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Abstract

This paper studies large dimensional factor models with threshold-type regime shifts in the load-
ings. We estimate the threshold by concentrated least squares, and factors and loadings by principal
components. The estimator for the threshold is superconsistent, with convergence rate that depends
on the time and cross-sectional dimensions of the panel, and it does not affect the estimator for fac-
tors and loadings: this has the same convergence rate as in linear factor models. We propose model
selection criteria and a linearity test. Empirical application of the model shows that connectedness
in financial variables increases during periods of high economic policy uncertainty.
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1 Introduction

Factor models are widely used tools to explain the common variations in large scale macroeconomic
and financial data. An extensive literature analyzes factor models under the maintained assumption
of constant loadings over the entire sample period: see Connor and Korajczyk (1986,1988,1993), Forni
et al. (2000,2004,2015), Forni and Lippi (2001), Bai and Ng (2002), Stock and Watson (2002), and
Bai (2003) for seminal contributions on linear factor models. Economic models are however unlikely
to have constant parameters over time and factor models with time-dependent loadings are called for.
Time-dependence in the loadings may be easily implemented through a change-point mechanism: this
may be parameterized as either a structural break or a regime shift driven by the threshold principle,
depending on the underlying data generating process.

Structural breaks in the loadings may arise as a consequence of events such as technological or policy
changes. Several important contributions deal with large dimensional factor models subject to loadings
instabilities. Breitung and Eickmeier (2011) show that ignoring breaks leads to overestimation of the
number of factors and develop statistical tests for the null hypothesis of stability in the loadings. Bates
et al. (2013) study the robustness properties of the principal components estimator of the factors under
neglected loadings instability. Chen et al. (2014), Han and Inoue (2015) and Yamamoto and Tanaka
(2015) develop further statistical tools to detect breaks. Chen (2015) considers least squares estimation
of the break date. Cheng et al. (2015) propose shrinkage estimation of large dimensional factor models
with structural breaks.

Regime shift representations of the dependent variables are suitable when "history repeats", as with
financial returns (Timmermann (2008), and Ang and Timmermann (2012)). Ng and Wright (2013)
introduce a threshold mechanism in large dimensional factor models to simulate data and investigate the
effects of nonlinearities on business cycle dynamics'. We take Ng and Wright (2013) intuition as a starting
point and propose a large dimensional factor model with regime changes in the loadings governed by the
threshold principle. We let the threshold value be unknown and focus on estimation, model selection
and linearity testing. To the very best of our knowledge, we are the first to tackle this problem.

Let R® be the true number of factors. Under the maintained assumption that R? is known, we

propose to estimate the threshold value by concentrated least squares, and factors and loadings by

1See Ng and Wright (2013), p. 1147.



principal components (Hansen (2000), and Bai and Ng (2002)). We obtain a number of novel theoretical
results. Let N and T denote the cross-sectional and time series dimensions, respectively. We first
provide sufficient conditions to ensure that our model is identified from a linear factor model: formally,
for 0.5 < a® < 1, we require that at least a fraction O (N 0‘0) of the IV cross-sectional units experiences
a regime shift in the loadings, so that the shift resists to the aggregation induced by the principal
components estimator. We then show that the estimator for the threshold parameter is consistent at a
rate equal to N "7 this depends on the time series dimension 7" and the number of cross-sectional units
Ne° subject to the threshold effect. The convergence rate monotonically increases in o and it is such
that VNT < N o’ < NT: this shows the direct relationship between identification of the model and
convergence rate of the estimator for the threshold. As a consequence of this superconsistency property,
we finally show that the principal components estimator for both regime-specific loadings and factors
have convergence rate equal to Cyr = min {\/N NT }: despite the threshold effect, the convergence
rate Cyr is equal to the one derived in Bai and Ng (2002) for linear factor models.

We next let the true number of factors R be unknown so that it has to be estimated. Breitung and
Eickmeier (2011) show that structural instability in the loadings leads to a factor representation with a
higher dimensional factor space: due to an analogy argument, the same issue arises when a regime shift
drives time variation in the loadings. Since the convergence rate Cyr of the estimator for loadings and
factors is the same as in linear factor models, we make Bai and Ng (2002) information criteria robust to
the threshold effect by accounting for the induced higher dimensional factor space representation.

As a last theoretical contribution, we propose a linearity test. Following Chen et al. (2014), and Han
and Inoue (2015), we check whether the covariance matrix of the estimated factors is regime-dependent:
we use the regression approach of Chen et al. (2014) and extend Hansen (1996) seminal contribution to
derive the asymptotic distribution of the test statistic under the null hypothesis of linearity.

We finally show how our theoretical framework may be used to measure connectedness in financial
markets (Acharya et al. (2010), Billio et al. (2012), Engle and Kelly (2012), Diebold and Yilmaz (2014),
and Adrian and Brunnermeier (2016)). We extend Billio et al. (2012) measure based on principal
components analysis to allow for regime-specific connectedness. Using Baker et al. (2016) index of
economic policy uncertainty as threshold variable, we show that connectedness in financial markets

increases during periods of high uncertainty: this may be relevant for risk measurement and management.



The remainder of the paper is organized as follows. Section 2 describes the model. Section 3 deals
with estimation. Section 4 looks at model selection. Section 5 develops a linearity test. Section 6 performs
a Monte Carlo analysis. Section 7 provides an empirical application. Section 8 outlines directions for
future research. Finally, Section 9 concludes. Appendix A provides technical proofs.

Concerning notation, I(-) denotes the indicator function; given a square matrix A, tr (A) denotes

the trace of A; the norm of a generic matrix A is [|A| = [tr (A’A)]l/2

; for a given scalar A, |A|, I4 and
04 are the absolute value of A, the A x A identity matrix and the zero matrix, respectively; 2L, denotes

convergence in probability; — denotes convergence in distribution; = denotes weak convergence with

respect to the uniform metric.

2 The Approximate Threshold Factor Model

We consider the model

xe =1(z <O)ALE, +1(2e > 0) Aoy +ep, t=1,...,T, (1)

where T" denotes the time series dimension of the available sample; x; = (z14, . .. ,th)/ € RN is the N x1
vector of observable dependent variables; f; = (fi,. .., th)/ € M is the R x 1 vector of latent factors;
z¢ € MR is an observable covariate and 6 is the unknown threshold value; e; = (eqy, . .. ,eNt)/ € RN is the
N x 1 vector of idiosyncratic errors; A; = (Aj1,...,A;jn) is the N x R matrix of factor loadings with
i — th row defined as Aj; = (A\ji, . - .,)\jiR)’, forj=1,2andi=1,...,N.

The model in (1) belongs to the class of threshold models proposed in Tong and Lim (1980): see Tsay
(1989, 1998), Chan (1993) and Hansen (1996, 1999, 2000) for methodological contributions; and Hansen
(2011) for a survey of the literature. According to the threshold principle introduced in Pearson (1900),
the regime prevailing at time ¢ depends on the position of z; with respect to the unknown threshold 6.
Ng and Wright (2013) simulate data from a large dimensional threshold factor model to investigate the

2. we explicitly focus on estimation, model selection

effects of nonlinearities on business cycle dynamics
and linearity testing. Our results extend to the case in which the threshold variable is more generally

defined as a linear combination of covariates (Massacci (2014)): this would be relevant when the driver

2See Ng and Wright (2013), p. 1147.



of the regimes is not a priori known.

The model in (1) extends large dimensional linear factor models to allow for a threshold effect on
the loadings. Given Assumption C3 stated in Section 3.1 below, we follow Chamberlain and Rothschild
(1983) and allow for some degree of correlation in the idiosyncratic components within each regime: (1)
then is an approximate threshold factor model; it is more general than an exact threshold factor model,
which would extend the arbitrage pricing theory of Ross (1976) and would not allow for any correlation

in the idiosyncratic components in any regime.

3 Estimation

As in Stock and Watson (2002), we study estimation of (1) under the assumption that the true number
of factors R (i.e., the true dimension of f;) is known. We extend the theory in Bai and Ng (2002) based
on principal components estimation to allow for concentrated least squares estimation, as motivated in
Hansen (2000) for threshold regressions. The plan is as follows: Section 3.1 states the assumptions;
Section 3.2 deals with identification; Section 3.3 describes the principal components estimator; Section

3.4 proves the consistency of the estimator; and Section 3.5 derives the convergence rates.

3.1 Assumptions

We group the assumptions into three sets, depending on the role they play to identify and estimate
the model, and to derive the convergence rates. Let I1;(0) = I(2; < 0) and Iy () = I (2 > 0). For
7 = 1,2, denote A(; = ()\?1, .. .,)\gN)', 0° and fY the true values of A;, 6 and f;, respectively. Define

o

0.(0) =1L ()£, for j=1,2and t =1,..., T, and let 8; = X3, — A};, for i =1,..., N.

3.1.1 Identification

Assumption I - Threshold Factor Model. For 0.5 < a® < 1, 6? % 0 for i = 1,...,N°‘O, and

Zi‘V:NuOH 6? =0(1).

Assumption I requires that at least a fraction O (N O‘O) of the IV series experiences a threshold effect,
for 0.5 < a® < 1: this follows up on Bates et al. (2013), who show that if at most O (N°5) series undergo
a break then the principal components estimator as applied to the misspecified linear model achieves the

same Bai and Ng (2002) convergence rate. Assumption I ensures that enough series experience a regime



shift so that (1) is identified from a linear factor model when factors and loadings are estimated by
principal components. As shown in Theorem 3.4 below, o affects the convergence rate of the estimator
for 0°: the higher the former, the faster the latter. In this paper we do not aim at estimating o and

leave this interesting issue to future research.

3.1.2 Counsistency

Assumption C1 - Factors. EHftOH4 < oo; for j = 1,2, T £, (0) £, (90)/ 2 %% (0,0°) as

T — oo for all 8 and some positive definite matrix ng (9, 90).

Assumption C2 - Factor Loadings. Forj = 1,2andi=1,..., N, ||)\(J)-,-|| < A\ < o0, and HA?’A? /N — D%j H —

0 as N — oo for some R° x R positive definite matrix D%j.

Assumption C3 - Time and Cross-Section Dependence and Heteroskedasticity. There exists

a positive M < oo such that for j = 1,2, for all § and for all (N, T),

(a) E(es4)) =0and E \eit|8 < M;
b) E[l;; ()1, (0) €i€in] = Tjite (0) with |75, (0)] < |7j40| for some 7,4, and for all 7, and
J J J J J J
T Y Y el < M
() BTV Lo (0) ewen| = o5 (0), lou ()] < M for all 1, and N2, S Jorga (6)] <
M;

4
(d) E ‘T‘l/Q Zthl Lt (0) eirerr — E [Lir () esrerr]| < M for every (i,1).

Assumption C4 - Weak Dependence between f, z; and e;;. There exists some positive constant

M < oo such that for all # and for all (N,T),

N 2
E{N‘lz }<M7 J=12
=1

T
T_1/2 |:Z I[jt (9) f?elt:|
t=1

Assumptions C1 to C4 are the natural extensions of Assumptions A to D imposed on linear factor
models in Bai and Ng (2002) and accommodate the threshold effect. Assumption C1 restricts the
sequences {fto}z;l and {zt}thl so that appropriate second moments exist; it also imposes a full rank
condition that excludes multicollinearity in the factors. According to Assumption C2, factor loadings

are nonstochastic and each factor has a nonnegligible effect on the variance of x; within each regime.



Under Assumption C3, limited degrees of time-series and cross-section dependence in the idiosyncratic
components as well as heteroskedasticity are allowed. Finally, Assumption C4 provides an upper bound
to the degree of dependence between the factors, z; and the idiosyncratic components: Assumption C4
is stronger than Assumption D in Bai and Ng (2002), which only bounds the dependence between the
factors and the idiosyncratic components. Although we deal with a panel structure, we do not require
the threshold variable z; to be strictly exogenous as in Assumption 2 in Hansen (1999): in particular, z;

is allowed to be predetermined and equal to some lagged value of one of the elements of x;.

3.1.3 Convergence Rates

Define D{ () = E (f/£Y |2, = 6) and denote by fz (z;) the density function of z;.
Assumption CR - Stationarity, Moment Bound, Continuity and Full Rank.

(a) {fto, Zt, et}thl is strictly stationary, ergodic and p—mixing, with p—mixing coefficients satisfy-
ing >0, pul? < oo;
(b) For all 6, E(Hf?eit||4|zt =0) < C and E (Hfto||4|zt = 9) < C for some C < oo and for

i=1,...,N,and fz () < f < oc;
(c) fz(#) and DY (9) are continuous at 6 = 6°;

(d) 69D (0°)8? > 0,7 =1,...,N° and 0.5 < a® < 1, and 1Y yoo,, 69D (6°) 67 = O (1);

fz (8) > 0 for all 6.

Assumption CR is analogous to Assumption 1 in Hansen (2000). Assumption CR(a) restricts the
memory of the sequence {fto s 2t et}thl; it excludes trends and integrated processes. Assumption CR(b)
gives conditional moment bounds. Assumption CR(c) imposes a continuous support on z;. The full-rank
condition in Assumption CR(d) strengthens Assumption I and rules out the "continuous threshold" set
up of Chan and Tsay (1998), which arises in the one-factor model when the scalar factor f2 equals the
threshold variable z, and ° = 0: in this case, 6YE (f2rf? |zt = 90) 6) = 6B (f2r ’fto = 90) 69 =0, for

t=1,...,N, and Assumption CR(d) is violated.



3.2 Identification

Let A? = (5[1), e 6?\,), and write the data generating process of x; as x; = Ay + Iy, (90) AP + e
Define F? = (f?7 e ,f%) and denote A; = (5\11, cee 5\1N>/ the principal components estimator for A
from the misspecified linear factor model x; = A1f; + e;. Let V; be the R® x RO diagonal matrix of the
first RO largest eigenvalues of 3, = (NT) ™" Zthl x:X; in decreasing order: the underlying optimization

problem requires the normalization N _111’1111: Iro. The following theorem states the properties of A.

Theorem 3.1 There exists a R® x RO rotation matriz ﬁl with rank (fll) = RY such that

2 L X 7/ 10 2
By N;‘)‘li_Hl)‘li :Op(l)a

as N, T — oo, where

By = min{\/]v, \/T,Nl_“o}

and

FOFY A?I.&l -
= Vi,
! T N !

Theorem 3.1 shows that the average squared deviations between the loadings estimated using a linear
factor model and those that lie in the true loading space vanish as N,T — oo at a rate equal to B3,
which drives identification. Under Assumption I, the model in (1) is identified from the linear factor
model as the rate of convergence N 1=a” f the principal components estimator is slower than it would
be under correct linear model specification: the model in (1) would not be identified from a linear factor
model if 0 < a® < 0.5, since in this case BJQVT = min {N, T}, as derived in Bai and Ng (2002). If o = 1
and all cross-sectional units are subject to threshold effect, B, = 1 and the principal components
estimator from the misspecified linear model is asymptotically biased. As proved in Theorem 3.4, the
parameter o regulates the convergence rate of the estimator for the unknown threshold value 6°: this

result shows the connection between identification strength and estimation precision.

3.3 Principal Components Estimation

We estimate factors and loadings by principal components, and 6° by concentrated least squares: see Bai

and Ng (2002) and Hansen (2000), respectively. Define the N x 2R? matrix of loadings A = (Aq, As)



and the R° x T matrix of factors F = (fi,...,fr). Let A = (A9, AJ) be the true value of A. The

objective function in terms of A, F and 6 is the sum of squared residuals (divided by NT)

S (A, F, 0) = ( ) ! g: [Xt - ]Ilt ( )Alft - ]1225 (9) Agft]/ [Xt - Hlt (0) Alft — ]Igt (0) Agft} : (2)

t=1

the estimators A = (AI,AQ), F = (f'l,...,f'T) and 0 for A%, Foand 6°, respectively, with Aj =

~ ~ /
(Ajl, ey )\jN> , for 7 = 1,2, jointly solve
AFO= argI{{lé{leS(A,F,O) .
For given A and 6, and subject to N~} (A;Aj) = Igo, for j = 1,2, from (2) we have
£ (A0) = N"1[Iy (0) Ay + T (0) Ao x4, t=1,...,T: (3)

replacing f; in (2) with f; (A, ) obtained in (3) leads to the concentrated objective function

T
Sk (A,0) = (NT) ™" 3 %, {In — N71 I (0) Ay Af + T (0) AsAb) ) x4, (4)
t=1
and the estimators for A° and 6° jointly solve

A, 0 =arg min Sr (A, 0).

From (4), the estimator for A° for given 6 is defined as

A9) = [Al (0), A, (e)] ~ argmax Ve (A, 0). (5)
where
Ve (A,0) = (NT)™' t; {xi [L1e (0) (A1A]) + Io¢ (6) (A2A%)] % }

I
r—’H

(NT)" "<t { [Z}Ilt( xtxl"} A1}+tr{A’2 [iﬂgt(e)xtxg] A2}}.



The problem

max Vr (A, 0)

is equivalent to

max [A’lilx (0) Ay + AbSoy (0) A2] , (6)
where
2A)jx (0) = [(NT)I i:l I;: () thé} , 7=1,2: (7)

for j = 1,2, and for given 6, the estimator for A? solving the problem in (6) is Aj (0), where Aj (0) is equal
to v/N times the N x R matrix of eigenvectors of fijx (6) corresponding to its largest RY eigenvalues.
Replacing A; and A in (4) with A; (6) and A () leads to the concentrated sum of squared residuals

(divided by NT)

™=

Sea (0) = (NT) ™' Y x! {IN _ N1 []Ilt (@)A1 (0) Ay (8) + Lo, (0) Ay (6) Ay (9)’] } x: (8

t=1

the estimator for 6° then solves

0= argmeinS’FA 0).

Given 0, the estimator for A‘; is [Xj = Aj (é), for j = 1,2. Finally, given 6 and A = (Al, Ag), from (3)
~ ~ ~ A~ ~ ~ ~ ~ /
£ =1 (A,H) — N1 [Hlt (9) A+ 1y (9) AQ} x;, t=1,...T.

3.4 Consistency

From Theorem 3.1, the two regimes described in (1) are separately identified under Assumption 1.
Define the R® x T matrices of regime-specific factors ¥9 (0) = [£7, () ,..., 5, (0)], for j = 1,2, such
that F (0) + F$ (0) = (£0,...,£2) = FO for any ¢, and FY (¢°) F9 (HO)I = Opo. Let H;; (9) and H,,,; ()

be the rotation matrices

I:IU (9) = T . N VJ (0)_1 y J= 17 2a (9)
. FO (0°)F2(0) AV A (6)
Hmj (0) _ m ( ) 7 ( ) AmAJ (Q)Vj (9)—17 j,m _ 1’27 ] 7& m, (10)

10



where V; (0) is the R® x R" diagonal matrix of the first R? largest eigenvalues of 3,5 (6) defined in (7)

in decreasing order: for 6 = 6° notice that H;; (9) and H,,,; () reduce to

F9 (6°) F9 (0°) AYA, (6°)
T N

T, (6°) = Vi (0°), Hpy (0°) =0ge jim=1,2 j#m,

and ﬁjj (90) becomes a regime-specific rotation matrix analogous to the one derived in Bai and Ng
(2002) for linear factor models®. The following theorem shows the bias of the principal components

estimator induced by the presence of regimes when 6 # 6°.

Theorem 3.2 There exist R® x R matrices H;; (0) and H,,; (9) as defined in (9) and (10), respectively,

with rank {Hjj (9)} = R° for all 0, and rank [Hmj (9)} = R° for 6 # 6°, and Cn7 = min {\/N, \/T},

such that

1N . . . 2 , _
Cir [z A (0) = B 6 X, = F; (0) XS, ]opu), V0, jm=12 j#m

Theorem 3.2 shows that the presence of regimes adds the asymptotic bias flmj ()’ A2, to the principal

0
Ji

components estimator Aj; (9) for the space H;; ()’ AY; spanned by )xg-)i. As in linear factor models, the
rate of convergence is equal to C%,; = min {N, 7} and therefore depends on the panel structure. Taking
into account (10), it follows that for § = 6°,

1 & s -
Cho | 2 A0 09~ 5 (07) x5

2
] =0,(1), 5=1,2, (11)

which extends the result in Theorem 1 in Bai and Ng (2002) to accommodate the presence of regimes
when the threshold 6° is known.
Theorem 3.2 plays a key role in proving the following theorem, which states the consistency of 0 as

an estimator for 6°.
Theorem 3.3 Under Assumptions I and C1-CY, 02 0° as N, T — oo.

Theorems 3.2 and 3.3 imply a number of results analogous to those collected in Theorem 1 in Stock

and Watson (2002): these are stated in Corollary 3.1 below.

3See Bai and Ng (2002), p. 213.
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Corollary 3.1 For j = 1,2, and under Assumptions I and C1-C4, as N,T — oo:

(a) X]’i (é) ﬁ) I:Ijj (90)/A§)2,

(b) B 2 [Ty (6°) By (6°) " + Ty (6°) Py (6°) | £

2
p
= 0;

(c) ;,JZ_VII Hj\ji (9) —Hy; (0°)' X

1 T

(@) 7%

t=1

2
2.

B = [T (6°) By (6°) 7+ Tag (0°) Flaa (6°) 7| 29

3.5 Convergence Rates

The following theorem states the convergence rates of the concentrated least squares estimator for the

threshold 6° and of the principal components estimator for the loadings.

Theorem 3.4 Under Assumptions I, C1-C4 and CR,
NeT (é - 90) =0,(1)

and

13, (5) 5 0 [ =0y, -1

Theorem 3.4 states the superconsistency of 0 as an estimator for 6°: it extends to an infinite di-
mensional system the result in Chan (1993) seminal contribution. The convergence rate N T of §
depends on the time series dimension 7' and the number of cross-sectional units N a’ subject to thresh-
old effect: the rate N°'T monotonically increases in a’; since 0.5 < o < 1 by Assumption I, then
VNT < N'T < NT; N°T is unknown since a® is unknown. The higher o, the stronger identification
of (1) from a linear factor model, and the faster the convergence rate of § to §%: this shows the connection
between identification and estimation. When o = 1, all cross-sectional units are subject to threshold
effect and the convergence rate is NT. Theorem 3.4 implies that the principal components estimator
for the loadings has the same convergence rate derived in Bai and Ng (2002) in the case of linear factor

models: the estimator for the threshold therefore does not affect the estimator for the loadings. Corollary

3.2 below follows from Theorem 3.4.

12



Corollary 3.2 Under Assumptions I, C1-C4 and CR,
2 1 I ya 0\ T 0y—1 0\ 1 0y —17 eo|?
Cxr T zleft— [Hlt (6°)Hip (0°) 41 (0”) Hag (6°) }ft H =0,(1).
t=

Corollary 3.2 shows that the convergence rate C 7 also applies to the principal components estimator
for the factors; it also shows that the rotation induced by f; around f? depends upon the regime. Corollary

3.2 justifies the robust Bai and Ng (2002) information criteria proposed in Section 4.

4 Determining the Number of Factors

We now consider the case in which the true number of factors RY in (1) (i.e., the true dimension of
£?) no longer is known and has to be determined. Breitung and Eickmeier (2011) show that neglecting
structural breaks in the factor loadings inflates the estimated number of factors. Given the analogy
between factor models with structural instability and (1), the latter suffers from the same problem.
We rely on Corollary 3.2 and suggest a simple way to robustify Bai and Ng (2002) selection criteria to
account for the threshold effect.

Given (1) and for fixed number of factors R, the loss function in (2) generalizes to

[ — iy (0) ATER — Ty (0) AREE] [0 — Tus (0) ARER — Ty (0) AZEF]

M=

S (AR, FR0) = (NT)™!

t=1

(12)
where Af = (A{Q,AQR)7 FR = (flR, .. .,fﬁ)7 and where the superscript R denotes the dependence on
the number of factors. The loss function in (12) depends on 6. From Theorem 3.4, it easily follows
that for any a priori chosen number of factors R = R such that R > R, the estimator 9R for 6° is
such that No'T (9R - 90> = 0, (1), with 9R0 =0 (see Lemma A.9 in Appendix A.3): in practice, R
may be chosen as discussed below. Given the convergence rate in Corollary 3.2, this naturally suggests
generalizing Bai and Ng (2002) criteria by first setting 6 = 9R in (12) to then select R factors within
each mutually exclusive regime, and therefore (R + R) factors in total.

Let AR (9) and | R (6) be the estimators for A® and F, respectively, for any 6. Given the loss

function in (12), and following Bai and Ng (2002), we want penalty functions g (N, T) to obtain criteria
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of the form

PC(R,R) =S [AR <9R> JRE (éR) ,éR] +(R+R)-g(N,T),

which consistently estimate the number of factors R” in each regime and therefore (RO + RO) factors in
total: the criterion PC (R, R) accounts for the fact that the threshold effect leads to a factor representa-
tion with a higher dimensional factor space, namely to a representation with (RO + RU) factors. Given

a bounded integer R™?* > RO, the true number of factors RO is estimated as

R=arg min PC(R,R):
1< R< Rmax

given the convergence rate Cyp in Corollary 3.2, this leads to the threshold effect robust Bai and Ng

(2002) information criteria

IC, (R,R)=InS {AR (éé) JRR <9R> ,éﬂ +(R+R) (N +T> In <NN+TT> :

ICp (R, R) =In§ [AR (éé) JFR (éﬁ> ,9R] +(R+ R) (NNJFTT) In (C%1) , (13)
ICys (R, R) =In § [AR (éR) PR (@R) 79R] C(R4R) IH(C?VJQ;T)

R _
In practice, to obtain the estimator 6 for §°, we may set R = R™**. The following theorem states the

validity of the proposed information criteria.

Theorem 4.1 Under Assumptions I, C1-C4 and CR, the criteria ICp (R, R), ICy2 (R, R) and ICp3 (R, R)

defined in (13) consistently estimate the number of factors R,

The information criteria in (13) may be generalized by introducing a tuning multiplicative constant
in the penalty as proposed in Alessi et al. (2010), who followed an idea put forward in Hallin and Liska

(2007): it is high in our agenda to investigate the likely potential benefits of this method.
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5 Testing for Linearity

5.1 Strategy and Test Statistic

Under Assumption I the model in (1) is identified from a linear factor model. We now extend Hansen

(1996) seminal contribution to formally assess the validity of Assumption I.
Assumption LT1 - Linear Factor Model. Zil\;NO'L'*-H 8 =0(1).

Under Assumption LT1, no more than O (N 0'5) series undergo a regime shift. From Theorem 3.1,
Assumption LT1 is the null hypothesis of linearity; Assumption I is the alternative. There exist several
tests to detect structural breaks in large dimensional factor models: see Breitung and Eickmeier (2011),
Han and Inoue (2015), and Yamamoto and Tanaka (2015). We follow Chen ef al. (2014). Regime shifts
in the loadings induce a change in the covariance matrix of the estimated factors. Let R be the estimated
number of factors in the linear model x; = Aqf; + e;: under Assumption LT1, R is equal to the true
number of factors, namely R = R°; under Assumption I, R = (RO + RO) due to neglected regime shifts.

If R =1 a regime shift in the loadings is ruled out with probability one. If R > 1 we proceed as
follows. Let f;, be the R x 1 vector of estimated factors from x; = A;f; +e, fort =1,...,T: consistently
with Section 4, R may be obtained as in Bai and Ng (2002). Following Chen et al. (2014), we construct

the auxiliary threshold regression

fie =11, (0) ﬁll?—l,t + 1o, (9) ﬂé?—l,t +u, t=1,...,T, (14)

where flt € fR is the first element of f‘t; f—Lt € ME-1is the (R - 1) x 1 vector containing the remaining
elements of f't; u; € R is the error term; B, and B, are (R — 1) x 1 vectors of slope coefficients. We
test Assumption LT1 in (1) by testing 8] = B9 in (14), where 8) and B9 are the true values of 3,
and B,, respectively. This requires ruling out regime shifts in the covariance matrix of the factors. Let

0 =E []Ilt (90)] and recall 29f (9,00) in Assumption C1, for j =1, 2.

Assumption LT2 - Threshold Effect in Factors. 7! Zthl fo£0" 2, 32 as T — oo, B9 (90,90) =
%2 and XY, (90, 90) = (1 — 710) 32, where X2 is a positive definite matrix.
Assumption LT2 is analogous to Assumption 2 in Chen et al. (2014): if it fails to hold, the covariance

matrix of the factors depends on the regimes and the test erroneously rejects the null hypothesis.
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We build a Lagrange multiplier statistic (Hansen (1996)). Under Assumption LT1 the auxiliary re-
gression in (14) reduces to fie = 6/1?_1,75 + u¢. The estimated factors are orthogonal to each other and
f 1t = ug: under the null hypothesis, the idiosyncratic component in (14) is generally serially correlated.

~ ~ /!
Define f_ ; (0) = []Ilt (0) 71 4,154 (0) £ 1,4 . For given 6, consider the estimator for 3° = ( v 3’)/

, T 3 oo }
B (0) = [Bl (9)/332 (9)/] = lz Sy (0) £ (9)/] lz £ (0) flt] .

For any (01,05), define the matrix M_ (6;,60,) = T~! Zle f_,(0))f_ ;(02). The regression scores
k_,(0) = f_,(0)u; are estimated under the null hypothesis as k_, (6) = f_, (0) fi;. From Newey
and West (1987), define: K_ 4(0;,602) = T} Zthd_H k_;(01)k_; 4(02), for d = 0,..., Dy, with
Dr = o(TY%); Q_(01,0,) = K_(01,05) + S0 w(d, Dr) [K,,d (01,05) + K_ 4 (91,92@, where
w(d,Dr) = [1 —d/(Dr +1)] is the Bartlett kernel. Define G = (I_,,~I5 ,)". For given 6, the

heteroskedasticity and autocorrelation (HAC) robust Lagrange multiplier test statistic is

—~ HAC - N . - -1
LM~ (0)=TB(0) G |G'NM_(0,0)"Q_(0,0)NM_(0,0) " G} G'3(9).
0 . — HAC 0 2 1: . . . . . . 0
For known 6~ and under the null hypothesis, LM (0 ) has a x~ limiting distribution with (R — 1)

degrees of freedom as N, T — oco. However, 6° is generally unknown and not identified under the null

hypothesis. Following Davies (1977,1987), and as in Hansen (1996), we propose the statistic

— HAC —~HAC
sup LM =sup LM ). (15)
0

When factors are serially uncorrelated, it is easy to show that (15) can be simplified to
—_HC — HC
supLM =supLM (0), (16)
0

with

—HC

LM () =TB(0) G [G'NM_ (9,0) ' K_(6,0)N1_(0,6)' G NeI08

—_HC
The heteroskedasticity robust statistic sup LM in (16) is analogous to the one studied in Hansen

(1996): we construct the more general heteroskedasticity and autocorrelation robust statistic in (15).
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5.2 Limiting Distribution under the Null Hypothesis

Let k() = T-Y/2 7 k_,(0) and k° () be a zero mean Gaussian process with covariance kernel
Qg (6‘17 92) =E [k(l (91) kg (92)/] Define M (91, 02) = T_l Z;&T:l [Hlt (91) ftOI, Hgt (91) ftO/]l [Hlt (92) ftO/, ]I2t (92) f?l]

and M° (01,0,) = E { [Iy¢ (61) £, T2 (61) fto’]/ (L4 (02) £, L2 (62) £ } under Assumption LT5(a) below.
Assumption LT3 - Eigenvalues. The eigenvalues of the R x R® matrix (E(f) : D%l) are distinct.
Assumption LT4 - Convergence Rates. VT /N — 0as N — oo and T — oo.

Assumption LT5 - Mixing Condition and Moment Bound.

(a) {fto , zt}tT:l is strictly stationary and S—mixing, with S—mixing coeflicients satisfying f3,, =

O (m™") for some v > ¢ /(§—1) and r > £ > 1;

(b) E{|man:172 [supg H]Ijt (0) ftOH] |4r} < o

Assumption LT6 - Bracketing. For all §, and for some M < oo and v > 0, there exists some # such

}1/(25)

that {B [max;—1,2 [T (0) — Lo (6)] €267 <M|o-d|.

Assumption LT7 - Uniform Convergence. 1\7[(9176’2) and _ (61,602) converge in probability to
M? (61, 605) and Q° (01, 02), respectively, uniformly over (61, 602), where M (61,605) and QY (01, 65)

are positive definite matrices.

Assumption LT3 is analogous to Assumption G in Bai (2003) and guarantees a unique probability limit
for (A?' A /N ) . Assumption LT4 imposes a standard restriction on the convergence rates. Assumptions
LT5-LT7 are equivalent to Assumptions 1-3 in Hansen (1996), respectively. The uniform convergence
of Q_ (81,605) to Q° (01, 6) is not stringent: factors are consistently estimated under Assumptions C1-
C4, LT1 and LT3; and Q_ (61,65) is a HAC estimator for the covariance kernel Q0 (61,65) (see also
Assumption 11 in Chen et al. (2014)). Assumptions LT5 and LT7 jointly imply Assumption C1.

Let M? (01,05) be such that M_ (6,05) & M° (64, 6) for any (01,05) as N,T — oco: the existence

of MY (6;,6,) is guaranteed by Assumption LT7. Define

LMPACY (g) = [MO (6,0) K2 ()] G [G'M2 (6,6) 0% (6,0)M° (6,0)" G el (M2 (6,6)"" K (6)
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and

sup LMPACO — sup LMHPACO (g) .
0

. —— HAC
Theorem 5.1 Under Assumptions C2-C4 and LT1-LT7, k_ () = k° (), LM (0) = LMHPACO (g),

——HAC
and sup LM 2 sup LMHPACO s N T — oo,

Theorem 5.1 implies that Hansen (1996) fixed regressor bootstrap approximates the asymptotic distri-
—HAC -
bution of sup LM in (15) under the null hypothesis?. For b = 1,...,b: (i) generate u;, ~ IIDN (0, 1);

. - . —— HAC,* —— HAC,
(43) define k* , (0) = T-1/2 Zthl f_+ (6) firug,; (448) let sup LM, = supy LM, (0), where

—HAC,*

M, (Q)Z[M, (9,9)*112;,,(9)}'(;[(;'1\71, 6,0)" Q_ (0,0) NI (9,9)*1@:} el [M, 0,0k, (9)] .

—HAC,*

b — HAC
The empirical distribution of {sup LM, }b approximates the asymptotic distribution of sup LM
=1

under the null hypothesis of linearity as stated in Assumption LT1.

6 Monte Carlo Analysis

The experiments related to estimation, model selection and linearity testing are described in Sections

6.1, 6.2 and 6.3, respectively; the results are discussed in Section 6.4.

6.1 Estimation

In line with the results in Section 3, we assume a known number of factors. As in Breitung and Eickmeier

(2011), we analyze a one-factor model. We simulate the data using the Data Generating Process (DGP)

zf =1 (25 <)L+ 1 (28 > ) NS, f2° + €5, i=1,...,N, t=1,...,T,

where s = 1,..., 5 refers to the replication and S is the total number of replications. We set S = 2000,

N = 25,50,100 and T = 100, 200, 400. We define 67 = X3, — A,

i

we set (5? >0fori=1,..., [Nao} and
5? =0 for i = [NO‘O] +1,..., N, where [-] denotes the integer part of the argument. We fix the factor
loadings \Y; and A}, and the threshold parameter 8" throughout the replications, with A}, ~ A/ (1,1) for

i=1,...,N as in the Monte Carlo experiment in Breitung and Eickmeier (2011), and 6° = 2. We control

4A formal proof would follow similar steps as that of Theorem 2 in Hansen (1996) and it is omitted.
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for: (i) the number of cross-sectional units {N“O] subject to a regime change by setting a” = 0.60, 1.00;

and (i7) the magnitude of the threshold effect by setting 5? =0.25,1.00,1.75. We generate z; as

1/2
Zf = Kz (1 - pz) + pzszl + (]‘ - Pz) / €;t7 28750 = Mz = _497 c '707 c ~7T7 (17)

where p, and p, ~ U (0.05,0.95) are fixed in repeated samples, and €5, ~ IIDN (0,1): in this way
E(zf) = p, and Var (z5) = 1. We let 7° =P (2§ < 90) =P (2 —p, < 0" — p,) =@ (90 — p.) = 0.50
and obtain p, = 0° — ®~! (7°) = 2: the choice 7° = 0.50 is consistent with the existing literature (see
Breitung and Eickmeier (2011), Chen et al. (2014), and Han and Inoue (2015)).

0s

We generate the factor as

, vz
0s — p f03, 4 (1 - p?c) @5 [0 =0, t=-49,...,0,...,T, (18)
2
with py ~ U (0.05,0.95) fixed in repeated samples, E (wj}t) =1 and €}, ~ TIDN (0, 1), so E(f) =0

and Var ( tos) = 1. We allow for conditional heteroskedasticity in f{* through the GARCH(1, 1) process

2 2 2 2 2
(w?t) = Bfl + ﬂﬁ (w;’t_l) —|—ﬁf3 (w?t_le;,t_l) , with (w?_m) =F (w;t) =1.

We generate the idiosyncratic components e, as

V2 —p) P @ e,, e =0, i=1,...,N, t=—49,....0,....T, (19)

E S
€t = PeCit—1 T 04

with p, ~ U (0.05,0.95) and o; ~ x (1) fixed in repeated samples. Let €5, = (€5 ,,..., egNt)'. We allow
for cross-sectional dependence through the first order spatial autoregressive process €, = Q,ta, where
= 1/2 172 1/2 «l/2 V2 12 . 1/2 172\ 1/2

Q = Q |:N /tI‘ (Ee,/diagﬂe,/diagQQ/Qe,/diagEe,/diag>} ’ Ee,/diag = dlag (0—1{ LA O—I\{N) ’ Qe,/diag =

diag {{ [E (wzlt)Q} 1/2 e [E (wiw)"’} 1/2} }’ 05, ~IIDN (0,Iy), and Q = (Iy — ¢W) ™' with

0 1 0 0
05 0 05 0

W=[ o
0.5
0 1 0
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in this way Var (ef,) = o4 E (wgit)Q / [Nfl Zl]\;l ouE (wzlt)z} and N1 Zf\il Var (ef,) = 1. We model
w?,; as the GARCH(1, 1) process (wzit)Q = Bo1+8eo (wgi’t71)2+563 (wzi,t,le‘;i’tfl)Q, with (w;’i’750)2 =
E (w;,t)2 = 1: it follows that Var (e,) — 04 as N — oo.

We consider three scenarios: (z) time homoskedastic factors and idiosyncratic components, and cross-
sectionally independent idiosyncratic components (CSI); (i¢) time homoskedastic factors and idiosyn-
cratic components, and cross-sectionally dependent idiosyncratic components (CSD); and (i47) time het-
eroskedastic factors and idiosyncratic components, and cross-sectionally dependent idiosyncratic compo-
nents (CSDH). Under CSI, we set 81 = B4 = 1, B9 = Bez = 0, By3 = B3 = 0 and ¢ = 0. We build
CSD by imposing 8¢ = Be; =1, By = Beo =0, By3 = B3 =0 and ¢ = 0.4. We parameterize CSDH by
setting B¢ = B, = 0.1, Bpo = B0 =08, B3 = B3 =0.1 and 1 = 0.4.

To reduce the effect induced by the initial values 2% 5, = u,, f%%, = 0, @5 _50 = 1, €] 50 = 0 and
@S, 50 = 1, we discard the first 50 observations in the DGPs for z, ff*, @y €5 and wg ;. We estimate
factor and loadings as detailed in Section 3.3. Given the convergence rates Theorem 3.4, the estimator for
0" is asymptotically independent of that for AJ;, Ay, and f2°. As in Tong and Lim (1980), Tsay (1989) and
Kapetanios (2000), we estimate 0° by grid search: we implement the algorithm by selecting 19 equally
spaced quantiles of the empirical distribution function of z7, namely {5%, 10%, 15%, . .., 85%, 90%, 95%},
and the true value ° = 2. Given the concentrated least squares estimator 0 for 0°, we estimate factor

and loadings by principal components. We assess 6 by computing

bias = 51 3° (és - 90) , RMSE = \/Sl > (és - 90)2.

s=1 s=1

Finally, given the estimator ¢, = I (zf < é§> X;fts +1 (zts > ég) X;ff for the common component

=1z < 90) A fos 41 (25 > 90) A9, £9% we report

=
M=

Il
-
~
Il
-

S
MSE = §—! 2

s=1

(1)

(éft - C?ts)2] .

K2
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6.2 Model Selection

We simulate the data using the two-factor DGP

wfy =1 (27 < 0°) (A0 f0 + ADpif98) +1(25 > 0°) (AQi 5 + A0 fS) + €y, i=1,...,N, t=1,...,

with A0}, ~ N (1,1), Ay ~ N (1,1), Ay, = Ay, 4 62 and Ay, = Ay, + 67, We set 69 = 0.25,1.00,1.75
for i = 1,...,[N®], and 6} = 0 for s = [N®] 4+ 1,..., N, with ay = 0.60. The factors fY and f97 are
generated as AR(1) processes analogous to (18); z; and e, are as in (17) and (19), respectively. The
model has R? = 2 factors and it is estimated with R™®* = 8. We assess the model selection criteria in

(13) by reporting the average number of estimated factors over the 2000 replications.

6.3 Linearity Testing

Under the null hypothesis, we simulate the data from the linear two-factor model

_ 0 r0 0 £0 s _
xi = N fie + Aaifa tefy, i=1,...,N, t=1,....T,

with A, ~ A (1,1), S, ~ N (1,1). The factors f%¢ and f9¢ are generated as AR(1) processes analogous
to (18) and we look at two cases: (i) p; = 0, factors are serially uncorrelated and the heteroskedasticity
robust statistic in (16) is used; and (ii) p; = 0.5, factors have time dependence and the HAC statistic in
(15) is used with Barlett window Dy = 5. Under the alternative hypothesis, we simulate the data from
the one-factor model in Section 6.1, with a® = 0.60: we set py = 0.5 in (18), factors are serially correlated

and the HAC statistic in (15) is used. We set the number of bootstrap replications to b = 1000.

6.4 Results

The results are collected in four tables: Tables 1 and 2 focus on estimation; model selection criteria are

assessed in Table 3; size and power of the linearity test are shown in Table 4.

Table 1 about here

Table 2 about here
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Table 3 about here

Table 4 about here

Table 1 displays results for the concentrated least squares estimator 6 for 0° = 2 when a° = 0.60
(Panel A) and o® = 1.00 (Panel B). Given Theorems 3.1 and 3.4, a higher a° leads to stronger identi-
fication of 0° and faster convergence rate of 0 to 0°, respectively: in line with these theoretical results,
the RMSE of 6 when a® = 1.00 is generally lower than the homologous value when o = 0.60 under
CSI, CSD and CSDH. The RMSE tends to decrease with N, T and 5? > 0. The RMSE also increases as
cross-sectional dependence and time heteroskedasticity are added to the DGP as compared to the CSI
scenario. The bias displays a pattern somehow similar to that of the RMSE.

Table 2 shows the MSE of the common components when o = 0.60 (Panels A) and o’ = 1.00
(Panels B). We assess the empirical validity of Theorem 3.4 by considering both unfeasible and feasible
estimators, the former and the latter being obtained by setting = 6° and 6 = @, respectively. In line
with Theorem 3.4, the MSE of the feasible estimator converges to that of the unfeasible counterpart as
both N and T increase. The MSE monotonically decreases in N and 7T, and in 6? > 0 for N = 25,
whereas it does not exhibit any systematically noticeable difference between o = 0.60 and o = 1.00.
The MSE also increases when cross-sectional dependence is added to the DGP, whereas it seems to be
less affected by time heteroskedasticity.

Table 3 collects results for the selection criteria ICp; (R, R), ICp2 (R, R) and ICp3 (R, R) (Panels
A, B and C, respectively) in (13) when o = 0.60. The criteria ICp; (R, R) and ICys (R, R) display a
similar behavior under CSI, with the latter having a hedge over the former: they tend to overestimate
the number of factors for N = 25, 50, whereas they perform well for N = 100. The criterion ICps (R, R)
is the best under both CSD and CSDH, where the performance of ICps (R, R) slightly deteriorates as
compared to CSI. The criterion ICp3 (R, R) is the least accurate under all scenarios. Finally, unfeasible
and feasible estimators give similar results in terms of model selection performance.

Finally, Table 4 reports results for the linearity test at 5% and 10% level (Panels A and B, respec-
tively). Regardless of p ¢ and N, the test is correctly sized for 7' = 400. It is undersized for lower values
of T', with the exception of scenario CSDH with p; = 0.00 and 7" = 200. The test has size properties

analogous to Breitung and Eickmeier (2011) Lagrange multiplier test under unknown break-point. The
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power increases in N, T and 6? > 0, though the effect of size distortions ought to be taken into account.
In conclusion, the Monte Carlo findings corroborate the theoretical results stated in Theorems 3.1
and 3.4. They confirm the validity of the information criteria in (13) and suggest using ICps (R, R).

Finally, they show that the proposed linearity test is able to detect regime shifts.

7 Empirical Application

We show how our framework may be used to measure connectedness in multivariate nonlinear dynamic
systems, with a focus on financial variables: a threshold factor specification is suitable when "history
repeats", as in financial markets, which undergo regime shifts (Timmermann (2008), and Ang and
Timmermann (2012)). Section 7.1 proposes a measure of connectedness, Section 7.2 describes the data

and the empirical model, and Section 7.3 presents the results.

7.1 Measure of Connectedness

Connectedness is central to risk measurement and management. There exist several measures of connect-
edness, which are based on different underlying metrics: examples are the marginal expected shortfall
of Acharya et al. (2010), the equicorrelation approach of Engle and Kelly (2012), the network approach
of Diebold and Yilmaz (2014), and the CoVaR of Adrian and Brunnermeier (2016). In line with our
methodological contribution, we focus on the principal components approach of Billio et al. (2012).
Given the sequence of N x 1 vectors {xt}il, let {wr}ivzl be the sequence of eigenvalues of the N x N
covariance matrix 3y = (NT) ! Zthl x:x;. In relation to financial markets, Billio et al. (2012) quantify
the degree of connectedness amongst the elements of x; as the risk associated to the first R eigenvalues

in relation to the overall risk of the system. Formally, they measure connectedness through®

R
Z’l":l Wr .

C(R) = :
() Zivzlwr

by construction C (R) is increasing in R; for given R, a higher C (R) denotes higher connectedness
amongst the underlying variables. The measure C (R) powerfully captures connectedness amongst ran-

dom variables. However, it suffers from two main drawbacks. First, the number of eigenvalues R is

5Billio et al. (2012) refer to C (R) as to the Cumulative Risk Fraction.
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chosen a priori and not according to a selection criterion. Second, C' (R) refers to the entire time series
dimension T and is unable to detect variations in connectedness induced by a threshold effect. Finan-
cial markets experience regimes shifts (Timmermann (2008), and Ang and Timmermann (2012)): the
measure C' (R) may not accurately describe the dynamics in connectedness of the variables of interest®.
Our methodology allows to build a connectedness measure that accommodates regime shifts and relies
on the optimally selected number of eigenvalues.

Let {ij}iV:l be the sequence of eigenvalues of the N x N covariance matrix 33, () defined in (7)

in decreasing order, for j = 1,2. We generalize C' (R) and measure connectedness through

D S
C; (R) R e L RN ) (20)
Z’I":l U.er
Compared to C (R), the measure C; (]:2) has two distinctive features: it quantifies connectedness within

each regime; and the number of eigenvalues R is optimally determined according to the criteria in (13).

7.2 Data and Model Specification

We construct the vector of dependent variables from the updated monthly financial dataset employed
in Jurado et al. (2015) and, on a quarterly frequency, in Ludvigson and Ng (2007)7: this consists of a
panel of 147 series related to the U.S. financial markets, as detailed in Ludvigson and Ng (2007).

We study how economic policy uncertainty affects connectedness amongst financial variables. The
threshold variable is the lagged index of economic policy uncertainty proposed in Baker et al. (2016)%:
a higher index value denotes higher uncertainty. Financial markets uncertainty leads to economic policy
uncertainty and the threshold variable is likely to be predetermined (see discussion in Section 3.1.2).

Due to data availability issues, we perform the empirical analysis over the period running from
January 1985 to December 2014, a total of 360 observations. The threshold variable has mean, standard
deviation, maximum and minimum equal to 107.640, 32.566, 245.127 and 57.203, respectively.

We fit a linear factor model to the data and select 8 factors using the ICpa (R) criterion of Bai and

— HAC ——~ HC
Ng (2002). Neither sup LM nor sup LM in (15) and (16), respectively, reject the null of linearity:

6Billio et al. (2012) measure the dynamic degree of connectedness in financial returns by computing C (R) over rolling
windows.

7T am very grateful to Sydney Ludvigson for providing me with the updated version of the dataset I am using in the
paper. See Jurado et al. (2015) for a more detailed description of the data.

8The index is made available at http://www.policyuncertainty.com/ .
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the tests are likely to have low power when applied to financial data, as market efficiency limits factors
explanatory ability. As customary in empirical asset pricing, we still select two regimes (see Ang and
Timmermann (2012)). We consider R™® = 10 and estimate the change-point by setting R = R™#;
we then construct a grid for the change-point with lowest and highest values equal to 5% and 95%,

respectively, and step equal to 0.5%. The number of factors are selected according to the criteria in (13).

7.3 Results

Results are collected in Table 5.

Table 5 about here

The point estimate for the threshold 6° is 6 = 131.413: this splits the sample into low and high economic
policy uncertainty regimes, with frequencies equal to # = 0.783 and 1 — 7 = 0.217, respectively. Figure

1 shows the high uncertainty regime, as identified by I (zt > 9) =1, plotted against time.
Figure 1 about here

The criteria ICp1 (R, R) and ICps (R, R) select R = 3 factors, with connectedness measures C; (R) =
0.678 and Cs (R) = 0.865. Conversely, ICy3 (R, R) selects Ry = 6 factors: this is consistent with the
Monte Carlo results in Section 6.4, which show that ICp3 (R, R) overestimates the number of factors in
finite samples. Our results show that connectedness amongst financial variables increases with economic

policy uncertainty: this likely to be relevant for risk measurement and management.

8 Directions for Future Research

We outline two directions for future research. It would be useful to apply to (1) the projected principal
components estimator of Fan et al. (2016a). By including additional covariates in the information set,
this would allow to consistently estimate factors and loadings without requiring 7" — oo: this would be
important as the regimes in (1) effectively reduce the available time dimension.

Following Fan et al. (2013,2016b), and Bai and Liao (2016), it would be interesting to introduce
conditional sparsity in (1). Conditional sparsity allows to estimate the error covariance matrix in large

dimensional approximate factor models by imposing that many entries are zero or nearly zero. In a linear
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framework, Fan et al. (2013) develop a two-step procedure that first estimates factors and loadings by
principal components, and then applies a thresholding procedure to the remaining covariance matrix.
Bai and Liao (2016) propose a penalized maximum likelihood method that jointly estimates loadings and
error covariance matrix: the factors are then estimated by generalized least squares. Fan et al. (2016b)
robustify Fan et al. (2013) estimator to account for asymmetric and heavy tailed error distribution. As
applied to (1), conditional sparsity would have to be imposed within each regime: this would allow to
estimate regime-specific error covariance matrices; from the superconsistency property in Theorem 3.4,

the results in Fan et al. (2013,2016b), and Bai and Liao (2016) would then apply within each regime.

9 Conclusions

We study least squares estimation of large dimensional factor models with threshold-type regime shifts
in the loadings. Our methodology handles the general case of unknown threshold parameter. The
concentrated least squares estimator for the threshold value is superconsistent: the convergence rate
depends on the time series dimension and on the number of cross-sectional units subject to threshold
effect. The principal components estimator for factors and loadings has the same convergence rate as
in linear factor models: this allows to robustify Bai and Ng (2002) selection criteria by accounting
for the higher dimensional factor space representation induced by the regime shift. We also propose a
simple yet powerful linearity test to detect regime changes. In an application, we document an increase
in connectedness amongst financial variables during periods of high economic policy uncertainty: this

result is likely to be relevant for risk measurement and management.

A  Proofs of Theorems

A.1 Proofs of Results in Section 3.4

We rely on the following lemmas.

Lemma A.1 Under Assumptions I and C1-C8, there exists some positive constant M < oo such that for all 6, all (N, T)

and j = 1,2:
(a) N1 Ei\;1 Zl]il U?il (0) < M:

) B{N-2EX, X, [1 S, 1 @) auan]} <1
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2
(c) E {N—l SN T S 1 (0) eand, ] <M.

Lemma A.2 Given I:Ijj (0) and I:Imj (0) defined in (9) and (10), respectively, for j = 1,2, and j # m, and for any 6,
Spa (8) — Sp [A?ﬁn (6) + ASFL,; (0), ASFIas (0) + ASHI, (0) ,0} =0, (C;;) .
Lemma A.3 There exists a 7(0) > 0 such that

plim _inf Sp [A?ﬁu (6) + ASHIy; (6) , AQEIa; (0) + AOH, (0),9] — Sk (A9,A9,00) =7 (0), VO 0°.

s

Proof of Theorem 3.1. As defined in Section 3.2, Vi is the RO x R? diagonal matrix of the first RO largest eigenvalues
of 3y = (NT)’l Zle x¢x; in decreasing order, and A1 is the estimator for A? in the true data generating process
Xt = A(l)ft0 + Io¢ (90) Aofto + e¢ from the misspecified linear model x; = A;1f; + e¢: the equality f]xjil = ]n\"/l then holds
by the definitions of eigenvectors and eigenvalues. Applying the normalization N_lﬂ'l_/il = Igo to implement the principal

2 -
= O, (1). By Lemma A.3 in Bai (2003), V1 £ V; where V; is a

components estimator, it follows that N—1 Zfil Hih

- e - 2
positive definite matrix: we then focus on HVl (Ali — H’l)\%) H . Theorem 3.1 relies on the identity

N
M=z
Pl

~ ~ ~ N
Vi (Au - H’R\%) = uoa (0°) + N7t lZ Xz (60°)
=1

1

~ N .

A1yo2q (0°) + N1 ZZ Xiire2q (69)
=1

M=z

+N1

=1

1
1 by 1 N o< 1 A 1 N 1 N .
- 1)‘ll§0il+N7 IZIAU%H‘N* lzl)\m%'l-ﬁ-N* l21>\1119u+N7 lzl)\uwz‘h

+
=
i

where

T
s (0) =T71 3 Ly (0) esvery — oy (), §=1,2,
=1
T
@i (0) =T~ 30 Lt (6) [Tne (6°) AYEY + T (0°) AYifP ] ers, j=1,2,
=1

Pi1 = 141 (0) + 250 (0) = T71 37 [Tug (0°) AQED + Top (6°) ASiEP] ey,

o~
=

it 0) =T 3 150 (0) [fae (0°) NVUP + 30 (0°) X38P) exrs 5= 1,2, (o1)
1 = 11 (0) + oy (0) =T71 té [L1s (6°) A£0 + T (6°) A9,£0]" €,
D =T 3 T (0) MO, O =T 3 T () MRS
b =T I (0°) SV D).
The matrix Hy depends on N and T: this dependence is implicitly suppressed to keep notation simple. Notice that
1/2

ALK,
N

FOR0/
T

1/2
VY| =0,

0/ A0
e < 57 |

N

by Assumptions C1 and C2. By Loéve’s inequality,

2 ~ ~ ~
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where

N 2 N 2
55 (0) = N2 ZZ Auoja (0)|| » % (0) = N2 ZZ A (0)| . =12,
=1 =1
) N 2 ) N 2
@ = N2 ZZ Aupy| » @a=NT? ; 1>\114P11 )
—1 —
i N 2 N 2
Yo = N72 3 Ayda|| » Da=N"2| 3 Audy|
=1 =1
N 2
;. = N2 lzl Ay
We first consider &1;. (0): &2;. (0) is analogous and omitted. We have
2
N Nocon2) [&
> Auowa (0)|| < (Z H)\uH > [Z o1 (9)}
=1 =1 =1
and
1 & 1 1 Y5 |12 1 XX, 1
NS @< NTHNT S X" ) (57 2 S odu @) =0, (N7
by Lemma A.1(a). As for ;. (0), for j =1 (j = 2 is analogous),
N N . 2
> i (0) = N723 |1 Awserar (0)
i=1 i=1||i=1
SN N N o,
= N723 > > Audigsai (0) g (9)
i=1i=1q¢=1
1/2
N N o, . \2]Y? N N [N 2V
< NP S (KAL) N2 3 50| 3 51 (6) #1iq (6)
I=1q=1 i=1q=1 |i=1
2y 1/2
N - 2 N N | N
< <N‘1 5 || Ra| ) {N—2 S5 [z%m (0) >14q (9)} } ‘
=1 i=1q=1 |i=1
Since
2 2
N N N 2
E { > 141 (0) s14q (9)] } =E [Z 21 141 (0) 5214q (0) 52101 (0) 31uq (9)] < N max B 5141 (0)]
i=1 i=1lu= T
and

E |54 (0)]* = T7°E

by Assumption C3(d), then

N N2 N
£ 020,00y 35 =0, (7)
and N~1 vazl #15. (0) = Op (T~1). Regarding @;., we have
~ No< :
;. = N2 ZZAu%z
=1
N T 2
= v S e £ e 00 g e}
=1 t=1
2
N . T N .
< SN2 AAY |77 > Iy (Go)ftoelt:| }+{N2Z AUy
=1 t=1 =1
.
i L 0) £0 0|2 1N ok
< AN T2 S (80) en|| | ¢ AL (NS R
=1 t=1 =1
112
PR Lo || & 0) £0 0 |2 1501
H{NL S |72 | 3 Ty (6°) £0ey, [EEAR Y ZHAUH
=1 t=1 =1
2
X I 0) £0 0|2 1 & 2
< N=LS | T72|| 3 Iny (0°) ey AL+ N> | T
=1 t=1 =1
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T2 37 11y (0) eivers — E [T (0) esers]
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T
T=1 3 Ty (6°) f?elt}
t=1

T
Zl To¢ (0°) ey,
t=

)

2] } H>‘81H2} Op (1)



2 2

a X X -2 _ -1
N Z Pi. = N ; T Op (1) p Op (1) =0Op (T )

T
Z Hlt (90) ftoelt
t=1

N
Op () + N Y |T72
=1

T
Z Hgt (90) ftoelt
t=1

by Assumptions C2 and C4. In a similar way, it is proved that ., = Op (Tﬁl). As for 9;.,

2
Ay

"N _
udil > Audy
=1

T ! N
U)\% 7-1 tgl To¢ (90) ftoft()/(s?:| } N-1 {lzzl }\11}\?;

M=z

Y = N—2

Il
A

M=
po}

Il
—

T
T=1 3 Iy (6°) f,?f?’&?] }
t=1

Il
-

2
R
[=)

> Ay

=1

= N1

T N oL
T=1 3 Iy (6°) ftofto’é?] + > Ay
t=1 1=Na®41

T
T L, (69) f?ff’«s?]
t=1

Il
b
—N— TN
M=
pe]

1 Nao X 0r N X 0r
XN7HE 30 AuAy; + X AuAl
=1 1=Na%41

T
T 3 TIo (6°) £2£07 67
t=1

T
T71 3 19t (69) ftofto’é?}
t=1

= N7, (N*") - NT1O, (N°7)

= 0, (N-2).

In a similar way, it can be proved that 9. = Op (N2a0*2>. Finally, under Assumptions C1 and C2,

N 2
hi = N72|I30 Auty
=1
N _ "IN
= N2 X Auvy > Auy
=1 =1
!
— -1 AN 71T 0) 507200750 -1 Nos —lT 0) §0/72£0¢0/ 50
= N S A [T S o (0°) 89 £2£27 8¢ N Ay | T3 Tge (609) 89 £2£0 67
= =1 = =1
lNiO ¢ . Nz 1 tT /
= Nl{ X [T71 3 o (0°) 69 €2£2°60 |+ 2 Au |:TIZ]I215 (%) 5?’ft°ft0’6?}
=1 t=1 1=NaO 41 t=1
N“U T N T
XN S Xy [T 30 Iy (6°) 8Y£2£2°60 |+ S Ay [T 3 I (69) 6?’f,?ft0’6?]
=1 t=1 1=Na® 11 t=1

= N71O, (N") N1O, (N°°)

= 0y (N2"-2).

Combining all above results, we have
N ij:va HV1 (S\M B ﬁll)‘?i) H2 =0p (N +0p (T71) +0p (NQ&O_Q) )

which completes the proof of the theorem. m

Proof of Theorem 3.2. From Theorem 3.1, by Assumption I the regime indicator Ij; (0) is identified, for j = 1,2: we
can then split the sample according to the value of I;; (6). We consider the case j = 1: the case j = 2 is analogous and
omitted. As defined in Section 3.4, V1 (6) is the R® x RO diagonal matrix of the first RO largest eigenvalues of 315 (6) in
(7) in decreasing order: the equality 31, (8) A1 () = Ay (6) V1 () holds by the definitions of eigenvectors and eigenvalues.
From the normalization N~*A; (8)" A1 (6) = Io, it follows that N~! Zfil Hj\h (¢9)H2 =0p (1) for all . By Lemma A.3

in Bai (2003), V1 (8) 2 V1 (8) where V1 (0) is a positive definite matrix for all 6, and HVl (9)H = Op (1): we then focus
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N < . . 2
on HV1 (9) [)\12' (6) —Hi1 (6)' X9, — Ho1 (6)' Agi] ’ . Theorem 3.2 relies on the identity

10 [Aas (0) iy 0 R~ 0 A8] = N7 & Au(0) 00 (0) + V-

5\ 1(0) 3141 (0)

MZ

1

)

N N
-t ZZI A1 (0) 10 (0) + N7 ZZI A1 (0) o115 (0)
where 14 (0), @14 (0) and @y;; (0) are defined in (21). The matrices Hiy () and Haj (9) both depend on N and T this
dependence is implicitly suppressed to keep notation simple. Notice that

P (0°) AV

N

Ay (0) A1 (0)
N

2
[V @7 =0,1)

Hy, (9)H <

by Assumptions C1 and C2. In an analogous way, it can be shown that HI:Igl (G)H = Op (1). By Loeve’s inequality

NS [910) [R1:0) — B (0 X%~ Frar 0 A3 [ AN S 600 0) 4 210 (0) +-600 (0) 4 614 01,
where
N 2 N 2
G145 (0) = N=2 || 30 A (0) o101 (0)]| 315 (0) = N2 || 32 A11(0) 5141 (0)]|
l]:v ) ) l;l ) )
$14.(0) = l; A1 (0) 1 (O] $1.,(0)=N"2 l; A1 (0) p1y5 (0)
Starting from &1;. (6),
N 2 2 N
z; Au (@) o (0)]| < |:E H)\ll (6’)H ] Lgl ot (‘9)] ,
and
N N . 2 N N
NP o () <N [Nll A @) } [Nl 2 Xt @) =0 (N7

N N | N 2
21 #1:.(0) = N72 21 121 A1 (0) 5101 (0)
- N N N R
= N2 Zl lzl 21 11 (0) A1g (0) 5141 (0) 5149 (0)
1= =1qg=
N N r. « 2 1/2 N N | N 2) /2
= {N2 5 2 [P %0 0) } {N"‘ZZI b)) {; o110 (0) 119 <0)] }

IN
—

I=1qg=1

N . 5 N N [N 12\ 1/?
NS Ao ] NS S {;m (0) 119 (6) .

Since

N 2 N
E { [Z:l se1i1 (0) 714g (6’):| } |: S 141 (0) ¢14g (0) 52101 (0) 210q (0)| < N? n;al,xE 3101 (0)|*
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Il
—

u=1
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4

E | (0)|* =T ?E|T~ <T°M

T
V2 52 14y (0) evers — E [I1e (0) eivers]
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by Assumption C3(d), then

1=
w
§
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S
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|
)
~
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and N~1 Zf\;l 14. (0) = Op (T~1). Regarding ¢q;. (6),

2
N
$1.(0) = N2 lgjl)\u(@)som(@)
N T 2
= N2 X (0) T 1S {I1 (0) [Tne (0°) AY£D + Ioy (0°) Ai£P] €14}
=1 t=1
N || . T 2 N || . T 2
< N2 (A O AY [T~ 3 Ty () Ine (6°) e ||| +N72 3 A () A |77 30 Iy (6) Ine (6°) £Pess
=1 t=1 =1 t=1
N T 2 R N o 2
< AN ST RS @) e | N (A S R o)
=1 t= =1
N T 12 o2 N . 2
FANT T S 0 e | o D] (V1L [|Au @)
=1 t= =1
2 2
-1 Al -2 I 0 012 -1 N -2 Z 0 0 (|2
< N ZE T Zlﬂlt(g)ftelt [A%]°+ 3~ ZZ T Zl]llt(e)fzelt [AS:]]” ¢ Op (1)
=1 t= =1 t=
and

T 2
STt (0) £Peps
t=1

L=

T
S Ty (0) ey
t=1

NTEYN L @ (0) = {{Nll }Op (1)}017 (1) =0, (T71)

2 N
[T2 } }op (1) + {Nl = [TQ
=1

by Assumptions C2 and C4. In an analogous way, it can be proved that

Nt Ziv:1 ¢1.:(0) = Op (T_l) :
Combining all results above, we have

1. (0) [as (0) — s (0) A — Faon (0) 23] |* = 00 (V1) 10, (171).

N
NTU Y
i=1

This completes the proof of the theorem. ®

Proof of Theorem 3.3. In order to prove the theorem, it is sufficient to prove that

Jlim P [Spa (0) < Swa (6°)] =0, VO #0°,

where Sga () is defined in (8). Consider the identity

Spa (0) — Spa (0°) = Swa () — Sp [A?I:Ill () + AYH>; (), AQH; (6) + AOH 12 (6), 9]
+Sw [AYH 11 (0) + AJHa1 (0), AQF22 (9) + AYH12 (0) 6] — Sw [A9FL1 (6°) , AYFz: (¢°) ,6°]

+Sr [AYHL (6°), AQH2 (6°),6°] - Sea ()

where Sg (A, 0) is defined in (4). By Lemma A.2, Spa (0) — Sp [Agﬁn (0) + AQH,; (0), A9 (0) + AOFLy, (9),9] -
Op <C;,;w) for any 6, including @ = 6°. Since A?I:In (60) and AgI:IQQ (90) span the same column space as A(l) and Ag,
respectively, we have

Sg [A?ﬁll (6°) , AQH,s (6°) ,90] = Sp (A9, A9, 0°)
and Sg [A?I:Iu 0) + Agﬁgl 6) ,AgﬁQQ 0) + A?ﬁlg 6) ,9] — Sr (A9, A, 90) has a positive limit by Lemma A.3. This
completes the proof of the theorem. m

Proof of Corollary 3.1. Corollary 3.1 easily follows from Theorem 3.3 and the proof is omitted. m
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Proof of Lemma A.1. Consider j =1 (j = 2is analogous and omitted). As for (a), let py;; (0) = o141 (0) /[Ulii 0) o1 (9)]1/2

such that |pq;; (0)] < 1: since |oqy; (0)] < M for all I by Assumption C3(c), then
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by Assumption C3(c). In order to prove (b), for j = 1 (the proof for j = 2 is analogous) it is sufficient to prove that

E[l1¢ (0) zi|* < M for all (6,i,t): we then have
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by Assumptions C2 and C3(b). m

Proof of Lemma A.2. Given A; (8) defined in (5), for j = 1,2, define

J
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so that for j = 1,2 and j # m,
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and a2 (0) = Oy (C’;,;) for all 6. In an analogous way it is proved that a3 (8) = Op (C&;) for all 6. Finally,
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1 —1 N N N 2
< H |:Df\1 (9) — DA?ﬁ11+ASﬁ21 (9)] H N1 igl HHll (9)/ )\(1)Z + Hoj (9), Agz + Op (1)
~ 2 N 2
< | [0 [y £ 1017 +

| -1
D3, (9)]_1 ~ [Paor,, 1 agers, (9)}_1
| -1

Il
o
>
e
—
<
2

-1
= |Paoay, 1A98,, (9)] H Op (1)

where Op, (1) comes from Lemma A.1(b) and Assumptions C1 and C2. Now, HDAl 6) — DA?ﬁ11+AgI:I21 (G)H =0y (C&;)

for all 8: this is because

Al (0)/ Al (9) [A?I:Ill (0) + Agﬁgl (9)]/ [A?ﬁll (9) + Agﬁgl (9)]

DAI (6) - DA?I:I11+A81:I21 (6) = N N
N ~ ~ ~ N ~ ~ !/
= N'E {Au (0) Aai (0)' — [F11 (0)' AY, + Flau (0)' A3, [FL11 (60)' XY, + Har (0)' A3, }
=1
N, s - ~ ~ - N !
= NS [Aai (0) = Fua (0) A, — Fran (0)' A%] [Sas (6) — Fua (6)' A% — Fan (6) A,
=1
N . N N ~ N /
NS (R (0) — Fux (0) A% — For () A, ] [Fun (0)' AY, + Fzu (6) A,
1=1
N N N N N N /
+N71 S [Hun (0)' A, + o (0)' A] [Ars (0) = Fua (0)' A%, — Hat (0)' A3
i=1
so that
1 X X & /40 '} 730 2
[P, @~ Daga,, yagr, @ < N7 3[R 0) ~ B 0 X, — i 0) 3
1/2
+2N*112V3H5\-6 Ly (0) Ay, — Fa (0)' AL,
13 (0) — Hi1 (0)" AY; — Ha1 (0)' A,
=1
N . . 5 1/2
x [N=1 3 |[F1q ()" Ay, + Ha1 (0)' XY,
i=1
N o« N X 2
= N7UY A (6) — Hin (6)' AY; — Hoai (6)' A9,
=t N L1172
+2 | N7 3 [ Aui (0) — Fua (0) A%, — Fat (0) XS] 0, (1)
i=1

and the result follows. In general,

[DAI (9)] - [DA?I:I11+A81:121 (6)} - - {th (0)] - [DAI ©) DA?I:I11+A81:121 (6)} [DA?I:I11+A81:I21 (0)] -

|24, @] = [Pagareagra @] | < [Pa, © - Dagar g, @[22, @] || [Pagascngenn, @]

The matrix A?’A‘; /N converges to a positive definite matrix by Assumption C2, for j = 1,2, and the rank of Hi, (0)
is equal to RO for all #: since the rank of Ho, (9) is equal to RO for 6 # 6°, and Hs (90) = Opo, this implies that

DA(IJI:IINLASI:IQI (0) converges to a positive definite matrix. Since HDA1 6) — DA?I:I11+A313121 (6‘)” =0p (C;,;ﬂ), Dj, (0)
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N 2 N 2
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also converges to a positive definite matrix: this implies that

—1

Il
o
H>)
=
=)
>
o
i
T
>
o
s
N
=
Q
3
=

H [DA1 (9)] - N [DA?ﬁ11+Agﬁ21 (0)]

and a4 (0) = Oy (C’X,;) for all §. Combining all above results, we have
a1 (0) + a2 (6) + a3 (6) + a1 (6) = Op (C3%) +Op (%) + 0y (Cx) + 0p (CRE) = 0y (CRE) :

this completes the proof of the lemma. m

Proof of Lemma A.3. Let
—1
Pro =A% (AYA0) AY, j=1,2
A9 J( J J) i I= 50

and recall PA?I—{_ (0) as defined in (22). Write

3i +A9n Hpj

S [A9HL1 (60) + ASH1 (6), AYF2: (6) + AQFL1: (6) 6] — Sp (A9, A3, 0°)

T
(V) % [116 (6°) Pag — 11t () P poy,, 4 aniry, ()] + [Tzt (6°) Pag — Tt (0) P oy, 1 avmy,, (0] } e
[T1e (0°) AQED + Ty (60°) AJED + &)

T
N7 % { [0 () Pag — T (0 Pagr,, o agens, )] + [T2e (0°) Pag = Toe () Pagrry, s agmr,, O]

x [Iue (0°) AYED + Tt (0°) ASEY + ef]

b1 (9) + ba (9) + b3 (9) s

where

T
bi(0) = (NT)7! > it () Lne (6°) [fg'AQ’PA?A?ftO —fYAYP

t (0) ALY |

A9F1; +AQHy

T
—1
+(NT) ™ 3 Tar () T (6°) [£7AYP Ao AYE? — £V AVP porr. o, (0) ADEY]

T

+(NT)TH 3 T (0) Tae (0°) (£ AYP A ASED — £ AYP pogy,  por,, (0) ASEY]
T

+(NT)™' 32 Ty (0) I (6°) [fg/Ag/PAoAgf,? — £ AYP pop, . a0m,, (0) Agf?]
t=1 2 214122 1H12

= b11(0) + b12(0) + b13 (0) + b14 (0),

b2 (0)

T
2(NT) ™ 32 Tue (6) e (¢°) [eiPAgAYEY — /P rory, 1 anr,, (0) ATEY]

T
+2(NT)! X Tt (O)Tae (6°) [e;PA&)A?f? — &P pos1y, 4 a0y, (0) A‘ffto]

T
-1
F2(NT) ™ 3 Tae (0) T (6°) [fPAgASE — [P rom,, ¢ agmy, (6) ASEY)]
T
+2 (NT)_I > o () Io: (00) [eQPAgAgftO - eipAgI:IzerA?I:hz ©) Agf?]
t=1

= b21(0) 4 baz (0) + bas () + b24 (0) ,
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and

(NT)! té e [I1t (6°) — 1t (6)] P poer

+(NT)™! i e [Tz, (6°) — Iz (0)] Ppger

t=1
T

+(NT)! tgl eilie (0) [PA(; —Prom,, +AYH,, (0)] €t
T

+ (NT)*l tz:l egﬂgt 6) [PAg — PASI:l22+A[1)I:112 (9)] et

= b31(0) + b32 (0) + bz3 (0) + b3 ().

Counsider by (0) first. We have

b1 (0) =

= tr {NﬁlA?' [PA? ~PAr, AT, (9)] A?}

T
tr ]\/v_1 [A?lPA?A? — A?IPA?ﬁ11+Agﬁ21 (9) A?] |:T'_1 tzl Hlt (0) Hlt (00) ftofto/:| }

T
T=1 3 It () T (6°) f,?f?’] }
t=1

EA tr{{pN@w {NTTAY [Pag ~ Pron,,  avs,, 0] A?}}zgf (9790)}

= tr[B11 (0)-=% (0,60°)],

where B11 (0) = plimy o0 {N_IA?/ [PAcl) - PA?I:IquAgI:Ig] (9)] A(l)} Now By (0) is different from zero by Assumption

C2 and it is also positive semi-definite. The matrix E?f (9, 90) is positive definite by Assumption C1. It then follows that

plimy 700 b11 (0) = tr [BH 9) ~E(1)f (9, 90)] > 0. Consider now

b2 () =

T
trd NTU[AYPAGAY — AVP pop,, o, (0) AY)] [Tl 2 T2 () Tae (6°) fffg'] }

T
= (Y [Pag - Paga g, 0] A8} {7 5 1@l 00 200}

T T
= tr {N*lA?’ [PA&) — P AQF1,, + A0, (9)] A?} 1 t; Lo (6°) Iye (6°) £2£2 — T2 t; L1y (0) Tus (6°) £2£77 }}

2 gy {p Jim {NTIAY [Pao — Prog,, s aom,, (0] AY [39 (0°,0°) — =5, (0,6°)] }

= (B (0) [ (00,0) — 35, (0,0}

where B2 (0) = plimy_, o0 {N_IA?/ [PA? - PA8H22+A(1)13112 (9)] A?}: taking into account Assumption C1, it follows

that plimy, 700 b12 (6) > 0. In a similar way it is proved that plimy 700 b13 () > 0 and plimyn, 700 b14 (6) > 0. Then

. o . . . . 0
p lim by 0)=p Aim b1y 0) + p lim b1 @ +p m bis 0) + p lim b1y (0) >0, VO#0°.

Consider now ba (0). We have

T T
ba1 (0) = 2(NT)™* t;]ht (0)Tae (0°) e} P Ao ATEY —2(NT) ™! t; L (0)Tne (6°) € P pory, | 4 aQFL,, (0) ATEY.

By Lemma A.1(c) and Assumption C1,

T
(NT)™! 2 e ()T (6°) e} P o ADEY

IN

T 1/2 N
{T—l zl |[T1e (0) f,9||2} N-Y2 |N-1 S
t= =1

()

N T
(NT)"' Y 2 T ()T (0°) s AY;£D

=1

T
T7-1/2 t;ﬂu (60°) e XY,

2:| 1/2
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Further,

T 1
NT) ! ) 0£0
NT) t=1H1t )Te (6°) PAoh,, +A98,, (0) Aify = Op (\/ﬁ) '

Therefore, b21 (0) = Op (1 /\/N) In an analogous way, it can be proved that b2 (0) = Op (1 /\/N), bas (0) =
Oy (1/\/N) bas (6) = O, (1/\/N) Therefore, by (0) = Op (1/\/N> 2. 0as N — oo.
Finally, consider bz (). We have, b31 () = op (1) and b3z (0) = op (1). Further, [PA? - PA?I:I11+ASI:I21 (0)] and
[PAg 7PA813122+A013[12 (9)] are positive semi-definite matrices, which implies that b3z (0) > 0 and bzq () > 0: this
1

implies that plimy 7o b3 (#) > 0. This completes the proof of the lemma. m

A.2 Proofs of Results in Section 3.5
Let
g% (01,02) = |Ioy (02) — I2¢ (61)] |[fPese||, i=1,...,N, t=1,...,T,
@9 (01,02) = |Ia¢ (02) — T2t (01)]||£D]|, t=1,...,T,

w?, (6) = |I2¢ (8) — Iz¢ (6°)] (69'€0)%, i=1,....,N, t=1,....T,

W0 (@0.0) = Aok S g 0.
0 (a?,0) = ! 1%%&1&() 8 flest.

0
N i=1t=

Lemma A.4 There exists a C1 < oo such that for all 0, < 01 < 02 <0y and s < 4,

E{[¢), (1,62)]°} < C1l62—61], i=1,...,N, (23)

and

E{[q? (61,02)]°} < C1 102 — 61]. (24)
Lemma A.5 There exists a K < oo such that for all 0, < 61 < 02 <0y,

§K|92—91‘.

pl 1{ @ (61,62)] —E{ @ (61,62)]

T
Lemma A.6 There exist constants B > 0 and 0 < d < oo such that for allm > 0 and € > 0, there exists a v < oo such
that for all N and T,

P £ W’ (2%.0) (1-nd| <
r in _ —-n <e.
~<[o—0°|<B |6 —6°]

Na

Lemma A.7 For alln >0 and e > 0, there exists some v < oo such that for any B < oo,

[ (00,6) ~ 1O (00,6
=

Pr sup
<|9 09|<B

>n| <e.

Na

Proof of Theorem 3.4. Let B and d be defined as in Lemma A.6. Pick n > 0 small enough so that

(1-n)d—2n>0. (25)

37



X;th — )\%ftOH is small enough so that (28) below is satisfied, for j = 1,2,

Let Ex7 be the joint event that )9 — 90’ < B, ‘

i=1,...,N,t=1,...,T, and

w? (aO,G)
B (L (26)
o <lo—e0|<p [0 —0°

Nl
and
hO 0 _hO 0 po
sup H (Oc 70) . (Oé ’9 )H §77 (27)
o= <|o—00|<B |6 —6°]

Nl =

Fix € > 0 and pick ¥, N and T so that Pr (Eyr) > 1 —¢ for all N > N and T' > T, which is possible under Corollary 3.1,

and Lemmas A.6 and A.7. Given S (A, F,0) defined in (2), let

1 T
S (a® AF,0) = 3 [xt — Avfy — Afa (0)] [xt — Avfe — Afa (0)],
=1

NO‘OT t

where fa¢ () = In¢ (6) f; and A = Ag — A1. Since S (a®, A, F, ) is continuous in (A, F), for small enough Higlf't - A?-;ftOH,

forj=1,2,i=1,...,N, t=1,...,T, it follows that

T -~ PN -~ ~ ~ A
S (ozo,f\, f‘,é’) - S (aO,A,ﬁ‘,GO) = N:()T [Xt — Aqf — Afoy (9)]/ [Xt — Aty — Afoy (9)]
i=1
1 T o~ N o ! “ “ A 0
S ¥ [xe — Aaki — Abay (69)] [xe — Aaki — Afa (6°)]
=1
1 T
A S (e A A%, 0] [ AQED — A5, 0)
= D =
1 T
ke 3 AR A0, (00 [ ASE? - A%, (07)

= DI[S(a A% F,0) — 5 (a0, A®, FO, 0°)]
(28)

for some D > 0, where fa (8) = ¢ (8) fi, A = Ay — A, £, () = Iz () £ and A® = AQ—A9: the sign of S (ao, AP 9) -

S (aO,A,F,HO) is then equal to the sign of S (aO,AO,FO,H) ) (aO,AO,FO,OO). We have

T
S (a® A% F,0) = 5 (a% A% F0,0%) = o 3 [£5, (0) — £, (6°))" AYAC [, (0) — £5, (¢0°)]
T
“2roer X [ 0) — 5, (0%)] A
= S (ao, 9) + S2 (ao, 9)

and
S (a®, A0, FO,9) — S (a, AO, FO, 9O 1 T
( = D - el 580 -5 0] a8 [, 0, )
1 T
NOT =] & [£5, (0) — £5, (6°)]' A% (29)

Si(a®,0) S5 (a®,0)
o—6o] " o—e0]

Suppose 6 € [90 + 'L‘)N_QOT_l, 6% + B] and that event Enp holds. It follows that

S1 (a2,0) 1 N T
0 — 90 = NaOT (9 _ 90) ’L; t; [fgt (9) - fgt (00)]l 6?6(1:" [fgt (6) - fgt (60)]
= g 23 [T (0) ~ T ()] (6780)° (30)
N‘loT(e—@O) i=1t=1 v
_ w’(a%0)
-0
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and

Sa (a070) B 1 T / l
-0 72m§ [2t(9)*f0( )} A,
1 !
- ’2WZ §[ \ (6) = £5, (6°))' 8% "
1 1 ,
= g N TEE[ (6)~ 88, (6°)]' 8%
Hho 9) (ao, O ”
6—6°

By (25) through (31) it follows that for some D > 0,

s (aO,A,F,o) -5 (aO,A,F,90>

w (a%6) , ||h%(a®6) —h° (a% 6%
69— 6°

6—6° 0—6°

>D{ }>D[(1n)d2n]>0.

Given the event Enxp, if 0 € {90 + ﬁN’aonl,OO + B] then S (aO,A,F,G) - S (aO,A,f‘,HO) > 0. In a similar way,
it can be shown that if 0 € [00 —B,0° — ﬁN*O‘OTfl] then S (ao,fx, P, 9) - S (aO,A,ﬁ‘,G()) > 0. As S <a0,f&,f‘,9) —
S (aO,A, P, 00> < 0, if Enxr occurs then ‘9—00‘ < oN=2’T=1. gince Pr (BEny7) > 1—cfor N> N and T > T, then
Pr ()é — 00) > ﬁN_aoT_1> < efor N> N and T > T: this is sufficient to show that Ne'T (é‘ — 90> = Op(1). The
convergence rate of the estimator for the loadings follows from (11). m
Proof of Corollary 3.2. Corollary 3.2 easily follows from Theorem 3.4 and the proof is omitted. m

Proof of Lemma A.4. We show (23): the proof of (24) is analogous. Given a random matrix A,
7]
%E [Ali; ()] =E(Alze =0) fz (9). (32)

Under Assumption CR(b)

0

5B [0t ]|* Tne (0)] = E ([€0eut|* 122 = 0) £z (0) < (B (lI£0einl* 12 = 9)]5/4 fz(0) <C/rF<Cy,

where C1 = max[1, C] f. For 01 < 02, Iy (62) —I1¢ (01) is either equal to one or to zero: by a first-order Taylor expansion,

it follows that
E{[g%; (61,02)]"} = E [|I2¢ (02) — Ia¢ (01)] ||fPeit||”] = E {[I1e (02) — In¢ (01)] ||£Peie ||} < C1 102 — 61].

u
Proof of Lemma A.5. Lemma 3.4 in Peligrad (1982) shows that under Assumption CR(a) there exists a K’ < oo such

that, taking into account (24) in Lemma A 4,

K {{[q? (01.02)] ~ B {[af (01,92)J2}}2}

2105 { (0,02}

2K'Cq |02 — 91‘ :

|: Nz Z {[q? (91792)]2 7E{[Q? ('91:

o
[
IN IN

IN

setting K = 2K'C7 completes the proof of the lemma. =
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Proof of Lemma A.6. For 0 > 09,

1 N
E[u® (a0,60)] = N z';lE [w?, ()]
1 NQOE[O(H)}Jr 1 % B [us, ()]
= w R w
Ne® S " Ne® Ny,
1o 0/ [520 (g0 @O 0 0 1 X 0/ [520 (90 4O 0 0
= Nad X 6 [29¢ (0°,0°) — 35, (0,0)] 87 + NaO X 8y [35 (0°,0°) — 256 (0,0)] 67,
=t i=Na® 41
and .
OE [w® (a2, 6 1 N2 1 N
% = 2 HDEO 208+ 5 > DEO) fz(0)8]
i=1 i=Na® 11

by (32) (the sign is reversed if § < 6°). By Assumptions CR(c) and CR(d), 9E [w® (a®,0)] /90 is continuous at § = 69,

and OE [wo (oao7 90)} /00 > 0, respectively: there then exists a B small enough such that for |6' - 60| <B

. OE [wo (ao, 9)}
d= min —= >0.
|o—60|<B a6

The first-order Taylor expansion of E [wo (ao, 9)} about 8 = 0° results in

lgﬁig%kaE [0 (a®,0)] > d|o—6°|, (33)

since E [wo (ao, 00)] = 0. Without loss of generality, set 6? =0, for i = Ne’ +1,...,N. Notice that

2
N T

E{!wo (a%,0) —E [w® (040,9)H2} = E{']Vla();igltl{w?t(e)E[w?t(o)]}
11N

IN
Q
\MZQ
=
——

for some C2 < oo, and

2 2
1 < 0 _ 0 0|14 -1 1 L o 0y _ 0 0
E{'th_jl{wit(e) E [w? (0)]} } < |80t r1E ﬁt;{qt (6,6°) —E [¢f (6,0°)]} )
< ottt o - o)
by Lemma A.5: since
18211 = 128 = A%l < X + AR} <28 i =1, N, (34)

by Assumption C2, it follows that

Cp16X*
E{|u® (a°,0) —E [0° (a°,0)]]?} < 222 K |9 —6°]. 35
{1w° (0%.0) ~B[u® (o2.0)] "} < S5 K [0 - °| (35)
For any n and ¢, set
Pl VR (36)
1-n
and
8C160* K

(37)

v =

n2d2 (1 —1/b)%e’
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Assume N and T large enough so that 17/(N°‘0T> < B, otherwise the lemma is trivially satisfied. For Iy =1,...,N+1
and Ip = 1,...,T + 1, set 0,1, = 90 + 1*)1)1N*11)ZT*1/(N°“()T>7 where N and T are integers such that Oy — 00 =
GHN—1pT 1 /(N“OT) <B,Ons17—0°> Band Oy yq —60° > B (since 17/<N°‘0T) < B then NT > 1). By Markov’s

inequality, (33), (35) and (37),

P w9 (ao,elNlT) 1] > n < (2)2 N T E{}wo (aO,OZNlT)—E[wO (0‘07011\117")”2}
r sup _— = = < z S
1Shvsw, E [w® (a0, 01 y1,)] 2 n/) ix=1ip=1 |E [wO (a®, 81 y1,)]]

N T —alp-11634 _ 0

< iz Z Z CoN T—+16X K(ill\;lT [ )

N iny=1llr=1 d2 (GlNlT -0 )

4 Co16)? x 1 x 1
< = L
- n?2  d%v (l 20 biN ) <l’1§0 bir
40K 1 <€,
o2 d25 (1-1/p)2 " 27

it follows that for all 1 <Iny < N and 1 <lp < T, and with probability greater than 1 —¢e /2,

w? (O‘O’QZNZT)

N INMT g
E [w0 (o O1yi7)]

< (38)

N3

Using (36), for any 6 such that ﬁ/(NO‘DT) < (07 90) < B, there exists some Iy < N and Il < T such that

O1yip <0 < min {91N+1JT791NJT+1} and on the event (38)

w? (a,0) _w®(a® biyiy) E [w® (0 1y17)] > (1-1) d (O1y1y —60%) —(-nd
0y = - > .
(0_0 ) E[wo (O‘0791NlT)] [mln{91N+17lT79lelT+1}_00] [mln{OlNJrl,lT,GlN,lTJrl}—90]

where we set (elNlT - 90) /[min {01N+1JT791NJT+1} - 00] =1/b: this event has probability greater than 1 —e /2 and
then

0 0
- o w? (a,0)

o o ooyen - <(1-nd| <

)

£
2

v
Nelr
holds. Taking the infimum over 717/<N°‘0T) > (9 — 00) > —B allows to prove a similar inequality using the same
argument: this completes the proof of the lemma. m

Proof of Lemma A.7. Given some C3 < 0o to be determined later, fix n > 0 and set

T2
o= 28 5 CLlsA” (39)
(0.5)2(0.5)2 7%
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Forly =1,...,Nand lp = 1,..., T, set 0; 1, — 0° = 52l —12lr—1 /(NO‘OT> < B. Without loss of generality, assume

that 69 = 0, for i = Ne” +1,...,N. Markov’s inequality, (23) in Lemma A .4, (34) and (39) ensure that

B[|In° (a°,01y17) — O (a,0%) |’

0 (0 _ 1O (40 g0 N T
Pr sup ”h (a 701NlT) hO (a 0 )” >n < % DS .
e (Ornip —0°) UL Pemt et} (O1x15 —6°)
o 1 1 N T 2
E H a0 T 30 [lat (Ouyig) — T2t (6°)] 87 Pt
1 12\7: i N i=1i=1
<
- 712 In=1llp=1 (HlNlT — 90)2
LG 11 X LN B {||[I2¢ (Buyiy) = Tae (6°)] 8 €eur]| }
T o2 N2 T2 S (GZNZT—G)O)Z
Co 11y g Rl ) < O] e}
T N2 T T (6151 — 0°)°
2
I T o L g (e e e Gl L
n? N2e° T 520020 i< (011 — 0°)°
N T _ g0
< BT X 2 [NCl sty 092)]
Ui ) ZN;1ZT:1 Glng—G)
C1C3\ 1 1
= 4 _t
P [z e [ <2lr1>}
12
< 4 C1C3A < E
- (0.5)2(0.5)2 m2v T 2

It follows that for all 1 < Iy < N and 1 <lp < T, and with probability greater than 1 —e /2,

[ (a®, 01y 1,) — 0O (a®, %) |
i <,
(olNlT —0 )

which implies that

I T S )
NfoTS(G—GO)SB (6-6°)

>n| <

N ™

Taking the infimum over —ﬁ/(NO‘OT) > (6 - 6’0) > —B allows to prove a similar inequality using the same argument,

which completes the proof. m

A.3 Proof of the Result in Section 4

~ ~ ~ !
Given the loss function in (12) and for any fixed R > 1, let Af 0) = [Ai @),.. .,Af‘N (0)] be the N x R matrix of

estimated loadings for fixed 6, for j = 1,2. Let Vf () be the R x R diagonal matrix of the first R largest eigenvalues of

3 (0) in (7) in decreasing order, for j = 1,2. Define the R® x R rotation matrix

o
FO(0°)FY (6°)" AYAL (60°)
T N

~ & -1 .
2 (0°) = VR G-z, ()
where F? (0) is defined in Section 3.4.

Lemma A.8 For any fized R > 1, there exists a R® x R matriz I:I?] (90) as defined in (40), with rank {I‘:Iﬁ (60)] =

min{RO,R}, and CnT = min{\/ﬁ, \/T}, such that

ez | LS [R7 (69) — fiR (69) A0,
NT Ni:l 71 37 VK]

2
:|—Op(1), 7j=1,2.
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~R . . . . N
Lemma A.9 Let 0 be the estimator for 8° obtained from the loss function in (12) for any a priori chosen number of

factors R = R such that R > R®. Then under assumptions I, C1-C4 and CR,
Ne'T (éR - 90) —0,(1).
Proof of Theorem 4.1. Consider
x¢ = T1p (6°) AQEP + TIop (6°) ASEY + e = A° [In; (6°) £, 1ot (6°) £2]" + e,

where A% = (A9, A9) = [(A%r, - A%) s Ay, A%%) | = (A%, A%) i a N x 2R matrix, with A = (A%}, AZ))’
a 2RY x 1 vector, and [Iy (6°) £, T2, (6°) fto’}/ is a 2RO x 1 vector. Given the loss function in (12), let £/ (9) be the R x 1
vector of estimated factors for fixed 0, for t = 1,...,T. Further, let I:Ifj+ (00) be the generalized inverse of I:Iﬁ (90) in

(40) such that I:Iﬁ (90) I:I;‘I-%jJr (90) = 1R, for j = 1,2. Lemma A.8 implies that
204 LS 87 (00) = [1e (09) B (09) + 1oe (0°) BB (00)] 2] Y = 0, (1
NT Tt§1 i (07) 1 (0°) HyT" (0°) + T (07) Hy™ (0°) | £ =0p(1)

or

2
17 || T (0°) B (0°) I, (6°) HIT (6°) £7
CXr T > . - A =0p(1),
T T (0°) £ (0%) I¢ (6°) F35" (6°) £7
so that by Lemma A.9
2

R\ ap (R R
Iy¢ (9 )ftR (9 ) Iy, (8°) HET (6°) £2
nm@ﬂy%f) Ios (6°) ELES (99) £

2 1z
CNr T > =0p(1),
t=1

which is analogous to Theorem 1 and Corollary 2 in Bai and Ng (2002): this is sufficient to complete the proof of the
theorem, as it shows that the criteria in (13) select (RO + RO) factors. m

Proof of Lemma A.8. The proof of Lemma A.8 is similar to that of Theorem 3.2 and omitted. m

Proof of Lemma A.9. Given the loss function in (12) and following similar steps as in the proof of Theorem 3.3, it can

be shown that

NlTirEOOP{S [AR ), FR (9),9] <s [AR (6°) , FR (6°) 790]} —0, V9#6°, RO<R< Rmax

In order to prove the lemma it is then sufficient to show that
S AT (6°), B (6°),6°] — S[A (6°),F (60°) ,6°] = 0, (C33)
for any fixed R such that R® < R < R™2% where S [A 0),% () ,9] =5 [ARO (9) ,FRO 9), 0]. Notice that

|5 [A% (6°) B (0°),0°] - S [A (6°) ,F (6°),0°]|

< ‘S[AR (90),FR (90) ] S (A%, FO, 90 ‘Jr‘S(AO,FO,gO),S[A (90)’13‘(90)’90”
< 2 max [SAR () BN (0%),0°] 5 (A0, F,00))
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it therefore is sufficient to show that
S [AF (6°), B (6°),6°] — 5 (A%, F°,0°) = 0, (C37)
for each R such that R® < R < R™2%, We have

x¢ = 14 (90) A(l)f? + oy (90) Agf? + et

T (6°) QR (6°) T (0°) £ + Toe (0°) AGHE, (0°) F35" (6°) £ + e,

where I:IJRJ+ (90) is defined in the proof of Theorem 4.1, for j = 1,2. This implies

xt T (0°) AfF (0°) HYY™ (6°) £ + 1oe (6°) AJT (6°) H5F (60°) £

e —Tng (0°) [AF (0°) — ASELE, (0°)| FLT (6°) €9 — Tt (6°) [AF (60°) — AQELE, (0°) | ELES" (6°) €9

= Tue (6°) AT (0°) FITF (0°) £ + e (60°) AJF (0°) Fig5" (6°) £7 + w,

where
ur = e —Tue (0°) [AF (60°) — ASELE, (6°)| FI{T (6°) €7 — Tt (6°) [AF (60°) — ASELE, (6°)| FLLS (6°) £7.

Notice that

S (A%, F0,0%) = (NT)H i ele;
t=1
and
S [A7 (6°) R (6°) ,6°]
= (NT)™' 3 uju
t?l
= (NT)7' Y efer
t=1
oyt &g ] T OOV (00)" AT (0°) - AFy (90)], .
U e (00) BET (0°) [AR (6°) — ASHE, (0°)]
c v L g L (6°) LT (6°)' [ARE (6°) — ASHLE, (90)]/[“(90)—1&?13% (6°)] &Lfi (6°) g0
= +a: (6°) FIg" (6°)' [AJ (6°) — ASHE, (6 ][AR (6°) — AGELE, (0°)] FLLSF (6°)
= S(A%F,0%) +SM [AF (6°) B (6°),6°] + 5@ [AF (6°), B (6°) ,6°]
so that
|S[AR (0°) B (69),6°] — S (A%, FO,0)| =[S [AR (6°),FF (6°),6°] + 5™ [AR (6°) , B (6°) ,6°]|

A
n
=
»

R (60) ,FF (6°),0°] | + |5 [AR (6°) B (6°) ,6°] .
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For any A x A matrix A, |tr (A)] < A||A]|. Tt follows that

s [A% (6°) B (6°) 6] |

= e {s® [A7 (6°), 87 (¢°),6°] }|
Ty, (6°) FIfYH (60°)" |AF (6°) — AQALE, (0°
A R 1 (6%) ( )[ ( ) i ( )] o
=1 30 (0°) FL (60) [AF (0°) — ASHE, (0°)]
- AR (0°) — AR ( 1
HHﬁ+ (GO)H' i ( )\/ﬁl 13 ( H\/} Z]ht( 0) e fY"
< 2R R
= R AL (6°) — AJHE, (6°)
+ g 00| L BE | L 8 ) e
_ [1 & Y2 1N_1T 2
.. <R N
HH{%1+ (HO)H N 2 A (0°) —Hf (0°)" A%, } VT [N 2|77 2 e (6°) eanf?
< 2R o 1/2
1 N <R , 2y fi s g :
e ol [ S8 -] g3 S g B o
1 N1 s
= 0 (CNT)ﬁ+op (c T)—Tfop (c33)

by Assumption C.4 and Lemma A.8. Further, by Lemma A.8

| [AR (6°) B (6°) ,6°] | S@) [A% (°) ,F 7 (6°),6°]

= =} ‘i_(e()) —H{} (0°)' A% 2] GO)H [ Z Ts (6°) ||€°]| ]
* S e - an <"°>/*8iH ag o) *;ﬂm (0°) ||f,9||2}
- BB - ey s o)
< (3% HfPH2> NI :;V A
) £ I35 o) - A 0y g | o)

0y (1) [0 (CR3) - 00 (1) + 0y (C3) -0, )] = 0, (C32).

which completes the proof of the lemma. m

A.4 Proofs of the Result in Section 5.2

Under Assumption LT1, ( -1 Et 1 Hft _1fOH ) = 0Oy (C;%) with Hj as in Theorem 3.1. Let }.'11*'/ be the first

1 x RO row vector of H L and H+ be the (RO — 1) x RO matrix containing the second to last row of I'-‘Il_1 We have

3 I +/20 £+0
A I /1 M Iy [ 25}
fie H £ £y,
Define £ (0) = [1n, (0) FHY, 1w () F+Y] "
Lemma A.10 For each 0,
1z == 1 Z =103 .
7o OFE - 5 S L OFEY| =0, (057), i=12
Lemma A.11 For each 0,
1 T o0
ﬁtzl ()fu—fo L (0) 10 = 0p (1)
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Proof of Theorem 5.1. From Theorem 3.1, H; = (FOFY /T) (A(l)’;\l /N) \7;1 By Assumption LT2, (FOFY /T") LN
E?. Following arguments similar to Proposition 1 in Bai (2003), (A(l)’;\l /N) 2 QAa,, where Qp, is an invertible matrix
and it is unique by Assumption LT3. By Lemma A.3 in Bai (2003), Vi 5 Vi where Vi is a positive definite matrix. It
follows that Hy LN H(l) = E?QAIVI_l, where H(l) is an RO x RO invertible matrix and it is unique by Assumption LT3. Let
h'l"O/ be the first 1 x R? row vector of (H(l))_l. Let H'l"0 be the (RO - 1) x R? matrix containing the second to last row
of (H(l])fl. Define flto = hfo'fto, ff?’t = Hiroft0 and f:ot 6) = []I (0)£" ?t,]lzt 0) firf"t]l. From Lemma A.11 it follows
that

Zf—t()fu Zf”() 2ol =op(1).

In order to prove that k_ (0) = kO (0) it is sufficient to prove that T7-1/2 S°T fjg 0) f° = KO (): this follows if
T-1/2 Zle f:Ot 0) flto is stochastically equicontinuous. As in Hansen (1996), we resort to Application 4 of Theorem 1
in Doukhan et al. (1995). Under Assumption LT5(a), the summands kf?t 9) = fj"Ot (0) f1° satisty the required f—mixing

decay rate. Since HHi"OH =0(1) and th’OH = O (1), the envelope function supg kaot (G)H satisfies

SR pE———
= sup [l @) £ T )10 mr e
= sw H[Hlt 0) H;fofto]', [11% 0) Hfofto]'}/hf” [T1¢ (6) £0 + Ty (6) £]
< sup [T (0) 8, e (0) ) [l )£ + 120 (0) £7)' || O 1)
< sup [||L (0) 27| + |12 (O) 7] ] O (1)
< {sgp |lT1e (6) £2]] sup [|T1e (0) £ ] +sup [|T2: (0) £ | sup [[T2¢ (6) f?”} o
< ma [sup||nﬁ ©) f0||} - max {supunjt ftOM 0(1)

the envelope function is L£o¢ bounded since by Schwarz’s inequality and Assumption LT5(b)

26 46\ 1/2 a¢
E ’}2??‘2 {sgp [I15¢ (0) ft0||j| - max [s%p (L5 (6) f?ll” < {E‘jmelecz [st;p (L (6) f?ll” } {E 'jfgi;f; [SI;P ([T;¢ (0) ftOH:H }

We then need to show that the log of the Lo bracketing numbers N (() is integrable. For some G < oo and for all 6, there

is some 6 such that |0 — §| < G-N(¢)7L Set N(¢) = MY/YG¢Y/7 and notice that

[E ka?t 0) - 1%, 3) Hﬂ 1/(2€)

\
r
=
=
"
-+ O
iy
)
=

_ 267 1/(26)
10 -2 @) 1]

1/(26)
B H [ 0) £ Tar (0) €507 1550 = [1ae (8) €501 (0) 797 ] 1150

, 1 26y 1/(20)
{Hlt (0) ({80 Iz (0) (HT°£?) } £0'h ;0
- {E

!
- []Iu (0) (17°80) " 120 (5) (Hjoft())’} £/ 0

2¢ 1/(26)
’ 5} o)

IN

B[ {11 (6) — T (8)] €967, [12¢ (6) — I2¢ (9)] £

2¢ 1/(2¢)
} O(1).

IN

[Lje (6) — Lz (0)] £2£7||
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By Assumption LT6,

{E

so that N(¢) satisfies the definition of bracketing numbers: the log of N({) may be shown to be integrable as in the

max || [Ie (6) — L (9)] 1|

1/(28)
} <SM-[0-0" <M-G7-N()77 =¢,

proof of Theorem 1 in Hansen (1996). It follows that 7—1/2 ZzT:1 f:ot 6) 1+t0 is stochastically equicontinuous and then

k_ () = k% (0). Let 0(R0—1)><R0 be the (R® —1) x R® zero matrix. Notice that

T -
—(01,02) = TP 4 (01)f ¢ (02)
t=1
!
7| T (01)Foae Lye (02) F-1,¢
= 7t
=] Ty (01) Fa Iog (02) f—1,¢
!
. i L1 (61) [H'l*'of,? + op (1)] I1; (02) [Hi*'ofto +op (1)]
=L, (61) [Hjof,? + op (1)] Loy (62) [Hj‘ofto +0p (1)]
H 0 ) H 0
_ (RO—1)x RO NI (01, 02) 1 (RO—1)x RO +op (1)
0 0
RO 1)x RO Hir 0(R071)><R0 Hir
N M (91,92

uniformly in (61,602) by Assumption LT7, where

H+O 0 0_ 0 H+0 O 0 _ 0
1 (RO-1)x R MO (01, 62) 1 (RO-1)x R

+0 +0
O(Ro—l)xRO H{ 0(R0—1)><R0 H{

MO (61,02) =

The proof of the theorem is completed following similar steps as in the proof of Theorem 1 in Hansen (1996). m
Proof of Lemma A.10. The proof is similar to that of Lemma 10 in Chen et al. (2014) and omitted. ®

Proof of Lemma A.11. The proof follows from Lemma A.10 and Assumption LT4. m
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Table 5: Empirical Application, Estimation Results, 1985 - 2014

This table presents results from the empirical application of the model in (1). The vector x; is made of the 147 updated
monthly financial variables employed in Jurado et al. (2015). The threshold variable z; is the lagged index of economic
policy uncertainty proposed in Baker et al. (2016). The model is estimated over the period 1985 : 01 — 2014 : 12, a total

of 360 observations. 0 is the point estimate of the threshold parameter 0 and # = T—1 Zthl I (zt < é) The optimal
number of factors R is estimated according to the selection criteria ICp1 (R, R), ICp2 (R, R) and ICp3 (R, R) in (13). The
connectedness measures C1 (R) and Ca (I:Z) are as in (20).

0 131.413
# 0.783
1—# 0.217
ICp1 (R, R) [ ICy2 (R, R) | ICp3 (R, R)
R 3 3 6
c1 (R 0.678 0.678 0.736
Cy (R 0.865 0.865 0.898

Figure 1: Empirical Application, High Economic Policy Uncertainty Regime, 1985 - 2014

R T
This figure shows the high economic policy uncertainty regime, as identified by the sequence {]1 (zt > 6’) = 1} , where
t=1

6 = 131.413 is the point estimate of the threshold parameter 6°.
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