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Abstract 20 

The human gut microbiome has been associated with many health factors but variability 21 

between studies limits exploration of effects between them. Gut microbiota profiles are 22 

available for >2700 members of the deeply phenotyped TwinsUK cohort, providing a 23 

uniform platform for such comparisons. Here, we present gut microbiota association analyses 24 

for 38 common diseases and 51 medications within the cohort. We describe several novel 25 

associations, highlight associations common across multiple diseases, and determine which 26 

diseases and medications have the greatest association with the gut microbiota. These results 27 

provide a reference for future studies of the gut microbiome and its role in human health. 28 

 29 

  30 
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Introduction 31 

The human gut microbiome has been associated with a diverse range of health deficits but 32 

there has been relatively little comparison of these effects between diseases1. Whilst a recent 33 

meta-analysis found some gut microbiota associations are shared across multiple diseases2, 34 

comparisons between studies are inherently limited by the experimental and analytical 35 

variation between them3,4. This can be overcome by investigating multiple phenotypes in a 36 

single well phenotyped sample, as demonstrated by previous comparisons of the relative 37 

influence of different host factors on the gut microbiome5,6. A similar comparative study of 38 

human diseases requires a population with sufficient numbers of cases for multiple diseases; 39 

in this respect the British TwinsUK cohort is uniquely positioned7. Its members are older than 40 

other cohorts having gut microbiome data, providing a higher prevalence of common disease, 41 

and subjects have been deeply phenotyped for a range of health factors for over 25 years. 42 

 43 

Here we describe untargeted gut microbiota association analyses with 38 common diseases 44 

within the British TwinsUK cohort. Given that medications can have a large influence on gut 45 

microbiota composition8,9, we also explore gut microbiota associations with use of 51 46 

common prescription medications. The results provide a reference of the relative association 47 

of different diseases and medications with gut microbiota composition at the population level. 48 

 49 

Results 50 

Gut microbiota associations with common diseases 51 

Disease status for individuals within the TwinsUK cohort was collated from self-reported 52 

questionnaires, and 38 diseases (those reported in > 1% of the total cohort) were selected for 53 

consideration (Supplementary Data 1). Gut microbiota profiles from 16S rRNA gene 54 

sequencing of stool samples were available for 2737 individuals (89% female, age=60±12, 55 
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BMI=26±5, mean±SD). Within this subset, disease frequencies reflected those expected of an 56 

older female population (Figure 1A) - the most common diseases included 57 

hypercholesterolaemia, respiratory allergies, anxiety, osteoarthritis, and hypertension; and 58 

rarer diseases included coeliac disease, epilepsy, and inflammatory bowel disease (IBD). 59 

Correlation between diseases was low with the exception of expected co-morbidities (Figure 60 

1B) such as within the metabolic syndrome (hypertension, hypercholesterolaemia, type 2 61 

diabetes (T2D), and ischaemic heart disease), and between allergies, asthma, and eczema - 62 

consistent with the concept of atopy. 63 

 64 

Microbiota data is high dimensional and inter-correlated10. To reduce multiple testing in 65 

association analyses we used a heuristic approach to select a minimal set of 68 taxa and 66 

diversity measures representing wider gut microbiota composition (Supplementary Data 2). 67 

Regression models were used to identify associations between the 68 microbiota markers and 68 

the 38 common diseases, adjusting for age, BMI, and technical confounders (Supplementary 69 

Data 3). Seventeen diseases had significant associations (FDR < 0.05) with at least one 70 

microbiota marker (Figure 1C). These findings replicated reported associations including a 71 

negative association between T2D and Clostridia11, positive associations between 72 

Enterobacteriaceae and methanogens with constipation12, and a lower abundance of 73 

Ruminococcaceae with irritable bowel syndrome (IBS)13. We also identified novel 74 

associations including negative associations between Prevotellaceae and food allergy; 75 

Mollicutes and Cholelithiasis; Odoribacteraceae and urinary incontinence; 76 

Deltaproteobacteria and acne; and Lentisphaeria and osteoarthritis. Amongst the microbiota 77 

marker traits, diversity measures had the most significant associations. Alpha diversity 78 

measures had exclusively negative associations, in accord with previous reports of reduced 79 

gut microbiome diversity in disease1. 80 
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 81 

The power to detect associations with each disease varied with the number of cases observed. 82 

This, in combination with the additional testing from considering multiple diseases, means 83 

that associations with rarer diseases are likely under-represented. Indeed, nominally 84 

significant associations were observed with all diseases except psoriasis (Figure 1C). These 85 

associations require validation but provide guidance for further studies to this effect.  To 86 

estimate the relative scale of gut microbiota associations between diseases, we visualised the 87 

number of cases relative to the number of nominal associations observed (Figure 1D). 88 

Conditions including IBD, T2D, constipation, recurrent urinary tract infections (UTI), food 89 

allergies, and coeliac disease had a high number of associations despite relatively few cases, 90 

suggesting these are prime candidates for disease-specific gut microbiota studies. Conversely, 91 

few associations were observed with anxiety, respiratory allergies, and hypercholesterolaemia 92 

even with a high number of cases. We also observed diseases with few cases and few 93 

associations, such as epilepsy and gout. In these instances, the disease might either have little 94 

association with the gut microbiota or the present study is underpowered to detect 95 

associations. These results provide a reference for sample size requirements for future 96 

studies.  97 

 98 

Age and BMI were included as covariates as they are associated with several diseases 99 

(Supplementary Fig. 1). Furthermore, as obesity associations with the gut microbiota have 100 

been examined in detail within TwinsUK we aimed to identify associations independent of 101 

these effects14. For comparison, we repeated the analysis without adjustment for BMI and 102 

found that obesity had the highest number of associations (Supplementary Data 4 and 103 

Supplementary Fig. 2). However, obesity was also one of the most common disorders and 104 

was correlated with several other morbidities. The results of the age and BMI adjusted 105 
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models were also highly correlated to the results of models when adjusting for neither age nor 106 

BMI, or either one alone (Supplementary Data 4 and Supplementary Fig. 3), suggesting that 107 

these have a minimal influence on most of the disease associations observed. 108 

 109 

Microbiota traits with consistent associations across multiple diseases 110 

A recent meta-analysis by Duvallet et al. showed that as well as disease-specific associations, 111 

some differences in the gut microbiota are observed across multiple diseases, which they term 112 

non-specific associations2. Clustering the gut microbiota markers by their disease 113 

associations (Figure 2), we similarly found that almost all markers had significant 114 

associations, in consistent directions, with at least two diseases. The microbiota traits could 115 

be classified into two distinct clusters that were, in general, associated with either lower or 116 

higher abundance with disease states. Several of these classifications overlap with previous 117 

studies. For example, six of ten taxa identified as differentially abundant in a study of 118 

paediatric Crohn’s disease patients were marker taxa in the present analysis, and all displayed 119 

consistent directions of association15. Conversely, Clostridiaceae and Lactobacillaceae 120 

clustered with the disease-associated microbiota traits here, but have previously been 121 

described as prevalent in healthy individuals in a review of compositional patterns observed 122 

across human gut microbiome studies1. 123 

 124 

As we considered marker taxa at the family and class level, our marker trait classifications 125 

could not be directly compared to the Duvallet et al. meta-analysis that defined non-specific 126 

associations at the genus level2. Repeating the disease association analyses with these non-127 

specific genera we found reasonable clustering of genera based on their health and disease 128 

associations in the Duvallet et al. study (Supplementary Fig. 4). Although, there were 129 

discrepancies; for instance, the genus Veillonella was largely at higher abundance in patients 130 



 6 

in the meta-analysis but clustered with genera generally at lower abundance with disease 131 

within the TwinsUK data. The clustering of the non-specific genera was also less distinct 132 

than observed with the class and family level marker traits. However, overall, these results 133 

contribute to increasing evidence that, at broad levels, select taxa in the gut microbiota can 134 

have consistent associations with diverse morbidities and should additionally be considered 135 

outside of a disease-specific context. Further multi-disease studies across multiple cohorts are 136 

required to identify the optimal taxa (and taxonomic levels) that define a non-specific health 137 

associated gut microbiota. Such taxa would be key targets for gut microbiota-based 138 

diagnostics and therapeutics and could provide insight into the mechanisms underlying gut 139 

microbiota interactions with host health.  140 

 141 

Gut microbiota associations with common medications 142 

Several studies have shown prescription medications can alter the composition of the gut 143 

microbiota8,16–18. These have typically focused on medications expected to have a large 144 

effect, such as antibiotics18, or those highly associated with a disease of interest, such as 145 

metformin in T2D studies17. There has yet to be a comprehensive investigation of 146 

associations between gut microbiota composition and the use of common medications at the 147 

level of the general population. To this end, we applied the approach used for disease 148 

comparisons to examine prescription medication use in TwinsUK. 149 

 150 

Self-reported use of 51 prescription medications was scored from a questionnaire completed 151 

by 1724 of the individuals considered in the disease comparisons (Supplementary Data 1). 152 

Additionally, antibiotic use within the month prior to faecal sample collection was recorded 153 

separately for 2030 individuals. The most commonly used medications were statins, proton 154 

pump inhibitors (PPIs), cholecalciferol, and calcium (Figure 3A). This reflects the age and 155 
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sex of the sample and that the conditions hypercholesterolaemia and osteoarthritis were 156 

amongst the most prevalent. There was little correlation between the use of medications 157 

except for common known co-prescriptions such as cholecalciferol and calcium, and folic 158 

acid and methotrexate (Figure 3B). There was also high correlation between the usage of 159 

different inhaled medications for asthma/COPD. 160 

 161 

Regression models were used to identify associations between prescription medications and 162 

the gut microbiota markers as for diseases (Supplementary Data 5). Significant associations 163 

(FDR < 0.05) were observed with 19 of the 52 medications (Figure 3C). These replicated 164 

previous observations such as higher Streptococcaceae and Micrococcaceae abundance in PPI 165 

users8,16, and lower alpha diversity associated with both antibiotic use measures18. We 166 

observed several novel associations, in particular: paracetamol and opioids - both were 167 

associated with a higher abundance of Streptococcaceae and could have a confounding 168 

effects in many studies given their wide usage and metabolic influences; selective serotonin 169 

reuptake inhibitors (SSRIs) - these were negatively associated with Turicibacteraceae 170 

abundance and should be explored further given the proposed association between the gut 171 

microbiota and depression19; and inhaled anticholinergic inhaled medications - these were 172 

negatively associated with Ruminococcaceae and Peptococcaceae abundance and alpha 173 

diversity, suggesting that non-oral of drug administration might indirectly influence the gut 174 

microbiota.  175 

 176 

Similar to the disease comparisons, our power to detect associations varied by the number of 177 

medication users. Comparing the number of nominal associations relative to the number of 178 

users of each medication we found, reassuringly, that drugs previously associated with gut 179 

microbiota composition, notably PPIs and antibiotics, had the greatest number of associations 180 
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(Figure 3D). Other medications having a high number of associations relative to the number 181 

of users were anticholinergic inhalers, paracetamol, SSRIs and opioids.  182 

 183 

Clustering microbiota traits and medications based on their associations, we observed groups 184 

of diverse medications that shared similar associations across multiple microbiota traits 185 

(Supplementary Fig. 5). This likely reflects the common microbiota associations shared 186 

across diseases. However, action of the medications on microbial abundances cannot be 187 

discounted. A recent study showed that a range of common medications have a direct 188 

influence on the growth of human gut commensals in vitro20. Further targeted research is 189 

warranted to examine mechanisms driving the associations with these medications and their 190 

subsequent consequences on host health. Importantly, these medications should also be 191 

considered as covariates or in screening of participants in future gut microbiome studies.  192 

 193 

Overlap of disease and medication associations 194 

There was high correlation between diseases and their associated treatments, as might be 195 

expected (Figure 4A). For example, hypothyroidism with levothyroxine and thyroxine, T2D 196 

with metformin, and atrial fibrillation with coumarins. More widely, significant correlations 197 

were observed between numerous disease-treatment pairings, with several diseases 198 

correlating with multiple drugs and vice versa. This reflects the complex network of co-199 

morbidities and co-prescriptions that complicates the identification of disease/medication 200 

specific associations.  201 

 202 

To estimate the contribution of diseases and medications to previously described 203 

observations, we explored the overlap of gut microbiota associations between correlated 204 

disease-treatment pairings (Figure 4B and Supplementary Fig. 6). No disease-medication 205 
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pairing had a complete concordance of gut microbiota associations. Metformin and T2D had 206 

both the highest correlation and overlap in gut microbiota associations from the pairs 207 

considered, reflecting the inability to delineate effects when treatment is uniform across 208 

almost all cases. We also observed medication-disease pairs that were less correlated but had 209 

a high overlap of gut microbiota associations; these included antibiotic use and recurrent 210 

UTIs and opioids with several diseases (T2D, recurrent UTIs, food allergies, and 211 

osteoarthritis). In these instances of overlap with non-specific treatments, medication use 212 

could be responsible for a large proportion of the disease-microbiota associations. 213 

Conversely, we also observed more highly correlated disease-medication pairings that shared 214 

few gut microbiota associations; for instance, use of steroid inhalers and asthma, and 215 

anticholinergic inhaler use and chronic obstructive pulmonary disease. In these cases, 216 

separate disease and medication effects might be more prevalent. Overall, these results 217 

suggest that a complex mixture of disease and medication specific effects are responsible for 218 

the observed gut microbiota associations. Given the widespread use of several of the 219 

medications classes considered and the high intercorrelation of both diseases and 220 

medications, it will be important to consider non-obvious disease-medication interactions in 221 

the interpretation and design of future studies. 222 

 223 

Discussion 224 

The cross-sectional and multifaceted nature of this study inherently limits our ability to 225 

delineate fully the observed associations between diseases and their associated treatments. 226 

The use of self-reported non-time-matched questionnaires for both the diseases and 227 

medications also introduces additional noise to the dataset. Hence, these results likely 228 

underestimate true effects. Further exploration of specific associations presented here will 229 

require the use of more targeted disease-specific, ideally longitudinal, studies to minimise this 230 
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error and maximise the power to detect effects. These would also provide the ability to 231 

control for other covariates that could influence both host health and the gut microbiota such 232 

as diet21. Intervention studies or those using treatment naïve controls will also be required to 233 

determine the specificity of associations to diseases and/or treatments. These results must 234 

also be considered within the context of a twin study. Host genetics can influence the gut 235 

microbiota and concordance rates varied across the diseases and medications considered 236 

(Supplementary Data 1)22. However, we expect this effect to be minimal. A recent study 237 

showed that host genetics have little influence on the gut microbiota relative to other host 238 

factors23, and such effects would be limited to specific taxa and diseases. 239 

 240 

Despite the limitations of the present study, we were able to identify gut microbiota 241 

associations that were applicable across multiple diseases; described novel associations with 242 

several diseases and medications; demonstrated a complex interconnectivity of morbidities, 243 

medication use, and gut microbiota associations; and described the relative association of 244 

different diseases and prescription medications with the gut microbiota at the population 245 

level. These results provide a valuable reference for future studies of the role of gut 246 

microbiota in human health. 247 

 248 

Methods 249 

Disease and medication data 250 

Self-reported disease data were collated from six questionnaires completed by TwinsUK 251 

participants at various times between 2002-2015. Most diseases were scored from the BCQ 252 

and Q11A questionnaires, which most twins had answered within two years of the faecal 253 

samples used to assess the gut microbiota (Supplementary Data 1 and Supplementary Fig. 7).  254 

All questions asked if a doctor or health professional had ever diagnosed the individual with 255 
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the condition. Individuals were scored positive for a disease if they replied yes to any 256 

questionnaire, negative if they only replied no, and unknown if data were unavailable across 257 

all questionnaires. For constipation and cystitis, responses were scored as (0) No, (1) Rarely, 258 

(2) Sometimes, (3) Frequently, and (4) Always; in these two cases 0-2 was considered 259 

negative and 3-4 positive. Hearing loss was classified by either doctor diagnosis, self-260 

diagnosis, or hearing aid usage. Diseases found in at least 1% of the wider cohort were 261 

considered common and retained in analyses (Supplementary Data 1). Correlation between 262 

diseases was assessed using the Phi coefficient, the equivalent to Pearson’s for binary 263 

variables. 264 

 265 

Self-reported prescription medication use was scored from a single questionnaire. These data 266 

were cleaned to resolve spelling errors, followed by manual classification of entries into drug 267 

classes and sub-classes by a health professional. Individuals were assumed not to be taking a 268 

medication if they had completed the questionnaire without listing it. Medications used by at 269 

least 1% of the total cohort were considered for further analysis (Supplementary Data 1). 270 

Correlation between the use of different medications was determined as for diseases. 271 

 272 

Ethics approval for the TwinsUK study was given by the NRES Committee London-273 

Westminster (REC Reference No.:EC04/015) and all participants provided informed consent. 274 

 275 

Gut microbiota profiling 276 

This study used a larger set of gut microbiota profiles that were generated alongside those 277 

described in a recent study by Goodrich et al.24, which reported a smaller sample as it 278 

considered only complete twin pairs. The processing of faecal samples has been described 279 

previously22. Briefly, samples were collected by the individual at home and either bought to a 280 
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clinical visit or posted on ice to the clinical research department on ice where it was stored at 281 

-80C. Frozen samples were shipped to Cornell University where DNA was extracted, the V4 282 

region of the 16S rRNA genes amplified, and amplicons sequenced using a multiplexed 283 

approach on the Illumina MiSeq platform. Sample reads were demultiplexed and paired-ends 284 

merged using a 200nt minimum overlap.  285 

 286 
De novo chimera removal was carried out on the 16S rRNA gene sequencing per sample 287 

using UCHIME25. Remaining reads were collapsed to de novo OTUs at 97% identity using 288 

SUMACLUST within QIIME version 1.9.026,27. OTU taxonomy was assigned by aligning 289 

representative sequences to the Greengenes v13_8 database using UCLUST in QIIME. 290 

Analyses were adjusted for sequencing depth throughout by using sample read count as a 291 

covariate.  Taxonomic abundances were generated by collapsing OTU counts at appropriate 292 

levels, followed by conversion to log-transformed relative abundances. Three alpha diversity 293 

metrics, namely the Shannon index, phylogenetic diversity, and raw OTU counts, were 294 

calculated using QIIME. Beta diversity was calculated as both weighted and unweighted 295 

UniFrac metrics, and principal coordinate analysis of the beta distances was carried out using 296 

the vegan package28. The first six axes were chosen to represent beta diversity 297 

(Supplementary Fig. 8). 298 

 299 

Heuristic selection of microbiota marker traits 300 

Prior to analyses, we designed an approach to select a minimal set of microbiota marker traits 301 

for consideration. We focused on a limited, pre-selected, set of taxonomic and diversity 302 

measures then further reduced the redundancy of these traits based on their inter-correlation. 303 

We first restricted analyses to only consider three alpha diversity measures and 12 beta 304 

diversity PCoA axes, as detailed above, and all collapsed bacterial classes and families with 305 

complete taxonomic assignment. This produced an initial set of 206 gut microbiota marker 306 
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traits. Spearman correlations were calculated pairwise between these, and the correlations 307 

used to generate an adjacency matrix where correlations >0.8 represented an edge between 308 

traits. A graphical representation of this matrix was then used for greedy selection of 309 

representative markers. Nodes (microbiota traits) were sorted by degree and the one with 310 

highest degree was then chosen as a final marker (selecting at random in the case of a tie). 311 

The marker and all connected nodes were then removed from the network and the process 312 

repeated until a final set of 68 marker traits were found such that each of the discarded traits 313 

was correlated with at least one marker. 314 

 315 

Disease and medication associations with gut microbiota markers 316 

Gut microbiota marker traits were modelled as responses in mixed effects models with 317 

technical and biological confounders including: who extracted the DNA, how the sample was 318 

collected, sequencing run, gender and family structure as random effects, and sequencing 319 

depth, age, and BMI as fixed effects. The residuals of these models were then used in disease 320 

association analyses. Individual logistic regressions were carried out with disease status as 321 

the dependent variable and residuals of microbial marker traits as independent variables. This 322 

was performed for all combinations of disease and microbiota marker traits and p-values 323 

were FDR adjusted to account for multiple testing using the p.adjust command in R. This was 324 

repeated for medication use. 325 

 326 

Further analyses were carried out to identify disease associations using residuals that were 327 

generated without including BMI, without including age, and without including either as co-328 

variates to assess the influence of the covariates on results. We did not consider antibiotic 329 

usage as a covariate as we chose to consider it alongside the other common medications to 330 

provide an unbiased overview of disease and medication associations across the cohort. 331 
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 332 

Clustering of microbiota marker traits by disease associations 333 

Beta coefficients of associations between the diseases and microbiota traits were filtered to 334 

retain only those from nominally significant associations (non-significant coefficients were 335 

considered 0).  Microbiota markers and diseases without significant associations were 336 

removed. Nominal association results were used as this was a descriptive comparative 337 

analysis that did not describe association discovery (only FDR significant associations are 338 

report as novel individual associations) and enabled clustering of the microbiota traits with 339 

less bias towards the more common diseases whilst providing a more conservative approach 340 

than clustering based on all beta coefficients regardless of association significance.  Distance 341 

matrices between diseases and between microbiota traits were derived from the beta 342 

coefficient matrix using cosine similarity, a measure less influenced by the sparsity resulting 343 

from the zeroes of non-significant associations. Complete-linkage hierarchical clustering was 344 

used to cluster the diseases and microbiota marker traits from the cosine distance matrices 345 

using the hclust function in R, and the results visualised as a heatmap. For visualisation only, 346 

the beta coefficients were arcsine transformed to increase the visual contrast between the 347 

small coefficients and zero values. The significance of the microbiota marker clusters 348 

(p<0.05) was determined by multiscale bootstrap clustering with 10,000 iterations using the 349 

pvclust package in R29. 350 

 351 

Replication of non-specific genera 352 

Genera defined as having non-specific associations across multiple diseases (at least two) in 353 

the meta-analysis study by Duvallet et al. were extracted from supplementary figure 3 of the 354 

manuscript for replication across diseases in the present study2. Abundances for non-specific 355 

genera that were also observed in the TwinsUK data were adjusted for covariates including 356 
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age and BMI, and the residuals used in association analyses with all diseases as previously. 357 

Clustering of the genera and diseases and production of an associated heatmap was then 358 

carried out as for the main analyses considering all nominally significant associations.  359 

 360 

Correlation between disease states and medication use  361 

Correlation between disease states and medication use was assessed pairwise using the Phi 362 

coefficient with correlation p-values adjusted for multiple testing using the FDR method.  363 

Significant correlations (FDR < 0.05) were visualised as a heatmap with diseases and 364 

medications ordered by hierarchical clustering of the correlation matrix. The overlap of 365 

nominally significant (p<0.05) gut microbiota associations between pairs of disease states 366 

and medications was assessed using the Jaccard index. Overlaps were compared only where 367 

diseases and medications were significantly correlated and each had at least ten nominally 368 

significant gut microbiota associations. 369 

 370 

Data Availability 371 

TwinsUK 16S rRNA gene sequencing data is available from the BioProject database under 372 

accession code PRJEB13747 373 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB13747]. 374 

 375 
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 460 
Figure Legends 461 

 462 

Figure 1. Gut microbiota associations with common diseases in TwinsUK. a) Counts of 463 
afflicted and unafflicted individuals for common diseases within the subset of TwinsUK 464 
individuals having gut microbiota profiles. b) Correlation between the diseases when 465 
comparing those with complete data in each pairwise comparison. Phi is equivalent to 466 
Pearson’s correlation for binary variables. Breast cancer and acne are not included as they 467 
had correlation coefficients <0.1 with all other diseases. Data overlaps in each case can be 468 
found in Supplementary Data 6. c) The number of associations observed with gut microbiota 469 
markers for each disease. Colour represents the direction of the association and darker bars 470 
represent those significant after FDR adjustment. d) The number of afflicted individuals in 471 
the study plotted against the number of nominally significant associations observed (p<0.05) 472 
for each disease. 473 
 474 

Figure 2. Gut microbiota traits have consistent associations with multiple diseases. Both 475 
diseases and microbiota traits have been clustered based on cosine distances generated from 476 
the beta coefficients of all nominally significant (p<0.05) associations. Beta coefficients have 477 
been arcsine transformed for visualisation. Non-significant associations have been scored 0 478 
and hence coloured white. Diseases or microbiota traits with no significant associations are 479 
not shown. Bootstrap clustering of microbiome traits identified two significant clusters 480 
highlighted in the left dendrogram; one contains traits generally at higher abundance with 481 
disease and the other traits generally at lower abundance with disease (or higher in healthy 482 
individuals). 483 
 484 

Figure 3. Gut microbiota associations with common prescription medications in 485 
TwinsUK. a) Counts of users and non-users of medications within the subset of TwinsUK 486 
individuals with gut microbiota profiles. b) Correlation between use of medications when 487 
comparing those with complete data in each pairwise comparison. Phi is equivalent to 488 
Pearson’s correlation for binary variables. Medications with Phi coefficients <0.1 with all 489 
other medications are not shown. Data overlaps in each case can be found in Supplementary 490 
Data 6. c) The number of associations observed with gut microbiota markers for each 491 
medication class. Colour represents the direction of the association and darker bars represent 492 
those significant after FDR adjustment. d) The number of users of each medication in the 493 
study plotted against the number of nominally significant associations observed (p<0.05) for 494 
each. 495 
 496 
 497 
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Figure 4. Overlap of disease and treatment associations in the gut microbiota. a) 498 
Heatmap of the correlation between disease status and medication use status across the 499 
cohort. All non-significant correlations (FDR < 0.05) are coloured white. Rows and columns 500 
are ordered by hierarchical clustering of correlation coefficients. b) Plot of the correlation 501 
between the significantly correlated disease-medication pairs in A versus the overlap between 502 
their associations with the gut microbiota. Showing there are cases where both correlation 503 
and overlap are high, but also those where there can be high overlap independent of 504 
correlation and vice-versa. For clarity, specific examples that are discussed in the manuscript 505 
are highlighted. A complete annotation is available in Supplementary Fig. 6. 506 
 507 
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