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Abstract
As multi-robot systems (MRS) become more affordable, they transition from

being used in controlled research laboratories into practical environments.

For example, in a physical environment it is critical to maintain network

connectivity in cooperative multi-robot teams (MRT). However, commu-

nication quality is not covered in as much detail as other research topics

in MRS. In this field of research the majority of works investigate aspects

of communication quality and network connectivity, but present exclusive

solutions for very particular problems, and very few show physical (real

world) results.

The MRComm (Multi-Robot Communication) framework presented here

contributes towards a better understanding of the effects of communication

quality on MRTs. MRComm is created to be used for both simulated and

physical robot experiments whilst allowing different communication pa-

rameters (i.e. network types and network perturbations) to be applied to

the robot team. The results from said experiments are used to analyse MRT

performance.

The network types implemented in MRComm are: Wireless Local Area

Network (WLAN) and Ad-Hoc (AH) network. This is the first time that

ROS (Robot Operating System) has been used to connect multiple robots in

a self-made AH network to analyse the communication in cooperative task

execution.

The MRComm framework can subject a MRT to one, two or no network

parameters. Four network perturbations are designed and integrated into

MRComm. These are: Simulated Packet-Loss (SPL), which drops a static

amount of shared mission messages; simulated Signal Loss Threshold (SLT),

a threshold limit established using signal strength and distance; Simulated

Signal strength Degradation (SSD), modelled using two separate Support

Vector Regression (SVR) models, one for direct line-of-sight and the other
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for obstructed line-of-sight, which are combined together to model the pa-

rameter; and Effective Signal strength Degradation (ESD), obtained directly

from the robots in the network. Moreover, MRComm is integrated with a

unique Leader-Follower (LF) behaviour, which is a novel approach to miti-

gate most network connection issues and support uninterrupted communi-

cation.
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Chapter 1

Introduction

In recent years, there have been substantial advances in robotics leading

to their use in practical and industrial settings, such as robots working in

warehouses [1] and urban search and rescue operations (USAR) [2, 3]. This

is in no small part due to the advancement in technology, which has helped

to reduce the size and cost of such technology, and increased interest in the

consumer and business markets in using robotics. However, the other in-

tegral advancement in technology that drives robotics research, specifically

the multi-robot research domain, has been the improvement of communica-

tion technology.

Communication technology advances have allowed Cloud Robotics to

be used practically for the first time [4]. Moreover, many companies have

heavily invested in multi-robot systems, such as Amazon Robotics (i.e. Kiva

robot [5]), Starship technologies [6], Small Robot Company and SAGA Thor-

vald robotics, the latter two of which aim to deliver agricultural services.

All these companies have in common the focus of multi-robot research, and

use some form of multi-robot system (MRS) architecture. In speed-critical

jobs such as warehouse operations, redundancy and safety is required for

consistent communication and control of the warehouse robots. There is a

higher volume of robots for redundancy in case of failure, which does oc-

cur in applications such as warehouse operations, where the robots are in
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constant use throughout the day. However, this puts a larger focus on the

design of the facility (warehouse) as a whole. This implies that the cost of

the robots is generally lower in comparison to the communication and con-

trol infrastructure and continuous maintenance put in place at the facility.

Communication is the key to success for MRS and multi-robot coordina-

tion, however this becomes highly complex and extremely expensive when

many different robots and tasks are introduced to the system. Even with all

the robot and communication redundancy introduced, it remains a difficult

and unsolved problem.

MRS communication issues are even more challenging in USAR and

agricultural robotics, where the environment is dynamic and there is a cer-

tain limit to how much control or regulation is possible compared to ware-

house facilities. This makes the problem even more complex and expensive

than in the case for warehouse robotics. It may not be immediately appar-

ent that the delivery robot by Starship, compared to Amazon’s Kiva ware-

house robot, is not only more complex but far more expensive to build and

maintain. Moreover, this is further demonstrated by the agricultural robots

designed by SAGA Thorvald([7]), in Figure 1.1. Network connectivity con-

tinues to be a significant issue in experimental and industrial multi-robot

teams, despite the continuous improvement of robotics technology, com-

munication network quality and coverage.

Multi-robot communication and connectivity is a prerequisite for suc-

cessful multi-robot coordination and operation. It is important for a MRS

to have a well designed communication system, where the communication

medium and the network type are chosen to suit the environment, the com-

mon communication perturbations are known, and fault tolerant communi-

cation methods exist to prevent perturbations. While there are several kinds

of communication, as outlined in Chapter 2, this thesis is concerned with ex-

plicit communication (i.e. Wi-Fi), it’s related break-down of communication
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infrastructure (i.e. ad-hoc networks), and common network perturbations.

FIGURE 1.1: SAGA Thorvald robots, image from [8].

1.1 Motivation

There exist instances in which degrading or complete collapse of communi-

cation infrastructure occur. There is a lot of research on improving telecom-

munication networks for message propagation using mobile systems dur-

ing disaster situations. Generally, these works focus on re-establishing frag-

mented or non-existent communication networks using ad-hoc communi-

cation. Most research on this topic focuses on human-human communi-

cation, but serves to inform work on human-robot and robot-robot (multi-

robot) communication as well. Robots will frequently be deployed in task

domains where they are not co-located with humans, such as search-and-

rescue, humanitarian de-mining or nuclear plant surveillance. It is these

types of non-proximal relationships (i.e. multi-robot communication) that

are of concern in this work. Even though it is indicated in Chapter 2 that

multi-robot communication is a significant issue, most of the research does
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not focus on linking MRS with communication network quality and ad-

hoc networking in a physical environment. Moreover, research focusing

on multi-robot communication use a plethora of unique research robot plat-

forms that are designed with specific communication capabilities or sensors,

whereas I am interested in what a low-cost research platform with no spe-

cialised communication sensors can achieve. Poor communication in MRS

is a critical factor to successful operation. An unreliable network connec-

tion can mean that messages get dropped and robots lose their ability to

receive commands, transmit sensor data and generally interact with other

robot team members. In real-world settings, network devices drop connec-

tions and bandwidth degrades when signal strength declines, even when

using high-speed networks.

This research seeks to find an answer to the following overarching ques-

tion: How can a multi-robot team ensure continuous communication throughout

the duration of a mission?

1.2 Research Questions

The research in the multi-robot communication domain is centred around

creating communication infrastructure, fault tolerance procedures in the

case of communication failure or methodologies directed at improving com-

munication; very little research investigates quantifying and assessing the

effects of degrading communication quality in this domain. Furthermore,

most research on multi-robot communication, reviewed in Chapter 2, either

present experiments that are performed in a simulated environment or sim-

ply do not analyse the actual network performance and its impact on the

robots. Combining this knowledge with the motivation from Section 1.1, a

series of research questions are extrapolated:

1. What are the main network parameters that should be analysed in
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a multi-robot team to determine communication quality? Moreover,

what multi-robot team experiments can be designed that accurately

evaluate how degrading communication (network) quality effects per-

formance? Finally, which performance metrics are important to repre-

sent communication success or failure?

2. What is the impact of introducing behaviours (i.e. formations or strate-

gies) that react to the changes of a communications network? Can such

a behaviour implemented on a multi-robot team, which is severely af-

fected by network perturbations, allow for the continuous and suc-

cessful communication of messages throughout the duration of a mis-

sion? When communication-aware behaviours are utilised, does this

always signify that overall multi-robot performance is improved?

3. In an environment with no network infrastructure, is it possible for

a standard low-cost physical multi-robot team to communicate us-

ing a self-maintained dynamic ad-hoc network? What is the differ-

ence between a network with infrastructure compared to one without

(i.e. robot team organisation, messaging design and communication

issues)?

4. Are simulated network perturbations accurate enough to represent the

effects that degrading communication has on team performance, com-

pared to physical (actual) network perturbations? Moreover, what is

the comparative performance between simulated and physical robot

teams?

1.3 Contributions

To answer the research questions four main contributions are presented in

this thesis:
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1. The development of an experimental communication based frame-

work in Chapter 3. I developed the Multi-Robot Communication (MR-

Comm) testbed framework to specifically conduct experiments inves-

tigating the common communication issues that arise in multi-robot

teams. Furthermore, MRComm is based on the existing MRTeAm frame-

work, developed by Schneider [9], which focuses on market-based

task allocation research. In MRComm the communication network and

other network parameters that affect messaging quality are defined.

It is a multi-robot system that employs software agents to undertake

task navigation and execute different roles and recovery behaviours,

while sharing status information (coordination) between team mem-

bers. Moreover, it is used for experimentation on both simulated and

physical robots. Finally, I integrate MRComm with the ROS (Robot Op-

erating System [10], further described in Section 3.2) based FKIE soft-

ware package (multimaster-fkie [11], further described in Section 3.2.1),

which provides the framework with the ability for multi-node inter-

robot communication. MRTeAm lacked the ability and robustness of

unobstructed and fully distributed message passing between robots.

The FKIE software package assists MRComm toward a MRS which is

unobstructed and truly distributed in capability.

2. I present baseline experiment results to assess communication net-

work quality in both simulated and physical experiments and expand

upon the standard set of collected performance metrics, which are pre-

sented in Chapter 4. Moreover, I validate the hypothesis that poor-

quality communication will hinder the proper operation of a multi-

robot team by showing that communication quality is a critical factor

to mission success. Chapter 4 results are based on benchmark experi-

ments and are split into two parts, preliminary results by MRTeAm and

MRComm. The preliminary results conducted on MRTeAm are based
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on a partially centralised system and do not yet use some of the net-

work parameters or functionality implemented in MRComm. The re-

sults assist in the design of MRComm by identifying aspects, features,

functionalities and parameters of the system that I want to be able to

control experimentally, such as establishing the network type, intro-

ducing network perturbations, truly distributed agents and the anal-

ysis of shared messages, and important performance metrics required

to evaluate the effects of degrading communication quality and assist

in the final design of the communication network. The preliminary re-

sults conducted on MRComm use similar experiment configuration to

MRTeAm experiments, to analyse the difference in performance met-

rics and more importantly to evaluate the communication specific per-

formance metrics.

3. I present the simulated robot experiments conducted using the MR-

Comm framework with the implementation of a unique behaviour and

messaging protocol in Chapter 5, which allow the multi-robot team

to maintain continuous communication throughout the duration of a

mission. The design of the network perturbation introduced in Chap-

ter 5 is inspected along with its affect on the performance metrics.

4. The physical robot experiments displayed in Chapter 6, which use the

full suite of network parameters introduced to MRComm, are a proof-

of-concept and validation that a low-cost physical multi-robot team

with no modifications can communicate and self-maintain an ad-hoc

network. Furthermore, the experiments allow for the assessment of

communication quality in a physical robot team during a mission sce-

nario. The results in Chapter 6 are obtained using a truly distributed

MRS. Chapter 6 demonstrates communication-aware multi-robot be-

haviour that attempts to guarantee or maximise communication in

the physical environment using real network perturbations. Finally,



8 Chapter 1. Introduction

the chapter provides a comparison between simulated signal strength

degradation and actual signal strength degradation, which are net-

work signal strength perturbations introduced to MRComm. The main

contribution here is that once an ad-hoc network is created (deploy-

able in experimental task-based or rescue scenarios) it is self-maintained

by a multi-robot team, which enables the robots to continue commu-

nicating even in adverse network conditions in the physical environ-

ment.

1.4 Thesis Statement

The thesis affirms that, as communication degrades, multi-robot team co-

ordination missions cannot be successfully completed in complex and dy-

namic environments, such as search-and-rescue, humanitarian de-mining

or nuclear plant surveillance etc. Therefore, communication-awareness is

vital for multi-robot team performance in such situations. The work pre-

sented here is to actualise the use of low-cost physical multi-robot teams in

practical environments. I present experiments that are conducted on both

simulated and physical robots with no modification (i.e. function “as in-

tended”), and present comparable results.

1.5 Thesis Outline

The thesis starts by outlining the fundamental concepts and preliminaries

of networked communication and MRS in Chapter 2. Furthermore, related

work in multi-robot communication is reviewed and the broader motivation

is briefly detailed. Chapter 3 describes the MRComm framework developed

for investigating multi-robot communication. It also explains the general

experiment design used in later chapters. Chapter 4 presents two sets of pre-

liminary experiment results, which demonstrate MRT performance when
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subjected to degrading communication quality, conducted initially using

MRTeAm. The purpose of the initial preliminary results is for assisting in

the design of MRComm. The second set of preliminary experiments are con-

ducted using MRComm and are partially compared to MRTeAm. Chapter 5

uses only the MRComm framework and many of the new functionalities it

brings to present simulated robot experiment results. In Chapter 5 two new

network perturbations are introduced along with one new network type.

The expanded performance metrics presented in this chapter include spe-

cific communication metrics, which analyse the effect that network types,

perturbations and robot behaviours have on MRTs. Chapter 6 presents sim-

ilar experiment results, but conducted on physical robots and using phys-

ical communication for the network type. Moreover, in this chapter I in-

troduce an actual network perturbation and compare its results with the

corresponding simulated network perturbation. Finally, Chapter 7 presents

an overview of all the work in the chapters, I briefly discuss the results of

experiments in Chapters 4, 5 and 6, I consider future work and conclude the

thesis.

1.5.1 Publications

A portion of the developed framework, results and experiments were pub-

lished in publications 1, 2, 3 and 4. In Chapter 4, the preliminary results,

conducted with the MRTeAm framework, were presented in publication 1.

In Chapter 5, a portion of the results were presented in publication 2. Publi-

cation 3 presented part of the MRComm framework from Chapter 3 and part

of the results from Chapter 5. In publication 4, a portion of the results from

Chapter 6 are presented.

1. Tsvetan Zhivkov, Eric Schneider, Elizabeth I. Sklar, “Measuring the

Effects of Communication Quality on Multi-robot Team Performance”,

In: Towards Autonomous Robotic Systems (TAROS), 2017, pp408-420.
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2. Tsvetan Zhivkov, Eric Schneider, Elizabeth I. Sklar, “Establishing Con-

tinuous Communication through Dynamic Team Behaviour Switch-

ing”, In: Enabling & Supporting RAS Technologies (2nd UK-RAS), 2019,

pp83-86.

3. Tsvetan Zhivkov, Eric Schneider, Elizabeth I. Sklar, “MRComm: Multi-

Robot Communication Testbed”, In: Towards Autonomous Robotic Sys-

tems (TAROS), 2019, pp346-357.

4. Tsvetan Zhivkov, Elizabeth I. Sklar, “Modelling variable communi-

cation signal strength for experiments with multi-robot teams”, In:

Robots into the Real World (3rd UK-RAS), 2020, pp128-130.
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Chapter 2

Background

2.1 Introduction

This chapter describes and reviews related work to the multi-robot com-

munication problem (MRCP). In Section 2.2 the fundamental concepts of

communication, which are required for multi-robot communication, are ex-

plained. This includes the specifications and communication networks used

for experiments in this thesis. Section 2.3 describes multi-robot systems

(MRS), and important concepts and definitions are introduced, which are

used in further discussion in the thesis. I introduce behaviour-based con-

trol, which is an important concept for the MRCP. The MRCP research is

expanded upon and related work is reviewed and discussed in Section 2.4.

Section 2.5 briefly discusses the broader context of communication research

involving human-human and human-robot communication. Furthermore, I

review and draw motivation from communication related research. Finally,

I conclude with Section 2.6.
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2.2 Fundamentals of Networked Communication

There are two main categories of communication in multi-robot systems

(MRS), namely explicit and implicit communication. Explicit communica-

tion is intentional and is usually directed toward a specific recipient (agent),

whereas implicit communication is focused on the act of performing an ac-

tion (i.e. gesturing, signalling, etc.) to convey information with no regard

(direction) to who or what receives it. Related work is reviewed and dis-

cussed in Section 2.4. However, the two categories are very broad and the

focus here is on underlying issues and possible improvements for explicit

communication. There are multiple media that are used to provide explicit

communication in MRS, for example Wi-Fi, Bluetooth, ZigBee, infrared, etc.

Although the framework designed in this thesis could theoretically sup-

port the use of multiple different communication media, I examine the most

common one used in MRS today, which is Wi-Fi. Furthermore, the commu-

nication issues investigated in later chapters are general to some of the other

communication media as well.

2.2.1 Wi-Fi Communication

I briefly outline the basic principles of Wi-Fi, the transportation of data over

the medium and in particular the setup used in the experiments conducted

in this work. The key factors considered in this work for the Wi-Fi commu-

nication are signal quality, noise strength and channel bandwidth.

Wi-Fi uses radio waves and network devices are configured to work at a

range of frequencies (channel bandwidth), further described by Otung [12].

There are two common bands for Wi-Fi using the Institute of Electrical and

Electronics Engineers (IEEE) 802.11 standard, which are the “lower-band”,

denoted as 2.4 GHz, and the “upper-band”, denoted as 5 GHz. Moreover, ev-

ery country has marginally different channel bandwidth specifications and
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allocations. However, in general the frequency values for the “lower-band”

are in a range between 2.4 GHz and 2.5 GHz and for the “upper-band” these

are between 5.1 GHz and 5.8 GHz.

The Wi-Fi signal’s theoretical broadcast distance (reach) between a trans-

mitter and receiver is found by analysing a common property of wave prop-

agation, which is the attenuation experienced by the signal while travelling

in a medium, such as air. The attenuation is defined as free-space path loss

(i.e. FSPL), which is a function of the operating frequency and distance be-

tween the transmitting and receiving antennae in relation to the velocity of

the wave propagation in the medium. The path loss is derived using the

(simplified form) Friis transmission equation [13], shown in equation 2.1.

The theoretical path loss is plotted for a Wi-Fi signal using the 2.4 GHz band

in Figure 2.1 to show the expected path loss with distance. The result is

conceptually useful to understand how distance impacts Wi-Fi signal. Al-

though the theoretical FSPL in Figure 2.1 suggests that a signal is reasonably

good even at 10 meters, this is not the case in real world scenarios where

congestion and obstacles, such as walls and doors, impact communication

(often) severely, as highlighted by Sendra et al. [14]. Moreover, the simpli-

fied Friis transmission equation 2.1 does not take into account the transmit-

ting antenna’s power and it is not measured with the same SI unit as the one

used by conventional Wi-Fi based network cards.

FSPL = 20 log10
4πd f

c
(2.1)

where FSPL is the free-space path loss expressed in decibels (dB), f is the

frequency of the wave in Gigahertz (GHz), d is the transmitter-receiver dis-

tance in meters (m) and c is the speed of light in meters per second (ms−1).

It should be noted that standard network cards in most computer de-

vices use a variant of this, termed Received Signal Strength Indicator (RSSI),
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FIGURE 2.1: The theoretical free-space path loss experienced
by a 2.4 GHz radio signal assuming (ideal) propagation.

which is a subjective measurement, measured in decibel-milliwatts (dBm).

This means that the RSSI result depends on the (unique) device being used

and is subject to change. It is important to distinguish that dB measured in

equation 2.1 and dBm represent different but related concepts. Furthermore,

a general equation 2.2 can be used to obtain dBm, however a specific equa-

tion ( 2.3) is required to interpret RSSI, as described by Lau and Chung [15].

The raw RSSI results obtained from transmitter and receiver network cards

(in the operational environment) are used in the design of some network

parameters in Chapter 3 of this thesis and throughout most of Section 5.3 in

Chapter 5.

P = 10 log10
Pabs

1mW
(2.2)

where P is the received power expressed in dBm, Pabs is the absolute power

from the transmitter expressed in Watts (W), measured over 1 milliwatt

(mW). It is important to note that this value is still a ratio and a receiver

cannot receive a greater power than that of the transmitter, for example 0
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dBm indicates a perfect signal with power received of 1 mW and -10 dBm

indicates a good signal with power received of 0.1 mW, etc. (unless a trans-

mitter stronger than 1 mW is used and therefore a receiver could receive a

signal over 1 mW). Consequently, the RSSI value (dBm) is generally always

negative (i.e. equation 2.3) with 0 dBm indicating a perfect signal and any

lower negative value indicating a worse signal.

RSSI = −(10n log10 d + A) (2.3)

where n is the (unique) signal propagation constant (exponent), d is the

distance between the transmitter and receiver and A is the received signal

strength at 1.0 meter distance.

The Fresnel zone is another factor to consider for signal quality, which is

described as an ellipsoid region in space between and around a transmitter

and receiver, described by Hristov [16]. In this region of space obstructions

and reflections off the surface of objects may cause minor or major, negative

or positive effects to signal transmission that can be predicted. Further-

more, if this region is unperturbed by any obstacle or reflective surface then

signal quality should be improved. An unobstructed Fresnel zone between

transmitter and receiver does not necessarily guarantee good or improved

signal transmission, as other factors (i.e. environment and signal power)

also impact this. However, this factor is generally considered for the lo-

calisation and (permanent) installation of antennae or nodes in a Wireless

Wide Area Network (WWAN) or a Wireless Local Area Network (WLAN).

An example of the Fresnel zone is illustrated in Figure 2.2. Although I ac-

knowledge the Fresnel zone, there is no practical reason to model the zone

in the operational environment as the obstacles in the environment are ever-

changing and dynamic. However, the Fresnel zone is useful to describe a

design choice made specifically in Section 5.3.

The Signal-to-Noise Ratio (SNR) is the ratio of the signal power to the
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FIGURE 2.2: Fresnel zone: D is the distance between network
nodes (transmitter and receiver) and r is the radius of the Fres-

nel zone (not to scale).

noise power and is commonly expressed in decibels (dB) using equation 2.4,

as described by Otung [12]. SNR is a measure of the amount of noise (in-

terference) that can be tolerated before data transmission starts to fail (mes-

sages are dropped or corrupted). The SNR is obtained from analogue data

and difficult to predict as it is dynamically changing, i.e. network nodes

(robots) are constantly moving, environmental changes, etc. Therefore, in

this thesis different levels of SNR are assumed and simulated that cause

a static number of messages to fail to be delivered. The motivation and

reasoning behind the use of simulated message dropping is discussed in

Section 3.8.3.

SNR(dB) = 10 log10
Psignal

Pnoise
(2.4)

The transportation of data is very important for a communication net-

work. It determines the addressing (sending/receiving), congestion con-

trol, error control and finally how the connection is managed. There are two

commonly used transport protocols in the Internet, such as User Datagram
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Protocol (UDP) and Transmission Control Protocol (TCP).

The TCP transport protocol, described in detail by Wu and Irwin [17],

is known as a connection oriented service, as a connection to the receiver is

established before data transmission begins. A connection is established

(addressing) using a three-way handshake protocol. This type of transport

protocol requires a server (sender) that waits for a connection, and a client

(receiver) that contacts the server. Data traffic is bidirectional, therefore both

client and server can send and receive data. A data stream is broken into

segments and wrapped in a packet of data along with a TCP header and

IP header portion, shown in the top section of Figure 2.3. An IP (Internet

Protocol) address has two functions, namely to identify the host network

and as a location address in the network. The TCP header portion of the

packet is used for acknowledgements of received data, congestion and error

control. A data stream arrives in order thanks to TCP’s protocol to wait for

a receiver to send acknowledgement, which contains the order of arrival

of the segments. Furthermore, a connection is managed as it needs to be

established before transmission begins and it needs to be terminated once

all data has finished transmitting. This makes TCP reliable but complex,

which means that transmission throughput can be severely slowed down

depending on the reliability of the connection.

The UDP transport protocol, also described by Wu and Irwin [17], is

known as a connectionless service, as it does not require a connection to be

established to a receiver and instead data is transmitted with “best effort”.

Unlike TCP, which requires the establishment of a connection from client

to server before beginning to transmit data, UDP “blasts” data to a receiver

with no requirement to acknowledge receipt. UDP is a very simple protocol

and is effectively used for transmitting multimedia applications. The UDP

header portion is less than half the size of the TCP header, as illustrated in



18 Chapter 2. Background

the bottom section of Figure 2.3, and contains only a port forwarding num-

ber, which is used to identify the sending and receiving process. Finally,

UDP can be used over a client-server connection but does not require it,

e.g. peer-to-peer (P2P) connections. UDP is simple but unreliable, which

means that transmission throughput is very fast, but heavily dependant on

the reliability of the connection; there is no guarantee that messages will be

received, and it is very insecure (i.e. no check is done on the device(s) that

receives the data).

FIGURE 2.3: The top diagram shows a simplified TCP packet
in transmission with corresponding byte size. The bottom di-
agram shows a simplified UDP packet in transmission with

corresponding byte size.

The seven-layer Open Systems Interconnection (OSI*) reference model

is used to make it easier to discuss certain concepts of the communication

network. As can be seen in my interpretation of the OSI reference model in

Figure 2.4, based on the book by Wu and Irwin [17], the important layers

that will be focused on in this thesis have been defined above. The Physical

and Data Link layers in this work are defined as Wireless (radio waves) and

Wi-Fi (IEEE 802.11n) respectively. The final two layers that I am interested in

are the Network and Transport layers, which are IP (packets) and a variant
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of TCP called TCPROS, described in Section 3.4. This is all that is required

for the design of the communication network that is used in this work.

FIGURE 2.4: An interpretation of the OSI reference model [17].

2.2.2 Wireless Local Area Network (WLAN)

There are many different applications (network types) of Wi-Fi, such as con-

necting large networks of devices, Wireless Wide Area Networks (WWAN)

and also smaller more localised network of devices, Wireless Local Area

Networks (WLAN). WWAN and WLAN are largely very similar in function-

ality, albeit WWAN is more complex in design and deployment as it is fun-

damentally made up of multiple WLANs. WLAN is the most suitable Wi-Fi

network used in office buildings to connect user computer devices and mo-

bile devices. A common WLAN setup is shown in Figure 2.5. Moreover, it is

the most likely network type to be used to connect MRTs.

WLAN is one of two network types used to investigate communication

quality in MRTs, which is subjected to either one or more network pertur-

bations. King’s College London is connected using the European institu-

tion wide eduroam campus Wi-Fi, which is considered both a WWAN and
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a WLAN. The eduroam system is deployed and maintained locally in each

campus building, which are characterised as WLAN. However, a user of

eduroam can access the network in a different university and/or campus,

which is the WWAN aspect of the system. Eduroam is sophisticated in its

design as it assigns devices automatically to the correct channel bandwidth

(i.e. either 2.4 GHz or 5 GHz) to prevent network congestion and improve

speed. Moreover, eduroam supports both UDP and TCP transport proto-

cols. The campus IT services have strategically positioned three hot-spots

(network nodes) in the operational (office) space that is used for conducting

experiments. Finally, WLAN and WWAN require network infrastructure

to continue functioning and serving client devices, meaning that physical

network nodes and switches are all connected with physical cabling across

different locations. Furthermore, they are complex and extremely expensive

to design, deploy and maintain.

FIGURE 2.5: A diagram showing multiple hubs connecting
multiple devices to a WLAN (or WWAN).
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2.2.3 Ad-Hoc Network (AH)

An ad-hoc network, also referred to as Wireless Ad-Hoc Network (WANET),

is different in some of its functionality to Mobile Ad-hoc Network (MANET) [18]),

but the concept is the same. WANET is a more generic term and not as

well established as an internet protocol scheme as MANET. According to

Prakash et al. [18], MANET could be considered a subset of WANET. An

ad-hoc network does not use conventional network architecture (protocols)

and is considered either decentralised or distributed. Furthermore, such

networks generally do not rely on infrastructure, which means there is no

traditional client-server services. Instead, services are provided on a P2P

fashion where information is sent/received on a need-to-know basis. A

common ad-hoc setup is shown in Figure 2.6.

In this work, the ad-hoc network that comes standard with the Linux

Ubuntu Operating System (OS) is the second network type used to investi-

gate communication quality in MRTs. It has additional functionality similar

to the well established MANET. The particulars of the OS and ad-hoc net-

work are further described in Section 3.8.1. The ad-hoc network specifically

used in this thesis is subsequent denoted as AH. AH has the functionality to

allow for wireless multi-hopping, which is the ability to send information

via different nodes (devices) to the intended destination node, as illustrated

in Figure 2.7. This functionality needs to be implemented to be used and

for the experiments presented in this thesis it is not required. Finally, AH

has the ability to re-establish a connection with a device that has previously

disconnected. Communication between reconnected devices continues as

normal once it is re-established.

The AH network is a popular method of communication; it is especially

useful in multi-robot teams as it can be used to create a simple P2P net-

work solution to re-establish communication in an area where no network

infrastructure exists. To create an AH network, robots connect directly to
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one another (P2P) and rely on the close proximity of neighbouring robots

to maintain connectivity. As mentioned, robots can leave (e.g. move out of

range) and thereafter automatically rejoin (e.g. move back in range) the net-

work freely without issues. However, shared information is only available

as long as a connection between robots is maintained.

FIGURE 2.6: A diagram showing multiple devices connected
to a common ad-hoc network communicating P2P.

2.3 Multi-Robot Systems

MRCP is a problem that falls in a sub-category of a much larger field of

study, multi-agent systems (MAS). It is important to define MAS and com-

mon terms before introducing the research problem investigated. Two of

the field-defining books on artificial intelligence by Russell and Norvig [19]

and Weiss [20] similarly define agent. I elicit two fundamental definitions

for agent by Weiss [20]: the first “...a computer system that is situated in some

environment, and that is capable of autonomous action in this environment in order

to meet its design objectives.”; the second “...is an active object with the ability to

perceive, reason, and act.”. From the definition it is clear that an agent is an

entity that can perform autonomous actions in an environment that it has



2.3. Multi-Robot Systems 23

FIGURE 2.7: A diagram showing three interconnected com-
puter devices in Ad-Hoc mode. The dotted line represents di-
rect connection and the circles around the devices represent
the connection range. Communication is possible as follows:
A→ B, B→C, C→ B, B→A, A→ B→C and finally C→ B→
A. The latter two cases is where multi-hopping occurs, where
point A needs to communicate with point C or vice versa (i.e.

B is the hopping point).

a full (or partial) perception of. MAS is multiple agents observing and act-

ing in the same environment to complete a goal(s). Furthermore, MAS have

potential advantages over single-agent systems in particular scenarios, e.g.

in collaborative task fulfilment, where tasks can be either distributed or de-

composed into sub-tasks among agents and simultaneously executed [21,

22]. However, the complexity of the problem increases when using multi-

agent solutions compared to single-agent solutions.

A multi-robot system (MRS) is a type of MAS in which the differenti-

ating characteristic is that the agents are embodied and manoeuvre in the

environment to perform a common goal. Typically a MRS is a type of sys-

tem realised in a physical environment [23], however a high fidelity simu-

lator can also be used where the physical environment, robots and sensors

are modelled and symbolically represented in the simulation [24]. The main

goal of MRS is multi-robot coordination, which means that “...robots should

work together to accomplish a given task by moving around in the environment”
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as stated by Yan et al. [23]. However, there are many other uses of MRS,

the most common of which are cooperative human-robot interaction [25–

27], where a variety of mobile robots, robot manipulators [28] or humanoid

robots [29] can be employed to perform unique interaction tasks, and adver-

sarial human-robot/multi-robot interaction [30, 31]. The main topic at hand

in this thesis is on mobile robots and cooperative coordination. Therefore,

unless directly related to the research problem being investigated, other

types of MRS are not reviewed.

Andre et al. [32] evaluate the available software solutions for multi-robot

coordination with the focus of exploration and contribute their own com-

munication based software for ad-hoc network communication, which they

have integrated into the Robot Operating System (ROS) ecosystem. Accord-

ing to Andre et al. [32], completely decentralised multi-robot coordination

requires three main components, which are a global map construct that is

shared between robots, a method of communication (not necessarily using

common infrastructure, i.e. ad-hoc) and finally a coordinated method of

exploration.

2.3.1 Mobile Robot Navigation

To understand mobile robot navigation, the more fundamental problem of

localisation needs to be described first. Localisation in mobile robotics asks

a simple question, which is “where am I now?”. This simple question spans

an entire research field and requires quite an arduous and detailed answer.

I briefly cover the essential research that explains this concept. The founda-

tional works on mobile robot localisation are by Dieter et al. [33] and Thrun

et al. [34], who present early versions of Adaptive Monte-Carlo Localisa-

tion (AMCL). Most current mobile robot systems have variations of AMCL

deeply ingrained in their navigation systems, which require the knowledge

of transforms (shape, dimensions and position of sensors and robot base),
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type of sensors and wheel odometry calibration to all work together. The

MRS framework designed in this thesis is built on the foundation of the

“Multi-Robot Task Allocation” and “Teamwork” (MRTeAm) framework by

Schneider [9]. The MRTeAm framework uses the Dynamic Window Ap-

proach (DWA) planner [35] for routing paths and obstacle avoidance, which

makes use of AMCL. The DWA navigation planner is continuously updated

while a robot is moving, by periodically drawing a predetermined window

(perimeter) around the robot. The DWA planner uses the outlined window

to analyse the next possible navigatory actions it could take, which greatly

reduces the impact on hardware resources. The navigatory actions could

be, for example acceleration, deceleration, stopping, starting and re-routing

(i.e. obstacle avoidance or task re-allocation)

2.3.2 Team Composition

As mentioned previously, a MRS is made up of multiple robots, which make

up a multi-robot team (MRT). A MRT consists of a group of two or more

robots working together towards a common goal. There are some clear ad-

vantages to using a MRT over a single robot, which depend on software,

hardware and/or task specific requirements. Some of these advantages are:

• more efficient area coverage, if multiple tasks can be performed in par-

allel;

• increased robustness;

• decrease the possibility of a single point of failure;

• allow for a greater part of the mission area to be connected at any given

moment.

The latter two advantages depend on multi-robot organisation, discussed

further in Section 2.3.5.
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A MRT can be homogeneous or heterogeneous. A homogeneous MRT is

composed of robots that have identical capabilities, whereas heterogeneous

MRT may have robots with different physical capabilities, configurations

or be entirely different robots altogether [36, 37]. However, heterogene-

ity can also arise from robots having the capacity to behave differently or

implement unique roles under certain constraints, as explored in the early

works by Balch [38] and Balch and Arkin [39]. There are also more re-

cent works that further investigate heterogeneity that arises from unique

behaviour [40–42]. The robots used in this thesis all have the same capabil-

ities, however employ different roles (behaviours) depending on the exper-

iment. Therefore, it can be argued that the robots used for experiments in

this thesis are either homogeneous or heterogeneous.

2.3.3 Task Composition

Task allocation in the MRS field, which is referred to as Multi-Robot Task

Allocation (MRTA), is a broad research problem. The literature on MRTA

examines different task compositions to investigate a variety of problems

in MRS, such as optimisation, planning, cooperation and competition. In

this section, task composition is briefly defined, and related work and ratio-

nale for the task classification that is chosen for experiments in this thesis is

examined.

The works by Gerkey and Mataríc [43], Landén et al. [44] and Schnei-

der et al. [45–47] classify and draw distinctions between the different possi-

ble task compositions. The following task classifications are identified from

these works, single-task (ST) versus multi-task (MT), single-robot (SR) ver-

sus multi-robot (MR), instantaneous assignment (IA) versus time-constrained

assignment (TA), independent tasks (IT) versus constrained tasks (CT), ex-

ternal task assignment view (EV) versus internal task assignment view (IV)
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and finally static assignment (SA) versus dynamic assignment (DA), which

are briefly defined in Table 2.1.

Classification Description
ST Robots can perform a single task at a time.
MT Robots can perform multiple tasks at a time.
SR A task requires a single robot to be complete.
MR A task requires multiple robots to be complete.

IT Tasks are independent from each other
and have no constraint on ordering etc.

CT Tasks are constrained and have some
dependency, e.g. precedence ordering.

EV
The agent that performs the task

assignment is external to the robot team.

IV
The agent that performs task assignment

is part of the robot team.

SA
Task assignment is static and usually

occurs at the start of a mission.
DA Task assignment is dynamic and happens over time.

TABLE 2.1: Task composition and descriptions [43, 45].

In this thesis, a specific task composition is not required to solve the par-

ticular research problem being investigated. However, with communication

being the focus, the most important aspect is investigating the success or

failure of communicating task and status messages to robot team members.

The first category of task classification is chosen to be ST. The reason be-

ing as there is no benefit to the investigation in using MT over ST, at least for

the communication analysis experiments conducted in this research. More-

over, the reason ST is chosen over MT is that it is easier to isolate a single

task and analyse the particular communication metrics of it. These metrics

reveal which task failed, why and when it failed.

The second category of task classification chosen is SR. This research
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does not examine robot task performance in the conventional way, as men-

tioned previously tasks are hypothetical. A task is simply a set of coordi-

nates on a two dimensional plane, which represents a physical (or simu-

lated) map, that a robot navigates to. Once a robot reaches the task coor-

dinates it sends a success status message or if it does not reach the target

coordinates it would send a failed status message. For this particular use

case and to make task classification as simple as possible SR is preferred

over MR.

The third category of task classification chosen is IT. The IT and CT cat-

egory of task classification makes a big impact particularly on research in-

vestigating task allocation optimisation or focusing on particular task per-

formance. However, in this research it does not carry much significance in

answering the research problem. It is more beneficial to analyse the commu-

nication performance between the robots when they are performing inde-

pendent tasks (IT). This certifies that if there is no communication backbone

(infrastructure), the robot team is not succeeding or failing tasks because of

specific CT factors (i.e. precedence ordering), but that task outcome solely

depends on successful communication between robots.

The fourth category for task classification is EV. This is an important

distinction to make for the physical experiments conducted in Chapter 6. In

these experiments some configurations distinctly have no network infras-

tructure. Moreover, the task assigner agent is executed individually in soft-

ware and technically does not share any knowledge with the task execution

agent that performs navigation. In those cases the power of a truly dis-

tributed multi-robot system is demonstrated, where the task assigner agent

is physically part of the robot team and functioning individually. Apart

from the justification given above, there is no particular performance im-

pact or communication specific reason to prefer EV over IV or vice versa.
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However, from the particular requirement of the research and from a soft-

ware design point of view the task classification here is EV.

The fifth category for the task classification chosen is SA. To prevent in-

terference with the analysis of communication between the robot team, ex-

periments were designed to minimise the amount of responsibility of the

task assigner agent. For that purpose, experiments conducted in Chap-

ters 4, 5 and 6 have the task assigner allocate tasks only once, at the be-

ginning of a mission to prevent further interference.

It has been emphasised that the research focus is not on MRTA and that

specific choices have been made that best suit the MRCP being investigated.

Therefore, the task composition used in experiments is 〈ST, SR, IT, EV, SA〉.

2.3.4 Behaviour-Based Control

The earliest related work comes from biologically inspired distributed be-

havioural modelling in agents, by Reynolds [48]. This work takes inspira-

tion from flocks of birds, herds of land animals and schools of fish, and mim-

ics the observed behavioural patterns. It influenced the work by Balch and

Arkin [39], which was the ground work that demonstrated early behaviour-

based formation control, on different mobile robot (vehicular) platforms, in

both simulation and physical experiments. Balch and Arkin [39] evaluate

formation-holding tasks, in which mobile robots maintain certain velocity

and distance goals. To accomplish each formation, either certain robots are

assigned a “leader” role or a spatial reference point is used to centre the

team. The method used (i.e. leader or reference point) would manoeuvre

the team in the desired formation. Similarly, the early work of Parker [49]

looked into the mitigation (tolerance) of faults in multi-robot cooperation.

Parker’s [49] framework is designed to be distributed and allows multi-

robot teams to explore their surroundings and predict from a selection of

possible behaviours, which is the best to use to complete their goal. Unlike
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Balch and Arkin, Parker does not employ any formation or control strategy,

but base their behaviour selection on sensory feedback.

Behaviour in multi-robot teams has progressed; instead of uniform

formation-holding and assigning static roles to robots, recent research al-

lows for the arrangement of formations on the fly to achieve their goal [50]

or assign roles dynamically [41, 51]. Moreover, to this day biologically

inspired (behaviour-based) modelling is not a solved problem and the re-

search field continues to evolve. Examples of this are in the works by Tim-

mis et al. [52] and Broecker et al. [53]. Timmis et al. [52] examine the use of

an algorithm inspired by the immune system’s defense mechanism (granu-

loma) that reacts when a swarm of robots need to recover (self-heal) from

faults or failures, whereas Broecker et al. [53] investigate the use of insect-

inspired (ants and bees) coordination techniques to improve multi-robot

performance. Although biologically (socially) inspired behaviours are the

most prominent, they gave rise to artificial behaviours (strategies) such as

serried ranks, diamond and phalanx formation, which are mainly used by

military and special forces as drill training and movement techniques. Arti-

ficial behaviours are inspired by biology, but are usually executed perfectly

and created statically, rather than emerging reactively/dynamically. Exam-

ples of artificial behaviours in multi-agent systems are seen in the work by

Takahashi et al. [54], by Chowdhury and Sklar [55] and inspire the work by

Meng et al. [40].

2.3.5 Multi-Robot Organisation

There are two main types of organisation (coordination) that are commonly

used in multi-robot systems, which are centralised and distributed. There

is an abundance of earlier research on centralised and distributed MRS, for

example central control to aid a robot football team to coordinate on the

field [56], and a global vision system employing a consensus algorithm for
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distributed multi-robot formation control [57]. However, over the years the

multi-robot research field has advanced considerably and trying to define

MRS using two common types of organisation is no longer feasible. Indeed,

Das [58] highlights this by noting that an extensive amount of research over

the years has been carried out classifying MRS based on many different cri-

teria. Das lists the different types of classifications/components that the

literature makes mention of, such as robot capabilities, inter-robot commu-

nication, decision making topology (system), organisations and types of co-

operation [58]. Figures 2.8 and 2.9 taken from Das [58] illustrate decision

making topologies and organisation structure respectively. However, from

my extensive research conducted on MRS, it has become clear that commu-

nication has an overwhelming impact on many of the aforementioned MRS

components. Therefore, I propose an additional layer centred on communi-

cation infrastructure in which different MRS components are assigned to a

spectrum of organisation types. Three types of organisation are identified,

i.e. centralised, decentralised and distributed. The spectrum of organisation

types is a high-level amenable abstraction that describes the requirement on

each MRS component to perform under different or mixed communication

conditions (i.e. infrastructure/infrastructure-less).

In this section, two of the three main components that make up the MRS

have their organisation types examined and discussed, namely control (de-

cision system) and communication. The final main component, task compo-

sition, is not investigated as it is not beneficial toward the MRCP described

in this work. Moreover, I introduce and discuss a fourth component, data

recording, that is widely overlooked by the literature, but which the design

of MRS is heavily dependent on.
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FIGURE 2.8: Decision making topologies in MRS, by Das [58],
(a) Centralised (b) Decentralised and (c) Distributed.

FIGURE 2.9: Organisational structures in MRS, by Das [58], (a)
Hierarchy, (b) Federation, (c) Coalition and (d) Market.

Control

Multi-robot control refers to the control and decision making of robots in the

environment. There are many methods used to control robots, such as finite
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state machines (FSM), bio-inspired, reactive or hybrid algorithms. Here I

describe how communication infrastructure impacts control for each of the

three levels of organisation, i.e. centralised, decentralised and distributed.

Centralised control [56] is the simplest controller used in MRS. The con-

troller enables all robots centrally and can easily detect and react to changes

in the environment or goal parameters. However, there is a substantial de-

pendency on a central server or robot to incorporate this type of control. If

an environment has no infrastructure or infrastructure were to break down

suddenly, this type of control will be unusable. Moreover, the robots using

this type of control usually have very little on-board computing power and

no individual control.

Decentralised control [9, 47] has become one of the most common meth-

ods of control, which was greatly helped by the introduction of middle-

wares, such as the Player Project [24], RT middleware [59] and the now

widespread adoption of ROS [10]. Decentralised control allows multiple

control servers or robots to enact control policies and control a subset of

robots. The risk of mission failure due to communication breakdown us-

ing this controller is reduced, but not eliminated, because if a control server

fails and there are no fault prevention techniques, the subset of robots being

controlled will become stranded and unrecoverable. Decentralised control

methods are generally more complex than centralised control and require

more computationally capable robots.

Distributed control [20, 22, 60, 61] has recently gained tremendous trac-

tion. Many of the aforementioned robot middlewares have been designed

with distributed control in mind. In particular, every new iteration of ROS

has expanded its support for distributed robot systems. The risk of mis-

sion failure due to communication breakdown using distributed control is

reduced greatly. Even if a controller fails, a robot or any subset of robots

being controlled by it should be able to continue navigating and carrying
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out their tasks, albeit hindered (i.e. sub-optimally). Generally, distributed

control requires robots with good or even exceptional on-board computing

power.

Communication

The most important aspect of designing a MRS is the type of communica-

tion. Unfortunately, communication is unpredictable and the best course of

action to take is to design an MRS according to certain expectations or as-

sumptions that can be made based on the environment and critical nature

of the tasks that the robots will be performing. However, it is not always

possible to design an MRS with such specific communication constraints.

Therefore, an MRS that is communication-aware is critical in some task en-

vironments (i.e. search-and-rescue, agri-robotics and warehouse robotics).

Communication networks have many different topologies, but these are ex-

tracted and simplified to fit in the three organisational categories outlined

in this section.

Centralised communication refers to the Star network topology and any

other similar variant. This is a very important distinction, especially in MRS

design. For example, a hierarchical topology, which may be viewed as de-

centralised, has a single point of failure (i.e. root node). Although the func-

tionality of the root node is decentralised into child nodes , if the root node

fails and there are no preventive measures in place, the entire communica-

tion network will break down. In this setup, all communicated messages go

to a central node (hub), which are then distributed to the target robot(s).

Decentralised communication refers to generally mesh networks. In

these networks, there are usually two or more nodes which provide commu-

nication paths to other nodes. Therefore, if one node fails, communication

does not break-down for the entire network.
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Distributed communication refers P2P and specific variations of mesh

networks, which use a P2P style of infrastructure. In these networks, com-

munication is achieved by a source node sending information directly to a

target node. Moreover, distributed or P2P networks are commonly infrastructure-

less. Therefore, such networks can have individual nodes fail, but overall

communication to any other active nodes will be unaffected as communica-

tion is self-maintained by each node.

Data Recording

Data recording is a simple component of MRS and many other software

based systems, which is the data output that derives common performance

metrics. In fact, data recording is immensely important as it enables re-

searchers and data scientists to get new insight, optimise and provide feed-

back from data. Just like any component in MRS it can be implemented in

a centralised, decentralised or distributed organisation pattern. In the re-

search literature, the method of data recording is generally not described,

taken for granted and is more akin to a black box. In fact, many works

on centralised [62] and distributed [61, 63, 64] MRS design and control

have mentioned that experiments are either performed in a hypothetical

simulation or physical environment using communication network infras-

tructure (i.e. not distributed or infrastructure-less). This implies there is

still some centralised or decentralised dependency in the system to assist

in data recording, which is simpler to implement. Contrarily, distributed

data recording is more complex as the robots’ on-board clocks have to be

synchronised and data has to be merged together to finalise the overall per-

formance metrics.

Centralised data recording is when a single device is used to collect all

robot task, status and experiment data. The simplicity of a central data

recording device is that it can exist internally or externally of the MRS and
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does not require synchronisation or merging of data. As with any cen-

tralised organisation pattern discussed in this section, there are limitations

to using this data recording method. For example, there is single point of

failure, and data metrics recorded from different devices are not 100% ac-

curate, as there is a delay and uncertainty in physical wireless communica-

tions.

Decentralised data recording is generally better when the architecture

of an existing MRS is well designed. This method relies on multiple de-

vices recording specific data for specific performance metrics. For example,

robots record their own position data, task status is recorded by an auction-

eer/assigner agent and experiment data is recorded by an external record-

ing device. If a single device recording fails, only some of the performance

metrics will not be recorded, while others will be unaffected. Depending on

the size and complexity of the system, this data recording method could be

preferred over using a centralised data recording method.

Distributed data recording is preferable when on-board robot computa-

tion is capable enough and when communication is distributed and

infrastructure-less. There are instances when communication break-down

or robot failure can occur, during which distributed data recording can con-

tinue uninterrupted. This is useful for a number of reasons, such as being

able to recover individual robot data and any other device’s data, and aid-

ing feedback and identifying unforeseen problems in the system through

the analysis of the data.

Control, communication and data recording are identified as the three

most important components for the MRCP described herein. The addi-

tional organisation type associated to the design of each component pro-

posed in this section helps determine if an MRS is capable of functioning in

an infrastructure-less communication environment. Moreover, if all compo-

nents’ organisation type is in the extremity, i.e. centralised or distributed,
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the overall MRS is denoted as truly centralised or truly distributed. The

truly distributed denomination suggests that each robot in the MRS is fully

capable of communicating, navigating and logging mission data individu-

ally in any communication condition, i.e. infrastructure-less environment.

The experiments in Chapter 6 are conducted on a truly distributed MRS.

2.3.6 MRTeAm Framework

The MRTeAm framework [9] is partly used for experiments in Chapter 4.

As there is no standardised method for MRS design or implementation yet,

most MRS need to be either recreated from the ground up or need to build

upon existing framework (design). The MRTeAm framework incorporates

many of the systems and design needed by the MRCP research problem; a

simple architectural diagram is displayed in Figure 2.10. MRTeAm is used

as the basis for the research conducted in this thesis and the proposed MR-

Comm framework is built on top of it. MRTeAm implements a “bridge” that

deals with communication across multiple robots and connected devices.

Figure 2.10 shows with arrows how the ROS Master bridge connects de-

vices and how information flows between the devices.

FIGURE 2.10: Simple architectural diagram of MRTeAm [9].
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2.4 Multi-Robot Team Communication

There are certain advantages of multi-robot (MR) communication, for exam-

ple the creation of formations, redundancy in task execution and multi-robot

task execution (i.e. tasks requiring more than a single robot to execute).

However, MR communication is considerably more complex than single-

robot to server (controller) communication. This section reviews some re-

lated work to formation strategies and behaviours, restricted communica-

tion and exploration, and finally unique communication strategies.

Takahashi et al. [54] use an agent-based software simulation to analyse

the deployment of rescue agents using a hypothetical ad-hoc network in a

disaster situation where conventional communications networks are unus-

able. They analyse two strategies to maximise rescue agents’ communica-

tions, such as “Rendezvous Point Strategy” (RPS) and “Serried Ranks Strat-

egy” (SRS). RPS disperses agents widely to search for victims and contains

a point of contact where the agents return periodically to communicate in-

formation. The SRS strategy makes rescue agents form up in close ranks

and enforces clustered movement. This does not allow for a wide search

of the mission area, but it does allow for information to be continuously

shared. The strategies reveal that a trade-off exists, in that RPS is generally

faster at search and rescue, whereas SRS is much better at maintaining a

consistent and continuous ad-hoc network connection between all agents.

It was found that on occasion RPS, because it required agents to wait at

the rendezvous point to share knowledge with the team, performed close to

SRS. However, a baseline strategy (Random Walk) was used, which occa-

sionally failed to find all the victims in some experiments and where com-

munication quality between rescue agents was lower by an order of magni-

tude. Takahashi et al. [54] assert that maintaining communication in rescue

operations is an important research issue to consider and few works exist

on the topic of communication that utilise ad-hoc networks. Caccamo et
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al. [65] demonstrate a novel robot navigation planner, in simulation, that

is communication-aware. They propose a “Resilient Communication-Aware

Motion Planner (RCAMP)” system to compute robot trajectories taking into

account distance travelled, communication quality and environmental con-

straints. The system is to be used in USAR missions to sustain and repair

wireless connectivity. The authors note from previous real-world experi-

ence that inherent limitations of wireless networks can compromise the suc-

cess of a USAR mission. Most notably, as a mission progresses, the most

consequential issue was that Access Points (APs) supporting communica-

tions needed to be regularly moved to re-establish communication. From

the literature specifically on multi-robot communication there seems to be

little focus on team formation and maintenance, which is why most pre-

defined communication solutions in a physical environment fail according

to Gunn and Anderson [42]. Gunn and Anderson [42] propose a frame-

work that combines many of the methodologies and networks reviewed in

Sections 2.5.1 and 2.5.2. The framework is for coordinating robots in a com-

plex environment such as USAR. A human expert (operator) is required

to initially assign tasks, set team roles and create team compositions after

which the multi-robot team has the ability to perform team management,

hold formation, task discovery and task assignment. Experiments are con-

ducted using the Stage software simulator, which is modified to introduce

simulated and unreliable communication between robots. However, the au-

thors make assumptions for the simulated experiments which they remark

would be difficult to carry over to any future experiments conducted in the

physical environment. For the simulated experiment results, the framework

shows improvement over the base case (random walk) in percentage of mis-

sion area covered and victim identification. However, even in the simulated

environment and with the assumptions put in place, when there is high



40 Chapter 2. Background

communication failure (80% message loss) the performance of all method-

ologies is poor. Gunn and Anderson [42] conclude with the following state-

ment: “An implementation in a physical environment using real robots would be

valuable, as it would increase the difficulty of operation considerably”.

The focus of Jensen et al. [41] is maximising coverage space and minimis-

ing cost while maintaining communication. Jensen et al. [41] use the Robot

Operating System (ROS) along with the Stage software simulator package

to test their Sweep Exploration Algorithm (SEA) for coverage of an unknown

environment. The algorithm expands like a tree, and branches are explored

on a sequential basis. The main use-case of their algorithm is for multi-

robot team exploration in unsafe environments before human rescue teams

to help plan rescue and prioritise tasks. The robots are assigned roles at

the start of a mission, which is done dynamically unlike in the work by

Meng et al. [40]. Robots move in a follow-the-leader fashion and use “repel-

beacons”, which have the main purpose of notifying other robots that a

certain path has been completely explored. The exploration method us-

ing “repel-beacons” improves communication for the multi-robot team and

has safety procedures put in place in case of a failure. The authors argue

that the “repel-beacons” that are dropped are low cost, thus making them

practical for use even in a physical environment. However, the authors

note that in a physical setting there is more noise and the low cost bea-

cons will require extensive evaluation. Moreover, there is a certain rate at

which these low cost beacons fail. Notably the authors developed an algo-

rithm, Singularity-Robust Task-Priority (SRTP), for a re-configurable ad-hoc

network that creates a chain of interconnected “communication robots”, de-

noted nodes, to achieve mobile robot exploration and basic obstacle avoid-

ance while remaining in communication with a base station (they refer to

this as a MANET). Anton et al. [66] look more at self-configuring (robot)

networks, but include some aspects of creating formations. Experiments are
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limited as they are executed using a numeric simulator (two-dimensional)

with robot-like agents. Furthermore, the algorithm assumes prior knowl-

edge of the first and last antenna in the chain, the obstacle avoidance is

primitive (i.e. performed on a single static obstacle) and the algorithm is yet

to be tested in a more complex simulator with noise. Witkowski et al. [67]

use low-power ZigBee communication (IEEE 802.15 standard) to create re-

configurable multi-robot MANETs, similar to Anton et al. [66] and Jensen et

al. [41], in USAR based scenarios to allow for simultaneous communication

between robots and first responders. In their work, some robots act purely

as beacons for communication while others are used to localise in certain

positions. Although the authors use a very restricted platform, they show

promising results and use triangulation strategies to improve uncertainty in

localised positions, which is useful information sent to the remote operator.

The work by Rahman et al. [68] investigates optimal robot placement for

relay locations to allow communication between a remote operator and a

remote unit, which is disconnected. Their work is unique as the formations

are created using a minimum spanning tree algorithm and are computed

once and reused in case a remote unit is disconnected in more than one in-

stance. This work is similar to that of Anton et al. [66], however it is more

recent and experiments are done on simulated and physical robots, the lat-

ter of which have limited functionality. In the early work by Meng et al. [40]

multi-robot clustering strategies are investigated, similar to SRS in [54], and

extended to re-configurable networks, comparable to the work by Anton

et al. [66]. However, the simulated and physical experiments by Meng et

al. [40] are not identical (i.e. physical experiments are conducted in a smaller

and more easily traversable map), which leads to contradictory results in

performance of overall search time not highlighted by the authors. Further-

more, they assign robots with static roles, such as host robot and search robot,

creating sub-teams. This presents common points of communication failure
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(i.e. host robots). Meng et al. [40] evaluate four main strategies for cluster-

ing and maintaining communication among the robot team, namely Static

Rally Point, Mobile Rally Point, Mobile Integrator and Mobile Integrator with

Time-Out. The work by Kashino et al. [69] looks at optimal predetermined

delivery of static-sensor networks using multi-robot teams (MRTs) to cover

an area to enable complete communication. The authors are motivated from

the need to create network infrastructure in an infrastructure-less environ-

ment similar to the work by Reich and Sklar [70].

Finally, I end this section by briefly discussing unique solutions that al-

low communication in restricted environments. A unique yet simple im-

plicit communication technique allows for information sharing only when

team-members are in line-of-sight of each other using visual sensors (cam-

eras) [71]. A modified single-robot coverage algorithm is used that produces

back-and-forth motion, also known as Boustrophedon decomposition, in a

multi-robot exploration scenario. The focus of the algorithm is on covering

as much unexplored space in an environment as possible while reducing re-

peat coverage. This work [71] demonstrates a good example of how implicit

communication could be used in multi-robot teams to help recover from sit-

uations when there is restricted or no explicit communication. In another

work [72] a system is developed for coordinated information gathering in a

team of robots that are tracking a target. Information is shared only period-

ically when the value of the information exchange is highest (reward based

communication).

2.5 Broader Context and Rationale of the Com-

munication Domain

Apart from MR communication there are two additional communication

domains, i.e. human-human (HH) and human-robot (HR). I explore some of
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the research in each domain to examine the similarities in the broader con-

text and highlight the importance of communication. The MR communica-

tion domain shares many similarities with those of the HH and HR domain,

such as the use of ad-hoc networks for communication and the different

methods of messaging, discussed in Sections 2.5.1 and 2.5.2.

2.5.1 Human-Human Communication

The HH communication domain is vast and has many complex categories,

of which the most simplified premise is that humans use a system of com-

munication (language) to fulfil an intent (goal). The work by Davidson and

Noble [73], Kimura [74] and Fitch [75] look at the evolution of language from

its inception and all show evidence that, as tools advanced and changed

thanks to new technology, the language used for communication evolved

and vice versa. The information age brought on many new technological

advancements in tools and altered the way language was used. However,

the most significant technological advancement of all occurred in 1983 with

the birth of the internet, which was soon after largely improved by Tim

Berners-Lee who invented the World Wide Web (WWW). The WWW ef-

fectively allowed for a common and simplified means of access to online

information. The advancement of the internet and WWW greatly evolved

how humans interacted with one another. Pioneering works on computer-

aided HH communication appeared in the early nineties [76–78], which pri-

marily investigate how online communication altered group cooperation

and changed the use of language. Particularly in the latter work [78], the

term computer-supported social networks is used to denote computer-aided HH

communication. More recent examples of how technology has evolved and

continues to evolve language are in the works by Keating and Mirus [79]

and Oz and Leu [80]. The first work investigates how technology impacts

language practices in the case for deaf users who use computer-aided video
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communication, and the latter work shows how Artificial Neural Networks

(ANN), using a smart glove with sensors to extract joint angles between

fingers from hand gestures, are able to translate up to fifty American Sign

Language words successfully.

A review of research in online communication between cooperating groups

of human users, showed that a lot of focus was put on investigating the im-

provement of communication during disaster scenarios. In disaster scenar-

ios, communication infrastructure could be damaged or absent, which usu-

ally makes communication between victims and first responders impaired

or impossible. Some works [81, 82] had common themes, such as analysing

social networks during a disaster situation and the prevalent mode of com-

munication in these situations, i.e. mobile phones. Mobile phones are part

of mobile systems, which consist of multiple connected devices that are

portable and allow for communication and access to information. Three

tools for mobile communication applications are briefly reviewed [83–85].

The “SUCRE” (“Supporting Users, Controllers and Responders in Emergencies” [83])

application collects and analyses contextual information supplied by users

during an emergency situation to reinforce information and infrastructure.

The service provided by “SUCRE” requires regular online (WLAN) feed of

information via a server. In summary, “SUCRE” contains components to

improve communication and disseminate information, however it assumes

that communication network infrastructure is unaffected by the emergency

situation. Another tool introduced is “Help Beacons” [84] a mature, truly ad-

hoc and research-intuitive system. However, it is very simplistic and lacks

additional features, unlike the “SUCRE” application, and only provides ad-

hoc communication to a basic level. The main drawback of this application

is the dissemination of information, which is not as good or predictable as in

later works [85] or as fine-tuned as “SUCRE” [83]. The greatest advantage
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of the “Help Beacons” application is its maturity and lightweight messag-

ing compared to the rest of the works. Finally, a tool created to establish

a MANET [85], which is more advanced than its predecessor Help Beacons.

The MANET [85] based mobile application investigates the impact of using

opportunistic ad-hoc networks to assist communication when network in-

frastructure breaks down. A special feature introduced allows any mobile

phone to be selected as a central device (i.e. router), which connects other de-

vices, caches data and disseminates information. Each mobile phone may

become a central device or a client device. Data “propagates” along the chain

of connected mobile devices and collected by central devices, which push it

to other central devices until it reaches a device that is connected online. All

the data is then offloaded online, as illustrated in Figure 2.11.

FIGURE 2.11: A diagram demonstrating how ad-hoc net-
work based application connects offline client to an online

server [85].

2.5.2 Human-Robot Communication

Humans in close proximity to each other rely on non-digital forms of com-

munication, such as speech and gestures; there is much attention paid, in

human-robot interaction and artificial intelligence, to the investigation of

methods for robots to communicate in similar ways, using speech recogni-

tion, natural language generation and gesturing. HR communication could
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either be collaborative [25], or competitive [30]. In addition, robots will fre-

quently be deployed in task domains where they are not co-located with hu-

mans, such as search-and-rescue, humanitarian de-mining or nuclear plant

surveillance. Two works are briefly reviewed in the HR domain [26, 86]

that focus on message propagation and message types in disaster scenar-

ios, which are related to multi-robot communication. The work by Lujak et

al. [27] investigates messaging and the concept of mobile devices assisting

robots in the field to perform tasks efficiently.

Murphy et al. [86] research message types, content and the best and

safest (ethical) form of communication between a robot, which is teleoper-

ated by a human, and trapped victim(s). A possible solution to the problem

is making the robot(s) completely autonomous in its decision-making and

victim triage, thereof the core of the problem is shifted more toward single-

robot to server and multi-robot communication. However, this solution is

far too complex and may require direct human-robot interaction between

robot and victim (HRI), which raises a new set of ethical issues, for exam-

ple explaining actions to victims, requesting consent from victims, etc. The

robot used in the field experiments is equipped with audio and visual sen-

sors. Experiments are executed using four different ‘interaction’ schemes:

“Two-way Video with Two-way Audio, One-way Video (from Robot to Responders)

with Two-way Audio, Two-way Video with no Audio, and One-way Video (from

Robot to Responders) with no audio.” [86]. Furthermore, the authors do not

consider communication issues in field experiments, as the robot to remote

server communication is tethered through an extension cable. Nonetheless,

the authors acknowledge that even in a controlled environment and with

direct connection to the robot, communication was frequently delayed or

video/audio feedback was intermittent. The interaction schemes with less

or no video feedback minimised network connectivity issues, but at the cost
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of losing communication capabilities with the victim. The authors demon-

strate that a robot needs to leverage the use of different sensors depending

on the type of task it is required to perform, as wired communication capa-

bilities are a major constraint.

The work by Zadorozhny and Lewis [26] use the Unified System for Au-

tomation and Robot Simulation (USARsim) for simulating their communi-

cation and experiments. USARsim is a high fidelity simulation software for

robots and environments built with the widely used Unreal Engine. It is

designed for the research and study of HRI and robot coordination. The

authors explore how a new method of humans aiding (“crowdsourcing”)

in victim detection affect information fusion for robots in the field during

urban search and rescue operations. The task of the robots is autonomous

navigation and extraction of image sensory data of predicted victims. The

task of the human operators is to confirm if image data contains victims.

Sensor image data is processed and filtered by the robots in the field and

then sent to human operators to be analysed. After multiple passes of the

same victim by the robots and human operators the estimated victim coor-

dinates begin to converge to true-coordinates, which the authors describe

as “crowdsourcing”. It is acknowledged that in a physical environment the

communication constraints will differ, therefore it is likely that the perfor-

mance of the human-robot team will be impacted.

Lujak et al. [27] leverage the network capabilities of surrounding smart

devices (ambient intelligence) to prevent congestion and keep robots and

all other devices connected. They propose the “Robots-Assisted Ambient In-

telligence” (RAmI) system to assist robots with successful task completion

(scheduling) and furthermore prevent (robot) network communication is-

sues. The system will leverage a distributed network optimisation to assist

individual users and also to minimise conflict and congestion in hot-spot

areas where many users are located and resources are limited. They show
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their system design and use a case study to demonstrate its effectiveness.

2.6 Summary

In summary, all multi-robot systems require: a method of communication,

a design decision on how messages are to be communicated and finally

to maintain successful multi-robot operation; it is crucial to have in place

a method to prevent communication issues. The related work shows that

multi-robot coordination systems either do not consider communication, or

consider communication but do not examine the associated communication

issues. Moreover, the related works present the ad-hoc network as a pop-

ular form of communication for multi-robot teams. However, they are un-

derutilised and physical experiments are rarely conducted with prevalent

communication issues. This thesis investigates the performance impact that

network perturbations have on a variety of performance metrics in MRTs.

A new framework is built on top of the existing MRTeAm framework, in-

troducing a messaging method and behaviours, which are devised to help

reduce the impact of network perturbations. Moreover, I design a novel sim-

ulated network perturbation based on a machine learning method of signal

strength (in the operational environment), which affect MRT communica-

tion. The performance of the simulated and actual network perturbation

are compared and analysed, demonstrating how accurate network pertur-

bations in simulated environments are compared to the physical environ-

ment. The final point of interest is to appreciate the negative and positive

repercussions of using behaviour-based control to minimise the effects of

network perturbations on MRT performance.
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Chapter 3

MRComm: Multi-Robot

Communication Testbed

3.1 Introduction

The overarching focus of this thesis is on analysing the impact that commu-

nication issues have on MRT performing coordination tasks. Of particular

interest is investigating how this affects the design of multi-robot communi-

cation networks and organisation (centralised/distributed). I evaluate the

MRComm and MRTeAm frameworks, and expand the collected performance

metrics in Chapter 4. The focus of experimentation and design is on physi-

cal robots and the real environment, however I examine the performance of

simulated robots and a simulated environment in Chapter 5. I evaluate em-

pirical results using a team of physical robots in a feasible search-and-rescue

environment where uncertainty and noise from external sources are present

in Chapter 6. Moreover, in Chapter 6 I establish a physical ad-hoc network

that is self-maintained by physical robots, and I test a novel high-level mes-

saging protocol and employ a novel leader-follower behaviour that aims to

guarantee effective mission completion in perturbed communication net-

works, the design of which is described here. As mentioned in Section 2.3.6,
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MRComm is a MRS framework based on MRTeAm [9, 45–47], which is ca-

pable of executing either simulated or physical robot experiments using

the same functional robot agents across either type of experiment (i.e. the

same robot functions and controls are used for both simulated and physical

robots).

The MRComm framework is based on the Robot Operating System (ROS)

[10], a collection of mainly robotics-based systems (packages) and a com-

mon middleware to allow these systems to communicate, further described

in Section 3.2. There are two type of agents employed by the MRComm

framework. Originally, MRTeAm employed the auctioneer agent to allocate

tasks and guide the overall course of the experiment. However, the auction-

eer agent’s functionality and role is changed in MRComm. It is henceforth de-

noted the task assigner agent and is the first of two agents employed in MR-

Comm. The task assigner agent uses the Round-Robin (RR) method [9] to ini-

tiate task assignment messages, which is described in Section 3.3. Further-

more, the task assigner agent for the experiments conducted in this thesis is

a robot (virtual) agent, however it could also be a human operator. The sec-

ond agent, denoted as the task execution agent, receives tasks (goals) to carry

out, is responsible for navigating the environment and can be implemented

with a behaviour accompanied by roles dependent on communication sta-

tus. Moreover, it is responsible for sending and receiving team position and

task status messages. Section 3.4 discusses how ROS communication works,

what messages are shared between the agents in a mission scenario and the

novel high-level messaging protocol used in MRComm. Section 3.5 describes

the operational environment used for missions, the physical robot platform

and the simulator. Section 3.6 briefly outlines improvements to the task exe-

cution agent. Section 3.7 describes the agents’ purpose in a mission scenario

and the behaviours used. The network parameters, Section 3.8, describe the

network types used for communication by the robot team and introduce
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network perturbations. Section 3.9 describes and provides redesigned for-

mulae for the general performance metrics. MRComm expands upon the

original performance metrics captured by the MRTeAm framework, which

are described on a per chapter basis. Finally, Section 3.10 defines the com-

mon experimental design that is used throughout the experiments.

The contribution described here builds upon the exploration of the multi-

robot team coordination domain and specifically investigates the impor-

tance of reliable communication within this domain [87] and on method-

ologies to mitigate communication issues [88, 89]. A portion of the system

design presented in this chapter was published in [89].

3.2 ROS: Robot Operating System

ROS is a middleware that contains many robotics-based systems (packages),

which allow for the integration and communication between these and other

systems. It contains software for both single-robot and multi-robot systems

and is used in research and industrial settings. The foundation of MRComm

is built using multiple different software packages that provide sensor fu-

sion, mapping1, localisation, path planning2, messaging system3 and multi-

node communication4. All of the aforementioned systems, except the latter

two systems, can be summarised in a single integrated framework known

simply as ROS Navigation5 (also ROS Navigation Stack).

3.2.1 Multi-Node Communication

ROS is inherently built as a centralised system (with aspects of decentralisa-

tion) comprising of shared name-spaces and directories initialised as nodes

1http://wiki.ros.org/map_server
2http://wiki.ros.org/dwa_local_planner
3http://wiki.ros.org/msg
4https://github.com/fkie/multimaster_fkie
5https://github.com/ros-planning/navigation

http://wiki.ros.org/map_server
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/msg
https://github.com/fkie/multimaster_fkie
https://github.com/ros-planning/navigation
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and services. A typical ROS hardware setup has either a single device

(robot) or multiple devices (robots) connected and communicating via a sin-

gle roscore. An example of this is illustrated in Figure 3.1. Furthermore, this

could mean that multiple devices are connected by wire or wirelessly and

are either on the same network or on multiple local networks, communi-

cating in a cloud-type infrastructure. This has one obvious and major flaw,

which is evident in Figure 3.1: if Laptop 1 encounters an issue and the central

roscore stops working then all connected devices will be disconnected and

communication will cease.

FIGURE 3.1: A simple ROS setup showing interconnection,
of the roscore master managing the routing of communication
(dashed lines) and the transmission of communication via top-

ics and services (solid lines), between devices.

The ROS software package, Multimaster FKIE6, hereon denoted as FKIE,

introduces a multi-node (multiple roscore) system, which enables distributed

robot networks. Effectively FKIE allows for each robot in a MRS to en-

act its own roscore master within a common network [11]. In particular,

this means that each different robot is capable of running identical software

packages, albeit with different parameters, without causing issues in the

6https://wiki.ros.org/multimaster_fkie

https://wiki.ros.org/multimaster_fkie
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centralised name-space and directory within the roscore running on the same

network. Moreover, FKIE theoretically allows for more flexibility with re-

spect to system dependency on version-specific packages and even the over-

all ROS framework. FKIE is seamlessly integrated in the MRComm frame-

work, which contributes toward a truly distributed MRT, escaping ROS’s

centralised nature and preventing the single-point of failure issue common

with this.

A brief description of FKIE is presented here and is illustrated in Fig-

ure 3.2. An in-depth technical report is available by Juan and Cotarelo [11].

Each robot that is to be connected to the distributed MRT needs to be run-

ning its own roscore and additionally two FKIE nodes that will allow for the

multi-robot communication. These two nodes are master discovery and mas-

ter sync, and their functionality is summarised below. The master discovery

node functionality is to:

• Periodically broadcast current roscore master to other potential ROS

masters and detect any other roscore masters;

• Check for local changes to roscore master and update other potential

roscore masters of changes.

Next, the master sync node functionality is to:

• Obtain information from other master discovery nodes and disclose

topics and services to the local roscore master;

• Push information to the local master discovery node and update in-

formation on topics and services to the other roscore masters.
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FIGURE 3.2: A ROS setup using FKIE to link nodes (topics)
across multiple roscore masters (red solid line). Each individ-
ual roscore manages the local communication (dashed lines)
and the communication of topics and services between de-
vices (solid lines). This is my own depiction of a diagram from

the report by Juan and Cotarelo [11]

3.3 Task Assignment

Initially, when designing the experiments for this thesis, it was observed

that using multiple different task assignment mechanisms, as is the capabil-

ity of the MRTeAm framework, would lead to contrasting results between

experiments. The difference in results due to changes in the task environ-

ment needs to be minimised as much as possible. Therefore, the task assigner

agent needs to always allocate tasks in a static and predictable manner. That

is why the RR assignment mechanism, presented in Algorithm 1 by Schnei-

der [9], is used to assign tasks to robots. In RR two lists are used, one con-

taining the list of robot team-members r and the other an ordered list of

tasks T. For each task t ∈ T a cyclic iterative process takes place in which

the next robot rnext will be awarded a task. At the end of this process, the

tasks assigned to each robot are stored in their agenda7.

MRTeAm incorporates additional auction mechanisms, apart from RR.

7The “agenda” is the list of tasks a robot has been assigned by the task assigner agent.
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Algorithm 1 Round-Robin (RR) [9]

1: ci← 0
2: procedure CYCLEITERATOR()
3: rnext ← rci
4: if ci < (|R| − 1) then
5: ci← ci + 1
6: else
7: ci← 0
8: end if
9: return rnext

10: end procedure
11: for all t ∈ T do
12: for 1...treq do
13: wr ← CycleIterator()
14: T(wr)← T(wr) ∪ {t}
15: T ← T\{t}
16: end for
17: end for

However, using any of other auction mechanisms has two undesirable ef-

fects, such as:

• The potential of causing a change in the agendas of the robot team on

a per experiment basis, i.e. tasks are assigned inconsistently to robots.

For example, there are two predictable and simple cases for assigning

tasks using the RR mechanism. Firstly, an even number of tasks will

always be sequentially and evenly assigned to robots, and secondly an

odd number of tasks will be sequentially assigned to robots, while the

remaining tasks are wrapped around and assigned from the beginning

of the list of robots.

• There is an overhead of time taken to process the different assignment

mechanisms, denoted as deliberation time by Schneider [9], which will

affect the performance metrics. In contrast, the RR mechanism has

negligible effect (Figure 3.3) on the time taken to process the task as-

signment.

There is a similar algorithm to RR known as First Come First Serve (FCFS). It

can be argued that the two algorithms are very similar, however examining
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the differences more closely shows that RR is preemptive and non-blocking

and FCFS is non-preemptive and blocking. Preemptive algorithms would

theoretically enable the task assigner agent to prioritise higher valued tasks

to be assigned before those that are of lower value. However, the tasks used

in experiments throughout this thesis have no priority value associated to

them, so this is a non-issue. The current functionality of the task assigner

agent and RR is that task assignment is performed at the beginning of a

mission in “one-shot”, which is denoted as non-blocking. For FCFS, the task

assigner agent would need to assign each robot in the team a task and wait

until a robot has completed a task and then assign tasks again, which is de-

noted as blocking. If FCFS were to be used, the blocking functionality would

cause pauses in robot behaviour during mission execution, which would af-

fect performance metrics, and it may potentially cause the overall agenda of

a robot to change on a per experiment basis. This proves that using RR for

the MRCP outlined in this research, eliminates uncertainty and time spent

processing task assignment and focuses the analysis on task completion as

a standard metric, rather than task assignment. Finally, it is important to

note that once tasks are assigned to a robot’s agenda, the ordering of tasks

to be completed uses a simple greedy algorithm approach, e.g. in ascending

order from the closest to the furthest task from the robot’s current position.
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FIGURE 3.3: The deliberation time of the different assignment
mechanisms incorporated by Schneider [9]

3.4 Shared Messages

The ROS transport layer typically uses TCPROS protocol but can addition-

ally use UDPROS, which are both based on the standard variants of TCP and

UDP respectively. The TCPROS protocol is used in MRComm. However, the

transport protocol is only as good as the middleware used for the commu-

nication. The ROS communication middleware is very robust and univer-

sally used, however it is limited. It works as follows: a device that needs

to transmit messages creates “topics” in which messages are published, also

known as a publisher. A publisher queues messages and publishes them in

the common network. However, there is no way for the publisher to target

a specific device to receive messages and messages could be lost without

the publisher ever knowing. A device needs to subscribe to the particular

publisher (“topic”) to receive those messages, known as a subscriber. This is

called the publisher-subscriber patter or simply “pub-sub” messaging. The

advantages of such messaging are that communication is simple, reasonably

scalable and robust (does not rely on network topology). However, it lacks
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network security, messaging can be slowed when many devices try com-

municating all at once (i.e. no traffic control and message surges can cause

congestion), and there is no real-time messaging. Many of the these limi-

tations make the standard pub-sub middleware, regardless of the transport

protocol used, very similar in behaviour to the UDP protocol and very dif-

ficult to use for the specific experiments and requirements that MRComm is

designed for. There is another possible ROS software service available that

mitigates many of the issues that the standard pub-sub middleware has, and

this is ROS Services8. Although ROS services is a good solution, it has its own

existing issues. For example, a client could require a persistent connection

to a service to update its local knowledge base, however the server provid-

ing the service may need to change the message being sent or may need to

serve another client, which cannot happen as the server is locked in a per-

sistent service call. Furthermore, apart from needing a persistent service, an

important requirement is to be able to have direct access to the number of

sent and received messages. To improve the accuracy of the message analy-

sis, in this work it is conducted internally and is used to aid in interpreting

communication quality and in communication processes.

The setup for the shared topics (messages) that are passed between agents

within the MRComm framework and for any (other) experiments conducted

in this thesis are:

• task assignment messages sent by the task assigner agent to task execu-

tion agents using the 〈ST, SR, IT, EV, SA〉 task composition, from Sec-

tion 2.3.3, and the RR assignment, described in Section 3.3;

• pose messages provide robots’ positions, which are sent by task execution

agents to other task execution agents, as input to the task navigation

process and to facilitate collision-free movement;

8http://wiki.ros.org/Services

http://wiki.ros.org/Services
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• task status messages sent by task execution agents to all other agents,

accompanied by sensor data acquired as part of the task, if applicable.

3.4.1 Improved Messaging: All-Or-Nothing

All-Or-Nothing (AON) is introduced and discussed here, which is a high-

level improvement to the standard pub-sub messaging. The protocol of the

novel AON messaging function is designed in a way that does not require

any additional low-level changes to the transport protocol used by the pub-

sub middleware, while offering best effort acknowledgement of message

transmission.

The standard TCP protocol [90] inspired some of the functionality of

AON, namely TCP’s control and acknowledgement flags, which are impor-

tant and necessary for continuous and robust communication even when

communication quality is critically reduced. To keep AON as simple and

non-disruptive as possible for communication, two high-level flags are in-

troduced received and finished, which correspond to TCP’s ACK (acknowl-

edge receipt of message) and FIN (notification of final message) flags. This

gives any shared message using the AON messaging function the ability

to acknowledge receipt of messages and simple termination control. Only

task status messages employ the AON messaging function as this is the most

crucial shared message that requires to be delivered so that all agents have

full knowledge of the mission. Algorithm 2 best describes the process of the

AON message function, and partial code is available in Appendix A.2.

AON is fast and easy to implement within an already existing pub-sub

middleware. The number of message propagation calls in the ideal case,

per robot, made to the AON function is n + 1 (where n is the number of

robots in the team). The total number of calls is n(n + 1). It is important to

note that this is not counting any repeat messages that are sent as a result of
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Algorithm 2 AON Message Function

1: INPUT msg, ri, messageReceived
2: OUTPUT messageReceived
3: teamSize← 3
4: receivedData← new List[]
5: msg . message being sent
6: ri . the robot sending the message
7: messageReceived← False . confirmation receipt
8: procedure AON(msg, ri, messageReceived)
9: done← False

10: repeat← 0
11: receivedTime← Time.now
12: runningTime← 0.0
13: while not done do
14: endTime← Time.now
15: runningTime← endtime - receivedtime
16: if not ri in receivedData[msg] then
17: receivedData[msg].append({ri, messageReceived})
18: procedure CALLBACK(msg, ri, messageReceived)
19: end if
20: if lengthOf(receivedData) = teamSize then
21: messageReceived← True
22: repeat← repeat + 1
23: procedure CALLBACK(msg, ri, messageReceived)
24: end if
25: if runningTime > 15.0 seconds then
26: procedure AON(msg, ri, messageReceived)
27: end if
28: if repeat > 1 and all(receivedData[msg]messageReceived = True)

then
29: done← True
30: return messageReceived
31: end if
32: end while
33: end procedure
34: rc . robot sending/receiving message
35: procedure CALLBACK(msg, ri, messageReceived)
36: if rc 6= ri and not rc in receivedData[msg] then
37: receivedData[msg].append({rc, messageReceived})
38: return
39: end if
40: end procedure
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the pub-sub queue. The TCPROS communication protocol used for messag-

ing provides adequate data throughput, lying on top of it, AON is designed

to be as simple and light as possible and thus for reasonable size of n does

not slow down the messaging system. However, if the multi-robot system

is made up of too many robots (i.e. large n), AON will not scale well and the

communication complexity and network congestion will increase consider-

ably. In this work, the practical limits of the AON messaging function are

note tested (i.e. tests up to n = 3). Moreover, as the size of the robot team in-

creases there is a higher chance that messages will arrive out of order, which

will (on average) double the number of propagation calls to fix the issue. If

the total number of calls n(n + 1) take time t, then in the case for messages

arriving out of order, the estimated increase in time will be 2t + m (where

m is the time delay due to incorrect message arrival). The maximum value

of m is equal to the time-out value of the AON function. During this time

duration the AON function will keep trying to acknowledge if a message

has been received by all team members and terminate once communication

is successful. The time-out duration is chosen to be 15 seconds. This long

period of time is chosen because it is firstly a fail-safe and secondly it is gen-

erally a rare occurrence that messages arrive out of order, at least for small

values of n. Moreover, the long time-out period gives the robots a chance to

catch up or slow down if they are in an unexpected state (desynchronised).

The message propagation is demonstrated in Figure 3.4

To proceed in calculating the theoretical limit of n for AON the wireless

technology and hardware limitations need to be known. The wireless net-

work card used by the robots is the Intel AC-7265 [91], which has a theoret-

ical maximum (receiving) speed of 867Mbps (megabits per second). How-

ever, the theoretical maximum speed can be achieved using multiple anten-

nas, specifically 2 transmitters and 2 receivers or 2x2 802.11ac (MIMO). In

this mode, the network card can theoretically receive 867Mbps, but has been
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reviewed to have significantly lower transmitting throughput near 150Mbps

in ideal conditions. This gives rise to two problems for the theoretical cal-

culation using 2x2 802.11ac. Firstly, the discrepancy between the received

and transmitted throughput is too large, the maximum receiving through-

put will be capped by the maximum transmitting throughput. Secondly, it

is more unpredictable and not as stable over increasing distance, 802.11n is

used for experiments. To make this calculation theoretically feasible and to

compare it to the wireless communication used for experiments in this work

it will be assumed that the maximum theoretical throughput is 72Mbps,

both received and transmitted, using 2.4GHz 802.11n. The calculations will

be performed in bytes, therefore 72Mbps translates to 9MBps (megabytes

per second), as there are 8 bits in 1 byte. Each message in the MRComm

framework is allocated 80 bytes and this allocation is recorded after every

experiment to confirm there is no discrepancy in the transmitted message

size. It is assumed that a medium TCP data size of 40 bytes is used to trans-

port messages, therefore it is theorised that two TCP packets need to be

sent per message. As mentioned, there are three types of shared messages,

task assignment, pose and task status messages. Task assignment messages are

allocated only at the start of an experiment before any other messages are

transmitted, therefore they will not be factored into the theoretical limit as

they are negligible. Pose messages are transmitted by each robot in the team,

updated at a frequency of 5Hz and each message requires two TCP pack-

ets of 40 bytes, which gives the following equation 2n · 5 · 80× 10−5. For

task status messages using AON it will be assumed that there will be mes-

sages arriving out of order. Finally, the message frequency of task status

messages is set to 3Hz (not real-time messaging, i.e. no guarantee) and two

TCP packets of 40 bytes are required per message, which gives the calcula-

tion 3 · 2 · 2(n2 + n). Although task status messages use the AON method it

is important to include pose messages in the calculation as the frequency of
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message transmission will impact the overall communication. Equation 3.1

shows the general calculation in the case that messages arrive out of order,

as there is a higher probability of this occurring as more robots are added

to the team, and when hardware and physical limitations are not taken into

account.

9.0× 106 = 3 · 2 · 2(n2 + n) · 80× 10−5 + 2n · 5 · 80× 10−5 (3.1)

Equation 3.1 gives the value of n equal to 30,618 robots. However, this value

of n is highly improbable for many reasons, such as that on-board wireless

cards cannot typically host many devices as they are not designed to per-

form router functions, the ROS pub-sub middleware is not designed for large

device communication and has never been tested with such a large number

of connected devices, and TCP is a protocol that requires good flow control

and processing power, which as previously mentioned are not supported

by ROS. Although the value of n from equation 3.1 is useful, as it shows

that if network hardware limitations and efficiency were not factors, theo-

retically the size, number and frequency of messages being sent over the

network do not limit AON’s scalability of the robot team size. However, a

typical wireless router on a local network can handle 255 devices. I argue

that the theoretical maximum limit of n for physical robot experiments is

closer to the typical wireless router limit of 255 robots. But, even for 255

robots, whether in infrastructure or ad-hoc network mode, a more complex

messaging design, sophisticated network architecture and highly optimised

AON functionality are required.

3.5 Environment

The physical environment consists of an office space on the first floor of the

Strand building, Strand Campus, King’s College London. The simulated
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FIGURE 3.4: Message propagation is shown by dotted lines
in the diagram. In stage 1 a status message is transmitted;
in stage 2 team members retransmit the received message; in
stage 3 the entire team knows that the message has been re-
ceived. The received Boolean is set to true and sent to each team
member (i.e. this is further indicated by the red, green and
blue dotted lines by each robot, between stage 3 and 4); in
stage 4 the message is received by all team members and com-

munication is finished.

environment is modelled according to the floor plan of this office space.

The corridor has multiple sets of fire doors, which typically stay closed. The

physical experiments were therefore restricted to that portion of the corridor

which could be reached without needing to open the fire doors. Moreover,

there is a long arching hallway and multiple offices on both sides and one

larger conference room that is of an irregular half-oval shape. Figure 3.5

represents the floor plan of the office space used. As mentioned previously,

I use the campus Wi-Fi for the communication network of the robot team,

which is a local instantiation of eduroam9.

The motivation for using the office space is its similarity and significance

to existing operational environments for MRS in urban search and rescue

9https://www.eduroam.org/

https://www.eduroam.org/
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(USAR) and warehouse robotics. A multi-robot team performing a USAR

scenario in this environment could be allocated points of interest or given

potential victim locations to observe. Alternatively, a multi-robot team per-

forming a warehouse scenario in this environment could be sent to pick up

an order of packages that may or may not have certain constraints.

The robot team is placed in a central “safe” location awaiting deploy-

ment to predetermined task locations in case of a USAR scenario. As a

robot reaches a task location, it could perform a unique function that no

other robot on the team can, e.g. take a snapshot, use on-board end-effector

to pick up payload etc. Furthermore, it is assumed the robot team is hetero-

geneous (i.e. each robot has specific functionality) and the environment has

already been mapped, and that the map has already been disseminated to

the robot team.

3.5.1 Physical Platform

As mentioned previously, MRComm defines the task execution and task as-

signer agents, while the ROS Navigation stack provides localisation and path-

planning capabilities and the ROS based FKIE(Section 3.2.1) package pro-

vides the intra-team communication. FKIE is a newly integrated system

to the MRComm framework and is an extension to the original MRTeAm

framework. The task execution agent is executed on the Turtlebot 210 robot

platform and a detailed diagram is presented in Figure 3.6. The robot base

is the iClebo Kobuki11, which has differential drive, robot vision is made

possible with an RGB-depth camera (the Asus Xtion Pro12, which is a clone

of the Microsoft Kinect [92]), and an on-board laptop13 performs all the pro-

cessing (the Acer Travelmate B11714 running Ubuntu 14.04). The robots15

10http://www.turtlebot.com/
11http://kobuki.yujinrobot.com/about2/
12https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
13The laptop refers to all the processes that are contained within the MRS.
14https://www.acer.com/ac/en/GB/content/professional-series/travelmateb
15The robot refers to the Turtlebot 2 platform as a whole.

http://www.turtlebot.com/
http://kobuki.yujinrobot.com/about2/
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
https://www.acer.com/ac/en/GB/content/professional-series/travelmateb
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FIGURE 3.5: Office space (map) used for experiments (based
on the actual floor plan of the building).

communicate utilising FKIE, which discovers other devices that are running

ROS and synchronises any specified message topics. Once an experiment

starts and the robots are assigned their tasks, navigation in the environment

is autonomous. Moreover, the robots will attempt to avoid any unexpected

(new) obstacles that appear in the environment.
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FIGURE 3.6: An overview of the Turtlebot 2 robot platform.
The camera is used for detecting obstacles, but other func-
tionality can be implemented. The laptop contains the agents
and other processes that are needed for the functionality of the

robot. The base provides mobility to the robot.

3.5.2 Simulation Platform

MRComm utilises the ROS variant of the Stage simulator [24] to simulate the

robots. Stage is used for experimentation and research, and provides high

fidelity simulation of sensors, sensor fusion and noise to the environment.

Moreover, Stage includes an emulator for the Turtlebot 2 base and the par-

ticular sensors on the base that are used by the physical platform here. It

is written in C++, which makes it fast and scalable for multi-robot system

simulation. The work by Schneider et al. [45] shows that the difference be-

tween simulation and physical experiments is acceptable across most of the

performance metrics evaluated.
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3.6 Functional Robot Improvements

A number of improvements are introduced to MRComm to streamline the

debugging and development process, help reduce inconsistency during mis-

sion execution and in experimental data collection. The initial change is up-

dating the architecture software, the second is directionally aware collision

avoidance and finally a simple dead reckoning recovery behaviour.

An extensive architecture change was performed to upgrade the agents

from the older and more general fysom16 finite state machine (FSM) to a

more robot orientated FSM SMACH17. SMACH is a task-level architecture

for the rapid creation of complex robot behaviour. It is a Python library

independent of ROS, which allows for the building of hierarchical (nested)

state machines. It allows for easy maintenance and very modular state im-

plementation. Furthermore, it provides ROS-built FSM visualisation tools,

which can be used for debugging individual states and state flow inspec-

tion. Both the task assigner and task execution agents were updated to use

SMACH FSM. Moreover, the task execution agent implements a more com-

plex hierarchical state machine, as shown in Figure A.3 in Appendix A.1.

To make collision avoidance possible each task execution agent records a

list of pose messages (positions), which is updated dynamically. The original

MRTeAm framework that MRComm is built on has finely tuned system pa-

rameters for the robots to be able to perform their best possible navigation in

a known environment. These parameters were further tuned for the larger

and more dynamic office environment used for experiments conducted in

this thesis. However, in early testing it was noted that the internal colli-

sion prevention system seemed to occasionally either miss near collisions,

while robots were performing another action, or prematurely initiating col-

lision prevention, which occurs when robots were moving simultaneously

16https://pypi.org/project/fysom/
17http://wiki.ros.org/smach
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near each other or behind each other, illustrated in Figure 3.7. The original

collision prevention approach used a predefined “danger zone”, which is a

semi-circle in the direction of travel of a robot ( 3.7) and whenever a task ex-

ecution agent receives a team member’s updated position it checks if it falls

in this zone. If a team member is in the “danger zone” then both robots will

pause moving and the robot closer to its intended goal location has right of

way (ties are broken randomly). This behaviour was unwanted, therefore

collision avoidance for the task execution agent was updated to check the di-

rection of heading together with the position of the team member and a new

“event horizon” area was defined, Figure 3.8. The additional functionality

allows for the improved collision avoidance to be triggered in two ways.

The first way that collision avoidance is triggered is when the position and

heading of a team member is received and the following conditions are sat-

isfied: the team member is in the “danger zone” and is heading in the same

direction or at an angle (i.e. perpendicular) to the other robot. Both robots

pause and the right of way is given to the robot closer to its intended goal lo-

cation, as described above. This improves the issues of reducing premature

collision avoidance when robots are travelling in close proximity to each

other or behind each other. However, it introduces a new problem. Con-

sider the following event: a robot is travelling behind or at an acute angle in

the same direction of a team member, which has to suddenly stop moving

to initiate a new action. There are two possibilities, either the robots collide,

as they are unaware of the sudden change in team member behaviour, or

the robot behind could get stuck, as it comes too close to the team member

and stops in front or behind it (i.e. if it is backed up and too close to a wall,

ROS Navigation cannot recover). The second way that collision avoidance

is triggered, which overcomes the above issues, is by using the “event hori-

zon”. The “event horizon” area, represented by the red circles in Figure 3.8,

is in close proximity to the robot’s actual footprint (the dimensions of the
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physical/simulated robot in the environment). When a team member en-

ters this area both robots immediately pause for a collision, each check if

the team member is still within the “event horizon” and if they are, they

perform the above described right of way check. The improved collision

avoidance functionality gives the task execution agent more flexibility and

accuracy when dealing with collisions.

(a) Shows that robots travelling in close proximity in the same direction
can enter the “danger zone” even when there is no risk of collision.

(b) Shows that robots travelling behind each other in the same direction
can enter the “danger zone” even when there is no risk of collision.

FIGURE 3.7: MRTeAm collision avoidance. The dotted semi-
circle represents the “danger zone” of a collision risk.

ROS Navigation is not perfect and on occasion the system fails due to
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FIGURE 3.8: MRComm improved collision avoidance. The
dotted semi-circle represents the “danger zone” of only a sin-
gle robot and the transparent red circles represents the “event

horizon” area for all the robots.

some internal error. Therefore, the task execution agent has the added func-

tionality to check periodically whether the robot location is changing as ex-

pected. If a robot pauses for too long in the same location, due to a failed

collision avoidance attempt or navigation failure, a time-out timer starts. At

the end of the time-out, if the robot is not already stationary, it is forced to

pause whatever it is doing, the ROS Navigation system is cleared and the

robot uses dead reckoning to slowly reverse approximately half a meter.

Dead reckoning is the “determined” position and velocity using only the

estimate from the differential drive wheels, also known as odometry. Af-

ter this brief process, the task execution agent will attempt to get back to the

action it was attempting before the failed collision avoidance or navigation

system failure.
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3.7 Robot Agents and Behaviours

As previously mentioned, the MRComm framework employs two different

robot agents, namely a task assigner and a task executioner agent, to conduct

missions. The introduction of FKIE (Section 3.2.1) and the implementation

of ad-hoc networking, have enabled communication and data recording to

be distributed. Moreover, as discussed in Section 3.6, SMACH introduces

modular and hierarchical FSM, which enables distributed architecture and

control. As defined in Section 2.3.5, this makes MRComm a truly distributed

MRS. Therefore, an agent (robot) is defined as one that is autonomous, func-

tions independently from other agents and performs processes individu-

ally. However, the physical environment experiments require that the task

assigner agent be “integrated” with one of the task execution agents on a sin-

gle robot platform. The “integrated agents” functionality developed in MR-

Comm satisfies the system requirement to maintain true agent independence

(truly distributed). Even though two agents are running on the same robot

they communicate and function completely independently of each other.

MRComm compares two different robot behaviours: a baseline No-Behaviour

(NB) and a novel Leader-Follower (LF) behaviour, which is designed to re-

spond to and maintain communication regardless of network type and per-

turbation. Furthermore, both NB and LF use the standard pub-sub commu-

nication protocol, however LF additionally uses the novel AON message

function.

The task assigner agent is responsible for loading a mission configuration

by distributing tasks (using RR assignment 1, as described previously in

Section 3.3) to task execution agents sequentially. Every experiment is started

in this fashion, however the network type used determines which behaviour
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the robot team18 will inherit. The task assigner also records, without interfer-

ing, received experiment and team messages. The task assigner agent loads a

mission configuration the same way for both NB and LF behaviours. How-

ever, the task assigner’s recording functionality changes between the two be-

haviours. For NB, the task assigner simply records the received task status

messages. However, the AON message function, described in 3.4.1, intro-

duced to the LF behaviour, alters the way messages are communicated. The

AON messaging methodology forces the robot team to continue sending a

message until the entire team confirms receipt of that message. The task as-

signer records all the messages, including repeated messages before the final

confirmation receipt. Therefore, at the end of an LF experiment the task as-

signer checks its records to make sure each task status message has actually

been received by all agents. A single FSM, Figure 3.9, is used to represent

the task assigner that describes the above process, because it performs the

same function no matter the task executioner behaviour that is being exhib-

ited during experiments. During the “Load” state the task list is read from

file and converted to a list of tasks that can be presented to the robots, af-

ter which a state transition occurs by identifying the amount and name of

the robots in the team. The “assign” state is described in Section 3.3 and

contains two possible outcomes, which is either complete, the task assigner

begins to idly wait for the experiment to end, or assignment failure, the

experiment is terminated and the output is “Incomplete”. There are three

possible transitions in the “Idle” state. The first transition is wait, it means

not all robots have completed their tasks and have not sent the final signal.

The second is experiment failure, this usually means a hardware failure or

unrecoverable error has occurred in one of the robots and the experiment is

terminated as before. The final transition is experiment success, which re-

turns the output “Complete”, this signifies that the experiment successfully

18Unless otherwise specified, robot team refers to all agents acting in a mission (i.e. task
assigner and task executioner).
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FIGURE 3.9: Finite State Machine of the task assigner agent
(complete FSM in Appendix A.1)

terminated with all robots either completing their tasks or have reached the

final state of the task executioner FSM (e.g. in the case that communication

failed).

Much like the task assigner, the task executioner has some basic functional-

ity that is the same for both behaviours. For instance, a task executioner is re-

sponsible for receiving tasks and navigating to them, using many of the base

systems mentioned in 3.2. The task execution agent is initialised with param-

eters for behaviour (discussed below), network type (3.8.1), network pertur-

bation (3.8.2) and scenario (3.10) at the start of an experiment. Thereafter, it

receives tasks from the task assigner and begins to execute them. The task

execution agent is also responsible for announcing to all agents when it has

completed its tasks, which is important for the task assigner that is recording

messages. Furthermore, it sends continuous update messages of received

and completed (or failed) tasks back to the task assigner and other task ex-

ecution agents. This functionality is open-ended and in future work may

accommodate fault tolerance for critically reduced communication or robot

failure. The in-depth explanation and supporting algorithms of how the

task executioner adjusts when executed with either the NB or LF behaviour is
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shown in Sections 3.7.1 and 3.7.2, respectively.

The robot behaviour (i.e. NB and LF) is influenced by the network type

that the robot team is currently connected to, for example the WLAN or AH

network discussed in 3.8.1. However, for the purpose of the investigation

done in this thesis , the network type is set at the start of a mission and

kept static throughout the duration of each experiment. Furthermore, this

requires the robot behaviour to be statically set, rather than dynamically

changing, at the start of a mission.

3.7.1 No-Behaviour (NB)

A mission initialised with NB modifies the actions (or lack thereof) that

agents exhibit when subjected to different network parameters. The robots

executing NB do not adjust their behaviour based on network quality. They

attempt to complete their assigned tasks, disregarding network parameters

or loss of communication, and perform standard navigation and obstacle

avoidance behaviours.

Algorithm 3 is a simple single procedure abstraction of the task execu-

tioner functionality for NB. A more detailed and supporting abstraction of

the NB FSM is illustrated in Figure 3.10. The algorithm takes as input the

robotAgenda and the output is a boolean flag (completedAgenda), which is

used to verify if all the tasks have been completed in the agenda, and a

recursive call to the algorithm itself (NA). Initially, the closest task to the

robot’s current position is found (argmin) and stored as task t. There is a sin-

gle main loop, which checks if the robot agenda is empty, i.e. all the tasks

have been done, and navigates the robot to task t. There are three conditions

that are checked with every iteration. Firstly, if the robot has arrived at t and

it contains more tasks in robot agenda, it will remove t from the agenda and

recursively call NA with the updated robotAgenda. Secondly, if the robot
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arrival status is unknown (i.e. hardware or software failure) and tasks re-

main in robotAgenda, then task t is not removed and NA is recursively called.

This will attempt to force the robot to navigate to the incomplete task t again,

however the same task t will not necessarily be called again, as argmin for

each task is re-calculated. The final condition is the stop condition, which

checks if the robotAgenda is empty and returns completedAgenda as True. It

should be noted that completedAgenda returning False will end the experi-

ment and flag that it was unsuccessful.

Algorithm 3 No-Behaviour (NB)

1: INPUT robotAgenda
2: OUTPUT completedAgenda, NA
3: robot . the robot initialised with NB behaviour
4: robotAgenda . the list of tasks of the robot
5: t ∈ robotAgenda
6: procedure NA(robotAgenda)
7: t← argmin(robotAgenda) . task t with shortest distance to robot
8: completedAgenda← False
9: while not robotAgenda empty do

10: robot goto t
11: if robot arrived t and not robotAgenda empty then
12: robotAgenda.remove(t)
13: goto procedure NA(robotAgenda)
14: else if not robotAgenda empty then
15: goto procedure NA(robotAgenda)
16: end if
17: if robotAgenda empty then
18: completedAgenda← True
19: return completedAgenda
20: end if
21: end while
22: end procedure

The FSM, Figure 3.10, is also used to clearly define NB’s focus on “mov-

ing” to tasks and providing “collision” and “recovery” actions. Moreover,

when a robot reaches the “arrived” state it does not necessarily entail that

the task has been reached, and if it is flagged as failed then that task will

be returned to the agenda and either a new task or the same task will be

selected, depending on argmin as discussed above. This implies that a task
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should never fail as a result of a robot failing to reach the task (i.e. hardware

or software issues), but instead it can only fail if the task status cannot be

communicated successfully. The same is true for the LF behaviour.

FIGURE 3.10: Finite State Machine abstraction of No-
Behaviour (complete FSM in Appendix A.1)
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3.7.2 Leader-Follower (LF)

The LF behaviour is inspired by the AH network type, which enables task ex-

ecution agents to react to changes in simulated/actual signal strength or dis-

tance of other task execution agents. The LF behaviour reacts to changes dif-

ferently, depending on the type of network perturbation being analysed. If

the network perturbation used is Simulated Loss Threshold (SLT), introduced

in Chapter 5, then LF reacts to the other agents’ change in distance. How-

ever, if the network perturbation used is Simulated Signal Degradation (SSD),

introduced in Chapter 5, then LF reacts to other agents’ predicted signal

strength. Finally, if the network perturbation is Effective Signal Degradation

(ESD), introduced in Chapter 6, then LF reacts to other agents’ actual signal

strength. The change in signal strength/distance is detected as the robots

move away from each other, triggering the action of regrouping, which is

characterised as “switching” (described below), to maintain communication.

Another functionality added to the LF behaviour is improved pub-sub mes-

saging, as described in Section 3.4.1.

LF contains three roles: not assigned (NA), leader and follower. Initially,

all robots are NA. Upon the event of disconnecting from a team member,

the task execution agents are alerted and begin to dynamically switch roles

to either the leader or follower role, based on a utility score u, defined in

equation 3.2.

u = dscore × nincomplete × reccomplete (3.2)

where:

• dscore = distance score, computed as 1/distance_to_goal (task location);

• nincomplete = number of incomplete tasks remaining on the robot’s agenda,

which is computed as the total number of tasks assigned minus the

number of tasks completed;
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• reccomplete = 0.5 if the robot has just completed a task or 1.0 if it has not

(this value is reset with every change in role and/or completion of a

task).

The reccomplete variable acts to balance out the priorities of tasks amongst the

team. This is because the follower behaviour prioritises staying in commu-

nication with team members over completing its assigned tasks, whereas

the leader robot prioritises completing its current task. In the general case,

this prevents bias from occurring in role assignment, for example having

the same robot as leader multiple times. Effectively, this factor ensures that

all tasks are given priority at some point during the mission. The robot

with the highest u score is selected as leader each time a disconnect event

occurs. Moreover, there can only be one leader at a time, but multiple fol-

lowers. In the simulated experiments, the leader is a proxy for the robot that

could potentially initialise the ad-hoc network in a physical setup. The fol-

lower robots will connect to this ad-hoc network. Finally, when the leader has

completed its goal, the behaviour clears all robots of their roles and returns

(i.e. switches) to NA.

The Oxford English dictionary [93] defines “Switch” in Computing as

“A program variable which activates or deactivates a certain function of a pro-

gram.”. In the LF behaviour, switching describes the internal process that oc-

curs when a robot is about to disconnect from a team member. LF’s design

is object orientated and the procedure for role switching creates an entirely

new task execution agent object for the required role (i.e. leader/follower),

which is encapsulated within the existing task execution agent. This newly

created object is destroyed once the current leader’s task is complete and then

the original task execution agent, which is implemented with the NA role,

takes over. Thus, the motivation of referring to LF as dynamically switching

behaviour.

The task executioner functionality for LF has been split into algorithms 4
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and 5, as the behaviour is more complex and more steps are required to ex-

plain it compared to that of (NB), which is easily explained with a single

algorithm. Moreover, no algorithm for the NA role is supplied for LF, be-

cause it is very similar to that of NB’s NA role in algorithm 3. Albeit with

the extra functionality of detecting when the robots are about to disconnect,

as depicted by the FSM for LF, Figure 3.12.

Algorithms 4 describes an abstraction of the ASSIGN procedure. The in-

put for the algorithm is the current robot that needs to be assigned a role

and the output is calling (assigning) either the leader or follower procedure

(FSM), based on the collected utility scores. The leaderFound flag is pre-

ventative in case more than one robots have the same maximum score, to

ensure the first robot that is assigned leader will be the only one. Firstly,

the utility score is calculated with equation 3.2 and a loop is used to itera-

tively send and receive utility scores until each robot has collected all the

scores from the team, which is achieved by checking the amount of utility

scores obtained against the team size. After all the utility scores are col-

lected, the maximum score is found and the associated robot is stored by

the entire robot team (i.e. robotLeader). Thereafter, the process of assigning

roles begins, if the current robot is the robotLeader then the LEADER proce-

dure is called, and if not then the robot is assigned as a robotFollower and the

FOLLOWER procedure is called instead.

Algorithms 5 contains three procedures. The LEADER procedure input

is the ID of the robotLeader and the output is the NA procedure (i.e. the

goal was reached) or to recursively call the LEADER procedure, and in its

functionality it contains two important loops. The first loop sends the goal

location to the leader enabling it to move, while checking if it is about to

disconnect from a follower. If the leader disconnects from a follower the

second loop begins, which constrains the leader to wait, while checking the

distance to the followers until they are within connection, and thereafter the
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LEADER procedure is recursively called. The FOLLOWER procedure takes

as input the ID of the robotFollower and the robotLeader is already known

and the output is either procedure NA, IDLE or recursively calling the FOL-

LOWER procedure. Furthermore, this procedure has a single loop, which

simply goes to the last known position of the leader, and conditional checks

are performed to decide if the follower should go to a new position of the

leader, stop following the leader and resign roles or if the follower has no

more tasks in its agenda it will idly wait. The IDLE procedure input is the

ID of the robot that is idling and the output is the ASSIGN procedure. The

single loop checks if any other robot is about to disconnect while the robot

is idling. If the idling robot has sensed a disconnection, it is assigned with a

utility score of 0 and appended to the list of utility scores, this is to reinforce

that the idling robot has completed its agenda of tasks and will guarantee

it is assigned as a follower. Partial code is available for the Role Assign

procedure in Appendix A.2.
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Algorithm 4 Role Assign (LF)

1: INPUT robot
2: OUTPUT LEADER, FOLLOWER
3: robot . the current robot initialised with LF
4: utilityScores← new List[] . collect utility scores and associated robots
5: leaderFound← False
6: teamSize← 3
7: procedure ASSIGN(robot) . assign roles based on utility score u
8: calculate score urobot
9: utilityScores.append(urobot)

10: while lengthOf(utilityScores) < teamSize do
11: send urobot
12: receive uroboti . roboti ∈ robot team
13: utilityScores.append(uroboti)
14: end while
15: utilitymax ← argmax(utilityScores)
16: robotLeader← utilitymax(robotID)
17: if robot = robotLeader and not leaderFound then
18: leaderFound = True
19: goto procedure LEADER(robotLeader)
20: else
21: robotFollower← utilityj(robotID) . utilityj ∈ utilityScores
22: if robotFollower 6= robotLeader then
23: goto procedure FOLLOWER(robotFollower)
24: end if
25: end if
26: end procedure

Algorithms 4 and 5 alone are not enough to describe the structure and

process of LF. Therefore, a diagram and multiple abstractions of FSMs are

used to describe the hierarchical structure and processes of LF. The dia-

gram in Figure 3.11 depicts the hierarchical FSM of LF. It starts with the

NA (FSM) role, which points to the switching process, denoted network,

that is triggered by the network parameters set for the experiment, which

has two outbound arrows, one pointing to the leader and the other to the

follower roles (which are sub-FSMs). The hierarchical FSM in Figure 3.11 is

in a closed loop, as it can be seen that leader and follower have outbound

arrows going back to NA (FSM). The first FSM in Figure 3.12 is similar to

that of NB, however with the included “network” process, which is the trig-

ger to switch the task execution agent to a new role (FSM). The other two
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Algorithm 5 Leader, Follower and Idle (LF)

1: INPUT robotLeader
2: OUTPUT NA
3: disconnected← False
4: networkPerturbation← limit . threshold depends on perturbation
5: procedure LEADER(robotLeader) . robot assigned as leader
6: t← argmin(robotAgenda) . task t with shortest distance to robot
7: while not disconnected do
8: if networkPerturbation > limit then
9: disconnected← True

10: end if
11: robotLeader goto t
12: if robotLeader arrived t and robotAgenda empty then
13: goto procedure IDLE(robotLeader)
14: end if
15: if robotLeader arrived t and not robotAgenda empty then
16: robotAgenda.remove(t)
17: goto procedure NA(robotAgenda)
18: end if
19: end while
20: while disconnected do
21: if networkPerturbation < limit then
22: disconnected← False
23: goto procedure LEADER(robotLeader)
24: end if
25: wait
26: end while
27: end procedure
28: procedure FOLLOWER(robotFollower) . robot(s) assigned as follower
29: while robotLeader 6= arrived do
30: robotFollower goto robotLeader
31: end while
32: if robotFollower arrived and not robotLeader arrived then
33: goto procedure FOLLOWER(robotFollower)
34: end if
35: if robotLeader arrived and robotAgenda empty then
36: goto procedure IDLE(robotFollower)
37: end if
38: if robotLeader arrived and not robotAgenda empty then
39: goto procedure NA(robotAgenda)
40: end if
41: end procedure

Figures 3.13 and 3.14, depict the leader and follower FSMs, respectfully. Fig-

ure 3.13 is unique as it clearly highlights the priority of the leader role, which
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42: procedure IDLE(robotID) . robot has completed its agenda
43: while not disconnected do
44: if networkPerturbation > limit then
45: disconnected← True
46: end if
47: wait
48: end while
49: if disconnected then
50: urobotID ← 0
51: utilityScores.append(urobotID)
52: goto procedure ASSIGN
53: end if
54: end procedure

is to complete its current task with the auxiliary action of pausing for follow-

ers to catch up. Similarly, Figure 3.14 highlights that the follower robot’s

focus is on the “leader position” and “moving” toward that position, as can

be seen by the two arrows pointing in opposite directions connecting these

states. What is not immediately clear is that followers in the “moving” state

periodically monitor the distance between themselves and the leader. For

example, if the leader is too far, the followers get more frequent updates of its

position or if the leader is too close they go to the “waiting” state. Moreover,

when in the “moving” state the navigation planner is not directly restricted

by the network parameters and may try to re-plan a route outside of the

connection area. However, MRComm’s network perturbation process does

not allow this to happen, this is achieved by alerting the robot that it will

disconnect and forcing it to re-plan a direct route to the leader.

In order for switching to be triggered, task execution agents using LF react

to either a distance (i.e. SLT) or signal strength threshold limit (i.e. SSD or

ESD), which could be either static or dynamic depending on the network

perturbation that is initiated at the start of a mission, signal thresholds will

be covered in more detail in later chapters. The baseline network pertur-

bation for LF is SLT, which has a static distance threshold limit of approx-

imately 4.0 meters. However, it could be represented by a dynamic signal
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FIGURE 3.11: A diagram illustrating LF’s hierarchical FSM
structure

FIGURE 3.12: LF task executioner FSM for the NA role (complete
FSM in Appendix A.1)

strength value, e.g. using either SSD or ESD.

Generally, robots using LF should not be running missions with the WLAN
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FIGURE 3.13: LF FSM for the Leader role (complete FSM in
Appendix A.1)

FIGURE 3.14: LF FSM for the Follower role (complete FSM in
Appendix A.1)
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network type for two reasons. Firstly, for the WLAN network type it is as-

sumed that there is complete and uniform radial coverage of the environ-

ment, as described in Section 3.8.1. Secondly, that by design LF’s switch-

ing mechanism will not trigger, by virtue of the first reason, as the signal

strength will never go below the threshold. However, the SLT network per-

turbation, described in Section 5.2, is designed for the purpose of enabling

direct comparisons between any network type and environment (simulat-

ed/physical). Therefore, experiments with LF and WLAN can be initiated,

but the results are predictable, as discussed in Chapters 5 and 6.

3.8 Network Parameters

There are multiple ways of achieving communication in MRTs. For exam-

ple, explicit communication, in which the most popular form of commu-

nication is a radio signal (IEEE 802.11X standard), and implicit communi-

cation, an example of which could be gesture recognition using computer

vision. MRComm focuses on explicit wireless communication of the radio

signal type. In this section I introduce some of the network parameters

used for experiments in this thesis. In Section 3.8.1, I define the two dif-

ferent wireless network types that are used in experiments, in Chapters 5

and 6. In Section 3.8.2, I define network perturbation within the context

of this research and the primary perturbation that is present throughout all

experiments.

3.8.1 Network Types

The network type refers to the type of connection that links two or more

devices (robots) together. A type of connection can have supporting in-

frastructure, which is generally referred to as Basic Service Set (BSS) or
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Extended Service Set (ESS). This essentially means WLAN with support-

/extended support by Access Point(s) (AP). In such a connection, the AP

usually detects, controls and manages the communication between devices.

This is simply denoted as the WLAN network type and is further expanded

upon below. The other type of connection is one with no infrastructure,

which is generally referred to as Independent Basic Service Set (IBSS), and

is synonymous with peer-to-peer and ad-hoc networking. This connection

requires the devices (robots) to self-maintain the network and communica-

tion is direct (peer-to-peer) as there is no mediator (i.e. AP). This is denoted

as the AH network type and is further expanded upon below.

Wireless Local Area Network (WLAN)

WLAN is the standard network type used for analysing communication

quality in MRTs when subjected to Simulated Packet-Loss (SPL, defined in

Section 3.8.3). However, as mentioned previously, due to the design of the

SLT network perturbation, it can also be used with WLAN. As previously

mentioned, the WLAN used is the university campus Wi-Fi, eduroam (IEEE

802.11 standard), which was setup to use the 2.4GHz band. The WLAN

makes use of the three APs positioned throughout the operational (office)

environment to mediate the communication between the robots.

As with all forms of communication, wireless communication cannot

guarantee the successful transmission and acquisition of messages. Even

though ROS employs TCPROS for its standard messaging protocol, when

using message queues in a pub-sub middleware, there is always the danger

that a message will fail to be communicated or will be delivered out of or-

der, as this type of middleware has no higher-level protocol to acknowledge

receipt of a message sent from the queue nor does it care about the order of

arrival. The aforementioned implies that some limitations and assumptions

need to be asserted. Generally, Wi-Fi in the 2.4 GHz band has a wide range



3.8. Network Parameters 89

of theoretical operating distances, most of which exceed ≈ 20 meters, as

long as the transmitted signal has direct line-of-sight of the receiver. More-

over, the maximum range that the robots could be from one of the eduroam

APs at any one moment is less than≈ 15 meters. However, this is not neces-

sarily in direct line-of-sight, making it difficult to know the exact coverage

of all possible permutations of routes in the office space. Therefore, for all

experiments, including those described in Chapter 4, perfect uniform ra-

dial coverage is assumed in the operational environment. To affirm there

is complete coverage, a communication test was carried out analysing the

signal strength using a laptop as a receiver, while circumnavigating the op-

erational environment. As a result of this test, the above assumption is ac-

ceptable. Finally, it is assumed that signal-to-noise-ratio (SNR) is static and

uniform (i.e. SPL network perturbation), and that external SNR from other

devices (not the robot team) is negligible.

Ad-Hoc (AH) Network

AH is the second network type introduced here. The AH network is a

popular method of communication; it is specifically useful in multi-robot

teams as it can be used to create a simple peer-to-peer network solution

for reestablishing communication in an area where no network infrastruc-

ture exists. Furthermore, with the introduction of the AH network, signal

strength, which is another very important network parameter for commu-

nication quality, is added to the possible network perturbations being in-

vestigated without breaking any of the assumptions formulated for WLAN

or AH. The characteristics of the AH network are: no infrastructure, quick

dissemination of information and distributed control (i.e. no single point of

failure).

An investigation was conducted in an open (field) outdoor environment

between two robots signalling to each other the signal strength at a variable
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distance. The outdoor environment gives a good indication of how the spe-

cific network cards of the robots perform when there are less obstructions to

distort communication (Fresnel zone). The analysis from this investigation

is shown in Figure 3.15, which is used to establish a default communication

limit of 8.0 m for the AH network. It should be noted that this communi-

cation limit does not strictly imply that communication will not occur after

8.0 m, however it is an imposed restriction on the AH communication. Fur-

thermore, experiments configured with different network perturbations do

not affect this default communication limit of the AH network. This limit is

put in place to make the research problem more tractable and equitable for

all experiment configurations using AH. Figure 3.15 shows that further than

≈ 8.0 m signal strength is on average -70 dBm. The signal strength at this

distance signifies a weak signal or that the signal is almost indistinguish-

able from background noise, which makes predicting distance using signal

strength very inaccurate. Similar to WLAN, for AH, it is assumed that SNR

experiences uniform loss and SNR interference from other devices (not the

robots) is negligible.

To create an AH network, devices connect directly to one another and

rely on the close proximity of neighbouring devices to maintain connectiv-

ity. Generally, devices can leave (e.g. move out of range) and thereafter

automatically rejoin (e.g. move back in range) the network freely without

issues. However, shared information is only available as long as a connec-

tion between devices is maintained. It is important to note that MRComm

using the AH network type provides a completely distributed MRS.

3.8.2 Network Perturbations

A wireless network could be subject to network issues (perturbations), which

most commonly affect message transmission and signal quality. Therefore,

network perturbations developed in MRComm introduce internal network
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FIGURE 3.15: Average signal strength (30 repeat readings per
data point) vs. distance in an outdoor environment.

noise, which affects message transmission and internal monitoring of fluc-

tuation in signal quality during experiments. In networking, these two per-

turbations could also be referred to as packet-loss and signal strength degra-

dation. Furthermore, they are used to evaluate how a disrupted network

affects communication performance during simulated or physical robot ex-

periments. All of the network perturbations except ESD, introduced in

Chapter 6, are directly transferable between simulated and physical robots.

This ensures that the effects are comparable between the different environ-

ments. In Section 3.8.3, I introduce the fundamental network perturbation

used in all experiments, which is SPL.

3.8.3 Simulated Packet-Loss (SPL)

The SPL perturbation is a static internal software-engineered packet-loss

(i.e. message dropping) method, which is used to mimic degrading commu-

nication quality. The methodology used here is inspired by Chowdury [94],
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who considers quality of the mechanism (essentially a term for packet loss),

that measures the quality of communication between different populations

of agents when communication is interrupted at a percentage of 0%, 25%,

50% and 75%. In this work, it represents the characteristics of an unreli-

able transmitter or a highly saturated network. SPL is a very plausible per-

turbation to test the ROS messaging middleware (i.e. pub-sub), which is

used to communicate information between devices. Moreover, SPL is great

for testing the robustness of the MRComm framework, as each agent drops

messages received internally and directly from the communication pipeline.

Therefore, SPL allows each agent to internally keep track of how many mes-

sages are dropped with no extra computational requirement on the sys-

tem. There are more computationally complex methods for internal mes-

sage dropping with no foreseeable benefit. For example, unbiased message

dropping, which can be achieved by combining shared messages received

by topic and processing the messages using the message drop method, or

Gaussian noise generation for message dropping, which is not ideal as the

normal distribution would yield different results with each experimental

run. Moreover, message dropping could be performed externally to the MR-

Comm system using the Linux based software, Network Emulator (NetEm) [95].

However, the procedure NetEm uses for packet dropping has some sim-

ilar functionality to the internal SPL method used in MRComm. Further-

more, the external nature of this software will make it very problematic to

record all received shared messages (i.e. specifically, those being dropped),

which MRComm accomplishes. An external software performing the mes-

sage dropping would require each agent sending and receiving shared mes-

sages to have separate functionality to record all outgoing and incoming

traffic to enable the system to record the number of messages being dropped,

which is not ideal.

At the start of a mission, all agents operate under unbounded rationality
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(not affected by SPL), and immediately thereafter this assumption weakens

by the amount of static packet-loss applied to the agents, i.e. SPLX, where

X ∈ {0, 25, 50, 75} is the percentage of packet-loss. An example of how

SPL functions is demonstrated in Figure 3.16. The function to generate the

random probability uses python’s random 19 package. The random package

uses pseudo-random generators to provide probability distributions.

Pseudo-randomness is generated using an internal source within the ex-

ecuting device to generate the randomness, which is traditionally a specific

clock frequency of the Central Processing Unit (CPU). The SPL network per-

turbation makes use of the pseudo-random uniform distribution similar to

that of [96]. The performance of the uniform probability is evaluated with

a test which returns the percentage that a number in the range of 1-to-10

is chosen from a total of 10,000 samples using a random seed value of 42

(please see Appendix B.2). As expected, the result is in fact not exactly 10%

for each value proving it is pseudo-random. However, the results are con-

sidered acceptable for the requirements of the research conducted here.

FIGURE 3.16: Abstract representation of SPL25 not receiving
message m2 after it has been transmitted.

19https://docs.python.org/2/library/random.html

https://docs.python.org/2/library/random.html
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3.9 Performance Metrics

Here, I present and reason the choice of the general performance metrics

that are recorded per experiment. The MRTeAm framework [9] contains

thirty performance metrics that are recorded per experiment. Many of the

performance metrics are either combinations of different metrics or are spe-

cific metrics that examine the MRTA domain problem. This provides a very

in-depth analysis of the MRT performance, specifically in the MRTA do-

main. However, not all the performance metrics designed for the MRTeAm

framework experiments [9] were used, as it was concluded that some per-

formance metrics did not reveal or provide any new data. For similar rea-

sons, those performance metrics will not be included, and additionally all

performance metrics that are focused on the MRTA domain will be removed.

The centre of attention will be on the six core performance metrics. The

six core performance metrics will be analysed for all experiments, but of

these only important or newly designed performance metrics may be rep-

resented or discussed on a per chapter basis. The six performance metrics

are, namely: Execution Phase Time, Total Movement Time, Total Distance

Travelled, Overall Near Collisions, Overall Delay Time and Overall Idle

Time. Each of these performance metrics show the mean results of all robots

over each experiment configuration, unless otherwise specified.

There are two additional metrics that are recorded, but are not individ-

ually analysed as they do not contribute to the overall research conducted

in this thesis. These are Initialisation Time and Task Execution Time, they are

described below and shown in Figure 3.17.

• Execution Phase Time: is recorded from the moment all tasks have been

assigned and robots are ready to begin the mission until the final robot

has completed the final task of the mission. This includes the time

taken for robots to navigate to tasks, the time spent idly waiting for

other robots to complete their tasks, obstacle avoidance and any amount



3.9. Performance Metrics 95

of processing and communication delay time taken to complete a task

(i.e. send and receive task success/failure messages). This excludes

start-up time, task allocation time and any delays in system shutdown

after an experiment has concluded. The Execution Phase Time is repre-

sented by the red vertical dotted lines in Figure 3.17.

• Total Movement Time: is the time the robots spend navigating toward a

goal, including re-planning routes when being blocked. It should be

noted that a robot being blocked by an object or another robot causing

it to re-route, is not the same as a near collision or avoiding a col-

lision. The robots can observe blocked passageways and doorways

from a good distance away ≈ 2.0 m and start re-routing immediately.

Whereas the robots enter a near collision state when they are less-than

≈ 1.0 m from another robot. Moreover, the total movement time is not

strictly indicative of the distance travelled by a robot. It is represented

by the light green colour in Figure 3.17.

• Total Distance Travelled: is measured in meters and is the total dis-

tance that all robots spent travelling toward tasks, avoiding obstacles

and collisions, and performing recovery behaviour. The distance is

recorded from the odometry of the robot wheels in the physical envi-

ronment or from the simulated odometry and distance calculations in

the simulated environment.

• Overall Near Collisions: is the recorded total of near collisions that oc-

curred during a mission. A near collision is generally described as two

robots being in the proximity of less than 1.0 m from each other. More

accurately, it is when two robots are travelling head-on and enter the

“danger zone” or when two robots are in any orientation within the

“event horizon” area, as described in Section 3.6.
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• Overall Delay Time: is the time the robots spend avoiding or waiting for

collisions to be concluded during a mission. The Overall Delay Time is

represented by the dark blue colour in Figure 3.17.

• Overall Idle Time: is a specific amount of time, during which robots

that have completed their agenda idly wait for the remainder of the

team to complete their tasks. Once all tasks are complete all robots,

including any that are idly waiting, transition to mission end. Overall

Idle Time is represented by the dark grey colour in Figure 3.17.

• Initialisation (Assigner) Time: metric is defined as the time from when

the task assigner has finished assigning all tasks to the robot team and

sends an experiment start message. Thereafter, a robot behaviour is

initialised and the robots begin to move. This is represented by the

light brown/dark orange at the left hand side of the timeline in Fig-

ure 3.17.

• Task Execution Time: metric is the small amount of processing and mes-

saging time it takes for a robot to communicate that a task has been

reached and completed. This is represented by the yellow colour in

Figure 3.17.

The two metrics Overall Near Collisions and Overall Delay Time are analysed,

however they may not necessarily be included in all results as they may

represent negligible difference across some experiment configurations.
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(a) Timeline legend

(b) A timeline presenting time-based performance metrics and
how they are calculated during an experiment (example configuration F1 from Table 4.6).

The vertical red dotted line represents Execution Phase Time.

FIGURE 3.17: Timeline of an experiment using the core perfor-
mance metrics.

3.10 Experiment Design

Experiment design is important to plan for the specific purpose of the re-

search problem being investigated. As such, in this thesis the network pa-

rameters, described in Section 3.8, and accompanying agent behaviours, de-

scribed in Section 3.7, are more important than the task and team composi-

tion parameters. Each experiment is formally defined using an experiment

schema, which is the organisation and structure of a particular experiment.

An experiment schema is made up of network parameters and a scenario,

which are described below.

I initially define a scenario, denoted Si, where i identifies a specific sce-

nario configuration, which extends the task composition, to include addi-

tional parameters. A general scenario is defined in equation 3.3.

Si = TCOMP × SCOMP ×M× N × T (3.3)
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where TCOMP is comprised of the task composition 〈ST, SR, IT, EV, SA〉, as

described in Section 2.3.3 and a set of task locations on the map

{(x1, y1)...(xT, yT)}, SCOMP is the starting composition, which contains the

starting strategy, i.e. {clustered}, and the robot starting locations on the map

{(x1, y1)...(xN, yN)}, M is the map label that identifies a specific map (oper-

ational environment), N is the size of the robot team, and T is the number

of tasks in a mission. There are two parameters in the starting composi-

tion (SCOMP) that remain fixed across experiments in this thesis, which are

the starting strategy, which is always {clustered}, and map M, which is al-

ways strand_o f f ice (Figure 3.5). The choice of keeping most of TCOMP and

the two aforementioned SCOMP parameters fixed was to make experiment

results more consistent and comparable. Specifically, to focus on chang-

ing the network parameters and analysing communication performance for

the MRCP. However, due to unforeseen circumstances, such as lab space

changes and department overhaul, the operational area of the strand_o f f ice

map was limited. Therefore, the task locations (TCOMP) and starting loca-

tions (SCOMP) parameters had to be altered, as noted in Chapter 4. Further-

more, previous works [9, 45–47] have defined the starting strategies param-

eter as {clustered, distributed}, which is used by experiments designed for

MRTeAm. A clustered robot starting strategy is where robots start a mission

adjacent and in close proximity to each other, i.e. within the same room/s-

pace. A distributed robot starting strategy is where robots start a mission

distant from each other, i.e. not in the same room/space.

The network parameters are split into network type, which can either be

WLAN or AH, and network perturbation, which is SPL. The network pertur-

bation parameter is expanded upon in each chapter, therefore the selection

increases. Finally, the behaviour parameter, which can either be NB or LF,

is introduced in experiments from Chapter 5 onwards. The behaviour pa-

rameter is linked to the network parameters, because the robot behaviour
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changes depending on signal strength, which is affected by the network

type.

The general experiment schema equation 3.10 is used in Chapter 4. How-

ever, it is revised from Chapter 5 and thereafter, because of the introduction

of the AH network and expanded network perturbations.

Fy = {Si} × {NET_TYPE} × {NET_PERTURBATION}

× {ROBOT_BEHAVIOUR}

where Si is the scenario, NET_TYPE is the network type, i.e. WLAN or AH,

NET_PERTURBATION is the SPL network perturbation and

ROBOT_BEHAVIOUR is the specified MRT behaviour, i.e. NB or LF.

3.10.1 Experiment Sample Sizes

It is important to determine the pros and cons of different sample sizes in

conjunction with the method that will be used for statistical analysis. There

are obvious advantages and less obvious disadvantages to having a large

sample size of data. Table 3.1 covers the major advantages and disadvan-

tages of large and small sample sizes.

The general advantages of large sample sizes, hundreds, thousands or

greater sample sizes, are that the variability (standard deviation) of data is

very small, i.e. more reliable, which helps reduce the biasing in data and

overall more powerful statistical analysis are possible. For example, vari-

ation caused by the environment, which could be people moving around

in the office space or ambiguous sensor or network noise, that affects the

robot performance during experiments. Biasing of this kind can be revealed

by leveraging different statistical techniques on large sample sizes of data.

Identifying outlier data points can further reveal software issues in the ar-

chitecture or design of a system or hardware issues that are otherwise hard

to detect. Generally the reverse is true for small sample sizes, for example
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variability is higher, i.e. less reliable, bias is increased (this is experiment/-

data dependant) and outliers are weak indicators of potential issues.

The disadvantages of large samples sizes of data mirror the advantages

of small sample sizes. In particular, there is one considerable advantage

of small sample size data (disadvantage of large sample sizes), which had

an impact on the sample size decision of the experimental work presented

in this thesis and it is “Quick Turnover” time. Turnover time is the time

taken to collect, process and analyse experimental results. Each part of the

turnover process, collection, processing and analysis, takes time. The is-

sue arises when the robotic frameworks (MRTeAm and MRComm) were be-

ing developed, which led to frequent changes in the code base. During the

baseline experiments with MRTeAm, less code base changes were required

and experiments could be executed more regularly. However, during MR-

Comm’s development hundreds of experiments were constantly run with

a mixture of baseline and extended features. Executing a mixture of base-

line and new feature experiments (e.g. adding AH, SLT, etc.) ensured that

a new feature would not impede the functionality of any baseline feature.

The results from these experiments were analysed but unusable. However,

these results were used to guarantee that the consistency between the frame-

works was identical. For example, running the baseline experiments from

Tables 4.1 and 4.2 in Chapter 4 (without incorporating FKIE, AON or robot

behaviours) would yield similar results regardless of whether MRTeAm or

MRComm are used. There is the argument, that large sample size data can

have powerful statistically significant results at the cost of more complex

analysis methods, whereas small sample sizes are not as powerful statisti-

cally, but simpler analysis methods exist. Therefore, due to the ease of statis-

tical analysis, manageability and quick turnover time for the development

of the experimental MRComm framework, collecting small sample size data

was preferred over large sample size data. The particular statistical method
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Large Sample Size Small Sample Size

Advantages
Reduced Variability Quick Turnover

Reduced Bias Simple Analysis
Identify Outliers

Disadvantages
Slow Turnover Increased Variability

Complex Analysis Increased Bias
Weak Outliers

TABLE 3.1: The advantages and disadvantages of large and
small sample sizes.

used for analysis is discussed in later chapters.

3.11 Summary

In this chapter, I introduced the MRComm framework, the general parame-

ter design and overview. Furthermore, the general experiment design was

introduced, which is used to run both simulated and physical robot exper-

iments in this thesis. Although, as mentioned, each chapter extends some

parameters and uniquely modifies the general experiment design.
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Chapter 4

Baseline Experiments on

Communication Quality

4.1 Introduction

Providing correct information to robot team members and having up-to-

date local knowledge are two of the critical functions that depend on net-

worked communication facilities. An unreliable network connection can

mean that messages get dropped and robots lose their ability to receive

commands, transmit sensor data and generally interact with the environ-

ment and robot teammates. Furthermore, most research in MRS assumes

100% network connectivity, 100% of the time; but this is unrealistic for real-

world domains. This chapter presents two sets of experiments. The first is

conducted on a standard MRS framework, MRTeAm by Schneider [9], which

is used to represent the deteriorating and inconsistent communication per-

formance experienced by a robot team when connectivity is compromised

at increasing levels. The set of experiments conducted using the MRTeAm

framework, presented in Section 4.2, are a baseline to understand how poor

communication can impact a multi-robot team. The second set of experi-

ments are conducted on a MRS framework, MRComm, which has been built

with the purpose of improving and providing consistent communication
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performance for all the analysed metrics of a robot team. The MRComm

framework, in Section 4.3, uses the ROS FKIE package for communication

and shows improved consistency of the performance metrics and addition-

ally introduces two performance metrics, which are specific to communica-

tion performance.

A simple network perturbation is employed to disrupt multi-robot com-

munication, SPL. SPL is the baseline network perturbation and it is de-

scribed in Section 3.8.3. It is a probabilistic message-loss function, which

is integrated in MRComm and applied to the two shared message topics,

pose messages and task status messages, of the robot team. The probabilistic

message-loss function will cause shared messages to “fail” to be delivered

at a set percentage rate (i.e. 0%, 25%, 50% or 75%) at the start of an experi-

ment.

The rest of this chapter is made up of Section 4.2, which contains the

experimental setup 4.2.1, results 4.2.3 and discussion 4.2.4 sections of the

MRTeAm set of experiments. Section 4.3 contains the experimental setup 4.3.1,

extended performance metrics 4.3.2, results 4.3.3 and discussion 4.3.4 sec-

tions of the MRComm set of experiments. In Section 4.4, the results of both

frameworks are analysed and discussed. Section 4.5 concludes the chapter.

4.2 MRTeAm Baseline Empirical Results

The experiments conducted with the MRTeAm framework are a stepping

stone used to analyse the effect that degrading communication has on MRT

performance. Moreover, the experiments are also a benchmark highlighting

the components of the system that require attention and possible adaptation

to improve communication.

Two different scenarios are used for the experiments, described in Sec-

tion 4.2.1, to conduct simulated and physical experiments. At the time of

designing the initial (simulated robots) scenario, the lab where the robots
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were kept was in fact an office, which was also the initial starting location of

the robots(Figure 4.1). Furthermore, many of the offices used for task loca-

tions were either not occupied or were thought to be accessible. However,

soon after completing the simulated robot experiments, the lab was moved

and many of the unoccupied office spaces were no longer vacant. Therefore,

the scenario was re-designed for the physical robot experiments, illustrated

in Figure 4.2. The two scenarios are closely related to give comparable re-

sults. However, the resulting performance metrics are marginally different.

Although results may differ, the trends are similar, which allows for some

association of analyses.

4.2.1 Experiment Configuration

To signify that a scenario belongs to the experiments conducted with MRTeAm,

a leading zero is added to the identifying scenario number, i.e. S0X. The

simulated robots scenario is denoted S01 and is illustrated in Figure 4.1. The

physical robots scenario is denoted S02 and is illustrated in Figure 4.2. Sce-

narios S01 and S02 use identical parameters, apart from minor changes in

starting locations and task locations, as shown in Figures 4.1 and 4.2. The

common setup for the scenarios is as follows:

• Tasks’ composition is 〈ST, SR, IT, EV, SA〉 and task locations are rep-

resented by crosses, in Figure 4.1 for the simulated and Figure 4.2 for

the physical experiments;

• Starting composition (SCOMP) is clustered and starting robot locations

are represented by circles, Figure 4.1 for the simulated and Figure 4.2

for the physical experiments;

• The map M = strand_o f f ice;

• The number of robots N = 2;
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• The number of tasks T = 6.

The RR algorithm 1 is used to assign tasks, the task agenda of each robot is

as follows; ROBOT_1 (r1) is assigned tasks t1 ∈ 1, 3, 5 and ROBOT_2 (r2) is

assigned tasks t2 ∈ 2, 4, 6.

The MRTeAm framework is used as a benchmark for these experiments

to analyse communication quality, therefore a single network parameter

was initially identified and defined at the time, which was the network per-

turbation SPL. However, the expansion of the network parameters in later

experiments (i.e. Chapters 5 and 6) helped to identify another baseline net-

work parameter. For instance, the network type used in MRTeAm experi-

ments is WLAN and the SPL network perturbation is functionally identical

to the one integrated in the MRComm framework. The complete experiment

configurations for this section are shown in tables 4.1 and 4.2. The simulated

experiments in Table 4.1 are each repeated 30 times and the physical exper-

iments in Table 4.2 are each repeated 10 times, the decision for the sample

size and the statistical analysis is discussed in Section 4.2.2.

Experiment schema
F01 = {S01} × {WLAN} × {SPL0} × {NB}

F02 = {S01} × {WLAN} × {SPL25} × {NB}
F03 = {S01} × {WLAN} × {SPL50} × {NB}
F04 = {S01} × {WLAN} × {SPL75} × {NB}

TABLE 4.1: Experiment configurations for the simulated
robots using MRTeAm and the S01 scenario.

Experiment schema
F05 = {S02} × {WLAN} × {SPL0} × {NB}

F06 = {S02} × {WLAN} × {SPL25} × {NB}
F07 = {S02} × {WLAN} × {SPL50} × {NB}
F08 = {S02} × {WLAN} × {SPL75} × {NB}

TABLE 4.2: Experiment configurations for the physical robots
using MRTeAm and the S02 scenario.
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FIGURE 4.1: Office setting for scenario S01 (simulated robots).
The different coloured circles represent ROBOT_1 (the red cir-
cle) and ROBOT_2 (green circle), and the corresponding crosses
represent task locations that will be assigned to those robots.

4.2.2 Experiment Statistics

The statistical analysis to be used depends on whether the data are normally

distributed or not, and the sample size. The Shapiro-Wilk [97](SW) test is

used to check if a data sample is likely to come from a normal distribution,
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FIGURE 4.2: Office setting for scenario S02 (physical robots).
The different coloured circles represent ROBOT_1 (the red cir-
cle) and ROBOT_2 (green circle), and the corresponding crosses
represent task locations that will be assigned to those robots.

and it is known to work well on small sample sizes of n ≤ 50, where n indi-

cates the number of data points (observations). However, for small sample

sizes, specifically for the physical experiments (n=10), it becomes increas-

ingly difficult to determine the distribution of data samples as the SW test

becomes weaker. This raises a number of issues. For example, not all data

samples are normally distributed and the ideal network quality (SPL0) is
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Experiment Label Performance Metric W-value p-value
WLAN_NB_SPL0 EXECUTION_PHASE_TIME 0.971 0.627

WLAN_NB_SPL25 EXECUTION_PHASE_TIME 0.979 0.564
WLAN_NB_SPL50 EXECUTION_PHASE_TIME 0.983 0.926
WLAN_NB_SPL75 EXECUTION_PHASE_TIME 0.956 0.234

TABLE 4.3: The Shapiro-Wilk value and p-value for the Execu-
tion Phase Time performance metric.

being compared against increasing network perturbations (SPL25, SPL50,

SPL75), which implies that for each performance metric, each experiment

configuration data sample needs to be normally distributed. To demon-

strate these issues, when performing normality tests for the experiments in

Table 4.1, only a single performance metric (Execution Phase Time) showed

normality across all experiment configurations, Table 4.3. The following

conditions need to be satisfied for the null hypothesis (i.e. the data samples

come from a normal distribution) to be accepted; for data sample size n=30

and α=0.05 (assuming 95% confidence interval, CI) the W-value≥ 0.927 (Ta-

ble 6 [97]) and p-value > 0.05. Additionally, quantile-quantile (Q-Q) plots,

Figure 4.3, are used as supporting evidence of normal distribution, which

is illustrated by the sample data points closely following the line of best

fit. However, although the W and p values in Table 4.3 indicate that all the

samples are normally distributed, the cooresponding Q-Q plot for schema

F04, Figure 4.3d, can be interpreted as either, conforming or not conforming

to a normal distribution (which is reliant on the researchers knowledge of

the data and statistical requirements). Therefore, using parametric analysis

will be less effective, as some data samples may not conform to a normal

distribution or the sample size may be too small to infer normality, as such

non-parametric analysis is preferred.

The Mann-Whitney [98] non-parametric test can be used to investigate

multiple hypotheses about two independent samples, such as whether the

samples come from the same distribution or whether observations in one

sample are inclined to be larger or less than in the other. However, there are
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(A) Q-Q plot using
schema F01 (SPL0).

(B) Q-Q plot using
schema F02 (SPL25).

(C) Q-Q plot using
schema F03 (SPL50).

(D) Q-Q plot using
schema F04 (SPL75).

FIGURE 4.3: Q-Q plots of Execution Phase Time and experiment
configurations from Table 4.3.

a few assumptions that must be made for the Mann-Whitney U-test statistic

to be valid. The assumptions are, all data points (from each sample) are in-

dependent of each other and all pairwise calculations are ordinal. The null

hypothesis (H0) being investigated for the Mann-Whitney U-test is whether

the first sample of observations are statistically significantly equal to the

observations of the second sample. For instance, the probability that a ran-

domly drawn data point from one group is equal to a randomly drawn data

point from another. Moreover, the alpha (α) value chosen for the null hy-

pothesis is 0.05 (95% CI). The α value is the probability of rejecting the null

hypothesis when it is actually true, i.e. α ≥ 0.05. The alternative hypothe-

sis (HA) being investigated is whether the observations from the first data

sample are more likely to be less than the observations from the second sam-

ple, i.e. α < 0.05. The probability (p) value is the chance of accepting either
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H0 or HA by observing if α ≥ 0.05 or α < 0.05 respectively. The p-value

is one of the major results that is scrutinised for the statistical significance

analysis, which is dependent on the U-value. The U-value is a score that is

made up of numeric ranks that are assigned to all observations of the two

independent samples. An observation from one sample is compared to an

observation from another and this is assigned as the rank score. The way

pairwise ranks are scored depends on the hypothesis that is being tested,

i.e. smaller, larger or difference in population distribution. Rank ties are

solved by assigning a rank that is equal to the midpoint of the tied rank.

The U-value equation [98] is:

U = mn +
m(m + 1)

2
− T (4.1)

Where m is the first independent sample size and n is the second indepen-

dent sample size and T is ΣRank(xi), where xi is the pairwise rank value. The

U-value is dependent on the sample size and rank-sums between sample

points. A large U-value indicates more likely the H0 hypothesis, whereas

a smaller U-value indicates the HA hypothesis. The effect size will also be

analysed. It is used to measure the magnitude of the experiment effect. The

larger the effect size the more reliable the accepted hypothesis. The effect

size can also be used to help with power analysis and sample size planning.

The effect size equation [99] is:

r =
Z√
N

(4.2)

Z = U−mU
σU

, where U = equation 4.1, mU = mn
2 and σU =

√
mn(m+n+1)

12 , and N

is the sample size being analysed. The book by Cohen [99] interprets statis-

tical power, effective size and sample size. Cohen [99] asserts that an effect

size of [0.1-0.3] is considered weak, [0.3-0.5] is considered medium and >0.5
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is considered strong. A negative effect size is interpreted in reverse, i.e. <-

0.5 is considered strong, and generally indicates that the observations from

the initial data sample are less than the observations from the compared

data sample. It should be noted that the interpretation of effect size given

by Cohen [99] is not be considered universal, but should be interpreted sit-

uationally. Finally, for smaller sample sizes, i.e. for the physical experiment

results in the thesis, the p-value loses some of its significance. Therefore,

the U-value, p-value and effect size will be scrutinized together to better

interpret the statistical result.

4.2.3 Results

This section contains the statistical analysis of the MRTeAm experimental

results and presents plots showing how the four main performance metrics,

Execution Phase Time, Total Movement Time, Total Distance Travelled and Overall

Near Collisions, vary with increasing packet-loss (SPL). Each performance

metric is represented by a figure, which contains two sub-figures A and B,

which are the simulation and physical experiment results, respectively. The

aim is to show that there are statistically significant differences in some of

the performance metrics with increasing levels of SPL. The resulting data

samples’ observations are analysed using the Mann-Whitney U test [100].

The Overall Near Collisions performance metric(Figure 4.7) results are briefly

discussed in Section 4.2.4 as the data does not provide much insight and is

irregular for scenarios S01 and S02.

Execution Phase Time, Total Movement Time and Total Distance Travelled are

verified for statistical significances between data samples. Table 4.4 shows

the simulation experiments’ U and p values, effect size and the accepted

hypotheses, for all but the Overall Near Collisions performance metric, when

there is no message loss (i.e. SPL0), against increasing levels of message loss

(i.e. ≥ SPL25). The Execution Phase Time and Total Movement Time metric
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results in Table 4.4 show similar increasing trends and HA is accepted for

SPL25 and SPL50 respectively. Moreover, the effect size is considered either

moderate or strong and the plots in Figure 4.4A and Figure 4.5A support

this outcome visually. However, Total Distance Travelled performance metric

shows no statistical change with increasing SPL. This can be attributed to

the nature of simulation experiments in general and the simplicity of sce-

nario S01 , as there is better overall communication and sensor information,

enabling the robots to travel the exact same route every time (i.e. minor

change in distance).

Table 4.5 shows the Execution Phase Time, Total Movement Time and Total

Distance Travelled metrics for the physical robots comparing the ideal case,

when there is no message loss (i.e. SPL0), against increasing levels of mes-

sage loss. The results are different to the simulated experiments. The phys-

ical experiments’ U-values are much lower than those of the simulated ex-

periments (i.e. sample size differences) and are therefore more sensitive to

the hypotheses being tested and may be inaccurate. Execution Phase Time

follows a similar increasing trend to the equivalent simulated experiments

metric in Table 4.4 with a greatly increased standard deviation, but the effect

size is weak and HA is not accepted. A similar but much weaker increasing

trend is noticeable for the Total Movement Time metric. However, the pro-

gressive decrease of the U and p values for both the aforementioned met-

rics indicate two possibilities. The first, is that the sample size is not large

enough to consolidate statistical significance, further supported by the weak

effect size, and the second is that increasing SPL is negatively affecting the

two metric, however not by a significant enough margin. A larger sample

size is required to determine statistical significance and the proof-of-concept

sample of 10 physical experiment runs is not enough. The effect size is used
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to consider if the sample size and the chosen hypothesis hold enough sta-

tistical power. As calculating the sample size will be different and contra-

dictory for every different performance metric. For example, there are four

performance metrics specifically being investigated here and the controlled

variable (SPL) has four instances, this means for every independent sample

size comparison to the ideal case, there will be 16 different calculations for

the estimated preferred sample size.

HA is accepted for SPL25 for the Total Distance Travelled metric, revealing

it is significantly affected by increased message dropping. More noise and

message transmission errors exist in the physical environment, therefore

path planning is not as reliable and it is more likely that robots do not take

identical paths during each experiment, resulting in increased Total Distance

Travelled. Moreover, the Total Distance Travelled result indicates that network

design/parameters can greatly affect the performance of robots between

identical experiments executed in simulation and physical environments.

It indicates that network design needs to be considered more carefully to

create a more balanced playing field between the simulated and physical

environments. The physical results can be visualised in Figures 4.4B, 4.5B

and 4.6B.

(A) Simulation (B) Physical

FIGURE 4.4: MRTeAm results for Execution Phase Time, with
increasing SPLX
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SPL0 versus Perturbation U p effect size Accepted Hypothesis
(H0/HA)

Execution Phase Time
SPL25 108 0.00 -0.92 HA
SPL50 192 0.00 -0.70 HA
SPL75 192 0.00 -0.70 HA

Total Movement Time
SPL25 471 0.63 0.06 H0
SPL50 305 0.02 -0.39 HA
SPL75 200 0.00 -0.67 HA

Total Distance Travelled
SPL25 418 0.32 -0.09 H0
SPL50 487 0.71 0.10 H0
SPL75 585 0.98 0.36 H0

TABLE 4.4: MRTeAm S01 simulated robot experiments,
showing U-value, p-value, effect size and hypothesis
outcome for the ideal case (i.e. SPL0) versus all other

values (SPLX).

SPL0 versus Perturbation T p effect size Accepted Hypothesis
(H0/HA)

Execution Phase Time
SPL25 48 0.45 -0.05 H0
SPL50 57 0.71 0.17 H0
SPL75 36 0.15 -0.33 H0

Total Movement Time
SPL25 100 1.0 0.0 H0
SPL50 57 0.71 0.17 H0
SPL75 44 0.34 -0.14 H0

Total Distance Travelled
SPL25 10 0.00 -0.96 HA
SPL50 28 0.05 -0.53 H0
SPL75 14 0.00 -0.86 HA

TABLE 4.5: MRTeAm S02 physical robot experiments,
showing U-value, p-value, effect size and hypothesis
outcome for the ideal case (i.e. SPL0) versus all other

values (SPLX).

4.2.4 Discussion

The experiment scenarios S01 and S02 are marginally different and it is clear

from the more difficult to navigate tasks in S01 that the simulation experi-

ment results take longer time to complete and travel further to reach their
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(A) Simulation (B) Physical

FIGURE 4.5: MRTeAm results for Total Movement Time, with
increasing SPLX

(A) Simulation (B) Physical

FIGURE 4.6: MRTeAm results for Total Distance Travelled, with
increasing SPLX

(A) Simulation (B) Physical

FIGURE 4.7: MRTeAm results for Overall Near Collisions, with
increasing SPLX
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goals, as seen in Figures 4.4, 4.5 and 4.6. Therefore, the statistical results can-

not be directly compared. However, different scenarios’ performance metric

trends can be compared and statistical analysis can be used to further stimu-

late the relationship. For instance, Execution Phase Time and Total Movement

Time performance metrics exhibit similar increasing trends, both visually

and statistically. Scrutinising the Total Movement Time performance metric

for the physical experiments more closely, it is noted that HA is never ac-

cepted for increasing SPL, but it is clear that both the U and p values are af-

fected by SPL. However, it cannot be said that the Total Movement Time result

is statistically significant, but it can be visually and statistically shown that

it is affected and that the increasing trend is similar for both the simulated

and physical experiment scenarios. The Total Distance Travelled performance

metric displays very different trends between simulated and real robot ex-

periments. This can be attributed to the simulated robot experiments ex-

periencing less sensor noise and other external perturbations, which results

in smoother path planning and better avoidance of other robots, as such it

is more likely for robots to travel the same route every time (i.e. the same

distance). The difference between simulated and physical robots in Total

Distance Travelled is important. It highlights the divide between network

based robot experiments in simulation and physical environments. Finally,

it is observed that the standard deviation per metric for the simulated exper-

iments does not generally increase as SPL is increased, however it does for

the physical experiments. This behaviour is expected, since the simulated

environment has predictable and static noise, unlike the physical environ-

ment.

The Overall Near Collisions metric reveals that on average more collisions

may occur during a physical experiment compared to a simulated one, and

that the variability is overall quite high. The most interesting aspect of

this metric revealed by Figure 4.7, is that collision occurrence marginally
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increases for SPL25, but then gradually decreases as SPL increases. No con-

crete analysis can be made unless a much larger data-set is gathered and

more scenarios are designed with collision analysis in mind. Although an

assumption for this phenomenon is that a robot cannot register a collision as

the messages warning of a collision are being dropped at a faster rate with

increasing SPL, therefore a collision is not recorded.

4.3 MRComm Empirical Results

The following experiment results are taken from a broader set of experi-

ments, so that they can match the set of experiment configurations in Sec-

tion 4.2. It is important to note that the two scenarios defined in Section 4.2.1

are different to the single scenario defined in Section 4.3.1. The initially

chosen robot start locations and task locations in the two scenarios of Sec-

tion 4.2.1 were either no longer available or the locations were inconvenient.

When physical experiments were conducted in Section 4.2.1, the initial lo-

cations used for the task composition were either disturbing the normal of-

fice work of colleagues or experiments were being disrupted. Moreover, as

mentioned previously, the changes between the simulated and physical en-

vironments’ task locations were unforeseen and caused differences in the

experiment results.

4.3.1 Experiment Configuration

To signify that this is a scenario for experiments using MRComm and for

consistency, as the same scenario is used in Chapters 5 and 6 as well, there

will be no initial zero in front of the scenario number (i.e. SX, where X

denotes the identifying scenario number). For all experiments conducted

on MRComm scenario S1 is used. Scenario S1, shown in Figure 4.8, has the

following setup:
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• Tasks’ composition 〈ST, SR, IT, EV, SA〉 and task locations are repre-

sented by crosses in Figure 4.8;

• Starting composition (SCOMP) is clustered and starting robot locations

are represented by circles in Figure 4.8;

• The map M = strand_o f f ice;

• The number of robots N = 3;

• The number of tasks T = 7.

As before, the same RR algorithm 1 is used to assign tasks. The task agenda

of each robot is as follows: ROBOT_1 (r1) is assigned tasks t1 ∈ 1, 4, 7,

ROBOT_2 (r2) is assigned tasks t2 ∈ 2, 5 and ROBOT_3 (r3) is assigned tasks

t3 ∈ 3, 6. The scenario S1 remains the same for both simulated and physical

robot experiments, and the task composition and starting composition do

not change.

The MRTeAm experiments helped identify the baseline network param-

eters for analysing communication quality, which are the WLAN network

type and SPL network perturbation. The same baseline network parame-

ters are integrated and used by MRComm to conduct the same experiment

configurations, but with an updated scenario. The baseline experiment con-

figurations for MRComm are shown in Table 4.6. The simulated experiments

are each repeated 30 times and the physical experiments are each repeated

5 times.

Experiment schema
F1 = {S1} × {WLAN} × {SPL0} × {NB}
F2 = {S1} × {WLAN} × {SPL25} × {NB}
F3 = {S1} × {WLAN} × {SPL50} × {NB}
F4 = {S1} × {WLAN} × {SPL75} × {NB}

TABLE 4.6: Experiment configurations for both simulated and
physical robots using MRComm and the S1 scenario.



120 Chapter 4. Baseline Experiments on Communication Quality

FIGURE 4.8: Office setting for scenario S1. The different
coloured circles represent ROBOT_1 (the red circle), ROBOT_2
(green circle) and ROBOT_3 (blue), and the corresponding
crosses represent task locations that will be assigned to those

robots.

4.3.2 Extended Performance Metrics

By evaluating the results from Section 4.2, two new performance metrics are

defined. The extended performance metrics are specific to communication

performance and enable the framework to analyse the success rate of critical

communication during a mission. The extended performance metrics are:
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• Average Failed Tasks: this is the average number of tasks that failed to

be communicated per mission, which directly constitutes the overall

success/failure of a mission.

• Successful Missions: I define successful missions by the advent of suc-

cessful communication (i.e. no failed tasks). This is achieved when all

task status messages are communicated to all agents during a mission.

A mission fails when a task status message fails to be received by the

collective team, thus at the end of a mission if a particular task(s) is

unresolved it is assumed incomplete.

4.3.3 Results

The metrics Execution Phase Time (Figure 4.9), Total Movement Time (Fig-

ure 4.10), Total Distance Travelled (Figure 4.11), Overall Near Collisions (Fig-

ure 4.12), Average Failed Tasks (Figure 4.13) and Successful Missions (Figure 4.14)

are plotted as before, where each figure contains two sub-figures, A and B,

representing simulated and physical experiment results, respectively. Fur-

thermore, the Mann-Whitney U test is used to investigate the H0 and HA

hypotheses, on whether the observations from the ideal case data sample

(SPL0) are inclined to be equivalent or less than the other data samples.

The Execution Phase Time metric demonstrates some contradictory re-

sults between the U-value and p-value, and the p-value and the plots. The

highest U-value possible for any data samples is the product of the sample

sizes being compared, i.e. Umax = 30 · 30 for simulation or Umax = 5 · 5

for physical, and as previously stated a higher U-value suggests that the

H0 is more likely. The p-value simulation results for Execution Phase Time

show that HA is accepted for SPL50 and the U-value is moderately high.

Moreover, the plot in Figure 4.9A does not show any obvious trend and

the mean values, rounded up to 1 decimal point, for each sample are 194.8s

(SPL0), 190.8s (SPL25), 194.5s (SPL50) and 193.1s (SPL75). The averages are
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all within standard deviation of each other and they highlight a weakness

in the Mann-Whitney U test. The standard deviation and positioning of

sample observations can have an impact on rank scores of the U-value. If

the differences between observations are very minor, but still favour one

sample over another, it can skew the results. The U-value and p-value for

the physical experiments are clearly unreliable due to the sample size of the

data and are used as a proof-of-concept and to have some comparison to the

simulated experiments. Therefore, by visual observation and analysing the

mean values it can be argued that the Execution Phase Time is not affected by

increasing message loss.

The Total Movement Time metric (Figure 4.10), specifically for simulated

experiments, shows a distinct decreasing time pattern between network pa-

rameters SPL0 and SPL50 or greater. However, the p-value, shown in Ta-

bles 4.9 and 4.10, is still within the CI, thus it does not show statistical sig-

nificance. The Total Distance Travelled metric (Figure 4.11) shows the same

trends for both the simulated and physical experiments as that of Total Move-

ment Time. There is no statistical significance in both simulated and physical

experiments.

The Average Failed Tasks and Successful Missions metrics are required to

analyse the impact of increasing network perturbation (SPL) on commu-

nication performance. The Average Failed Tasks metric shows the average

amount of tasks not received (communicated) per robot, which the assigner

agent flags as failed at the end of a mission. The Successful Missions metric is

the number of missions where no communication failure of a task occurred

for any robot. Two contingency analysis Tables 4.7 and 4.8, and Figures 4.14

and 4.13 are used to illustrate these metrics. Tables 4.7 and 4.8, representing

the contingency analysis of the simulated and physical experiments respec-

tively, reveal a drastic drop in Successful Missions after SPL25. The result

from the Tables and plots is powerful enough that further statistic analysis
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is not necessary, nonetheless the Chi-Squared test is performed on the re-

sult using the same Python statistics library [100]. For both Tables a CI of

95% is used and the calculated Chi-Squared statistic and p-values are iden-

tical (68.0 and 0.0), clearly indicating that increasing network perturbations

heavily impact communication performance within a robot team. This is

further supported by the fact that Figure 4.13 for SPL25 and above, exhibits

on average at least one task status message failure.

Network Perturbation SPL0 SPL25 SPL50 SPL75
Successful Missions

YES 30 6 0 0
NO 0 24 30 30

TABLE 4.7: Contingency table of the simulation experiments
showing the correlation between the number of Successful Mis-

sions and SPL network perturbation.

Network Perturbation SPL0 SPL25 SPL50 SPL75
Successful Missions

YES 5 0 0 0
NO 0 5 5 5

TABLE 4.8: Contingency table of the physical experiments
showing the correlation between the number of Successful Mis-

sions and SPL network perturbation.

(A) Simulation (B) Physical

FIGURE 4.9: MRComm results for Execution Phase Time, with
increasing SPLX.
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SPL0 versus Perturbation U p effect size Accepted Hypothesis
(H0/HA)

Execution Phase Time
SPL25 538 0.90 0.24 H0
SPL50 328 0.04 -0.33 HA
SPL75 304 0.02 -0.39 HA

Total Movement Time
SPL25 480 0.67 0.08 H0
SPL50 520 0.85 0.19 H0
SPL75 556 0.94 0.29 H0

Total Distance Travelled
SPL25 514 0.83 0.17 H0
SPL50 510 0.81 0.16 H0
SPL75 531 0.89 0.22 H0

TABLE 4.9: MRComm simulated robot experiments’
U-value, p-value, effect size and hypothesis outcome for

only the ideal case (i.e. SPL0) versus all other SPLX values.

SPL0 versus Perturbation U p effect size Accepted Hypothesis
(H0/HA)

Execution Phase Time
SPL25 10 0.34 -0.23 H0
SPL50 5 0.07 -0.70 H0
SPL75 1 0.01 -1.07 HA

Total Movement Time
SPL25 15 0.73 0.23 H0
SPL50 13 0.58 0.05 H0
SPL75 8 0.20 -0.42 H0

Total Distance Travelled
SPL25 18 0.89 0.51 H0
SPL50 17 0.85 0.42 H0
SPL75 12 0.5 -0.05 H0

TABLE 4.10: MRComm physical robot experiments’
U-value, p-value, effect size and hypothesis outcome for

only the ideal case (i.e. SPL0) versus all other SPLX values.

4.3.4 Discussion

Total Movement Time (Figure 4.10) and Total Distance Travelled (Figure 4.11),

show similar results and reveal that degrading communication quality (i.e.

increase in SPL) did not impact MRT performance to the same degree as pre-

viously seen by the results obtained using MRTeAm. Execution Phase Time

(Figure 4.9) indicates that there is statistical significance with degrading
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(A) Simulation (B) Physical

FIGURE 4.10: MRComm results for Total Movement Time, with
increasing SPLX.

(A) Simulation (B) Physical

FIGURE 4.11: MRComm results for Total Distance Travelled,
with increasing SPLX.

(A) Simulation (B) Physical

FIGURE 4.12: MRComm results for Overall Near Collisions,
with increasing SPLX.
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(A) Simulation (B) Physical

FIGURE 4.13: MRComm results for the Number of tasks failed to
communicate per robot, with increasing SPLX.

(A) Simulation (B) Physical

FIGURE 4.14: MRComm results for the percentage of Success-
ful Missions completed, with increasing SPLX.

communication quality. However, visual inspection, comparing the mean

and standard deviations contradicts the Mann-Whitney U test result, in-

clining toward observations from the compared samples to be of similar

magnitude. Overall these three performance metrics demonstrate consis-

tent performance and robust communication behaviour.

The extended performance metrics, Average Failed Tasks and Successful

Missions, show that beneath the “consistent” core performance metrics there

remains a critical impact on communication performance on the multi-robot

team, which heavily impacts overall mission success rate. As depicted in

Section 4.3.1, ROBOT_1 contains three tasks in its agenda and therefore has
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the highest likelihood (shown in Figure 4.13) to fail to communicate the task

status message of at least one of its three tasks to the rest of the robot team

and the task assigner agent.

4.4 General Discussion

Direct comparison and correlation between experiments conducted with

MRTeAm and MRComm can not be made as the scenarios used were var-

ied. However, as the experiment configurations are identical (not consid-

ering the scenario changes) comparisons can be made in emerging trends

and the results between the two frameworks are paramount. For example,

the results obtained using MRTeAm, in Section 4.2, demonstrated discrep-

ancy in the core performance metrics when impacted by a network pertur-

bation. The results revealed that communication is an issue in a general

MRS framework, but was limited in its feature set and did not reveal how

communication was specifically impacted. Contrarily, the results obtained

using MRComm, in Section 4.3, demonstrated that a framework with better

communication middleware support, FKIE, can improve the core capabili-

ties of a robot team making them more consistent. For example, increasing

network perturbation did not impact performance metrics and there were

no emergent trends for the MRComm framework. However, the extended

performance metrics, introduced in MRComm, revealed that communica-

tion performance was critically being impaired by SPL.

The communication design of MRTeAm and general MRTs is not geared

toward imperfect communication, therefore it is not surprising that the core

performance metrics are affected by network perturbations. MRTeAm im-

plements its own ROS Master Bridge software for shared communication,

which is not as robust to compromised communication. The ROS Mas-

ter Bridge connects multiple ROS masters (robots) using a special queuing

server, which is run centrally, for example on a remote server. Each robot
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has a local master bridge relay node that is responsible for publishing both

local and received messages from the master bridge. Apart from the central

server required to host the ROS Master Bridge, it is the local master bridge relay

node that is the limiting factor, which reduces MRTeAm’s consistency and

robustness for multi-robot communication, i.e. shared messages required

locally are aslo affected by SPL. Upon introducing network perturbations it

is noted that the communication design for the MRT using MRTeAm is not

performing as expected. MRComm’s success in improving communication

over MRTeAm comes from the change in communication design. As previ-

ously mentioned, the MRComm framework employs the FKIE software for

multi-node communication, which allows each pub-sub messaging topic to

be locally accessible to each robot with the added functionality to then pub-

lish the shared/receiving topics to other robots.

4.5 Summary

It is found from the results in Sections 4.2.3 and 4.3.3 that a standard MRS

(MRTeAm), which does not focus on communication design, has drawbacks

when it comes to consistency of communication and results, compared to a

MRS (MRComm), which focuses on communication design. MRComm fixes

the inconsistency of communication present in MRTeAm across the core per-

formance metrics. However, the newly introduced communication-specific

performance metrics reveal that network perturbations immensely impact

the successful operation of a robot team in both the simulated and physical

environment.
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Chapter 5

MRComm: Simulation

Experiments

5.1 Introduction

The overarching aim of the experiments presented here is to analyse how

the different simulated network parameters (type and perturbation) affect

communication performance of a truly decentralised MRT, while the MRT

performs task execution and coordination using two different behaviours,

NB and LF. Moreover, possible improvements to communication perfor-

mance are evaluated for the novel LF behaviour over the NB behaviour.

The experiments presented here are performed using the same robot

software framework (ROS) and simulation environment (Stage), which is

described in Chapter 3. The simulated environment imitates noise present

in odometry and localisation sensors. However, communication conditions

are ideal, apart from the simulated network perturbations I introduce to the

environment; there is no additional uncertainty or noise presented from ex-

ternal sources as there would be in a physical environment. Therefore, I

expect there to be some minor disparity between the results presented here

and those in Chapter 6. However, it is beneficial to use the simulated en-

vironment as it is convenient to run experiments continuously and obtain a
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larger data-set, and to test new features/parameters before bringing them

out in the real-world. Larger data-sets can be more accurately validated

for mean values, reveal outliers (shortcomings) of the MRComm system and

improve statistical power of the analysis to support research findings. All

experiments conducted in this chapter were performed on simulated robots

using the S1 scenario, defined in Chapter 4. The same scenario is used for

experiments presented in Chapter 6, so that comparisons can be made be-

tween the simulated and physical environments for corresponding experi-

ment configurations.

In this chapter, two new network perturbations are introduced and de-

scribed, namely Simulated Loss Threshold (SLT) and Simulated Signal Degra-

dation (SSD). All network perturbations impact the same shared message

topics as before, pose messages and task status messages. Moreover, the two

network types defined in Chapter 3, WLAN and AH, are used in the ex-

periment configurations. The general experiment schema used to represent

experiment configurations, described in Section 3.10, is adapted to include

two network perturbations simultaneously. The performance metrics are

extended to accommodate for experiments that use the novel LF behaviour.

A portion of the experiments and accompanying results shown in this chap-

ter were published in [88].

The rest of this chapter is structured as follows. Sections 5.2 and 5.3

define and describe the SLT and SSD network perturbations, respectively.

Section 5.4 outlines the methodology and setup used for performing the

simulated experiments to analyse communication performance of the NB

and LF behaviours. Furthermore, this section presents the extended per-

formance metrics required to evaluate the LF behaviour and the alteration

made on the experimental schema design. Section 5.5 presents the experi-

mental results and Section 5.6 discusses the results and issues raised in the

context of the experiments. Finally, Section 5.7 brings the chapter to a close
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with a brief conclusion and summary.

5.2 Simulated Loss Threshold (SLT)

SLT is defined as a network perturbation, however it does not perturb the

signal strength, it is more of a threshold that enables robots to “sense” signal

strength. It is specifically designed for simulated experiments to test robot

communication capabilities when using the AH network type. Furthermore,

it represents the effect that signal strength can have on a MRT.

The SLT employs a threshold warning and a threshold limit based on the

distance between robots, which are defined by the analysed signal strength

in an outdoor environment between two laptops (robots), described in Chap-

ter 3. The results are re-plotted here for convenience, in Figure 5.1, and to

highlight the SLT thresholds. The SLT threshold warning is an internal MR-

Comm function, which simply warns the robots that signal strength is be-

coming weaker between the team members and a disconnect is imminent.

The SLT threshold limit is the final internal MRComm function that tells the

robots that shared communication will cease, until the robots are within

range again. The SLT’s threshold warning is defined to be 4.0 m, as depicted

by the observed drop in signal strength, Figure 5.1. The SLT’s threshold limit

is in fact the AH network’s hypothetical communication limit described in

Section 3.8.1, which is 8.0 m.

The SLT thresholds are static and do not change depending on the en-

vironment or network type that is used. This carries both positive and

negative connotations. Advantages of this design is that it is simple and

allows SLT to be used interchangeably for simulated and physical robot ex-

periments and any network type. The simplistic design is also its greatest

weakness, as it limits the accuracy of how true signal strength behaves un-

der different network conditions.
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FIGURE 5.1: Average signal strength (30 repeat readings per
data point) vs. distance in an outdoor environment. Re-

plotted from Chapter 3

5.3 Simulated Signal Degradation (SSD)

The main difference between SSD and SLT is that SLT is a simple static

threshold function based on estimating signal strength with change in dis-

tance between robots. SLT is not accurate when it comes to predicting actual

signal strength degradation and lacks the dynamics with which to demon-

strate the effects that the environment (simulated or physical) has on sig-

nal strength. The SSD network perturbation is developed to improve these

shortcomings by using Support Vector Regression (SVR) models to generate

simulated signal strength based on the distance between robots.

Using the assumptions made on the network types in Chapter 3, SSD

can only be used with experiments that employ the AH network type and

not the WLAN network type. Furthermore, the signal strength results ob-

tained for the SSD perturbation are modelled in the operational (in-door)

environment where multi-robot experiments are conducted, unlike how the
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SLT thresholds are modelled on signal strength in an outdoor environment.

The SSD thresholds are modelled using two separately trained SVR mod-

els with Radial Basis Function kernels (RBF): the first model predicts the

signal strength between robots in direct line-of-sight of each other, and the

second predicts the signal strength for obstructed line-of-sight, as seen in

Figures 5.3a and 5.3b. The RBF kernel equation used is:

k(x, c) = exp (−γ||x− c||2) (5.1)

where c is the function’s centre, ||x− c|| represents Euclidean distance and

γ = 1/2σ2 is set to 0.1 using the scikit-learn [100] library1 to train the SVR

models. Furthermore, this package contains a constant C, which denotes a

penalty parameter for the error term in the SVR used, which is set to 100.

This parameter is introduced to trade correct classification with maximising

the decision function’s margin. A larger value for C minimises the margin,

thereby improving accuracy for the model at the cost of increasing the com-

putational complexity.

In total, four tests were performed taking 20 repeat readings at each dis-

tance point, which generated four data-sets. The tests are initially divided

into two levels of granularity (0.1 m and 1 m steps), since signal strength

accuracy proportionally decreases with increasing distance, as mentioned

in [101]. Each of the granularity tests are repeated, once with the robots

in direct line-of-sight and once while the robots’ line-of-sight is obstructed.

The 0.1 m increment test illustrated by Figure 5.2a picks up accurate and

fine changes in the signal strength, and overall improves the SVR models.

The 1 m increment test illustrated by Figure 5.2b shows the changes over the

span of the imposed AH limit (i.e., ≈ 8 m). Furthermore, it was noted that

the metal window blinds in the office environment (see Figure 5.2b) seem to

cause constructive interference at ≈ 3 m and ≈ 6 m shown by the average

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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signal strength (red markers) in Figure 5.3a. The two granularity tests for

direct/obstructed line-of-sight are combined to represent two final data-sets

one for each type of line-of-sight. The two data-sets are each used to train

an SVR to predict dynamic signal strength during a multi-robot experiment.

The SSD warning threshold remains the same throughout an experiment,

however signal strength is dynamically predicted depending on the nature

of the environment, rather than the distance of the robots. The SSD warning

threshold value is defined in Table 5.1.
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(a) Diagram showing fine grained signal strength analysis with
distance range from 0.2 m to 1.0 m. The dotted obstacle

was removed when performing direct line-of-sight analysis.

(b) Diagram showing extended signal strength analysis with
distance range from 1 m to 9 m. The dotted obstacle

was removed when performing direct line-of-sight analysis.
The bars on each side of the robots represent walls.

Diagonally striped bars represent metal window blinds.

FIGURE 5.2: Signal strength evaluation in operational envi-
ronment for SSD.
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(a) SVR model of signal strength with direct line-of-sight.
Red markers represent the average signal strength at the respective distance.

(b) SVR model of signal strength with obstructed line-of-sight.
Red markers represent the average signal strength at the respective distance.

FIGURE 5.3: SVR models.
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5.4 Experiments

Missions are executed using Stage simulator on a powerful workstation com-

puter, which simulates the MRT and task assigner agent. The workstation

computer consists of an i7-6700 CPU, 16 GB of RAM and two lower-end

AMD FirePro W4100 GPUs. The GPUs were not fully utilised for the sim-

ulation as they were used for rendering the GUI, simulated environment

and robots, which was a considerably lighter load compared to the system

software, complex navigation and simulated sensor signals running simul-

taneously using CPU resources.

Task execution agents are assigned tasks, by the task assigner agent, to com-

plete. Each task definition includes a location where the robot performs ac-

tions, such as sensor-sweep (e.g. collecting a series of images). At the start

of a mission, in order to coordinate team activity, a task assigner agent deter-

mines which robots should perform which tasks and thereafter mission exe-

cution begins. At the end of an experiment, the task assigner agent records all

shared messages and performance metrics, and concludes by determining

which robot(s) failed to transmit “SUCCESSFUL” completion of task status

messages.

As previously mentioned, the network parameters are split into two cat-

egories, namely network types and network perturbations. The network

types explored in this chapter are “simulations” of WLAN and AH. The net-

work perturbations tested in these experiments are:

• Simulated Packet-Loss (SPLX, where X ∈ {0, 25, 50, 75}), see

Section 3.8.3;

• Simulated Loss Threshold (SLT), see Section 5.2;

• Simulated Signal Degradation (SSD), see Section 5.3.
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5.4.1 Network Perturbations and Thresholds

The SLT network perturbation is static and remains the same for all experi-

ment configurations that use it. However, the SSD warning threshold is set

to a signal strength value, which is predicted using SVR models. Therefore,

the distance at which the warning threshold is triggered is dynamic, this is

further highlighted in Table 5.1. It is important to note that the AH network

limit of 8.0 m is used to define the limit threshold for both SLT and SSD,

unless otherwise specified.

As defined in Section 5.2, the SLT perturbation is a baseline perturbation

with a warning threshold of 4.0 m, shown in Table 5.1. The focus of the robot

team employing the LF behaviour is to monitor the SLT warning threshold,

which is half that of the limit threshold. The SLT warning threshold is de-

signed with the purpose of alerting a MRT to stay within communication

range of the AH network.

The SSD perturbation alters how robots using the LF behaviour react

compared to using SLT. As mentioned, the SSD warning threshold is static,

however the simulated signal strength changes depending on the dynamic

changes of the environment. This enables it to predict realistic signal strength

values, unlike the static warning threshold of SLT that is based only on dis-

tance between robots. The SSD warning threshold for the experiments pre-

sented here is set to -42 dBm, shown in Table 5.1. If robots using LF and SSD

reach this threshold signal strength they will be warned that a disconnect is

imminent.

Network Perturbation Warning Thresholds
Network

Perturbation
Warning

Threshold
Distance (approx.)

Line-of-sight
signal

Obstructed
signal

SLT 4.0 m d > 4.0 m d > 4.0 m
SSD -42.0 dBm 2.6 m < d < 3.6 m and d > 6.1 m d >1.6 m

TABLE 5.1: Demonstrates the warning thresholds and shows
approximate distance when the system is warned of discon-

necting (LF behaviour only).
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5.4.2 Extended Performance Metrics (for LF)

The extended metrics in this section are required to fully analyse the perfor-

mance of a MRT that employs the LF behaviour. As defined in Section 3.9,

Initialisation Time (light brown/dark orange) and Task Execution Time (yel-

low), are part of the metrics that are recorded, but are not individually anal-

ysed.

• Initialisation Time (Assigner Time): time metric defined as the time

from when the task assigner sends an experiment start message, a robot

behaviour is initialised and the robot has began to move. Represented

by the light brown/dark orange colour in Figure 5.4.

• NA Movement Time: not assigned movement time is the time the robot

spends moving toward its task while not having a role. If a behaviour

is assigned at the start of an experiment, NA movement time varies

according to how the assigned roles are defined by the behaviour (i.e.

how the environment affects communication). Otherwise, if

no-behaviour (NB) is assigned, then NA movement time varies as a

result of the network perturbation chosen and dynamic events tak-

ing place in the environment (e.g. obstacles, collisions). This is repre-

sented by the light green colour in Figure 5.4.

• Leader Movement Time: this metric is defined as the amount of time

a robot has been moving while assigned the role of “Leader” in ac-

cordance with the chosen behaviour. Represented by the dark green

colour Figure 5.4.

• Follower Movement Time: this metric is defined as the amount of time a

robot has been moving while assigned the role of “Follower” in accor-

dance with the chosen behaviour. Represented by the turquise colour

in Figure 5.4.
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• Leader Disconnect Time: the leader disconnect time occurs when a robot,

assigned as leader, is considered too far from the furthest follower

robot(s) and is required to stop and wait for them to be within accept-

able distance before beginning to move again. The leader disconnect

distance value is based on the type of network threshold chosen (i.e.

SLT, SSD). Represented by the orange colour in Figure 5.4.

• Follower Waiting Time: follower waiting time occurs when two condi-

tions are true for the follower robot(s). The first condition is that the

follower robot needs to have reached the last pose received from the

leader robot. The second condition is that any one of the followers

should be out of connection range of the leader robot. Therefore, if the

first condition is met by the follower closer to the leader and the sec-

ond condition is true then the closer robot will enter the waiting state.

Once the leader has reconnected to all followers and begins moving,

the follower waiting time ends. Represented by the red colour in Fig-

ure 5.4.

• Switching Time: once a robot with an assigned role has successfully

completed the role’s constraints, it is reassigned to use the general be-

haviour (NA). The time it takes to switch from an assigned role back to

NA behaviour is the switching time. Represented by the light purple

colour in Figure 5.4.

• Role Assignment Time: the time taken for a robot to calculate its util-

ity function, send the result, and compare the team’s results and get

assigned a role. Represented by the light grey colour in Figure 5.4.

• Overall Idle Time (redefined for LF): once a robot has completed all its

tasks and waits for the remainder of the team to complete their tasks,

if an assigned leader disconnects from the idle robot it forces it to be
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reassigned as a follower, thus ending its idle time. Represented by the

dark grey colour in Figure 5.4.

• Minimum Separation: the minimum distance recorded to the nearest

robot throughout the duration of the mission. This is illustrated by a

light blue arrow on Figure 5.5.

• Maximum Separation: the maximum distance recorded to the furthest

robot throughout the duration of the mission. This is illustrated by a

red arrow on Figure 5.5.

(a) Timeline legend

(b) A timeline presenting time-based performance metrics and
how they are calculated during an experiment (example configuration F25 from Table 5.3).

FIGURE 5.4: Timeline of an experiment using the extended
performance metrics.

5.4.3 Experiment Setup

Scenario S1, see Section 4.3.1, is used for the simulated experiments here.

Scenario S1’s task locations are purposefully positioned in difficult to reach

and narrow spaces and starting locations for the robot team are suboptimal.

The starting location space has only two opened doors, which allow for only
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FIGURE 5.5: Simulation of robot team, presenting how the
minimum and maximum separation metrics are calculated.

one robot to enter/exit at a time. The starting location space is a major dis-

advantage to the robots. If the robots are using the LF behaviour and a robot

disconnects very soon in the starting location space, there is a high probabil-

ity of it stopping in front of a doorway, which will delay the robot team. If

the robots are using the NB behaviour and a robot simply blocks a doorway,

it will cause the robot(s) trapped inside the starting location to fail in exe-

cuting their planned path, therefore it will either force that robot to re-plan

a new path or the robot will be “stuck” in a planning loop until the blocking

robot(s) continues moving/becomes unstuck. However, the starting loca-

tion is practical from the point of view of a hypothetical disaster scenario.

For example, a central starting location for a decentralised MRT performing

search and rescue tasks, will enable robots to have a minimum distance to

any far reaching corner of the operational environment. As before, tasks

TR are assigned sequentially using RR 1 assignment to each robot R, and

the assignments are fixed for all experiments. robot_1 is assigned tasks T1

= {1,4,7}, robot_2 is assigned tasks T2 = {2,5} and finally robot_3 is assigned

with tasks T3 = {3,6}, as previously illustrated in Figure 4.8.
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The reason another robot was added to the team was to investigate how

MRComm could cope with more team members and to test more communi-

cation points (i.e. more robots) with the network parameters in this chapter

and Chapter 6. The rationale for choosing an odd number of tasks, i.e. 7,

with task locations that are very distant from each other was to initially

make sure that the RR algorithm was functioning as expected, but there are

two additional reasons. Firstly, to make sure that for the LF behaviour the

leader robot being picked was a different robot each time, i.e. robots are

taking turns completing their agenda, and to analyse how the team would

perform when one robot had more tasks (specifically if there was any im-

pact on communication). Secondly, the distance of the task locations was

strategic, as it made robots obstruct each other and this would require more

shared communications to occur, which could be analysed to see how com-

munication was affected for the novel LF behaviour.

For the experiments conducted here and Chapter 6, a modified exper-

iment schema is used. It is more realistic to experience multiple different

network perturbations during an MRT mission. Therefore, the new experi-

ment design takes this into account and adds network thresholds (i.e. SLT

and SSD) as the second network perturbation. The original schema in equa-

tion 3.10 is changed here to equation 5.4.3. For equation 5.4.3 the initial net-

work perturbation remains the level of message loss (SPL) and the second

network perturbation analyses degrading signal strength (SLT, SSD).

Fy = {Si} × {NET_TYPE} × {NET_PERTURBATION1}

× {NET_PERTURBATION2} × {ROBOT_BEHAVIOUR}

where Si is the scenario, NET_TYPE is the WLAN or AH network type,

NET_PERTURBATION1 is the first network perturbation (i.e. SPL),

NET_PERTURBATION2 is the second network perturbation (i.e. SLT, SSD)

and ROBOT_BEHAVIOUR is the specified MRT behaviour, either NB or
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LF.

The simulated experiments are each repeated 30 times. For clarity, the

experiments conducted in this chapter are listed in Tables 5.2 and 5.3 rep-

resenting experiments for WLAN and AH network types, respectively. Ta-

ble 5.2 consists of 8 configurations each performed 30 times, therefore 240

experiment runs in total. Tables 5.3 consists of 16 configurations each per-

formed 30 times, therefore 480 experiment runs in total.

Experiment schema
F5 = {S1} × {WLAN} × {SPL0} × {SLT} × {NB}

F6 = {S1} × {WLAN} × {SPL25} × {SLT} × {NB}
F7 = {S1} × {WLAN} × {SPL50} × {SLT} × {NB}
F8 = {S1} × {WLAN} × {SPL75} × {SLT} × {NB}
F9 = {S1} × {WLAN} × {SPL0} × {SLT} × {LF}

F10 = {S1} × {WLAN} × {SPL25} × {SLT} × {LF}
F11 = {S1} × {WLAN} × {SPL50} × {SLT} × {LF}
F12 = {S1} × {WLAN} × {SPL75} × {SLT} × {LF}

TABLE 5.2: Experiment configurations for WLAN network
type.

Experiment schema
F13 = {S1} × {AH} × {SPL0} × {SLT} × {NB}

F14 = {S1} × {AH} × {SPL25} × {SLT} × {NB}
F15 = {S1} × {AH} × {SPL50} × {SLT} × {NB}
F16 = {S1} × {AH} × {SPL75} × {SLT} × {NB}
F17 = {S1} × {AH} × {SPL0} × {SSD} × {NB}

F18 = {S1} × {AH} × {SPL25} × {SSD} × {NB}
F19 = {S1} × {AH} × {SPL50} × {SSD} × {NB}
F20 = {S1} × {AH} × {SPL75} × {SSD} × {NB}

F21 = {S1} × {AH} × {SPL0} × {SLT} × {LF}
F22 = {S1} × {AH} × {SPL25} × {SLT} × {LF}
F23 = {S1} × {AH} × {SPL50} × {SLT} × {LF}
F24 = {S1} × {AH} × {SPL75} × {SLT} × {LF}
F25 = {S1} × {AH} × {SPL0} × {SSD} × {LF}

F26 = {S1} × {AH} × {SPL25} × {SSD} × {LF}
F27 = {S1} × {AH} × {SPL50} × {SSD} × {LF}
F28 = {S1} × {AH} × {SPL75} × {SSD} × {LF}

TABLE 5.3: Experiment configurations for AH network type.
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5.5 Results

The performance metrics presented here are Total Movement Time (Figure 5.6),

Leader Disconnect Time (Figure 5.7), Follower Waiting Time (Figure 5.8), Over-

all Near Collisions (Figure 5.9), Overall Delay Time (Figure 5.10), Overall Idle

Time (Figure 5.11), Total Distance Travelled (Figure 5.12), Average Failed Tasks

(Figure 5.13), Successful Communication (Figure 5.14) and Minimum and Max-

imum Separation (Figure 5.15). Each figure representing a performance met-

ric is split into three sub-figures representing experiments performed with:

first the WLAN network type and the SLT network perturbation; second the

AH network type and the SLT network perturbation; third the AH network

type with the SSD network perturbation. The error bars in the figures reflect

the standard deviation between runs.

The Mann-Whitney U test is performed as before, investigating the same

hypotheses, where H0 checks if the pairwise observations from independent

samples are equivalent or, HA checks if the observations from the ideal case

(i.e. SPL0) are less than the other (i.e. SPLX) observations. Tables 5.4, 5.5,

5.6, 5.7, 5.8, 5.9 and 5.10 are used to show the Mann-Whitney U analysis,

including the effect size. However, it should be noted that if a performance

metric (i.e. Follower Waiting Time) or a certain experiment label is missing

from the tables it is because the analysis did not reveal any significant trend

and the U and p values were comparable for increasing message loss.

The Execution Phase Time metric is not analysed here as the Total Move-

ment Time is deemed to have similar enough trend and pattern, albeit over

a longer duration of time considering it is the movement time of all robots.

It is important to note there is a correlation in Total Movement Time specifi-

cally between the simulation results in Section 4.3.3, for experiments con-

ducted with MRComm using the configuration of NB, WLAN and SPLX

compared to the simulation experiments here that use the additional SLT

network perturbation. This interrelation is expected and demonstrates that,



146 Chapter 5. MRComm: Simulation Experiments

although the experiments presented here enable the robots to estimate sig-

nal strength degradation using the SLT network perturbation, the robots are

not equipped with the behaviour to react to communication changes. Exper-

iments using LF are approximately three times the magnitude of NB. More-

over, as LF is communication aware it takes longer to recover from message

loss, therefore it is negatively affected by increasing SPL as Table 5.4 reveals,

HA is accepted each time at SPL50.

The Total Distance Travelled in Table 5.8 showed insignificant changes,

with LF experiencing minor linear decrease in U and p value. Table 5.8, for

AH and SLT shows insignificant linear decrease in U and p value for NB,

but a significant decrease in U and p value for LF and SPL25 and SPL75 is

noted. For AH and SSD, Total Distance Travelled shows no changes for NB,

but again a significant linear decrease in U and p value for LF is recorded,

and the HA is accepted at SPL75.

The Overall Idle Time metric in Table 5.7, for WLAN shows that both NB

and LF experienced decreasing U and p values, with the latter being sig-

nificantly affected. For NB, Overall Idle Time has insignificant changes with

increasing SPL, therefore it is not included in Table 5.7. Whereas, for AH and

LF the Overall Idle Time in Table 5.7 is significantly impacted by increasing

SPL. The table reveals very low U-values and a very high effect size from

the first comparison, SPL25.

The Leader Disconnect Time is LF specific and is shown in Table 5.5, al-

though it shows a decreasing U and p values for most of the experiment

configurations the trend is not statistically significant. The same is true for

the Follower Waiting Time, but the metric is visually represented in Figure 5.8

and not shown in the Tables, as the results show no trend.

The Minimum Separation metric shows no trend for both LF and NB,

hence it is omitted and is not shown in a Table, but shown visually in

Figure 5.15, along with the Maximum Separation. The Maximum Separation
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shows a statistically significant result with decreasing U and p values in Ta-

ble 5.10, specifically for the communication aware LF, as message loss affects

it greatly.

There is one metric that is an exception to the original hypothesis analy-

sis, and that is Overall Near Collisions. The results for this metric, showing a

decreasing trend (i.e. near collisions decrease with the increase of message

loss), are the reverse of previous performance metrics, which is unexpected

(further discussed in Section 5.6). More importantly, the alternative hypoth-

esis tested for this metric, is whether the observations from the ideal case

(i.e. SPL0) are “greater” from the other observations (SPLX). Furthermore,

the Mann-Whitney U-value should be analysed in reverse from previously,

such that a large U-value strongly supports HA. The p-value and effect size

are still read in the same way. Table 5.6 shows the U-value and the results

of the new HA being tested for the Overall Near Collisions metric. Figure 5.9

shows that for LF near collisions are significantly reduced as message loss

is increased, and Table 5.6 reaffirms this with increasing U-value. Although

the results and trend are similar for NB, they were not as prominent.

Figure 5.13 represents on average how many shared tasks status messages

failed to be communicated to the task assigner agent. The difference between

LF and NB is not only obvious, but substantial. Robots performing experi-

ments with LF experience no failure in communicating task status messages.

Contrarily, NB has increasing failure with increase in message loss as can be

seen in Figure 5.13 and Table 5.9. Table 5.9 does not contain any experiments

with LF as there are no communication failures. The only unique result is

that for experiments with NB WLAN, there is no communication failure for

NB SPL0, as there is infrastructure and no limit to communication. Unlike

for experiments with AH, where there is communication failure for NB SPL0

experiments. The reason that Figure 5.13 shows that some experiments have

a fraction of a task failed, is because the result is the mean value from the 30
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experimental runs.

The Successful Missions performance metric (Figure 5.14), is a percentage

of successful communication based on the number of experiments, there-

fore it does not have a standard deviation. A successful mission is one

where no communication failure has occurred. For LF every single exper-

iment had successful communication, i.e. 100% mission success, whereas

communication for experiments with NB failed almost every time. There is

one except for NB, which is when the network type was WLAN and SPL25,

Figure 5.14a, where 20% mission success was observed.

Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
470 0.62 0.05 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

240 0.00 -0.57 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

121 0.00 -0.89 HA

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
350 0.62 0.05 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

332 0.00 -0.57 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

169 0.00 -0.89 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

329 0.04 -0.33 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

189 0.00 -0.70 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

124 0.00 -0.88 HA

TABLE 5.4: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for

Total Movement Time, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
549 0.93 0.27 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

452 0.51 0.01 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

359 0.09 -0.25 H0

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
454 0.53 0.01 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

412 0.29 -0.01 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

344 0.06 -0.29 H0

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

417 0.32 -0.09 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

370 0.12 -0.22 H0

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

398 0.22 -0.14 H0

TABLE 5.5: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for

Leader Disconnect Time, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

662 0.00 0.57 HA

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

639 0.00 0.51 HA

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

718 0.00 0.72 HA

{LF, SPL0, SLT} {LF, SPL25,
SLT}

774 0.00 0.88 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

883 0.00 1.17 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

894 0.00 1.19 HA

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

472 0.37 0.06 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

529 0.11 0.21 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

655 0.00 0.55 HA

{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

476 0.34 0.07 H0

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

531 0.09 0.21 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

580 0.01 0.35 HA

{LF, SPL0, SLT} {LF, SPL25,
SLT}

807 0.00 0.96 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

877 0.00 1.15 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

866 0.00 1.12 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

624 0.00 0.47 HA

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

760 0.00 0.84 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

801 0.00 0.95 HA

TABLE 5.6: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for the

Overall Near Collision, testing the alternative hypothesis
that observations from the ideal case (SPL0) are greater

than those of other SPLX observations.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

510 0.81 0.16 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

401 0.24 -0.13 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

340 0.05 -0.30 H0

{LF, SPL0, SLT} {LF, SPL25,
SLT}

356 0.08 -0.25 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

182 0.00 -0.72 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

136 0.00 -0.85 HA

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
320 0.03 -0.35 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

270 0.00 -0.49 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

187 0.00 -0.71 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

197 0.00 -0.68 HA

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

49 0.00 -1.08 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

29 0.00 -1.14 HA

TABLE 5.7: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for
Overall Idle Time, comparing the ideal case (i.e. SPL0)

versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
520 0.85 0.19 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

465 0.59 0.04 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

447 0.49 0.00 H0

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

483 0.69 0.09 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

432 0.40 -0.05 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

385 0.17 -0.18 H0

{LF, SPL0, SLT} {LF, SPL25,
SLT}

306 0.02 -0.39 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

432 0.40 -0.05 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

323 0.03 -0.34 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

457 0.54 0.02 HA

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

405 0.26 -0.12 H0

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

320 0.03 -0.35 HA

TABLE 5.8: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for

Total Distance Travelled, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{WLAN, NB,
SPL0, SLT}

{WLAN, NB,
SPL25, SLT}

90 0.00 -0.97 HA

{WLAN, NB,
SPL0, SLT}

{WLAN, NB,
SPL50, SLT}

0 0.00 -1.21 HA

{WLAN, NB,
SPL0, SLT}

{WLAN, NB,
SPL75, SLT}

0 0.00 -1.21 HA

AH
{AH, NB,
SPL0, SLT}

{AH, NB,
SPL25, SLT}

300 0.00 -0.40 HA

{AH, NB,
SPL0, SLT}

{AH, NB,
SPL50, SLT}

105 0.00 -0.93 HA

{AH, NB,
SPL0, SLT}

{AH, NB,
SPL75, SLT}

45 0.00 -1.09 HA

{AH, NB,
SPL0, SSD}

{AH, NB,
SPL25, SSD}

187 0.00 -0.71 HA

{AH, NB,
SPL0, SSD}

{AH, NB,
SPL50, SSD}

112 0.00 -0.91 HA

{AH, NB,
SPL0, SSD}

{AH, NB,
SPL75, SSD}

95 0.00 -0.96 HA

TABLE 5.9: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for the

Average Failed Tasks, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
170 0.00 -0.76 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

64 0.00 -1.04 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

82 0.00 -0.99 HA

AH
{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

387 0.18 - 0.17 H0

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

374 0.13 -0.21 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

326 0.03 -0.33 HA

{LF, SPL0, SLT} {LF, SPL25,
SLT}

132 0.00 -0.86 HA

{LF, SPL0, SLT} {LF, SPL50,
SLT}

92 0.00 -0.97 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

23 0.00 -1.15 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

271 0.00 -0.48 HA

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

45 0.00 -1.09 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

55 0.00 -1.07 HA

TABLE 5.10: U-value, p-value, effect size and hypothesis
outcome of MRComm simulated robot experiments for

Maximum Separation, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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(a) Total Movement Time for WLAN with SLT

(b) Total Movement Time for AH with SLT

(c) Total Movement Time for AH with SSD

FIGURE 5.6: Total Movement Time stacked for all experiment
configurations.
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(a) Leader Disconnect Time for WLAN with SLT

(b) Leader Disconnect Time for AH with SLT

(c) Leader Disconnect Time for AH with SSD

FIGURE 5.7: Leader Disconnect Time per robot for all experi-
ment configurations.
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(a) Follower Waiting Time for WLAN with SLT

(b) Follower Waiting Time for AH with SLT

(c) Follower Waiting Time for AH with SSD

FIGURE 5.8: Follower Waiting Time for all experiment config-
urations.
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(a) Overall Near Collisions for WLAN with SLT

(b) Overall Near Collisions for AH with SLT

(c) Overall Near Collisions for AH with SSD

FIGURE 5.9: Overall Near Collision for all experiment config-
urations.
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(a) Overall Delay Time for WLAN with SLT

(b) Overall Delay Time for AH with SLT

(c) Overall Delay Time for AH with SSD

FIGURE 5.10: Overall Delay Time for all experiment configu-
rations.
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(a) Overall Idle Time for WLAN with SLT

(b) Overall Idle Time for AH with SLT

(c) Overall Idle Time for AH with SSD

FIGURE 5.11: Overall Idle Time per robot for all experiment
configurations.
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(a) Total Distance Travelled for WLAN with SLT

(b) Total Distance Travelled for AH with SLT

(c) Total Distance Travelled for AH with SSD

FIGURE 5.12: Total Distance Travelled for all experiment con-
figurations.



162 Chapter 5. MRComm: Simulation Experiments

(a) Average Failed Tasks for WLAN with SLT

(b) Average Failed Tasks for AH with SLT

(c) Average Failed Tasks for AH with SSD

FIGURE 5.13: Average Failed Tasks per robot for all experi-
ment configurations.
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(a) Successful Communication in Missions for WLAN with SLT

(b) Successful Communication in Missions for AH with SLT

(c) Successful Communication in Missions for AH with SSD

FIGURE 5.14: Percentage of Successful (Communication) Mis-
sions for all experiment configurations.
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(a) Minimum and Maximum separation for WLAN with SLT

(b) Minimum and Maximum separation for AH with SLT

(c) Minimum and Maximum separation for AH with SSD

FIGURE 5.15: Minimum and Maximum separation for all ex-
periment configurations.



5.6. Discussion 165

5.6 Discussion

The results reveal that the more complex and communication aware be-

haviour, LF, with suboptimal parameters is capable of achieving perfect

mission success rate. Unfortunately, there are negative performance effects

to using LF, for instance Total Distance Travelled and Total Movement Time

have on estimate, a three-fold increase over that of NB. However, due to

the complexity of LF and the addition of roles and actions (i.e.Leader Dis-

connect Time, Follower Waiting Time, etc.), the Total Movement Time and Total

Distance Travelled results show the magnitude that other roles add to those

metrics by having communication awareness and maintenance. Moreover,

the statistical analysis Tables in the Results section, acknowledge that LF is

more likely to be significantly affected by increasing message loss than NB.

This is expected from NB as it does not react to changes in communication

quality. As aforementioned, suboptimal parameters are used for LF, there-

fore some performance metrics can be improved in future work. Finally,

Figure 5.16 is used to show the hierarchical and complexity difference be-

tween the NB FSM, that is encapsulated by a black box with dashed lines,

and the LF FSM, that is encapsulated by a red box with dashed lines. The

smaller green and blue boxes with dashed lines are themselves FSMs of the

Leader and Follower roles. Figure 5.16, is an abstraction of the FSMs from

Chapter 3, Sections 3.7.1 and 3.7.2.

One of the main reasons that LF is capable of vastly improving and main-

taining communication over NB, is not only because it can detect signal

strength or mitigate message loss, but because it forces the MRT to form

a close proximity group. This is observed by the results in Figure 5.15,

which shows the minimum and maximum distance between the agents at

any given point in time during a mission. NB has over double the Maximum

Separation compared to LF, and increasing message loss does not cause a

significant increase/decrease for this metric. LF is warned of an impending
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FIGURE 5.16: An abstraction of LF, showing how it encapsu-
lates NB within the FSM hierarchy

disconnect at a distance of ≈ 4.0 m (SLT) or at a distance that causes signal

strength of -42 dBm (SSD) or less. Contrarily, the results in Figure 5.15 show

a maximum separation of just over ≈ 10.0 m for LF and SPL75. This met-

ric demonstrates an unexpected but excellent result that the LF behaviour

displays, which is referred to in MAS and MRS as emergent behaviour. For

example, if a robot (using LF) drifts past the warning threshold limit of ei-

ther SLT or SSD then, even if it stops communicating with the other agents

(i.e. out of AH communication range), it has stored the last known position

of either the leader or not assigned robot(s). Thereafter, the robot that has

separated will use the most current information of the last known position

of the leader or not assigned robot to get back to that location, while the

other robots will have paused to wait for the separated robot to reconnect.

Therefore, even if the warning and limit thresholds are passed (i.e. the large

maximum separation observed in Figure 5.15) a robot team using LF will

not cause disruption to communication or to the success of the mission. In

contrast, the separation distance for NB is well over ≈ 20.0 m, approaching

the maximum measured distance between the furthest set of tasks in the

operational environment.
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Although NB is not generally affected by message loss for some of the

core performance metrics, the extended communication specific metrics show

significant impact. Both NB and LF show similar trends for Overall Near Col-

lisions and NB shows a significantly increasing trend of Average Failed Tasks.

The overarching goal of the experiments presented here is to demonstrate

that continuous (successful) communication is achievable when using the

novel LF behaviour. However, there is a cost cost to improving commu-

nication performance , such as the negative impact to other performance

metrics.

5.7 Summary

The experiments conducted here expand the MRComm framework to in-

clude all the network parameters for the simulated environment and addi-

tionally to prepare the framework toward the truly distributed experiment

design in Chapter 6.

I expand the performance metrics to include communication and be-

haviour specific metrics. The experiment design is updated to include a sec-

ond network perturbation, which is a signal strength threshold. Two thresh-

old network perturbations are introduced to enable the MRT to predict and

emulate signal strength degradation, specifically to analyse the AH network

type and present how it impacts communication. A simple distance-based

network threshold is introduced as a foundation, denoted SLT, which can be

used for any experiment configuration. A more complex and novel network

threshold that predicts signal strength (denoted SSD) is used, which bases

its predictions on SVR models generated by indoor signal strength maps.

The novel dynamic LF behaviour is presented in this chapter and, as

demonstrated by the results, it achieves perfect communication with the

designed set of network perturbations, i.e. increasing message loss and re-

acting to degrading signal strength. There are some caveats to keep in mind.
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The LF behaviour achieves perfect communication performance at the cost

of reduced performance for some of the other collected metrics, the most

impacted of which are the Total Movement Time and Total Distance Travelled.

The baseline NB behaviour, which enables robots to use standard naviga-

tion and collision avoidance, shows poor communication results in com-

parison. However, as expected from the simple implementation of NB, the

Total Movement Time and Total Distance Travelled are less impacted, at the cost

of very poor or no communication at all.
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Chapter 6

MRComm: Physical Experiments

6.1 Introduction

The contributions presented here are as follows. The experiments conducted

in the physical environment on a truly distributed MRT, defined in Chap-

ter 2 Section 2.3.4, which builds on from the investigation in Chapter 5. The

introduction of a new network perturbation based on actual signal strength

from robots is introduced and tested in this chapter, which is denoted Ef-

fective Signal Degradation (ESD). The proof-of-concept that MRComm can be

adapted to physical robots using the novel LF behaviour, which enables the

robots to self-maintain an AH communication while performing their func-

tion, and achieve 100% communication even in adverse conditions.

The physical experiments are carried out using the same scenario as in

Chapter 5 (S1). However, unlike the simulated experiments, the true Wi-Fi

based WLAN and AH network type are used for communication in MR-

Comm, which is made possible using FKIE the extension introduced to the

communication capabilities in Section 3.2.1. The network type limitations

mentioned in Section 3.8.1 are applicable in this chapter.

An overarching aim of the simulated experiments and the physical ex-

periments, conducted here, is to investigate two hypotheses. The initial hy-

pothesis states that adverse network conditions do impact the performance
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or abilities of a physical MRT, regardless of the behaviour used. The second

hypothesis states that adverse network conditions do not impact the per-

formance or abilities of a physical MRT, regardless of the behaviour used.

Although the results here have minor differences to those in Chapter 5 and

are not as statistically strong, the overall conclusion remains unchanged.

Therein, either of the hypotheses are supported, depending on which indi-

vidual metric is being investigated. However, combining the analyses of the

different metrics shows that the first hypothesis more accurately depicts the

overall findings. Moreover, to prove the soundness of the experiments con-

ducted with the synthetically designed SSD, I compare the SSD and ESD

perturbations, in Section 6.3, to show that the signal strength degradation

of both adhere to a similar trend.

The rest of this chapter is structured as follows. Section 6.2 introduces

the ESD network perturbation that is used in the physical experiments. Sec-

tion 6.3 compares the signal strength results between the new network per-

turbation (ESD) and the SSD perturbation. Section 6.4 outlines the method-

ology and how the physical experiments are setup and executed, and de-

fines the warning thresholds of the network perturbations. Section 6.5 presents

the results, which demonstrate successful communication and mitigation

of common network issues (perturbations), whilst using the novel LF be-

haviour and AON message function. Section 6.6 discusses the results and

issues raised in the context of the physical experiments. Moreover, the phys-

ical experiment results are compared to the corresponding simulation ex-

periments presented in Chapter 5, to better understand environmental dis-

crepancy. Finally, Section 6.7 brings the chapter to a close with a brief con-

clusion and summary.
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6.2 Effective Signal Degradation (ESD)

ESD is the network perturbation implemented for physical experiments in

the MRComm framework. The ESD perturbation uses a software module,

which is referred to as ESD Pulse. ESD Pulse is executed simultaneously

with the instantiation of a physical (robot) task execution agent. Once the

ESD Pulse has been initiated on a robot, it will continually keep polling the

resulting signal strength from each other robot connected to the local AH

network at a rate of 2 Hz. However, the task execution agent will only re-

quest the signal strength periodically or when it is required. An internal

call to the MRComm system executes the ESD Pulse process, but the ESD

Pulse is managed externally and concurrently with other system processes.

Executing the ESD Pulse concurrently with the robot agents and ROS pack-

ages provides three main benefits. Firstly, if a robot experiences hardware

malfunction and loses most sensor functionality, assuming the network de-

vice is still functional, it will continue pulsing a signal. Secondly, if a robot

experiences a software crash caused by an internal issue as a result of the

MRComm framework, or external issue as a result of ROS, it will continue

pulsing a signal. The above mentioned benefits are a boon for multi-robot

exploration and task navigation where the goal is to identify dangerous lo-

cations, making it possible for example to relocate broken down robots at

the end of a mission and flag dangerous locations. Finally, the ESD Pulse

can run on almost any type of device, even without the ROS middleware,

which would enable said device to send and receive signal strength up-

dates to any robot, thus increasing its utility. Figure 6.1 illustrates the sysem

design of communication of shared messages between robot agents when

using the ESD Pulse module. The ESD warning threshold is defined in Sec-

tion 6.4.2.



172 Chapter 6. MRComm: Physical Experiments

FIGURE 6.1: Communication of shared messages between a
receiving on-board laptop (robot) and transmitting on-board

laptop, using the ESD network perturbation.

6.3 ESD versus SSD

The two network perturbations exhibit a similar trend and overlapping stan-

dard deviations across both simulated (SSD) and physical (ESD) signal strength

results, as illustrated in Figure 6.2. Figure 6.2 plots the mean from a se-

quence of samples of signal strength, received from ROBOT_2 as observed

by ROBOT_1’s point of view. The samples of data are taken from twenty

experimental runs and an initial time range t measured in seconds from the

start of an experiment at t0 = 0 up to t ≈ 150 s. The conditions for the

chosen samples were carefully selected, such as using experiments with the

NB behaviour only, as there is less variance in path routing, and a specified

time slice t, which helps to form more consistent signal strength results.

Figure 6.2 shows that both perturbations have a similar trend, however

they do not yield similar signal strength results at corresponding distances.

To confirm if the two sample distributions are in fact from the same distri-

bution or from separate distribution, the non-parametric Mann-Whitney U

test is used. The Mann-Whitney U tests for the (“two-sided” hypothesis)
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null hypothesis, that the two samples are from the same population distri-

bution, and the alternative hypothesis, that samples are from two separate

population distributions. As described in Section 5.3, the SSD perturbation

is modelled using two separate SVRs, which can predict a limited range

of signal strength values, i.e. after a certain distance the simulated signal

strength hits a maximum threshold (-60 dBm) where the SVRs can no longer

represent accurate predictions of the signal strength. The above limit is rep-

resented by a dashed horizontal red line on Figure 6.2, which reveals that

SSD reaches the limit near the 110 second mark. Therefore, the data sample

used for SSD is based on the signal strength results only up to the first value

that hits the threshold limit of -60 dBm. The U-test score for SSD, n = 110,

versus ESD, n = 151, is U = 4937, p = 1.22× 10−8 and the Umax = 16, 1610

(i.e. very large). Although the U-value may seem high, the p-value is essen-

tially zero and Umax supports this result. Moreover, this indicates that the

alternative hypothesis is accepted here (i.e. the two independent samples

come from significantly different sample distributions). This means SSD

and ESD are statistically significantly different, however they observe very

similar trends and the standard deviation overlaps in most cases. Inciden-

tally, as the signal strength decreases (the robots move further away from

each other), the standard deviation increases by approximately double the

amount after 25 seconds and a large overlap occurs. As mentioned in [102],

it is a common occurrence that signal strength becomes more unreliable as

distance increases. Overall the results exhibit a satisfactory outcome, as SSD

could easily be tweaked to more closely resemble ESD, this is briefly dis-

cussed in Section 6.7. Further statistical data are listed in Table 6.1.

The initial results portray that SSD, which predicts signal strength, can

achieve a similar behaviour to the actual signal strength ESD in the physi-

cal environment, without having to adopt complex machine learning meth-

ods or other complex forms of representing signal strength. Moreover, this
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means that using SSD in a simulated environment can give a plausible com-

parison of how signal strength degradation can affect an MRT. For example,

if there is limited access to the physical environment and physical experi-

ments cannot be conducted.

N Time Range
(min, max)

Signal Strength
mean (stdev)

ESD 151 (0.0, 150.0) -35.00 (2.8)
SSD 110 (0.05, 110.03) -35.00 (2.8)

TABLE 6.1: Statistics comparing ESD and SSD data samples.

FIGURE 6.2: Samples of signal strength received from
ROBOT_2 by ROBOT_1, when using the ESD and SSD network
perturbation. The measurement is taken over the initial 150

seconds of physical MRT experiments.
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6.4 Experiments

This section is comprised of three parts. The first part is the Methodol-

ogy 6.4.1, covering the hardware, experiment parameters and how exper-

iments will be conducted. The second part covers the Network Perturba-

tions 6.4.2, which specifically defines the warning thresholds of SSD and

ESD. The final part briefly describes the Experiment Setup 6.4.3, which is

similar to the setup in Chapter 5.

6.4.1 Methodology

The robot platform remains the same as before (Section 3.5.1), which com-

prises of an on-board laptop (the Acer Travelmate B117 running Ubuntu

14.04), the Turtlebot 2 base and an RGB-depth camera (the Asus Xtion Pro).

The main difference is that many more communication specific functionali-

ties are used in the experiments conducted here, described below.

The AH network type requires the creation of peer-to-peer communica-

tion and once connection is established it is self-maintained. This essentially

requires either an extra robot to host the task assigner agent or that one robot

in the team needs to host both a task assigner and task execution agent. There

are no immediate benefits of implementing the initial case and it is not ideal

as it will require a redefinition of the task assigner and further architectural

changes within the MRComm framework. Therefore, the second option is

used, where one robot hosts a task execution and task assigner agent.

The method for performing physical experiments in this chapter is dif-

ferent compared to the method used for the baseline physical experiments

presented in Chapter 4. The design methodology for the experiments in

this chapter is as follows. Each on-board laptop (robot) that is on the Turtle-

bot2 base is supplied with the same version of the MRComm framework.

At the start of an experiment, a task execution agent is instantiated on each

robot. Moreover, the task assigner agent is required to initialise the mission,
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assign tasks and record received messages from the task execution agents.

However, the distributed nature of the multi-robot system and AH network

requirements demand that the task assigner agent operates on one of the on-

board laptops concurrently with a task execution agent. As such, for physical

robot experiments, each task execution agent records their own performance

metrics. This is part of the truly distributed design mentality described in

Section 2.3.5. For the experiments conducted here, ROBOT_2 is chosen to

host both a task execution agent and a task assigner agent. Once the task as-

signer agent is initialised it identifies the robots in the team and assigns them

their tasks. Thereafter, the robots begin to navigate towards their assigned

tasks. Each task definition includes a location where the robot performs ac-

tions, such as sensor-sweep (e.g. collecting a series of images). At the end

of an experiment, the task assigner agent records the shared messages and

experiment messages, and concludes by determining which robot(s) failed

to communicate task status messages .

The network perturbations impact the same shared message topics as in

the previous chapter, pose messages and task status messages. The network

perturbations evaluated in the physical experiments are:

• Simulated Packet-Loss (SPLX where X ∈ {0, 25, 50, 75}) 3.8.3.

• Simulated Loss Threshold (SLT) 5.2.

• Simulated Signal Degradation (SSD) 5.3.

• Effective Signal Degradation (ESD) 6.2.

6.4.2 Network Perturbations and Thresholds

Network perturbations influence the communication medium and act as

constraints on the multi-robot system to allow communication quality is-

sues to be tenable in certain cases where either the WLAN or AH networks



6.4. Experiments 177

are used. The warning thresholds impact only LF and not NB, as the latter

behaviour lacks the awareness to react to these communication warnings.

The SLT perturbation remains with the same limit of 4.0 m, as defined

in Section 5.2. The warning threshold and its effect on the LF behaviour is

displayed in Table 6.2.

The SSD warning threshold is based on the result from using the same

two separately trained SVR models, as described in Section 5.3. However,

it has been adjusted for the physical experiments presented in this chapter,

therefore the warning threshold limit is set to -41 dBm. Testing the physical

experiments with LF revealed that detecting the threshold sooner was more

beneficial for the MRT and resembled more closely the behaviour observed

in Chapter 5’s corresponding simulated experiments. The warning threshold

and its effects on the LF behaviour are shown in Table 6.2. It can be seen in

Table 6.2 that line-of-sight distance d will signal warning threshold at two

different estimated distances, between 2.2-3.9 m and greater than 5.7 m.

ESD is the network perturbation introduced in this chapter and it uses

the ESD Pulse, an external process that is always running in the background,

to retrieve and update the stored signal strength for each other robot in the

MRT. The ESD warning threshold is set to -41 dBm, the same as for SSD, and

its effects on the LF behaviour are shown in Table 6.2. As for the SSD case, it

too has two different estimated distance triggers for the warning threshold

in line-of-sight, which are between 3.5-4.2 m and greater than 8.0 m.

Network Perturbation Warning Thresholds
Network

Perturbation
Warning

Threshold
LF Distance Alert (approx.)
Line-of-sight

signal
Obstructed

signal
SLT 4.0 m d > 4.0 m d > 4.0 m
SSD -41 dBm 2.2 m < d < 3.9 m or d > 5.7 m d > 1.6 m
ESD -41 dBm 3.5 m < d < 4.2 m or d > 8.0 m d > 2.0 m

TABLE 6.2: The warning thresholds are demonstrated and the
approximate distance is shown when the system is warned of

disconnecting (LF behaviour only).
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6.4.3 Experiment Setup

Scenario S1 is used for the physical experiments. Each robot needs to be

manually setup before each mission, and on rare occasion the navigation

system unexpectedly, partially or completely, fails during this process. In

the case of a partial failure, inaccurate results may be recorded by the af-

fected robot, but generally a mission is completed. In the case of complete

failure, an affected robot may experience either a time-out (i.e. waiting too

long for an action during either start-up or execution) or an internal error

that shuts-down the system, and a mission is never completed. However,

if an experiment is affected by the above issues it is invalidated, and for

experiments that experience partial failure, those results are identified and

removed from the final data gathered.

As before, tasks TR are assigned sequentially to each robot R and the

assignments are fixed for all experiments in this work. robot_1 is assigned

tasks T1 = {1,4,7}, robot_2 is assigned tasks T2 = {2,5} and finally robot_3 is

assigned with tasks T3 = {3,6}, which is illustrated in Figure 4.8 of Chapter 4.

The physical experiments are repeated 5 times per experimental configura-

tion.

The experiments conducted in this chapter use the same experiment con-

figuration as those of the simulated experiments conducted in Chapter 5,

apart from experiments that use the newly introduced ESD perturbation.

Therefore, Tables 5.2 and 5.3 from Chapter 5 are used to represent the phys-

ical experiments conducted using the WLAN and AH network type, respec-

tively. Additionally, Table 6.3 shows the experiments conducted with the

newly introduced ESD perturbation. Table 5.2 consists of 8 configurations

and for each configuration 5 experiments are performed, therefore 40 exper-

iment runs in total. Tables 5.3 and 6.3 consist of 24 configurations and for

each configuration 5 experiments are performed, therefore 120 experiment

runs in total. There are 160 physical experiments conducted combining all
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configurations.

Experiment schema
F29 = {S1} × {AH} × {SPL0} × {ESD} × {NB}

F30 = {S1} × {AH} × {SPL25} × {ESD} × {NB}
F31 = {S1} × {AH} × {SPL50} × {ESD} × {NB}
F32 = {S1} × {AH} × {SPL75} × {ESD} × {NB}
F33 = {S1} × {AH} × {SPL0} × {ESD} × {LF}

F34 = {S1} × {AH} × {SPL25} × {ESD} × {LF}
F35 = {S1} × {AH} × {SPL50} × {ESD} × {LF}
F36 = {S1} × {AH} × {SPL75} × {ESD} × {LF}

TABLE 6.3: Experiment configurations for the AH network
type and the ESD network perturbation.

6.5 Results

The same performance metrics are investigated as in Chapter 5, Total Move-

ment Time (Figure 6.3, Table 6.4), Leader Disconnect Time (Figure 6.4, Table 6.5),

Follower Waiting Time (Figure 6.5, Table 6.6), Overall Near Collisions (Fig-

ure 6.6, Table 6.7), Overall Delay Time (Figure 6.7), Overall Idle Time (Fig-

ure 6.8, Table 6.8), Total Distance Travelled (Figure 6.9, Table 6.9), Average

Failed Tasks (Figure 6.10, Table 6.10), Successful Communication (Figure 6.11)

and Minimum and Maximum Separation (Figure 6.12). The Figures represent

the same performance metrics as those displayed in the previous chapter.

However, as another network perturbation is introduced (ESD) each Figure

is now split into four sub-figures instead of three; the first represents ex-

periments performed using WLAN and SLT; the second represents AH and

SLT; the third AH and SSD; the final one represents AH and the newly in-

troduced ESD. The error bars in the Figures reflect the standard deviation

between runs, however as explained in the previous chapter, Mission Success

does not have a standard deviation. Because, the physical results are con-

ducted on smaller sample-sizes the statistical analysis is considerably weak.

Therefore, if a statistical analysis shows significance in the physical results
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shown here, it is compared to the corresponding simulation results in Chap-

ter 5, and if the results and trends agree, then deductions can be made and

it will be plausible to accept them.

The physical experiment results have a different impact on some aspects

of the MRT compared to the simulated experiment results. However, there

are also similarities in the negative and positive trends for some of the phys-

ical results compared to the results in Chapter 5, which are further discussed

below. Moreover, no experiments successfully communicated all their task

status messages for NB.

The Mann-Whitney U test is used for statistical analysis, as before. How-

ever, due to the small sample size of the data, the analyses and hypotheses

are carefully scrutinised. Moreover, it is clear that the results achieved here

are by no means statistically extensive, but are good enough as a proof-of-

concept and show clear benefits of the proposed framework. To improve the

statistical soundness of the hypotheses and to draw extensive conclusions

from the results a larger number of experiments, i.e. n ≥ 30, will need to be

conducted.

Total Movement Time follows a decreasing trend, as revealed by Table 6.4,

dissimilar to the equivalent simulation results in Chapter 5. It cannot be

said with certainty that the performance metric is different between the sim-

ulated and physical experiments. However, experiments with LF have ap-

proximately a three-fold increase in Total Movement Time compared to NB.

This is very similar to the simulated results in Chapter 5, and it shows con-

fidence in the physical results of Total Movement Time between LF and NB.

The Leader Disconnect Time is LF specific, and shows no real changes in

trend for experiments conducted with WLAN but shows a decreasing trend

for experiments conducted with AH. However, due to the weak statistical

significance of the physical results and the weak trend results obtained in
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the simulation experiments, in Chapter 5, for this metric, the trend dis-

played by the AH results is not significant enough and can be determined

statistically insignificant. The Follower Waiting Time is also LF specific, and

the comparative simulation results have very uniform trend and a table was

not made for it. However, for the physical results the Follower Waiting Time

has a noticeably decreasing trend. Because, the visual and statistical anal-

ysis results for the simulated experiments were insignificant for Follower

Waiting Time, it cannot be said confidently that the physical results here are

statistically significant.

The Overall Near Collision metric experiences similar trends to the cor-

responding simulated results in Chapter 5. Therefore, as previously con-

cluded another alternative hypothesis is investigated, which is whether the

observations from the ideal case (i.e. SPL0) are “greater” from the other ob-

servations (SPLX). It should be noted that a large Mann-Whitney U-value

now strongly supports the HA, while the p-value and effect size remain un-

changed. What is immediately noticed about the results in Figure 6.6 and

Table 6.7 is that HA is accepted in the majority of the time and the trend ei-

ther increases or remains with extremely high U-value in comparison to the

idle case of SPL0. The physical results here support the simulated results,

therefore there is certainty in the statistical significance.

The Overall Idle Time results have generally a uniform trend and no sig-

nificant result for experiments using WLAN or NB. There is some interesting

overlap of significant results for AH when either SSD and ESD are used. The

significance indicates that both simulated and physical results show that in-

creasing SPL has an impact on Overall Idle Time for the AH network type and

LF behaviour, which is a reasonable conclusion and expected.

Total Distance Travelled indicates a reversed alternative hypothesis, sim-

ilar to that of Overall Near Collision. However, judging the erratic trends

observed in Table 6.9 and that the simulated results mostly have uniform
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trends, the physical results are decidedly inconclusive.

The trends examined in Table 6.10, for the Average Failed Tasks perfor-

mance metric show very strong likeness to those of the simulated results.

The trends display minimal U-value or show a large decrease in U-value for

experiments conducted with the NB behaviour, and HA is accepted in half

the pair-wise experiment comparisons.

Finally, Successful Missions performance metric (Figure 6.11) does not

have a statistics table. However, visually observing the corresponding suc-

cessful missions and failed missions, it can be concluded that the simulated

and physical results have very strong affinity. For LF every single exper-

iment had successful communication, i.e. 100% mission success, whereas

communication for experiments with NB failed every time.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

15 0.73 0.23 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

13 0.58 0.05 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

8 0.20 -0.42 H0

{LF, SPL0, SLT} {LF, SPL25,
SLT}

15 0.73 0.23 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

5 0.07 -0.70 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

1 0.01 -1.07 HA

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

8 0.36 -0.22 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

15 0.73 0.23 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

14 0.86 0.44 H0

{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

0 0.03 -1.06 HA

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

6 0.33 -0.29 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

4 0.16 -0.58 H0

{NB, SPL0,
ESD}

{NB, SPL25,
ESD}

5 0.07 -0.70 H0

{NB, SPL0,
ESD}

{NB, SPL50,
ESD}

12 0.50 -0.05 H0

{NB, SPL0,
ESD}

{NB, SPL75,
ESD}

12 0.50 -0.05 H0

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

25 1.0 1.17 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

9 0.27 -0.33 H0

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

5 0.07 -0.70 H0

TABLE 6.4: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for Total
Movement Time, comparing the ideal case (i.e. SPL0) versus

all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
14 0.66 0.14 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

3 0.03 -0.89 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

5 0.07 -0.70 H0

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

13 0.58 0.05 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

4 0.05 -0.79 H0

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

2 0.02 -0.98 HA

{LF, SPL0,
ESD}

{LF, SPL25,
ESD}

23 0.99 0.98 H0

{LF, SPL0,
ESD}

{LF, SPL50,
ESD}

15 0.73 0.23 H0

{LF, SPL0,
ESD}

{LF, SPL75,
ESD}

8 0.20 -0.42 H0

TABLE 6.5: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for

Leader Disconnect Time, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
18 0.89 0.51 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

12 0.50 -0.05 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

1 0.01 -1.07 HA

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
6 0.11 -0.61 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

8 0.20 -0.42 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

1 0.01 -1.07 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

13 0.58 0.05 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

12 0.05 -0.05 H0

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

5 0.07 -0.70 H0

{LF, SPL0,
ESD}

{LF, SPL25,
ESD}

11 0.42 -0.14 H0

{LF, SPL0,
ESD}

{LF, SPL50,
ESD}

13 0.58 0.05 H0

{LF, SPL0,
ESD}

{LF, SPL75,
ESD}

5 0.07 -0.70 H0

TABLE 6.6: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for

Follower Waiting Time, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.



186 Chapter 6. MRComm: Physical Experiments

Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{LF, SPL0, SLT} {LF, SPL25,

SLT}
20 0.07 0.70 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

25 0.00 1.17 HA

{LF, SPL0, SLT} {LF, SPL75,
SLT}

25 0.00 1.17 HA

AH
{LF, SPL0, SLT} {LF, SPL25,

SLT}
20 0.07 0.70 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

19 0.10 0.61 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

25 0.00 1.17 HA

{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

25 0.00 1.17 HA

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

25 0.00 1.17 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

23 0.01 1.03 HA

{LF, SPL0,
ESD}

{LF, SPL25,
ESD}

24 0.01 1.07 HA

{LF, SPL0,
ESD}

{LF, SPL50,
ESD}

25 0.00 1.17 HA

{LF, SPL0,
ESD}

{LF, SPL75,
ESD}

23 0.01 1.17 HA

TABLE 6.7: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for

Overall Near Collision, testing the alternative hypothesis
that observations from the ideal case (SPL0) are greater

than those of other SPLX observations.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

AH
{LF, SPL0,
SSD}

{LF, SPL25,
SSD}

9 0.27 -0.33 H0

{LF, SPL0,
SSD}

{LF, SPL50,
SSD}

0 0.00 -1.17 HA

{LF, SPL0,
SSD}

{LF, SPL75,
SSD}

0 0.01 -1.17 HA

{LF, SPL0,
ESD}

{LF, SPL25,
ESD}

4 0.04 -0.78 HA

{LF, SPL0,
ESD}

{LF, SPL50,
ESD}

5 0.07 -0.70 H0

{LF, SPL0,
ESD}

{LF, SPL75,
ESD}

5 0.07 -0.70 H0

TABLE 6.8: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for
Overall Idle Time, comparing the ideal case (i.e. SPL0)

versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

18 0.89 0.51 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

17 0.85 0.42 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

12 0.50 -0.05 H0

{LF, SPL0, SLT} {LF, SPL25,
SLT}

12 0.50 -0.05 H0

{LF, SPL0, SLT} {LF, SPL50,
SLT}

9 0.27 -0.33 H0

{LF, SPL0, SLT} {LF, SPL75,
SLT}

9 0.27 -0.33 H0

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

25 1.0 1.17 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

12 0.50 -0.05 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

13 0.80 0.33 H0

{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

0 0.03 -1.06 HA

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

3 0.10 -0.72 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

4 0.16 -0.58 H0

TABLE 6.9: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for Total

Distance Travelled, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

WLAN
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

0 0.00 -1.17 HA

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

0 0.00 -1.17 HA

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

0 0.00 -1.17 HA

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

7 0.19 -0.27 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

10 0.21 -0.23 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

2 0.02 -0.82 HA

{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

3 0.14 -0.53 H0

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

3 0.07 -0.72 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

1 0.03 -0.94 HA

{NB, SPL0,
ESD}

{NB, SPL25,
ESD}

25 1.0 1.17 H0

{NB, SPL0,
ESD}

{NB, SPL50,
ESD}

2 0.01 -0.93 H0

{NB, SPL0,
ESD}

{NB, SPL75,
ESD}

0 0.00 -1.17 HA

TABLE 6.10: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for the
Average Failed Tasks, comparing the ideal case (i.e. SPL0)

versus all other SPLX values.
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Experiment
Label 1

Experiment
Label 2

U p effect size Hypothesis
(H0/HA)

AH
{NB, SPL0,
SLT}

{NB, SPL25,
SLT}

25 1.0 1.17 H0

{NB, SPL0,
SLT}

{NB, SPL50,
SLT}

11 0.42 -0.14 H0

{NB, SPL0,
SLT}

{NB, SPL75,
SLT}

4 0.08 -0.66 H0

{NB, SPL0,
SSD}

{NB, SPL25,
SSD}

0 0.02 -1.06 HA

{NB, SPL0,
SSD}

{NB, SPL50,
SSD}

25 1.0 1.17 H0

{NB, SPL0,
SSD}

{NB, SPL75,
SSD}

1 0.03 -1.01 HA

{NB, SPL0,
ESD}

{NB, SPL25,
ESD}

19 0.93 0.61 H0

{NB, SPL0,
ESD}

{NB, SPL50,
ESD}

11 0.42 -0.14 H0

{NB, SPL0,
ESD}

{NB, SPL75,
ESD}

7 0.15 -0.51 H0

TABLE 6.11: U-value, p-value, effect size and hypothesis
outcome of MRComm physical robot experiments for

Maximum Separation, comparing the ideal case (i.e. SPL0)
versus all other SPLX values.
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(a) Total Movement Time for WLAN with SLT

(b) Total Movement Time for AH with SLT
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(c) Total Movement Time for AH with SSD

(d) Total Movement Time for AH with ESD

FIGURE 6.3: Total Movement Time stacked for all experiment
configurations.
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(a) Leader Disconnect Time for WLAN with SLT

(b) Leader Disconnect Time for AH with SLT
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(c) Leader Disconnect Time for AH with SSD

(d) Leader Disconnect Time for AH with ESD

FIGURE 6.4: Leader Disconnect Time per robot for all experi-
ment configurations.
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(a) Follower Waiting Time for WLAN with SLT

(b) Follower Waiting Time for AH with SLT
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(c) Follower Waiting Time for AH with SSD

(d) Follower Waiting Time for AH with ESD

FIGURE 6.5: Follower Waiting Time for all experiment config-
urations.
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(a) Overall Near Collisions for WLAN with SLT

(b) Overall Near Collisions for AH with SLT



198 Chapter 6. MRComm: Physical Experiments

(c) Overall Near Collisions for AH with SSD

(d) Overall Near Collisions for AH with ESD

FIGURE 6.6: Overall Near Collision for all experiment config-
urations.
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(a) Overall Delay Time for WLAN with SLT

(b) Overall Delay Time for AH with SLT



200 Chapter 6. MRComm: Physical Experiments

(c) Overall Delay Time for AH with SSD

(d) Overall Delay Time for AH with ESD

FIGURE 6.7: Overall Delay Time for all experiment configura-
tions.
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(a) Overall Idle Time for WLAN with SLT

(b) Overall Idle Time for AH with SLT
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(c) Overall Idle Time for AH with SSD

(d) Overall Idle Time for AH with ESD

FIGURE 6.8: Overall Idle Time per robot for all experiment
configurations.
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(a) Total Distance Travelled for WLAN with SLT

(b) Total Distance Travelled for AH with SLT
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(c) Total Distance Travelled for AH with SSD

(d) Total Distance Travelled for AH with ESD

FIGURE 6.9: Total Distance Travelled for all experiment con-
figurations.
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(a) Average Failed Tasks for WLAN with SLT

(b) Average Failed Tasks for AH with SLT
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(c) Average Failed Tasks for AH with SSD

(d) Average Failed Tasks for AH with ESD

FIGURE 6.10: Average Failed Tasks per robot for all experi-
ment configurations.
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(a) Successful Communication in Missions for WLAN with SLT

(b) Successful Communication in Missions for AH with SLT
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(c) Successful Communication in Missions for AH with SSD

(d) Successful Communication in Missions for AH with ESD

FIGURE 6.11: Percentage of Successful (Communication) Mis-
sions for all experiment configurations.
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(a) Minimum and Maximum separation for WLAN with SLT

(b) Minimum and Maximum separation for AH with SLT
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(c) Minimum and Maximum separation for AH with SSD

(d) Minimum and Maximum separation for AH with ESD

FIGURE 6.12: Minimum and Maximum separation for all ex-
periment configurations.
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6.6 Discussion

The Total Movement Time metric for LF is made up of the three sub-parts

as described in Section 3.9, which is also demonstrated by the results in

Figure 6.3. It is noticeable that for simulated experiments using NB, Total

Movement Time is lower than for the physical experiments and vice versa for

the LF behaviour. However, broadly examining the trend of results for LF,

the physical experiments show that generally Total Movement Time decreases

as SPL increases, which is the exact opposite for the simulated experiments.

The results are not significant enough to conclude with certainty that the

observed decreasing trend is valid or what it entails. The NB remain largely

unchanged throughout both simulated and physical experiments.

In general, simulated and physical experiment results for the Leader Dis-

connect Time have similar trends and patterns. The important result to con-

sider is that Leader Disconnect Time is approximately two times lower for

experiments using the SSD configuration in both simulated and physical

experiments, furthermore the same is true for experiment configurations

using ESD for the physical experiments. This indicates that the more realis-

tic threshold perturbations, SSD and ESD, are better suited for experiments

examining communication quality than SLT.

The Follower Waiting Time results depicted, reveal possible advantages

of having a smaller and more dynamic warning threshold applied on a net-

work perturbation compared to that of a fixed and larger threshold, i.e. SLT

approx. 4.0 m. The Follower Waiting Time results using SSD, as displayed

in Figure 6.5c, are approximately twofold that of the Follower Waiting Time

results using ESD, displayed in Figure 6.5d. However, the Follower Waiting

Time results for experiments conducted with SLT using either network type

(Figures 6.5a and 6.5b), approach values three times higher than those of

the Follower Waiting Time with ESD. This is another indicator that the SLT

threshold is not as accurate in representing signal strength degradation as
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SSD and ESD.

Network perturbations directly affect all shared messages, including pose

(position) messages that are sent/received by robot team members. The re-

sults, for instance in Figures 6.10 and 6.11, show that LF significantly re-

duces the effects that perturbations have on shared status messages and

overall communication. Although shared position messages are analysed

by the MRComm framework, none of the implemented behaviours of the

framework aid in reducing the impact caused by the perturbations.

The Overall Near Collisions results for both simulated and physical exper-

iments are unexpected. It shows clearly that near collisions are decreasing

as the number of messages dropped increases. If anything, the number of

near collisions should be increasing, however there is an explanation for

this result. In fact, there are two issues that are occurring when Overall Near

Collisions are recorded.

1. The larger number of near collisions that occur for the physical ex-

periments using LF are caused by a phenomenon denoted as “micro-

collisions”. Micro-collisions seem to affect physical more than sim-

ulated experiments, as it is noted that there is a twofold increase of

Overall Near Collisions compared to results in Chapter 5.

2. The fact that collisions are overall decreasing as message loss increases

is caused by a very simple problem, which is that team members’ po-

sitional messages are being lost. A robot does not know if it is in colli-

sion or not, which makes it react slower. Reacting slower could cause

some near collisions to either turn into real collisions, after which the

robots go into recovery mode (i.e. dead reckoning, waiting, etc.), or

near collisions do not occur and the robots manage to maneuver around

each other. This issue affects both simulated and physical experiments,

as the trends of both are very similar.
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The first point is covered in-depth in Section 6.6.1 and the second is a by-

product of communication quality degradation caused by the SPL network

perturbation. There are a number of methods that could be used to improve

this issue. For example, employing simple visual sensory input and esti-

mating distance to near-by objects and alerting the robot, or complex visual

sensory input that identifies near-by objects (i.e. robot, human or wall), if

the robot is moving toward these objects and alerting the robot. Visually

observing the MRT during some missions in both the simulated and phys-

ical environments proved that the robots occasionally collided and needed

to use the implemented recovery behaviour to correct their position. The

negative effects appear unexpected and hidden, making it hard to interpret

how much these issues impact the different performance metrics.

The results of the Overall Delay Time, in Figure 6.7, are correlated to the

Overall Near Collisions metric, as collisions directly increase the amount of

delay time that a robot experiences. However, there is an inconsistency

in the correlation between the simulated and physical experiment results.

As observed, the Overall Near Collisions results in Chapter 5 are half that

of the physical results for Overall Near Collisions obtained here. Moreover,

the Overall Delay Time metric for the physical experiments is in fact lower

in some cases compared to the simulated experiment results for the same

metric. The lower Overall Delay Time and increase in Overall Near Collisions

is explained by the micro-collisions effect, Section 6.6.1. However, because

it cannot be statistically proven how many micro-collisions occur over ac-

tual near collisions, it is inappropriate to report these results as objective.

Therefore, the results in Chapter 5 for Overall Delay Time and Overall Near

Collisions more accurately represent the results for these metrics.

The Overall Idle Time is not necessarily a metric that proves how efficient

a behaviour is, but it does show the amount of time that robot team mem-

bers waste doing nothing. Figure 6.8 shows that the results across different
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experiment configurations experience the same trends. However, the main

difference in Overall Idle Time is between the two behaviours. For example,

experiment results using LF show that a small amount of Overall Idle Time

is wasted and is not so disproportionately distributed per robot. Compar-

atively, experiments using NB demonstrate that a large amount of Overall

Idle Time is wasted and is greatly disproportionately distributed per robot.

Furthermore, comparing the Overall Idle Time results in Chapter 5 have very

similar trends, albeit marginally lower mean.

The results in Figure 6.10 present the average number of tasks that failed

to communicate the “SUCCESS” status message per robot. The Average

Failed Tasks performance metric very clearly highlights the effects of the dif-

ferent behaviours, network types and network perturbations. For experi-

ments with any configuration in combination with LF, all task status mes-

sages are communicated successfully. On the other hand, for the baseline

NB behaviour there are distinctions in performance between the different

combinations of network type and network perturbations. For example, in

Figure 6.10a and configuration 〈NB, WLAN, SPL0, SLT〉 communication is

perfect, which is the expected result. However, for the similar configuration

〈NB, AH, SPL0, SLT〉 in Figure 6.10b on average five out of the seven tasks

are not communicated successfully, which is caused only by the change in

network type. The overall results show that for any configuration using NB

in combination with WLAN, the impact on communication performance is

severe after ≥ SPL25. Furthermore, the impact on communication perfor-

mance is greatly increased when using NB and AH, as tasks are no longer

received after ≥ SPL0. The communication results for experiment config-

urations with LF are perfect and demonstrate the ability of the behaviour

to adapt to dynamic network parameters, while still allowing each robot to

operate individually and in the team.
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Successful Missions results in Figure 6.11 complement the results in Fig-

ure 6.10, by more broadly showing how many missions completed with-

out a single task status message being dropped (not received). The results

observed in Chapter 5, showed that 20% of missions completed success-

fully for NB with SPL25, which was 0% here. This result is most likely due

to the fact that physical experiments were not repeated as many times as

simulated experiments in Chapter 5. However, it is a strong enough re-

sult to determine that even a small amount of dropped messages greatly

impacts MRT communication performance. However, the LF behaviour

demonstrates 100% communication capabilities in the MRT regardless of

network type or perturbation used. The results from Figures 6.10 and 6.11

are promising for the novel functionality of the LF behaviour and the AON

messaging function introduced to MRComm.

Indeed, there were some issues that were encountered in the physical

experiments. These were not recorded in the performance metrics, but in-

stead were visually observed and investigated during the design stage. The

first issue was that during mission execution for ≥ SPL50 in combination

with any secondary network perturbation (i.e. {SLT, SSD, ESD}) the sys-

tem would occasionally freeze. Investigating the issue led to the conclusion

that the implementation of the AON message function in MRComm was not

checking the order of received task status messages. Therefore, it was possible

that a robot receives a message out of order forcing the task execution agent

to switch from its current state to a previous state, which causes a deadlock

for the affected robot. The whole experiment result would then discarded.

Furthermore, it was noted that on occasion, because of naturally occurring

faults in the system, an experiment with any configuration could fail either

due to a mission timing out or a ROS system failure, such as the naviga-

tion system exhibiting local minimal error causing an infinite loop in the

robot base control code, etc. ROS system errors generally occur if a system
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is poorly configured and parameters are not properly chosen. However, the

rate of experiment failure was indeterminate and unreliable, leading to the

assumption that the system errors are unpredictable and may be related to

the work mentioned by Ore et al. [103].

6.6.1 Micro-Collisions

Micro-collisions are a phenomenon that affect physical robots more than

simulated ones. However, it is difficult to estimate by how much more one

is affected from the other. There are two reasons that could lead to micro-

collisions occurring more often in physical experiments. Firstly, physical

robots experience longer message delays and the possibility of messages

arriving out of order is increased, due to a noisy physical communication

network. This causes incorrect messages to arrive that may lead to false-

positive flagging of a near collision, e.g. if the robot is no longer within

collision range. The second and more complex reason is due to premature

switching of states, which can be worsened if combined with the above rea-

son (i.e. message delays and messages arriving out of order). An example

of this is when two robots are moving head-on while a third is about to dis-

connect at a further distance. What occurs is the two robots about to collide

pause to resolve the collision, and before it is resolved, a higher precedence

rule warns both robots that another robot has disconnected, these robots are

now forced to leave the collision state. The incorrect state switching will oc-

cur multiple times for a couple of milliseconds each time, causing multiple

near collisions to be recorded in a short span of time as the robots finally get

back to a stable state. Another example, which is receiving shared messages

from robot team members that require a response.

The collision avoidance used by MRComm has two different zones, the

“danger zone” and the “event horizon”, Figure 6.13 re-plotted from Sec-

tion 3.6 for convenience. The second zone, “event horizon”, triggers an
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immediate near collision response, as it instantaneously overrides all other

event precedence, causing premature switching of states. Since the “event

horizon” area is so small it will cause very short (micro) collisions, until a

robot is clear of that area, and switching of states happens almost instantly,

hence this phenomenon is denoted micro-collisions.

FIGURE 6.13: MRComm improved collision avoidance. The
dotted semi-circle represents the “danger zone” of only a sin-
gle robot and the transparent red circles represents the “event

horizon” area for all the robots.

6.7 Summary

In this chapter I presented the ESD threshold network perturbation and the

ESD Pulse. ESD Pulse has multiple utility functions that could be leveraged

in search-and-rescue or faulty robot retrieval scenarios, apart from getting

the actual signal strength from a robot team member. Moreover, I compared

the results between the predictive SSD threshold and the true ESD thresh-

old and found that both follow a similar trend, and that some performance

metrics have similar results in Section 6.5. The advantages of being able to

simulate signal strength degradation in a simulated environment and get
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considerably close result, can help identify early communication issues in

an environment or possible outliers. However, to improve the SSD param-

eter, in future work it will be modelled on data gathered from multiple ex-

periments with a physical multi-robot team first using ESD.

The experimental results here are a proof-of-concept of a truly distributed

physical multi-robot system completing missions in an operational envi-

ronment. Where each individual robot records its own data, navigates the

environment and self-maintains its own communication (communication

aware) to the team. Although the results presented in this chapter can not

be considered statistically significant, as the sample size is small, they show

that uninterrupted communication of shared messages is successfully car-

ried out for experiments conducted on a physical MRT using the novel LF

behaviour, identical to the statistically significant results observed in Chap-

ter 5.
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Chapter 7

Conclusions and Future Work

This thesis outlines the progress and contributions made toward the multi-

robot communication domain. In Section 7.1, I summarise and highlight the

main achievements. Section 7.2 briefly compares and showcases some of the

important results from Chapters 4, 5 and 6. In Section 7.3, I look at possible

improvements to the MRComm framework and outline future work. Finally,

I conclude and summarise the thesis in Section 7.4.

7.1 Overview

Chapter 2 introduced the underlying principles of communication and multi-

robot systems. Furthermore, it examined the components required to design

and test a multi-robot communication framework and introduced telecom-

munication concepts that can be leveraged in MRS (ad-hoc networks, self-

reestablishing communication, etc.). The chapter presented biologically

[48], [52] and artificially [39], [54] inspired behaviour-based control, which

motivated the creation of the communication-aware LF behaviour described

in Chapter 3. Finally, the related work in Chapter 2 highlighted the signif-

icance that communication has on a MRT and demonstrated some works

that employ telecommunication concepts in MRS. Here below are listed the

contributions of this PhD:
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1. The MRComm framework was developed (Chapter 3). It defined the

network parameters required for analysing communication quality. It

introduced two multi-robot coordination behaviours: the baseline NB

behaviour, which was employed in [9] (and other related works) and

which represents standard multi-robot communication in a surveil-

lance or exploration task scenario; and the novel LF behaviour, which

was developed in this research as a communication-aware behaviour

with the objective to control the actions of a multi-robot team and

enable continuous communication. A novel messaging protocol, de-

noted AON, was developed to work in conjunction with the LF be-

haviour to improve communication when different network pertur-

bations are affecting multi-robot team experiments. The MRComm

framework enabled the execution of MRT communication-based ex-

periments in both simulated and physical environments, with min-

imum changes in functionality between the two. Moreover, for the

purpose of executing physical robot experiments, an actual AH net-

work was created for communication, which was made possible with

the seamless integration of the ROS-based FKIE software package that

additionally facilitates a truly distributed multi-robot system.

2. Pre-MRComm framework results were gathered as a baseline (Chap-

ter 4), which analysed communication performance in a multi-robot

team, using the standard multi-robot coordination behaviour (denoted

NB in Chapter 3) of the MRTeAm framework in [9]. The SPL net-

work perturbation was designed to disrupt the communication be-

tween robots during the execution of an experiment. It does this by

dropping a certain percentage of shared messages.

Furthermore, the experiments based on the MRTeAm framework used
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the ROS Master Bridge for inter-robot communication, which is differ-

ent in its design compared to MRComm. The experiments were con-

ducted on both simulated and physical robots and the results aided in

the development of the MRComm framework, particularly in the de-

velopment of the network parameters, performance metrics and in the

re-design of the communication. The communication was re-designed

as the boundaries explored in this thesis required a more distributed

MRT approach (i.e. AH communication). As mentioned previously,

MRComm’s inter-robot communication uses the FKIE software pack-

age, which allows for a more robust and truly distributed MRS and

communication. A new set of experiments were conducted using MR-

Comm and its distributed communication method, which were con-

figured similarly to the baseline preliminary experiments conducted

with MRTeAm. The results from the two frameworks were briefly com-

pared, and showed an improvement and consistency of some perfor-

mance metrics for MRComm over its predecessor, MRTeAm.

3. Simulated robot experiments were carried out using MRComm and the

special LF behaviour and AON messaging protocol (Chapter 5). Fur-

thermore, the SLT and SSD network perturbations were designed and

tested with these experiments. The results showed promising perfor-

mance when using the LF behaviour compared to the NB behaviour.

When using the LF behaviour, the robot team was able to respond and

recover from the perturbations. Therefore, enabling continuous com-

munication throughout the duration of a mission for the simulated

robots. However, it was noted that not all performance metrics are

positively impacted. This is anticipated and is caused by the design

of the LF behaviour, which increases the overall mission time and dis-

tance travelled by the robots.

4. Low-cost physical robots were used to conduct experiments using an
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actual self-maintained AH network and are “truly distributed” in their

communication and execution of the mission. The truly distributed

moniker, described in Chapter 2, requires that each of the main com-

ponents (control, communication and data recording) of a MRS are or-

ganised using a distributed approach, which is achieved and demon-

strated by the proof-of-concept experiments conducted in Chapter 6.

The physical robot experiments showed similar overall results to those

of the simulated robots, when compared with the same experiment

configuration. The ESD network perturbation (i.e. actual signal strength)

was designed and tested with these experiments. It was used to vali-

date how well the simulated version, SSD, performed when used with

physical robots and additionally with simulated robots. Furthermore,

I showed that SSD follows a similar trend and that it could hypothet-

ically reach the same output levels as ESD. This is very useful when

wanting to emulate accurate signal strength degradation performance

in a simulated environment. As mentioned previously, the results

were similar to those of the simulated robots. Therefore, the results

showed completely improved communication performance when us-

ing the LF behaviour with AON as apposed to the standard NB be-

haviour and no special messaging. Similarly to Chapter 5, when robots

used the LF behaviour, the overall mission time and distance travelled

increased, but communication was improved dramatically and so was

task completion status.

7.2 Discussion

In Chapter 4, the preliminary experiment results obtained using MRTeAm

cannot be directly compared to the experiment results obtained using MR-

Comm. This is because different scenarios were used for the MRTeAm re-

sults compared to the MRComm results. However, examining the statistical



7.2. Discussion 223

significance when using increased SPL perturbation, there are noticeable

improvements in how shared messages are communicated. Moreover, the

MRComm results use the extended performance metrics, which more accu-

rately depict communication performance within multi-robot coordination.

Chapter 5 and 6 present simulated and physical robot experiment re-

sults, respectively, and they are comparable as a result of using the same

scenario, having the same limitations placed on the network and perform-

ing the same experiment configurations. It should be noted that there are

negligible differences in some of the performance metrics when comparing

the same experiments between Chapters 5 and 6. Furthermore, it can be

argued that these are caused by the unpredictable nature of the noise expe-

rienced in the physical environment and network. Another possible cause

is because in Chapter 5 more repeat experiments were conducted than in

Chapter 6. However, it is common to run more experiment iterations in a

simulated environment than with physical robots, typically due to compar-

ative amount of time taken develop a software framework that works inter-

changeably, to setup and run a physical system and finally the wear-and-

tear on a physical platform. The imperative results in both the simulated

and physical experiments are those that represent communication-centric

performance metrics, i.e Average Failed tasks and Successful Missions. These

crucial results are similar, proving that continuous communication is possi-

ble and desirable in both simulated and physical experiments when using

the MRComm framework and the communication-aware LF behaviour.



224 Chapter 7. Conclusions and Future Work

7.3 Future Work and Improvements

MRComm Improvements

As noted in Chapter 6, occasionally a multi-robot coordination mission failed

and the cause was identified to be the AON messaging function. A require-

ment of AON, which needs to be satisfied, can cause an infinite loop (dead-

lock) in the system. The requirement is that robot(s) stop whatever action

they are performing and begin communicating (re-sending) the previously

received message until the entire team has agreed that they have received

it. The particular cause is that the final robot(s) to confirm that the rest of

the team has received the message may experience a long delay, as a result

of increased network perturbations. Therefore, it can be deduced that the

last robot was still sending out the previous message while another robot

may have already started sending a new message and awaiting confirma-

tion on that. This causes two different messages to enter the AON mes-

saging pipeline with no way for the team to determine which is the correct

message they need to agree on, causing the deadlock. A way to mitigate this

issue has already been determined. The root cause of this issue is that mes-

sage order is not kept. In future improvements, I propose to use a message

time-stamp or to add a simple internal message counter that stamps each

message before it is sent. In this way, a robot that receives a message can

determine if it is in fact a new message or a previously received message

and it can then choose the correct message and disregard the incorrect one.

As mentioned in Chapter 6, the physical robots suffer from micro-collisions.

To remedy this, I could employ a method that records actual collisions and

false-positive collisions. To record actual collisions, each time robots are

within a certain proximity of each other, which qualifies as a near collision,

this event will be time-stamped, and if the same robots have multiple time-

stamps all occurring within the same (or marginally different) time frame
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they will be flagged as false-positive near collisions.

As noted in the results of Chapters 5 and 6, experiments using LF do not

favour that well in all performance metrics, especially in execution phase time

(duration of mission) and distance travelled. It is not possible to completely

mitigate the performance disparity between the NB and LF behaviours, as

their purpose is contradictory and NB always has the robots taking the

quickest route to tasks while LF focuses on communication and tries to

group robots together to maintain it. A simple solution to improve per-

formance for those particular metrics would be to adjust the current utility

function, which is used to decide which robot is leader next time a discon-

nect occurs. Currently the utility function used tries to choose the robot with

the closest task, but also one which was not picked previously as a leader.

This was to try to make robots less biased and spread their task completion

evenly throughout the map. However, as noted in Chapters 5 and 6 this

is not always the case and some tasks always get completed first. There-

fore, the utility function could be adjusted to use a greedy algorithm, such

as Dijkstra’s algorithm or Huffman encoding etc., or some other algorithm,

and analysed to see which of these improves performance most. Moreover,

further improvements could be made to decrease mission completion time

by using a new utility function and message. Chapter 6 demonstrates that

robots remember the “last known” team member position, even when team

members are no longer within communication distance, and they would

try to return to that “last known” team position, which will get them back

within communication distance. Therefore, the new utility function could

be used once a leader has been chosen. It could then calculate, for each

robot, the closest task and if a task is within a certain “limited” distance it

will send a message to the rest of the robots (including the leader) to wait

in their positions. Even if the robot(s) leave the threshold of communication

they will promptly return to the “last known” team position and send all
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new messages to team members and then continue their mission. The new

message would be used to initialise this new behaviour and utility function.

Future Work

As mentioned in the above section, a new utility function could be used to

pause movement and allow for robots to complete additional task. This is

very similar to the RPS strategy presented in the work in [54]. However,

robots would continuously move toward their assigned tasks while period-

ically employing the strategy to regroup, share information and continue

with the mission. Such a hybrid communication-aware behaviour can be

greatly optimised for both communication performance and mission time,

therefore should outperform a multi-robot strategy purely based on RPS. It

would be beneficial to implement and evaluate the performance of some of

the different strategies and algorithms proposed in [39] [54] and [40]. Even

if the strategies do not improve performance, they may reveal some other

aspect of communication or performance, which could supplement the ex-

isting algorithms and functionality of LF.

In future work, it would be beneficial to increase the number of be-

haviours that are communication-aware and with this improve the func-

tionality of the network, such as introducing multi-hop routing of shared

messages. Such functionality could allow robots to form a long chain (for-

mation) to continue communication while performing distant tasks (e.g.

search-and-rescue). Furthermore, it could allow central robots to act as

bridges for communication between other distant robots. It would be valu-

able to analyse how such functionality could benefit different task compo-

sitions, for example from independent (IT), single robot (SR) tasks to multi-

robot (MR) and constrained tasks (CT) etc.

Finally, it would be valuable to introduce a human-in-the-loop to the

system. The human operative could be given multiple mission assignments
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that would benefit the performance and knowledge of themselves and the

multi-robot team. A human operator could monitor the tasks received by

the robot team and confirm which have been completed (i.e. the human

would know what the robots know). Therefore, in the case that a robot is

out of communication range and a task was not accounted for at the end of

a mission, a human operator could force the team to continue the mission

and go back, find the task and complete it again. Moreover, the operator

could act as the new “task assigner” agent and assign which task is received

by which robot, etc. This opens up a plethora of future possibilities in the

broader research field of human-robot team coordination/interaction.

7.4 Summary

The work presented in this thesis examines the effect that network pertur-

bations and network type have on multi-robot team communication, with

the goal of developing a communication-aware behaviour that tries to guar-

antee continuous communication. The preliminary part of this work was to

design an experiment and evaluate the empirical performance of simulated

and physical robots when the most common type of network perturbation

was employed. The outcome of these results was used in the design of more

advanced and complex network parameters and the extension of the per-

formance metrics, leading to the investigation of the variation of simulated

and actual network signal quality. Moreover, this led to the development

of a novel behaviour and a high-level messaging function that is used to

facilitate continuous communication in a multi-robot team. The exhaustive

results from both simulated and physical robot experiments show that, in

most cases, continuous communication can be achieved for a multi-robot

team, at the cost of some other decreased performance (e.g. increased mis-

sion execution time), however there is a significant communication-specific

performance uplift.
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Technology will always keep improving, multi-robot and human-robot

collaboration will continue expanding, and if there is one message to sum-

marise the outcome of this PhD, it is to stay connected!
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Appendix A

Additional System Architecture

A.1 Original Finite State Machines

This section contains the original FSM that were generated by the ROS based

SMACH software package. They contain all the states that the robots/a-

gents could enter, including the transition actions. The first FSM is of the

task assigner agent (Figure A.1), followed by the NB task executioner FSM

(Figure A.2) and finally the LF task executioner FSM (Figure A.3). There are

separate Leader (Figure A.4) and Follower FSMs (Figure A.5). For instance,

green indicates an active state that the robot was in, during the image cap-

ture of the FSM, red indicates all the common termination states of the FSM

and grey indicates dormant sub-FSM. However, the colours displayed in

the Figures are unimportant here.
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FIGURE A.1: Finite State Machine of the task assigner agent.
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FIGURE A.2: Finite State Machine of a task executioner agent
for NB.
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FIGURE A.3: Finite State Machine of a task executioner agent
for LF.
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FIGURE A.4: Finite State Machine of the task assigner agent
assigned the Leader role (LF).
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FIGURE A.5: Finite State Machine of the task assigner agent
assigned the Follower role (LF).
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A.2 Important Code Samples of Algorithms

This section contains partial code samples for some of the algorithms that

are examined in the thesis. The first code snippet, Figure A.6 is on the AON

messaging function. The second code snippet, Figure A.7, shows a portion

of the functionality of LF, specifically the role assignment procedure.

FIGURE A.6: Code snippet showing partially the functionality
of AON.
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FIGURE A.7: Code snippet showing partially the functionality
of the role assignment procedure for LF.
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Appendix B

Additional Results

B.1 Trajectory Drawings

Here random experiment recordings were chosen, one using NB (Figure B.1)

and the other LF (Figure B.2), and their trajectories were translated and

mapped onto a floor plan of the operational environment. Unfortunately,

for LF in Figure B.2 the robots repeated many paths while following the

leader, hence the map is busier.
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FIGURE B.1: Trajectory map of the NB behaviour in the oper-
ational environment.
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FIGURE B.2: Trajectory map of the LF behaviour in the opera-
tional environment.
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B.2 Pseudo-random Generator

Figure B.3 is a simple plot showing the pseudo-randomness of a general

purpose computer. A random value is selected 10,000 times from a range of

integers 1-10 and the results are plotted in Figure B.3.

FIGURE B.3: Pseudo-randomness achieved by a computer.

B.3 Task Messages

Task messages are laid out and represented in a certain format in ROS, read

from YAML files. The basic composition of messages sent to robots is de-

scribed below.

# task_ id : A unique i d e n t i f i e r .

# type : Hypothet ical ’SENSOR_SWEEP’ f o r now,

# a r r i v a l _ t i m e : Time ( seconds ) a f t e r s t a r t of an experiment

t h a t the task " appears "

# l o c a t i o n : x , y coordinates of the task ’ s l o c a t i o n

# num_robots : Number of robots required to complete the task

# duration : Time ( seconds ) required to complete the task

# depends : Array of t a s k s ( t a s k _ i d s )

t h a t t h i s task depends on
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# example

task_ id : ’1 ’

type : SENSOR_SWEEP

l o c a t i o n :

x : 5 . 2

y : 5 0 . 6

a r r i v a l _ t i m e : 0

num_robots : 1

durat ion : 0

depends : [ ]
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