; ��� h0 ��0; �0�
� � �0

;

(31)

By (25) through (31) it follows that for some D > 0,

S
�
�0; �̂; F̂; �

�
� S

�
�0; �̂; F̂; �0

�
� � �0

� D

"
w0
�
�0; �

�
� � �0

� 2
h0 ��0; ��� h0 ��0; �0�

� � �0

#
� D [(1� �) d� 2�] � 0:

Given the event ENT , if � 2
h
�0 + �vN��0T�1; �0 +B

i
then S

�
�0; �̂; F̂; �

�
� S

�
�0; �̂; F̂; �0

�
> 0. In a similar way,

it can be shown that if � 2
h
�0 �B; �0 � �vN��0T�1

i
then S

�
�0; �̂; F̂; �

�
� S

�
�0; �̂; F̂; �0

�
> 0. As S

�
�0; �̂; F̂; �̂

�
�

S
�
�0; �̂; F̂; �0

�
� 0, if ENT occurs then

����̂ � �0
��� � �vN��0T�1: since Pr (ENT ) � 1 � " for N � �N and T � �T , then

Pr
�����̂ � �0

��� > �vN��0T�1
�
� " for N � �N and T � �T : this is su¢ cient to show that N�0T

�
�̂ � �0

�
= Op (1). The

convergence rate of the estimator for the loadings follows from (11).

Proof of Corollary 3.2. Corollary 3.2 easily follows from Theorem 3.4 and the proof is omitted.

Proof of Lemma A.4. We show (23): the proof of (24) is analogous. Given a random matrix A,

@

@�
E [AI1t (�)] = E (A jzt = � ) fZ (�) : (32)

Under Assumption CR(b)

@

@�
E
�f0t eits I1t (�)� = E �f0t eits jzt = �

�
fZ (�) �

h
E
�f0t eit4 jzt = �

�is/4
fZ (�) � Cs/4 �f � C1;

where C1 = max [1; C] �f . For �1 � �2, I1t (�2)� I1t (�1) is either equal to one or to zero: by a �rst-order Taylor expansion,

it follows that

E
��
g0it (�1; �2)

�s	
= E

�
jI2t (�2)� I2t (�1)j

f0t eits� = E�[I1t (�2)� I1t (�1)] f0t eits	 � C1 j�2 � �1j :

Proof of Lemma A.5. Lemma 3:4 in Peligrad (1982) shows that under Assumption CR(a) there exists a K0 <1 such

that, taking into account (24) in Lemma A.4,

E

24����� 1pT TP
t=1

n�
q0t (�1; �2)

�2 � En�q0t (�1; �2)�2oo
�����
2
35 � K0E

�n�
q0t (�1; �2)

�2 � En�q0t (�1; �2)�2oo2�
� 2K0E

n�
q0t (�1; �2)

�4o
� 2K0C1 j�2 � �1j :

setting K = 2K0C1 completes the proof of the lemma.
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Proof of Lemma A.6. For � � �0,

E
�
w0
�
�0; �

��
=

1

N�0

NP
i=1

E
�
w0it (�)

�
=

1

N�0

N�0P
i=1

E
�
w0it (�)

�
+

1

N�0
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i=N�0+1

E
�
w0it (�)

�
=

1

N�0

N�0P
i=1

�00i
�
�02f

�
�0; �0

�
��02f (�; �)

�
�0i +

1

N�0

NP
i=N�0+1

�00i
�
�02f

�
�0; �0

�
��02f (�; �)

�
�0i ;

and

@E
�
w0
�
�0; �

��
@�

=
1

N�0

N�0X
i=1

�00i D
0
f (�) fZ (�) �

0
i +

1

N�0

NX
i=N�0+1

�00i D
0
f (�) fZ (�) �

0
i

by (32) (the sign is reversed if � � �0). By Assumptions CR(c) and CR(d), @E
�
w0
�
�0; �

��
/@� is continuous at � = �0,

and @E
�
w0
�
�0; �0

��
/@� > 0, respectively: there then exists a B small enough such that for

��� � �0
�� � B

d = min
j���0j�B

@E
�
w0
�
�0; �

��
@�

> 0:

The �rst-order Taylor expansion of E
�
w0
�
�0; �

��
about � = �0 results in

inf
j���0j�B

E
�
w0
�
�0; �

��
� d

��� � �0
�� ; (33)

since E
�
w0
�
�0; �0

��
= 0. Without loss of generality, set �0i = 0, for i = N�0 + 1; : : : ; N . Notice that

E
n��w0 ��0; ��� E �w0 ��0; �����2o = E

8<:
����� 1

N�0

1

T

NP
i=1

TP
t=1

�
w0it (�)� E

�
w0it (�)

�	�����
2
9=;

= E

8<:
������ 1

N�0

1

T

N�0P
i=1

TP
t=1

�
w0it (�)� E

�
w0it (�)

�	������
29=;

� C2

N2�0

N�0P
i=1

E

8<:
����� 1T TP

t=1

�
w0it (�)� E

�
w0it (�)

�	�����
2
9=;

for some C2 <1, and

E

8<:
����� 1T TP

t=1

�
w0it (�)� E

�
w0it (�)

�	�����
2
9=; �

�0i 4 T�1E
8<:
����� 1pT TP

t=1

�
q0t
�
�; �0

�
� E

�
q0t
�
�; �0

��	�����
2
9=;

�
�0i 4 T�1K ��� � �0

�� ; i = 1; : : : ; N�0 ;

by Lemma A.5: since �0i  = �02i � �01i � �01i+ �02i � 2��; i = 1; : : : ; N�0 ; (34)

by Assumption C2, it follows that

E
n��w0 ��0; ��� E �w0 ��0; �����2o � C216��

4

N�0T
K
��� � �0

�� : (35)

For any � and ", set

b =
1� � /2

1� �
> 1 (36)

and

�v =
8C216��

4
K

�2d2 (1� 1 /b )2 "
: (37)
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Assume N and T large enough so that �v
.�

N�0T
�
� B , otherwise the lemma is trivially satis�ed. For lN = 1; : : : ; N +1

and lT = 1; : : : ; T + 1, set �lN lT = �0 + �vblN�1blT�1
.�

N�0T
�
, where N and T are integers such that �NT � �0 =

�vbN�1bT�1
.�

N�0T
�
� B, �N+1;T � �0 > B and �N;T+1� �0 > B (since �v

.�
N�0T

�
� B then NT � 1). By Markov�s

inequality, (33), (35) and (37),

Pr

8><>: sup
1�lN�N;
1�lT�T

����� w0
�
�0; �lN lT

�
E
�
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�
�0; �lN lT

�� � 1����� > �

2

9>=>; �
�
2

�

�2 NP
lN=1
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lT=1

E
n��w0 ��0; �lN lT �� E �w0 ��0; �lN lT ����2o��E �w0 ��0; �lN lT ����2

� 4

�2

NP
lN=1

TP
lT=1

C2N��0T�116��4K
�
�lN lT � �0

�
d2
�
�lN lT � �0

�2
� 4

�2
C216��

4
K

d2�v

 
1P

lN=0

1

blN

! 
1P

lT=0

1

blT

!

=
4

�2
C216��

4
K

d2�v

1

(1� 1 /b )2
� "

2
:

it follows that for all 1 � lN � N and 1 � lT � T , and with probability greater than 1� " /2 ,

����� w0
�
�0; �lN lT

�
E
�
w0
�
�0; �lN lT

�� � 1����� � �

2
: (38)

Using (36), for any � such that �v
.�

N�0T
�
�
�
� � �0

�
� B, there exists some lN � N and lT � T such that

�lN lT < � < min
n
�lN+1;lT ; �lN ;lT+1

o
and on the event (38)

w0
�
�0; �

��
� � �0

� �
w0
�
�0; �lN lT

�
E
�
w0
�
�0; �lN lT

�� E
�
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�
�0; �lN lT

��h
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n
�lN+1;lT ; �lN ;lT+1

o
� �0

i � �1� �

2

� d
�
�lN lT � �0

�h
min

n
�lN+1;lT ; �lN ;lT+1

o
� �0

i = (1� �) d

where we set
�
�lN lT � �0

�.h
min

n
�lN+1;lT ; �lN ;lT+1

o
� �0

i
= 1/b : this event has probability greater than 1� " /2 and

then

Pr

264 inf
�v

N�0T
�(���0)�B

w0
�
�0; �

��
� � �0

� < (1� �) d

375 � "

2
;

holds. Taking the in�mum over ��v
.�

N�0T
�
�
�
� � �0

�
� �B allows to prove a similar inequality using the same

argument: this completes the proof of the lemma.

Proof of Lemma A.7. Given some C3 <1 to be determined later, �x � > 0 and set

�v =
8

(0:5)2 (0:5)2
C1C3��

2

�2"
: (39)
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For lN = 1; : : : ; N and lT = 1; : : : ; T , set �lN lT � �0 = �v2lN�12lT�1
.�

N�0T
�
� B. Without loss of generality, assume

that �0i = 0, for i = N�0 + 1; : : : ; N . Markov�s inequality, (23) in Lemma A.4, (34) and (39) ensure that
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E
n�I2t ��lN lT �� I2t ��0�� �00i f0t eit2o�

�lN lT � �0
�2

� C3

�2
1

N2�0

1

T

NP
lN=1

TP
lT=1

NP
i=1

�0i 2 En�I2t ��lN lT �� I2t ��0�� f0t eit2o�
�lN lT � �0

�2
=

C3

�2
1

N2�0

1

T

NP
lN=1

TP
lT=1
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TP
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"
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= 4
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2
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"
NP
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1�
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�2�v
� "

2
:

It follows that for all 1 � lN � N and 1 � lT � T , and with probability greater than 1� " /2 ,

h0 ��0; �lN lT �� h0 ��0; �0��
�lN lT � �0

� � �;

which implies that

Pr

264 sup
�v

N�0T
�(���0)�B

h0 ��0; ��� h0 ��0; �0��
� � �0

� > �
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:

Taking the in�mum over ��v
.�

N�0T
�
�
�
� � �0

�
� �B allows to prove a similar inequality using the same argument,

which completes the proof.

A.3 Proof of the Result in Section 4

Given the loss function in (12) and for any �xed R � 1, let �̂Rj (�) =
h
�̂
R
j1 (�) ; : : : ; �̂

R
jN (�)

i0
be the N � R matrix of

estimated loadings for �xed �, for j = 1; 2. Let V̂R
j (�) be the R � R diagonal matrix of the �rst R largest eigenvalues of

�̂jx (�) in (7) in decreasing order, for j = 1; 2. De�ne the R0 �R rotation matrix

ĤR
jj

�
�0
�
=
F0j
�
�0
�
F0j
�
�0
�0

T

�00j �̂
R
j

�
�0
�

N
V̂R
j

�
�0
��1

; j = 1; 2; (40)

where F0j (�) is de�ned in Section 3.4.

Lemma A.8 For any �xed R � 1, there exists a R0 � R matrix ĤR
jj

�
�0
�
as de�ned in (40), with rank

h
ĤR
jj

�
�0
�i
=

min
�
R0; R

	
, and CNT = min
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p
T
o
, such that
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�̂Rji ��0�� ĤR
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�
�0
�0
�0ji

2# = Op (1) ; j = 1; 2:
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Lemma A.9 Let �̂
�R
be the estimator for �0 obtained from the loss function in (12) for any a priori chosen number of

factors R = �R such that �R � R0. Then under assumptions I, C1-C4 and CR,

N�0T

�
�̂
�R � �0

�
= Op (1) :

Proof of Theorem 4.1. Consider
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�
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�
�01f

0
t + I2t

�
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�
�02f

0
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0
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�
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�
f00t
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�
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0
2

�
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0
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�
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0
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�
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0
N

�0 is a N � 2R0 matrix, with �0i =
�
�001i;�

00
2i

�0
a 2R0� 1 vector, and

�
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�
�0
�
f00t ; I2t

�
�0
�
f00t
�0 is a 2R0� 1 vector. Given the loss function in (12), let f̂Rt (�) be the R� 1

vector of estimated factors for �xed �, for t = 1; : : : ; T . Further, let ĤR+
jj

�
�0
�
be the generalized inverse of ĤR

jj

�
�0
�
in

(40) such that ĤR
jj

�
�0
�
ĤR+
jj

�
�0
�
= IR, for j = 1; 2. Lemma A.8 implies that
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�
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�
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or
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�
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�
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ĤR+
22

�
�0
�
f0t

3775
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so that by Lemma A.9
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9>>>=>>>; = Op (1) ;

which is analogous to Theorem 1 and Corollary 2 in Bai and Ng (2002): this is su¢ cient to complete the proof of the

theorem, as it shows that the criteria in (13) select
�
R0 +R0

�
factors.

Proof of Lemma A.8. The proof of Lemma A.8 is similar to that of Theorem 3.2 and omitted.

Proof of Lemma A.9. Given the loss function in (12) and following similar steps as in the proof of Theorem 3.3, it can

be shown that

lim
N;T!1

P
n
S
h
�̂R (�) ; F̂R (�) ; �

i
� S

h
�̂R

�
�0
�
; F̂R

�
�0
�
; �0
io

= 0; 8� 6= �0; R0 � R � Rmax:

In order to prove the lemma it is then su¢ cient to show that

S
h
�̂R

�
�0
�
; F̂R

�
�0
�
; �0
i
� S

h
�̂
�
�0
�
; F̂
�
�0
�
; �0
i
= Op

�
C�2NT

�

for any �xed R such that R0 � R � Rmax, where S
h
�̂ (�) ; F̂ (�) ; �

i
= S

h
�̂R

0
(�) ; F̂R

0
(�) ; �

i
. Notice that

���S h�̂R ��0� ; F̂R ��0� ; �0i� S
h
�̂
�
�0
�
; F̂
�
�0
�
; �0
i���

�
���S h�̂R ��0� ; F̂R ��0� ; �0i� S

�
�0;F0; �0

����+ ���S ��0;F0; �0�� S
h
�̂
�
�0
�
; F̂
�
�0
�
; �0
i���

� 2 max
R0�R�Rmax

���S h�̂R ��0� ; F̂R ��0� ; �0i� S
�
�0;F0; �0

���� :

43



it therefore is su¢ cient to show that
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ĤR+
11

�
�0
�

+I2t
�
�0
�
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22

�
�0
�

p
N


 1p

NT

TP
t=1

I2t
�
�0
�
etf00t



377775

� 2R

8>>>>>><>>>>>>:
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which completes the proof of the lemma.

A.4 Proofs of the Result in Section 5.2
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Proof of Theorem 5.1. From Theorem 3.1, ~H1 =
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By Assumption LT6,

(
E

����maxj=1;2

�Ijt (�)� Ijt ����� f0t f00t ����2�
)1/(2�)

�M �
��� � ���� �M �G � N (�)� = �;
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The proof of the theorem is completed following similar steps as in the proof of Theorem 1 in Hansen (1996).

Proof of Lemma A.10. The proof is similar to that of Lemma 10 in Chen et al. (2014) and omitted.

Proof of Lemma A.11. The proof follows from Lemma A.10 and Assumption LT4.
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Table 5: Empirical Application, Estimation Results, 1985 - 2014
This table presents results from the empirical application of the model in (1). The vector xt is made of the 147 updated
monthly �nancial variables employed in Jurado et al. (2015). The threshold variable zt is the lagged index of economic
policy uncertainty proposed in Baker et al. (2016). The model is estimated over the period 1985 : 01 � 2014 : 12, a total
of 360 observations. �̂ is the point estimate of the threshold parameter �0 and �̂ = T�1

PT
t=1 I

�
zt � �̂

�
. The optimal

number of factors R̂ is estimated according to the selection criteria ICp1 (R;R), ICp2 (R;R) and ICp3 (R;R) in (13). The

connectedness measures C1
�
R̂
�
and C2

�
R̂
�
are as in (20).

�̂ 131.413
�̂ 0.783

1� �̂ 0.217
ICp1 (R;R) ICp2 (R;R) ICp3 (R;R)

R̂ 3 3 6

C1
�
R̂
�

0.678 0.678 0.736

C2
�
R̂
�

0.865 0.865 0.898

Figure 1: Empirical Application, High Economic Policy Uncertainty Regime, 1985 - 2014

This �gure shows the high economic policy uncertainty regime, as identi�ed by the sequence
n
I
�
zt > �̂

�
= 1
oT
t=1

, where

�̂ = 131:413 is the point estimate of the threshold parameter �0.
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