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Abstract 

 

Ten years ago, Perspectives on Psychological Science published the Mirror Neuron Forum, debating 

the role of mirror neurons in action understanding, speech, imitation and autism, and asking 

whether mirror neurons are acquired through visual-motor learning.  Subsequent research on these 

themes has made significant advances, which should encourage further, more systematic research: 

Action understanding - Multivoxel pattern analysis, patient studies, and brain stimulation suggest 

that mirror neuron brain areas contribute to low-level processing of observed actions (e.g. 

distinguishing types of grip), but not to high-level action interpretation (e.g. inferring actors’ 

intentions).  Speech perception – Although it remains unclear whether mirror neurons play a 

specific, causal role in speech perception, there is compelling evidence for the involvement of the 

motor system in the discrimination of speech in perceptually noisy conditions.  Imitation – There is 

strong evidence from patient, brain stimulation and brain imaging studies that mirror neuron brain 

areas play a causal role in copying of body movement topography.  Autism – Studies using 

behavioural and neurological measures have tried and failed to find evidence supporting the 

“broken mirror” theory of autism.  Furthermore, research on the origin of mirror neurons has 

confirmed the importance of domain-general visual-motor associative learning, rather than 

canalised visual-motor learning, or motor learning alone.   
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Ten years ago, mirror neurons were everywhere.  In 2011, when Perspectives on Psychological 

Science published a Forum discussing the functions and origins of these fascinating cells (Gallese, 

Gernsbacher, Heyes, Hickok & Iacoboni, 2011; Glenberg, 2011a; Glenberg, 2011b), mirror neurons 

featured in Time magazine and the New York Times; programs about mirror neurons were broadcast 

by CNN and the BBC; and more than 200 articles were published in academic journals implicating 

mirror neurons in, among other functions: action understanding, alexithymia, autism, business 

management, empathy, imitation, language comprehension, language production, literary mimesis, 

post-traumatic stress disorder and schizophrenia.  Measured by number of academic publications, 

interest in mirror neurons peaked two years later in 2013 and then began to decline (Figure 1).  Of 

course, the numbers in Figure 1 are not an infallible measure of scientific interest in mirror neurons.  

Since 2013 researchers may have begun to use other terms for the same targets of investigation.  

However, Figure 1 suggests that cognitive scientists are no longer working as actively in this field, or 

that the mirror neuron “brand” is losing its appeal, or both, and therefore raises the question: What 

happened to mirror neurons?  

 

 

Figure 1. Number of papers published per year from 1996-2019 including the term “mirror neuron” 

in the title, abstract, or keywords. Data from Scopus, 12th May 2020. 

 

Given the extent of public interest in mirror neurons, and the liveliness of the controversy 

they provoked among scientists and philosophers, this question could be fruitfully interpreted in an 

0

50

100

150

200

250

300

350

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
u

m
b

e
r 

o
f 

p
ap

e
rs

Year



4 
 

historical and sociological way.  We could ask about the currents in Western society and in 

contemporary cognitive science that first made mirror neurons “mesmerising” (Heyes, 2010) and 

then weakened their appeal.  But this article takes a more straightforward, natural science approach.  

After a brief introduction to mirror neurons, we use the questions discussed in the Mirror Neuron 

Forum (Gallese et al., 2011), concerning the functions and origins of mirror neurons, to structure a 

succinct survey of research published in the last 10 years.  We then consider whether these recent 

findings have taken the shine off mirror neurons and, if so, whether that reaction is appropriate.   

We conclude that, although the results of careful empirical research were bound to be disappointing 

relative to the more grandiose claims, recent work on mirror neurons should encourage further 

systematic investigation.   

 

Mirror neuron basics  

 

Mirror neurons were discovered by chance in monkeys in 1992 and given their evocative name four 

years later (di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fadiga, Fogassi, & 

Rizzolatti, 1996).  Early studies of the field properties of mirror neurons – the sensory and motoric 

conditions in which they fire – revealed three basic types: “Strictly congruent” mirror neurons 

discharge during execution and observation of the same action; for example, when the monkey 

performs a precision grip and when it passively observes a precision grip performed by another 

agent.  “Broadly congruent” mirror neurons are typically active during the execution of one action 

(e.g. precision grip) and during the observation of one or more similar, but not identical, actions (e.g. 

power grip alone, or precision grip, power grip, and grasping with the mouth).  “Logically-related” 

mirror neurons respond to different actions in observe and execute conditions.  For example, they 

fire during the observation of an experimenter placing food in front of the monkey, and when the 

monkey grasps the food in order to eat it (di Pellegrino et al., 1992).  Strictly and broadly congruent 

mirror neurons were, from the beginning, of primary interest, and they are what we and most other 

researchers mean when they use the term “mirror neuron”.  These cells are intriguing because, like a 

mirror, they match observed and executed actions; they code both “my action” and “your action”. 

Monkey mirror neurons are responsive to the observation and execution of hand and mouth 

actions. The hand actions include grasping, placing, manipulating with the fingers and holding (di 

Pellegrino et al., 1992; Gallese et al., 1996). The mouth actions include ingestive behaviors such as 

breaking food items, chewing and sucking, and communicative gestures such as lip-smacking, lip-

protrusion and tongue-protrusion (Ferrari, Gallese, Rizzolatti, & Fogassi, 2003).  
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Mirror neurons were originally found using single cell recording in area F5 of the ventral 

premotor cortex (di Pellegrino et al., 1992; Gallese et al., 1996) and the inferior parietal lobule  

(Bonini et al., 2010; Fogassi et al., 2005) of the monkey brain.  Subsequently they were found, not 

only in these “classical” areas, but also in non-classical areas, including primary motor cortex 

(Dushanova & Donoghue, 2010; Tkach, Reimer, & Hatsopoulos, 2007) and dorsal premotor cortex 

(Tkach et al., 2007).   

Early research with human participants used functional magnetic resonance imaging (fMRI) 

to show spatial overlap in the areas of ventral premotor cortex and inferior parietal lobule that are 

active when people observe and execute movements (Rizzolatti et al., 1996; Decety et al., 1997; 

Buccino et al., 2001; Grezes and Decety, 2001).  This was not conclusive evidence of the existence of 

human mirror neurons because the spatial overlap could have been due, not to neurons that each 

respond both to observation and execution of action (mirror neurons), but to clusters of neurons 

each responding either to action observation or to action execution (Dinstein et al., 2007, 2008).  By 

2011, doubts about the presence of mirror neurons in the human brain had been assuaged by 

studies using single cell recording in pre-surgical patients (Mukamel, Ekstrom, Kaplan, Iacoboni, & 

Fried, 2010), and the repetition suppression fMRI procedure in healthy volunteers (Kilner et al., 

2009).  Like monkey mirror neurons, evidence consistent with the existence of human mirror 

neurons has been found in both classical areas – ventral premotor cortex and inferior parietal lobule 

– and non-classical areas, including dorsal premotor cortex, superior parietal lobule, cerebellum 

(Molenberghs et al., 2012), supplementary motor area, and medial temporal lobe (Mukamel et al., 

2010).  

Research using single cell recording (and, to some extent, repetition suppression) suggests 

that mirror neurons are typically present in adult human brains.  However, this research does not 

licence the inference that mirror neurons are always or usually responsible for spatial overlap in 

fMRI responses during the observation and execution of action.  Consequently, it has become 

common to use terms such as “the mirror neuron system” and “mirror neuron brain areas” to refer 

to regions of the brain that are active during action observation and execution and/or for which 

there is evidence of the presence of mirror neurons.  As reviewers, we have adopted the latter of 

these conventions, but it should be noted that these terms are unsatisfactory in at least two 

respects.  First, it is not clear in what sense the areas containing mirror neurons constitute a 

“system”.  Second, it is likely that only a small proportion of the neurons in each of these areas have 

mirror properties: for example, fewer than 10% of the neurons studied in di Pellegrino et al.’s (1992) 

seminal paper showed “strict” or “broad” congruence in their firing patterns to observed and 

executed actions, and although some single unit studies report higher proportions of mirror 
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neurons, the nature of the single-unit technique makes it problematic to estimate the true 

prevalence of mirror neurons in any brain area (see also Kilner & Lemon, 2013). These issues should 

be borne in mind when considering the results of neuroimaging and neurostimulation studies 

discussed in this review.  

From their discovery in 1992, theorizing about the function of mirror neurons was 

dominated, not by computational modelling and experimental intervention, but by consideration of 

their field properties.  Defining functions broadly and in everyday language, researchers reflected on 

what neurons responsive to similar observed and executed actions would be “good for”; what kinds 

of psychological task they might be able to fulfil.  In some cases, this strategy produced hyperbole. 

Mirror neurons were hailed as “cells that read minds” (Blakesee, 2006), “the neurons that shaped 

civilization” (Ramachandran, 2009), and a “revolution” in understanding social behavior (Iacoboni, 

2008).  But most researchers, including the group in Parma that discovered mirror neurons, focussed 

on four realistic possibilities: action understanding, speech perception, imitation, and (their potential 

dysfunction in) autism.  Each of these four hypotheses about the function of mirror neurons was 

debated in the Mirror Neuron Forum (Gallese et al., 2011; henceforward “the Forum”), alongside a 

key question about their origins: Do mirror neurons get their characteristic visual-motor matching 

properties from learning?   

Functions  

 

Action understanding 

 

In his lucid summary analysis of the Forum, Glenberg (2011b) concluded in relation to action 

understanding that there was broad agreement that mirror neurons, or a “mirror neuron system”, 

“plays some role in action processing” but no consensus about what that role might be.  It could be 

relatively low-level; mirror neurons may contribute to action selection or to action recognition, 

helping to distinguish one type of action from another (e.g. precision grip from power grip).  

Alternatively, mirror neurons may have a high-level function in action processing, enabling 

“understanding from within” (Rizzolatti & Sinigaglia, 2010) or inferences about actors’ mental states. 

Since 2011, advances in addressing this issue have come mainly from two broad lines of evidence: 

the use of multivoxel pattern analysis in fMRI to “decode” the information represented within and 

across brain areas; and the use of patient studies and neurostimulation to investigate the causal role 

of mirror neuron brain areas for action understanding. 

Multivoxel pattern analysis has revealed that “mirror” areas including premotor cortex 

encode concrete representations of observed actions (e.g. the action involved in opening a particular 
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bottle), rather than abstract, higher-level representations (e.g. the goal “to open”; Wurm & Lingnau, 

2015; Wurm & Caramazza, 2019). These findings are consistent with the involvement of mirror 

neurons in lower-level processing of observed actions.  

However, any such involvement does not entail that mirror neurons play a causal role in 

action processing. The evidence in this case is still rather mixed. Studies of individuals born without 

upper limbs indicate that action recognition can take place without motor representations of the 

relevant effectors (Vannuscorps & Caramazza, 2016), and some stroke patients can identify actions 

despite damage to mirror neuron brain areas (Tarhan, Watson & Buxbaum, 2015); although a meta-

analysis of previous findings indicates that such patients do show impairments in action 

identification (Urgesi, Candidi & Avenanti, 2014).  

Patient studies can be hard to interpret, however, due to heterogeneity in the damage 

incurred and the acquisition over time of compensatory strategies. Temporary disruption of brain 

function using neurostimulation can therefore provide convergent evidence that a particular brain 

area plays a causal role in relation to a particular cognitive function. One prominent 

neurostimulation study indicated that premotor cortex was necessary for identification of the 

intentions underlying observed actions (Michael et al., 2014). However, in that study, premotor 

cortex stimulation also disrupted perceptual matching of the observed actions. It is possible 

therefore that the disruption to intention identification was the result of disruption to low-level 

action processing, and that premotor cortex does not play a direct, causal role in intention reading 

(Catmur, 2014).  

On the basis of evidence including that summarized above, Thompson and colleagues’ 

(Thompson, Bird & Catmur, 2019) recent review of the putative contribution of mirror neurons to 

action understanding concluded that any involvement of mirror neurons appears to be confined to 

lower-level processing of observed actions (e.g. aiding action discrimination or recognition). In 

particular, they found no compelling evidence for the involvement of mirror neurons, or mirror 

neuron brain areas, in higher-level processes such as inferring others’ intentions from their observed 

actions. 

 

Speech perception 

 

Four contributors to the Forum (Gallese et al., 2011) - Gernsbacher, Gallese, Hickok, and Iacoboni - 

agreed that the motor system has some role in speech perception, but they disagreed about the 

type and magnitude of the motor system’s role, and about whether mirror neurons in particular are 

important (Glenberg, 2011b).   
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Neuroimaging data indicate that mirror neuron brain areas respond during speech 

perception. For example, Callan and colleagues (2014) demonstrated that responses in ventral 

premotor cortex during a vowel identification task were enhanced when signal-to-noise was 

reduced, suggesting that such responses may improve speech discrimination in perceptually noisy 

conditions.  Measurement of motor cortex excitability has also been used to investigate the 

involvement of motor areas in speech perception. Motor cortical representations of speech effectors 

(e.g. lips or tongue) are enhanced during the perception of speech in noise (Nuttall et al., 2016, 

2017; but see Panouilleres et al., 2018, for a contrasting result). This enhancement may have 

functional implications for speech perception ability: participants with greater motor mirroring of 

perceived speech showed better ability to discriminate speech in noise (d’Ausilio et al., 2014). 

However, evidence from patient studies casts doubt on whether the motor system is 

causally involved in speech perception. If speech perception requires perceived speech to be 

matched with motor commands for the production of speech, then one should find speech 

perception impairments in patients who, due to brain lesions, have impairments in speech 

production. In contrast to this prediction, a series of studies have demonstrated intact speech sound 

discrimination in patients with speech production difficulties (Hickok et al., 2011; Rogalsky et al., 

2011; Stasenko et al., 2015).  

A final line of evidence comes from brain stimulation studies. Restle and colleagues (2012) 

demonstrated that facilitatory brain stimulation to the inferior frontal gyrus – a classical mirror 

neuron brain area - improved participants’ accuracy in repeating unfamiliar foreign speech sounds. 

They argue that this indicates the role of the inferior frontal gyrus in matching perceived to 

produced speech; but this result cannot tell us whether the crucial role of this brain area is in speech 

perception, speech production, or the matching process itself. Furthermore, as this study did not 

include a control task, it is unclear whether stimulation of this brain area had a specific effect on 

speech processing, or whether any complex sensorimotor task might have been improved by such 

stimulation. However, a series of subsequent studies have shown that stimulation of motor (Rogers 

et al., 2014; Smalle et al., 2015) or premotor cortex (Nuttall et al., 2018) affects speech perception 

ability, in particular for distorted speech (Nuttall et al., 2018); and one of these studies included a 

control task permitting the conclusion that the stimulation had a specific effect on perception of 

speech but not non-speech sounds (Rogers et al., 2014). 

In summary, there appears to be reasonably strong evidence for the involvement of the 

motor system (including premotor mirror neuron brain areas, as well as motor cortex) in the 

discrimination of speech in perceptually noisy conditions. However, this conclusion is not yet 



9 
 

supported by the patient data. A priority for future research, therefore, is to test whether patients 

with premotor lesions are impaired at discrimination of speech from noise.  

 

Imitation 

 

Of the functions discussed in the Forum, imitation attracted the strongest consensus.  It was agreed 

that, although early work on the relationship between mirror neurons and imitation had involved 

some dubious definitions and inferences, “when imitation [is] defined in terms of action topography 

[how body parts move relative to one another], most agree mirror neurons contribute” (Glenberg, 

2011b).  This consensus was due in large measure to two studies showing that repetitive transcranial 

magnetic stimulation (rTMS, a disruptive intervention) of the inferior frontal gyrus, a mirror neuron 

brain area, selectively impaired imitative behaviour (Catmur, Walsh, & Heyes, 2009; Heiser, 

Iacoboni, Maeda, Marcus, & Mazziotta, 2003).   

Causal methodologies, including brain stimulation and patient studies, have continued to 

support the consensus that mirror neuron brain areas contribute to imitation. Two studies using 

facilitatory brain stimulation to inferior frontal gyrus demonstrated improvements in vocal imitation 

and naturalistic mimicry (Restle et al., 2012; Hogeveen et al., 2015), while inhibitory stimulation to 

the inferior parietal lobule slowed participants in an instructed imitation task (Reader et al., 2018). 

Inhibitory stimulation of the inferior frontal gyrus also disrupted automatic imitation (Newman-

Norlund et al., 2010) but this effect was not specific to human body movements, with similar 

disruption being found for non-biological stimuli. 

Binder and colleagues (2017) demonstrated that apraxic patients were impaired on an 

instructed imitation task, and that this impairment was associated with lesions to a set of brain areas 

thought to contain mirror neurons, including the left postcentral gyrus, intraparietal sulcus, and 

inferior frontal cortex. A similar result was reported by Frenkel-Toledo et al. (2016) with imitation 

impairments associated with lesions to the left inferior and superior parietal lobules and postcentral 

gyrus. 

Data from causal studies such as these have been complemented by a series of fMRI studies 

over the last decade which demonstrate greater responses in mirror neuron brain areas during 

imitation than during other closely matched tasks (e.g. Mengotti et al., 2012; Ocampo et al., 2011; 

Mainieri et al., 2013; Campbell et al., 2018).  

 

Autism 
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In marked contrast with imitation, the Forum unearthed “huge disagreement on autism” (Glenberg, 

2011b).  Although Gallese defended the view that “impaired motor cognition”, rather than mirror 

neurons, contributes to the autistic1 phenotype, Iacoboni stood by the more specific “broken mirror” 

theory (Iacoboni & Dapretto, 2006; Oberman & Ramachandran, 2007; Williams, Whiten, Suddendorf 

& Perrett, 2001; but see Southgate & Hamilton, 2008), citing a range of brain imaging studies 

suggesting that people with autism have abnormal activity in mirror neuron areas of the brain.  

Gernsbacher contested all of this evidence, highlighting methodological problems and replication 

failures, while Heyes, also sceptical about the broken mirror theory, focussed on evidence that 

people with autism show intact (Bird et al., 2007; Cook & Bird, 2012; Gowen et al., 2008; Press et al., 

2010), and sometimes exaggerated (Spengler, Bird & Brass, 2010), automatic imitation.   

A systematic review in 2013 of neuroscientific evidence concluded that there was “little 

evidence for a global dysfunction of the mirror system in autism” (Hamilton, 2013). Studies 

published since that review, using a range of techniques to investigate neural responses to observed 

actions, and imitation (the cognitive function thought to rely most strongly on such responses), 

support this conclusion.  

A popular technique to measure motor system responses during action observation is “mu” 

suppression, an electroencephalographic (EEG) measure of the reduction in coherence in certain 

frequency bands which occurs both when performing and when observing actions. However, the use 

of this technique to index mirror neuron responses has been criticised on the grounds that it 

measures attentional (Hobson & Bishop, 2016, 2017) and somatosensory (Coll et al., 2015, 2017), 

rather than motor, responses.  Notwithstanding these critiques, recent studies of mu suppression 

during action observation in autism have shown no differences from neurotypical controls (Bernier 

et al., 2013; Ruysschaert et al., 2014).  

In contrast, fMRI of neural responses during action observation indicates some differences 

between autistic and neurotypical participants. A recent meta-analysis of six fMRI studies of action 

observation and imitation indicated that participants with autism showed greater responses in 

bilateral fronto-parietal regions than those without (Yang & Hofmann, 2016), although another 

study showed no differences in neural responses during action observation (Pokorny et al., 2015). 

These data suggest some differences in responses during action observation, but they are not 

consistent with a broken mirror account of autism; if anything they point to greater neural 

responses in mirror neuron brain areas during action observation in those with, compared to those 

without, autism. Furthermore, although these responses are in brain areas thought to contain mirror 

 
1 The use of the term ‘autistic’ is endorsed by many individuals with autism (see Kenny et al., 2016). We 
therefore use this term as well as ‘person-first’ language (e.g., ‘people with autism’) to respect the wishes of 
autistic individuals. 
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neurons, none of these papers used techniques that permit the definitive conclusion that such 

responses are due to mirror neurons, as opposed to other neurons co-located in these brain areas. 

Techniques that measure motor representations of specific actions (e.g. grasping) are 

potentially more informative in this respect.  Recent studies using motor-evoked potentials to 

measure motor cortical excitability during action observation provide mixed evidence for differences 

between autistic and neurotypical participants. Enticott and colleagues (2012) reported a smaller 

increase in motor cortical excitability in participants with autism compared to neurotypical controls 

when viewing hand grasps. However, a later study found no differences on the same measure when 

observing socially relevant hand actions (Enticott et al., 2013). Previous claims of disrupted mirror 

responses in autism based on electromyographic evidence (Cattaneo et al., 2007) have also come 

under scrutiny, with a series of methodological critiques casting doubt on the interpretation of 

previous data (Pascolo & Cattarinussi, 2012; Ruggiero & Catmur, 2018). 

Finally, behavioural measures of imitation have also provided little evidence for a broken 

mirror account of autism. Although one study reported some differences in instructed imitation 

(Cossu et al., 2012), a task with many demands unrelated to mirror neurons, the majority of recent 

studies have found either no difference in imitation between autistic and neurotypical participants, 

or greater imitation in people with autism (Sowden et al., 2016; Schunke et al., 2016; Schulte-Ruther 

et al., 2017; Gordon et al., 2020). Overall, therefore, the last ten years of research have produced no 

compelling evidence for the claim that autism is associated with mirror neuron dysfunction. 

 

Origins  

 

Contributors to the Forum also debated the origins of mirror neurons, addressing the question: Do 

mirror neurons get their characteristic visual-motor matching properties from learning?  Heyes 

argued that mirror neurons get their matching properties via standard mechanisms of sensorimotor 

associative learning.  They start out as motor neurons, active only during the performance of action.  

Then, through correlated experience of seeing and doing the same actions – in the context of self-

observation (e.g. an infant watches her hand own in motion) and social interactions in which the 

same movements are repeatedly both observed and executed (e.g. pat-a-cake; Heyes 2001) – these 

motor neurons become strongly connected to visual neurons tuned to similar actions.  

Consequently, what was once a motor neuron becomes a mirror neuron – responsive to both the 

sight and performance of an action.  Iacoboni agreed that visual-motor learning is likely to be 

important but saw signs that it is “canalized” by a genetic pre-disposition to develop mirror neurons 

(Del Guidice et al., 2009).  Gallese went further, arguing that there is an “innate” or “genetically pre-
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determined” propensity to develop mirror neurons which is facilitated, not primarily by visual-motor 

learning, but by motor experience before and after birth (Gallese et al., 2009).  Summarising the 

debate about origins, Glenberg (2011b) identified as a key question “the degree to which neonatal 

imitation is a reliable phenomenon”.   

 

Sensorimotor learning 

 

In the last decade, more evidence has emerged that learning plays an important role in the 

development of mirror neurons (Brunsdon et al., 2019; Catmur et al., 2011; Copete et al., 2016; de 

Klerk et al., 2015; Fitzgibbon et al., 2016; Furukawa et al., 2017; Guidali et al., 2020; Hou et al., 2017; 

McKyton et al., 2017; Orlandi et al., 2017; Press et al., 2012a; Wiggett et al., 2012; Zazio et al., 2019).  

Some of the recent studies report greater activity in mirror neuron brain areas in pianists and 

dancers than in people who lack such expertise during observation of musical performance and 

dance, respectively (Furukawa et al., 2017, Hou et al., 2017; Orlandi et al., 2017).  These studies are 

of interest because they indicate that activity in mirror neuron brain areas is affected by long-term 

learning under naturalistic conditions, but they do not tell us what kind of learning is important.  For 

example, dancers may show greater mirror neuron brain area activity than controls during dance 

observation because the dancers have watched more dance movements (sensory learning), 

performed more dance movements (motor learning), and/or watched more dance movements while 

performing similar dance movements (sensorimotor learning). 

 Experiments that were designed to isolate the kind of learning involved in mirror neuron 

development have suggested that sensorimotor learning is crucial (Catmur et al., 2011; de Klerk et 

al., 2015; Press et al., 2012a; Fitzgibbon et al., 2016; Guidali et al., 2020; Wiggett et al., 2012).  For 

example, replicating and extending earlier work with a similar design (e.g. Catmur et al., 2007), 

Wiggett et al. (2012; see also Brunsdon et al., 2020) found using fMRI that mirror neuron brain areas 

were more strongly activated by observation of hand movement sequences in participants who had 

simultaneously observed and executed the movements (sensorimotor learning) than in participants 

who had either observed the movements without performing them (sensory learning), or performed 

the movements without observing them (motor learning).  Furthermore, using paired pulse TMS, 

Catmur et al. (2011) confirmed that novel sensorimotor experience of the kind given by Wiggett et 

al. acts on mirror responses.  They showed that “counter-mirror” training (in which participants 

performed index finger movements while observing little finger movements, and vice versa) 

reversed mirror responses (e.g. resulted in greater activation of an index finger muscle during 

observation of little finger movement than during observation of index finger movement) via the 
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same connections between premotor and motor cortex that were responsible for mirror effects 

prior to training (e.g. greater activation of an index finger muscle during observation of index than 

little finger movement).  

Responding to a study in which counter-mirror training yielded later effects on motor 

excitability than mirror training (Barchiesi & Cattaneo, 2013; see also Ubaldi et al., 2015), Cavallo et 

al. (2013), like Catmur et al. (2011), found that mirror responses and counter-mirror responses 

followed the same time course.  Another TMS study found that counter-mirror responses can be 

induced by instruction alone (Bardi et al., 2015).  However, it is unlikely that instructional learning, 

rather than sensorimotor learning, was responsible for the training effects reviewed above because 

1) in the study by Bardi et al. (2015) participants were tested immediately after instruction, whereas 

in the earlier studies they were tested 24 hours after both instruction and sensorimotor training, and 

2) training effects have been observed in uninstructed infants (De Klerk et al., 2015). 

 The training studies described above involved adult participants, but there is also now 

evidence that sensorimotor learning is important in the early development of mirror responses.  

Using EEG recordings of sensorimotor alpha suppression as an index of mirror neuron activity, de 

Klerk et al. (2015) found in 7-month-old infants, who could not yet walk, that mirror responses 

during observation of stepping movements increased with the amount of sensorimotor experience 

they had received in earlier training sessions.  Infants who had frequently seen their own stepping 

movements while performing those movements showed greater alpha suppression than infants who 

had relatively little correlated experience of seeing and doing the stepping movements.  De Klerk et 

al. did not find similar effects of sensory experience (observing stepping) or motor experience 

(making stepping movements) on alpha suppression, suggesting that, at least in this study, alpha 

suppression indexed the sensorimotor matching function of mirror neurons rather than purely 

attention or arousal. 

 The idea that motor learning alone is sufficient to change the properties of mirror neurons 

(Gallese et al., 2009) has not been supported.  The study by de Klerk et al. (2015) failed to find a 

relationship between the frequency with which infants performed stepping movements during 

training and the extent of sensorimotor alpha suppression during observation of stepping 

movements after training.  Yet more striking, using imitation as a behavioural index of mirror neuron 

activity, McKyton et al. (2017) found reduced automatic imitation in newly sighted children who 

suffered from dense bilateral cataracts from early infancy and were surgically treated only years 

later.  These children, who had been deprived of sensory and sensorimotor experience of action, but 

not of motor experience, were less inclined than control children to imitate task-irrelevant hand 

actions.   
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 In addition to showing that sensorimotor learning is important for mirror neuron 

development, recent research suggests that, in everyday life, much of this learning occurs in the 

context of social interactions between infants and their caregivers.  The extent to which mothers 

imitate infant facial expressions at two months postpartum predicts EEG alpha suppression at nine 

months during observation of the same facial expressions (Rayson et al., 2017; see also 

Markodimitraki & Kalpidou, 2019; Murray et al., 2018).  Furthermore, this relationship is action 

specific.  De Klerk et al. (2019) found that parental imitation of facial expressions predicted infant 

imitation of facial but not hand movements, implying that parental imitation supports mirror neuron 

development through learning of specific sensorimotor associations (e.g. between the sight and 

performance of mouth opening) rather than by enhancing attention to body movements or social 

motivation. 

 

Is the sensorimotor learning genetically canalized? 
 

The importance of sensorimotor learning for the development of mirror neurons is now well 

established, but questions remain about the character of this learning.  The “associative account” 

maintains that the sensorimotor learning that builds mirror neurons is of exactly the same kind as 

the learning that produces Pavlovian and instrumental conditioning; it is a computationally 

undemanding, domain-general process that forges excitatory and inhibitory links between simple 

event representations (Cook et al., 2014; Heyes, 2001; Keysers & Perrett, 2004).  In contrast, the 

“canalization account” (Del Guidice et al., 2009; Gallese et al., 2009), supported by Iacoboni and 

Gallese in the Forum, suggests that monkeys and humans genetically inherit a specific propensity to 

acquire mirror neurons.  On this view, the sensorimotor learning that contributes to mirror neuron 

development is domain-specific – it involves computations distinct from those involved in standard 

conditioning – and/or the learning is primed for the development of mirror neurons; given a head 

start by genetically inherited behavioural mechanisms.   

 A few studies in the last 10 years have addressed the domain-generality of the sensorimotor 

learning involved in mirror neuron development.  Consistent with the associative account, these 

have indicated that, like standard conditioning, mirror neuron learning depends on contingency as 

well as contiguity (Cooper et al., 2013), and shows a distinctive pattern of contextual modulation 

(Cook et al., 2012a).  However, as Glenberg (2011b) predicted, the majority of research bearing on 

the associative and canalization accounts has focussed on neonatal imitation.  Given the evidence 

that mirror neurons contribute to imitation (see above), reliable evidence that newborns can 

imitate, before they have had the opportunity for relevant sensorimotor learning, would suggest 

that the development of mirror neurons is canalized or genetically pre-determined.    
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 A set of 10 studies from one research group, eight of them published since the Forum, have 

claimed to provide evidence of imitation in newborn monkeys (Ferrari, Visalberghi, Paukner, Fogassi, 

Ruggiero & Suomi, 2006; Ferrari, Paukner, Ruggiero, Darcey, Unbehagen & Suomi, 2009; Paukner, 

Ferrari & Suomi, 2011; Simpson, Paukner, Sclafani, Suomi & Ferrari, 2013; Paukner, Simpson, Ferrari, 

Mrozek & Suomi, 2014; Simpson, Paukner, Suomi, & Ferrari, 2014; Simpson, Miller, Ferrari, Suomi & 

Paukner, 2016; Kaburu, Paukner, Simpson, Suomi & Ferrari, 2016; Paukner, Pedersen & Simpson, 

2017; Wooddell, Simpson, Murphy, Dettmer, Paukner, 2019).  These studies did not use the “cross-

target” procedure which has been agreed, by both enthusiasts and sceptics, to be necessary to 

detect imitation in newborns (e.g. Redshaw, 2019; Meltzoff & Moore, 1977; Ray & Heyes, 2011; 

Meltzoff, 1996; Oostenbroek et al., 2014; Whiten, 2002).  For example, when testing for imitation of 

tongue-protrusion and lip-smacking, they did not use these behaviours as controls for one another.  

Instead of looking for a higher frequency of tongue protrusion than of lip-smacking in infants who 

had just observed tongue protrusion, and a higher frequency of lip-smacking than of tongue 

protrusion in infants who had just observed lip-smacking, they reported, for example, a higher 

frequency of tongue protrusion after observation of tongue protrusion than after observation of a 

rotating disk.  An effect of this kind could be due, not to imitation of tongue protrusion, but to a 

biological, social stimulus eliciting more behaviour of all kinds than a nonbiological, asocial stimulus.  

Pointing out this problem alongside a number of others (e.g. multiple comparisons without 

correction), Redshaw (2019) re-analysed the data from the full corpus of 10 neonatal monkey 

studies.  Applying the cross-target methodology, the re-analysis found no evidence whatever of 

imitation in newborn monkeys.   

 Recent work with human neonates points in the same direction.  In a study with 

unprecedented power, conducted in Brisbane, Oostenbroek et al. (2016) tested more than 100 

infants longitudinally at 1, 3, 6 and 9 weeks of age, in a cross-target procedure involving a wide 

range of targets. They recorded the frequencies of nine target actions — tongue protrusion, mouth 

opening, happy expressions, sad expressions, index finger protrusion, grasping, MMM sound, EEE 

sound, tongue click — while infants observed eleven movement stimuli — an adult performing each 

of the nine actions, and two object movements (spoon protruding through a tube and box opening). 

The results of the Brisbane study were wholly negative: in no case did the infants consistently 

perform a target action more often while observing the same action than while observing all of the 

alternative actions.   

Previous failures to find neonatal imitation have been attributed to methodological factors – 

for example, to the use of an inappropriate model, an inadequate response interval, or sub-optimal 

statistical procedures.  A recent meta-analysis of neonatal imitation research by the Brisbane group, 
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encompassing 336 effect sizes dating back to 1977, sought and did not find a modulating influence 

of 13 methodological factors previously cited as reasons for replication failure (Davis et al., in press).  

However, the meta-analysis did find a modulating effect of “researcher affiliation”; a small number 

of laboratories are more likely than others to find large positive effects.  Furthermore, across the 

whole data set there was a relationship between standard error and effect size indicative of 

publication bias; i.e. suggesting that smaller studies have been conducted, found no evidence of 

neonatal imitation, and not been published. 

Re-analysing the data from the Brisbane study, using a more liberal statistical method, 

Meltzoff et al. (2018; see also Oostenbroek et al., 2018) found evidence of imitation for one of the 

nine target actions – tongue protrusion.  Although consistent with other reviews and meta-analyses 

of neonatal imitation data (e.g. Anisfeld, 1996; Jones, 2006; Ray & Heyes, 2011), this result does not 

uphold the historical claim that newborns are capable of voluntary imitation of a range of actions 

(Meltzoff & Moore, 1977; see also Keven & Akins, 2017), or support the view that mirror neurons are 

learned via a canalised or genetically pre-determined process.   

 Rather than supporting canalisation, one study of young human infants has provided 

evidence that the development of imitation (and, by inference, mirror neurons) depends on 

unspecialised, unconstrained associative learning.  Reeb-Sutherland et al. (2012) found that 

associative learning ability at one-month post-partum, measured using a delay eyeblink conditioning 

paradigm, predicted performance on a range of imitation tasks at 9 months of age. 

 

Reflection 

 

In the last 10 years there has been significant progress in resolving the questions debated in the 

Mirror Neuron Forum (Gallese et al., 2011).  Regarding action understanding: multivoxel pattern 

analysis, patient studies, and research using TMS now suggests that mirror neuron brain areas 

contribute to low-level processing of observed actions (e.g. distinguishing types of grip), but not 

directly to high-level action interpretation (e.g. inferring actors’ intentions).  In terms of speech 

perception, although it remains unclear whether mirror neurons play a specific, causal role in speech 

perception, there is now compelling evidence for the involvement of the motor system (including 

premotor mirror neuron brain areas as well as primary motor cortex) in the discrimination of speech 

in perceptually noisy conditions.  In respect of imitation, building on research published before 2011, 

there is strong evidence from patient, TMS and fMRI studies that mirror neuron brain areas play a 

causal role in behavioural copying of body movement topography.  Finally, concerning autism, 

studies using behavioural and neurological measures have tried and failed to find evidence for the 
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broken mirror theory of autism.  Instead, there are intriguing signs that, under some conditions, 

people with autism have stronger mirror responses than neurotypical controls.  Alongside these 

developments, research on the origin of mirror neurons has confirmed the importance of domain-

general visual-motor associative learning, rather than canalised visual-motor learning, or motor 

learning alone.  Specifically, major studies assessing “the degree to which neonatal imitation is a 

reliable phenomenon” (Glenberg, 2011b) have shown that it is not reliable at all.  

 These findings are disappointing relative to early newspaper headlines.  It turns out that 

mirror neurons are not “Cells that read minds” (Blakesee, 2006); they do not alone explain “what 

makes humans social” (Scientific American, July 1, 2008), and they have not been able to “do for 

psychology what DNA did for biology” (Ramachandran, 2009).  But it is unlikely that any serious 

cognitive scientist or neuroscientist would be surprised that mirror neurons have not lived up to 

these sensational claims.  The puzzle is why mirror neurons have so inflamed the popular 

imagination.  We speculate that two factors are important.  First, the deep historical pull of atomism.  

Mirror neurons are small and apparently indivisible; they combine sensory and motor properties in a 

single unit. From ancient Greece to particle physics, there is a long tradition in which atoms of this 

kind are understood to be the building blocks of reality. Immersed in this tradition, people may be 

captivated by the idea that simple, tidy mirror neurons explain the distressing complexities of the 

social world —including political strife, drug addiction, pornography and responses to media 

violence (Bocher et al., 2001; Iacoboni, 2008). Second, some descriptions of mirror neurons imply 

telepathy.   If mirror neurons mediate “understanding from within” (Rizzolatti & Sinigaglia, 2010), a 

“pre-conceptual and pre-linguistic form of understanding,” which can “overcome all linguistic and 

cultural barriers” (Rizzolatti and Sinigaglia, 2008), they allow an effortless, wordless form of 

communication that is a lot like telepathy.  Given ancient links between mirrors, oracles and 

divination (e.g. Orofino, 1994), even the name “mirror neurons” may pump the intuition (Dennett, 

1984) that these cells give direct, transparent access to other minds (Heyes, 2010). 

 Figure 1 suggests that, even if public enthusiasm for mirror neurons has been sustained, 

scientific interest began to decline in 2014.  Two high profile reviews were published in that year.  

One of them, a target article with commentaries in The Behavioral and Brain Sciences, did not 

contest the existence of mirror neurons, or that they contribute to social behaviour, but marshalled 

evidence that they are forged by sensorimotor associative learning (Cook et al., 2014).  This evidence 

challenged the view that mirror neurons are a biological adaptation – that they evolved via genetic 

mechanisms for action understanding, speech, imitation or any other function.  The other review, a 

book entitled The Myth of Mirror Neurons, was more sceptical.  It argued that, because mirror 

neurons are products of associative learning, they could not mediate action understanding or any 
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other cognitive function (Hickok, 2014).  The impact of these two publications should not be over-

estimated.  They distilled and developed insights and concerns that had been emerging over the 

preceding years.  But it is plausible that they precipitated the subsequent decline of mirror neuron 

research.   

 Should the decline be resisted, or should it be hoped that the trend apparent in Figure 1 

continues until mirror neurons are a thing of the past?  We support resistance for two reasons.  First, 

even if the mirror neuron boom was fuelled by less-than-rational currents of thought (e.g. atomism 

and telepathy), inside as well as outside science, it would not be rational to allow mirror neurons to 

go bust.  This field has produced substantial findings, many summarised in this article, which should 

not be dismissed just because “Mirror neurons are the most hyped concept in neuroscience” 

(Jarrett, 2012). Second, in our view, much of the scepticism about mirror neurons is based on a 

misunderstanding.  The discovery that mirror neurons are forged by associative learning does not 

imply that they are without function.  It suggests they are by-products with respect to genetic 

evolution, but by-products can be very useful indeed - in the oil business and in the brain.  Consider 

the area of the left fusiform gyrus that mediates identification of visual word forms.  Literacy 

emerged late in human history, only 5000-6000 years ago, making it clear that the “Visual Word 

Form Area” was not designed by genetic evolution to enable reading.  It is a by-product of genetic 

adaptation for the discrimination of visually complex objects – just as mirror neurons are a by-

product of genetic adaptation for learning about predictive relationships – but literacy is hugely 

important as a means of relating to, and learning from, other people; as a social cognitive function 

(Heyes, 2018). 

 Our review of mirror neuron research in the last 10 years, and the critiques discussed in this 

section, have several implications for future research.  In relation to mirror neuron functions, 

research on low-level action discrimination is more likely to make progress than continuing effort to 

find a direct role for mirror neurons in high-level action interpretation.  Similarly, imitation looks 

more promising than speech perception, and - given the strength of the evidence that mirror 

neurons contribute to imitation, and the lack of evidence that autism is due to a “broken mirror” – 

dyspraxias are a more promising target than autism for research with clinical applications.  The idea 

that mirror neurons contribute to imitation was dismissed at an early stage on the grounds that 

monkeys, the first species in which mirror neurons were identified, cannot imitate (Rizzolatti & 

Craighero, 2004).  This argument assumed that imitation involves copying an entirely novel action, 

guided by understanding of the model’s intentions; a definition so rich that it implies imitation is 

rare even in adult humans (Heyes in Gallese et al., 2011).  Defining imitation in a way that is more 

common in cognitive science, as copying the topography of body movement, the associative account 
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of the origin of mirror neurons implies that any animal capable of sensorimotor associative learning 

has the potential to develop mirror neurons and to imitate.  Humans are better imitators than other 

animals, including monkeys, because sociocultural experience (e.g. synchronous dance and sporting 

activities, being imitated by others) provides us with matching sensorimotor experience for a 

broader range of actions (Cook et al., 2014).  In retrospect, it seems that the rich definition of 

imitation diverted attention from one of the most important functions of mirror neurons. 

 As for future research on the origins of mirror neurons, there is still much to be discovered 

about the sources and developmental timing of the sensorimotor experience that builds mirror 

neurons, how this varies across cultures, and how this information might be used for clinical and 

educational interventions.  More broadly, investigation of how mirror neurons are woven into 

computational-neurological systems could provide valuable clues about how other cognitive systems 

are assembled through learning.  When a function is “hardwired” or “innate”, the construction work 

is done by evolution acting on genetic variants and lost in the mists of time, but when the 

construction is done by learning, it can be studied in creatures alive today (Heyes, 2018).    

Turning from targets of study to methods, it is clear that causal methodologies, such as TMS, 

have more power to illuminate functions than correlational methodologies, and, if it is concluded 

that the unitary character of mirror neurons is of crucial importance (see below), the use of more 

single unit recording would be desirable. The potential for such recording would be greatly 

expanded by the development of rodent models using sensorimotor training (Heyes, 2013).  

Thinking more broadly about methodology, research on mirror neurons would benefit greatly from 

extension of a system-level, computational approach of the type advanced by Hickok and Poeppel 

(2015) for language, and by Rushworth and colleagues (e.g. Apps et al., 2016) for other aspects of 

social cognition.  Predictive coding is one potential example of a system-level computational 

approach to investigating mirror neuron contributions to social cognition (Kilner, Friston & Frith, 

2007; Press, Heyes & Kilner, 2011).  Ideally, in any such approach, each hypothesis about function 

would specify a part in a psychological process – a process going all the way from peripheral sensory 

input to overt motor output – that mirror neurons are thought to fulfil, and do this in a way that is 

testable using behavioural and neurophysiological methods.  The name given to this part is not 

important in itself. What is important is that the name does not derive its meaning purely from folk 

psychology, and that the hypothetical function of mirror neurons is distinguished clearly from other 

components and from the overall process.  For example, “movement discrimination” or “action 

recognition” (component) needs to be distinguished from mentalising (whole process).  Similarly, on 

the neurological side, we need more specific, testable theories of how mirror neurons work with 

other types of neuron, and the kinds of networks in which they are embedded (including 



20 
 

distinguishing whether any differences in function are due to region- or species-specific differences 

in mirror neurons themselves, or instead due to the properties of the region or organism in which 

they are located).  The term “mirror neuron system” is commonly used, but proponents of this term 

need to specify the sense in which mirror neurons constitute a “system” rather than just cells with 

similar properties, found in interconnected areas of the brain.   

At the broadest, conceptual level we need to think hard about why, if at all, it is important 

that single neurons have mirror properties.  Setting aside the historical appeal of atomism, does it 

really matter, in the context of contemporary psychology and neuroscience, whether individual 

neurons or small networks of neurons match observed and executed actions? Indeed, in a 

potentially welcome development, recent single-unit recording studies indicate a move away from 

considering the properties of individual neurons and instead focus on population-level encoding. For 

example, individual neurons responsive to the observation of others’ manipulative actions (grasping, 

dragging, etc.) in anterior intraparietal area show viewpoint-dependent coding, but as a population 

they provide viewpoint-invariant coding of the observed action (Lanzilotto et al., 2020; see also Livi 

et al., 2019, for a similar demonstration of population encoding of observed actions in pre-

supplementary motor area).   

 In conclusion: It turns out that mirror neurons contribute to complex control systems rather 

than dominating such systems or acting alone.  Their contributions are at a relatively low level – for 

example, to body movement discrimination rather than intention-reading.  And rather than being 

immutable units from birth, mirror neurons acquire their mirror properties through sensorimotor 

learning, and change them by the same route.  Although disappointing relative to some early claims, 

we argue that these discoveries should not discourage further research on mirror neurons.   The 

findings reviewed in this article suggest that, when mirror neurons are studied in the context of 

system-level theory – as having the potential to fulfill a specified part in a complex process – they 

can help us to understand the categorization of body movements, aspects of speech perception, and 

the neurological bases of imitation.  Furthermore, the evidence that mirror neurons are forged by 

sensorimotor experience not only raises important questions about the sources of this experience in 

everyday life across cultures, but opens up the possibility that other neurocognitive mechanisms, 

once thought to be genetically inherited, are shaped by cultural learning (Heyes, 2018).  Mirror 

neurons should not be tarnished; they are yet to fulfill their true promise.    
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