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Abstract
In this paper, we provide refined sufficient conditions for the quadratic Chabauty
method on a curve X to produce an effective finite set of points containing the rational
points X(Q), with the condition on the rank of the Jacobian of X replaced by condition
on the rank of a quotient of the Jacobian plus an associated space of Chow–Heegner
points. We then apply this condition to prove the effective finiteness of X(Q) for any
modular curve X = X+

0 (N ) or X+
ns(N ) of genus at least 2 with N prime. The proof

relies on the existence of a quotient of their Jacobians whose Mordell–Weil rank is
equal to its dimension (and at least 2), which is proven via analytic estimates for orders
of vanishing of L-functions of modular forms, thanks to a Kolyvagin–Logachev type
result.

Mathematics Subject Classification 11G18 · 14G05 · 11G30

1 Introduction

TheChabauty–Kimmethod is amethod for determining the set X(Q) of rational points
of a curve X over Q of genus bigger than 1. The idea is to locate X(Q) inside X(Qp)

by finding an obstruction to a p-adic point being global. The method developed in
[39,40] produces a tower of obstructions

X(Qp) ⊃ X(Qp)1 ⊃ X(Qp)2 ⊃ . . . ⊃ X(Q)
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In [5], it is conjectured that X(Qp)n = X(Q) for all n � 0, and in [40] it is proved
that standard conjectures in arithmetic geometry imply X(Qp)n is finite for all n � 0,
but in general these results are not known.

The first obstruction set X(Qp)1 is the one produced by Chabauty’s method. In
situations when X(Qp)1 is finite, it can often be used to determine X(Q).

The main results of this paper concern the finiteness of the Chabauty–Kim set
X(Qp)2 when X is one of the modular curves X+

ns(N ) or X+
0 (N ) (N a prime different

from p), whose definition and properties we now recall briefly (more details are given
in Sect. 4).

The curve X+
0 (N ) is the quotient of X0(N ) by theAtkin–Lehner involutionwN . The

curve X+
ns(N ) is the quotient of X(N ) by the normalizer of a nonsplit Cartan subgroup.

Determining the rational points of X+
ns(N ) would resolve Serre’s uniformity question

[58, §4.3]: is there an N0 such that, for all N > N0 and all elliptic curves E defined
over Q without complex multiplication, the mod N Galois representation

ρE,N : Gal(Q/Q) → Aut(E[N ])
is surjective? The Borel and normalizer of split Cartan subgroups of Serre’s uniformity
question have been given a positive answer respectively in the celebrated papers [50]
and [11,12].

Mazur’s proof may, very crudely, be described as having two stages.

1. Construct a non-constant map f : X → A from X to an abelian variety of rank
zero over Q.

2. Compute the finite set A(Q), and the pre-image f −1(A(Q)) ⊃ X(Q).

As is explained in Sect. 4, in contrast to X0(N ) and X+
s (N ), for X = X+

0 (N ) or
X = X+

ns(N ), the Birch–Swinnerton-Dyer conjecture implies that there are no non-
constant maps from A to abelian varieties of rank zero over Q. It is hence natural to
ask whether we can attempt to mimic Mazur’s strategy, with the set A(Q) replaced
by the set X(Qp)n for some n. In Sect. 4, we show that the Birch–Swinnerton-Dyer
conjecture similarly implies X(Qp)1 is infinite, hence we expect to need n > 1. The
main result of this paper is to carry out the first stage of Mazur’s strategy for n = 2.

Theorem 1 1. For all prime N such that g(X+
0 (N )) ≥ 2, X+

0 (N )(Qp)2 is finite for
any p �= N.

2. For all prime N such that g(X+
ns(N )) ≥ 2 and X+

ns(N )(Q) �= ∅, X+
ns(N )(Qp)2 is

finite for any p �= N.

Remark 1 – For all primes N for which one of the curves X above has genus 0 or
1, X(Q) is infinite. Indeed, the prime numbers N such that g(X+

0 (N )) ≤ 1 make
up a finite list with maximal element 131 [27, Propositions 3.1 and 3.2], and the
elliptic cases cases can then be checked on the LMFDB [48] by looking at the
corresponding explicit elliptic curves sorted by conductor (the genus 0 case is
automatic due to the rational cusp). For the nonsplit Cartan modular curve, the
genus formula [55, Proposition 13] proves that g(X+

ns(N )) ≤ 1 if and only if
N ≤ 11, and these 5 cases are sorted similarly, as one can always find a rational
point associated to an elliptic curve with CM coming by one of the 9 class number
one fields.

123



Quadratic Chabauty for modular curves and modular forms of rank one

– The only reason for the assumption that X+
ns(N )(Q) is nonempty is that the

definition of X(Qp)2 currently assumes that X has a rational point (if Serre’s uni-
formity question has a positive answer, then there are infinitely many N for which
X+
ns(N )(Q) is empty). One can modify the definition of X(Qp)2 - for example

in a similar manner to [33] - to remove this assumption, and then X+
ns(N )(Qp)2

will be finite whenever the genus of X+
ns(N ) is greater than 1. In particular, such

a modification should in principle given a method to prove that X+
ns(N )(Qp)2,

and hence X+
ns(N )(Q), is empty in these cases (although the large genera of such

curves mean that in practice such curves are currently beyond the scope of existing
computational methods for other reasons). As this involves several techniques not
relevant to the proof of Theorem 1, we do not pursue this point in this paper.

– Finally, results of [3], together with Edixhoven and Parent’s explicit models for
Xns(N ) [23], allow us to deduce from our result an explicit bound (polynomial in
N ) on the number of rational points on X+

0 (N ) and X+
ns(N ), which we do in Sect.

3.1.

In this paper we say nothing about carrying out the second stage ofMazur’s strategy
(i.e. computing the finite set X(Qp)2). However, as alluded to above, for a given X , if
one can prove X(Qp)2 is finite there has been significant recent progress in computing
it, and X(Q), in practice. For example, when N = 13, the rational points of X+

ns(N )

are computed in [8], by computing X(Qp)2. Similarly for X = X+
0 (N ), the rational

points of all X of genus 2 are computed in [4], and in forthcoming work [9], the case
of all X of genus three is handled.

The proof of Theorem 1 proceeds along the lines of the quadratic Chabautymethod,
which requires a precise inequality (namely (2)) in terms of invariants of the Jacobian
J of X to hold (see Sect. 1.1). This inequality is expected to hold asymptotically for
X = X+

0 (N ) or X = X+
ns(N ) conditionally on Birch and Swinnerton-Dyer conjecture

(see §4.1), but looks out of reach unconditionally for N in noncomputable range. There
are thus two important steps obtained in the proof of Theorem 1:

• For p a prime of good reduction of a smooth projective geometrically irreducible
curve X overQwith X(Q) �= ∅, X(Qp)2 is finite under the condition that a similar
inequality to (2) holds not for J but a quotient abelian variety A of J , and under
an additional hypothesis (C) on X , J , A.

• For X = X+
0 (N ) or X = X+

ns(N ), there is an abelian variety of A satisfying (2)
and such that X , J , A satisfy (C), if for M = N (resp. N 2) there are two distinct
normalised eigenforms f ∈ S2(Γ0(M))+,new such that L ′( f , 1) �= 0.

The final input in the proof of Theorem 1 is the following Theorem.

Theorem 2 For all M = N or N 2 with N prime, if the space S2(Γ0(M))+,new is
of dimension at least two, it contains two distinct normalised newforms f such that
L ′( f , 1) �= 0.

As explained inRemark 8, this result of nonvanishing is in fact quiteweak compared
to known or expected asymptotic estimates (giving a positive linear proportion of
nonvanishing values) so the main difficulty in the proof of Theorem 2 lies in making
such estimates effective enough to prove the result except for small enough N so that
the remaining cases can be checked algorithmically.

123



N. Dogra, S. Le Fourn

1.1 Chow–Heegner points and quadratic Chabauty

In general, X(Qp)n cannot unconditionally be proved to be finite without some
assumptions on the Jacobian of X (Kim showed that the Bloch–Kato conjectures
imply that X(Qp)n is finite for all n � 0 [40, Observation 2]). In the case n = 1
(which reduces to the classical set-up of Chabauty’s method) it is known that a suffi-
cient condition is that

rk(J ) < dim(J ) (1)

where rk(J ) is the Mordell–Weil rank of J (Q). The simplest instance extending
Chabauty’s method when finiteness of X(Qp)n can be proved for n > 1 is the
following Lemma. To state the Lemma, let J denote the Jacobian of X , and recall
that the Picard number ρ(J ) is defined to be the rank of the Néron–Severi group
NS(J ) := Pic(J )/Pic0(J ). By [51, Proposition 17.2], this is the same as the dimen-
sion of the subspace denoted by End†(J ) of End0(J ) := End(J ) ⊗ Q consisting of
endomorphisms that are symmetric, i.e. fixed by the Rosati involution.

Lemma 1 ([6], Lemma 3.2) If

rk(J ) < dim(J ) + ρ(J ) − 1, (2)

then X(Qp)2 is finite. In particular, if rk(J ) = dim(J ), then X(Qp)2 is finite whenever
ρ(J ) > 1.

By Kolyvagin–Logachev type results due to Nekovář and Tian (see Proposition 8
and its Corollary 4), Theorem 2 implies that the Jacobians of X+

0 (N ) and X+
ns(N ),

which we will henceforth denote by J+
0 (N ) and J+

ns(N ) respectively, do have Q-
isogeny factors A satisfying rk(A) < dim(A)+ρ(A)−1, but it seems unattainable to
prove unconditionally such a result for the full Jacobian. To deduce Theorem1,we thus
need a ‘quadratic Chabauty for quotients’ result, analogous to the well-known fact that
Chabauty’s method also works under the relaxed condition rk(A) < dim(A), i.e. (1)
for an isogeny factor A instead of J (in fact, for modular curves, Mazur–Kamienny’s
method refines this for factors A such that rk(A) = 0, see e.g. [2]).

As explained below, in general such a result seems non-trivial. Fix a basepoint
b ∈ X(Q), and let AJ : X → J be the corresponding Abel–Jacobi map. Let A, B be
abelian varieties overQ, satisfying Hom(A, B) = 0, and suppose we have a surjection
(πA, πB) : J → A × B.

A slight modification denoted by ˜AJ
∗
of the pullback by AJ (which basically

amounts to considering the restriction of AJ∗ on symmetric line bundles, see §2.1)
vanishes on Pic0(J ), so it factors through NS(J ) and ˜AJ

∗ : NS(J ) → Pic(X) will
denote this factorisation by abuse of notation. It induces a map

dπA : NS(A)
˜AJ∗◦π∗

A−→ Pic(X)
deg→ Z (3)
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and therefore a map

θX ,πA,πB : Ker dπA

˜AJ∗◦π∗
A−→ Pic0(X) −→ J (Q)

πB⊗Q−→ B(Q) ⊗ Q, (4)

which is called the Chow-Heegner construction (see Definition 3 for details).

Remark 2 As an alternative definition (useful for the proofs), for any correspondence
Z ⊂ X × X , we can associate a cycle DZ (b) ∈ Pic0(X) (see (16)), and this defines a
homomorphism NS(X × X) → Pic0(X) so that the composition

NS(J )
(AJ(2))∗−→ NS(X × X) −→ Pic0(X),

where AJ(2) : X × X → J is defined by (x, y) �→ [x] + [y] − 2[b], is equal to ˜AJ
∗

on (˜AJ
∗
)−1(Pic0(X)), which then allows us to retrieve θX ,πA,πB on cycles Z coming

from Ker dπA .

The ‘quadratic Chabauty for quotients’ result that we prove in this paper says that
we can replace J with A, but the price we pay is that we replace ρ(J ) − 1 with the
rank of Ker(θX ,πA,πB ), which can be smaller than ρ(A) − 1.

Proposition 1 Let X bea curveas above. Suppose J admits an isogeny (πA, πB) : J →
A × B, where Hom(A, B) = 0. If

rk(A) < dim(A) + rk(Ker(θX ,πA,πB )), (C)

then X(Qp)2 is finite.

In the case where rk(A) = dim(A) which we will focus on, we can simplify
this condition in terms of nice correspondences, defined in Sect. 2.1. More precisely,
(πA, πB) induces an isomorphism End0(J ) ∼= End0(A) × End0(B), and X(Qp)2
is finite whenever there exists a nontrivial nice correspondence Z on X × X whose
corresponding endomorphism of J is zero in End0(B), and whose corresponding
Chow–Heegner point DZ (b) ∈ Pic0(X) is torsion when projected to B.

Remark 3 Note that, since rk(Ker(θX ,πA,πB )) ≤ ρ(A)− 1, inequality (C) implies that
A satisfies the naive analogue of Lemma 1

rk(A) < dim(A) + ρ(A) − 1. (5)

However, in general (C) is strictly stronger than (5). In fact, the trivial lower bound on
rk(Ker(θX ,πA,πB ) is ρ(A)−1−rk(B) and if the latter was positive, it would imply (2).
This is why Proposition 2 looks quite particular to modular curves. Moreover, under-
standing the rank of Ker(θX ,πA,πB ) in general seems somewhat subtle - as becomes
apparent in Example 1 and Sect. 3.2, this quantity is not an invariant of the pair (A, B),
or even of the triple (X , A, B), and does not seem to behave so well functorially even
under quite strong hypotheses. Finally, as explained in the first appendix, this quantity
is also related to the Gross–Kudla–Schoen cycles constructed in [31].
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The following proposition emphasises that in fact, the supplementary condition (C)
can always be satisfied for our modular curves.

Proposition 2 Let X = X+
0 (N )or X+

ns(N ), and J = Jac(X). AssumeTheorem2holds,
and the genus of X is at least two. Then J admits an isogeny (πA, πB) : J → A × B
satisfying

1. rk(A) = dim A ≥ 2.
2. ρ(A) > 1.
3. rk(Ker(θX ,πA,πB )) = ρ(A) − 1.

As will become apparent in the proof, in fact we take A to be the maximal isogeny
factor of J whose analytic rank is equal to its dimension and B its complement,
otherwise we might not be able to ensure that the kernel of θX ,πA,πB is nontrivial.
This idea relies heavily on the use of (traces of) Heegner points on the modular curves
X0(N ), Xns(N ), which generate A(Q) up to finite index, but will automatically be
torsion in B(Q), both situations being ultimately by-products of the generalisedGross–
Zagier formula (see Sect. 4.2). Note that in this case the kernel of the theta morphism is
not only nontrivial, but as large as it can be, whichmight indicate a deeper phenomenon
at play.

The structure of the paper is as follows. In Sect. 2, we give some reminders
on Néron–Severi groups, Chow groups and correspondences, and describe the map
θX ,πA,πB in terms of cycles. In Sect. 3 we prove Proposition 1. In Sect. 4, we prove
Proposition 2 assumingTheorem2, after somediscussion on (C), andusinggeneralised
Gross–Zagier formulas. In Sect. 5, we prove Theorem 2. Finally, for sake of clarity
and by lack of easily available references in the literature, we gather in Appendix 6
results about the Chow–Heegner construction above and explain in Appendix 7 the
proof of the Kolyvagin–Logachev type result needed to translate Theorem 2 into an
algebraic rank result.

1.2 Notation and conventions

Unless stated otherwise, we adopt the following conventions in this paper.
• X is a smooth projective geometrically irreducible curve of genus ≥ 2 over Q. J

is the Jacobian of X and AJ : X → J is the Albanese morphismwith a fixed base point
b ∈ X(Q). The notation ˜AJ

∗
refers to twice the pullback on symmetric line bundles

of X to Pic(X) (see (13)), and then factors through NS(J ) (this is not the same as just
the pullback AJ∗ from Pic(J ) to Pic(X), which does not vanish on Pic0(J )).

• For any n and any S ⊂ {1, . . . , n}, the morphism

iS(b) : X → Xn (6)

is defined so that the j-th coordinate of iS(b)(x) is x if j ∈ S and b otherwise. When
there is no ambiguity on b we denote it simply by iS . Similarly, the morphism

πS : Xn → X#S (7)
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denotes the projection of (x1, . . . , xn) on the coordinates belonging to S.
•Morphisms between algebraic varieties over Q and their structures (line bundles,

divisors, etc) are assumed to be defined over Q.
• For a smooth projective algebraic variety Y over Q, NS(Y ) is the Néron-Severi

group of Y , and ρ(Y ) := rk NS(J ) is the Picard number of J (see §2.1).
• For any abelian variety A over Q (in particular for J ), rk(A) is the rank of the

finite type Z-module A(Q) and End0(A) := (EndQ A) ⊗ Q.
• N is a prime number (the level of our modular curves) and M = N or N 2.
• X0(N ) (resp. X+

s (N ), X+
ns(N )) is the modular curve quotient of X(N ) cor-

responding to the Borel structure (resp. normaliser of split Cartan, normaliser of
nonsplit Cartan), X+

0 (N ) is the quotient of X0(N ) by the Atkin-Lehner wN . Accord-
ingly, the respective jacobians of these modular curves are denoted respectively by
J0(N ), J+

s (N ), J+
ns(N ), J+

0 (N ) (see Sect. 4).
• For X a variety over a field K ⊂ C, Hk(X , Z) refers to the singular cohomology

of X(C).
•Given a unipotent groupU , the central series filtration ofU is defined byU (1) = U

andU (i+1) = [U ,U (i)], and gri (U ) := U (i)/U (i+1) (in particular gr1(U ) = U ab). If a
group G acts continuously onU , then G acts on the set of normal subgroups ofU , and
we say that a quotient U/H is G-stable if the normal subgroup H is stabilised by G.
In this case there is a unique G-action on U/H making the surjection G-equivariant.

• The letter p denotes a prime number different from N which will be used (except
in Appendix 7) only in the context of p-adic numbers.

2 The quadratic Chabauty condition (C) for a quotient

2.1 Reminders on Chow groups and Néron–Severi groups

We recall here the basic notions on correspondences of curves, and the Chow groups
and Néron–Severi groups that we need. A good reference on correspondences is
Smith’s thesis [61, Chapter 3], and classical ones are [13, section 11.5] for the complex
case and [26, Chapter 16] for the general case.

Definition 1 For any geometrically smooth and irreducible projective variety Y over
Q and any k ≤ dim Y :

– The Chow group CHk(Y ) is the group of cycles of Y of codimension k up to
rational equivalence.

– ck : CHk(Y ) → H2k(Y , Z) is the cycle map, and CHk
0(Y ) := Ker(ck) is its

subgroup of homologically trivial cycles (in Y (C)).

In particular, there are canonical isomorphisms

CH1(Y ) ∼= Pic(Y ), CH1
0(Y ) ∼= Pic0(Y ).

TheNéron-Severi groupNS(Y ) := Pic(Y )/Pic0(Y ) is thus embedded inH2(Y (C), Z).
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We can also define a geometric étale cycle map [21, Cycle]

cl,étk : CHk(Y ) → H2k
ét (YQ, Zl(k))

and an absolute étale cycle map

cabsk : CHk(Y ) → H2k
ét (Y , Zl(k)).

By the Artin comparison theorem we have Ker(
∏

l c
l,ét
k ) = CHk

0(Y ). The étale Abel–
Jacobi morphism is a homomorphism

AJét : CHk
0(Y ) → Ext1

Gal(Q/Q)
(Qp, H

2k−1
ét (YQ, Qp(k)))

which may be defined using the Leray spectral sequence or (equivalently but more
directly) by realising the extension class of a homologically trivial cycle Z inside
H2k−1((X − Z)Q, Qp(k)) (see Jannsen [38, II.9] or Nekovar [53, 5.1]). By Poincaré
duality, we may equivalently think of the target of AJét as being

Ext1
Gal(Q/Q)

(H2(d−k)+1
ét (YQ, Qp(d)), Qp(k)) (d = dim Y ).

In particular, when Y = X is a curve, and for k = 1, the target of AJét is

Ext1
Gal(Q/Q)

(Vp(J ), Qp(1)),

where J is the Jacobian of X and Vp(J ) = Tp(J ) ⊗Zp Qp.
Let us now review the basic definitions of correspondences.

Definition 2 For two curves X1, X2 as before:

– A correspondence Z on X1, X2 is a divisor ofDiv(X1×X2),prime if the underlying
divisor is. It is called fibral if its prime components are horizontal or vertical
divisors.

– If Z is a nonfibral prime correspondence, the two projections π1,Z , π2,Z : Z →
X1, X2 are nonconstant soψZ := (π2,Z )∗◦π∗

1,Z defines amorphism fromDiv(X1)

to Div(X2), inducing a morphism between the Jacobians of X1 and X2, and two
rationally equivalent divisors define the same morphism. This defines by linearity
(extending to 0 for fibral prime divisors) a surjective morphism

ψ : Pic(X1 × X2) → Hom(Jac(X1), Jac(X2)), (8)

with kernel π∗
1 Pic(X1) ⊕ π∗

2 Pic(X2) with notation (7) ( [13, Theorem 11.5.1] or
[61, Theorem 3.3.12]).

When X = X1 = X2, with the choice of a base point b, using notation from (6)
and (7), we obtain from π1 ◦ i1 = IdX and similar relations the identities

Pic(X × X) = π∗
1 Pic(X) ⊕ π∗

2 Pic(X) ⊕ Ker(i∗1 ⊕ i∗2 ) (9)

Pic0(X × X) = π∗
1 Pic

0(X) ⊕ π∗
2 Pic

0(X), (10)
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(see [61, Proposition 3.3.8], as homologically trivial cycles are homomorphically
trivial) which induces a decomposition

NS(X × X) = π∗
1 NS(X) ⊕ π∗

2 NS(X) ⊕ Ker(i∗1 ⊕ i∗2 ), (11)

where the last direct factor then canonically identifies with End(J ) via (8). By abuse
of notation, we thus denote

ψ−1 : End(J )
∼=→ Ker(i∗1 ⊕ i∗2 )

the inverse of this isomorphism. Now, the morphism i∗1,2 − i∗1 − i∗2 is trivial when

restricted to Pic0(X × X), hence induces a morphism

ϕ : NS(X × X) → Pic(X). (12)

Define

AJ(2) : X × X −→ J
(x, y) �−→ [x] + [y] − 2[b] , ˜AJ

∗ := ϕ ◦ (AJ(2))∗.

We have ˜AJ
∗ = [2]∗ ◦ AJ∗ − 2AJ∗ so for [L] ∈ Pic(J ),

˜AJ
∗
([L]) = AJ∗([L]) + AJ∗([−1]∗[L]). (13)

using the classical identity [n]∗(L) � L⊗( n
2+n
2 ) ⊗[−1]∗(L⊗( n

2−n
2 )). In particular, ˜AJ

∗

is twice the usual pullback by AJ on symmetric line bundles.
For any divisor D of X × X , the degree of ϕ(D) is equal to the rational trace of

ψ(D) ( [13, Proposition 11.5.2]). This induces a morphism

˜θX ,b : End(J )tr=0 ϕ◦ψ−1

−→ Pic0(X).

By [52, IV.20], the rule L �→ λL defined by λL(P) = T ∗
PL⊗L−1 ∈ Pic0(J ) induces

an isomorphism

λ̃ : NS(J ) −→ End†(J )

[L] �−→ P−1 ◦ λL
(14)

where P : J ∼=→ ̂J is a natural principal polarisation given by a theta divisor. This the
same as applying the composition −ψ ◦ (AJ(2))∗. Indeed, via the natural morphisms
̂J ∼= Pic0(J ) and Pic0(X) ∼= J , the inverse ̂J → J of the principal polarisation given
by a theta divisor on J is equal to −AJ∗ from Pic0(J ) to Pic0(X) [13, Proposition
11.3.5].

Now, in terms of line bundles, by definition, given a line bundle L on X × X , the
endomorphism of Pic(X) associated to it is given on points by x �→ i∗2 (x)(L) with
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notation (6). As (AJ(2) ◦ i2(x)) = T[x]−[b] ◦AJ, for a line bundle L on Pic(J ) and x, y
points of X the endomorphism associated to L = (AJ(2))∗L sends [x] − [y] to

AJ∗(T ∗[x]−[b]L− T ∗[y]−[b]L) = AJ∗(T ∗[x]−[y]L− L) = AJ∗λL([x] − [y]),

which gives the equality up to −1. Hence, if we define

NS(J )0 := Ker(NS(J )
deg−→ NS(X)),

and

θX ,b := ˜AJ
∗
|NS(J )0 : NS(J )0 → Pic0(X)

thenwe have the following commutative diagram to sum up all the previous properties.
Every symbol � means that the diagram around it commutes, and every �− means
that one composition is equal to −1 times the other. Dashed arrows indicate that the
morphisms are only defined on part of the domain or with small codomain, but in each
case, it admits a natural extension. By abuse of notation, ψ and (AJ(2))∗ are used both
on Picard groups and Néron–Séveri groups.

Pic(X × X)

ψ

Pic(J )
(AJ(2))∗

˜AJ∗

�− NS(J )

λ̃ θX ,b

(AJ(2))∗

�

�− �
NS(X × X)

ψ

ϕ�

End(J )

ψ−1

θ̃X ,b

Pic(X)

(15)

Remark 4 In [8], an element of Pic(X × X) whose image under ψ lies in End†(J )tr=0

is referred to as a ‘nice correspondence’.
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2.2 Chow–Heegner points and diagonal cycles

We recall an equivalent version of the morphism ˜θX ,b, which appears in [18] and
[6]. As our discussion applies in fairly broad generality, we take X to be a smooth
geometrically irreducible projective curve over a field K of characteristic zero. Fix
b ∈ X(K ), and S ⊂ {1, . . . n}, let XS denote the image of X under the closed
immersion iS(b) defined in (6). For any Z ∈ Div(X × X), let CZ (b) := (i∗{1,2}(b) −
i∗{1}(b) − i∗{2}(b))(Z) = ϕ([Z ]) and

DZ (b) := CZ (b) − deg(CZ (b)) · b ∈ Pic0(X). (16)

We refer to DZ (b) and CZ (b) as Chow–Heegner points, following [19].
The map Z �→ DZ (b) factors through Pic(X × X), and has the following relation

to ˜θX ,b. The projection

Π : Pic(X × X) → Ker(i∗1 ⊕ i∗2 )

associated to (9) is given by (1− π∗
1 ◦ i∗1 − π∗

2 ◦ i∗2 ), giving the identities

ϕ ◦ Π = i∗{1,2} ◦ Π = i∗{1,2} − i∗1 − i∗2 , ψ−1 ◦ ψ = Π.

Since deg(CZ (b)) = deg(ϕ(Π([Z ]))), for any Z in Pic(X × X) which lies in the
kernel of degϕ, we have

DZ (b) = CZ (b) = ϕ([Z ]) = ϕ(Π([Z ])) = θ̃X ,b(ψ([Z ])). (17)

These computations also prove the claims of Remark 2 using the diagram (15). We
define Zt ∈ CH1(X × X) to be the pull-back of Z under the involution

X × X → X × X

(x, y) �→ (y, x).

Lemma 2 In the notation of Definition 2, we have

DZ (b′) − DZ (b) = ψZ (b − b′) + ψZt (b − b′).

Proof We have i{1,2}(b) = i{1,2}(b′). Hence

CZ (b′) − CZ (b) = i{1}(b)∗(Z) − i{1}(b′)∗(Z) + i{2}(b)∗(Z) − i{2}(b′)∗(Z).

By definition of the correspondences, we then have

(i{1}(b)∗ − i{1}(b′)∗)(Z) = ψZ (b − b′)
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and

(i{2}(b)∗ − i{2}(b′)∗)(Z) = ψZt (b − b′),

which proves the equality forCZ (b′)−CZ (b), thus for DZ (b′)−DZ (b) as the degrees
are then equal. ��
Definition 3 Given a surjective homomorphism πB : J → B of abelian varieties, we
obtain a homomorphism

Ker(NS(J )
deg ◦˜AJ∗−→ Z)

˜AJ∗−→ Pic0(X) −→ J
πB−→ B. (18)

By Lemma 2 and (17), for a divisor Z on X × X , if ψΠ(Z) has image contained in
Ker(πB), then the image of [Z ] in B via (18) is independent of the choice of basepoint.
In particular, if we have a surjection (πA, πB) : J → A × B, and Hom(A, B) = 0,
then we obtain a homomorphism independent of b, which we will denote by

θX ,πA,πB : Ker(dπA) ⊂ NS(A) −→ B
[L] �−→ πB ◦ θX ,b ◦ π∗

A([L]) .

Remark 5 This construction also has a direct description in terms of line bundles,
although this is not the one we use to calculate θX ,πA,πB in examples. Given a line
bundle LA on A whose pull-back to X via AJ∗ ◦ π∗

A has degree zero, we may also
consider the projection of AJ∗ ◦π∗

A(LA) to B. Variants of this construction are studied
in the thesis of Michael Daub [20] when Hom(A, B) = 0. By (13) and because
Pic0(J ) contains all classes of antisymmetric line bundles, we have the identity [20,
Proposition 3.3.3]

θX ,πA,πB ◦ p = [2] ◦ πB ◦ AJ∗ ◦ π∗
A;

where p is the projection from Pic(A) to NS(A) restricted to p−1(Ker(dπA )). In
particular, the right-hand side does vanish on Pic0(A) [20, Proposition 3.3.2].

Example 1 Note that θX ,πA,πB is not an invariant of A and B, or even of X , A, B. For
example, let A and B be distinct isogeny factors of X0(N ), and let X = X0(N 2).
Let f1, f2 : X → X0(N ) be the two natural morphisms, and let (πAi , πBi ) be the
morphisms Jac(X) → A× B obtained by composing the surjection J0(N ) → A× B
with fi∗. Then θX ,πA,i ,πB,i can be nonzero (see [18] for examples), however if i �= j ,
θX ,πA,i ,πB, j is identically zero, since for any choice of line bundle [L] in NS(A), the
associated point D[L](b) will lie in f ∗i J0(N ), hence the projection to f j∗ J0(N ) will
be torsion.

3 Proof of finiteness of the Chabauty–Kim set under (C)

The strategy of proof of Proposition 1 is very similar to that of [6, Lemma 3.2].
To explain this strategy, we need to establish some notation. X , A, B are as in the
proposition. Define
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V := Tp(J ) ⊗ Qp, VA := Tp(A) ⊗ Qp, VB := Tp(B) ⊗ Qp.

Let Un(b) denote the maximal n-unipotent quotient of the Qp-unipotent fundamental
group of X at some basepoint b as defined in [22, §10]. Let U be a Galois-stable
quotient of Un(b) (i.e. a quotient by a Galois-stable normal subgroup of Un(b)). Let
T0 be the set of primes of bad reduction for X , and let T = T0 ∪ {p}. Denote the
maximal quotient of Gal(Q/Q) unramified outside T by GQ,T , and for v ∈ T denote
Gal(Qv/Qv) by GQv

. Then by [39,40], we have a commutative diagram

X(Q) H1(GQ,T ,U )

∏

v∈T X(Qv)
∏

v H1(GQv
,U ),

j

∏

v∈T jv

∏

v∈T locv

with the following properties.

1. For G = GQ,T orGQv
, and all i < k, the sets H1(G,U (i)/U (k)) have the structure

ofQp points of an algebraic variety, so that the algebraic structure on H1(G, gri U )

is just the usual scheme structure on a vector space, and the maps

H1(G, gri U ) → H1(G,U/U (i+1)) → H1(G,U/U (i))

come from morphisms of algebraic varieties. The maps locv are then algebraic for
these structures.

2. For v ∈ T0, the map jv has finite image.
3. The image of the map jp is contained inside the subvariety H1

f (GQp ,U ) of crys-
talline torsors.

The following Lemma is proved in [6, Lemma 3.1] (although the result is stated only
in the case A = J , the proof generalises to the case where A is an arbitrary quotient
of J ).

Lemma 3 Let U be a Galois-stable quotient of U2(b). Suppose U is an extension of
VA by Qp(1)n, where A is some abelian variety over Q and VA = Tp(A) ⊗ Qp. If

rk(A(Q)) < n + dim(A),

then X(Qp)2 is finite. In particular, if rk(A(Q)) = dim(A), then X(Qp)2 is finite
whenenever n > 0.

To prove Proposition 1, we construct a quotient U of U2(b) as in Lemma 3, with
n = rk(Ker θX ,πA,πB ). We again take X to be a smooth projective geometrically
irreducible curve over a field K of characteristic zero.

The group U2(b) is an extension

1 → Ker(H2(JQ, Qp)
AJ∗−→ H2(XQ, Qp))

∗ → U2(b) → V → 1. (19)
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Hence for any ξ ∈ Ker(NS(J )
˜AJ∗→ NS(X)), we may quotient by the kernel of the dual

of the Chern class cétp (ξ) ∈ H2(XQ, Qp(1)) (see Sect. 1.1)

cétp (ξ)∗(1) : Ker(H2(JQ, Qp)
AJ∗−→ H2(XQ, Qp))

∗ → Qp(1)

to obtain a quotient UZ of U2(b) which is an extension of V by Qp(1). Similarly,
for any nice correspondence on X × X , we obtain a quotient of U2(b) which is an
extension of V by Qp(1).

Lemma 4 ([6],Theorem 6.3) Let U be a Galois-stable quotient of U2(b) of the form

1 → Qp(1) → U → Vp(J ) → 1,

coming from a correspondence Z ⊂ X × X as above. Then the associated extension
class of Lie(U ) in Ext1GK

(Vp(J ), Qp(1)) is equal to the étale Abel–Jacobi class of
the cycle DZ (b) (see Sect. 2.1).

Proof Let E(Lie(U )) be the universal enveloping algebra of Lie(U ), and let I (Lie(U ))

be the kernel of the co-unit morphism E(Lie(U )) → Qp. In [6, §6], a Galois repre-
sentation EZ is constructed as a quotient of E(Lie(U )). The image of I (Lie(U )) in
EZ is an extension I EZ of V by Qp(1). By [6, Theorem 6.3], the extension class of
I EZ in Ext1

Gal(Q/Q)
(Vp(J ), Qp(1)) is the Abel–Jacobi class of DZ (b). The restriction

of I (Lie(U )) → I EZ to Lie(U ) ⊂ I (Lie(U )) is an isomorphism, and hence the
extension class of Lie(U ) is isomorphic to DZ (b). ��
As explained in Appendix 6, Lemma 4 is really a consequence of Hain and Mat-
sumoto’s computation of the extension class of Lie(U2) in terms of the Ceresa cycle.
Hence to complete the proof of Proposition 1, it will be enough to prove the following
Lemma.

Lemma 5 Let U ′ denote the quotient of U2 obtained from the surjection gr2(U2) →
Ker(dπA )

∗⊗Qp(1). There exists aGalois stable quotientU ofU ′ which is an extension
of VA by Ker(θX ,πA,πB ):

1 Ker(dπA)
∗ ⊗ Qp(1) U ′ VA ⊕ VB 1

1 Ker(θX ,πA,πB )∗ ⊗ Qp(1) U VA 1.

Proof It will be enough to prove the corresponding statement for the Lie algebra L ′
of U ′. The commutator map

[·, ·]U ′ : (VA ⊕ VB) × (VA ⊕ VB) → Ker(dπA )
∗ ⊗ Qp(1)

is the composite of the commutator on U2, given by

(VA ⊕ VB) × (VA ⊕ VB) → Coker(Qp(1)
∪∗−→ ∧2VA ⊕ VA ⊗ VB ⊕∧2VB)
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with the surjection

Coker(Qp(1)
∪∗−→ ∧2VA ⊕ VA ⊗ VB ⊕∧2VB) → Ker(dπA)

∗ ⊗ Qp(1)

Since the latter map factors through projection onto ∧2VA/Qp(1), the composite map
factors through projection onto VA × VA. Hence for any quotient Q of Ker(dπA )

∗ ⊗
Qp(1), we can construct a Lie algebra quotient of L ′ which is an extension of VA

by Q. It remains to show that, when Q = Ker(θX ,πA,πB ), we can make this quotient
Galois stable. That is, we first quotient out by (Ker(dπA)/Ker(θX ,πA,πB ))∗ ⊗ Qp(1),
to form an extension

0 → Ker(θX ,πA,πB )∗ ⊗ Qp(1) → L ′′ → VA ⊕ VB → 0.

The surjection L ′′ → VB induces a Galois equivariant short exact sequence of Lie
algebras

0 → L ′ → L ′′ → VB → 0,

and to construct the quotient U → U ′, it is enough to show that this short exact
sequence admits a Galois equivariant section. Here L ′ sits in a short exact sequence

0 → Ker(θX ,πA,πB )∗ ⊗ Qp(1) → L ′ → VA → 0,

and since L ′′/Ker(θX ,πA,πB )∗ ⊗ Qp(1) = VA ⊕ VB , it is enough to show that image
of [L ′′] under the composite map

Ext1GQ
(VA ⊕ VB,Ker(θX ,πA,πB )∗ ⊗ Qp(1)) → Ext1GQ

(VB,Ker(θX ,πA,πB )∗ ⊗ Qp(1))

is zero.
Equivalently, we want to show that Ker(θX ,πA,πB ) is contained in the kernel of the

homomorphism

Ker(dπA) → Ext1GQ
(VB, Qp(1))

sending ξ ∈ Ker(dπA ) to the VB component of the extension class in Ext1(VA ⊕
VB, Qp(1)) associated to the quotient of L ′ defined by cétp (ξ):

0 Ker(dπA )
∗ ⊗ Qp(1) L ′ VA ⊕ VB 0

0 Qp(1) cétp (ξ)∗(L) VA ⊕ VB 0.

cétp (ξ)∗ ⊗ Qp(1)

By Lemma 4, this extension class is equal to the étale Abel–Jacobi class of Dcétp (ξ)(b),

and hence its VB component is equal to the étaleAbel–Jacobi class of θX ,πA,πB (cétp (ξ)).
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Under the hypothesis, the latter is 0 so the extension class is trivial, which concludes
the proof of Proposition 1. ��

3.1 Bounding the number of rational points on curves satisfying (C)

Following [3], the proof of finiteness of X(Qp)2 may be used to prove an explicit upper
bound on #X(Qp)2. To explain this, we introduce some notation. By [41, Corollary
1], for all v �= p, the size of the image of X(Qv) in H1(GQv

,U2) is finite, and is
equal to one for all primes of good reduction for X . Let T0 denote the set of primes
of bad reduction for X , and for v ∈ T0 let nv denote the size of the image of X(Qv)

in H1(GQv
,U2).

Corollary 1 Suppose X satisfies the hypotheses of Proposition 1, and furthermore that
the rank of A(Q) is equal to its dimension, and the p-adic closure of A has finite index
in A(Qp). Let n := ∏

v∈T0 nv . Let D be an effective divisor on X, let Y ⊂ XZp be the
complement of the support of a normal crossings divisor on Y with generic fibre D,
and let {ω0, . . . , ω2g−1} be a set of differentials in H0(X ,Ω(D)) forming a basis of
H1
dR(X). Then there are ai j , ai ∈ Qp, η ∈ H0(X ,Ω(D)) and g ∈ H0(X ,Ω(2D)),

and α1, . . . , αn in Qp, such that

X(Qp)2 ∩ Y (Zp) ⊂
n

⋃

i=1

{x ∈ Y (Zp) :
∑

ai j

∫ x

b
ωiω j

+
∑

ai

∫ x

b
ωi +

∫ x

b
η + g(x) = αi }. (20)

Proof The argument is identical to the proof of [7, Proposition 6.4], however as the
hypotheses are different we explain the steps. Arguing as in loc. cit, there are bi j , bi in
Qp such that X(Qp)2 ∩ Y (Zp) is contained in the finite set of x ∈ Y (Zp) satisfying

h p(AZ (x)) −
∑

bi j

(∫ x

b
ωi

) (∫ x

b
ω j

)

−
∑

∫ x

b
ωi = −

∑

v∈T0
h(AZ (b)φv ),

for some (φv) in
∏

v∈T0 jv(X(Qv)).Here AZ (b)(φv) denotes the twist of AZ (b) by φv .
Hence we deduce (20) from the formula for h p(AZ (x)) given in [7, Lemma 6.7],

and the formula

(∫ x

b
ωi

) (∫ x

b
ω j

)

=
∫ x

b
ωiω j +

∫ x

b
ω jωi .

��
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Corollary 2 Suppose X satisfies the hypotheses of Proposition 1, and furthermore that
the rank of A(Q) is equal to its dimension. Then

#X(Q) < κp

⎛

⎝

∏

v∈T0
nv

⎞

⎠ #X(Fp)(16g
3 + 15g2 − 16g + 10),

where κp := 1+ p−1
p−2

1
log(p) .

Proof It is enough to prove that, for all x0 ∈ X(Zp), we can choose D, ωi such that
x := red(x0) lies in Y (Fp), and

#{x ∈ red−1({x}) ⊂ X(Qp) :
∑

ai j

∫ x

b
ωiω j +

x
∑

b

ai

∫ x

b
ωi +

∫ x

b
η + g(x) = 0}

< κp(16g
3 + 15g2 − 16g + 10).

This follows from [3, Proposition 3.2] together with [3, §4, below Lemma 4.4.]. ��
Remark 6 In [10], it is proved that the size of j2,v(X(Qv)) can be bounded by the
number of irreducible components of a regular semistable model of X over a finite
extension of Qv . Hence using work of Edixhoven and Parent on stable models of
X+
ns(N ) [23], one can use the above corollary, together with Theorem 1, to give explicit

bounds on the size of X+
ns(N ) and X+

0 (N ).

3.2 Functoriality properties of (C)

The heart of the proof of Proposition 3 is an interpretation of diagonal cycles on X0(N )

and Xns(N ) in terms of Heegner points. The following Lemma allows us to use this
to deduce something about diagonal cycles on X+

0 (N ) and X+
ns(N ). This lemma is a

special case of a theorem of Daub [20, Proposition 3.3.5].

Lemma 6 1. Let f : X ′ → X be a non-constant morphism of curves over a field K .
Suppose b′ ∈ X ′(K ) maps to b ∈ X(K ) under f , and let Z be an element of
CH1(X × X). Then

D( f , f )∗Z (b′) = f ∗(DZ (b)).

2. Let f : X ′ → X and b′ be as above, and let f∗ denote the induced surjection
J ′ := Jac(X ′) → J := Jac(X). Let (πA, πB) be a surjective homomorphism from
J to A × B. Then

Ker(θX ,πA,πB ) = Ker(θX ′,πA◦ f∗,πB◦ f∗).
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Proof For ∗ = {1}, {2} or {1, 2}, the diagram

X ′ X ′ × X ′

X X × X

i∗(b′)

f
i∗(b)

( f , f )

commutes. Hence we obtain, in CH1(X ′),

f ∗(CZ (b)) = ( f ∗ ◦ i{1,2}(b)∗ − f ∗ ◦ i{1}(b)∗ − f ∗ ◦ i{2}(b)∗)(Z)

= (i{1,2}(b′)∗ ◦ ( f , f )∗ − i{1}(b′)∗ ◦ ( f , f )∗ − i{2}(b)∗ ◦ ( f , f )∗)(Z)

= C( f , f )∗(Z)(b
′)

and the result follows for DZ (b). The second item follows from the first, as we now
prove. Let L be a line bundle on A belonging to Ker dπA . By definition of θX ,πA,πB

and the right part of diagram (15), we fix some cycle Z on X × X such that [Z ] =
(AJ(2))∗ ◦ π∗

A([L]), and then by (17)

θX ,πA,πB ([L]) = (πB ⊗ Q) ◦ ϕ([Z ]) = (πB ⊗ Q)(DZ (b)).

Now, considering the morphism f : X ′ → X with those choices of base points, we
have f∗ ◦AJ(2)X ′ = AJ(2)X ◦( f , f ). Consequently, with the sameL and Z , [( f , f )∗Z ] =
(AJ(2)X ′ )∗ ◦ (πA ◦ f∗)∗([L]), so the kernels of dπA and dπA‘◦ f∗ are the same, and on this
common kernel,

θX ′,πA◦ f∗,πB◦ f∗([L]) = ((πB ◦ f∗) ⊗ Q)(D( f , f )∗Z (b))

= ((πB ◦ f∗) ⊗ Q)( f ∗(DZ (b)))

= [deg f ](πB ⊗ Q)(DZ (b)).

In particular,θX ,πA,πB and θX ′,πA◦ f∗,πB◦ f∗ have the same kernel. ��
Note that while the behaviour of diagonal cycles under pull-backs is tautological,

their behaviour under push-forwards is not. For this reason it seems difficult to deduce
statements about diagonal cycles on Xns(N ) from results on Xs(N ), in spite of the
explicit isogeny relating their Jacobians explained below.

4 Proof of (C) for X+
0 (N) and X+

ns(N)

Given Proposition 1, it will be enough to prove Theorem 2, and the following.

Proposition 3 Assume Theorem 2. Then, for X = X+
0 (N ) or X+

ns(N ) of genus at least
2, there exists an isogeny

(πA, πB) : J → A × B,
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where rk(A) = dim(A) = ρ(A) ≥ 2 and such that, for all L in Ker(dπA),
θX ,πA,πB (L) = 0 is torsion (see Definition 4 for the choices of A and B).

We recall the definitions of some of the modular curves which appear, for example,
in [16]. Define C+

ns(N ),C+
s (N ) to be normalisers in GL2(Z/NZ) of fixed choices

of non-split Cartan Cns(N ) and split Cartan subgroups Cs(N ) of GL2(Z/NZ). The
(normaliser of) split and nonsplit Cartan modular curves are defined by

X+
ns(N ) := X(N )/C+

ns(N ), X+
s (N ) = X(N )/C+

s (N ).

Similarly we define Xns(N ) and Xs(N ) to be the quotients of X(N ) by Cns(N ) and
Cs(N ) respectively. Since Cns(N ) and Cs(N ) contain the centre of GL2(Z/NZ) and
their determinant goes through all (Z/NZ)∗, all Xns(N ), Xs(N ) and their Atkin–
Lehner quotients are geometrically connected and defined over Q.

Non-cuspidal points of Xs(N ) (in characteristic not dividing N ) correspond to
elliptic curves E together with a pair C1,C2 of cyclic subgroups of E of order N
generating E[N ]. We have an isomorphism

X0(N
2) � Xs(N ), (21)

which sends a point ( f : E → E ′) to (E ′′,C1,C2), where E ′′ := E/(N · Ker( f )),
C1 is the image of Ker( f ) in E ′′, and C2 is the image of E[N ] in E ′′.

The curve Xs(N ) is naturally a degree two cover of X+
s (N ), and there is an iso-

morphism X+
s (N ) � X+

0 (N 2) compatible with (21).

4.1 Jacobians of modular curves and the asymptotics of the quadratic Chabauty
condition

We recall a formula for the Picard numbers and ranks of modular Jacobians and their
quotients, due to Siksek [59]. Let BNk denote a normalised eigenbasis for the space
of newforms in S2(Γ0(Nk)). Let BNk/Gal(Q/Q) denote a choice of representatives
of the orbits of BNk under Gal(Q/Q). We denote by B+

Nk the subset of BNk with

Atkin–Lehner eigenvalue 1 for wNk . The Jacobians J0(Nk)new and J+
0 (Nk)new admit

Q-isogenies

J0(N
k)new ∼

∏

f ∈BNk /Gal(Q/Q)

A f , J+
0 (Nk)new ∼

∏

f ∈B+
Nk /Gal(Q/Q)

A f ,

where A f denotes theQ-simple abelian variety associated to f by theEichler–Shimura
correspondence (which is independent of the choice of representative of the orbit).
Because X+

s (N ) is isomorphic to X+
0 (N 2) as we have seen above,

J+
s (N ) ∼= J+

0 (N 2) ∼ J0(N ) × J+
0 (N 2)new
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and by a theorem of Chen [16, Theorem 1], we also have a Q-isogeny

J+
ns(N ) ∼ J+

0 (N 2)new. (22)

The following lemma says that one would not expect to be able to use Chabauty’s
method to understand X(Q).

Lemma 7 Let X = X+
0 (N ) or Xns(N ). Then the weak Birch–Swinnerton-Dyer con-

jecture implies X(Qp)1 = X(Qp).

Proof The weak Birch–Swinnerton-Dyer conjecture implies that, for f ∈ BNk , A f

will have positive rank whenever f has positive analytic rank. Since f ∈ BNk has odd
analytic rank wheneverwNk ( f ) = 1, and A f is simple overQ, the Birch–Swinnerton-
Dyer conjecture hence implies that every isogeny factor of Jac(X) (overQ) has positive
rank.

Since End(A f ) is an order in the totally real field K f , every isogeny factor of Jac(X)

has rank at least equal to its dimension. To prove the lemma, we must show that the
image of A f (Q) in Lie(A f )Qp under the p-adic logarithm map generates Lie(A f )Qp

as a Qp-vector space. This is equivalent to the statement that the image of A f (Q) in
Lie(A f )Cp generates the latter as a Cp-vector space. Since Lie(A f )Q decomposes as
a sum of one-dimensional isotypic components Lie(A f )Q,g , for g conjugate to f , and
the p-adic logarithm is End(A f )-equivariant, we deduce that if the image of A f (Q)

does not span Lie(A f )Cp then there is a g conjugate to f such that the image of A f (Q)

in Lie(A f )Cp,g is zero. By the p-adic analytic subgroup theorem [49, Theorem 1], [25,

Theorem 2.2] if P ∈ A f (Q) has the property that log(P) ∈ Lie(A f )Cp lies in a proper

subspace defined over Q, then P lies in a proper commutative sub-variety B ⊂ A f ,Q.
Hence we deduce that if A f (Q) does not generate Lie(A f )Qp , then A f (Q) lies in a
proper commutative subvariety of A f ,Q, since the isotypic components of Lie(A f )Cp

are defined over Q.
We claim that this contradicts the Birch–Swinnerton-Dyer conjecture. More gener-

ally, if A is a simple abelian variety over Q and π : AK → B is a non-zero morphism
of abelian varieties over a finite Galois extension K/Q, we claim that P ∈ A(Q) is
torsion if and only if its image in B(K ) is torsion (in particular, when A = A f and B
is an isogeny factor, we deduce that A f has rank zero over Q if and only if there is as
isogeny factor B of A f ,Q such that the image of A f (Q) in B is torsion). To see this
claim, for σ ∈ Gal(K/Q) let πσ denote the conjugate homomorphism AK → Bσ . If
π(P) is torsion then πσ (P) = π(P)σ is torsion for all σ , hence the image of P under
the map

∏

σ∈Gal(K |Q)

πσ : AK →
∏

σ

Bσ

is torsion. However, this map descends to a non-zero morphism of Q, and hence by
simplicity of A, if π(P) is torsion then P is torsion. ��

Moreover, two abelian varieties A f , Ag for f , g ∈ BNk are non-isogenous unless
f and g are conjugate by Gal(Q/Q), and End†(A f ) is always totally real of rank
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dim(A f ), which proves that each of the Jacobians J = J+
0 (N ), J+

s (N ), J+
ns(N ) sat-

isfies ρ(J ) = dim J , and hence the condition (2) becomes

rk(J ) < 2 · dim(J ) − 1 (23)

(for a more general such condition for modular curves, see the main result of [59]).
Using the isogenies above, the Birch–Swinnerton-Dyer conjecture implies

rk(J+
0 (N )) =

∑

f ∈B+
N

ords=1 L( f , s), rk(J+
ns(N )) =

∑

f ∈B+
N2

ords=1 L( f , s).

There is a whole literature on analytic estimates for these types of analytic ranks.
In particular, using [45, Theorem 1.4] one can show that the Birch–Swinnerton-Dyer
conjecture implies that

lim sup
N

rk(J+
0 (N ))

dim J+
0 (N )

≤ 1.3782,

and in particular asymptotically that (2) is always satisfied. It is likely that the same
result can be obtained for J+

ns(N ), but the square level (we are looking at J+
0 (N 2)new)

raises serious technical difficulties for analytic estimates of second moments used
there.

On the other hand, by Corollary 4, Theorem 2 implies that we have an isogeny
factor A of J satisfying ρ(A) > 1 and rk(A) = dim(A), hence to prove Propo-
sition 3 it suffices to construct a nonzero [L] ∈ Ker(NS(A) → NS(X)) satisfying
θX ,πA,πB ([L]) = 0, where B is the isogeny factor consisting of modular abelian vari-
eties associated to modular forms whose analytic rank of L-functions is greater than
1. It will be shown that for any L , its image θX ,πA,πB (L) can be represented by a divi-
sor supported on cusps and Heegner points, and hence is torsion by the generalised
Gross–Zagier formula ( [67, Theorem 6.1]) This motivates the following definition.

Definition 4 (Heegner quotient) Let M = N or N 2. The Heegner quotient A of
J0(M)new is the product

A :=
∏

f ∈B+,new
M /Gal(Q/Q)

L ′( f ,1) �=0

A f ,

and its complement is

B :=
∏

f ∈B+,new
M /Gal(Q/Q)

L ′( f ,1)=0

A f

(so thatA × B is isogenous to J+
0 (M)new, not the full J0(M)new).
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In particular, Corollary 4 implies that rk(A) = dim(A) (assuming the Birch–
Swinnerton-Dyer conjecture, it is the largest factor of J+

0 (M) with this property)
and the generalised Gross–Zagier formula implies that all images of traces of Heegner
points on X0(N ) in B are torsion (see Sects. 4.2 and 4.3). In the case of Xns(N ), there
is also a notion of Heegner point due to Kohen and Pacetti, inspired by the points used
in Zhang’s Gross–Zagier formula for Xns(N ) (and more general Shimura curves).

The main result of the next section is the following lemma, which refers to X0(N )

and Xns(N ) rather than their Atkin–Lehner quotients. However, by Lemma 6 it implies
Proposition 3.

Lemma 8 Let X = X0(N ) or Xns(N ), and A, B the Heegner quotient and its comple-
ment as defined above, endowed with the natural projections (πA, πB) : Jac(X) →
A × B. Then for all [L] in Ker(dπA), θX ,πA,πB ([L]) is torsion. In particular the rank
of the kernel of θX ,πA,πB is maximal (in particular at least 1 if dim A ≥ 2).

4.2 How to prove (C) using Heegner points under the analytic hypothesis:
X = X0(N)

In this section we prove Lemma 8. We will deduce it from the Gross–Zagier–Zhang
theorem. In the case of X0(N ), as explained in [20] or [19], we could also deduce
it from the Yuan–Zhang–Zhang formula for the height of diagonal cycles (see Sect.
4.4). By a Heegner point on X0(N ) we will mean a point

E → E ′

on Y0(N ) such that E and E ′ have CM by the same order of an imaginary quadratic
field K , not necessarily maximal but assumed to be with conductor prime to N (see
[28] for a review of their properties, in particular N has to be split or ramified in K ).

An eigenform f ∈ S2(Γ0(N ))+,new defines by Eichler-Shimura theory a Q-simple
quotient π : J0(N ) → A f of J0(N ) (in fact of J+

0 (N )) and the Heegner points behave
on A f in the following way.

Lemma 9 1. If L ′( f , 1) �= 0, then rk(A f ) = dim(A f ) (and A f (Q) is generated by
the projection of a trace of a suitable choice of Heegner point).

2. If L ′( f , 1) = 0, then for any P in Div0(X0(N ))(Q)Gal(Q|Q) supported on the set
of Heegner points, the image π(P) is torsion in A f (Q).

Remark 7 The original Gross–Zagier formula [32, Theorem I.6.3] is not sufficient for
the second part of the Lemma, as it only deals with Heegner points for which the
discriminant of the order is squarefree (in particular, the order is maximal) and prime
to N , which we cannot afford to assume here. This is why we need Zhang’s formula
and the ensuing technical interpretation.

Proof The first part is given by Proposition 8. The second part is a consequence of the
generalised Gross–Zagier formula of Zhang [67, Theorem 6.1] which for this case is
made completely explicit in [15, Theorem 1.1], see also [15, Example after Theorem
1.5]. We use the following notation: f ∈ S2(Γ0(N )) is a normalised eigenform, K
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an imaginary quadratic field number field in which N is not inert, c prime to N ,
Oc = Z + cOK , and 1c the trivial ring class character on Pic(Oc). We denote by Hc

the ray class field of K with conductor c. If P is a Heegner point on X0(N ) with CM
by Oc, it belongs to X0(N )(Hc), and we define

P1c =
∑

σ∈Gal(Hc/K )

(Pσ − [∞]) ∈ J0(N )(K ) ⊂ J0(N )(Hc).

On the other hand, if J (Hc) ⊗ C denotes the extension of scalars of J (Hc) endowed
with the extended Néron-Tate height, we have the decomposition into isotypical com-
ponents

J0(N )(Hc) ⊗ C =
⊕

g

J0(N )g,

where g goes through all eigenforms of weight 2 of J0(N ), so that J0(N )g is exactly

the isotypical part where Tn acts by multiplication by an(g). We denote by P f
1c

the
projection of P1c on the f -isotypical component. The statement of [15, Theorem 1.1]
then tells (which is sufficient for us) that L ′( f , 1c, 1) as defined there is proportional
(by an explicit nonzero factor) to the extended Néron-Tate height of P f

1c
.

We have the equality of L-functions

L( f , 1K , s) = L ( f , s) L ( f ⊗ χK , s) ,

with 1K the trivial class character onPic(OK ) andχK theDirichlet character associated
to K . In particular (and given the signs of functional equations on the right), our
hypothesis L ′( f , 1) = 0 guarantees that L( f , 1K , s) vanishes with order at least 2 at
1, so the left-hand side of [15, Theorem 1.1] is zero for c = 1. This also holds for any
c prime to N , because by construction L( f , 1c, s) is a multiple of L( f , 1K , s) around
1 (given the definition again). We have thus proved that Pg

1c
is zero in J0(N )(Hc)⊗C.

Now, the group Aut(C) acts on J0(N )(Hc) ⊗ C by the identity on the left and
the natural action on the right, and for every α ∈ Aut(C) acting as such, we have
Pα
1c

= P1c and then for every α ∈ Aut(C), we obtain (Pg
1c

)α = Pα(g)
1c

where α(g) is
the eigenform obtained by conjugating the coefficients of g (see [32, Corollary V.1.2]).
Now, as we also have the decomposition

J0(N )(Hc) ⊗ C ∼=
∏

f ∈BN /Gal(Q/Q)

A f (Hc) ⊗ C

in subrepresentations of the Hecke algebra, the sum of all Pg
1c

for g conjugate to f is
proportional to the projection π of the trace of P − (∞) (belonging to J0(N )(K )) in
A f (K ) ⊗ C, so we have proven that this projection in A f (K ) is torsion. ��
We now explain how to deduce Lemma 8 from this result. Letm be an integer coprime
to N . Define the Hecke correspondence ˜Cm to be the image of X0(mN ) in X0(N ) ×
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X0(N ) under the product of the two natural maps X0(mN ) → X0(N ). We define

Cm = (1− π∗
1 i

∗
1 − π∗

2 i
∗
2 )

˜Cm

to be the projection of ˜Cm onto the End(J0(N )) component of Pic(X0(N ) × X0(N ))

(see (8)). Then Cm lands in the subspace NS(J0(N )) ⊂ End(J0(N )) of endomor-
phisms symmetric with respect to the Rosati involution. Whenm is square-free, Cm is
the Hecke operator Tm . In general, Cm is a linear combination of Tm/d for d divisors
of m.

Recall that i1,2 : X0(N ) ↪→ X0(N ) × X0(N ) denotes the diagonal morphism. A
non-cuspidal point in the support of i∗1,2(˜Cm) is a cyclic N -isogeny f : E1 → E2,
together with cyclic subgroups Gi of Ei of order m such that f (G1) = G2, and
isomorphisms

Ei
�−→ Ei/Gi

which commute with f and the induced isogeny E1/G1 → E2/G2. In particular, the
ring of endomorphisms of each Ei , of discriminant denoted by Di , thus contains an
element of norm m so there exist Ai , Bi in Z for which

A2
i + Di B

2
i = 4m. (24)

The isogeny being cyclic, Ai and Bi must be coprime here. The point E1 → E2 is a
Heegner point of Y0(N ) if and only if D1 = D2.

Lemma 10 Let X = X0(N ), let m be prime to N, and let ˜Cm be the Hecke corre-
spondence defined above. Then the divisor i∗1,2˜Cm is supported on the set of Heegner
points whenever m is less than N/4.

Proof Let (E1 → E2) be a non-cuspidal point in the support of i∗1,2˜Cm as above.
Suppose the point is not Heegner. Since E1 and E2 are N -isogenous, D2 = λ2D1 for
some rational λ > 0 a power of N . Since λ �= 1, we must have Di divisible by N 2 for
some i , and hence m > N 2/4, by (24). Finally, if the conductor of the order was not
prime to N , we would also have N 2|Di which leads to the same inequality. ��

By the following Lemma (essentially just the Sturm bound) we have enough Hecke
operators Cm for which i∗1,2Cm is supported on cusps and Heegner points to complete
the proof of the first part of Lemma 8.

Lemma 11 Let N be a prime. Then, any element of End†(J+
0 (N ))tr=0, viewed as a

subspace of End†(J0(N ))tr=0, can be written as a Z-linear combination of endomor-
phisms associated to the Hecke correspondences Cm, for m < N 2/4 prime to N.

Proof By the Sturm bound ( [62] Theorem 9.18), the set of Hecke operators Tm for
m < N 2/4 spans the Hecke algebra of endomorphisms of J0(N ). Since aN ( f ) = −1
on newforms such that f|wN = − f , the set of Hecke operators Tm for m < N 2/4
prime to N spans the Hecke algebra of endomorphisms of J+

0 (N ) (which is the full
endomorphism algebra over Q). ��
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This completes the proof of case (1) of Proposition 3. Indeed, Lemma 11 implies
that any nice correspondence Z on X0(N ) can be written as a linear combination of
the Cm form < N 2/4 prime to N . By Lemma 10, for any such Z , DZ (b) is supported
on Heegner points and cusps, so by Lemma 9 (part 2), its image by πB is torsion.

4.3 How to prove (C) using Heegner points under the analytic hypothesis:
X = X+ns(N)

The second case is similar to the first, but we must replace the classical notion of
Heegner point with Heegner points on non-split Cartan modular curves in the sense
of Zhang/Kohen–Pacetti, and replace Gross–Zagier–Zhang on X0(N ) with Zhang’s
Gross–Zagier theorem on Xns(N ).

To make results easier to state, we use the moduli interpretation of Xns(N ) and
X+
ns(N ) given in [42] and its consequences. To do so, one fixes an ε ∈ FN which is not

a square.Apair (E, φε) is then an elliptic curve E togetherwith an endomorphismφε of
E[N ] whose square is multiplication by ε. Such an endomorphism has eigenvalues in
FN2\FN , and two pairs (E, φε) and (E ′, φ′

ε) are isomorphic if there is an isomorphism
ψ : E → E ′ such that on E[N ], ψ ◦ φε = φ′

ε ◦ ψ .
Xns(N ) is the compactified moduli space of such pairs up to isomorphism [42,

§1.2]. Furthermore, the natural involution on thismodular curve is given by (E, φε) �→
(E,−φε).

First, we define Hecke correspondences ˜Cm ⊂ Xns(N ) × Xns(N ) (for m prime to
N ) as follows. We have a curve Xns(N ,m) = Xns(N ) ×X(1) X0(m) given by adding
an auxiliary Γ0(m) structure. We have two maps Xns(N ,m) → Xns(N ), the forgetful
one, and the one sending (E, φε,C) to (E/C, πC ◦ φε ◦ πC

−1) where C is a cyclic
subgroup of order m, πC : E → E/C the natural projection, and πC the induced map
E[N ] → (E/C)[N ]. Furthermore, Chen morphisms between Jns(N ) and J0(N 2) are
equivariant with respect to the Hecke actions [42, Theorem 1.11].

We will again use the generalised Gross–Zagier formula from Zhang from [67], in
a slightly different context here. We follow the notation of [67, §6]. Let K/Q be an
imaginary quadratic field inert at N (instead of split or ramified in the previous case),
and let K ↪→ M2(Q) be an embedding associated to an integral basis of OK . For a
choice of order Oc of K of conductor c prime to N , define

Rc = Oc + N · M2(Z)

(notice the index of NOK is N 2). The Shimura variety MUc is then uniformised as

MUc (C) = GL2(Q)+\H× GL2(A f )/Uc,

where Uc can be defined as GL2(Zv) for places v not dividing N , and (Rc ⊗
ZN )∗ ⊂ GL2(ZN ) at N (seen in GL2(ZN )). Note that GL2(Q)+ · Uc = GL2(A f )

and GL2(Q)+ ∩ Uc ⊂ SL2(Z) contains the subgroup Γ (N ) of SL2(Z) of all
matrices congruent to the identity modulo N , and the quotient is a conjugate of
Cns(N )∩SL2(Z/NZ), where the precise choice of Cns(N ) comes from the reduction
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modulo N of Oc inside M2(Z/NZ) given by the embedding (it is nonsplit precisely
because N is inert in Oc) . This gives an isomorphism

MUc (C) � Yns(N )C.

The CM points on MUc in the sense of Zhang are then the double cosets of pairs
(h0, ic), where h0 is fixed by the image T of the torus K×. and ic has the property
that

icUci
−1
c ∩ T (A f ) � ̂O×

c /̂O×
F ,

in other words the nonsplit Cartan structure of level N is the one determined by the
endomorphism ring of the CM elliptic curve.

On the other hand, we say that (E, φε) ∈ Yns(N ) is a Heegner point (in the sense of
Kohen–Pacetti) with multiplication by Oc if End(E) ∼= Oc (with c prime to N ) and
φε comes from an endomorphism β of E . Note that this implies that N is inert inOc,
since the minimal polynomial of β modulo N is then irreducible.

This discussion thus implies the following equivalence of definitions.

Lemma 12 Under the identification MUc � Yns(N ) for every order Oc of conductor
c prime to N, Zhang’s CM points correspond to Heegner points with CM by Oc in
Yns(N ) in the sense of Kohen–Pacetti.

Let f be an eigenform in S2(Γ0(N 2))+,new. It can be seen as an automorphic form
on an MUc as above, using the isomorphism of Hecke modules S2(Γ0(N 2))+,new ∼=
S2(Γ +

ns (N )) and the isomorphism MUc (C) ∼= Yns(N )C and we again have by Eichler-
Shimura theory a Q-simple quotient A f of J+

ns(N ).
The consequence of Zhang’s result that we will use is the following.

Theorem 3 ([67], Theorem 6.1)With notation as above, let 1c be the trivial character
of Gal(Hc/K ) and P a Heegner point on Yns(N ) with CM by Oc in the sense of
Kohen-Pacetti. Denote by P1c be the projection of P − ξ (ξ the Hodge class) in

Jns(N )(K ) = Jns(N )(Hc)
1c . Let P f

1c
be the projection of P1c onto the f -isotypical

component of Jns(N )(Hc) ⊗ C.
If L ′( f , 1) = 0, then P f

1c
= 0 and π f (P1c ) is torsion in A f (Hc).

Proof Using the previous lemmas and discussion, we can translate everything in terms
of the Shimura curve MUc : the Heegner point P becomes a CM point in the sense of
Zhang and f becomes an automorphic representationφ. These changes are compatible
with Hecke operators and Galois actions, so they preserve the decompositions into
isotypical components above. We can then proceed along the same lines as the proof
of Lemma 9 part 2 to deduce the conclusion from Zhang’s theorem. ��

We are now ready to prove the analogue of Lemma 10 with X0(N ) replaced by
X+
ns(N ).

Lemma 13 Let X = Xns(N ), let m be prime to N, and let ˜Cm be the Hecke corre-
spondence defined above. Then the divisor i∗1,2˜Cm is supported on Heegner points in

the sense of Kohen-Pacetti and cusps whenever m is less than N 2/4.
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Proof By the moduli interpretation of Xns(N ) and the Hecke correspondences, a non-
cuspidal point in the support of i∗1,2˜Cm is a pair (E, φε) such that there exists an
endomorphism α of E of norm m with cyclic kernel (of order m) such that if α

is the induced endomorphism of E[N ], α ◦ φε ◦ α−1 = φε. This implies that α

belongs to the nonsplit Cartan subgroup associated to φε (which is also the group of
invertible elements of Z[φε]). We claim α is not scalar: if it were, we could write
α = k + Nβ, k ∈ Zβ ∈ End(E) and then the norm of α being m < N 2/4 forces β to
be an integer as well, contradicting the assumption that α has cyclic kernel.

From this, we deduce that Z[α] = Z[φε], as both are Z/NZ-vector spaces of
dimension 2 and the former is included in the latter. This implies that φε is induced by
the action of an element of Z[α] ⊂ End(E) on E[N ], and the ring of endomorphisms
has conductor prime to N for the same reasons as in X0(N ), and its discriminant is
automatically prime to N as discussed after defining Heegner points in the sense of
Kohen-Pacetti. ��

By the compatibility with Hecke correspondences on X0(N 2) (which is a conse-
quence of Chen’s theorem without quotient by Atkin-Lehner involutions, e.g. [60,
Théorème 2]), Lemma 11 implies that any nice correspondence Z on X+

ns(N ) can be
written as a linear combination of Cm for m < N 2/4 prime to N . By Lemma 13, for
any such Z , DZ (b) is supported on Heegner points (in the sense of Kohen–Pacetti)
and cusps. Hence, Zhang’s Gross–Zagier theorem (together with Manin–Drinfeld)
implies πB(DZ (b)) is torsion. Assuming the conclusions of Theorem 2 hold for M ,
the Heegner quotient A of J+

0 (M)new is of dimension at least 2 so ρ(A) ≥ 2. This
completes the proof of case (2) of Proposition 3.

4.4 An alternative approach

In this subsection, we sketch an alternative and less ad hoc approach for proving
Proposition 3 in the case X = X+

0 (N ), using the Theorem of Yuan–Zhang–Zhang on
the heights of diagonal cycles.

Theorem 4 (Darmon–Rotger–Sols [19], Theorem 3.7) Let X = X0(N ), and let f , g
be non-conjugate eigenforms in S2(Γ0(N )). Let Z ∈ NS(J0(N )) lie in the image of
NS(Ag). Suppose ε( f ) = −1 and ε(Sym2(g) ⊗ f ) = 1. If the projection of DZ (b)
to A f is non-torsion, then L ′( f , 1) �= 0.

The result above holds for arbitrary N , but is most useful when N is prime, since in this
case we have ε( f ⊗g⊗g) = −aN ( f )aN (g)2 = −aN ( f ) (see e.g. [30]). Hence in this
case Theorem 4 implies that the image of DZ (b) in A f is torsion for all eigenforms f
in S+2 (Γ0(N ))., which implies that we get an alternative proof for X+

0 (N ). One way to
view Proposition 3 is that it shows that it is easier to prove diagonal cycles are torsion
than it is to prove they are non-torsion. On the other hand, one can show directly that
the image of DZ (b) in A f is torsion for all eigenforms f satisfying wN ( f ) = − f , as
explained in [20, Theorem 3.3.8]: by Lemma 6, we have

w∗
N (DZ (b)) = Dw∗

N (Z)(b).
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Since w∗
N (Z) = Z , and w∗

N acts as (-1) on A f , we deduce π f ∗(DZ (b)) is torsion.

5 Proof of the analytic part

In this section, we prove Theorem 2 using analytic weighted averages techniques,
following guiding principles e.g. from [37] and [24]. For convenience and consistency,
the notation below is as close as possible to that from [47].

Notation

– N is a prime number and M = N or N 2 in all of the following.
– If f , g ∈ S2(Γ0(M)), we denote their Petersson scalar product by

〈 f , g〉M =
∫

D
f (x + iy)g(x + iy)dxdy,

where D is a fundamental domain of Γ0(M), and the associated Petersson norm
by ‖ · ‖M .

– For ε = ±1, the space S2(Γ0(M))ε refers to the subspace of modular forms f
of S2(Γ0(M)) such that f|wM = ε · f , where wM is the Fricke involution of
S2(Γ0(M)). Note that in weight 2, this is the space of modular forms f such that
L( f , s) has root number −ε.

– For A, B linear forms on S2(Γ0(M)) (resp. on a subspace indicated by super-
scripts), we write

〈A, B〉M =
∑

f

A( f )B( f )

‖ f ‖2M
,

where f goes through an orthogonal basis of S2(Γ0(M)) (it is readily checked not
to depend on this choice of basis), resp. of the prescribed subspace. We will add
superscripts {+,−, new, old} to refer to the sum restricted to an orthogonal basis
of the corresponding subspaces of S2(Γ0(M)).

– We denote by am (form ∈ N≥1) and L ′ the linear forms on S2(Γ0(M))which to f
associate respectively the m-th coefficient of the q-expansion of f , and L ′( f , 1)
(defined properly in the next paragraph).

– The (positive) greatest common divisors of integers a, b or integers a, b, c are
respectively denoted by (a, b) and (a, b, c).

– For any positive number B, O1(B) refers to a complex number of absolute value
≤ B.

The proof of Theorem 2 relies on the following lemma.

Lemma 14 Theorem 2 holds for M if

〈a1, L ′〉+,new
M �= 0 and

〈a2, L ′〉+,new
M

〈a1, L ′〉+,new
M

∈ ]0, 1[.
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Proof If 〈a1, L ′〉+,new
M �= 0, by definition of this sum, there must be at least one

normalised newform f ∈ S2(Γ0(M))+,new such that L ′( f , 1) �= 0. As a byproduct of
the Gross–Zagier formula ( [32], Corollary V.1.3), this implies that L ′(g, 1) �= 0 for
all normalised newforms g which are conjugates of f by Gal(Q/Q), thus Theorem
2 holds for M unless the field of coefficients of f is Q and this f is unique, which
we assume now. As f is normalised, those coefficients are algebraic integers hence
belong to Z. Now, one has

〈a2, L ′〉+,new
M

〈a1, L ′〉+,new
M

= a2( f )L ′( f , 1)‖ f ‖2M
a1( f )L ′( f , 1)‖ f ‖2M

= a2( f ) ∈ ]0, 1[

by hypothesis, so a2( f ) /∈ Z which leads to a contradiction and Theorem 2 holds. ��
Remark 8 The statement of this lemma appears quite ad hoc so let us explain the main
motivations behind it.

– As we will see later, as long as m is small compared to
√
M , one has

〈am, L ′〉+,new
M

4π
= ln(

√
M) + C − ln(m) + O(m/

√
M)

with explicit implied constants. This proves that the hypotheses of the lemma are
indeed satisfied for large M .

– The error terms of the estimate above are smaller when the m’s are smaller, hence
the choices of m = 1 and 2 for the ratio.

– There are far better asymptotic estimates on the number of newforms f in
S2(Γ0(M))+,new such that L ′( f , 1) �= 0, e.g. : by [45] (at least for M = N prime),
the proportion of such forms is asymptotically at least 7/8, in particular there are
far more than just 2 for M large). These techniques, using also estimates of second
moments and of the norms ‖ f ‖M , are harder to make explicit, and we suspect
the effective bounds obtained by following step-by-step the arguments would be
huge. Lemma 14, while very crude (and giving a weaker result) is tailor-made to
be efficient enough for precise estimates and approachable bounds.

5.1 Splitting of the terms to estimate the first moments

The starting point to estimate the weighted averages 〈am, L ′〉newN is the following trace
formula of Petersson adapted by Akbary (and proven in greater generality in [47]).

Proposition 4 Let m, n, M be three positive integers, and ε = ±1. Then, we have

1

2π
√
mn

〈am, an〉εM = δmn − 2π
∑

c>0
M|c

S(m, n; c)
c

J1

(

4π
√
mn

c

)

−2πε
∑

d>0
(d,M)=1

S(m, nM−1; d)

d
√
M

J1

(

4π
√
mn

d
√
M

)

, (25)

123



N. Dogra, S. Le Fourn

where S is the notation for Kloosterman sums

S(m, n; c) =
∑

k∈(Z/cZ)∗
e2iπ(mk+nk−1)/c

(except for c = 1 where its value is 1 by convention), Q−1 means the inverse of Q
modulo d in the Kloosterman sums and J1 is the Bessel function of the first kind and
order 1.

The sums on the right-hand side are absolutely convergent thanks to the following
well-known uniform bounds: |J1(x)| ≤ |x |/2 for all x , and the Weil bounds

|S(m, n; c)| ≤ (m, n, c)1/2τ(c)
√
c, (26)

with τ the divisor-counting function, which improves, if M is a prime power dividing
c, in

|S(m, n; c)| ≤ 2(m, n, c)1/2τ(c/M)
√
c

( [36], (3.2), (3.3), Theorem 11.11 and Corollary 11.12).
Now, our normalisation of the L-function associated to a form f ∈ S2(Γ0(M)) is

given by

L( f , s) =
∑

n=1

an( f )

ns
,

and this L-series converges uniformly on any compact subset of {Re(s) > 2}.
One can express L ′( f , 1) itself in terms of the Fourier coefficients of f in the

following way.

Lemma 15 For any M ≥ 1 and any f ∈ S2(Γ0(M))+, one has

L ′( f , 1) = 2
+∞
∑

n=1

an( f )

n
E1

(

2πn√
M

)

where E1 is the exponential integral function, defined on ]0,+∞[ by

E1(y) =
∫ +∞

y

e−t

t
dt .

Proof We define the completed L-function Λ associated to L by

Λ( f , s) :=
(√

M

2π

)s

Γ (s)L( f , s). (27)
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By standard arguments(e.g. [14], section 1.5), this function extends to an holomorphic
function on C and satisfies the functional equation

Λ( f , 2− s) = −Λ( f|wM , s). (28)

The expression of L ′( f , 1) is then deduced from the functional equation of Λ by
integration of residues on vertical axes and Mellin transform (see e.g. [36] (26.10)
where the definition of L is translated by 1/2). ��

With this formula and by uniform convergence of the terms involved, we obtain:

〈am, L ′〉+M
4π

= E1

(

2πm√
M

)

− 2π
√
m

⎛

⎝

∑

M|c

S(c)

c
+

∑

(d,M)=1

T(d)

d
√
M

⎞

⎠ , (29)

where

S(c) =
+∞
∑

n=1

S(m, n; c)√
n

J1

(

4π
√
mn

c

)

E1

(

2πn√
M

)

(30)

and

T(d) =
+∞
∑

n=1

S(m, nM−1; d)√
n

J1

(

4π
√
mn

d
√
M

)

E1

(

2πn√
M

)

. (31)

The main term in (29) will be E1(2πm/
√
M) as long as m � √

M .
The trace formula does not separate the old and new spaces, which we need for

M = N 2. This is taken care of in the following lemma.

Lemma 16 For N prime and m ≥ 1 not divisible by N,

〈am, L ′〉+,new
N2 = 〈am, L ′〉+

N2 − 1

N − 1

(

〈am, L ′〉+N + ln(N )

2
〈am, L〉−N

)

.

Proof By orthogonality of the new and old subspaces,

〈am, L ′〉+,new
N2 = 〈am, L ′〉N2 − 〈am, L ′〉+,old

N2 .

To prove the formula on the oldpart, we need to be a bit careful with the definitions
of completed L-functions: although the definition of L( f , s) does not depend on the
ambient space of modular forms, the definition of the completed L-function Λ( f , s)
in (27) does. The degeneracy operators are denoted by An as in the original article [1].
Let

A1 = I2, AN =
(

N 0
0 1

)

, WN =
(

0 1
−N 0

)

, WN2 =
(

0 1
−N 2 0

)

.
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Notice that (ANWN2W−1
N )/N belongs to Γ0(N ), thus for f ∈ S2(Γ0(N )) such that

f|WN = ε f · f , one has

( f|AN )|WN2 = ( f|WN )|A1 = ε f · f|A1 , (32)

hence also

( f|A1)|WN2 = ε f · f|AN .

Consequently, an orthogonal (see the computations of section 4 of [47] for example)
basis of S2(Γ0(N 2))+,old is given by the f|A1 + ( f|A1)|WN2 , where f goes through an
eigenbasis of S2(Γ0(N )). The aforementioned computations also prove with (32) that
if f|WN = ε f · f , then

〈 f|A1 + ( f|A1)|WN2 , f|A1 + ( f|A1)|WN2 〉N2 = 2(N − 1)〈 f , f 〉N .

If N does not divide m (so that am( f|AN ) = 0), this implies that

〈am, L ′〉+,old
N2 = 1

2(N − 1)

∑

f

am( f )L ′( f|A1 + ( f|A1)|WN2 , 1)

where f goes through an orthonormal basis of S2(Γ0(N )). Now, by the functional
equation of Λ( f , s) in (28), Λ′( f|A1, 1) = Λ′(( f|A1)|WN2 , 1) but

Λ′( f|A1 , 1) = N

2π
(L ′( f|A1 , 1) + (ln(N/2π) + γ )L( f , 1))

Λ′(( f|A1)|WN2 , 1) = N

2π
(L ′(( f|A1)|WN2 , 1) + (ln(N/2π) + γ )ε f L( f , 1)).

The first equality is a direct application of the definition of Λ, the second one uses
that L( f|AN , 1) = L( f , 1) (easy to show by the integral formula of L( f , 1)) and the
results above. Thus, to compute L ′( f|A1 + ( f|A1)|WN2 , 1), it is enough to know the
sum of the two right-hand terms which is the sum of the two left-hand terms, which
equal one another. Now, if ε f = 1 then L( f , 1) = 0 by sign of the functional equation
of Λ( f , s) (in level N here !), and if ε f = −1, Λ′( f , 1) = 0. We thus obtain in this
case

L ′( f , 1) = −(ln(
√
N/(2π)) + γ )L( f , 1),

and get the lemma by summation on those forms f ’s gathered by sign of ε f . ��

5.2 First estimates

We recall that M = N or N 2.
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Lemma 17 Using the Weil bounds, we get for every c multiple of M and d prime to
M:

|S(c)| ≤ 2
√
mMτ(c/M)

f ((m, c))√
c

, |T(d)| ≤ τ(d)
√
m

f ((m, d))√
d

where for every integer k, f (k) = ∑

k′|k 1√
k′ . For m = 2 and c, d even, these estimates

are improved to

|S(c)| ≤ (
√
2+ 2)

√
Mτ(c/M)√

c
, |T(d)| ≤ (1+ 1/

√
2)

τ (d)√
d

. (33)

Proof In the definitions of S(c) (and similarly for T(d)), we separate the terms in n
depending on the values of (m, n, c) = m′ which is a divisor of (m, c). Then, using
|J1(x)| ≤ |x |/2, it only remains to control the sum of the E1(2πm′n/

√
M) for n from

1 to +∞, which after sum-integral comparison and variable change is smaller than√
M/(2πm′).
In the specific case where m = 2 and c or d even, the cases are made from the

beginning on the values of (m, n, c)1/2 instead of bounding by (m, c)1/2, and a careful
computation gives those bounds. ��

This allows us to bound the sum of the S(c)/c for all multiples c of M . By multi-
plicativity of τ ,

∣

∣

∣

∣

∣

∣

∑

M|c

S(c)

c

∣

∣

∣

∣

∣

∣

≤ 2
√
m

M

∑

m′|m

f (m′)τ (m′)
(m′)3/2

+∞
∑

c=1

τ(c)

c3/2

≤ 2
√
m

M

∑

m′|m

τ(m′)
m′

+∞
∑

c=1

τ(c)

c3/2
,

the sum on c being exactly ζ(3/2)2. We denote

g(m) =
∑

m′|m

f (m′)τ (m′)
(m′)3/2

hence (and similarly for T):

2π
√
m

∣

∣

∣

∣

∣

∣

∑

M|c

S(c)

c

∣

∣

∣

∣

∣

∣

≤ 86m

M
g(m), 2π

√
m

∣

∣

∣

∣

∣

∣

∑

(d,M)=1

T(d)

d
√
M

∣

∣

∣

∣

∣

∣

≤ 43m√
M

g(m) (34)

which gives

〈am, L ′〉+M
4π

= E1(2πm/
√
M) + g(m)m

(

O1

(

86

M

)

+ O1

(

43√
M

))

. (35)
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For m = 2, the previous refinements can be exploited and we get instead

2π
√
2

∣

∣

∣

∣

∣

∣

∑

M|c

S(c)

c

∣

∣

∣

∣

∣

∣

≤ 213

M
, 2π

√
2

∣

∣

∣

∣

∣

∣

∑

(d,M)=1

T(d)

d
√
M

∣

∣

∣

∣

∣

∣

≤ 97√
M

hence

〈a2, L ′〉+M
4π

= E1(4π/
√
M) + O1

(

213

M

)

+ O1

(

97√
M

)

. (36)

Identical bounds are found for

S0(c) =
+∞
∑

n=1

S(m, n; c)√
n

J1

(

4π
√
mn

c

)

exp

(

− 2πn√
M

)

T0(d) =
+∞
∑

n=1

S(m, nM−1; d)√
n

J1

(

4π
√
mn

c
√
M

)

exp

(

− 2πn√
M

)

as the integral of e−t on [0,+∞[ is equal to 1 like the one of E1. Thus, by similar
computations,

〈am, L〉−N
4π

= e−2πm/
√
N + mg(m)

(

O1

(

86

N
+ 43√

N

))

.

Gathering those bounds, we get for all m prime to N ,

〈am, L ′〉+,new
N2

4π
= E1

(

2πm

N

)

−
E1

(

2πm√
N

)

N − 1
− ln(N )e−2πm/

√
N

2(N − 1)
(37)

+mg(m)O1

(

86

N 2 + 43

N
+ ln(N )/2+ 1

N − 1

(

86

N
+ 43√

N

))

(38)

and slightly better ones for m = 2 coming from refinements above (it suffices to
replace 86mg(m) by 213 and 43mg(m) by 97 above).

By computations on Sage, we deduce the following first estimates.

Proposition 5 With the previous estimates, one finds

〈a1, L ′〉+N > 0 for N ≥ 1213 〈a1, L ′〉+,new
N2 > 0 for N ≥ 47

〈a2, L ′〉+N > 0 for N ≥ 5437 〈a2, L ′〉+,new
N2 > 0 for N ≥ 97

〈a2,L ′〉+N
〈a1,L ′〉+N

∈ ]0, 1[ for N ≥ 45341
〈a2,L ′〉+,new

N2

〈a1,L ′〉+,new
N2

∈ ]0, 1[ for N ≥ 269.

Hence, Lemma 14 applies and Theorem 2 is true for N ≥ 45341 for X+
0 (N ) and for

N ≥ 269 for X+
ns(N ).
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For M = N , the estimates of 〈am, L ′〉N are readily obtained, but the slowness of
convergence is much more visible. This is mainly due to the fact that the error term is
in m/

√
N instead of m/N .

5.3 Improving the estimates for prime level

To attain from N ≥ 45341 a range where all remaining primes can be checked by
a different method, one needs to improve upon the worst error term appearing in
〈am, L ′〉+N , which is in m/

√
N and comes from the estimates of T(d) after looking at

(33).
The following arguments rely on cancellations of Kloosterman sums not exploited

by the Weil bounds. For d = 1, the Kloosterman sum is always 1 (see the convention)
so this case has to be dealt with separately. A careful analysis proves that

0.4
√
m ≤ T(1) ≤ √

m,

which will slightly improve the bounds later.
Assume now that d ≥ 2. Themain term contributing to the bound is E1(2πn/

√
N ),

hence we write

T(d) = TM (d) + TR(d),

where TM (d) is the sum of terms for which n ≤ 3
√
N/π and TR(d) is the remainder.

By the Weil bounds, using the fact that the integral of E1 on [5,+∞[ is less than
10−4, we obtain

2π
√
m

∑

d≥2

∣

∣

∣

∣

TR(d)

d
√
N

∣

∣

∣

∣

≤ 10−4 λm√
N

where λm = 43 form = 1 and 97 form = 2 as before, so this contribution will be very
small. For TM (d), we will exploit Polyà-Vinogradov-type estimates ( [46], Lemma
5.9).

Proposition 6 For every d > 1, every k invertible modulo d and every m, K , K ′ ∈ N,

∣

∣

∣

∣

∣

∣

K ′
∑

n=K

S(m, nk; d)

∣

∣

∣

∣

∣

∣

≤ 4d

π2 (log(d) + 1.5).

Now, assume N ≥ 1000, so that for m = 1 or 2 and n ≤ 5
√
N/(2π),

4π
√
mn/(d

√
N ) ≤ 1.5. This implies that in the considered range for n, the func-

tion t �→ J1(4π
√
mt/(d

√
N ))/

√
t E1(2π t/

√
N ) is decreasing and positive (as the

product of two such functions). Its total variation on [1, 5√N/2π ] is then bounded
by its first value (itself controlled by E1(2π/

√
N )/2).
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By Abel transform and the previous proposition, we thus obtain

|TM (d)| ≤ 8

π

√
m√
N

(log(d) + 1.5)E1

(

2π√
N

)

.

Compared to Weil bounds in Lemma 17, the new bound is approximately the best for
d ≤ f (N ) = �N/(2.52E1(2π/

√
N )2) . We then obtain

2π
√
m

∣

∣

∣

∣

∣

∣

f (N )
∑

d=2

TM (d)

d
√
N

∣

∣

∣

∣

∣

∣

≤ 16m

N
E1

(

2π√
N

) f (N )
∑

d=2

log(d) + 1.5

d

≤ 8m

N
E1

(

2π√
N

)

(

log( f (N ))2 + 3 log( f (N )) + 1
)

with lemma 5.11 of [46]. By Weil bounds and the same lemma, for m = 1,

2π

∣

∣

∣

∣

∣

∣

+∞
∑

d= f (N )+1

TM (d)

d
√
N

∣

∣

∣

∣

∣

∣

≤ 4π√
N f (N )

(log( f (N )) + 4) (39)

and for m = 2,

2π
√
2

∣

∣

∣

∣

∣

∣

+∞
∑

d= f (N )+1

TM (d)

d
√
N

∣

∣

∣

∣

∣

∣

≤ 8π(2− 1/
√
2)√

N f (N )
(log( f (N )) + 4). (40)

Combining these arguments, we get, for N ≥ 1000,

〈a1, L ′〉+N
4π

≥ E1

(

2π√
N

)

− 6.3√
N

− 86

N
− 2π

∣

∣

∣

∣

∣

+∞
∑

d=2

TM (d)

d
√
N

∣

∣

∣

∣

∣

and

〈a2, L ′〉+N
4π

≥ E1

(

4π√
N

)

− 6.3
√
2√

N
− 213

N
− 2π

√
2

∣

∣

∣

∣

∣

+∞
∑

d=2

TM (d)

d
√
N

∣

∣

∣

∣

∣

and finally

〈a1, L ′〉+N > 0 and
〈a2, L ′〉+N
〈a1, L ′〉+N

∈ ]0, 1[

for N ≥ 8641, which is much more reasonable than 45341.
The same improvements for the bounds apply exactly for M = N 2 ≥ 1000, thus

allowing us to replace the estimate in 43/N in (37) by the same expressions as above
with f (M) instead of f (N ).
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One gets that 〈a2, L ′〉+,new
N2 > 0 for N ≥ 71 instead of 97, and that

〈a2, L ′〉+,new
N2

〈a1, L ′〉+,new
N2

∈ ]0, 1[

for N ≥ 151.
We now discuss how to deal with the remaining cases, namely those for which

N ≤ 8641 and g(X+
0 (N )) ≥ 2, and those for which N ≤ 151 and g(X+

ns(N )) ≥ 2.
The most natural approach is the following: for any small N , compute a basis of

eigenforms for S2(Γ0(M))+,new, and for every f (normalised) in this basis, compute
L ′( f , 1) up to sufficient precision to ensure that L ′( f , 1) �= 0.

Recall that by ( [32], Corollary V.1.3), if L ′( f , 1) �= 0 under the same assumptions,
the same is true for the Galois conjugate eigenforms, so only one check needs to be
performed for the Galois orbit. Theorem 2 requires exactly that the sum of sizes of
those Galois orbits is at least 2, so we only need to check that for two Galois orbits of
size 1 (or one of size at least 2), one has L ′( f , 1) �= 0.

We have performed these verifications in MAGMA, and obtained the following.
• For any prime N ≤ 2000 such that X+

0 (N ) is of genus at least two, there are at
least two distincts normalised newforms such that L ′( f , 1) �= 0, hence Theorem 2
holds. In fact, we have also checked that for all such N , L ′( f , 1) �= 0 for all the eigen-
forms in S2(Γ0(N ))+, therefore by Proposition 8, rank J+

0 (N )(Q) = dim J+
0 (N )

unconditionally for all those small primes.
• Similarly, for any prime N ≤ 53 such that X+

ns(N ) is of genus at least two,
L ′( f , 1) �= 0 for all the eigenforms in S2(Γ0(N 2))+,new, therefore by the same argu-
ments, rank Jac(X+

ns(N ))(Q) = dim Jac(X+
ns(N )) for all those small primes.

Unfortunately, these algorithms require explicit embeddings of the fields of coef-
ficients K f of f into C, which makes them very slow when N becomes larger than
2000 (then, the degree of K f can be larger than 100). We thus could not complete the
argument by using only this method, let us explain how to deal with the intermediary
range N ∈ [2000, 9000] for X+

0 (N ) and N ∈ [59, 151] for X+
ns(N ).

The idea is to look at the simple quotients of the two relevant Jacobians which are
elliptic curves. If there are none, in this range, we have proved that 〈a1, L ′〉+,new

M �= 0
so we must have f such that L ′( f , 1) �= 0, and it generates a simple quotient of
dimension at least 2 by hypothesis, so we are done.

Now, if there are elliptic curves in there, it is sufficient to find two of them of rank
1 for the same reasons. Quotients of J0(M)+,new of dimension 1 are in one-to-one
correspondencewith isogeny classes of elliptic curves of conductor N and root number
−1 (the fact that this correspondence is surjective is a consequence ofCremona’s tables
in this range but also a particular case of modularity theorems).

One can thus eliminate all levels N except the ones forwhich there exists exactly one
(up to isogeny) elliptic curve E of analytic rank 1 and conductor N . Using Cremona’s
tables, we obtain a list of respectively 70 (M = N ) and 7 (M = N 2) possible
exceptions, namely N in {61, 67, 73, 101, 109, 113} for the latter.

123



N. Dogra, S. Le Fourn

Now, we use a last argument: if the modular form fE associated to E is really the
only one such that L ′( f , 1) �= 0 in the space, one should have

〈a1, L ′〉+,new
M = L ′(E, 1)

‖ fE‖2

(the fact that this equality holds without a normalisation factor comes from the Manin
constant being equal to 1 here, which is true in this range by results of Cremona).

Now, the left-hand side is larger than 4/5 for M = N , N ≥ 2000 and than 1/2 for
M = N 2, N ≥ 53 by the (optimised) lower bounds given above, and the right-hand
side is computable in terms of periods of E . Using this idea turns out to eliminate all
remaining possible exceptions in both cases of M , which concludes the proof.

Remark 9 In some sense, this heuristic is natural: all terms in the sum defined by
〈a1, L ′〉+,new

M are positive (another consequence ofGross–Zagier formula), hence there
is no cancellation among those, and the idea is that one of them alone cannot be enough
to approach the estimates given for the sum.
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6 Appendix: Chow–Heegner points and Ceresa cycles

In this appendix we explain how Lemma 4 is a consequence of Hain and Matsumoto’s
work relating the extension [Lie(U2)] to the Ceresa cycle.

6.1 Ceresa cycles and Gross–Kudla–Schoen cycles

We recall some properties of modified diagonal cycles studied in [17,31] and [19]. As
our discussion applies in fairly broad generality, we take X to be a smooth geometri-
cally irreducible projective curve over a field K of characteristic zero. Let πS denote
the projection

Xn → X#S
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defined by projecting onto the coordinates in S as in (7). The Gross–Kudla–Schoen
cycle is defined to be

ΔGK S :=
∑

∅�=S⊂{1,2,3}
(−1)#S−1XS,

where XS is as defined in section 2.2.
It defines an element of the group CH2(X3) of codimension two cycles in the triple

product X × X × X . By [31, Proposition 3.1], the class of ΔGK S lies in the subspace
CH2

0(X
3) of homologically trivial cycles.

Now let Z ⊂ X × X be a correspondence, and let

ΠZ : CH2(X3) → CH1(X)

be the composite map

CH2(X3)
π∗{1,2,3}−→ CH2(X4)

·(Z×X2)−→ CH4(X4)
(π4)∗−→ CH1(X),

where the second map is the intersection product with Z × X2 ⊂ X4.

Lemma 18 ([19] Lemma 2.1) We have

DZ (b) = ΠZ (ΔGK S).

6.2 The Gross–Kudla–Schoen cycle and the Ceresa cycle

Since [ΔGK S] is homologically trivial, it has (Sect. 2.1) an étale Abel–Jacobi class

AJét([ΔGK S]) ∈ H1(GK , H3
ét(X

3
K
, Qp(2))).

By [31, Corollary 2.6], the cycle class AJét([ΔGK S]) lies in the image of the Kunneth
projector

Pe∗ : H1(GK , H3
ét(X

3
K
, Qp(2))) → H1(GK , H1

ét(XK , Qp)
⊗3(2))

� H1(GK , V⊗3(−1))

↪→ H1(GK , H3
ét(X

3
K
, Qp(2))),

and hence may be thought of as an element of H1(GK , V⊗3(−1)) (here V :=
H1
ét(XK , Qp(1))). The action of S3 on X3 induces an action on V⊗3(−1), which

is given by ε ⊗ σ , where ε is the sign of a permutation and σ is the natural action
of S3 on V⊗3. Since ΔGK S is invariant under the S3 action, it lies in the image of
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H1(GK ,∧3V (−1)) under the map induced by the inclusion

ι : ∧3V → V⊗3

v1 ∧ v2 ∧ v3 �→ 1

6

∑

τ∈S3
ε(τ )vτ(1) ⊗ vτ(2) ⊗ vτ(3). (41)

For the relations to fundamental groups, it will be helpful to recall the relation
between ΔGK S and the Ceresa cycle. By [31, Proposition 5.3], the image of ΔGK S in
CHg−1(J ) under the map

μ : X3 → J

(xi ) �→
∑

[xi ] − 3[b]

is rationally equivalent to

([3]∗ − 3[2]∗ + 3[1] ∗ −3[0]∗)AJ(X).

The Ceresa cycle Cb is defined to be

AJ(X) − [−1]∗AJ(X) ∈ CHg−1(J ).

Proposition 7 (Colombo–van Geemen, [17], Proposition 2.9) We have

AJét(μ∗(ΔGK S)) = 3AJét([Cb])

in H1(GK ,∧3V (−1)).

We first recall Hain and Matsumoto’s description of the Galois action on U2. We
again take X to be a smooth projective geometrically irreducible curve over a field K
of characteristic zero. The group U2 is an extension

1 → Ker(H2(JQ, Qp)
AJ∗−→ H2(XQ, Qp))

∗ → U2 → V → 1, (42)

with V = Tp J ⊗ Qp again. We define

∧2V := Ker(H2(XQ, Qp)
AJ∗−→ H2(JQ, Qp))

∗,

and write the image of v1 ∧ v2 in ∧2V as v1 ∧ v2. Taking the Lie algebra L2 of
U2, we obtain an element [L2] ∈ Ext1GK

(V ,∧2V ), or equivalently an element of

H1(GK , V (−1)⊗∧2V ). The following theoremofHain andMatsumoto characterises
this extension class in terms of the Gross–Kudla–Schoen cycle.
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Theorem 5 (Hain–Matsumoto [34], Theorem 3) Let α : ∧3V → V ⊗ ∧2V be the
injective homomorphism

v1 ∧ v2 ∧ v3 �→ v1 ⊗ (v2 ∧ v3) + v2 ⊗ (v3 ∧ v1) + v3 ⊗ (v1 ∧ v2).

Then [L2] ∈ H1(GK , V (−1) ⊗ ∧2V ) is equal to α(−1)∗(AJét[Cb]), where [Cb]
is the class of the Ceresa cycle in CHg−1(J ), and AJét([Cb]) is its image in
H1(GK ,∧3V (−1)).

Via the relation between the Ceresa cycle and the Gross–Kudla–Schoen cycle, this has
the following corollary.

Corollary 3 The extension class [L2] ∈ H1(GK , V (−1)⊗∧2V ) is equal to the image
of AJét([ΔGK S]) under the map

H1(GK , V⊗3) → H1(GK , V ⊗∧2V )

induced by the quotient

τ : V⊗3 → V ⊗∧2V

v1 ⊗ v2 ⊗ v3 �→ v1 ⊗ v2 ∧ v3.

Proof Let ι : ∧3V → V⊗3 be the inclusion (41), and τ ′ : V⊗3 → ∧3V the quotient
map v1 ⊗ v2 ⊗ v3 �→ v1 ∧ v3 ∧ v3. By Proposition 7, the image of AJét([ΔGK S]) in
H1(GK ,∧3V (−1)) under τ ′∗ is equal to 1

3AJét([Cb]). Since AJét([ΔGK S]) lies in the
image of ι∗, and

α = 3τ ◦ ι,

we have

α∗ ◦ τ ′∗[AJét([ΔGK S])] = 3τ∗[AJét ([ΔGK S])] ∈ H1(GK , V (−1) ⊗ ∧2V ).

Hence we deduce from Theorem 5 that

[L2] = 1

3
α∗ ◦ τ ′∗[ΔGK S] = τ∗[ΔGK S].

��
We now return to the case where K = Q. Via the commutative diagram

NS(JQ) NS(XQ)

H2
ét(JQ, Qp(1)) H2

ét(XQ, Qp(1)),

c

AJ∗

AJ∗
c
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(where c denotes the Chern class), we hence obtain a homomorphism

Ker(NS(JQ) → NS(XQ)) → Ext1(V , Qp(1)).

[L] �→ [c([L])∗([L2])],

where L2 := Lie(U2). The extensions obtained come from points on J . They can
be related to the Gross–Kudla–Schoen cycle via the theorem of Hain and Matusmoto
(the argument given below follows Darmon, Rotger and Sols [19], who prove a Hodge
theoretic analogue of the Lemma below using, using the theorems of Harris and Pulte,
which are Hodge theoretic analogues of the Hain–Matsumoto theorem).

Lemma 19 Let Z ⊂ X × X be a codimension 1 cycle. Let i1, i2, i3 : X ↪→ X × X be
the closed immersions defined by the subschemes {b} × X , X × {b} and the diagonal
ΔX of X × X respectively. For j = 1, 2, {1, 2}, let i∗j denote the pull-back morphism

CH1(X × X) → CH1(X).

Then the extension class in H1(GK , V ) associated to the Lie algebra LZ is given by
AJét(DZ (b)), with DZ (b) as in (16).

Proof The class [LZ ] is the image of [L2] under the morphism

Ext1GK
(V ,∧2V ) → Ext1GQ

(V , Qp(1))

induced by πZ : ∧2V → Qp(1). We have a commutative diagram

CH2(X3)0 H1(GQ, V⊗3(−1))

Pic0(X) H1(GQ, V ).

AJét

ΠZ ΠZ∗
AJét

By Theorem 5, the extension class [L2] is given by AJét(ΔGK S), hence

[LZ ] = ΠZ∗([L2]) = AJét(DZ (b)),

by Lemma 18. ��

7 Appendix: Proof of the Kolyvagin–Logachev type result

In this appendix, we fix the following notation:
• M is a fixed odd level (which for our applications will be N or N 2)
• f ∈ S2(Γ0(M))+,new is a normalised eigenform.
• A = A f is its associated quotient of J0(M), togetherwith the canonical projection

π : J0(M) → A (independent of the choice of f in its Galois orbit).
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We explain here the following result, attributed to Kolyvagin and Logachev.

Proposition 8 (Rank 1 BSD for modular abelian varieties) If L ′( f , 1) �= 0, the rank
of A(Q) is exactly g := dim A.

Corollary 4 If L ′( f , 1) �= 0 for at least two distinct newforms f , for the Heegner
quotient A of J0(M)+,new (Definition 4),

rk(A) = dim(A) = ρ(A) ≥ 2.

Proof of the Corollary By Proposition 8 the rank of A is equal to its dimension as it is
true for each of its factors A f . Now, we recall that all endomorphisms of an A f are
symmetric and the latter is of GL2-type, in particular End†(A f ) is of rank dim A f

(see Sect. 4.1) . Finally, for f , g non Galois conjugates, there is no morphism between
A f and Ag (by multiplicity one in the newpart) so the endomorphism ring splits and
we get the last equality. ��
Remark 10 This result is well-known if dim A = 1 ( [43] for the original reference,
[29] for a survey), and proven in much greater generality in [54], all these along the
lines of a stronger result in the rank zero case proved in [44]. It is also (a slightlyweaker
version of) the main result in Tian’s thesis [64] and of a paper of Tian and Zhang in
preparation [65] for which we could not find quotable material. In any case, we felt
it sufficiently different from the former references (to which we borrow constantly)
to deserve a proof for the nonexperts. For the same reasons, we will simply refer to
those papers for parts of the proofs which generalise seamlessly and focus on the more
technical points.

Convention We use a well-chosen prime number p to obtain Proposition 8. As we
only need one such p, in all this appendix, when a property holds when p is large
enough, we then automatically assume it is without further mention.

We will prove Proposition 8 by reducing it successively to other statements which
will be emphasized.

Notation Throughout this text, τ denotes the usual complex conjugation and when
it acts on an Z-module M, M+ and M− denote the spaces of m ∈ M respectively
fixed and reversed by τ . IfM is finite of odd order,M = M+ ⊕M−, which we will
frequently use implicitly.

Given an Galois extension L/K of number fields andP a prime ideal of L unram-
ified over p, (P, L/K ) denotes the Frobenius of P for this extension, and (p, L/K )

the conjugacy class of such Frobenius’s in Gal(L/K ).

7.1 Structure of the p-torsion and reduction to Selmer groups

Let K f be the number field of coefficients of f . By [44, section 2.1], there is an
isomorphism [·] : K f → EndQ A ⊗ Q such that for every prime � � N , [a�( f )] ∈
EndQ A and

[a�( f )] ◦ π = π ◦ T�. (43)
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The inverse image of EndQ A is thus an order in K f denoted byO, and A is endowed
with a structure of O-module.

We now fix p an odd prime totally split in K f and prime to the conductor of
O (there are infinitely many such primes by Cebotarev density theorem), so that
pO = P1 . . .Pg as a decomposition into prime ideals. In all the following, the
notation P will run through P1, . . . ,Pg .

Remark 11 It is likely the proof still holds for any type of decomposition of p but this
hypothesis makes the exposition much more symmetric (and there are infinitely many
of such p’s so we can choose it as large as necessary). In the opposite situation, if
there is an inert prime in K f , the proof should be a bit simpler.

One of the key ideas to get closer to the case of elliptic curves is decomposing
every structure of O/(p)-modules using those prime ideals. Our tool is the following
Lemma, often used without mention.

Lemma 20 By the Chinese remainder theorem, O/(p) ∼= ⊕

PO/P, in particular
each O/P is projective and flat over O/(p). Every O/(p)-module M splits canoni-
cally into sub-O/(p)-modules

M =
⊕

P

M[P], M[P] = {m ∈ M, P · m = 0} ∼= M/PM,

and projections are given by elements ofO. All these isomorphisms are canonical, and
for every m ∈ M, we will denote by mP its projection onto M[P] (or in M/PM
depending on the context).

Proof The P are pairwise coprime so the Chinese remainder theorems holds, and
tensoringM byO/(p)onone handfixes it and the other one decomposes it canonically
into

⊕

PM/PM. The latter clearly identifies eachM/PMwith theP-torsion part
of M, and the other statements follow. ��

The O-linear representation A[p] of Gal(Q/Q) thus splits into
⊕

P A[P] and for
any extension L of Q, we have canonical isomorphisms of O/(p)-modules

(A(L)/pA(L))[P] ∼= A(L)/PA(L) H1(L, A[p])[P] ∼= H1(L, A[P]). (44)

If L is a number field, for every place v of L , the natural localisation maps locv give
rise to a commutative diagram

0 A(L)/PA(L) H1(L, A[P]) H1(L, A)[P] 0

0 A(Lv)/PA(Lv) H1(Lv, A[P]) H1(Lv, A)[P] 0,

δ

locv locv locv
δv

(45)

inherited by flatness from the commonly known analogous diagram for the ideal (p)
(for references on those facts and the Selmer groups, see [35, Appendix C.4]). Let us
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define the P-Selmer group as

SelP(L, A) := {s ∈ H1(L, A[P]),∀v, locv s ∈ δv(A(Kv)/PA(Kv))}, (46)

again canonically identified to Selp(L, A)[P] hence fitting by the same arguments
into the exact sequence

0 A(L)/PA(L) SelP(L, A) X(L, A)[P] 0.δ (47)

Now, consider an imaginary quadratic field K whose discriminant DK < −4 is
squarefree, prime to the level M and a square modulo M . These conditions guarantee
that there is a Heegner point (we fix definitively n and [a0])

x = (OK , n, [a0]) ∈ X0(M)(H) (48)

in the notation of [28], where H is the Hilbert class field of K . As f|wM = f ,
π ◦wM = π therefore by elementary properties of Heegner points [28, formulas (4.1)
to (5.2)], for y1 = π((x) − (∞)) ∈ A(H), one has

yK := TrH/K y1 = π

⎛

⎝

∑

[a]∈Cl(K )

(OK , n, [a]) − hK (∞)

⎞

⎠ ∈ A(K ), (49)

τ(yK ) = π

⎛

⎝

∑

[a]∈Cl(K )

wM · (OK , n, [a]) − hK (∞)

⎞

⎠ ∈ yK + A(Q)tors, (50)

Now, using a theorem of Waldspurger [66, Théorème 2.3], let us fix once and for
all a K such that L( f ⊗ εK , 1) �= 0 where εK is the Dirichlet character associated to
K . By Gross–Zagier formula ( [32], Theorem I.6.3), the point yK is then nontorsion
in A(K ) and has an integer multiple in A(Q) by (50). The subgroup O · yK is thus a
subgroup of A(K ) of rank g (as nonzero elements ofO act by isogenies), which leads
us to the following.

Reduction 1 Prove that O · yK is of finite index in A(K ).
Now, for p large enough,

yK /∈ PA(K ) for all P, (51)

which further leads by (47) to
Reduction 2 Prove that for all P, δ(yK ) generates SelP(K , A).

Proof If this claim holds, every SelP(K , A) is anO/P ∼= Fp-vector space of dimen-
sion 1, so A(K )/PA(K ) is of dimension at most 1 by (47), and

A(K )/pA(K ) ∼=
⊕

P

A(K )/PA(K )
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is of dimension at most g over Fp. This imposes that the Mordell–Weil rank of A(K )

over Z is at most g, hence the equality using O · yK . ��
To conclude this paragraph, τ acts naturally on A(Q), A[P], H1(K , A[P]) and

SelP(K , A), and the action of O and the morphisms between those in (44) and (45)
are τ -equivariant. We fix from now on a polarisation A → ̂A of degree prime to p
(otherwise choose a larger prime p), which thus defines aWeil pairing A[p]×A[p] →
μp. Its elementary properties [51, Lemma 16.2] then imply the following structural
result, crucial for our understanding.

Lemma 21 For every P and ε = ±1, the following are true.
• The 2g spaces A[P]ε are pairwise orthogonal for the Weil pairing, except the

A[P]ε with the same P and opposite sign.
• The two spaces A[p]ε are isotropic for the Weil pairing.
• Each A[P]ε is then of dimension 1 over Fp and dimFp A[P] = 2.

7.2 Pairing the Galois group and Selmer groups, and Kolyvagin primes

Throughout this appendix, we fix

L := K (A[P]), G := Gal(L/K )

(notice L is Galois over Q).

Proposition 9 For p large enough:
(a) A[P] is (absolutely) irreducible as a representation of Gal(Q/Q).
(b) The canonical restriction morphism

H1(K , A[P]) res→ H1(L, A[P])G = HomG(Gal(Lab/L), A[P])

is injective, with the action of G on Gal(Lab/L) defined by conjugation in Gal(Q/Q).

Remark 12 Here is an important difference with the dim A = 1 case: the Galois
representation Gal(Q/Q) → GL(A[P]) ∼= GL2(Fp) is not proven to be surjective (
[57] does not cover the square M case), but we will manage with (a) and (b) although
it introduces significant changes compared to some arguments in [29].

Proof (a) is Lemma 3.7 of [56] and (b) is Proposition 6.1.2 of [54]. ��
We now choose S a finite sub-O-module of H1(K , A[P]), stable by τ (this will be

first SelP(K , A) and then an auxiliary module for the proof). By Proposition 9 (b),
there is a pairing

S × Gal(Lab/L) −→ A[P]
(s, σ ) �−→ res(s)(σ )

which is injective on the left. We define LS the extension of L whose absolute Galois
group is the orthogonal of S, and thus obtain a nondegenerate pairing between finite
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abelian p-torsion groups

[·, ·]S : S × HS → A[P], HS := Gal(LS/L).

Keeping track of the actions of τ and the σ ∈ G, we have that

τ [s, ρ]S = [τ(s), τρτ−1]S, σ [s, ρ] = [s, σρσ−1]. (52)

In particular, the extension LS/Q is Galois.

Lemma 22 This pairing induces a perfect bilinear pairing from Sε × H+
S to A[P]ε ∼=

Fp, hence a duality between Sε and H+
S .

Proof By (52), these two pairings (for ε = ±1) are well-defined, let us prove they
are injective on the left and on the right, they will then be perfect as everything is
finite(-dimensional). For s ∈ Sε, if [s, H+

S ]S = 0, then

[s, HS]S = [s, H−
S ]S ⊂ A[P]−ε

by the same arguments, but [s, HS]S is stable by Gal(Q/Q) by (52) again. As A[P]
is irreducible by Proposition 9 (a), it imposes [s, HS]S = 0 therefore s = 0 by
nondegeneracy. Now, assume [Sε, h]S = 0 for some h ∈ H+

S . This holds for all
conjugates σhσ−1 of h in HS by (52), so on the group H ′ ⊂ HS they generate. Again,
this forces [S, H ′]S ⊂ A[P]−ε, but this group is stable by Gal(Q/Q) hence H ′ = 0.
��
Lemma 23 Fix ε = ±1 and I+S a proper subgroup of H+

S . Then, s ∈ Sε is 0 if for all
ρ ∈ H+

S \I+S , [s, ρ]S = 0.

Proof It is a trivial consequence of the perfect duality above, knowing that the sub-
Fp-vector space generated by H+

0 \I+0 is H+
0 itself, e. g. by a counting argument.

��
Reduction 3 For all P, apply Lemma 23 to (s0 = 0, ε = −1) (resp. δyK , ε = 1)

to prove that SelP(K , A)− = 0 (resp. SelP(K , A)+ = 〈δyK 〉).
The next subsection will show us how to compute the pairing [·, ·]S .

7.3 Kolyvagin primes

Definition 5 – A Kolyvagin prime � is a prime number such that:

– � does not divide DK Mp (or the conductor of O), so is unramified in L .
– The conjugacy class of (�, L/Q) is the one of τ in Gal(L/Q). In particular,

�OK =: λ� is inert over �. We will often shorten it to λ if � is nonambiguous,
and for any extension K ′ of K , λK ′ will be a choice of prime ideal of OK ′
above λ (in a consistent fashion if multiple extensions are considered).

– A Kolyvagin number n is a squarefree product of Kolyvagin primes �.
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In the same fashion as in [28, (3.3)], Kolyvagin primes havemany strong properties.

Proposition 10 For a Kolyvagin prime �, λ splits completely in L. Furthermore:

p|a�( f ), p|� + 1

in O, and all the points of A[P] are defined over Kλ. Moreover, the two eigenspaces
(A(Kλ)/PA(Kλ))

± for the action of Frob(�) are of dimension 1 over Fp.

Proof Up to conjugation, (λL , L/K ) = (λL , L/Q) f (λ/�) = τ 2 = Id so λL/λ is
totally split. Now, by Eichler-Shimura theory [44, formula (2.1.8)], the characteristic
polynomial of the Frobenius endomorphism Frob(�) on the reduction ˜A of A modulo
� (as an O-linear endomorphism) is X2 − a�( f )X + � and the one of the complex
conjugation is X2 − 1, and they must agree on ˜A[p]. In particular, Frob(�)2 acts
trivially on A[P] so ˜A[P] = ˜A[P](Fλ) and we can lift those points to Kλ. By the
same arguments, on also has the decomposition

˜A[P](Fλ) = ˜A[P](Fλ)
+ ⊕ ˜A[P](Fλ)

−

in two nontrivial spaces, given the characteristic polynomial of Frob(�), so each of the
two spaces on the right-hand side is of dimension 1 over Fp. We deduce immediately
by the structure of finite abelian groups that as groups,

(˜A(Fλ)
ε/P˜A(Fλ)

ε) ∼= ˜A(Fλ)
ε[P],

which proves that each (˜A(Fλ)/P˜A(Fλ))
ε must be of dimension 1 over Fp, and this

also lifts to Kλ (without increasing the dimension as the group of elements reducing
to 0 modulo λ is p-divisible). ��

To state the next result, recall that for a finite place v � p of good reduction
of A, the image of A(Kv)/pA(Kv) in H1(Kv, A[p]) is precisely the inflation of
H1(K unr

v /Kv, A[p]), called the unramified part. The latter is isomorphic to A[p]
when all the p-torsion is defined over Kv , via the evaluation of the cocycles at Frob(v)

the topological generator of Gal(K unr
v /Kv). The same argument translates for A[P]

by tensoring by O/P again.

Proposition 11 Let L be an unramified prime ideal of LS whose Frobenius in
Gal(LS/Q) is τh for h ∈ HS. It is above a Kolyvagin prime � and for every s ∈ S
whose localisation at λ = �OK is unramified,

[s, (τh)2]S = evλ(s) := (locλ s)(Frob(λ)) ∈ A[P].

through the identification described above, as all A[P] is defined over Kλ.

Proof By hypothesis, (L, L/Q)|L = τ so λL = L ∩ O is indeed above a Kolyvagin
prime �. On the other hand, (L, LS/L) = (L, LS/Q)2 = (τh)2 as the inertia does not
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change between K and LS . Now, the diagram

S ⊂ H1(K , A[P]) res

locλ

HomG(HS, A[P])
ev(L,LS/L)

H1
unr(Kλ, A[P]) evFrob(λ)

A[P]

is clearly commutative, which establishes the equality by definition. ��
Remark 13 The set of all (τh)2 thus obtained is exactly H+

S , by Cebotarev density
theorem.

Now, for any place v of K , we can construct ( [63], section 2) a canonical bilinear
pairing obtained from Tate duality

〈·, ·〉Kv : A(Kv)/pA(Kv) × H1(Kv, A)[p] → Br(Kv)[p] ∼= Z/pZ. (53)

The key use of Tate duality is the following Proposition,which is a slight generalisation
of [29, Proposition 8.2].

Proposition 12 If for a prime λ of K (above a Kolyvagin prime) and a γ ∈
H1(K , A)ε[P], one has locv γ = 0 for all v �= λ but locλ γ �= 0, then for every
s ∈ SelP(K , A)ε, locλ s = 0.

Proof By its definition, (53) comes from the Weil pairing in the sense that the latter
induces a cup product

(·, ·)Kv : H1(Kv, A[p]) × H1(Kv, A[p]) → H2(Kv, μp) = Br(Kv)[p],

for which δv(A(Kv)/pA(Kv)) is isotropic, and the resulting quotiented pairing is
exactly 〈·, ·〉Kv . Now, the so-called global Tate duality states that for any s ∈
Selp(K , A), γ ∈ H1(K , A)[p],

∑

v∈MK

invv〈δ−1
v locv s, locv γ 〉Kv = 0 ∈ Q/Z,

where invv : Br(Kv) → Q/Z is the Brauer invariant isomorphism for all v. Indeed,
let us lift γ to γ̃ ∈ H1(Kv, A[p]), so that for every v ∈ MK ,

〈δ−1
v locv s, locv γ 〉Kv = (locv s, locv γ̃ )Kv = locv,Br(s, γ̃ )K

with the analogous definition of (·, ·)K on K , and locv,Br : Br(K ) → Br(Kv) the
usual localisation. Now, by properties of Brauer groups, the sum of invv ◦ locv is 0 on
Br(K ) hence the formula.

Under our assumptions on γ and s, we thus have 〈δ−1
λ locλ s, locλ γ 〉Kλ = 0 but

locλ γ �= 0, let us show how this implies that locλ s = 0.
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By the original arguments of [63], the pairing 〈·, ·, 〉Kλ is a perfect pairing. Being
inherited from the Weil pairing, the P and P′-parts for P �= P′ are orthogonal, so it
induces a duality

A(Kλ)/PA(Kλ) × H1(Kλ, A)[P] → Z/pZ.

Now, it is also invariant by Gal(Kλ/Q�)-action (there is a difference with the Weil
pairing here, but it is also inherited from the cup product (·, ·)Kλ ), so the + and −
spaces on each side are orthogonal. We thus have for ε = ±1 a duality

(A(Kλ)/PA(Kλ))
ε × H1(Kλ, A)ε[P] → Z/pZ,

but making use of the fact that λ is above a Kolyvagin prime, each space of the duality
is thus of dimension 1 over Fp (Proposition 10), and so the pairing can be 0 only if
one of the terms is 0, hence locλ s = 0. ��

7.4 Construction of the Kolyvagin classes

Following [44], one takes the classes [a] and prime ideal n induced by the choices
made in (48) on orders of OK , and for any Kolyvagin number n, we get Heegner
points

xn = (Z + nOK , n ∩ (Z + nOK ), [a]), yn = π((xn) − (∞)) ∈ A(Kn),

where by class field theory, Kn is the class ring field of conductor n (K1 = H ).
The notation λn,� will refer to a choice of prime ideal of Kn above � a Kolyvagin

prime, consistent in case of towers of extensions, shortened to λn if there is no doubt
on �. One has that Gn := Gal(Kn/K1) ∼= (OK /nOK )∗/(Z/nZ)∗ and the following
diagrams for n = �m by class field theory.

Kn

G� Gm

Gn

λn

tot.ram. tot.sp.

Km

Gm

K�

G�

λm

tot.sp.

λ�

tot.ram.

K1 = H

Cl(K )

λ1

tot.sp.

K

〈1,τ 〉

λ

in.

Q �

(54)
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In particular, Fλn = Fλm = Fλ, a fact which will be ubiquitous and used without
further mention in the end of the argument.

The crucial properties of these points (making them a Kolyvagin system) are the
following, ˜A denoting the (good) reduction of A modulo � and Frob(�) the associated
Frobenius endomorphism on ˜A.

Proposition 13 For n = �m a Kolyvagin number,

TrKn/Km yn = [a�( f )]ym ∈ A(Km) (55)

yn mod λn = Frob(�) · ym in ˜A(Fλn ) = ˜A(Fλ) (56)

τ(yn) ∈ σ(yn) + A(Kn)tors (57)

for some σ ∈ Gn := Gal(Kn/K ).

Proof By classical properties of Heegner points ( [28], paragraphs 4 and 5) and class
field theory for Kn/Km ,

TrKn/Km xn = T� · xm (58)

as divisors on X0(N ), which proves (55) when combined with (43). We obtain (57)
with the same properties.

Looking at the diagrams (54), as λn/λm is totally ramified, the reduction of the
left-hand side of (58) is (�+ 1)xn mod λn , and the one of the right-hand side has one
term equal to Frob(�)xm by the Eichler-Shimura relation T� = Frob(�) + F̂rob(�), so
there exists σ ∈ Gal(Kn/Km) such that the reduction of σ xn is Frob(�)x̃m , but every
σ reduces to the identity on ˜A(Fλ) so the equality is true term by term hence (56). See
also [44, Corollaries 2.3.3 and 2.3.4] for the n = � case. ��

Proposition 14 For every Kolyvagin number n, one can define in successive order
(using the Heegner points ym for m|n):

• A point Pn ∈ A(Kn) whose class [Pn] ∈ A(Kn)/pA(Kn) is fixed by Gn (and
P1 = yK ).

• The unique class c(n) ∈ H1(K , A[p]) whose restriction to H1(Kn, A[p])Gn
comes from [Pn], and its image d(n) in H1(K , A)[p]. They correspond to one another
in the following commutative diagram with exact rows and columns

d̃(n)

H1(Kn/K , A)[p]
inf

0 A(K )/pA(K )
δ

c(n)

H1(K , A[p])

Res∼

d(n)

H1(K , A)[p]

Res

0

0
[Pn ]

(A(Kn)/pA(Kn))
Gn δn

H1(Kn, A[p])Gn H1(Kn, A)Gn [p]

(59)
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Proof The construction and properties of Pn proceeds exactly as in ( [29], (3.5) to
(4.1)). The only nontrivial thing to prove (to define c(n) from [Pn])is that the central
row of (59) is an isomorphism. The extension Kn/Q is unramified outside primes
dividing DKn, and the extension Q(A[p])/Q is unramified outside primes dividing
Mp, so as DKn and pM are coprime by construction, these extensions are linearly
disjoint. In particular, Kn(A[p])/Kn hasGalois group isomorphic toGal(Q(A[p])/Q)

and thus no fixed point in A[p] by Proposition 9 (a). The isomorphism follows by
[29, (4.2)]. ��
These points enjoy a wealth of very strong properties detailed below.

Proposition 15 For every Kolyvagin number n:
(a) [Pn] (resp. c(n), d(n)) lives in the μ(n)-eigenspace of A(Kn)/pA(Kn) (resp.

H1(K , A[p]), H1(K , A)[p]), where μ(n) is the Moebius function.
(b) The class c(n)P ∈ H1(K , A[P]) (resp. d(n)P ∈ H1(K , A)[P]) is trivial if

and only if Pn ∈ PA(Kn) (resp. PA(Kn) + A(K )μ(n)).
(c) For every place v of K , the class locv d(n) is trivial except if v|n.
(d) If n = �m and λ = �OK , the class locλ d(n)P is trivial if and only if Pm ∈

PA(Kλm ) if and only if locλ c(m)P = 0.

Proof (a) for [Pn] is inherited from (57) by the construction of Pn (see Proposition
5.4 of [29]), and deduced for c(n), d(n) by τ -equivariance of the morphisms of (59).

(b) is obtained by tensoring (59) byO/P, which preserves exactness by flatness and
[Pn] seen in A(Kn)/pA(Kn) ⊗O/P is exactly the image of Pn in A(Kn)/PA(Kn).
The proof of (c) is given by Proposition 6.2 of [29].

For (d), define D = Gal((Kn)λn/Kλ), which is cyclic generated by some σ�. We
thus have injective arrows (defined below)

H1(D, A)[p] red
↪→ ˜A(Fλ)[p] ∼= H1(Fλ, ˜A[p]) ι←↩ ˜A(Fλ)/p˜A(Fλ) (60)

where for a cocycle c ∈ Z1(D, A), red(c) = c(σ�) mod λn , and invariant up to
coboundary because Kn/Km is totally ramified at λm , so red is well-defined. As
A1((Kn)λn ) is a pro-�-group, H

1(D, A1)[p] = 0 which proves that red is injective.
The map ι is the quotiented connecting homomorphism, automatically injective. As
˜A(Fλ) is a finite abelian group, the orders of ˜A(Fλ)[p] and ˜A(Fλ)/p˜A(Fλ) are readily
seen to be equal so ι is also an isomorphism. By [29, Proposition 6.2(2)], the image
of locλ d(n) in ˜A(Fλ)[p] by red is

((� + 1)Frob(�) − [a�( f )]) · ˜Rm,

where ˜Rm is any choice of p-th root of ˜Pm in ˜A. By the proof of Proposition 10, its
image by Frob(�) is then

�(Frob(�)2 − Id)˜Rm = −(Frob(�)2 − Id)˜Rm,

but the injection ι from (60) is explicitly given by taking a p-th root and applying
(Frob(�)2 − Id), as Frob(�)2 = Frob(λ) ( [44], Lemma 3.4.2 for details). The image
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of locλ d(n) in ˜A(Fλ)/p˜A(Fλ) via (60) is thus exactly −Frob(�)−1 · ˜Pm , and its
P-part is trivial if and only if the P-part of ˜Pm is. Finally, A1(Kλm ) is p-divisible
hence the equality ofO/(p)-modules A(Kλm )/pA(Kλm ) ∼= ˜A(Fλ)/p˜A(Fλ), sofinally
locλ d(n)P is trivial if and only if [Pm] ∈ A(Kλm )/pA(Kλm )[P], which is equivalent
to Pm ∈ PA(Kλm ) and the equivalence in terms of c(m) is straightforward. ��

7.5 End of the proof

Let S = SelP(K , A). By (51), P1 = yK /∈ PA(K ), hence it defines a nonzero
sK := c(1) ∈ S+ (Proposition 15 (a)). Fixing s ∈ S, for every h ∈ HS , by Cebotarev
density theorem, there is a prime idealL such that (L, LS/Q) = τh, and byProposition
11,

[s, (τh)2]S = locλ s(Frob(λ))

where λ is the prime ideal of K below L, and above � which is a Kolyvagin prime.
Outside of I+S (defined as the +-part of the orthogonal of sK ), this formula proves
that locλ sK �= 0, so locλ d(�)P �= 0 and all other localisations of d(�)P are trivial by
Proposition 15. By Proposition 12, if s ∈ S−, locλ s = 0 so [s, (τh)2]S = 0, hence
S− = 0 by Lemma 23.

Now, consider s ∈ S+ such that for some L as above (fixed, so it fixes λ and h
above), locλ s = 0.Wehave locλ sK �= 0 by hypothesis on h, so in turn locλ d(�)P �= 0
by Proposition 15 (d) and c(�)P does not belong to S. By the perfect pairing result
of Lemma 22 applied to 〈S, c(�)〉if (τh)2 /∈ I+S , the extensions LS and L〈c(�)〉 are
linearly disjoint over L , which allows us, for any h′ ∈ HS , to choose L′ a prime ideal
of LSL〈c(�)〉 whose Frobenius restricted to LS is τh′ and whose Frobenius restricted to
L〈c(�)〉 is of the shape τh0 and not orthogonal to c(�)P. Denoting �′ the corresponding
Kolyvagin prime and λ′ the ideal of OK , we thus have

[c(�)P, (τh0)
2] = locλ′ c(�)P(Frob(λ′)),

this formula being legitimate because locλ′(d(�)P) = 0 by Proposition 15 (c). All
this proves that locλ′ c(�)P �= 0 so locλ′ d(��′)P �= 0 by Proposition 15 (d), and it
belongs to H1(K , A)+[P]. Now, for our s above, the global Tate duality between s
and d(��′) in the proof of Proposition 12 has two possible nonzero terms (in λ and
λ′ ), but by hypothesis locλ s = 0 so the λ′-term is alone, therefore 0 as well. This
implies by Proposition 12 that locλ′ s = 0 for all such λ′, therefore s = 0 in this case
by Lemma 23.

Finally, for s ∈ S+, as locλ sK �= 0 and the space (A(Kλ)/PA(Kλ))
+ is one-

dimensional (Proposition 10), there is k ∈ Z such that s − ksK satisfies the previous
hypothesis and then s = ksK , so we have proved that S+ = 〈sK 〉.
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