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Abstract 

Objective:  To explore how conduct, hyperactivity/inattention, and emotional symptoms are associated 

with neural reactivity to social-emotional stimuli, and the extent to which psychosocial stress modulates 

these relationships. 

Method:  Participants were community adolescents recruited as part of the European IMAGEN study. 

Bilateral amygdala regions of interest were used to assess the relationship between the three symptom 

domains with fMRI neural reactivity during passive viewing of dynamic angry and neutral facial 

expressions. Exploratory functional connectivity and whole-brain multiple regression approaches were 

used to analyze how the symptoms and psychosocial stress relate to other brain regions. 

Results:  In response to the social-emotional stimuli, adolescents with high levels of conduct or 

hyperactivity/inattention symptoms showed hyperactivity of the amygdala, and several regions across 

the brain, when they experienced a greater number of stressful life events. This effect was not 

observed with emotional symptoms.  A cluster in the mid-cingulate was found to be common to both 

conduct problems and hyperactivity symptoms. Exploratory functional connectivity analyses suggested 

amygdala-precuneus connectivity is associated with hyperactivity/inattention symptoms.  

Conclusions:  The results link hyperactive amygdala responses, and regions critical for top-down 

emotional processing, with high levels of psychosocial stress in individuals with greater conduct and 

hyperactivity/inattention symptoms. This work highlights the importance of studying how psychosocial 

stress impacts functional brain responses to social-emotional stimuli, particularly in adolescents with 

externalizing symptoms. 
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Introduction 

Common mental health problems that emerge during adolescence, such as symptoms of depression, 

anxiety, attention deficit hyperactivity disorder (ADHD) and conduct problems are frequent and 

debilitating (1). These symptom domains are associated with negative adult outcomes including 

substance dependence (2-4), familial discord (2, 4), poor educational attainment (2, 5) and poor 

vocational attainment (2, 4, 5). Psychosocial stress is an important contributor to the emergence of 

child and adolescent psychopathology. Family, personal and interpersonal stressors as well as trauma 

have been associated with externalizing symptoms, such as conduct problems and ADHD symptoms, 

as well as internalizing symptoms of depression and anxiety (6, 7). Therefore, identifying the interplay 

between symptoms of psychopathology, the environment, and biology is important to help prevent or 

ameliorate mental illness.  

 

Adolescents with externalizing symptoms have difficulties with emotion recognition, particularly for 

anger and disgust (8, 9), while people with internalizing symptoms, are more accurate at recognizing 

sad and angry faces and tend to misinterpret neutral faces as angry or sad (10). Functional 

neuroimaging (fMRI) research suggests that the amygdala, an area crucial for emotional processing 

and emotional response, exhibits different activation patterns in individuals with externalizing and 

internalizing symptoms, versus controls (11-15). While these findings provide insight into neural 

differences associated with both internalizing and externalizing psychopathology they have not taken 

into account important moderators, such as psychosocial stress, which itself is known to increase face 

processing-related amygdala activation (16-18). Despite evidence that psychopathology and 

psychosocial stress may affect emotion perception at behavioural and neural levels, there are, to our 

knowledge, no studies exploring how psychopathology-related symptoms and psychosocial stress 

interact with one another to modulate amygdala activation related to emotional processing. We, 

therefore, sought to better understand the effects of psychosocial stress and psychopathology on brain 
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responses to angry and ambiguous faces, as well as the interaction of stress and psychopathology on 

brain function. We conducted amygdala-based region of interest analyses and PPI functional 

connectivity analyses, as well as exploratory whole-brain fMRI analyses, in 1288 adolescents from the 

IMAGEN Study, a large community-recruited European cohort. We hypothesised that the relationship 

between adolescent externalizing (conduct symptoms, hyperactivity/inattention symptoms) and 

internalizing (emotional) symptoms and neural reactivity to emotional stimuli is influenced by the 

experience of psychosocial stress.  
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Methods  

Participants  

Data that passed quality control checks for neuroimaging and behavioural tests were included; 1288 

community-recruited adolescents were eligible (583 males) and their mean age was 14.4 years old (SD 

0.40; range 13.18-15.43). Participants were assessed at eight study sites in France, Germany, Ireland 

and the United Kingdom. Each site sought approval from the local research ethics committee. Written 

consent was obtained from both participant and their parent/guardian; a detailed description of 

recruitment and assessment methods is found elsewhere (19). 

 

Clinical Symptoms  

As adolescents were community-recruited, we used continuous severity scores of internalizing and 

externalizing symptoms using the Strengths and Difficulties Questionnaire (SDQ; (20)). For 

externalizing symptoms, we used the conduct symptom and hyperactivity/inattention symptom 

subscales. For internalizing symptoms, we used the emotional symptom subscale. Combined 

informant-parent symptom scores were calculated for these three symptom domains during the six 

months prior to the assessment (see Supplement). The majority of participants' scores were within the 

average range (see Table S1). 

 

Psychosocial Stress Score  

A self-report measure (Life Events Questionnaire) was used to record the occurrence of stressful 

events during the adolescent’s life span and in the previous 12 months (21). A score was calculated for 

number of stressful life events that had occurred during the last 12 months only to avoid inaccurate 

recall (see Supplement).  
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Additional covariates 

Covariates of no interest included pubertal status (22), socioeconomic status indexed using the family 

stresses sub-section of the Development and Wellbeing Assessment (DAWBA; (23)), and verbal IQ 

(WISC-IV; (24)). Substance use was measured using the European School Survey Project on Alcohol 

and Drugs (25) and was defined in a binary fashion (i.e., had they ever/never smoked cigarettes, drank 

alcohol, or used drugs). Drugs included cannabis, glue, tranquilizers, amphetamines, LSD, mushrooms, 

crack, cocaine, heroin, narcotics, MDMA, ketamine, GHB, and anabolic steroids. 

 

Emotional Reactivity fMRI Task  

This task was adapted from Grosbras and Paus (26). Participants watched 18-second blocks of either a 

face movie (depicting anger or neutrality) or a control stimulus. Each face movie showed black and 

white video clips (200-500ms) of male or female faces. Five blocks each of angry and neutral 

expressions were interleaved with 9 blocks of the control stimulus. Each block contained 8 trials of 6 

face identities (3 female). The same identities were used for the angry and neutral blocks. The control 

stimuli were black and white concentric circles expanding and contracting at various speeds that closely 

matched the contrast and motion characteristics of the face clips (see Figure S1).  

 

Although some groups report significant activation in neural structures involved in threat detection such 

as the amygdala (11, 27), findings are mixed regarding neural reactivity to neutral stimuli in people with 

and without mental health problems. Therefore, we explored neural reactivity associated with the 

neutral stimuli in our task and found that while our target region of interest (amygdala) was significantly 

activated in two of the contrasts (angry faces vs. control and neutral faces vs. control), there was no 

significant activation of the amygdala in the angry faces vs. neutral faces contrast (see Table S2a). As 

a result, we proceeded with the analysis in the angry faces vs. control and neutral faces vs. control 
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contrasts, acknowledging that the analysis would be of the neural response to an angry or neutral face 

as a whole, rather than specifically isolating the emotion. 

 

fMRI Measurement and Processing 

Structural and functional MRI data were acquired with 3T MRI scanners (Siemens, Philips, General 

Electric & Bruker). Four sites (GE and Philips scanners) used an 8-channel coil while four sites 

(Siemens scanners) used a 12-channel coil. All sites used the same scanning protocol. High-resolution 

T1-weighted 3-dimensional structural images were acquired for anatomical localisation and registration 

with the functional time series. Data were pre-processed centrally (Neurospin, CEA) using Statistical 

Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm/); see Supplement for further information. 

Individuals with anatomical abnormalities or poor realignment (e.g., greater than 3 mm head motion in 

at least one of the translations; n = 20) did not pass QC and were not included in these analyses.  

 

Statistical Analysis 

Behavioural Analysis: We used separate multiple regression models to establish the relationship 

between each of the symptoms and the number of stressful life events. Sex, study site, verbal IQ, 

socioeconomic status and pubertal status were included as covariates of no interest in all analyses. 

 

fMRI Analysis: Functional MRI data were analysed using SPM8 version 6313. We used a separate 

group of IMAGEN participants (n=326; see Table S2b for demographics), for whom full phenotypic data 

were not available, to define a functional amygdala region of interest. There was robust bilateral 

activation (see Supplement). Using the peak MNI coordinates we created an amygdala region of 

interest with an 8mm sphere using MarsBaR ((28); http://marsbar.sourceforge.net/) and extracted 

summarised beta values in the full sample for both contrasts for analysis in SPSS.  
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Using separate regression models we explored the extent to which the psychosocial stress score and 

symptom count scores for each of the three symptoms (conduct, hyperactivity/inattention and 

emotional) were associated with fMRI activation in the amygdala as main effects. We also explored the 

extent to which psychosocial stress moderated the relationship between each symptom and amygdala 

activation as an interaction. Independent variables (conduct, hyperactivity/inattention and emotional 

symptoms and psychosocial stress score) were mean centred. Interaction terms were calculated in 

SPSS for input into the second-level regression models. To adjust for multiple testing we applied a 

Bonferroni correction threshold of p<0.05/12 (two amygdala ROIs, two fMRI contrasts, three symptom 

domains).  

 

To account for comorbidity among the three symptoms we carried out post-hoc regression models for 

each symptom controlling for the other two symptoms. We also carried out post-hoc regression models 

to examine the effects of site, gender, and substance use on our results. 

 

We conducted exploratory psychophysiological interaction (PPI) functional connectivity analyses to 

investigate potentially distinct amygdala networks involved in the symptom by stress results. PPI 

analyses compute the interaction between the seed BOLD time series and a chosen condition-specific 

interaction factor when predicting each voxel BOLD time series. Generalized PPI (gPPI) regression 

analyses were carried out via the SPM-based CONN toolbox ((29); http://www.nitrc.org/projects/conn/) 

using the same amygdala ROI as our a priori seed region (see Supplement) and same covariates of no 

interest. To adjust for multiple testing we applied the same Bonferroni correction (p<0.05/12).  

 

We conducted using exploratory whole-brain multiple regression analyses of the same main and 

interaction effects. The same covariates of no interest were used as in the ROI and PPI analyses. To 

adjust for multiple testing we applied the same Bonferroni correction (p<0.05/12).  
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Results 

Behavioural Analysis 

We used regression models to establish the relationship between conduct, hyperactivity/inattention and 

emotions symptoms, and the psychosocial stress score. Among these three symptom domains 

psychosocial stress had the strongest association with conduct symptoms (t=10.55, model r2=0.12, 

p=5.51x10-25), followed by hyperactivity/inattention (t=8.36, model r2=0.11, p=1.59x10-16) and emotional 

symptoms (t=4.7, model r2=0.08, p=3.0x10-6). Other significant predictors for psychopathology 

symptoms included verbal IQ, male sex for conduct and hyperactivity/inattention symptoms, and female 

sex and socioeconomic status for emotional symptoms, see Table 1. Descriptive statistics and 

differences by site are provided in the Supplement (text and Tables S3a, S3b). 

 

fMRI Region of Interest Analysis  

To understand the relationship between the three symptom domains, psychosocial stress, and 

amygdala reactivity to our face stimuli we conducted region of interest fMRI regression analyses in 

bilateral amygdalae. We first examined these relationships in all participants and then also examined 

gender differences post-hoc. As gender was a covariate in the regression models, we also checked if 

there were any main effects of gender on amygdala activation but found no such effects. We examined 

gender differences in amygdala activation during emotional face processing (30) and found that males 

had greater right amygdala activation during the angry vs. control contrast (t=2.82, pfamily-wise error-

corrected=0.005, pBonferroni-corrected=0.04). Including substance use in the regression models did not change 

results (see Methods and online Supplement). As no clusters survived whole-brain correction, analyses 

were thresholded at p<0.001 (voxel-level uncorrected) and statistically significant clusters reported at 

p<0.05 (family-wise error corrected). 
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All main effect and interaction test statistics are shown in Table 2. There were neither significant main 

effects of conduct symptoms, hyperactivity/inattention symptoms and emotional symptoms, nor 

psychosocial stress, on amygdala activation in either the angry vs. control or neutral vs. control fMRI 

contrasts. We did, however, find the following interactions:  

 

Conduct Symptoms: We found a significant interaction between conduct symptoms and psychosocial 

stress score in the right amygdala (Figure 1A: t=3.11, pfamily-wise error-corrected=0.002; pBonferroni-

corrected=0.024) in the angry vs. control contrast. The greater the number of stressful life events 

experienced by individuals with severe conduct symptoms (Table S1), the greater the amygdala 

activation (Figure 1B). The interaction in the left amygdala was not significant (pfamily-wise error-

corrected=0.053). We also found an interaction effect in the neutral vs. control contrast in the left 

amygdala (t=3.24, pfamily-wise error-corrected=0.0012; pBonferroni-corrected=0.014), but not in the right amygdala 

(pfamily-wise error-corrected=0.06). Controlling for hyperactivity and emotional symptoms did not affect the 

result in either the angry vs. control (t=3.12, pfamily-wise error-corrected=0.002, pBonferroni-corrected=0.024) or 

neutral vs. control (t=3.21, pfamily-wise error-corrected=0.0014, pBonferroni-corrected=0.017) contrast. 

 

To explore gender differences in the aforementioned results, we split the sample and compared the 

interaction of conduct symptoms and psychosocial stress on amygdala activation in males and females. 

Males had a stronger symptom by stress interaction on amygdala activation (right amygdala, angry vs. 

control contrast: r=0.133, pfamily-wise error-corrected=0.001, pBonferroni-corrected=0.024; left amygdala, neutral vs 

control contrast: r=0.146, pfamily-wise error-corrected=0.0005, pBonferroni-corrected=0.012) than females (right 

amygdala, angry vs. control contrast: r=0.022, pfamily-wise error-corrected=0.558; left amygdala, neutral vs. 

control contrast: r=0.030, pfamily-wise error-corrected=0.424). These differences between the genders were 

significant: right amygdala, angry vs. control contrast: Z=1.99, p=0.047; left amygdala, neutral vs. 

control contrast: Z=2.09, p=0.037; two-tailed Fisher's Z test).  
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Hyperactivity/Inattention Symptoms: We identified the same interaction effect between hyperactivity 

symptoms and psychosocial stress in the left amygdala (t=3.28, pfamily-wise error-corrected=0.0011, pBonferroni-

corrected=0.013) in the angry vs. control contrast (Figure 1C). The interaction in the right amygdala was 

not significant (pfamily-wise error-corrected=0.312). There was no significant interaction in the neutral vs. control 

contrast after correction for multiple testing (Table 2). Controlling for conduct and emotional symptoms 

did not affect the result (t=3.18, pfamily-wise error-corrected=0.002, pBonferroni-corrected=0.024). There were no 

gender differences. 

 

Emotional: We found no significant symptom by stress interactions in amygdala activation in either fMRI 

contrast (Table 2). The main effects and interactions remained non-significant when controlling for 

conduct and hyperactivity symptoms. There were no gender differences.  

 

PPI Functional Connectivity Analysis 

We carried out exploratory PPI functional connectivity analysis to explore potential amygdala networks 

related to conduct, hyperactivity/inattention, and emotional symptoms, psychosocial stress, and 

angry/neutral face stimuli. We found a positive relationship between hyperactivity/inattention symptoms 

and connectivity between the right amygdala and left ventral precuneus in the angry condition 

compared to the control condition (pfamily-wise error-corrected=0.0027, pBonferroni-corrected=0.032, p5000nonparametric-

permuted=0.026; xyz -8 -56 18, ke=150). There were neither main effects nor any significant symptom by 

stress interactions in the hyperactivity/inattention or emotional symptoms, or the neutral vs. control 

contrast (Table 3). 
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fMRI Whole-Brain Analysis 

We conducted exploratory whole-brain regression analyses of the same main and interaction effects as 

in the region of interest and PPI analyses. As no clusters survived whole-brain correction, analyses 

were thresholded at p<0.001 (voxel-level uncorrected) and statistically significant clusters reported at 

p<0.05 (family-wise error corrected). 

 

Conduct Symptoms: Adolescents with more conduct symptoms showed significantly larger BOLD 

responses when they had also experienced a greater number of stressful life events. We found a 

significant interaction between conduct symptoms and stress frequency in the angry vs. control contrast 

in the superior temporal gyrus, thalamus, anterior cingulate cortex, superior frontal gyrus, and inferior 

frontal gyrus (Figure 2A and Table S3c). We also found a significant main effect for conduct symptoms 

in the precuneus and postcentral gyrus but no significant main effect for psychosocial stress score.  

 

Hyperactivity/Inattention Symptoms: We found a significant interaction between hyperactivity/inattention 

symptoms and psychosocial stress score in the mid and anterior cingulate cortex. Youths with more 

symptoms showed larger BOLD responses when they had also experienced more stress (Figure 2B 

and Table S3c).  

 

Emotional Symptoms: There were no significant main or interaction effects for emotional symptoms in 

either fMRI contrast.   

 

We compared the size and location of the significant clusters from the whole-brain analyses of conduct 

and hyperactivity/inattention symptoms and found an overlapping portion of the mid-cingulate common 

to both conduct and hyperactivity symptoms (Figure 2C).  
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Discussion 

In order to comprehensively characterise the relationship between adolescent mental health and 

psychosocial stress, we examined three behavioural symptom domains in a large sample of 

community-recruited adolescents. Consistent with previous reports, we found evidence to suggest that 

psychosocial stress is associated with greater conduct, hyperactivity/inattention, and emotional 

symptoms. Our primary research objective was to explore how the relationship between these 

symptoms and neural reactivity to emotional stimuli is influenced by the experience of psychosocial 

stress. Using an fMRI paradigm designed to target stress-related neural systems, we found that the 

degree to which adolescent brains respond to social-emotional stimuli depends on the type and severity 

of conduct and hyperactivity/inattention symptoms and also the amount of stress they experienced. 

 

Our region of interest analyses showed heightened amygdala response to anger was related to severe 

conduct and hyperactivity/inattention symptoms, only when adolescents also had a higher psychosocial 

stress score.  We observed this finding in the angry vs. control and to a lesser extent in the neutral vs. 

control contrasts, suggesting that the interaction of conduct symptoms or hyperactivity/inattention and 

stress may not only be related to affective stimuli, but may also involve processing of social stimuli. This 

finding may also suggest that previously observed altered response to social emotional stimuli in 

adolescents with conduct disorder (11, 31) and ADHD (32) might be related to increased psychosocial 

stress, and perhaps not to the externalising symptoms per se. For example, increased amygdala 

activation is found in stressed youths when viewing angry and neutral faces (33). 

 

Our finding of a stress-dependent interaction of attention deficit/hyperactivity and conduct symptoms on 

social-emotional processing is not limited to heightened amygdala activation alone, but - as shown in 

the results of our whole brain analysis - extends to other brain regions related to the behavioural deficits 

observed in externalising behaviour. We found increased brain activity related to psychosocial stress 
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and conduct disorder in a network of regions that influence cognitive and emotional processes including 

perception (thalamus, superior temporal gyrus, middle temporal gyrus), interpretation (anterior cingulate 

cortex, insula, superior frontal gyrus), and inhibitory control (inferior frontal gyrus). Furthermore, the 

mid-cingulate cortex, an area identified in promoting aggressive behaviour in response to angry 

emotional expressions (34), was commonly activated for stressed youths with conduct symptoms and 

stressed youths with hyperactivity/inattention symptoms. These findings suggest that the impaired 

social functioning and emotional regulation observed in youths with externalising symptoms might be 

regulated by networks of brain activity related to hyperactivity/inattention symptoms and conduct 

symptoms, that are both common and distinct for these symptom domains. These networks involve 

both cortical and subcortical structures, which is consistent with the behavioural complexity of 

externalising symptoms.  

 

In the exploratory PPI analyses, we observed greater functional connectivity between the amygdala 

and ventral precuneus in the angry vs. control condition with increasing hyperactivity/inattention (but not 

with conduct symptoms) that was independent of psychosocial stress. The precuneus has negative 

connectivity with the amygdala (35) and increased functional coupling between these regions is 

important for emotion regulation, particularly distraction (i.e., shifting attention away from emotional 

stimuli (36). Our finding is counterintuitive considering individuals with hyperactivity/inattention 

symptoms are described as having emotion regulation deficits (32). However, in the context of 

hyperactivity/inattention symptoms, adolescents may encounter angry faces more frequently, as stress 

levels are high in parents of ADHD children (37, 38). Therefore, it may be that individuals with 

hyperactivity/inattention symptoms are more adept at distraction as a means to regulate emotion.  

 

Although psychosocial stress frequency was associated with emotional symptoms, the magnitude of 

this association was less than for conduct and hyperactivity/inattention symptoms. We found neither 
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main effects of emotional symptoms nor emotional symptoms by stress interaction on amygdala 

activation or connectivity. Considering the task used in this study has an emotional component and 

targets stress-related neural systems, the absence of significant findings was unexpected. One reason 

for the disparity between conduct and hyperactivity/inattention symptoms, stress, and neural reactivity 

compared to emotional symptoms may be due to the nature of the emotional items from the SDQ and 

the specific fMRI contrasts used. The SDQ emotional subscale items are more reflective of anxiety and 

irritability than depression (e.g., 'I worry a lot'; 'I am nervous in new situations'). Of interest, youths with 

high anxiety tend to orient away from emotional faces (39, 40), which may help explain our null findings; 

participants with emotional symptoms may not have been engaged with the fMRI task.  

 

The study was limited by the fMRI paradigm in terms of the range of emotional stimuli available for 

analysis. Future studies may expand these findings to explore reactivity in response to different 

emotional expressions. Although potentially informative, we did not examine/account for potential 

within-session amygdala habituation effects (41). Although behavioural data during the viewing of angry 

and neutral faces were not collected, participants were asked after the scanning session to identify 

whether or not they had seen a set of faces; 99% were found to have good reliability. Site differences 

were observed in key demographic covariates such as verbal IQ and socioeconomic status. These can 

reflect differences in recruitment strategies or specific cultural attitudes and environment of the area. 

While we controlled for the effect of site on our results, and did not detect any systematic bias, we 

acknowledge that multisite studies add heterogeneity to the data. Despite these limitations, this study 

was strengthened by the use of quantitative analysis of clinical symptoms and psychosocial stress 

frequency, allowing us to explore how all adolescents responded, including those with few or no 

pathological symptoms, rather than simply those at the high end of the distribution. The exploratory 

analyses, while not hypothesis-driven, are hypothesis generating and in need of further exploration and 

eventual replication. 
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The current results highlight the importance of studying how environmental stress impacts functional 

brain responses to social-emotional stimuli, particularly in adolescents with externalizing symptoms. 

The observed heightened amygdala activation, and associated networks implicated in top-down control 

of emotion regulation, may impact an individual’s ability to effectively assess risk and may contribute to 

aggressive or fearful behavioural responses to incoming stimuli. Improved understanding of how stress 

and externalizing symptoms influence social-affective neurobiological processes may inform the 

development of future therapies that enhance emotional awareness and reduce disproportionate neural 

reactions in challenging social situations.   
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Table 1 Demographic and clinical symptom characteristics. Female N=705, Male N=583; Age = Mean 
(SD): 14.40 (0.40); Range = 13.18-15.43. 
 
  Test statistics – Symptom domains 

 Descriptive 
Statistics 

Conduct symptoms Hyperactivity/Inattention 
symptoms 

Emotional symptoms 

 Mean  SD β t P β t P β t P 

Sex   -0.12 -

3.70 

2.25x10-4 -0.06 -1.99 .047 0.17 5.09 4.03x10

-7 

Stressful Life 

Event 

Frequency 

3.35  2.08 0.29 10.5 5.51x10-25 0.23 8.36 1.59x10-16 0.13 4.70 3.0x10-6 

Verbal IQ 111.98  14.82 -0.10 -

3.50 

4.83x10-4 -0.17 -5.90 4.53x10-9 -0.10 -3.52 4.53x10

-4 

Socioeconomic 

Status 

0.66  1.06 0.04 1.50 0.13 0.01 0.36 .72 0.11 3.82 1.4x10-4 

Puberty 

Development 

Stage 

3.64  0.70 0.01 0.25 0.81 -0.03 -0.79 0.43 -0.05 -1.55 0.12 

Conduct 

Problems 

2.49  1.58          

Hyperactivity/ 

Inattention 

Problems 

4.34  2.17          

Emotional 

Problems 

2.24  2.30          
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Table 2 Results of amygdala ROI regression analyses 
 
  Angry vs. control,  

L amygdala 

Angry vs. control,  

R amygdala 

Neutral vs. control, 

L amygdala 

Neutral vs. control,  

R amygdala 

  β t p β t p β t p β t p 

Conduct problems              

 Main effect 0.008 0.272 0.786 -0.048 -1.59 0.111 -0.015 -0.517 0.605 0.003 0.109 0.913 

 Stress main effect -0.001 -0.027 0.978 4x10-4 -0.013 0.99 -0.037 -1.22 0.224 -0.032 -1.04 0.297 

 Conduct x stress  0.081 2.86 0.0044 0.089 3.11 0.0019 0.093 3.27 0.001 0.081 2.84 0.005 

Hyperactivity 

problems 

             

 Main effect -0.004 -0.125 0.901 0.007 0.224 0.823 -0.047 -1.60 0.110 0.019 0.638 0.523 

 Stress main effect 0.009 0.315 0.753 -0.005 -0.167 0.867 -0.020 -0.664 0.507 -0.026 -0.887 0.375 

 Hyperactivity x 

stress  

0.091 3.28 0.0011 0.062 2.23 0.026 0.070 2.49 0.013 0.070 2.52 0.012 

Emotional problems              

 Main effect 0.016 0.542 0.588 -0.001 -0.045 0.964 0.035 1.20 0.230 0.055 1.88 0.060 

 Stress main effect 0.008 0.262 0.793 -0.003 -0.092 0.927 -0.034 -1.16 0.246 -0.031 -1.05 0.296 
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 Emotion x stress  0.045 1.57 0.117 0.032 1.14 0.254 0.034 1.18 0.240 0.052 1.82 0.070 

 
β = standardised beta coefficient, t = t-test statistic, p = significance value 
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Table 3 Results of PPI functional connectivity analyses 
 

  Region Left/Right Coordinates of Peak 

Activation (MNI) 

t β 
Cluster 

Size (k) 

p 

 

Angry vs control,  

L amygdala 

Positive or 

Negative PPI 

 

  Main effect: Conduct Problems 

 Positive L Frontal Pole Left -38 -10 -18 5.22 .043 117 .016 

Angry vs. control, R 

amygdala 

Positive or 

Negative PPI 

       

  Main effect: Hyperactivity Symptoms 

 Positive Precuneus* Left -8 -56 18 4.10 .034 150 .0027* 

Neutral vs. control, 

L amygdala 

        

 Positive Main effect: Hyperactivity Symptoms 

 Positive Caudate Left -6 10 0 4.51 .042 96 .044 
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Neutral vs. control, 

R amygdala 

        

  Main effect: Stress in Conduct Symptoms model 

 Positive Angular gyrus Right 52 -50 28 4.99 .040 152 .004 

  Main effect: Stress in Hyperactivity/Inattention Symptoms model 

 Positive Angular gyrus Right 52 -50 28 4.79 .037 132 .008 

  Interaction effect: Hyperactivity/Inattention Symptoms x Psychosocial Stress Frequency 

 Positive Frontal Pole Right 0 64 6 3.73 .023 86 .066 

  Main effect: Stress in Emotional Symptoms model 

 Positive Angular gyrus Right 52 -50 28 4.66 .036 118 .015 

         

 
MNI, Montreal Neurological Institute; aCoordinates refer to the voxel with the maximum signal intensity. β = standardised beta coefficient, t = t-test statistic, p = significance value 

* Indicates result survives correction for multiple comparisons (p<.0041). † indicates group result survived correction for multiple comparisons (p<.001).
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Figure 1 (A) Scatter plot depicting the interaction effect between conduct symptoms and stress on 
contrast estimates (angry face vs. control) in the right amygdala. (B) Scatter plot depicting the 
interaction effect between conduct and stress on contrast estimates (neutral face vs. control) in the left 
amygdala. (C) Scatter plot depicting the interaction effect between hyperactivity/inattention symptoms 
and stress on contrast estimates (angry face vs. control) in the left amygdala. 

(A)  

(B)   

(C)  
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Figure 2 Statistical parametric map overlaid on a T1-weighted structural brain image. (A) Youths with 
conduct symptoms show increased fMRI BOLD responses with greater psychosocial stress (angry face 
vs. control). The image is centred at the middle cingulate cluster (xyz 3 5 37) and only clusters showing 
a spatial extent of at least 38 contiguous voxels are shown for visualisation purposes. (B) Youths with 
hyperactivity/inattention symptoms show increased fMRI BOLD responses with greater psychosocial 
stress (angry face vs. control). The image is centred at the middle cingulate cluster (xyz -3 2 37) and 
only clusters showing a spatial extent of at least 48 contiguous voxels are shown for visualisation 
purposes. (C) The overlap between the two significant mid-cingulate clusters common to both 
hyperactivity/inattention and conduct symptoms. The image is centred at xyz 0.8 3.5 37 and ke is 272 
voxels. 
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