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Abstract

Background: The assumption that functional magnetic resonance imaging
(fMRI) noise has constant volatility has recently been challenged by stud-
ies examining heteroscedasticity arising from head motion and physiological
noise. The present study builds on this work using latest methods from the
field of financial mathematics to model fMRI noise volatility.
Methods: Multi-echo nd human fMRI scans were used and realised volatility
was estimated. The Hurst parameter H ∈ (0, 1), which governs the rough-
ness/irregularity of realised volatility time series, was estimated. Calibration
of H was performed pathwise, using well-established neural network calibra-
tion tools.
Results: In all experiments the volatility calibrated to values within the
rough case, H < 0.5, and on average fMRI noise was very rough with
0.03 < H < 0.05. Some edge effects were also observed, whereby H was
larger near the edges of the phantoms.
Discussion: The findings suggest that fMRI volatility is not only non-constant,
but also substantially more irregular than a standard Brownian motion.
Thus, further research is needed to examine the impact such pronounced
oscillations in the volatility of fMRI noise have on data analyses.
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1. Introduction

A given functional magnetic resonance imaging (fMRI) blood oxygenation
level dependent (BOLD) time series can be defined as

yt = µt +
√
vtεt (1)

where the µt is the mean, εt is a one dimensional noise process, and vt is the
volatility of the noise process. Detrending is typically conducted as part of
preprocessing to remove signal drift. Thus, a given fMRI time series is often
assumed to be a constant process, indicating that vt in equation (1) could be
replaced by constant v. This assumption, however, has recently been chal-
lenged and there has been increasing interest in exploring time-dependent
properties of fMRI noise [1, 2, 3, 4, 5, 6]. It has been shown that factors such
as head motion and physiological processes including respiration and pulse
can introduce heteroscedasticity to the time series [1, 2, 3, 7]. Heteroscedas-
ticity in turn has been found to complicate the linear modelling, which has
led to the introduction of several statistical models to counteract the impact
of these artefacts [1, 2, 7]. One limitation of these models is that they can-
not explain non-constant volatility arising from unknown or uncontrollable
sources, such as scanner noise.

As volatility of a time series cannot be directly observed, a plethora of deter-
ministic and stochastic models have been proposed to estimate it in financial
returns data [8, 9, 10]. Over the years, direct comparisons of different volatil-
ity models have shown that stochastic models, which assume that logarithm
of the volatility process behaves like standard Brownian noise with Hurst pa-
rameter H = 0.5, outperform their deterministic, data-driven counterparts
providing a better fit to data [11, 12, 13]. This assumption implies in partic-
ular that volatility is not constant1, and exhibits an oscillatory behaviour on
any finite time interval. This oscillatory behaviour is governed by a param-
eter H which in the Brownian case takes the value H = 0.5.

1This Brownian assumption implies a Hurst parameter of 0.5 (which is a parameter
governing the Hölder regularity of paths) of the stochastic process. It is known, that for
standard Brownian motion H = 0.5.
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More recently rough stochastic volatility models have been considered (see
[14, 15, 16, 17, 18]) where the parameter H is allowed to vary in the range
H ∈ (0, 1). In these models, as mentioned above, the parameter H gov-
erns the oscillations of the volatility process; the lower the parameter H,
the stronger the oscillations on any finite interval. In particular, the val-
ues H ∈ (0, 0.5) correspond to the rough case (i.e. rougher paths than a
standard Brownian motion). Figure 1 shows the roughness/irregularity of
volatility paths for different H values. As H approaches 0 the paths become
more irregular/rough.

Figure 1: Three sample paths of fractional Brownian motion with H = 0.1, H = 0.5, and
H = 0.9

A rough stochastic volatility model, the rough Bergomi (rBergomi) model
introduced in [15] by Bayer Friz and Gatheral, is described by the system

dSt
St

=
√
vtd
(
ρWt +

√
1− ρ2W⊥

t

)
vt = ξ0(t) exp

(
η

∫ t

0

(t− s)H−1/2dWs −
1

2
η2t2H

)
,

(2)

where W and W⊥ represent two independent standard Brownian motions
with ρ ∈ [−1, 1], η > 0 describes the volatility of volatility, and ξ0(·) de-
scribes the initial variance curve, which we assume to be constant. Our
motivation for choosing the mean reverting, driftless rough Bergomi model
(2) derives from the practice of detrending mentioned above. As it is common
practice to remove linear drifts from fMRI prior to further analysis, such a
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driftless model would be a good fit to the data. Volatility processes simulated
using the rBergomi model exhibit remarkable similarity to realised volatil-
ity processes [18, 15]. Furthermore, the rBergomi and other rough models
introduced since have been found to provide important improvements to fore-
casting volatility [15, 19, 9, 10].

In addition to improving forecasting accuracy, rough models can be used
to assess smoothness of a given process by estimating the parameter H
[17, 18, 20, 21]. Estimating the parameter H can provide information about
the extent of heteroscedasticity in the series, but requires access to the re-
alised, historical volatility process, which cannot be directly observed. To
bypass this difficulty, in finance intra-day data such as 5-minute asset prices
returns are used to estimate daily realised volatility [22, 23, 24]. The daily
estimates are then combined to form a realised volatility process, providing
information about daily variances in an asset price over the course of months
or years.

Considering recent calls to explore the possibility of implementing models
from the field of financial mathematics to fMRI [6, 25] and the visual sim-
ilarities between financial returns data and fMRI BOLD signal (Figure 2),
such an approach could be applied to fMRI data as well to examine time-
dependent behaviour in volatility of the noise process. Utilising multi-echo
acquisition, the data from each echo could be used as intra-time point data
to estimate volatility. Thus, in a manner similar to standard combination of
data from each echo time, we can produce a realised volatility series. These
series could then be used to estimate the smoothness of volatility in fMRI
data using models such as the rBergomi.

Estimating rBergomi model parameters, including H, is computationally ex-
pensive and often relies on the use of Monte Carlo based calibration methods
[26, 27]. This limits the use of this model in practice despite the benefits it
offers [18, 28, 15]. Recently, neural networks have been proposed as an effi-
cient way to solve the calibration problem [29, 30, 31, 32]. Neural networks
provide a powerful way of identifying relationships between input parameters
and model output and can be particularly useful for models that do not have
closed-form solution [29, 30]. Recent work found that neural network cali-
bration framework can be successfully applied to a range of rough stochastic
volatility models to aid accurate pricing and hedging [29, 33]
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Figure 2: Financial returns and fMRI BOLD series

A. S&P 500 returns over 200 days during the year 2000; B. Dow Jones returns
over 200 days over the year 2004; C. Nasdaq 225 returns over 200 days during
the year 2003; D. Nikkei 100 returns over 200 days during the year 2000; E.

Demeaned BOLD signal from voxel [28,14,26]; F. Demeaned BOLD signal from
voxel [12,27,30]; G. Demeaned BOLD signal from voxel [17,36,24]; H. Demeaned

BOLD signal from voxel [37,19,15]. All returns data is from the Oxford-Man
database https://realized.oxford-man.ox.ac.uk/. All fMRI data is from

participant sub-17821 from dataset ds000258 available at
https://openneuro.org/datasets/ds000258.
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The aim of this paper was to conduct an exploratory empirical study examin-
ing the volatility of fMRI noise. We were specifically interested in exploring
whether volatility of fMRI noise exhibits time-dependent behaviour that can-
not be explained by factors such as head motion and physiological noise. We
aimed to collect multi-echo fMRI signal from a phantom to examine thermal
noise. We also aimed to examine whether volatility patterns observed in the
phantom data were present in noise in human scans. To achieve this aim,
multi-echo resting state data was extracted from the ventricles of four par-
ticipants from two different datasets.

Observations collected at each echo time were treated as intra-time point
data and were used to estimate realised volatility. The roughness of the re-
alised volatility was assessed by estimating the Hurst parameter H, which
was accomplished with using neural network calibration tools. As the study
was exploratory in nature we did not have prior hypotheses. However, consid-
ering the visual similarities between many financial returns and fMRI BOLD
series, we anticipated that the estimated H of the realised volatility processes
was in the rough volatility range, 0 < H < 0.5.
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2. Material and methods

2.1. FMRI data acquisition

Phantom data. Two MRI phantoms filled with liquid material was used to
acquire multi-echo fMRI signal consisting entirely of thermal noise. The data
were acquired with two different 3 Tesla GE Discovery MR750 units using
32-channel receive only head coils (Nova Medical, Wilmington, MA, USA).
This was done to ensure the findings were not unique to a specific scanner.
The functional multi-echo echo planar imaging (EPI) data consisted of 200
volumes and each volume consisted of 18 slices with the following parameters:
2.5 second repetition time (TR), 80 flip angle, 64 × 64 acquisition matrix, 3
mm slice thickness with 4 mm slice gap. The fMRI slices were acquired in
an ascending order and eight echo times were used: 12 ms, 28 sm, 44 ms, 60
ms, 76 ms, 92 ms, 108 ms, 124 ms. Eight echo times were used as this was
the maximum number of echoes that can be acquired with the MR units used.

Human data. Multi-echo resting state data from two different datasets,
ds000258 (https://openneuro.org/datasets/ds000258/versions/1.0.0)
and ds000210 (https://openneuro.org/datasets/ds000210/versions/00002),
were used to examine whether patterns identified in the phantom data could
be seen in vivo. The ds000258 data were acquired with a Siemens Trio 3
Tesla MRI scanner using 32-channel receive only head coil. T1-weighted
magnetization prepared rapid gradient echo (MPRAGE) sequence was used
to acquired the anatomical data with the following parameters: 1 mm slice
thickness and 1.1 second inversion time. The functional multi-echo EPI data
consisted of 239 volumes and each volume consisted of 32 oblique slices with
the following parameters: 2.47 second TR, 78 flip angle, 64 × 64 matrix size,
and 4.4 mm slice thickness with 10% slice gap. Alternating slice acquisition
was used with ascending interleaved order and four echo times were used: 12
ms, 28 ms, 44 ms, and 60 ms.

The data from the second dataset, ds000210, was acquired with a 3 Tesla
GE Discovery MR750 unit using a 32-channel receive only phased-array head
coil. T1-weighted MPRAGE sequence was used to acquired the anatomical
data with the following parameters: 2530 ms TR, 1 mm slice thickness, and
1.1 second inversion time. The resting state multi-echo EPI data consisted
of 204 volumes and each volume consisted of 46 axial slices. The follow-
ing parameters were used to acquire the data: 3.0 second TR, 83 flip angle,
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72×72 matrix size, and 3.0 mm isotropic voxels. The slices were acquired in
inferior-superior interleaved order and three echo times were used: 13.7 ms,
30.0 ms, and 47.0 ms.

2.2. FMRI data preprocessing

Phantom data. The phantom data were preprocessed using SPM12 (http:
//www.fil.ion.ucl.ac.uk/spm). Each echo was preprocessed separately to
ensure the echoes could be used as intra-TR data to estimate realised volatil-
ity. The following preprocessing steps were taken: slice timing correction was
applied first with the middle slice used as a reference slice. Although no mo-
tion was expected, the data were realigned and resliced to correct for head
motion and estimate six rigid body transformations. Prior to combining the
echoes and estimating realised volatility linear model based de-trending was
conducted.

Human data. As with the phantom data, SPM12 was used to prepro-
cess the human data one echo at a time to enable estimation of realised
volatility. The following preprocessing steps were taken: slice timing correc-
tion with the middle slice serving as a reference slice, and realignment with
reslicing was used to correct for head motion and estimate six rigid body
transformations. The anatomical data were then segmented into grey mat-
ter, white matter, cerebrospinal fluid, and skull, after which the anatomical
data were co-registered with the mean functional image.

After preprocessing, the six rigid body transformations were used to calculate
framewise displacement using the spmup FD function (https://github.
com/CPernet/spmup/blob/master/QA/spmup_FD.m). Framewise displace-
ment was then used to determine which participants had the least amount of
head motion. From each dataset, two participants who moved the least were
selected (Supplementary Table 1), the data was subjected to linear model
based de-trending, and then taken forward for further analysis. Addition-
ally, to study the noise present in vivo, the anatomical scans were used to
create ventricle masks. Studying signal from the ventricles enabled us to
examine the volatility of the combination of scanner and physiological noise
while avoiding contamination from true brain signal. Thus, only resting state
data extracted from the ventricles were used for further analysis to estimate
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realised volatility and examine its roughness.

2.3. T ∗2 -weighted realised volatility

As our data from the phantoms and ventricles contains only noise, we can
re-write equation (1) at a given time point t...T as

yt =
√
vtεt (3)

µt = 0 as no true brain signal is present.

Observations from each echo time n up to the last echo N were treated as
intra-TR data which were used to estimate realised volatility for each point
in the time series. To follow standard procedures and take into considera-
tion the fact that fMRI signal decays rapidly (Supplementary Figures 1-6),
the observations from each echo time were weighted to avoid bias [34]. The
weighting was based on T ∗2 estimates, which were calculated in accordance
with methodology used in tedana [35, 36, 37]:

Sn = S0 exp(−R∗2 × En) (4)

where Sn represents the signal intensity at a given echo time n, R∗2 = 1
T ∗
2

, E

represents the echo time in milliseconds, and S0 represents the signal inten-
sity at E = 0. The value of R∗2 is solved by a log-linear regression.

T ∗2 -based weights were then calculated as follows

wn =
En exp(−E/T ∗2 )∑N
n=1En exp(−En/T ∗2 )

(5)

The weights were used to estimate the mean of the fMRI noise processes at
each echo time n at each time point, t = 1...T .

ȳt =

∑N
n=1wnyn,t∑N
n=1wn

. (6)

Realised volatility at each time point, t = 1...T , was estimated by calculating
variance between observations at each echo time n.

v̂t =

∑N
n=1wn(yn,t − ȳt)2∑N

n=1wn
. (7)
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The estimated T ∗2 -weighted variance, v̂t, served as a proxy of the unobserved
volatility process and was used to investigate the smoothness of the fMRI
noise series. As fMRI noise is believed to not exhibit similar exponential
decay as true brain signal, we wanted to illustrate that the T ∗2 -weighting
used did not unduly impact the present findings by presenting analyses us-
ing non-weighted realised volatility data in the Supplementary Materials.
The analyses using non-weighted data produced results which mirror those
reported here.

2.4. Estimating roughness of realised volatility

We examined the roughness of fMRI noise volatility by adopting a neural
network calibration method established in [31]. The rBergomi model was cho-
sen to simulate the training data because it produces driftless, mean reverting
processes which closely resemble fMRI data. Roughness of the volatility se-
ries was examined by estimating the H parameter. In addition to examining
the roughness of the volatility paths, we also wanted to extract information
about the volatility of volatility by simultaneously estimating the η param-
eter. If any of the fMRI noise volatility series had constant volatility the
estimated η = 0 and if the volatility was not constant η > 0.

2.4.1. Neural network architecture

To estimate the roughness and volatility of volatility of the fMRI noise
volatility series we used a one-dimensional feed-forward convolutional neural
network (CNN) [31]. This approach has been previously shown to accurately
estimate the Hurst parameter H and outperform other methods such as the
least squares method both in terms of accuracy, as measured using root mean
squared error (RMSE), and speed. A further introduction to neural networks
is given in Appendix A; very simply one can think of a neural network as a
composition of affine and non-linear functions that approximates a mapping
of inputs to outputs.

The CNN consisted of three kernel layers with kernel size 20. The first
convolutional layer had 32 kernels followed by a dropout layer with dropout
rate of 0.25, the second had 64 kernels followed by a dropout layer with
dropout rate of 0.25, the third had 128 kernels followed by a dropout layer
with dropout rate of 0.4, and the fourth dense layer had 128 units followed by
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a dropout layer with dropout rate of 0.3. Leaky ReLU activation functions
followed each layer with α = 0.1 and max pooling layers with size 3 were
added between each kernel layer. See [31] for rationale of this architecture
and hyperparameter choice.

2.4.2. Neural network training and test

Altogether, 50,000 sample paths of the normalised rBergomi model log-
volatility process, ṽt := η

∫ t
0
(t − s)H−1/2dWs, were simulated. For each of

the 50,000 sample paths simulated, 200 time points were used and H ∼
Unif(0, 1.0) and η ∼ Unif(0, 3.0). Hyperbolic tangent was used to scale η.
Stone provides a rigorous mathematical justification for this set up [31, Sec-
tion 3.2, p382]. The sample paths were generated using classical methodology
which utilises the Cholesky decomposition to achieve exact distribution of the
log-volatility paths (https://github.com/jennileppanen/fmri_vol). The
sampling was conducted in a manner that ensured that each sample path had
a unique H and η enabling better fitting to varying fMRI noise log-volatility
processes.

We took a nested cross-validation approach whereby the simulated sample
paths were first divided into training and test datasets with 30% holdout.
The training dataset was then further divided into training and validation
sets with 20% hold out. Thus, the training dataset consisted of 28,000 train-
ing and 7,000 validation sample paths and the final test dataset included
15,000 sample paths.

2.5. Evaluation of CNN H and η parameter

estimation The performance of the trained CNN was assessed by calcu-
lating the RMSE between the predicted θ̂n = {θ̂}ni=1 and true θn = {θ}ni=1

parameters, where θ̂ = (Ĥ, η̂) and θ = (H, η).

RMSE(θ̂n,θn) =

√√√√ 1

n

n∑
i=1

((θ̂i − θi)2). (8)

In the present study, the test error was small, RMSE = 0.065, and the
relationship between predicted and true H and η in Figure 3 were strongly
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Figure 3: Scatter plot showing the correlation between predicted and true H parameter

linear.

the parameter H governs three aspects of fractional Brownian motion at
the same time: the self-similarity, the roughness of the paths (the oscilla-
tion) and the autocorrelation of the time series. Therefore, performance of
the CNN was additionally evaluated by examining agreement between the
estimated H parameters and the memory in the fMRI noise log-volatility se-
ries. Agreement between the CNN H parameter estimates and memory was
evaluated by conducting a Spearman correlation test. Memory was estimated
by fitting autoregressive fractionally integrated moving average (ARFIMA)
[0, d, 0] model to the log-volatility data and calculating the d parameter:

εt = (1−B)d log(σt), (9)

where B is the backshift operator and d represents the memory parameter
to be calculated.

0 < d < 0.5 indicates the series is a stationary, mean reverting long mem-
ory process, while d < 0 indicates the series is anti-persistent short memory
process. 0.5 < d < 1 indicates the series is a mean reverting, non-stationary
long memory process. Although the relationship between smoothness of log-
volatility processes and long memory is a complicated one [18, 38, 39, 40],
this correlation will give us an indication of the performance of the CNN in
estimating H.
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3. Results

3.1. Estimated roughness and volatility of volatility

The summary statistics of the estimated H parameter of the realised log-
volatility series in phantom and human data from the ventricles are presented
in Table 1. On average the log-volatility series were rough, but the average
H parameter estimates were somewhat higher in the data extracted from the
ventricles (human) than in the phantom data. This could be because the
phantom data should only contain scanner noise while the data extracted
from the ventricles should include both scanner and physiological noise. In
the phantom data there was also substantial variability in the H parameter
estimates. The maximum estimated H remained under 0.5, suggesting that
despite the substantial variability fMRI noise was rough across the phantoms.
Similar variability was not observed in the data extracted in the ventricles
and the maximum H parameter estimates were smaller in the human data.
Finally, all η > 0 suggesting that there were no fMRI noise volatility processes
that had constant volatility.

Table 1: Estimated H and η parameters in phantom and human data

Phantom data ds000528 ds000210
Phantom 1 Phantom 2 sub-17821 sub-21300 sub-28 sub-30

H Mean 0.020 0.019 0.020 0.021 0.031 0.042
SD 0.021 0.015 0.009 0.010 0.013 0.020

Max 0.498 0.396 0.042 0.052 0.107 0.127
Min 0.0005 0.001 0.003 0.004 0.004 0.008

η Mean 0.232 0.234 0.331 0.345 0.462 0.526
SD 0.111 0.071 0.053 0.058 0.098 0.134

Max 4.503 3.020 0.443 0.493 1.058 1.193
Min 0.036 0.055 0.203 0.184 0.235 0.285

Human data was extracted from the ventricles. SD = standard deviation;
ds000258 and ds000210 refer to the two Openneuro. datasets used.

3.2. Spatial pattern in estimated Hurst parameters

Figure 4 shows how the estimated H varied from region to region across
the phantoms and Figures 5 and 6 show H parameter estimates in the ven-
tricles. Log-volatility series associate with the maximum, minimum, and H
parameter estimates close to the mean are also shown.
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Some edge effects were observed, such that the estimated H parameters were
generally larger near edges of the phantoms than the middle. In both phan-
toms the voxels with the maximum H parameter estimates were found near
the edge and appeared to form large clusters. In the middle of the phantoms
the H parameter estimates were generally very small yet varied. Similar
edge effects were not observed in the resting state data extracted from the
ventricles, which could be due to the fact that the ventricles reside close to
the middle of the brain. Still, as in the phantom data, it was apparent that
the H parameter estimates varied from voxel to voxel within the ventricles
suggesting spatially non-constant volatility was present.

Interestingly, phantom 1 has a small region near the top where the signal
intensity was lower than in the nearby voxels, suggesting signal dropout due
to a possible air bubble (Supplementary Figure 14). This area consisted of
four voxels and one of these voxels had the largest H parameter estimate in
phantom 1. This voxel also represents the centre of the cluster near the top
of the phantom in Figure 4A. No such signal dropout was seem in phantom
2.

3.3. Agreement between the correlation governed by the Hurst parameter H
and ARFIMA autocorrelation

As mentioned earlier, the Hurst parameter not only governs the rough-
ness of a volatility path, but also the autocorrelation function of the volatility
time series. In this section we test for the agreement between the presence
of autocorrelation predicted by the rough volatility model and the autocor-
relation predicted by a standard ARFIMA model. As shown in Table 2 the
correlation was significant and positive in both phantoms and data extracted
from the ventricles.

Table 2: Correlations of H and d parameters from different sources.

Phantom data ds000528 ds000210
Phantom 1 Phantom 2 sub-17821 sub-21300 sub-28 sub-30

ρ 0.69 0.69 0.40 0.58 0.68 0.79
p-vlue < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001

ρ = Spearman correlation coefficient; ds000258 and ds000210 refer to the two
Openneuro. datasets used.
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The relationship between estimated H parameter and the ARFIMA[0, d, 0]
memory parameter, d, of the log-volatility processes are presented in Supple-
mentary Figures 7 and 8. The correlations between the H and d parameters
was more variable in the resting state data extracted from the ventricles,
which may be related to the fact that the size of the ventricles and thus
the number of voxels in the the ventricles varied between participants and
participants with more voxels inside the ventricles has higher correlations.
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4. Discussion

The aim of the present empirical study was to examine the roughness
of fMRI noise volatility. We used multi-echo scans of two phantoms from
two different MRI scanners to estimate realised volatility. We also used hu-
man data from two separate multi-echo resting state datasets to examine
whether patterns observed in the phantom data were present in vivo noise,
specifically, focusing on signal extracted from the ventricles. Roughness of
logarithm of the realised volatility processes was estimated using CNN cali-
bration tools introduced in [31]. The findings indicated that no fMRI noise
volatility series had constant volatility with estimated volatility of volatility
η > 0. On average the volatility of fMRI noise is very rough with H ≈ 0.03,
but substantial variability was also observed. The variability was caused by
the fact that the smoothness of the volatility was not constant across the
phantoms, with higher H estimates observed near the edges of the images.
Interestingly, similar patterns of variability, with the exception of edge effects
as we focused on data from the ventricles, were also observed in vivo noise,
but the average was somewhat higher, H ≈ 0.05 and maximum substantially
lower. Overall, all H < 0.5 suggesting that across the phantom and human
data, volatility was consistently rough.

The present findings suggest that log-volatility of fMRI noise appears to be-
have like fractional Brownian motion with H parameter estimates between
0.03 and 0.05. As anticipated, these findings go some way to mimic the rough
volatility pattern observed in high frequency financial data with Hurst pa-
rameter estimates varying between 0.02 and 0.14 [18, 17]. Thus, it appears
that although fMRI scanner noise on average does not have large fluctua-
tions in volatility over time, i.e. the noise does not exhibit sustained periods
of high volatility followed by sustained periods of low volatility. Instead,
the noise processes exhibit rapid spikes and oscillations, indicating more
“severe” heteroscedasticity. The heteroscedasticity observed in the phan-
tom data cannot be explained by head motion, physiology, or other known
sources of non-constant noise and cannot be easily entered into analysis as a
covariate because scanner noise processes cannot be directly observed during
brain scanning. These findings challenge the assumption that fMRI noise has
constant volatility and adds to the steady accumulation of literature explor-
ing heteroscedasticity in fMRI noise [1, 2, 3, 4, 5, 6], further highlighting the
importance of taking non-constant noise into consideration during analysis
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of the time series data.

The impact of rapidly spiking and oscillating volatility on fMRI data anal-
ysis has recently been investigated. One study examined the impact of het-
eroscedasticity introduced by simulated head motion spikes on fMRI data
analysis [1]. The authors found that a linear modelling approach based on
weighted least sum of squares (WLSS) was able to accurately model impulse
responses to stimuli if the heteroscedasticity was constant across all voxels
[1]. However, when the number of head motion spikes varied from voxel to
voxel, the WLSS failed to accurately detect impulse responses. These find-
ings led the authors to propose a heteroscedastic general linear model which
incorporates head motion covariates. However, our findings suggest that not
only can heteroscedasticity also be present in the scanner noise, but also
the pattern of heteroscedasticity varies from voxel to voxel, with different
patterns of spiking and rapid oscillations. Furthermore, our findings also in-
dicate that similar patterns in volatility can be observed in the human data,
which can be taken to suggest that the heteroscedasticity observed in scanner
noise is also present in vivo noise. Taking the above findings by [1] into con-
sideration, it is possible that such spatially non-constant heteroscedasticity
in fMRI noise could influence data analysis.

Interestingly, to our knowledge only a few studies to date have examined
the impact of heteroscedastic noise not explained by head motion or physi-
ology on fMRI data analysis. In all studies the authors examined the useful-
ness of deterministic autoregressive conditional heteroscedasticity (ARCH)
and generalised ARCH (GARCH) -type models, to aid investigation of time-
dependent functional connectivity [6, 25, 41]. The studies specifically inves-
tigated GARCH(1,1) models with only one autoregressive and one moving
average lag, suggesting the authors assumed the volatility would exhibit short
memory. Simulation and real data experiments both showed that incorpo-
rating GARCH(1,1) model into the analysis helped to accurately model the
time-dependent functional connectivity. Traditional approaches, including
sliding window and exponentially weighted moving average models, on the
other hand, were found to produce more false positive findings [6, 25, 41].
Moreover, previous Monte Carlo experiments have shown that heteroscedas-
ticity violates the assumptions of not only correlation tests but also linear
regressions in ways that can produce false positive findings [42, 43, 44]. Taken
together with the present findings, we believe that further investigation of
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the impact of short memory heteroscedasticity on various different fMRI data
analysis methods as well as selecting the most efficient and accurate methods
to model the time-dependent volatility is of interest. Such further work could
ultimately help improve both resting state and task-based data analysis as
the noise in the time series is better understood [3, 45].

The present findings also show that the roughness of fMRI noise is not con-
stant across regions in the phantom with the edges showing greater smooth-
ness in the volatility relative to the centre of the phantom. This suggests
that the volatility near the edges of the phantom was more likely to exhibit
sustained periods of high and low volatility rather than rapid oscillations or
spiking behaviour. To an extent these findings mirror those from previous
work examining long-range dependence in the mean of fMRI noise [46, 47].
Previous studies have found that the long-range dependence near the edges
of the phantom has estimated H > 0.5, indicating persistence and sustained
periods of high and low mean in the series [46]. Similar edge effects have also
been observed in real brain scans [48, 46]. Taken together with the present
findings this suggests that fMRI data near the edges of an image appears to
be more complex than that near the centre. Such time-dependent behaviour
in the noise near the edges complicates data analysis as these effects violate
assumptions of most time series modelling methods and can lead to both
spurious regressions and correlations [49, 50, 51, 52, 53, 42, 43, 44]. Further
investigation of the impact of reported edge effects on fMRI data analysis
methods is of interest.

It is also important to note that in the present study, one of the phantoms
had a small region of signal dropout, possibly indicating a presence of an air
bubble. This region was the centre of one of the clusters where the smooth-
ness of the volatility process was greater than in nearby regions. Previous
studies have also found that air bubbles in phantoms can lead to drop in
signal intensity, which has been suggested to due to susceptibility artifacts
at the air-water boundary [54]. Air bubbles can also introduce phase errors
and related magnetic field heterogeneity [55, 56], which could go some way
to explain the larger H estimates in one of the clusters in one of the phan-
toms. Interestingly, such an effect was only found in one of the phantoms,
suggesting that all the edge effects could not be explained by air bubbles.
Still further investigation of the spatial pattern of volatility in fMRI noise in
a gel phantom prepared with warm water, which are less susceptible to air
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bubbles [57], would be of interest.

The present study is not without limitations. First, the CNN was trained
using simulated data as it was not possible use true realised volatility data in
the training because the true H and η of such data are unknown. Although
this method has been previously used in the field of financial mathematics
and have been shown to outperform alternative models, such as those based
on the sum of least squares [31], a model is always a simplification of reality.
However, we argue that even though the simulated log-volatility paths used
in the training of the CNN may indeed be different from the real data, they
are no more different than the constant volatility assumption of traditional
fMRI time series analysis methods. Additionally, we chose to use the mean
reverting and driftless rBergomi model to simulate data because it closely
reflects the behaviour in fMRI data. Additionally, the resting state data
used to examine whether volatility patterns observed in the phantoms could
also be seen in noise in vivo could have been influenced by head motion.
Although, we took steps to minimise the impact of head motion on the anal-
ysis, it is possible that H parameters estimates were still influenced by head
movements. However, considering the pattern of volatility observed in the
resting state data extracted from the ventricles largely mirrored that seen
in the middle of the phantoms we believe it can be concluded that at least
some of the rapidly oscillating heteroscedastic scanner noise is present in vivo.

In the present study, realised volatility was estimated after slice timing cor-
rection and realignment, but no further preprocessing or de-noising steps
were taken prior to estimation. This was done in an attempt to mirror
standard multi-echo preprocessing pipelines where the echoes are normally
combined prior to further preprocessing steps, such as smoothing, and inde-
pendent component analysis-base de-noising [36, 34, 58]. This meant that we
were unable to examine the impact of de-noising on realised volatility. Ad-
ditionally, realised volatility was estimated using only eight echo time points
as this was the maximum number we were able to collect. In finance, on
the other hand, it is common to use high frequency asset price data, with
sub-second granularity, to estimate daily volatility. It is difficult to ascertain
whether our use of lower frequency data to estimate realised volatility had an
impact on the present findings. Finally, the phantom and human data were
acquired using different 3 Tesla MRI units. It is possible that the volatility
of fMRI noise from scanners with different field strengths might vary and
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further investigation of this may be of interest.
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5. Conclusions

The aim of the present study was to examine the smoothness of esti-
mated realised volatility of fMRI noise as well as to examine whether pat-
terns identified in the phantom scans were present in human data. This
was done by conducting two multi-echo scans of two phantoms using two
different MRI scanner units and using publicly available multi-echo resting
state data. Multi-echo data were used to estimate realised volatility by T2∗-
weighted variance. Smoothness of the realised volatility data was estimated
by following cutting edge methods developed in the field of financial mathe-
matics, namely by training a CNN to predict the Hurst parameter, H. The
findings showed that on average scanner noise is very rough with H ≈ 0.03
and the roughness of the volatility data varied across the spatially across
the phantoms. In both phantom scans the H estimates were larger near the
edges, suggesting that volatility was smoother in these regions. Similar pat-
terns of variability, with the exception of large edge effects, were observed
in the resting state data extracted from the ventricles. Thus, seems that
rapidly oscillating, spatially non-constant heteroscedastic noise is present in
vivo noise as well. Taken together the present findings further challenge
the assumption that fMRI scanner noise has constant volatility and high-
light the need for further research to investigate how to effectively model the
heteroscedasticity during time series analysis.
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Appendix A. Artificial Neural Networks

In this appendix we repeat the introduction given by Stone [31, Section
2.1, p382] for the reader’s convenience. An artificial neural network is a
biologically inspired system of interconnected processing units, where each
processing unit is called a layer. Inputs to each layer, apart from the first
layer, are outputs from previous layers. A layer is composed of a number of
nodes, and each node in a given layer is connected to the nodes in a subse-
quent layer, thus forming a network; each edge in this network has a weight
associated to it. The first processing unit is called the input layer, and the fi-
nal processing unit is the output layer. The processing unit or units between
the input layer and output layer are referred to as hidden layers; typically
artificial neural networks have more than one hidden layer.
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Convolutional neural networks (CNNs) are a class of artificial neural net-
works, where the hidden layers can be grouped into different classes according
to their purpose; one such class of hidden layer is the eponymous convolu-
tional layer. Below we describe the classes of hidden layers used in our CNN.
Of course, this list is not exhaustive, and there exist many classes of hidden
layers that we omit for means of brevity. Note also that we describe a CNN
in the context of the problem we are trying to solve, where the input data
are one dimensional vectors. CNNs can of course also be used on higher
dimensional input data, but the fundamental structure and different roles of
the hidden layers do not change.

• Convolutional Layer: In deep learning, the convolution operation
is a method used to assign relative value to entries of input data, in
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our case one dimensional vectors of time series data, while simulta-
neously preserving spatial relationships between individual entries of
input data. For a given kernel size k and an input vector of length m,
the convolution operation takes entries 1, ..., k of the input vector and
multiplies by the kernel element-wise, whose length is k. The sum of
the entries of the resulting vector are then the first entry of the feature
map. This operation is iterated m + 1 − k times, thus incorporating
every entry in the input data vector into the convolution operation.
The output of the convolutional layer is the feature map.

For example, let (1, 2, 1, 0, 0, 3) be our input vector, and (1, 0, 1) be
our kernel; here the kernel size is 3. The first iteration of the convo-
lution operation involves taking the element-wise multiple of (1, 2, 1)
and (1, 0, 1): (1, 0, 1) is produced and the sum, equal to 2, is computed.
This is the first entry of the feature map. The resulting feature map in
this example is then (2, 2, 1, 3).

Clearly, the centre of each kernel cannot overlap with the first and final
entry of the input vector. Zero-padding, sometimes referred to as same-
padding, preserves the dimensions of input vectors and allows more
layers to be applied in the CNN: zero-padding is simply the extension
of the input vector and the setting of the first and final entries as 0,
while leaving the other entries unchanged. In our example, the input
vector becomes (0, 1, 2, 1, 0, 0, 3, 0) after zero padding.

• Activation Layer: The activation layer is a non-linear function σ that
is applied to the output of the convolutional layer i.e. the feature map;
the purpose of the activation layer is indeed to introduce non-linearity
into the CNN. Examples of activation functions include the sigmoid
function and the hyperbolic tangent function. In our CNN we use the
‘LeakyReLU’ activation function, defined as

fα(x) :=

{
x, if x > 0,

αx, otherwise.

The LeakyReLU activation function allows a small positive gradient
when the unit is inactive.

• Max Pooling Layer: For a given pooling size p, the max pool-
ing layer returns a vector whose entries are the maximum among the
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neighbouring p entries in the feature map. For example, for feature
map (1, 3, 8, 2, 1, 0, 0, 4, 6, 1) and p = 3 the max pooling output is
(8, 8, 8, 8, 8, 2, 4, 6, 6, 6).

Other pooling techniques apply the same idea, but use different func-
tions to evaluate the neighbouring p entries in the feature map. Exam-
ples include average pooling, and L2-norm pooling, which in fact uses
the Euclidean norm in mathematical nomenclature.

• Dropout Layer: Dropout is a well-known technique incorporated
into CNNs in order to prevent overfitting. Without the addition of
a dropout layer, each node in a given layer is connected to each node
in the subsequent layer; dropout temporarily removes nodes from dif-
ferent layers in the network. The removal of nodes is random and
determined by the dropout rate d, which gives the proportion of nodes
to be temporarily dropped. Note that dropout is only implemented
during training; during testing the weights of each node are multiplied
by the dropout rate d.

• Dense Layer: Also referred to as the fully connected layer, each node
in the input layer is connected to each node in the output layer as
the name suggests. After being processed by the convolutional, acti-
vation, pooling, and dropout layers, the extracted features are then
mapped to the final outputs via a subset of the dense layer, an activa-
tion function is then applied subsequently. This activation function is
chosen specifically for the task that the CNN is required to execute, i.e.
binary/multi-class classification, or regression to output a continuous
value. The final output from the dense layer has the same number of
nodes as the number of classes in the output data.
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S. J. Inati, Z. S. Saad, P. A. Bandettini, E. T. Bullmore, In-
tegrated strategy for improving functional connectivity mapping
using multiecho fmri, Proceedings of the National Academy
of Sciences 110 (2013) 16187–16192. URL: https://www.pnas.

org/content/110/40/16187. doi:10.1073/pnas.1301725110.
arXiv:https://www.pnas.org/content/110/40/16187.full.pdf.

[38] T. Mikosch, Is it really long memory we see in financial returns?, Econo-
metrics 0412002, University Library of Munich, Germany, 2004. URL:
https://ideas.repec.org/p/wpa/wuwpem/0412002.html.

32

http://dx.doi.org/10.21314/JCF.2020.390
http://dx.doi.org/10.21314/JCF.2020.390
http://dx.doi.org/https://dx.doi.org/10.2139/ssrn.3355706
http://www.sciencedirect.com/science/article/pii/S1053811917302410
http://www.sciencedirect.com/science/article/pii/S1053811917302410
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.03.033
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.03.033
https://doi.org/10.5281/zenodo.2558498
https://doi.org/10.5281/zenodo.2558498
http://www.sciencedirect.com/science/article/pii/S1053811911014303
http://www.sciencedirect.com/science/article/pii/S1053811911014303
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2011.12.028
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2011.12.028
https://www.pnas.org/content/110/40/16187
https://www.pnas.org/content/110/40/16187
http://dx.doi.org/10.1073/pnas.1301725110
http://arxiv.org/abs/https://www.pnas.org/content/110/40/16187.full.pdf
https://ideas.repec.org/p/wpa/wuwpem/0412002.html


[39] R. Cont, Volatility Clustering in Financial Markets: Empirical
Facts and Agent-Based Models, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, pp. 289–309. URL: https://doi.org/10.1007/

978-3-540-34625-8_10. doi:10.1007/978-3-540-34625-8_10.

[40] Z. Chen, R. T. Daigler, A. M. Parhizgari, Persistence of
volatility in futures markets, Journal of Futures Markets
26 (2006) 571–594. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/fut.20210. doi:10.1002/fut.20210.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/fut.20210.

[41] A. S. Choe, M. B. Nebel, A. D. Barber, J. R. Cohen, Y. Xu, J. J.
Pekar, B. Caffo, M. A. Lindquist, Comparing test-retest reliabil-
ity of dynamic functional connectivity methods, NeuroImage 158
(2017) 155 – 175. URL: http://www.sciencedirect.com/science/

article/pii/S1053811917305736. doi:https://doi.org/10.1016/j.
neuroimage.2017.07.005.

[42] G. Yoon, Correlation coefficients, heteroskedasticity and conta-
gion of financial crises, The Manchester School 73 (2005) 92–100.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-9957.2005.00426.x. doi:10.1111/j.1467-9957.2005.00426.x.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9957.2005.00426.x.

[43] N. S. Chekenya, C. Dzingirai, The impact of the presence of au-
toregressive conditional heteroscedasticity (arch) effects on spurious
regressions, Scientific African 8 (2020) e00382. URL: http://www.

sciencedirect.com/science/article/pii/S2468227620301204.
doi:https://doi.org/10.1016/j.sciaf.2020.e00382.

[44] H. Chung, J. Y. Park, Nonstationary nonlinear heteroskedas-
ticity in regression, Journal of Econometrics 137 (2007) 230
– 259. URL: http://www.sciencedirect.com/science/article/

pii/S0304407606000467. doi:https://doi.org/10.1016/j.jeconom.
2006.01.002.

[45] W.-L. Luo, T. E. Nichols, Diagnosis and exploration of massively
univariate neuroimaging models, NeuroImage 19 (2003) 1014 –
1032. URL: http://www.sciencedirect.com/science/article/pii/

33

https://doi.org/10.1007/978-3-540-34625-8_10
https://doi.org/10.1007/978-3-540-34625-8_10
http://dx.doi.org/10.1007/978-3-540-34625-8_10
https://onlinelibrary.wiley.com/doi/abs/10.1002/fut.20210
https://onlinelibrary.wiley.com/doi/abs/10.1002/fut.20210
http://dx.doi.org/10.1002/fut.20210
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fut.20210
http://www.sciencedirect.com/science/article/pii/S1053811917305736
http://www.sciencedirect.com/science/article/pii/S1053811917305736
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.07.005
http://dx.doi.org/https://doi.org/10.1016/j.neuroimage.2017.07.005
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9957.2005.00426.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9957.2005.00426.x
http://dx.doi.org/10.1111/j.1467-9957.2005.00426.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9957.2005.00426.x
http://www.sciencedirect.com/science/article/pii/S2468227620301204
http://www.sciencedirect.com/science/article/pii/S2468227620301204
http://dx.doi.org/https://doi.org/10.1016/j.sciaf.2020.e00382
http://www.sciencedirect.com/science/article/pii/S0304407606000467
http://www.sciencedirect.com/science/article/pii/S0304407606000467
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2006.01.002
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2006.01.002
http://www.sciencedirect.com/science/article/pii/S1053811903001496
http://www.sciencedirect.com/science/article/pii/S1053811903001496


S1053811903001496. doi:https://doi.org/10.1016/S1053-8119(03)
00149-6.

[46] K. Mikkelsen, T. Ellegaard Lund, Sampling rate dependence of cor-
relation at long time lags in bold fmri measurements on humans and
gel phantoms, Frontiers in Physiology 4 (2013) 106. URL: https://
www.frontiersin.org/article/10.3389/fphys.2013.00106. doi:10.
3389/fphys.2013.00106.

[47] L. Yan, Y. Zhuo, Y. Ye, S. X. Xie, J. An, G. K. Aguirre, J. Wang, Phys-
iological origin of low-frequency drift in blood oxygen level dependent
(bold) functional magnetic resonance imaging (fmri), Magnetic Reso-
nance in Medicine 61 (2009) 819–827. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/mrm.21902. doi:10.1002/mrm.21902.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.21902.

[48] J. Suckling, A. Barnes, D. Job, D. Brennan, K. Lymer,
P. Dazzan, T. R. Marques, C. MacKay, S. McKie, S. R.
Williams, S. C. Williams, B. Deakin, S. Lawrie, The
neuro/psygrid calibration experiment, Human Brain Map-
ping 33 (2012) 373–386. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/hbm.21210. doi:10.1002/hbm.21210.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.21210.

[49] P. A. Ernst, L. A. Shepp, A. J. Wyner, Yule’s “nonsense correlation”
solved!, Ann. Statist. 45 (2017) 1789–1809. URL: https://doi.org/
10.1214/16-AOS1509. doi:10.1214/16-AOS1509.

[50] G. U. Yule, Why do we sometimes get nonsense-correlations between
time-series?–a study in sampling and the nature of time-series, Journal
of the royal statistical society 89 (1926) 1–63.

[51] W.-J. Tsay, C.-F. Chung, The spurious regression of fraction-
ally integrated processes, Journal of Econometrics 96 (2000) 155 –
182. URL: http://www.sciencedirect.com/science/article/pii/

S0304407699000561. doi:https://doi.org/10.1016/S0304-4076(99)
00056-1.

[52] N. Cappuccio, D. Lubian, Spurious regressions between i(1) pro-
cesses with long memory errors, Journal of Time Series Analysis

34

http://www.sciencedirect.com/science/article/pii/S1053811903001496
http://www.sciencedirect.com/science/article/pii/S1053811903001496
http://dx.doi.org/https://doi.org/10.1016/S1053-8119(03)00149-6
http://dx.doi.org/https://doi.org/10.1016/S1053-8119(03)00149-6
https://www.frontiersin.org/article/10.3389/fphys.2013.00106
https://www.frontiersin.org/article/10.3389/fphys.2013.00106
http://dx.doi.org/10.3389/fphys.2013.00106
http://dx.doi.org/10.3389/fphys.2013.00106
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21902
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21902
http://dx.doi.org/10.1002/mrm.21902
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.21902
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.21210
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.21210
http://dx.doi.org/10.1002/hbm.21210
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.21210
https://doi.org/10.1214/16-AOS1509
https://doi.org/10.1214/16-AOS1509
http://dx.doi.org/10.1214/16-AOS1509
http://www.sciencedirect.com/science/article/pii/S0304407699000561
http://www.sciencedirect.com/science/article/pii/S0304407699000561
http://dx.doi.org/https://doi.org/10.1016/S0304-4076(99)00056-1
http://dx.doi.org/https://doi.org/10.1016/S0304-4076(99)00056-1


18 (1997) 341–354. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1111/1467-9892.00054. doi:10.1111/1467-9892.00054.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9892.00054.

[53] Y. Sun, Spurious regressions between stationary generalized
long memory processes, Economics Letters 90 (2006) 446
– 454. URL: http://www.sciencedirect.com/science/article/

pii/S0165176505003538. doi:https://doi.org/10.1016/j.econlet.
2005.10.009.

[54] S. Mattila, V. Renvall, J. Hiltunen, D. Kirven, R. Seppo-
nen, R. Hari, A. Tarkiainen, Phantom-based evaluation of
geometric distortions in functional magnetic resonance and
diffusion tensor imaging, Magnetic Resonance in Medicine
57 (2007) 754–763. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1002/mrm.21218. doi:10.1002/mrm.21218.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.21218.

[55] J.-H. Kim, J.-H. Kim, S.-H. Lee, J. Park, S.-K. Lee, Fabrication of
a spherical inclusion phantom for validation of magnetic resonance-
based magnetic susceptibility imaging, PLOS ONE 14 (2019) 1–
16. URL: https://doi.org/10.1371/journal.pone.0220639. doi:10.
1371/journal.pone.0220639.

[56] H. Lu, Y. Mazaheri, R. Zhang, A. Jesmanowicz, J. S. Hyde, Mul-
tishot partial-k-space epi for high-resolution fmri demonstrated in
a rat whisker barrel stimulation model at 3t, Magnetic Resonance
in Medicine 50 (2003) 1215–1222. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/mrm.10655. doi:10.1002/mrm.10655.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10655.

[57] A. Hellerbach, V. Schuster, A. Jansen, J. Sommer, Mri phan-
toms – are there alternatives to agar?, PLOS ONE 8 (2013) 1–
8. URL: https://doi.org/10.1371/journal.pone.0070343. doi:10.
1371/journal.pone.0070343.

[58] O. Esteban, C. Markiewicz, R. W. Blair, C. Moodie, A. I. Isik, A. Er-
ramuzpe Aliaga, J. Kent, M. Goncalves, E. DuPre, M. Snyder, H. Oya,

35

https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9892.00054
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9892.00054
http://dx.doi.org/10.1111/1467-9892.00054
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9892.00054
http://www.sciencedirect.com/science/article/pii/S0165176505003538
http://www.sciencedirect.com/science/article/pii/S0165176505003538
http://dx.doi.org/https://doi.org/10.1016/j.econlet.2005.10.009
http://dx.doi.org/https://doi.org/10.1016/j.econlet.2005.10.009
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21218
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.21218
http://dx.doi.org/10.1002/mrm.21218
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.21218
https://doi.org/10.1371/journal.pone.0220639
http://dx.doi.org/10.1371/journal.pone.0220639
http://dx.doi.org/10.1371/journal.pone.0220639
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.10655
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.10655
http://dx.doi.org/10.1002/mrm.10655
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrm.10655
https://doi.org/10.1371/journal.pone.0070343
http://dx.doi.org/10.1371/journal.pone.0070343
http://dx.doi.org/10.1371/journal.pone.0070343


S. Ghosh, J. Wright, J. Durnez, R. Poldrack, K. J. Gorgolewski, fM-
RIPrep: a robust preprocessing pipeline for functional MRI, Nature
Methods (2018). doi:10.1038/s41592-018-0235-4.

36

http://dx.doi.org/10.1038/s41592-018-0235-4

	Introduction
	Material and methods
	FMRI data acquisition
	FMRI data preprocessing
	T*2-weighted realised volatility
	Estimating roughness of realised volatility
	Neural network architecture
	Neural network training and test

	Evaluation of CNN H and  parameter

	Results
	Estimated roughness and volatility of volatility
	Spatial pattern in estimated Hurst parameters
	Agreement between the correlation governed by the Hurst parameter H and ARFIMA autocorrelation

	Discussion
	Conclusions
	Acknowledgements
	Artificial Neural Networks

