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ENDOCRINOLOGY IN PREGNANCY
Metabolic impact of bile acids in 
gestation
Hei Man Fan, Alice L Mitchell and Catherine Williamson

Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, UK

Abstract

Bile acids are lipid-solubilising molecules that also regulate metabolic processes. Farnesoid X receptor (FXR) and 
Takeda G-protein coupled receptor 5 (TGR5) are two bile acid receptors with key metabolic roles. FXR regulates bile 
acid synthesis in the liver and influences bile acid uptake in the intestine. TGR5 is mainly involved in regulation of 
signalling pathways in response to bile acid uptake in the gut and therefore prandial response. Both FXR and TGR5 
have potential as therapeutic targets for disorders of glucose and/or lipid homeostasis. Gestation is also known to 
cause small increases in bile acid concentrations, but physiological hypercholanaemia of pregnancy is usually not 
sufficient to cause any clinically relevant effects. This review focuses on how gestation alters bile acid homeostasis, 
which can become pathological if the elevation of maternal serum bile acids is more marked than physiological 
hypercholanaemia, and on the influence of FXR and TGR5 function in pregnancy on glucose and lipid metabolism.  
This will be discussed with reference to two gestational disorders: intrahepatic cholestasis of pregnancy (ICP), a 
disease where bile acids are pathologically elevated, and gestational diabetes mellitus (GDM), characterised by 
hyperglycaemia during pregnancy.

Introduction

Bile acids are a group of cholesterol-derived steroids 
with an aliphatic side chain that are synthesised in the 
liver and exported into the bile. Before secretion, bile 
acids are conjugated with either glycine or taurine, 

increasing hydrophilicity and reducing cytotoxicity (1). 
The primary functions of bile acids are to solubilise lipids 
by forming micelles to aid emulsification and facilitate 
absorption of fat by the gut (2), however, recent research 
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has demonstrated that bile acids also have hormonal and 
metabolic functions, particularly in glucose and lipid 
regulation. Bile acid signalling through the receptors 
farnesoid X receptor (FXR) and Takeda G-protein coupled 
receptor 5 (TGR5) (3) occurs in numerous cell types 
throughout the body to propagate metabolic processes.

Pregnancy is associated with a number of metabolic 
adaptations to facilitate fetal growth. There is a gradual 
increase in serum bile acids as gestation progresses, 
although for most women this remains within the normal 
reference range (4). However, for a small number of women, 
serum bile acids are elevated beyond this level, leading 
to intrahepatic cholestasis of pregnancy (ICP) which is 
associated with an increased risk of adverse pregnancy 
outcomes, including preterm birth, prolonged neonatal 
unit admission and stillbirth (4). Women with ICP also 
have an increased risk of developing gestational diabetes 
mellitus (GDM) (5), which is characterised by elevated 
plasma glucose levels and increased insulin resistance. 
Women with ICP have elevated serum triglyceride and 
LDL-cholesterol concentrations (6), similar to GDM, and 
it is thought bile acids and their receptors may also play 
a role in the development of impaired glucose tolerance 
in pregnancy.

In this review, bile acids and their receptors, FXR and 
TGR5, will be discussed in the context of regulation of 
glucose and lipid metabolism, human diseases, and recent 
research into their therapeutic potential. Focus will be on 
the gestational diseases ICP and GDM and the role bile 
acids play in their pathophysiology.

Bile acid homeostasis

Bile components, including bile salts, are synthesised 
in the liver, exported into bile ducts and stored in the 
gallbladder until meal ingestion. High concentrations of 
bile acids are toxic and therefore production and excretion 
are tightly regulated. There are two main pathways for 
bile acid synthesis: the classical and alternative pathway.

In humans, the classical bile acid synthesis pathway 
results in the conversion of cholesterol into the primary 
bile acids cholic acid (CA) and chenodeoxycholic acid 
(CDCA), and accounts for approximately 90% of bile 
acid synthesis. This hepatic-specific pathway involves 
at least 17 separate steps, and activity of the rate-
limiting enzyme cholesterol 7α-hydroxylase (CYP7A1) 
determines the size of the bile acid pool (7), while sterol 
12α-hydroxylase (CYP8B1) increases CA synthesis and 
the CA:CDCA ratio (7). The alternative bile acid synthesis 

pathway starts with hydroxylation of cholesterol by 
sterol 27-hydroxylase (CYP27A1) in extrahepatic sites to 
form 27-hydroxylcholesterol, which is then taken up by 
the liver and the majority converted to CDCA (3). Bile 
salts are formed by conjugation of bile acids with either 
taurine or glycine at a ratio of approximately 1:3 (7), 
and transported into the bile canaliculi through the bile 
salt export pump (BSEP; ABCB11) (8). Other membrane-
residing transporters that influence bile components 
include multidrug resistance protein (MDR3; ABCB4), a 
phosphatidylcholine (PC) floppase that transports PC from 
the inner to the outer canalicular membrane (and into 
the bile), and ATP-binding cassette transporters G5/G8 
heterodimer (ABCG5/8), which transport cholesterol into 
the bile canaliculi (9, 10). From here, bile is transported 
to the gallbladder for storage. Figure 1 summarises the 
role of these hepatic pathways within the enterohepatic 
circulation of bile acids.

Ingestion of food stimulates release of bile from the 
gallbladder which facilitates the digestion and absorption 
of lipids and lipid-soluble vitamins. The gut microbiota in 
the ileum and colon deconjugate the primary bile acids, 
and further modify them through 7-dehydroxylation 
to produce secondary bile acids; lithocholic acid (LCA) 
is formed from CDCA whereas deoxycholic acid (DCA) 
is derived from CA (Fig. 2). The gut microbiota can 
further modify bile acids by 7α/β-epimerisation to make 
ursodeoxycholic acid (UDCA), and more rarely by 3α/β-
epimerisation, 5α/β-epimerisation or oxidation to produce 
iso-, allo-, or oxo-bile acids, respectively (11). The bile 
acid pool in the terminal ileum comprises approximately 
30% CA, 40% CDCA, 20–30% DCA and below 5% LCA 
(1), although this varies between individuals as it is 
influenced by factors including nutrient availability and 
gut microbiota composition. Approximately 95% of the 
bile salts are reabsorbed, either through the apical sodium-
dependent bile acid transporter (ASBT) at the distal ileum 
and colon, or through passive absorption of deconjugated 
or protonated uncharged conjugated bile acids along 
the length of the intestine (12). The remaining 5% is 
excreted in the faeces, and this loss is compensated by 
approximately 500 mg/day de novo bile acid synthesis (1). 
Reabsorbed bile acids are exported from ileal enterocytes 
into the enterohepatic circulation by the heterodimeric 
organic solute transporter α/β (OST α/β) on the basolateral 
membrane of the cells (1). The bile acids are transported 
via the portal vein back to the hepatocytes through the 
sodium taurocholate co-transporting polypeptide (NTCP) 
or organic anion transporting polypeptides (OATP) (1), 
reconjugated, and again exported into the bile duct (Fig. 1).
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The role of bile acid receptors in glucose and 
lipid homeostasis

Daily synthesis of bile acids regulates the plasma 
cholesterol concentration, thereby ensuring this does 
not become too high. Catabolism of cholesterol to bile 
acids is regulated by CYP7A1 expression; high CYP7A1 
expression leads to depletion of hepatic cholesterol and 
increased hepatic LDL receptor expression to replace the 
lost cholesterol by harvesting the circulatory cholesterol 
(13). The bile acid pool and composition are different in 
diabetic states, and there is evidence that the pool could 
increase in type 2 diabetes (T2DM). These changes could 
increase insulin resistance, affecting glucose metabolism 
and progress the pathogenesis of diabetes (2). Bile acid 
activation of FXR and TGR5 is well documented and 
both receptors have roles in bile acid, lipid and glucose 
metabolism. Understanding bile acid activation of FXR 

and TGR5 may provide key insights into the pathogenesis 
of metabolic disease states.

FXR

FXR is a nuclear receptor expressed mainly in the liver, 
intestine and kidneys, and is essential to regulating 
the metabolism and synthesis of bile acids. The 
primary bile acid CDCA is the most potent FXR ligand 
(CDCA>LCA>DCA>CA; Fig. 3) (13). Hepatic FXR 
activation promotes transcription of small heterodimer 
protein (SHP), which represses transcription of CYP7A1, 
thereby reducing hepatic synthesis of bile acids (1) (Fig. 
1). FXR also upregulates the expression of MDR3 and 
BSEP, promoting efflux of bile acids to further prevent 
bile acid build-up within hepatocytes. Intestinal FXR 
activation, via transintestinal bile acid flux, induces the 

Figure 1
Enterohepatic circulation of bile acids 
schematic detailing the formation and 
export of bile acids into the intestinal 
tract. Bile acids are modified from primary 
to secondary forms by and deconjugation 
and 7α-dehydroxylase produced by gut 
bacteria. The majority of bile acids are 
reabsorbed through enterocytes 
(approximately 95%), with the remainder 
(~5%) excreted in the faeces. Reabsorbed 
bile acids in the L-cells activate TGR5 on 
the basolateral side which potentiates 
GLP-1 release. The reabsorbed bile acids 
are transported back to the liver via the 
portal vein, completing the enterohepatic 
cycle. FXR, Farenesoid X receptor; TGR5, 
Takeda G-protein coupled receptor 5; GLP-
1, glucagon-like peptide-1; ASBT, apical 
sodium-dependent bile acid transporter; 
OST α/β, organic solute transporter α/β; 
NTCP, taurocholate co-transporting 
polypeptide; OATP, organic anion 
transporting polypeptides; FGFR4, 
fibroblast growth factor receptor 4; 
CYP7A1, cholesterol 7α-hydroxylase; 
MDR3, multidrug resistance protein; BSEP, 
bile salt export pump; ABCG5/8, ATP-
binding cassette transporters G5/G8 
heterodimer; FGF19/15, fibroblast growth 
factor 19/15.
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expression of fibroblast growth factor 19 (FGF19/FGF15 
in mice) which is secreted by the intestinal epithelial 
cells. FGF19 is transported in the portal vein and binds 
hepatocyte fibroblast growth factor receptor 4 (FGFR4)/
beta-Klotho to cause repression of CYP7A1 transcription, 
further downregulating bile acid synthesis (2) (Fig. 1).

FXR influences lipid and glucose metabolism

Through transcriptional regulation, FXR activation also 
stimulates β-oxidation of fatty acids and decreases lipid 
levels in the serum and liver (14). Activation of hepatic 
FXR with agonists in diabetic/obese mice or rats fed a 
high-fat diet reduced serum and liver triglycerides and 
lipids. Hepatic expression of genes involving fatty acid 
synthesis, lipogenesis and gluconeogenesis were also 
reduced (15, 16). This demonstrates the importance of 
FXR in lipid metabolism and that FXR agonists have the 
potential to improve metabolic abnormalities. 

Studies have also shown that activation of FXR has 
a beneficial effect on glucose metabolism, with FXR 
agonistic treatment or FXR overexpression lowering blood 
glucose levels in diabetic mice (17). Pathak and colleagues 
demonstrated that FXR agonists improve glycaemia and 
reduce diet-induced weight gain in mice (18), and another 
study demonstrated that bile acid activation of FXR in mice 
repressed gluconeogenic gene expression (19). Through 
FXR activation, mice fed a CA diet had reduced expression 
of phosphenolpyruvate carboxykinase, the rate-limiting 
enzyme in gluconeogenesis (20). FXR-null mice develop 
elevated serum free fatty acids, alongside impaired glucose 
and insulin tolerance, and elevated serum glucose levels. 
Activation of FXR with agonists in WT mice decreased 
serum glucose (17, 19). Other studies, however, have shown 
beneficial effects of inhibition or deletion of FXR (21, 22). 
Mice with intestine-specific FXR knockout had improved 
oral glucose tolerance and lower body weight (21, 23). 
These contradictions could be explained by the differential 
effects of FXR activation in the liver vs the intestine.

Figure 3
Order of potency of bile acids for FXR and 
TGR5 potency of bile acids to FXR and 
TGR5. CDCA and LCA most potent to FXR 
and TGR5, respectively, with CA being 
least potent for both receptors. 3D 
structures created using PerkinElmer 
ChemDraw. EC50 refers to the 
concentration that gives half-maximal 
response.

Figure 2
Bile acid structures pathways displaying 
the formation and structures of primary 
and secondary bile acids in their 
unconjugated form, derived from 
cholesterol.
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It is also important to note that FXR expression is 
found in peripheral tissues including adipose tissue, 
islets of Langerhans and adrenal glands (24), and could 
contribute to glucose and lipid metabolism via actions in 
these tissues. In vivo and in vitro experiments involving 
animal islets demonstrated activation of FXR by bile acid 
stimulated insulin secretion (25, 26). In adipocytes, FXR 
appears to play a role in differentiation and promotes 
adipogenesis (27, 28). 

TGR5

Bile acids also bind and activate TGR5, a cell surface 
G-protein-coupled receptor widely expressed in 
humans and animals. However, the most potent bile 
acid ligands for TGR5 differ to those that activate FXR 
(LCA>DCA>CDCA>CA; Fig. 3) (29). When activated, TGR5 
stimulates adenylyl cyclase to increase concentrations of 
cyclic AMP, activating protein kinase A (PKA) and exerting 
cytosolic effects including calcium mobilisation and 
activating cellular signalling cascades such as nuclear factor 
κB, extracellular signal-regulated kinases and Akt/protein 
kinase B pathways (30, 31). Often, the signalling pathways 
of TGR5 are influenced by cell type and conditions. 
Most notable is its expression in the enteroendocrine L 
cells. TGR5 activation causes secretion of gut hormone 
glucagon-like-peptide 1 (GLP-1) in the small intestine and 
colon, which promotes insulin secretion (18, 32, 33) (Fig. 
1). Activation of TGR5 receptors at the pancreatic islets 
causes release of insulin and improves insulin sensitivity 
and glycaemic control (34, 35).

TGR5 activation also plays a role in lipid metabolism 
and energy expenditure. White and brown adipose 
tissue (WAT and BAT, respectively) are the two major 
adipose tissues in the body. WAT is adapted for storage 
of surplus fatty acids derived from the diet in the form of 
triglycerides and for subsequent release under conditions 
of negative energy balance in the body. WAT is also 
known to contribute to the inflammatory response that 
occurs in obesity (36, 37). In contrast, BAT is a highly 
vascularised, mitochondria-rich organ containing 
uncoupling protein 1 (UCP-1), which generates heat by 
uncoupling the mitochondrial proton gradient (38). TGR5 
agonism causes remodelling of white adipocytes to give 
a more brown adipocyte-like phenotype, thus increasing 
β-oxidation and energy expenditure (39, 40). Improved 
glucose metabolism and energy consumption are induced 
by the cAMP/PKA pathway in TGR5-activated skeletal 
muscle, alongside promoting muscle cell differentiation 

and hypertrophy to increase muscle strength and 
function (41, 42). TGR5 expression is also found in 
several immune cells such as monocytes, macrophages 
and Kupffer cells; its activation exerts anti-inflammatory 
activities, including inhibition of the production of pro-
inflammatory cytokines and induction of differentiation 
of anti-inflammatory immune cells (31, 43, 44). Many 
metabolic diseases have an inflammatory component, 
including diabetes; thus, TGR5-mediated regulation of 
immune cell function warrants further investigation.

Further bile acid receptors

Other receptors have been reported to have affinity 
towards bile acids. The primary function of the pregnane X 
receptor (PXR) is to detect foreign substances and protects 
the body by promoting transcription of genes involved 
in removing and metabolising toxic substances. PXR is 
highly expressed in the liver and intestine, with the most 
potent bile acid ligand being LCA (45). Strong evidence 
exists for ligand-activated PXR playing a role in lipid 
and glucose metabolism, though there are contradictory 
outcomes. Whilst some studies have shown PXR activation 
mediates lipogenesis, suppresses β-oxidation and induces 
hyperglycaemia (46, 47), others have reported that PXR 
activation improves glucose homeostasis and insulin 
sensitivity (48). Species and gender-specific differences 
are thought to explain these variable results. However, 
research on metabolic regulation through bile acid bound 
PXR activation is limited, and further investigations may 
reveal new role for bile acids acting on PXR.

The vitamin D receptor (VDR), when bound to vitamin 
D, mediates calcium and bone metabolism, innate and 
adaptive immune system and cardiovascular function. 
LCA, can agonise VDR in the lower intestine, particularly 
in the ileum (49). However, the physiological relevance 
of LCA modulation of VDR function remains unclear. 
Recent research has pointed towards the ability of LCA to 
provide an immune protective effect at the epithelium via 
VDR activation (50). VDR has also been reported to have 
a role in maintaining glycaemia. A recent in vitro study 
demonstrated that an LCA derivative, LCA propionate, 
protects pancreatic β-cells from dedifferentiation (51). 
It remains to be seen whether LCA can regulate glucose 
metabolism via VDR.

The liver X receptor (LXR) is a nuclear receptor 
which has two isoforms: LXRα, which is highly expressed 
in tissues with high metabolic activity, including the 
liver, small intestine and adipocytes, and LXRβ, which 
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is expressed ubiquitously (45). Unlike FXR, activation 
of LXR increases transcription and activity of CYP7A1, 
increasing bile acid formation and reverse cholesterol 
transport, thus decreasing plasma cholesterol levels (45). 
FXR and LXR activation thus finely tune lipid, glucose 
and bile acid metabolism (13). Though primary bile 
acids are not regarded as agonists for LXR, some minor 
secondary bile acids have agonistic properties, such as 
hyocholic acid (HCA) and hyodeoxycholic acid (HDCA) 
(52, 53). Both HCA and HDCA are found at low levels in 
the serum and the intestinal tract, which raises questions 
as to whether their activation of LXR is of physiological 
relevance. 

Alongside TGR5, other G-protein coupled receptors 
have also been documented to be activated by bile acids. 
Bile acids are known to interact with the muscarinic 
receptors, M1–M5 (3). Muscarinic receptors are responsible 
for the physiological effects of acetylcholine, which acts 
as a neurotransmitter in the brain or neuromuscular 
junctions and also mediates the parasympathetic system 
(3). There is increasing evidence that positive allosteric 
modulation of M3 muscarinic receptors improves glucose 
homeostasis and promotes insulin release (54, 55), and 
mice lacking M3 in pancreatic β-cells displayed impaired 
glucose control and reduced insulin release, producing a 
diabetic phenotype (54). 

Sphingosine-1 phosphate receptor subtype 2 (S1PR2), 
expressed in a variety of tissues, is another G-protein 
coupled receptor (3) for which bile acids are also ligands. 
When activated, S1PR2 mediates numerous cell functions 
including increasing cell permeability, promoting immune 
cell function, muscle contraction and neuron migration 
(56). Research into the role of S1PR2 in metabolic function 
has demonstrated that its activation lowers glucose levels 
and upregulates lipid metabolism (56, 57). 

Gestational changes in bile acid metabolism

Serum bile acid concentrations are raised in pregnancy 
compared to non-pregnant adults, resulting in a mild 
gestational hypercholanaemia. The concentrations of 
CA and CDCA are also reported to change as gestation 
advances (58, 59, 60, 61, 62). The composition of the 
maternal gut microbiome may provide some answers to 
these alterations, with some studies reporting a gradual 
reduction of Bacteroidetes and increase in Firmicutes as 
pregnancy progresses, similar to the changes in microbes 
reported in obesity (63, 64). In a separate study, advancing 
gestation was associated with enhanced microbial bile acid 

deconjugation (secondary to an increase in Baceroidetes-
encoded bile salt hydrolase), reduced ileal bile acid uptake 
and therefore lowered FXR induction in enterocytes 
(65), resulting in increased hepatic bile acid synthesis. 
Along with reduced ileal FXR activity, studies of pregnant 
mice showed reduced FGF15, and reduced expression 
of bile acid transporters late in gestation (65, 66). More 
detailed studies that take account of individual variation 
in gestational phenotypes are required to delineate 
the alterations in specific enterotypes with advancing 
gestation.

Pregnancy hormones have also been shown 
to influence bile acid homeostasis. Studies in mice 
demonstrated that, as serum bile acid levels increase 
during gestation, FXR expression is suppressed. This was 
associated with the downregulation of bile acid transporters 
such as BSEP, NTCP and OATP, particularly exemplified 
in the late stage of pregnancy (67, 68). Hormones such 
as progesterone and oestrogen, whose concentrations 
increase as gestation progresses, contribute to the changes 
in bile acid metabolism. Oestrogen and its metabolites 
inhibit FXR and BSEP, and increase CYP7A1 activity in 
animal studies (67, 69, 70). Similarly, BSEP and NTCP 
are inhibited by sulphated progesterone metabolites, 
and whilst progesterone sulphates exert partial agonism 
towards FXR, this prevents bile acid binding and reduces 
overall activation of FXR (71, 72, 73). Therefore, both 
oestrogen, progesterone and their metabolites contribute 
to raised bile acids during normal pregnancy. 

Metabolic changes also occur during pregnancy to 
accommodate the demands of the fetus. Serum lipids, 
particularly triglycerides, and LDL-cholesterol increase as 
pregnancy progresses (74, 75). Insulin resistance is typically 
seen in pregnancy, which contributes to the stimulation 
of fatty acid synthesis, and increased lipid release into 
the serum (76). Enhanced hepatic gluconeogenesis and 
impaired insulin sensitivity result in higher circulating 
glucose concentrations during the third trimester. Insulin 
resistance is normally compensated for by an increase 
in the size and number of pancreatic islets, thereby 
enhancing glucose-stimulated insulin secretion (GSIS) 
(77). High oestrogen levels during pregnancy stimulate 
hepatic lipogenesis and reduce clearance of circulating 
triglyceride-rich lipoproteins (76). Oestradiol acts on the 
β-cells to enhance GSIS, and is also believed to be involved 
in developing maternal insulin resistance and glucose 
intolerance (78, 79). One of the suggested mechanisms 
of action occurs by oestradiol binding directly to insulin 
and the insulin receptor to cause insulin resistance (80). 
Elevated levels of progesterone have also been implicated 
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in contributing to decreased insulin sensitivity, increased 
insulin resistance and glucose intolerance (79). One 
mechanism through which this occurs is through inhibition 
of insulin-induced glucose transporter type 4 (GLUT4) 
translocation. Progesterone prevents GLUT4 translocation 
by suppressing the phosphoinositide 3-kinase-mediated 
pathway, inhibiting Akt phosphorylation and decreasing 
insulin-induced phosphorylation of Cbl signalling 
proteins, causing reduced cellular glucose uptake (81).

It is likely that TGR5 signalling is affected during 
pregnancy. Activation of TGR5 in enteroendocrine cells 
causes GLP-1 secretion. During normal pregnancy, fasting 
serum GLP-1 concentrations increase from the second to 
third trimester, which is thought to compensate for the 
increase in glycaemia and insulin resistance (82). With 
changes in the gut microbiome promoting enhanced 
hepatic bile acid synthesis, and also increased microbial 
deconjugation and dehydroxylation of primary bile acids 
to LCA and DCA, the TGR5 receptor would be further 
activated, thereby influencing maternal metabolism. 
GLP-1 secretion is key for pancreatic β-cell adaptations. 
During normal pregnancy, islet and β-cell area increase 
to compensate for changes in both mice and humans. 
In GLP-1 receptor null mice, these islet adaptations are 
abolished, suggesting that GLP-1 is a key mediator in β-cell 
mass expansion and related adaptations in pregnancy (83).

Bile acid composition and concentration may 
also differ in gestational disease states compared to 
uncomplicated pregnancies, particularly in the metabolic 
disorders ICP and GDM.

Bile acids in gestational disease

Intrahepatic cholestasis of pregnancy

ICP is the most common pregnancy-specific liver disease. 
Women with ICP most commonly present in the third 
trimester with pruritus and elevated serum bile acids, 
which can occur alongside raised liver transaminases. 
ICP accounts for roughly 1% of pregnancies in Europe 
and North America, with higher incidence in women 
of South Asian and South American ancestry, occurring 
most commonly in Chile and neighbouring countries 
(4). As well as pruritus, hypercholanaemia and abnormal 
liver function, maternal features of ICP include impaired 
glucose tolerance and dyslipidaemia (6). ICP is associated 
with an increased risk of adverse perinatal outcomes, 
including preterm birth, meconium stained amniotic fluid 
and stillbirth (84, 85, 86). ICP has a complex aetiology 
with hormonal and genetic factors. Most women are 

diagnosed when the concentrations of both oestrogens 
and progesterone are at their highest in the later stages 
of pregnancy. Sulphated progesterone metabolites, 
implicated in the pathogenesis of ICP, are elevated in 
women with ICP in the third trimester, but are raised 
before the onset of pruritus (87). Genetic studies have 
demonstrated pathological variants in genes involved in 
bile acid synthesis and transport (particularly ABCB4 and 
ABCB11) in ICP (88, 89).

As well as the total serum concentration, the bile 
acid profile is also altered. In normal pregnancy the CA/
CDCA ratio is increased, and this is further amplified in 
ICP by a larger increase in CA (90, 91). This ratio change 
increases the hydrophilicity of the bile acid pool, due to 
the extra hydroxyl group on CA. This further reduces FXR 
activation in ICP as CA is a less potent agonist of FXR (Fig. 
3), but is likely to be less harmful than if other bile acids 
were elevated as CA should exhibit cytoprotection over the 
more cytotoxic hydrophobic bile acids (92). Activation of 
TGR5 by bile acids, or other agonists such as progesterone 
sulfates, may also play a role in the pruritus associated with 
ICP (87, 93, 94). As well as maternal effects, bile acids have 
been directly implicated in fetal arrhythmias, with fetal 
PR interval elongation and abnormal calcium dynamics 
reported (95, 96, 97, 98). FXR function has also been linked 
to the pathophysiology of ICP. FXR function is reduced in 
pregnancy due to the rise in oestrogen and its metabolites, 
causing a cholestatic phenotype (67, 71). While reduced 
FXR function is likely to occur in all pregnancies, in some 
women gestational changes will exacerbate susceptibility 
to hypercholanaemia to cause ICP.

Ursodeoxycholic acid (UDCA) is a hydrophilic 
secondary bile acid, normally used to treat a variety of 
cholestatic liver disorders. UDCA lowers serum levels 
of bile acids, acting on BSEP, MDR3 and multidrug 
resistance-associated protein 4, which improves biliary 
secretion of bile acids (99, 100). Other effects include 
protection of the liver from bile acid-induced apoptosis, 
anti-inflammatory actions and stabilisation of the ‘biliary 
bicarbonate umbrella’ (101). UDCA treatment also alters 
the bile acid pool, constituting approximately 60% of total 
bile acid measurements in treated women and replacing 
more harmful bile acids (102). UDCA is a commonly used 
treatment for ICP, with studies demonstrating reductions 
in maternal features of ICP, such as itch, hypercholanaemia, 
elevated transaminases and adverse outcomes (103, 104). 
However, a recent trial demonstrated that UDCA did 
not reduce the frequency of a composite endpoint that 
perinatal death, spontaneous and iatrogenic preterm birth 
and admission to the neonatal unit for more than 4 h 
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(105). Ongoing research is evaluating whether UDCA may 
be of benefit to a subgroup of women with ICP, or only 
those at risk of specific adverse pregnancy outcomes.

Gestational diabetes mellitus

GDM is characterised by the pathological development of 
insulin resistance and hyperglycaemia during pregnancy, 
which resolves following delivery. Due to the lack of 
consensus and diagnostic standard for GDM worldwide, 
there is a large variation in the prevalence of GDM which 
makes it challenging to compare across countries and 
regions. Although pre-existing diseases such as obesity 
contribute to the likelihood of developing GDM, multiple 
risk factors are implicated in its pathogenesis, including 
age, ethnicity, family history of diabetes, smoking and 
genetic susceptibility (106). With many women choosing 
to have children at a later stage of their life and maternal 
obesity rates increasing worldwide every year (106), the 
prevalence has been rising, regardless of the diagnostic 
criteria. The pathophysiology of GDM is multifactorial. 
While the metabolic adaptations of normal pregnancy 
described above occur in all pregnancies, GDM occurs 
when the islets cannot meet the heightened insulin 
demand, and the β-cells become defective, resulting in 
hyperglycaemia (106). GDM typically occurs in the third 
trimester when insulin resistance is at its highest and 
peripheral insulin sensitivity at its lowest (106).

GDM is associated with both short- and long-term 
complications. Shorter-term consequences include 
accelerated fetal growth, macrosomia, neonatal 
hypoglycaemia, and jaundice (107, 108, 109). Longer-
term complications include increased risk of developing 
T2DM in both the mother and offspring (107, 110, 111, 
112), and an increased risk of developing metabolic 
syndrome, cardiovascular, kidney and liver diseases for the 
mother (106, 107). A recent study examining 11–12 year 
old offspring of women with GDM determined that these 
children were also at increased risk of hyperglycaemia, 
diabetes and obesity (110, 113). 

Initial treatment for GDM involves a lifestyle 
modification immediately after diagnosis, including 
dietary modification and exercise (114). If hyperglycaemia 
is not resolved within 1–2 weeks, pharmacological 
treatment is initiated. Metformin and/or insulin are often 
given as first line treatments, with sulfonylureas sometimes 
given as an alternative, depending on different country 
guidelines (114). The metformin in gestational diabetes 
(MiG) trial demonstrated that mothers randomised to 
metformin, compared to insulin, had reduced maternal 

weight gain and gestational hypertension (115). However, 
the rate of large for gestational age (LGA) offspring was not 
affected and the children had more s.c. fat at 2 years of age 
after maternal metformin treatment (116). Furthermore, 
metformin use has been associated with greater childhood 
size, adiposity and inferior cardiometabolic health (117). 
These studies have raised concerns that metformin, 
currently used by many women with GDM, does not 
adequately prevent adverse perinatal outcomes, and may 
have negative long-term effects on the metabolic health of 
the children (118). However, a recent study has provided 
more reassuring data: the 3–5 year old children of obese 
women randomised to take metformin in pregnancy had 
lower gluteal and tricep circumferences, lower systolic 
blood pressure and improved left ventricular diastolic 
function compared to the children of obese women 
randomised to placebo (119). Thus, more research is 
required to establish whether maternal metformin 
treatment improves long-term cardiometabolic outcomes 
for exposed fetuses. Indeed, even insulin treatment (the 
‘gold-standard’ pharmacological approach) was not 
shown to be of definitive benefit for GDM offspring in 
the most recent Cochrane review, and was thought 
to possibly increase the risk of raised blood pressure 
compared to oral treatments (120). The sulfonylurea, 
glibenclamide, has not been shown to be superior to 
insulin treatment in randomised trials (121), or as an 
add-on therapy to metformin (122). Sulfonylurea use is 
also linked with higher rates of LGA babies and neonatal 
hypoglycaemia compared with offspring of GDM women 
treated with insulin or metformin (123). Thus, while 
the recommended treatments should be prescribed for 
women with GDM, the potential long-term effects for 
the child should be taken into careful consideration, and 
there is a need for more effective intervention strategies 
to be developed, likely with consideration of individual 
risk factors as GDM is a heterogeneous disorder. However 
treatment for GDM does not seem to improve the long-
term effects seen in children (124, 125), although current 
postpartum studies evaluating children born from GDM 
women are of relatively short duration. 

Impact of bile acids in ICP and GDM

ICP and GDM have some similarities; both are 
gestational metabolic disorders associated with maternal 
dyslipidaemia. Although bile acids and their receptors 
have a greater impact on ICP, it is plausible that bile 
acid signalling also influences the risk of GDM, and 
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modulation of bile acid pathways may be of benefit in 
both conditions.

There is an increasing research focus on the relationship 
between bile acids and the risk of T2DM, in particular the 
relevance of the CA:CDCA ratio and CYP8B1 function 
(126, 127). However, studies of bile acids in GDM are 
comparatively limited. As described earlier in this article, 
elevated serum bile acids and changes in the bile acid pool 
also occur in normal pregnancy and are heightened in ICP. 
Furthermore women with ICP have an increased risk of 
developing GDM (5, 128, 129). Total and individual bile 
acid species have been found to be higher in women with 
GDM in the third trimester (130). Elevated total bile acids 
were also found in women in their first trimester who went 
on to develop GDM (131, 132). However, other studies 
found a reduction in bile acids in GDM women recruited 
from the first and second trimester (133, 134). These 
differences could be due to ethnicity, the heterogeneous 
aetiology of GDM or variations in the method used to 
assay bile acids. The composition of the bile acid pools also 
differs between these studies, and some report alterations 
in the concentrations of minor bile acids that may not 
be of relevance to clinical metabolic phenotypes. This 
discrepancy between studies of bile acids in GDM warrants 
further investigation. It is important for future studies to 
use consistent measurement techniques in large cohorts 
of women with GDM, and to match the BMI in women 
with uncomplicated pregnancies, alongside ethnic group, 
gestational week of pregnancy and feeding/fasting blood 
sampling, as these factors all influence the concentration 
of specific bile acid species in the serum. 

It is possible that changes in FXR and TGR5 activity 
could affect GDM susceptibility. Since both receptors play 
a role in regulation of glucose homeostasis, changes to 
normal receptor function are also likely to affect glucose 
metabolism. Consistent with this, mice deficient of FXR or 
TGR5 develop gestational impaired glucose tolerance, and 
FXR-/- mice have insulin resistance in pregnancy (135). It 
is plausible both FXR and TGR5 could contribute to the 
pathophysiology of GDM and could be the link between 
the increased risk of developing GDM in ICP women.

Bile acid receptors and therapeutics for 
gestational diseases

Due to the increasing evidence of the involvement of FXR 
and TGR5 in energy metabolism, manipulation of these 
receptors could be key in improving metabolic disease 
such as diabetes. As a result of the cytotoxic nature of 

hydrophobic bile acids, concerns have been raised as to 
the safety of using bile acids as pharmaceuticals. To avoid 
this issue, much research has evaluated semi-synthetic 
analogues or synthetic TGR5 or FXR agonists as potential 
therapeutics for metabolic diseases. Studies on targeting 
FXR regulation of metabolism appear to be contradictory. 
The FXR agonist obeticholic acid (OCA) has delivered 
promising results in clinical trials for liver-based metabolic 
diseases and T2DM in non-pregnant adults, including 
improving insulin sensitivity (136). However, in mouse 
models of GDM, OCA did not produce the full effects 
seen in other studies; whilst treatment reduced plasma 
cholesterol, glucose tolerance was not improved (137). 
Research into FXR-specific therapeutics for gestational 
disorders such as ICP or GDM is also currently lacking. 
However, FXR agonism provides some benefits in mouse 
models of hypercholanaemia, with improved fetal bile 
acid profiles (138, 139). 

Likewise, TGR5 agonism has been researched as 
a therapeutic for ameliorating symptoms of diabetes, 
with TGR5 agonists in diabetic mice improving glucose 
homeostasis (41). However, to date, no research has looked 
specifically at the impact of TGR5 receptor activation on 
biochemical features of GDM. Several novel TGR5 agonists 
exist and many show encouraging effects when used in 
animal models of diabetes (140, 141, 142, 143, 144, 145). 
One recent example used a novel, orally administered 
TGR5 agonist, RDX8940. This induced incretin secretion 
and improved insulin sensitivity with minimal side effects 
in western diet-fed mice (145). Another study which used 
another novel TGR5 agonist, WB403, on a model of T2DM 
mice improved glucose tolerance and decreased fasting 
blood glucose. WB403 administration caused changes at 
the islet level, increasing pancreatic β-cells in mice (143). 
Clinical trials using TGR5 selective agonists have also 
been carried out with promising results (146). Side effects 
are a major concern for novel TGR5 agonists due to TGR5 
having broad multi-organ expression. However, using 
organ-restricted agonists would avoid these side effects and 
would consequently likely have acceptable safety profiles. 
Currently TGR5 agonists with low intestinal absorption 
rates have been designed that may have therapeutic value. 
Studies have shown their ability to cross cell membranes 
and that they show specificity for TGR5 receptors 
without contributing to systemic absorption (147, 148). 
Lasalle  et al. 2017 designed a gut-restricted TGR5 agonist 
named compound 24. When used in diet-induced obese 
and insulin resistant mice, sustained GLP-1 release and 
decreased fasted plasma insulin levels were observed with 
low systemic levels of compound 24 detected. Many of 
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these agonists could have the potential in alleviating 
GDM symptoms, though further studies are required to 
explore the relationship between TGR5 and GDM.

Bile acids for the treatment of diabetes are currently 
being investigated. A recent study of UDCA treatment 
in people with T2DM and chronic liver disease resulted 
in weight loss and reduction of HbA1c over 12 weeks 
(149). Furthermore, a meta-analysis showed significant 
reductions in fasting plasma glucose, HbA1c and plasma 
insulin concentrations in UDCA treated people with non-
alcoholic fatty liver disease (a disorder linked with T2DM 
and previous GDM) (150, 151). The improvements seen in 
UDCA treatment for T2DM could translate as a plausible 
treatment for those who have GDM and future studies 
could look to see if these improvements in T2DM could 
be replicated in GDM patients.

Conclusions

Bile acids are signalling molecules that influence energy 
metabolism. Emerging research is revealing that bile 
acids and their receptors contribute to modulation of 
bile acid, lipid and glucose metabolism and that they 
influence the pathophysiology of diseases, including the 
gestational disorders ICP and GDM. Research into FXR 
has expanded the knowledge of not only how the body 
maintains tight control of bile acid production and export 
but has revealed additional roles for this nuclear receptor 
in lipid and glucose metabolism. Conflicting studies exist 
detailing how FXR activation alters glucose homeostasis 
and further research is necessary to clarify its role in 
disorders of glucose homeostasis. On the other hand, 
TGR5 stimulation in the gut, and associated release of 
GLP-1, is likely to be valuable for modulating gestational 
diseases in which women display glucose intolerance. 
Due to TGR5 expression in numerous organs, organ-
specific TGR5 agonists could be an attractive option. 
While the relationship between ICP and bile acids is 
well established, the potential relationship between bile 
acids and susceptibility to GDM is currently less well 
understood. More detailed investigation of the impact 
of therapeutic targeting of bile acid receptors is likely 
to provide data to establish whether this will improve 
metabolic derangements in ICP and GDM, and therefore 
future maternal and child health.
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