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Neuroticism is a relatively stable personality trait characterised by negative emotionality 26 

(e.g., worry, guilt) 1; twin study heritability ranges 30 to 50% 2, and SNP-based heritability 27 

ranges 6 to 15% 3-6. Increased neuroticism is associated with poorer mental and physical 28 

health 7,8, translating to high economic burden 9. Genome-wide association (GWA) studies of 29 

neuroticism have identified up to 11 genetic loci 3,4. Here we report 116 significant 30 

independent loci from a GWA of neuroticism in 329,821 UK Biobank participants; 15 of 31 

these replicated at P<.00045 in an unrelated cohort (N = 122,867). Genetic signals were 32 

enriched in neuronal genesis and differentiation pathways, and substantial genetic 33 

correlations were found between neuroticism and depressive symptoms (rg = .82, SE=.03), 34 

major depressive disorder (MDD; rg = .69, SE=.07) and subjective wellbeing (rg = -.68, 35 

SE=.03) alongside other mental health traits. These discoveries significantly advance our 36 

understanding of neuroticism and its association with MDD. 37 

Main  38 

Understanding why people differ in neuroticism will provide an important 39 

contribution to understanding people’s liability to poor mental health throughout the life 40 

course. The strong genetic correlation between neuroticism and mental health, especially 41 

anxiety and major depressive disorder 10,11, means that exploring the genetic contribution to 42 

differences in neuroticism is one way to understand more about these common and 43 

burdensome, but aetiologically intractable illnesses. In the largest GWA study of major 44 

depressive disorder (MDD; 130,664 cases vs 330,470 controls), 44 independent genetic loci 45 

were identified 12. 46 

UK Biobank has health, medical and genetic information for over 500,000 individuals 47 

aged 39-73 years from the United Kingdom, assessed between 2006 and 2010 13,14. We 48 

performed a GWA analysis of trait neuroticism in 329,821 unrelated White British adults 49 

(152,710 male (46.3%)) with high-quality genotype data (Online Methods). Neuroticism was 50 
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measured by the total score of the 12-item Eysenck Personality Questionnaire-Revised Short 51 

Form (EPQ-R-S) 15; missing item data (ranging 1.8% to 4.7%) were imputed with reference 52 

to age and sex, and individuals with greater than 4 missing items were excluded 53 

(Supplementary Note, Supplementary Table 1 and Supplementary Fig. 1). For analysis, the 54 

score was residualized for the effects of age, sex, assessment centre, genotype batch, array, 55 

and 40 genetic principal components. This score was tested against 18,485,882 bi-allelic 56 

single nucleotide polymorphism (SNP) variants, based on the Haplotype Reference 57 

Consortium panel 16, with a minor allele frequency ≥ 0.0005 and an information/imputation 58 

quality score of ≥ 0.1 under an additive model. The distribution of obtained versus expected 59 

results under the null hypothesis showed some genomic inflation, with a lambda of 1.15 60 

(quantile-quantile plot shown in Supplementary Fig. 2). Univariate linkage disequilibrium 61 

score (LDSC) regression 17 estimates indicated that 96.8% of this inflation was due to the 62 

presence of a large polygenic signal with the intercept being close to 1 (1.02, SE = .01). SNP-63 

based heritability of neuroticism was estimated at .108 (SE=.005) using LDSC. 64 

Genome-wide significance (P < 5 x 10-8) was demonstrated for 10,353 genetic 65 

variants with a further 17,668 variants at a suggestive level (P < 1 x 10-5) (Supplementary 66 

Table 2). The Manhattan plot is shown in Figure 1 and gene annotation for the significant 67 

SNPs in Supplementary Table 3. SNPs identified in previous neuroticism GWA studies were 68 

mostly significant in our sample (Supplementary Note and Supplementary Table 2) and 69 

substantial overlap with MDD SNPs (75%) and genes was found (Supplementary Note and 70 

Supplementary Table 4). The major histocompatibility complex (MHC) region has been 71 

previously linked to schizophrenia, a psychiatric comorbidity trait (including MDD) 18,19 and 72 

MDD 12. It contained 3 significant independent genetic loci associated with neuroticism, two 73 

were in genes (GABBR1, TNXB) connected with schizophrenia 20,21. The primary associated 74 

SNP, rs2021722, for schizophrenia 18, was present in our study and nominally significant (P = 75 
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9.42 x 10-5). Supplementary Figure 3 indicates the previous MHC associations in relation to 76 

our findings. 77 

116 of the significant SNPs were independent (r2 > 0.1 and within 500kb of the 78 

significant index SNP); these lead SNPs are shown in Supplementary Table 5 with the 79 

number of associated SNPs, region size, and genes within the LD interval. 73 lead SNPs were 80 

located within genes, 5 were exonic (in MSRA, NOS1, PINX1, ZCCHC14, and C12orf49) and 81 

a further 2 were coding SNPs in RPP21 (a missense mutation) and AGBL1 (synonymous), 55 82 

were intronic and 10 were noncoding RNA variants; 42 were intergenic. For the 116 83 

independent SNPs, evidence of expression quantitative trait loci (eQTL) was explored using 84 

the GTEx database, 44 were eQTLs (Supplementary Table 5). A Regulome DB score was 85 

used to identify SNPs with a likely regulatory function. 33 of the 116 SNPs were included in 86 

the Regulome DB database and 8 of these had a score < 3, indicating that they are likely to be 87 

involved in gene regulation (Supplementary Table 5). 88 

Replication of the significant association signals in UK Biobank was sought from the 89 

results of a GWA meta-analysis of neuroticism that we performed using 23andMe (N = 90 

59,206) 22 and the Genetics of Personality Consortium (GPC-2; N = 63,661) 23. Of the 10,353 91 

genome-significant SNPs in UK Biobank, 10,171 were available in the replication cohorts, 92 

and 8,774 of these increased in significance when the replication cohorts were meta-analysed 93 

with UK Biobank. This indicated a consistent direction of allelic effect (Supplementary Table 94 

6).  95 

INSERT FIGURE 1 ABOUT HERE 96 

 97 

Of the 116 independent associated SNPs, 111 were present in the replication cohort, 98 

with 51 nominally significant (P < .05; Supplementary Table 5), and 15 at a Bonferroni-99 

corrected level (P < .00045; Table 1). One of these, rs2953805, was previously associated 100 
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with morning chronotype 24, a trait relating to lower neuroticism 25 and showing allelic effects 101 

in the expected direction. The low replication rate (13.5%) at a strict corrected level reflects 102 

the finding that effect sizes are extremely small (up to .02 of a SD increase in neuroticism 103 

score per allele) and will thus require similarly large replication samples to confirm their 104 

effects. Figure 2a-c shows the regional association plot for chromosomes 8, 11 and 22 in 105 

which multiple genes were present in the associated LD region. Of the five chromosome 8 106 

loci only one lead SNP tagged a well-known inversion, previously linked to neuroticism 107 

(Supplementary Note and Supplementary Fig. 4), although associations in the broad region 108 

had been attributed to the inversion 4 and so might cautiously be considered as a single locus.  109 

All 69 genes located within the 15 replicated loci were classified in terms of their 110 

molecular function, biological process and protein class using the Protein Analysis Through 111 

Evolutionary Relationships Classification System which includes 14,710 protein families 112 

categorised into 76,032 functionally distinct subfamilies 26. Supplementary Figure 4 shows 113 

that a large number of genes 1) coded for nucleic acid binding and transcription factors, 2) 114 

contributed to metabolic and cellular processes, and 3) had a role in binding and catalytic 115 

activity molecular functioning. Transcription factors, in particular, have been implicated in 116 

the aetiology of depression 27,28, and miRNAs—which have been linked with anxiety29 and 117 

depression 30—might target genes with roles in binding (e.g., POLR3H). The PsyGeNET 118 

(v2.0) database showed that of the 69 genes, four have been associated with psychiatric 119 

disorder (Supplementary Table 7): DRD2 (bipolar, depression, substance use/dependence, 120 

delirium), EP300 (alcoholic intoxication), TEF (depression) and MSRA (schizophrenia). 121 

Variants in CACNA1E have been associated with cross-psychiatric disorder overlap and 122 

migraine 18,31. 123 

A GTEx database search for the 15 replicated SNPs showed that 9 were associated 124 

with significant regulation of 60 genes expressed in a variety of tissues (Supplementary Table 125 
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8). Of the 30 brain expression associations, half of these were in the cerebellum: 4 SNPs 126 

regulating 10 genes. Interestingly, MRI studies have shown associations between cerebellar 127 

volume and neuroticism, and cerebellar blood flow in response to negative emotional cues 128 

32,33. In the BRAINEAC search, all SNPs were identified as eQTLs in at least one brain 129 

region at a nominal significance level (P < .05) and 10 were supported at a Bonferroni-130 

corrected level of P < .0003 (Supplementary Table 9). Of potential interest, rs7107356, a 131 

novel SNP in an intergenic region of chromosome 11, regulates MTCH2 in the cerebellar 132 

cortex (P = 4.5x10-6). MTCH2 is involved in metabolic pathways and cell function 34 and 133 

variants of this gene have been associated with BMI 35. 134 

Gene-based analysis of the GWA results was performed using MAGMA 36 ; 249 135 

genes were significantly associated at a Bonferroni-corrected level (α = 0.05 / 18,080; P < 136 

2.77 × 10-6 ; Supplementary Table 10). Three of these were genes (STH, HIST1H3J, 137 

HIST1H4L) containing a single SNP. Of the replicated independent GWA SNPs that were in 138 

genes, the following significant genes were corroborated in the gene-based results: 139 

CACNA1E, XKR6, MSRA, LINGO2, CELF4, ZC3H7B and BAIAP2. SNP rs6981523, 140 

previously identified in 23andMe for neuroticism 22, was an intergenic SNP near XKR6; this 141 

gene was the second most significant gene in our gene-based analysis (P = 6.55 × 10-32). 142 

L3MBTL2 and CHADL, wherein 23andMe’s other significant SNP, rs9611519, resided, 143 

showed respective gene-based p-values of 2.40 × 10-6 and 1.15 × 10-6.  144 

Pathway analysis in MAGMA highlighted 5 significant gene ontology pathways 145 

(family-wise error P < 1.21 × 10-6): neuron spine (cellular), homophilic cell adhesion via 146 

plasma membrane adhesion molecules (biological), neuron differentiation (biological), cell 147 

cell adhesion via plasma membrane adhesion molecules (biological), and neurogenesis 148 

(biological). See Table 2 for further details. Of note is the neurogenesis pathway, a 149 

hypothesis of which exists for depression (and to a lesser extent, anxiety) based on stress 150 
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reducing neurogenesis in the hippocampus and on the action of antidepressants on brain 151 

circuitry 37,38. Further, variants in PLXNA2, potentially involved in adult neurogenesis, have 152 

been associated with anxiety and neuroticism 39. Cell adhesion molecules have been 153 

implicated in neuropsychiatric disorder 40, and protocadherins specifically with neuroticism 154 

and risk of mood disorder 41, which supports the importance of cell adhesion pathways.  A 155 

further gene-set analysis of genes expressing proteins that can bind to anti-depressant drug 156 

molecules was significant (P = .005) re-affirming the dependency of neuroticism and 157 

depression on shared biological pathways. This is consistent, for example, with findings for 158 

CRHR1 (highlighted in our SNP and gene-based analysis), a gene involved in normal 159 

hormonal responses to stress (the glucocorticoid pathway being a relevant and well-known 160 

target) and associated with anxiety, depression and neuroticism 3,42,43. That genes influencing 161 

neuroticism reveal pathways involved in currently prescribed and effective antidepressant 162 

action suggests that neuroticism could be a potentially useful clinical stratifying factor for 163 

effective antidepressant action. There may also be clinical utility in knowing a person’s level 164 

of neuroticism after the occurrence of a stressful life event and therefore pre-empting onset of 165 

depression via drug therapy in those high in neuroticism. Because our GWA of neuroticism 166 

reveals signals associated with the known biological action of existing antidepressants, it may 167 

be useful as a means of discovering (or re-purposing) new pharmacological interventions for 168 

MDD. 169 

LD score regression 44 was used to estimate the genetic correlation between 170 

neuroticism and a variety of health traits (Supplementary Tables 11 and 12). The strongest 171 

correlation was observed for depressive symptoms (rg = .82, SE = .03). Major depressive 172 

disorder, subjective wellbeing, and tiredness showed moderate-to-strong correlations (.62-173 

.69). The stronger correlation for depressive symptoms than depressive disorder might be 174 

indicative of improved sensitivity of continuous versus dichotomous traits but might also 175 
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point to inventory item overlap (greater conceptual similarity) for depressive symptoms 176 

and/or noise in MDD diagnosis. Genetic correlations with neuroticism were moderate for 177 

self-rated health (.41), moderate-to-low for schizophrenia, ADHD, anorexia nervosa and 178 

educational attainment (~|.20|), and low for bipolar disorder and smoking status (|.11|). The 179 

genetic correlation of one between Eysenck neuroticism and other neuroticism scales (used 180 

by 23andMe and the GPC) confirms that GWA meta-analysis based on different 181 

measurement instruments is valid. Mendelian randomization was used to determine whether 182 

the genetic correlation between neuroticism and non-psychiatric variables (less likely to be 183 

influenced by pleiotropy), smoking status and educational attainment, represented a causal 184 

relationship from neuroticism. For smoking status, the beta of 0.23 was significant in the 185 

inverse variance weighted model (P = .00002) which is preferred in the presence of 186 

heterogeneity (P = .001); the MR Egger regression did not show significant directional 187 

pleiotropy (intercept = 0.02, P = .10) thus supporting a causal relationship. For educational 188 

attainment, the beta of -0.09 was significant (P = 8.35 × 10-6) in the inverse variance 189 

weighted model (heterogeneity P = 5.87 × 10-7), with no evidence of directional pleiotropy 190 

(intercept = 0, P = .23). Although theoretically less plausible, the reverse causal direction 191 

should be investigated in UK Biobank once a large number of significant SNPs influencing 192 

smoking status and educational attainment have been estimated in non-overlapping samples.  193 

Polygenic profile analyses based on the SNP inclusion threshold with the optimal 194 

signal-to-noise ratio (P < .05) indicated that the neuroticism polygenic score explained 2.79% 195 

of the variance in neuroticism (β = .19, P = 2.65 × 10-47) and 0.8% of the variance in 196 

depression status (OR = 1.25, P = 1.53 × 10-8) in Generation Scotland (GS; N = 7,388) 45. 197 

Results for polygenic scores in GS based on other SNP significance inclusion thresholds 198 

(0.01, 0.05, 0.1, 0.5 and 1) from the UK Biobank GWA can be found in Supplementary Table 199 

13. 200 
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The combination, in UK Biobank, of a large ethnically homogenous sample and a 201 

well-validated neuroticism scale has afforded the discovery of 15 stringently replicated 202 

genetic loci that influence neuroticism levels, four of them novel. Most lead variants were 203 

associated with gene regulation, with half of these expressed in the brain; single variant and 204 

gene associations overlapped substantially with MDD findings, and genes in antidepressant-205 

targeted pathways were over-represented. There was also support for neuroticism having 206 

causal effects on socio-economic markers. These discoveries promise paths to understand the 207 

mechanisms whereby some people become depressed, and of broader human differences in 208 

happiness, and they are a resource for those seeking novel drug targets for major depression. 209 

After millennia in which scholars and researchers have sought the sources of individual 210 

differences in proneness to dysphoria 46, the present study adds significantly to explaining the 211 

(genetic) anatomy of melancholy. 212 

 213 
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Figure Legends for Main Text 373 

Figure 1. GWA results for neuroticism in 329,821 UK Biobank individuals. 374 

 375 

Figure 2. Regional association plot for suggestive/significant signals in UK Biobank on a) 376 

chromosome 8p (site of the inversion polymorphism), b) chromosome 11, and c) 377 

chromosome 22. The SNP association p-value is shown on the y-axis and the SNP position 378 

(with gene annotation) appears on the x-axis; for each SNP, the strength of LD with the lead 379 

SNP is colour coded based on its r2. Plots were produced in LocusZoom. 380 

  381 
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Table 1. Fifteen independent SNPs associated with neuroticism in UK Biobank most strongly replicated (with consistent allelic effect) in 383 
the meta-analysis of 23andMe and the GPC cohorts. Bolded genes were significant in the gene-based tests. 384 

Chr SNP MAF Discovery P-
value 

(N=329,821) 

Replication 
P-value 

(N=122,867) 

Nearest Gene Distance 
to Gene 

Genes within Range Significant in 
Previous GWA 

Studies 
1 rs169235 .25 3.97×10-9 

 
2.55E-05 CACNA1E** 0   

5 rs1422192^ .17 1.68×10-9 6.54E-07 LINC00461 0 MEF2C**  
8*ǂ rs2921036 .49 8.04×10-26 3.27E-07 . . CLDN23, ERI1**, MFHAS1**, 

SGK223 
 

8*ǂ rs2953805 .47 3.02×10-22 1.26E-08 U3 1292 CLDN23, ERI1**, MFHAS1**, 
PPP1R3B 
 

Morning vs 
Evening 
Chronotype 24  

8*ǂ rs6982308 .49 6.46×10-21 2.26E-08 MSRA** 0   
8*ǂ rs7005884 .45 1.92×10-23 1.34E-07 XKR6 0 C8orf74, PINX1**, PRSS55**, 

RP1L1, SOX7**, XKR6 
 

8*ǂ rs10097870 .47 2.18×10-24 6.51E-07 LINC00208 5665 BLK**, CTSB**, DEFB134**, 
DEFB135, DEFB136, 
FAM167A**, FDFT1, GATA4, 
LOC100133267, MTMR9, 
NEIL2, SLC35G5, XKR6 

 

9 rs1521732 .37 2.91×10-9 4.01E-06 LINGO2 0   
9 rs72694263 .08 2.12×10-8 0.000237 . .   
11* rs7107356 .50 1.52×10-12 1.34E-05 AGBL2 4973 ACP2, AGBL2, C1QTNF4, 

CELF1, DDB2**, FAM180B, 
FNBP4**, KBTBD4, MADD**, 
MTCH2**, MYBPC3, NDUFS3, 
NR1H3, NUP160**, PSMC3, 
PTPMT1, RAPSN, SLC39A13**, 

Neuroticism 4 
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SPI1 
11* rs7111031 .36 1.06×10-15 0.000215 . . DRD2  
15* rs7175083 .48 1.16×10-9 0.000297 LINGO1 0   
17 rs7502590 .15 2.61×10-11 0.000146 BAIAP2 0 AATK, BAIAP2 

 
 

18* rs11082011 .34 1.25×10-16 2.05E-06 CELF4 0   
22* rs11090045 .30 8.04×10-13 5.40E-07 ZC3H7B** 0 ACO2, C22orf46, CHADL, 

CSDC2**, DESI1, EP300, 
L3MBTL2**, MEI1, NHP2L1, 
PHF5A, PMM1, POLR3H, 
RANGAP1**, RBX1, TEF**, 
TOB2, XRCC6, ZC3H7B** 

 

^ Genotyped SNP 385 

ǂ Located in Inversion Region 386 

* Broad region implicated in previous studies 4,22,45  387 

** Regulated gene expressed in brain 388 

  389 
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Table 2. Significant gene ontology pathways for neuroticism in UK Biobank 390 

Pathway Number 
of genes 

Beta SE P-value Corrected P Definition 

Neuron Spine 147 0.560 0.107 7.77×10-8 0.0282 A small membranous protrusion, often ending in a 
bulbous head and attached to the neuron by a 
narrow stalk or neck. 

Homophilic Cell 
Adhesion Via Plasma 
Membrane Adhesion 
Molecules 

115 0.490 0.0938 8.81×10-8 0.0289 The attachment of a plasma membrane adhesion 
molecule in one cell to an identical molecule in an 
adjacent cell. 

Neuron Differentiation 1341 0.145 0.0288 2.36×10-7 0.0357 The process in which a relatively unspecialized 
cell acquires specialized features of a neuron. 

Cell Cell Adhesion Via 
Plasma Membrane 
Adhesion Molecules 

828 0.183 0.0364 2.72×10-7 0.0372 The attachment of one cell to another cell via 
adhesion molecules that are at least partially 
embedded in the plasma membrane. 

Neurogenesis 195 0.419 0.0859 5.35×10-7 0.0439 Generation of cells within the nervous system 
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Online Methods 391 

Genome-wide association analysis in UK Biobank 392 

An imputed dataset, including >92 million variants, referenced to the UK10K 393 

haplotype, 1000 Genomes Phase 3, and Haplotype Reference Consortium (HRC) panels was 394 

available in UK Biobank. The current analysis includes only those SNPs available in the 395 

HRC reference panel 47. Quality control filters were applied (see Supplementary Note) which 396 

resulted in 18,485,882 imputed SNPs for analysis in 329,821 individuals. The GWA of 397 

neuroticism was conducted using BGENIE 48, a program specifically developed to analyse 398 

UK Biobank data in a fast and efficient manner. Further information can be found at the 399 

following URL: https://jmarchini.org/bgenie/. A linear SNP association model was tested 400 

which accounted for genotype uncertainty. Neuroticism was pre-adjusted for age, sex, 401 

genotyping batch, genotyping array, assessment centre, and 40 principal components to speed 402 

up analysis. 403 

The number of independent signals from the GWA analysis was determined using 404 

LD-clumping in PLINK v1.90b3i 49 (see URLs). The LD structure was based on SNPs with a 405 

p-value < 1 × 10-3 that were extracted from the imputed genotypes. Index SNPs were 406 

identified (P < 5 × 10-8) and clumps were formed for SNPs with P < 1 × 10-5 that were in LD 407 

(r2 > 0.1) and within 500kb of the index SNP. SNPs were assigned to no more than one 408 

clump. 409 

 410 

Meta-analysis of GWA Results 411 

Two meta-analyses were performed. Firstly, to check for replication of the significant 412 

(P < 5 × 10-8) GWA signals in UK Biobank, results from a meta-analysis of 23andme 50 (the 413 

full GWA summary statistics were made available from 23andMe) and the Genetics of 414 

Personality Consortium (GPC-2) 51 (the full GWA summary statistics were publicly available 415 
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see URLs ) were used. This meta-analysis was conducted using METAL 52 and due to the 416 

lack of phenotype harmonisation across the cohorts, a sample size weighted meta-analysis 417 

was preferred. A second meta-analysis of UK Biobank and the replication cohorts was 418 

performed using the same method, but only for the SNPs that were significant in UK 419 

Biobank. 420 

 421 

Genome-wide Gene-based Analysis 422 

Gene-based analysis of neuroticism was performed using MAGMA 53, which 423 

provides gene-based statistics derived using the results of the GWA analysis. Genetic variants 424 

were assigned to genes based on their position according to the NCBI 37.3 build, with no 425 

additional boundary placed around the genes. This resulted in a total of 18,080 genes being 426 

analysed. The European panel of the 1000 Genomes data (phase 1, release 3) was used as a 427 

reference panel to account for linkage disequilibrium. A genome-wide significance threshold 428 

for gene-based associations was calculated using the Bonferroni method (α=0.05/18,080; P < 429 

2.77 × 10-6). 430 

 431 

Functional annotation and gene expression 432 

For the 116 independent genome-wide significant SNPs identified by LD clumping, 433 

evidence of expression quantitative trait loci (eQTL) and functional annotation were explored 434 

using publicly available online resources. The Genotype-Tissue Expression Portal (GTEx) 435 

(see URLs) was used to identify eQTLs associated with the SNPs. Functional annotation was 436 

investigated using the Regulome DB database 54 (see URLs). Further to GTEx searches, we 437 

investigated whether any of the 15 replicated SNPs were brain expression quantitative loci 438 

(eQTLs) by entering them into the brain eQTL database BRAINEAC (see URLs), which 439 
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contains gene expression data across ten brain regions (cerebellar cortex, frontal cortex, 440 

hippocampus, medulla, occipital cortex, putamen, substantia nigra, temporal cortex, thalamus 441 

and intralobular white matter). The genes located in the region of replicated independent loci 442 

were investigated for protein function using the PANTHER database (Protein ANalysis 443 

THrough Evolutionary Relationships, see URLs ) which stores data on the evolution and 444 

function of protein-coding genes from sequenced genomes of diverse species 55, our focus 445 

here on homo sapiens. Uncharacterized gene function is predicted via phylogenetic branching 446 

information and the resource enables biological pathway annotation. 447 

 448 

Pathway Analysis 449 

Biological pathway analysis was performed on the gene-based analysis results. This 450 

gene-set enrichment analysis was conducted utilising gene-annotation files from the Gene 451 

Ontology (GO) Consortium (see URLs) 56 taken from the Molecular Signatures Database 452 

(MSigDB) v5.2. The GO consortium includes gene-sets for three ontologies; molecular 453 

function, cellular components and biological function. This annotation file consisted of 5,917 454 

gene-sets which were corrected for multiple testing correction using the MAGMA default 455 

setting correcting for 10,000 permutations. 456 

To determine whether the genetic targets of antidepressants were enriched for 457 

neuroticism we performed a competitive gene-set analysis using MAGMA. Gene sets 458 

corresponding to the Anatomical Therapeutic Chemical Classification System code N06A 459 

Antidepressants (within the Psychoanaleptics class) were downloaded (see URLs). This 460 

resulted in a set of 110 unique genes corresponding to those that are the targets of the 461 

antidepressants. Enrichment for neuroticism was tested against a set of 5483 ‘druggable’ 462 

autosomal genes (see URLs), that is, they code for proteins which can bind to drug-like 463 
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molecules. Of the 110 antidepressant genes 86 were found amongst the 5483 druggable 464 

genes. 465 

 466 

Linkage Disequilibrium Score Regression 467 

Univariate Linkage disequilibrium Score (LDSC) regression 57 was used to test for 468 

residual stratification in our GWAS summary statistics and to derive a heritability estimate. 469 

An LD regression was performed by regressing the GWA test statistics (χ2) on to each SNP’s 470 

LD score (the sum of squared correlations between the minor allele frequency count of a SNP 471 

with the minor allele frequency count of every other SNP). This regression allows for the 472 

estimation of heritability from the slope, and a means to detect residual confounders, the 473 

intercept. The percentage inflation in the test statistic due to polygenic signal can be derived 474 

by subtracting the LDSC ratio ((intercept - 1)/(mean χ2 - 1)), which represents inflation due to 475 

population stratification and other confounding, from 1 and multiplying by 100. Bivariate 476 

LDSC regression 58 was used to derive genetic correlations between neuroticism and 18 477 

psychiatric and physical health phenotypes (see Supplementary Table 11). For Alzheimer’s 478 

disease, a 500-kb region surrounding APOE was excluded and the analysis re-run 479 

(Alzheimer’s disease (500kb)). The genetic correlation between neuroticism as measured by 480 

different inventories was also estimated. Further details, including source of GWA summary 481 

statistics can be found in the Supplementary Note. Sample overlap could not be controlled for 482 

in the LDSC analyses because the exact overlap between the UK Biobank data and the health 483 

traits was unknown. In such a case, constraining the intercept to a ‘wrong’ value could lead to 484 

biased estimates. Any sample overlap in the present analyses will only affect the intercept of 485 

the regression and could lead to inflated standard errors, but will not affect the genetic 486 

correlation 12. 487 

 488 
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Mendelian Randomization 489 

Two sample Mendelian Randomization (MR) was performed using the TwoSampleMR 59 490 

package implemented in R. GWA summary statistics from the GWA of smoking status in 491 

74,053 Europeans 60 was used to create outcome data for the MR between neuroticism and 492 

smoking status. 77 independent SNPs associated with neuroticism were available in the 493 

smoking status GWA summary data to test for a causal effect of neuroticism on smoking 494 

status. There were no significant SNP signals for smoking status to test the reverse causation 495 

model. GWA summary statistics from the GWA of educational attainment in 126,559 496 

Caucasians 61 was used to create outcome data for the MR between neuroticism and 497 

educational attainment. 75 independent SNPs associated with neuroticism were available in 498 

the educational attainment GWA summary data to test for a causal effect of neuroticism on 499 

educational attainment. There were too few significant SNPs available for educational 500 

attainment to test for a causal effect of educational attainment on neuroticism. Sensitivity 501 

analyses were performed to test for heterogeneity and a further test for horizontal pleiotropy 502 

was carried out.  503 

 504 

Polygenic Prediction into Generation Scotland 505 

Polygenic profile analyses were performed to predict neuroticism and depression status in 506 

Generation Scotland (GS) 62. Polygenic profiles were created in PRSice 63 using the UK 507 

Biobank neuroticism SNP-based association results, for 7,388 unrelated individuals in GS. 508 

SNPs with a MAF <0.01 were removed prior to creating the polygenic profiles. Clumping 509 

was used to obtain SNPs in linkage disequilibrium with an r2 < 0.25 within a 250kb window. 510 

Individuals were removed from GS if they had contributed to both UK Biobank and GS (n = 511 

302). Polygenic profile scores were created based on the significance of the association in 512 

UK Biobank with the neuroticism phenotype, at p-value thresholds of 0.01, 0.05, 0.1, 0.5 and 513 
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1 (all SNPs). Linear regression models were used to examine the associations between the 514 

polygenic profile and neuroticism score in GS, adjusting for age at measurement, sex and the 515 

first 10 genetic principal components to adjust for population stratification. Logistic 516 

regression models were used to examine depression status, adjusting for the same covariates 517 

as in the neuroticism models. The false discovery rate (FDR) method was used to correct for 518 

multiple testing across the polygenic profiles for neuroticism at all five thresholds 64. 519 

 520 

Data Availability 521 

The GWA results generated by this analysis are publicly available at 522 

http://www.ccace.ed.ac.uk. 523 

 524 
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