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Abstract

This paper aims to develop deep-learning-based algorithms to automatically diagnose the nonerosive reflux disease (NERD)
using the near focus narrow band imaging (NF-NBI) images, which are collected by clinicians of King’s College Hospital.
To diagnose this disease, we propose a deep learning classification system to distinguish the NF-NBI images captured in
the esophagus of healthy people and the NERD patients, which is a binary classification of two classes: non-NERD and
NERD. To achieve an effective and accurate classification, we first propose an algorithm to automatically extract the region
of interest (ROI) from the NF-NBI images and then generate image patches through a patch-generating algorithm. After
that, we train six representative state-of-the-art deep convolutional neural network (CNN) models (ResNet18, ResNet50,
ResNet101, DenseNet201, InceptionV3, and Inception-ResNetV2) to extract robust hierarchical features from these patches
and classify them based on the hierarchical features. Finally, to determine the classification results of each subject, majority
voting is employed to the corresponding generated NF-NBI image patches. We verify our classification system by ten-fold
cross-validation using the clinical dataset. We perform subject-dependent and subject-independent experiments. In both
experiments, we compare the classification performance of the ROI-based CNN models (the CNN models with our proposed
ROI-based algorithms) with the CNN models. Meanwhile, we compare the classification performance of the ROI-based
CNN models with the local binary pattern (LBP)-based support vector machine (SVM) classifier, the histograms of oriented
gradients (HOG)-based SVM classifier, and the scale-invariant feature transform (SIFT)-based SVM classifier. The results
show that the ROI-based CNN models are able to obtain higher average mean of ten-fold test accuracy on image level than
the CNN models in the subject-dependent experiment (29.0% improvement) and the subject-independent experiment (10.5%
improvement), which demonstrate the effectiveness of our proposed ROI-based algorithms. Meanwhile, the ROI-based CNN
models are able to obtain higher average mean of ten-fold test accuracy on image level than the SVM classifiers in the
subject-dependent experiment (20.5% improvement) and the subject-independent experiment (14.0% improvement), which
demonstrate the ROI-based CNN models have better classification performance than the SVM classifiers. Among the ROI-
based CNN models, the ROI-based InceptionV3 model achieves the best classification performance in the subject-dependent
experiment, while the ROI-based Inception-ResNetV2 model achieves the best classification performance in the subject-
independent experiment, which suggests the ROI-based Inception-ResNetV2 model has better generalization ability than the
ROI-based InceptionV3 model. Moreover, the highest mean of ten-fold test accuracy (77.8%) on subject level obtained by
using the ROI-based InceptionV3 model or the ROI-based Inception-ResNetV2 model demonstrates the practicality of our
proposed classification system for assisting clinical diagnosis of the NERD.
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1. Introduction

Gastroesophageal reflux disease (GERD) is a common condition defined by the pathological reflux
of gastric contents into the esophagus.

Typical symptoms of GERD include heartburn, a burning sensation of stomach, regurgitation, cough,
asthma and nocturnal dyspnea all resulting in a significant negative impact on quality of life [1]. GERD
is common [2], with a prevalence of 20% among adults in the western world, of whom up to 40% will
experience symptoms every month [1]. Additionally, GERD is associated with a significant economic
burden, accounting for an annual direct cost of $9.3 billion in the USA [3]. Costs are attributed to
the diagnostic pathway, medical treatment, surgical treatment in cases of medically refractory GERD
and the complications of GERD including the development of pre-cancerous conditions such as Barrett’s
esophagus which require further surveillance procedures and esophageal cancer. Indirect costs also relate
to loss of productivity secondary to absenteeism.

The GERD includes two main categories: nonerosive reflux disease (NERD) and erosive esophagitis.
The NERD is defined as the presence of typical symptoms of GERD caused by intraesophageal acid in
the absence of visible esophageal mucosal injury at conventional light endoscopy [4, 5, 6].

The current conventional diagnosis of NERD is complex and includes endoscopic examination, bio-
psy of the lining of the esophagus (mucosa) and the gold-standard test to measure the amount of acid
using an ambulatory pH testing over 24-96 hours [7, 8, 5, 6, 9, 10]. All investigation methods including
ambulatory pH testing require careful consideration of the limitations associated with the investigation
and usually require multiple patient visits to conduct these investigations leading to a prolonged time to
achieve a diagnosis. Computer-aided diagnosis has the potential to solve many of the current issues as
clinicians potentially only need to input the endoscopic images into the computer and then obtain a near
instant diagnostic result, which is more convenient and efficient than the conventional diagnosis.

To develop the computer-aided technology, we require endoscopic images captured in healthy people
(non-NERD) and the NERD patients diagnosed by the current gold-standard of ambulatory pH testing.
The endoscopic images are used to train a designed classification system that classifies the endoscopic
images. After the training, when a new captured endoscopic image is input to the classification system,
the system can judge whether the endoscopic image is from healthy people (non-NERD) or the NERD
patients.

1.1. Classification of Endoscopic Images

The classification of endoscopic images consists of three sequential steps: pre-processing, feature
extraction and classification. We will analyze the characteristics of the endoscopic images first and
develop dedicated pre-processing algorithms. Then, we will extract the features from the endoscopic
images via feature extraction algorithms. Lastly, we will use the extracted features to train a classifier.

1.1.1. Pre-Processing

The endoscopic image is one of medical images. For medical images, the issues influencing the
classification include enhancing the image quality and locating the region of interest (ROI). Figure 1
shows the categories of issues, influencing factors and corresponding methods.
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Figure 1: The Categories of Issues and Corresponding Methods for Pre-Processing

The influencing factors of image quality include noise and illumination conditions [11]. To address
the issue of noise, various denoising filters including mean filters, median filters, Gaussian filters and
bilateral filters were designed in literature and demonstrated good performance for denoising the addi-
tive noises, multiplicative noises and quantization noises. However, the images could be blurred dur-
ing the above denoising process, which means that some useful information of the images may be lost
[12, 13, 14, 15]. To deal with this problem, various wavelet-based algorithms [16, 17, 18, 19] were pro-
posed, in which the researchers designed and implemented specific wavelet transforms to the images, and
then extracted the features and employed the low-pass filtering in wavelet space. After that, the corre-
sponding inverse wavelet transforms were implemented in [16, 17, 18, 19] to reconstruct the images. The
wavelet-based algorithms separate the image signals from the noise signals, which not only achieve good
performance for denoising, but also retain the image details. For the impact of illumination conditions,
various normalization methods are employed for the medical images and demonstrated to be effective for
the specific applications [20, 21, 11, 22]. As we can see, the methods for the issues of image quality have
been intensively explored and well developed in the image processing field. Therefore, we will not focus
on this aspect in this paper.

To deal with the problems of image quality, locating the ROI is another aspect of pre-processing the
image that is more important. The ROI is an area that contains the key information for distinguishing
the images of different classes. Literature shows that the related research generally explore and develop
dedicated algorithms for locating the ROI based on the type of the medical image and the application.
For example, [23] developed a principal component analysis (PCA) based dedicated algorithm for locat-
ing the optic disk in color retinal images. [24] performed the boundary detection using morphological
operations for locating the regions of exudates in fundus images. [25] employed the Berkeley wavelet
transform [26, 27] for locating the tumor regions. However, different applications have different ROIs, a
dedicated pre-processing algorithm for locating the ROI have to be developed for the specific application.

1.1.2. Feature Extraction

After the pre-processing, the ROI of the endoscopic images have been located. Then, the features
for classification need to be extracted from the ROI. The feature extraction includes supervised feature
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extraction and unsupervised feature extraction [28, 29, 30, 31]. The supervised feature extraction algo-
rithms require the priori knowledge including domain knowledge and professional experience from the
researchers, while the unsupervised feature extraction algorithms automatically extract the features from
a great quantity of raw data without any priori knowledge. Figure 2 shows the categories, representative
algorithms and their development of feature extraction. In the figure, the arrows denote the development
of the representative algorithms.

Feature Extraction

Supervised
Feature Extraction

Method
Extract the Common
Features of Images

Algorithm
Local Binary Pattern

[32, 33]

Algorithm
Histograms of
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[34]
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Algorithm
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Figure 2: The Categories, Representative Algorithms and their Development of Feature Extraction

For medical images, there are two ways for supervised feature extraction. One of which is to extract
the common features of images, like the textures, edges, angular points, and marginal points of images.
In 1994, local binary pattern (LBP) [32] was purposed to extract the local texture features of images.
The LBP has the property of gray-scale invariance, which is insensitive to illumination changes, but it
is sensitive to non-uniform illumination changes. Then, [33] polished the LBP from rectangle to circle,
and purposed the rotational invariant LBP, which is insensitive to image rotation, but it is still sensitive to
non-uniform illumination changes. In 2005, histograms of oriented gradients (HOG) [34] was purposed
to extract the edge features of images by calculating and statistically counting the oriented gradients’
histogram of the image’s local area. The HOG is insensitive to non-uniform illumination changes and
image rotation, but it cannot deal with the issue of image occlusion. Also, due to the property of oriented
gradients, the HOG is very sensitive to noises. Over the same period, [35, 36] proposed the scale-invariant
feature transform (SIFT) to extract the representative feature points of images, including angular points,
marginal points, dark points in the light area and light points in the dark area. The SIFT is insensitive to
non-uniform illumination changes, image rotation and noises. Meanwhile, it is robust to image occlusion.
The weakness of this algorithm is that it needs considerably large amounts of computation due to the
continuous downsampling and interpolation operations. Besides, it cannot accurately extract the feature
points of the objects with smooth edges.

Another way for supervised feature extraction is to design the feature representations of the specific
medical image based on the specific application using the priori knowledge. In 1996, [46] designed
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a three-dimensional feature space representation for magnetic resonance images, where normal tissues
are clustered around prespecified positions and abnormal tissues are clustered elsewhere. In 2004, [23]
designed the feature representations based on the shape, color and depth of optic disks in color retinal
images for diagnosis of various eye diseases. In 2009, [24] designed the feature representations including
the optic disks, blood vessels, exudates, microaneurysms and hemorrhages for diagnosis of the diabetic
retinopathy. In 2017, 11 textural feature representations were designed in [25] that are composed of mean,
standard deviation, entropy, skewness, kurtosis, energy, contrast, inverse difference moment, directional
moment, correlation and coarseness in brain magnetic resonance images for classification of brain tumor.
The experiments of the above research showed satisfactory results for the specific applications, but all of
the above supervised feature extraction algorithms need the priori knowledge.

Comparing to the supervised feature extraction algorithms, the unsupervised feature extraction algo-
rithms automatically extract the features from a great quantity of raw data without any priori knowledge.
The convolutional layers of the convolutional neural network (CNN) [37, 38, 39, 40, 47, 48] is a rep-
resentative unsupervised feature extraction algorithm, which automatically extracts the features of input
image by convolutional operations.

However, with the increasing number of convolutional layers, the issue of degradation arises, where
the information of the data may be lost during the transmission between the convolutional layers. In 2016,
[41] proposed a residual function and embedded it into the convolutional layers to resolve this issue. The
residual function can be understood as adding a shortcut connection between the previous layer and
the following layer. The connection skips some layers and transmit the original data directly to the
“Following Layer” in Figure 7 (b). In 2017, [42] gave full play to this idea and proposed a novel structure
of CNN, where the inputs of each layer are from the outputs of all the previous layers. Each layer has the
direct access to the gradients from the loss function and the original input signal, which leads an implicit
deep supervision. On the other hand, [43] proposed a new module called Inception, which performs
multiple convolutional or pooling operations in parallel to the feature maps from the “Previous Layer”
in Figure 9 and then concatenates all the outputs to be a larger feature map. The experiments showed
that performing these operations in parallel and concatenating all the outputs can obtain better feature
representations of the input samples. However, the Inception needs remarkably high computational costs
and easily overfits the dataset. To deal with these issues, [44] proposed InceptionV2 in which researchers
employed convolutional decomposition to replace the original large-size convolutional operations in the
Inception. Specifically, a 3 × 3 convolutional operation with n filters over a grid with m filters has 2.78
times less computational cost than a 5×5 convolutional operation with the same number of filters. Hence
the researchers employed two 3×3 convolutional operations to replace a 5×5 convolutional operation in
the InceptionV2. Meanwhile, a 1×n convolutional operation followed by an n×1 convolutional operation
is equivalent to an n× n convolutional operation while the former dramatically saves the computational
cost with the increasing of n. In experiments, the researchers found that a 1× 7 convolutional operation
followed by a 7× 1 convolutional operation can obtain very good results. Hence the researchers further
proposed InceptionV3 employing the factorization of the 7× 7 convolutional operation. Moreover, [44]
also proposed a model regularization approach via label smoothing to prevent the model from overly
biasing to one category, which is an approach avoiding overfitting. In 2017, [45] combined the advantages
of the residual function and the InceptionV3, and proposed the Inception-ResNet. The researchers found
that the Inception-ResNet considerably saves the training time and slightly increases the classification
accuracy than the plain Inception. Meanwhile, the researchers further proposed the Inception-ResNetV2
by modifying the combination order of the residual function and the InceptionV3. The results of the
experiments showed that the Inception-ResNetV2 further slightly increases the classification accuracy
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than the previous version.

The CNN is a representative deep structured algorithms in the deep learning field [49, 50], which
have hierarchical structures to extract the features from low-dimensional to high-dimensional space to
obtain the better representations than the supervised feature extraction algorithms.

1.1.3. Classification

After the feature extraction, the extracted features will be input to a classifier to do the classification.
For example, a conventional CNN could be regarded as a series of convolutional layers followed by a
neural network. The convolutional layers are for the feature extraction as discussed in Section 1.1.2, and
the neural network is for the classification [49, 50]. In the following paragraphs, we will introduce two
representative classifiers: support vector machine (SVM) [51, 52, 53, 54, 55, 56, 57] and neural network
[58, 59, 60, 61, 62, 63, 64, 65, 66, 67].

The SVM [51, 52] is a discriminative classifier for binary classification. Training the SVM is to
employ a kernel function to find an optimal boundary to separate the extracted features of two classes in
the feature hyperplane. Then the separated feature hyperplane can be used to classify new samples. The
SVM is suitable to deal with small dataset, which generally contains no more than 10000 samples [68,
69, 70, 71]. Meanwhile, the SVM can be used to explain which extracted feature contributes to classify
the samples. However, calculating the vectors of SVM needs to implement the quadratic programming,
which requires a great amount of memory in the case of dealing with large dataset. Also, the SVM cannot
be employed for multi-class classification directly. To deal with the multi-class classification using the
SVM, researchers generally need to train multiple SVMs for every pair of two classes, and then classify
the new samples by majority voting of all the trained SVMs.

The neural network [58, 59] is a biologically inspired classifier composed of a series of nodes (neu-
rons) and connection weights. The connection weights connect the nodes between two layers, which
determines the weights of values from the nodes of the previous layer. Then, the weighted values will
be output to the following layer via a nonlinear activation function. During the training, the connection
weights are modifiable by the back-propagation algorithm [72], which is inspired from the memory of
human brain for cognition. It was proven that a neural network with one hidden layer containing a fi-
nite number of nodes can approximate any continuous nonlinear function arbitrarily well in a compact
domain [73]. Hence, the neural network can learn the complex nonlinear mapping between the extracted
features and the labels.

1.2. Problem Formulation and Proposed Method

In 2015, [74] proposed a hierarchical heterogeneous feature representation fusion SVM framework
for diagnosis of GERD. In [74], the researchers designed a hierarchical heterogeneous feature representa-
tion using priori knowledge for endoscopic images based on six-color models including RGB, normalized
RGB, opponent, C-invariant, transformed RGB and index of hemoglobin. Then, they separated the endo-
scopic image into 4×4 equal-sized rectangle regions, and extracted the features of each rectangle region.
And then, they used the extracted features to train an SVM classifier. After the training, they used the
trained SVM classifier to classify new endoscopic images to judge whether the endoscopic images are
from a person suffering from GERD or not.

6



However, the method in [74] did not locate the ROI. Instead, it simply separated the endoscopic image
into 4×4 equal-sized rectangle regions, some of which may have redundant information, so the classifiers
cannot focus on the regions that contain important information. Therefore, we propose an ROI-extraction
algorithm to locate the ROI. With the ROI-extraction algorithm, the classifiers can focus on the regions
that contain the key information for distinguishing the images of different classes. Hence, the classifiers
can have better classification performance. We will perform comparative experiments (to be presented in
Section 4) where the classifiers with and without the ROI-extraction algorithm to verify the effectiveness
of the ROI-extraction algorithm. In addition, the method in [74] designed the feature representations
of the endoscopic image based on the six-color models, which needs the priori knowledge. While our
unsupervised feature extraction algorithms automatically extract the features from a great quantity of raw
data without any priori knowledge.

To the best of our knowledge, the work in [74] is the first and the only computer-aided diagnosis
method based on endoscopic images for GERD. The GERD includes two main categories: nonerosive
reflux disease (NERD) and erosive esophagitis. The NERD is defined as the presence of typical symp-
toms of GERD caused by intraesophageal acid in the absence of visible esophageal mucosal injury at
conventional light endoscopy [4, 5, 6]. Because the visible esophageal mucosal injuries shown in the
endoscopic images are apparent for diagnosing the case as erosive esophagitis [75], we focus on the
challenging part of the diagnosis, which is to diagnose the NERD.

To diagnose the NERD, we propose a deep learning classification system to classify endoscopic
images captured in the esophagus of health people and the NERD patients, which is a binary classification
problem of two classes: non-NERD and NERD. To achieve an effective and accurate classification, we
propose an algorithm to automatically extract the ROI from the endoscopic images and then generate
image patches through a patch-generating algorithm. After that, we train six representative state-of-the-
art deep CNN models (ResNet18 [41], ResNet50 [41], ResNet101 [41], DenseNet201 [42], InceptionV3
[43, 44], and Inception-ResNetV2 [45]) to extract robust hierarchical features from these patches and
classify them based on the hierarchical features. Finally, to determine the classification results of each
subject, majority voting is employed to the corresponding generated endoscopic image patches.

We will perform subject-dependent and subject-independent experiments. In the subject-dependent
experiment, the samples of training and test datasets are from the same groups of subjects. Hence, the
test dataset is highly correlated to the training dataset, so the classifiers may not generalize to the un-
seen samples from new subjects. Therefore, we also designed the subject-independent experiment. In the
subject-independent experiment, the samples of training and test dataset are from different groups of sub-
jects. We used the trained classifiers from the subject-dependent experiment to classify the images from
additional 18 subjects. We divided all the images by subject. Hence, through the subject-independent
experiment we can verify whether the classifiers can generalize to the unseen samples from new subjects.

In both the subject-dependent and the subject-independent experiments, we will compare the clas-
sification performance of the ROI-based CNN models (the CNN models with our proposed ROI-based
algorithms) with the CNN models using ten-fold cross-validation. After that, we will compare the classi-
fication performance of the ROI-based CNN models with the LBP-based SVM classifier, the HOG-based
SVM classifier, and the SIFT-based SVM classifier [32, 33, 34, 35, 36, 51, 52] using ten-fold cross-
validation.

The results (to be presented in Section 4) will show that the ROI-based CNN models are able to obtain
better classification performance than the CNN models in both the subject-dependent experiment and the

7



subject-independent experiment, which demonstrate the effectiveness of our proposed ROI-based algo-
rithms. Meanwhile, the ROI-based CNN models are able to obtain better classification performance than
the SVM classifiers in both the subject-dependent experiment and the subject-independent experiment,
which demonstrate the ROI-based CNN models have better classification performance than the SVM
classifiers. Among the ROI-based CNN models, the ROI-based InceptionV3 model is able to achieve
the best classification performance in the subject-dependent experiment, while the ROI-based Inception-
ResNetV2 model is able to achieve the best classification performance in the subject-independent experi-
ment, which suggests the ROI-based Inception-ResNetV2 model has better generalization ability than the
ROI-based InceptionV3 model. Moreover, the best classification performance obtained by using the ROI-
based InceptionV3 model or the ROI-based Inception-ResNetV2 model demonstrates the practicality of
our proposed classification system for assisting clinical diagnosis of the NERD. The main contributions
of this paper are summarized as follows:

1) We propose the first deep learning classification system that only uses the endoscopic images for
fully automatic diagnosis of the NERD.

2) We propose an ROI-extraction algorithm to locate the ROI. The ROI is an area that contains the
key information for distinguishing the images of different classes.

3) We verify the practicality of our proposed classification system by conducting ten-fold cross-
validation using the clinical dataset.

4) We conduct both the subject-dependent and the subject-independent experiments to compare the
ROI-based CNN models with the CNN models. Meanwhile, we compare the ROI-based CNN
models with the SVM classifiers. The results demonstrate the superiority of the ROI-based CNN
models.

5) We select the best ROI-based CNN model by comparing the classification performance between
the six representative state-of-the-art deep CNN models.

The rest of the paper is organized as follows: Section II describes the clinical data collection. The
proposed methods in this paper are introduced in Section III. Section IV demonstrates the experiments
and results. Section V draws a conclusion.

2. Data Collection

The dataset for training and test the classifiers in this paper was collected by clinicians of King’s
College Hospital, which has obtained an ethical approval [76]. The clinicians applied near focus narrow
band imaging (NF-NBI) to collect the data. The narrow band imaging technology employs filters to filter
out the broadband spectrum of red, blue and green light waves from the endoscope light source, leaving
only narrowband spectrum, which can enhance the contrast of the lesion, hence it can take the place of
endoscopic staining process [77].

The dataset contains 1394 clinical NF-NBI images from 50 subjects, of which 554 images from 21
subjects were labeled as positive samples (NERD patients), and 840 images from 29 subjects were labeled
as negative samples (healthy people). After that, the clinicians collected and provided extra 556 clinical
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NF-NBI images from additional 18 subjects. We used them to further test the classifiers on both image
level and subject level, and then compare the results with the clinical diagnosis by the clinicians.

3. Methods

We aim to develop algorithms to automatically diagnose the NERD using the NF-NBI images. To
diagnose this disease, a deep learning classification system is proposed to distinguish the NF-NBI images
captured in the esophagus of healthy people and the NERD patients, which is a binary classification of
two classes: non-NERD and NERD.

Figure 3 illustrates the workflow diagram of the proposed system. During the training phase, the full-
size training images are input to the system. The ROIs of the images are extracted first, and then image
patches are generated from the ROIs by a patch-generating algorithm. After that, the image patches are
used to train the CNN model by transfer learning [78]. During the test phase, the full-size test images are
input to the system and processed by the same procedures before the CNN model, and then the image
patches are input to the CNN model. After that, the CNN model gives classification result for each image
patch. The classification results are recorded for final diagnosis by majority voting. The methods are
described in detail in the following subsections.

CNN for Classification
of 1000 Objects

ImageNet
Dataset

Class 1

Class 2

...

Class 1000

ROI-Extraction
Algorithm

Training
Samples

(Full-Size
NF-NBI
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Patch-Generating
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Figure 3: Workflow Diagram of the Proposed System
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3.1. ROI-Extraction Algorithm

The ROI is an area that contains the key information for distinguishing the images of different classes.
The work in [79] summarized that the endoscopic images show the intra-epi-thelial papillary capillary
loops (IPCLs) at the lower side of the esophagus in the NERD patients dilated and elongated with the
regular arrangement, which is a potential feature for diagnosis of the NERD. Hence, we consider the
region of IPCLs as the ROI of our classification system.

We ever considered manually marking the region of IPCLs. However, it is a laborious and impractical
task for thousands of images. Meanwhile, correctly marking the region of IPCLs requires considerable
medical knowledge. In practice, new clinically captured full-size NF-NBI images may have complicated
shooting conditions, which could be very different from the training dataset. Hence, if the regions of the
training data were manually marked, the trained classification system is not easy to be generalized to the
new data.

Therefore, we propose an ROI-extraction algorithm that automatically marks the region of IPCLs.
Figure 4 (a) shows a full-size NF-NBI image, which has edges of camera lens and some areas of glare
that seriously affect the judgement of classifiers. Hence, the first step of the ROI-extraction algorithm is
to remove the edges of camera lens and the areas of glare. After that, we observed that the areas of IPCLs
have relatively high intensity than other areas after we converted the full-size NF-NBI image to be a
greyscale image. Hence, in the second step, we utilize this feature to segment the full-size NF-NBI image
by adaptive image thresholding. In the last step, we employ morphological closing and morphological
opening to obtain the complete region of IPCLs.

The ROI-extraction algorithm is shown in Algorithm 1. In Algorithm 1, the block of lines 1 to 13 is
for searching the edges of camera lens, and the input of this block is the full-size NF-NBI image shown
in Figure 4 (a). Firstly, we summarize the range in HSV (hue, saturation and value) color space of black
color that covers the edges of camera lens, and then perform the thresholding on the full-size NF-NBI
image. Secondly, we employ the morphological closing to remove holes inside the areas, and then we
perform dilation to increase the areas. After that, the output of this block is the mask of camera lens’
edges shown in Figure 4 (b).

The block of lines 14 to 25 is for searching the areas of glare. The input of this block is the full-size
NF-NBI image shown in Figure 4 (a). Similarly, we summarize the range in HSV color space of white
color that covers the areas of glare, and then perform the thresholding on the full-size NF-NBI image.
Secondly, we employ the dilation to increase the areas, and then we perform the morphological closing
to remove holes inside the areas. After that, the output of this block is the mask of glare are as shown in
Figure 4 (c).

The two steps above define a fixed range of color to perform the thresholding. However, different
areas of the full-size NF-NBI image have different illumination conditions such as different brightness,
contrast and white balance. The influence of the different illumination conditions is especially strong on
IPCLs. In order to locate the region of IPCLs, we perform the adaptive thresholding on the full-size NF-
NBI image. The threshold for a pixel is a Gaussian-weighted sum of its surrounding pixels’ values minus
a pre-defined constant. The pre-defined constant was selected by experiments. The block of lines 26 to
39 is for segmenting the full-size NF-NBI image by the adaptive thresholding. The input of this block is
the full-size NF-NBI image shown in Figure 4 (a). Firstly, we convert the full-size NF-NBI image to be a
grayscale image. Secondly, we define the pre-defined constant as 2 based on experiments. After that, we
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perform the adaptive thresholding algorithm on the full-size NF-NBI image, and the output of this block
is the mask of IPCLs shown in Figure 4 (d).

The block of lines 40 to 50 is for combining the mask. The inputs of this block are the mask of camera
lens’ edges, the mask of glare areas and the mask of IPCLs shown in Figure 4 (b), (c) and (d). Firstly,
we remove the areas of camera lens’ edges and glare in the mask of IPCLs by subtraction. Secondly,
we employ morphological closing to cluster the scattered areas. Thirdly, we employ the morphological
opening to remove redundant scattered areas. After that, the output of this block is the combined mask
shown in Figure 4 (e).

The line 51 is for the extraction of the ROI by the combined mask. The inputs are the full-size NF-
NBI image and the combined mask shown in Figure 4 (a) and (e), and the output is the ROI shown in
Figure 4 (f).

(a) Full-Size NF-NBI Image (b) Mask of Camera Lens’ Edges (c) Mask of Glare Areas

(d) Mask of IPCLs (e) Combined Mask (f) ROI

Figure 4: ROI-Extraction Algorithm
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Algorithm 1 ROI-Extraction Algorithm
Input: Full-Size NF-NBI Image I
Output: ROI R

1: Convert I from RGB (red, green, blue) color space to HSV (hue, saturation and value) color space
2: for h1 = 0 : 1 : Iheight do
3: for w1 = 0 : 1 : Iwidth do
4: if (0, 0, 0) ≤ I[h1, w1] ≤ (165, 105, 20) then
5: B[h1, w1] = 1
6: else
7: B[h1, w1] = 0
8: end if
9: end for

10: end for
11: Employ morphological closing to B
12: Employ dilation to B
13: Obtained the mask of camera lens’ edges B
14: for h2 = 0 : 1 : Iheight do
15: for w2 = 0 : 1 : Iwidth do
16: if (4, 8, 237) ≤ I[h2, w2] ≤ (150, 102, 255) then
17: C[h2, w2] = 1
18: else
19: C[h2, w2] = 0
20: end if
21: end for
22: end for
23: Employ dilation to C
24: Employ morphological closing to C
25: Obtained the mask of glare areas C
26: Convert I to be a grayscale image
27: Define constant c = 2 based on experiments
28: for h3 = 0 : 1 : Iheight do
29: for w3 = 0 : 1 : Iwidth do
30: N = I[h3 − 1 : h3 + 1, w3 − 1 : w3 + 1]
31: S = Gaussian-weighted sum of N
32: if I[h3, w3] ≥ S − c then
33: D[h3, w3] = 1
34: else
35: D[h3, w3] = 0
36: end if
37: end for
38: end for
39: Obtained the mask of IPCLs D
40: for h4 = 0 : 1 : Dheight do
41: for w4 = 0 : 1 : Dwidth do
42: if B[h4, w4] = 1 then
43: D[h4, w4] = 0
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44: end if
45: end for
46: end for
47: E = D− C
48: Employ morphological closing to E
49: Employ morphological opening to E
50: Obtained the combined mask E
51: R = I · E

3.2. Patch-Generating Algorithm

As mentioned in Section 2, we have 1394 full-size NF-NBI images from 50 subjects for training
and testing the classifiers, which is far from enough to train a deep CNN model. Hence, we designed
a patch-generating algorithm to generate the image patches as input samples to the deep CNN model,
which increases the quantity of training and test samples.

The idea of patch-generating algorithm is illustrated in Figure 5. We apply a sliding window of
224 × 224 pixels to generate the image patches from the ROI. The step length of sliding is designed as
100 pixels based on experiments.

The patch-generating algorithm is shown in Algorithm 2. The input of Algorithm 2 is the ROI shown
in Figure 4 (f). In Algorithm 2, lines 1 to 3 and lines 19 to 20 are for creating a sliding window of
224× 224 pixels, and the step length of sliding is 100 pixels. Line 4 is for generating the image patches.
Lines 5 to 18 are for determining which generated image patches should be discarded, i.e., the generated
image patches that contain the areas outside the ROI should be discarded. After that, the outputs of
Algorithm 2 are the generated image patches. Figure 6 shows a part of the generated image patches from
the ROI shown in Figure 4 (f). For the dataset in this paper, totally 6484 image patches were generated
from 1394 ROIs.
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Figure 5: Illustration of Patch-Generating Algorithm

Figure 6: Generated Image Patches
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Algorithm 2 Patch-Generating Algorithm
Input: ROI R
Output: Generated Image Patches P1,P2, ...

1: n = 1
2: for h1 = 0 : 100 : (Rheight − 224) do
3: for w1 = 0 : 100 : (Rwidth − 224) do
4: T = R[h : h+ 224, w : w + 224]
5: for h2 = 0 : 1 : Theight do
6: for w2 = 0 : 1 : Twidth do
7: if T[h2, w2] = (0, 0, 0) then
8: Discard = 1
9: break

10: else
11: Discard = 0
12: end if
13: end for
14: end for
15: if Discard = 0 then
16: Pn = T
17: n = n+ 1
18: end if
19: end for
20: end for

3.3. CNN Models

For selecting the best ROI-based CNN model, we implemented and compared six representative state-
of-the-art deep CNN models including ResNet18 [41], ResNet50 [41], ResNet101 [41], DenseNet201
[42], InceptionV3 [43, 44] and Inception-ResNetV2 [45]. The CNN models will be introduced in the
following subsections.

3.3.1. ResNet Model

With increasing the number of parameter layers, some prominent training problems are appearing.
The most significant problem is vanishing or exploding gradient, which affects the network converging
in the very beginning of the training. The problem of convergence can be partially resolved by renormal-
ization. On the premise that the deep network can converge, with increasing the number of parameter
layers, the classification accuracy begins to saturate or even decrease, which is known as the degradation
problem of the network, where the information of the data may be lost during the transmission between
the convolutional layers [41].

In 2016, [41] proposed a residual function and embedded it into the convolutional layers to resolve
this issue. Figure 7 shows the structural difference between a conventional CNN and a CNN with a
residual function.
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Previous Layer

3 × 3 Convolutions

3 × 3 Convolutions

Following Layer
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3 × 3 Convolutions

+

Following Layer

(b) In a CNN with a Residual Function(a) In a Conventional CNN

Figure 7: The Structural Difference

The residual function can be understood as adding a shortcut connection between the previous layer
and the following layer. The connection skips some layers and transmit the original data directly to the
following layer. The added shortcut connection neither increases the parameters nor complexity of the
model.

For the ImageNet dataset [80], [41] demonstrated that the classification accuracy of the ResNet CNN
is steadily rising with increasing the number of parameter layers. In this paper, we implemented and
compared the ResNet18, the ResNet50 and the ResNet101 that have 18, 50 and 101 parameter layers
respectively.

3.3.2. DenseNet Model

As mentioned in last subsection, on the premise that the deep network can converge, with increasing
the number of parameter layers, the classification accuracy begins to saturate or even decrease, which is
known as the degradation problem of the network [41]. While adding a shortcut connection between the
previous layer and the following layer can partially resolved this problem. In 2017, [42] gave full play
to this idea and proposed a novel structure of CNN named DenseNet, where the inputs of each layer are
from the outputs of all the previous layers. Figure 8 shows a dense module in DenseNet CNN, each layer
takes all previous feature maps as input.
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Figure 8: A Dense Module in DenseNet CNN

Each layer has the direct access to the gradients from the loss function and the original input signal,
which leads an implicit deep supervision [42]. Owing to adding these shortcut connections between
parameter layers, the network could be designed as very deep, which means the network could have a
large number of parameter layers without degradation.

3.3.3. Inception Model

In 2015, [43] proposed a CNN structure with a new module named Inception, which performs multi-
ple convolutional or pooling operations in parallel to the feature maps from the previous layer and then
concatenates all the outputs to be a larger feature map. Figure 9 shows an Inception module in a CNN.

Previous Layer

1 × 1 Convolutions 3 × 3 Convolutions 5 × 5 Convolutions 3 × 3 Max Pooling

Filter Concatenation

Following Layer

Figure 9: An Inception Module in a CNN

Because different sizes of convolutional and pooling operations such as 1 × 1, 3 × 3 and 5 × 5 can
extract different information of the input data, performing these operations in parallel and concatenating
all the outputs can obtain better feature representations of the input data.

However, the Inception needs remarkably high computational cost and easily overfits the dataset. To
deal with these issues, [44] proposed InceptionV2 where researchers employed convolutional decompo-
sition to replace the original large-size convolutional operations in the Inception. Specifically, a 3 × 3
convolutional operation with n filters over a grid with m filters has 2.78 times less computational cost
than a 5×5 convolutional operation with the same number of filters. Hence the researchers employed two
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3×3 convolutional operations to replace a 5×5 convolutional operation in the InceptionV2. Meanwhile,
a 1 × n convolutional operation followed by an n × 1 convolutional operation is equivalent to an n × n
convolutional operation while the former dramatically saves the computational cost with the increasing
of n. In experiments, the researchers found that a 1× 7 convolutional operation followed by a 7× 1 con-
volutional operation can obtain very good results. Hence the researchers further proposed InceptionV3
employing the factorization of the 7× 7 convolutional operation. Moreover, [44] also proposed a model
regularization approach via label smoothing to prevent the model from overly biasing to one category,
which is an approach avoiding overfitting.

In 2017, [45] combined the advantages of the residual function and the InceptionV3, and proposed the
Inception-ResNet. The researchers found that the Inception-ResNet considerably saves the training time
and slightly increases the classification accuracy than the plain Inception. Meanwhile, the researchers
further proposed the Inception-ResNetV2 by modifying the combination order of the residual function
and the InceptionV3. The results of the experiments showed that the Inception-ResNetV2 further slightly
increases the classification accuracy than the previous version.

3.4. Transfer Learning

Transfer learning [78] is a common learning method for deep learning classifiers. It transfers the
knowledge that has learned from a classification task to improve the learning performance for a new clas-
sification task. Specifically, we first train the classifier for a classification task A using a corresponding
dataset α. After the training, the classifier has learned the features from the dataset α to deal with the
classification task A. The learned features include common image features (e.g. textures, edges, angu-
lar points, and marginal points) and task-specific features. Then, we keep the learned common image
features in the classifier and retrain the part of task-specific features using another dataset β for a cor-
responding classification task B. This learning method can improve the learning performance for the
classification task B, especially when we have insufficient number of labeled images in the dataset β
[78, 81].

We use the transfer learning to train the CNN models introduced in Section 3.3. We first train the
CNN models using the ImageNet dataset [80] as shown in Figure 3. The ImageNet dataset [80] contains
1000 classes of objects. Each class contains 1000 labeled images on average. After the training, the
CNN models learned the features for classifying the 1000 classes of objects. Then, we keep the early
layers of the CNN models that learned the common image features (e.g. textures, edges, angular points,
and marginal points) and discard the last three layers of the CNN models that learned the task-specific
features, which are the fully connected layer, the softmax layer and the output layer. We replace a new
fully connected layer, a new softmax layer and a new output layer to the last three layers of the CNN
models. After that, we use the image patches generated from the patch-generating algorithm (refer to
Section 3.2) to train the CNN models. After the training, the CNN models learned the new task-specific
features and can classify the image patches.

3.5. Majority Voting

After training the CNN models, we use the CNN models to classify the image patches and obtain
the classification results on image level. In order to obtain the classification results on subject level, we
employ the majority voting. That is, if more than 50% of the image patches corresponding to a subject
were classified as one class by the CNN models, we classify this subject as this class.
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4. Experiments and Results

We performed subject-dependent and subject-independent experiments (refer to Section 1.2). In both
the subject-dependent and the subject-independent experiments, we compared the classification perfor-
mance of the six representative state-of-the-art deep CNN models (ResNet18 [41], ResNet50 [41], Res-
Net101 [41], DenseNet201 [42], InceptionV3 [43, 44], and Inception-ResNetV2 [45]) with and without
our proposed ROI-based algorithms using ten-fold cross-validation.

After that, we compared the classification performance of the six CNN models with our proposed
ROI-based algorithms (referred to as “ROI-based CNN models”) and the SVM classifiers [51, 52] using
ten-fold cross-validation. To extract the features for classification using the SVM classifiers, we selected
three representative supervised feature extraction algorithms to extract the common features of images,
which are the LBP [32, 33], the HOG [34], and the SIFT [35, 36] (introduced in Section 1.1.2). Hence,
the SVM classifiers are the LBP-based SVM classifier, the HOG-based SVM classifier, and the SIFT-
based SVM classifier. During the comparison, the ROI-based CNN models are replaced by the SVM
classifiers in Figure 3, which means the inputs of the SVM classifiers are the generated image patches.

The classification performance is measured by accuracy [82], which is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP , TN , FP and FN denote the number of true-positive, true-negative, false-positive and false-
negative classification results, respectively.

In the following subsections, the subject-dependent and the subject-independent experiments are de-
scribed in detail.

4.1. Subject-Dependent Experiment

In this experiment, we use the dataset containing 1394 clinical full-size NF-NBI images from 50
subjects, of which 554 images from 21 subjects were labeled as positive samples (NERD patients), and
840 images from 29 subjects were labeled as negative samples (healthy people). We divide the dataset
into ten folds with the same quantity of images. For the CNN models, the images are the full-size NF-
NBI images; for the ROI-based CNN models and the SVM classifiers, the images are the generated image
patches. The scheme of the division is illustrated in Figure 10. Each fold contains 10% images of each
subject.
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Subject 1

Subject 2
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Subject 50

Figure 10: Scheme of the Division

Then, we implement the ten-fold cross-validation for training and testing the proposed system, where
nine folds are used for training, and the remaining one fold is used for test. After that, the training and
test process are repeated ten times with each of the ten folds used once for test. The advantage of the
ten-fold cross-validation is that all the data are used for both training and test, and each sample of data is
used for test exactly once.

As the result of this experiment configuration, each fold contains a portion of images from all the
subjects, hence it is a subject-dependent classification. Therefore, we only obtained the classification
results on image level in the subject-dependent experiment.

Tables 1, 2, 3, 4, 5 and 6 show the training accuracy and test accuracy of CNN models, ROI-based
CNN models and SVM classifiers on image level in the subject-dependent experiment. Note that the
labels 18, 50 and 101 in ResNet18, ResNet50 and ResNet101 denote the quantity of parameter layers
in the ResNet CNNs [41]. The label 201 in DenseNet201 denotes the quantity of parameter layers in
the DenseNet CNN [42]. The label V3 in InceptionV3 denotes the third version of the Inception CNN
[43, 44]. The label V2 in Inception-ResNetV2 denotes the second version of the combination of the
Inception CNN and the ResNet CNN [45].

Fold
Accuracy Training Accuracy on Image Level

ResNet18 ResNet50 ResNet101 DenseNet201 InceptionV3 Inception-ResNetV2

1 60.0% 56.2% 59.2% 59.5% 58.7% 55.3%
2 59.8% 58.4% 56.2% 41.6% 59.8% 52.7%
3 59.0% 59.9% 59.9% 44.2% 59.4% 49.9%
4 57.9% 60.0% 54.5% 54.4% 41.8% 40.2%
5 59.8% 59.9% 57.3% 49.3% 46.2% 50.7%
6 59.8% 60.6% 43.7% 40.2% 41.7% 58.5%
7 59.8% 63.5% 45.1% 62.0% 59.8% 67.7%
8 59.8% 58.0% 41.7% 41.6% 58.3% 75.9%
9 40.2% 59.8% 59.8% 58.1% 60.0% 61.2%

10 55.2% 72.1% 59.9% 63.3% 59.8% 59.8%

Mean 57.1% 60.9% 53.7% 51.4% 54.6% 57.2%
SD 5.8% 4.2% 6.9% 8.7% 7.5% 9.4%
Best 60.0% 72.1% 59.9% 63.3% 60.0% 75.9%

Worst 40.2% 56.2% 41.7% 40.2% 41.7% 40.2%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 1: Training Accuracy of CNN Models on Image Level in Subject-Dependent Experiment
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Fold
Accuracy Training Accuracy on Image Level

ROI-Based
ResNet18

ROI-Based
ResNet50

ROI-Based
ResNet101

ROI-Based
DenseNet201

ROI-Based
InceptionV3

ROI-Based
InceptionResNetV2

1 94.1% 100.0% 100.0% 95.6% 99.7% 99.1%
2 82.1% 100.0% 99.4% 100.0% 99.8% 99.2%
3 76.9% 100.0% 99.8% 95.8% 99.9% 98.2%
4 94.3% 100.0% 99.7% 97.2% 99.6% 98.4%
5 97.4% 99.9% 100.0% 100.0% 99.9% 99.3%
6 61.2% 99.7% 100.0% 95.3% 99.9% 99.7%
7 61.7% 99.9% 99.9% 94.3% 100.0% 98.5%
8 94.8% 99.9% 99.7% 98.2% 99.4% 99.5%
9 82.2% 99.9% 100.0% 100.0% 99.9% 99.9%

10 54.2% 99.6% 100.0% 99.9% 100.0% 99.9%

Mean 79.9% 99.9% 99.8% 97.6% 99.8% 99.2%
SD 15.2% 0.1% 0.2% 2.1% 0.2% 0.6%
Best 97.4% 100.0% 100.0% 100.0% 100.0% 99.9%

Worst 54.2% 99.6% 99.4% 94.3% 99.4% 98.2%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 2: Training Accuracy of ROI-Based CNN Models on Image Level in Subject-Dependent Experiment

Fold
Accuracy Training Accuracy on Image Level

LBP-Based SVM HOG-Based SVM SIFT-Based SVM

1 79.7% 76.3% 62.1%
2 79.6% 76.4% 62.0%
3 79.6% 76.8% 62.0%
4 80.0% 76.3% 62.2%
5 80.0% 76.3% 61.9%
6 79.5% 76.3% 61.9%
7 80.0% 76.2% 61.9%
8 79.6% 76.1% 61.8%
9 80.3% 75.8% 62.2%

10 79.5% 74.6% 60.2%

Mean 79.8% 76.1% 61.8%
SD 0.3% 0.6% 0.6%
Best 80.3% 76.8% 62.2%

Worst 79.5% 74.6% 60.2%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation
** SVM Kernel: Gaussian Kernel

Table 3: Training Accuracy of SVM Classifiers on Image Level in Subject-Dependent Experiment

Fold
Accuracy Test Accuracy on Image Level

ResNet18 ResNet50 ResNet101 DenseNet201 InceptionV3 Inception-ResNetV2

1 60.6% 59.8% 61.4% 60.6% 62.2% 55.9%
2 60.6% 57.5% 55.1% 40.2% 59.8% 55.9%
3 54.3% 59.8% 59.8% 40.9% 60.6% 53.5%
4 59.8% 60.6% 49.6% 56.7% 40.9% 40.9%
5 59.8% 59.8% 63.0% 47.2% 49.6% 49.6%
6 59.8% 55.1% 46.5% 40.2% 40.9% 51.2%
7 59.8% 58.3% 48.0% 60.6% 59.8% 62.2%
8 59.8% 63.0% 40.9% 43.3% 59.1% 70.1%
9 40.2% 59.8% 59.8% 55.9% 59.8% 57.5%

10 56.7% 64.6% 58.3% 59.1% 59.1% 59.8%

Mean 57.2% 59.8% 54.3% 50.5% 55.2% 55.7%
SD 6.0% 2.5% 7.1% 8.4% 7.8% 7.4%
Best 60.6% 64.6% 63.0% 60.6% 62.2% 70.1%

Worst 40.2% 55.1% 40.9% 40.2% 40.9% 40.9%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 4: Test Accuracy of CNN Models on Image Level in Subject-Dependent Experiment
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Fold
Accuracy Test Accuracy on Image Level

ROI-Based
ResNet18

ROI-Based
ResNet50

ROI-Based
ResNet101

ROI-Based
DenseNet201

ROI-Based
InceptionV3

ROI-Based
InceptionResNetV2

1 77.5% 86.3% 84.9% 84.0% 84.3% 82.7%
2 77.2% 84.2% 84.7% 85.2% 86.1% 85.0%
3 74.1% 84.2% 83.7% 77.8% 85.6% 83.5%
4 85.0% 87.8% 87.8% 82.0% 86.1% 84.1%
5 80.8% 82.8% 87.9% 90.0% 85.5% 86.6%
6 62.0% 85.5% 91.3% 84.6% 89.1% 91.3%
7 61.1% 89.3% 87.7% 84.0% 87.8% 86.5%
8 86.6% 88.0% 85.3% 81.7% 89.3% 87.5%
9 76.9% 87.1% 86.2% 87.6% 86.0% 85.7%

10 52.8% 91.8% 90.7% 88.7% 94.5% 97.4%

Mean 73.4% 86.7% 87.0% 84.6% 87.4% 87.0%
SD 10.6% 2.5% 2.4% 3.4% 2.8% 4.1%
Best 86.6% 91.8% 91.3% 90.0% 94.5% 97.4%

Worst 52.8% 82.8% 83.7% 77.8% 84.3% 82.7%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 5: Test Accuracy of ROI-Based CNN Models on Image Level in Subject-Dependent Experiment

Fold
Accuracy Test Accuracy on Image Level

LBP-Based SVM HOG-Based SVM SIFT-Based SVM

1 75.5% 54.9% 61.0%
2 74.8% 52.8% 60.6%
3 75.5% 52.4% 62.0%
4 71.7% 55.9% 61.1%
5 75.4% 54.9% 63.1%
6 77.1% 53.7% 61.7%
7 71.0% 57.5% 62.7%
8 75.3% 58.1% 62.9%
9 71.1% 58.2% 61.0%

10 74.7% 61.1% 58.3%

Mean 74.2% 56.0% 61.4%
SD 2.0% 2.6% 1.3%
Best 77.1% 61.1% 63.1%

Worst 71.0% 52.4% 58.3%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation
** SVM Kernel: Gaussian Kernel

Table 6: Test Accuracy of SVM Classifiers on Image Level in Subject-Dependent Experiment

Tables 1, 2, 4 and 5 show the comparison of CNN models and ROI-based CNN models in the subject-
dependent experiment.

It can be seen that for the training accuracy on image level, all the CNN models with our proposed
ROI-based algorithms obtain higher mean of ten-fold accuracy than the CNN models without our algo-
rithms. As shown in Tables 1 and 2, the maximal improvement is for the DenseNet201 that is 46.2% (i.e.
97.6% − 51.4%). The minimal improvement is for the ResNet18 that is 22.8% (i.e. 79.9% − 57.1%).

Similarly, for the test accuracy on image level, all the CNN models with our proposed ROI-based
algorithms obtain higher mean of ten-fold accuracy than the CNN models without our algorithms. As
shown in Tables 4 and 5, the maximal improvement is for the DenseNet201 that is 34.1% (i.e. 84.6% −
50.5%). The minimal improvement is for the ResNet18 that is 16.2% (i.e. 73.4% − 57.2%).

The average mean of ten-fold test accuracy of the CNN models with our proposed ROI-based algo-
rithms on image level is 84.4% (i.e. (73.4% + 86.7% + 87.0% + 84.6% + 87.4% + 87.0%) / 6), while the
average mean of ten-fold test accuracy of the CNN models without our proposed ROI-based algorithms
on image level is 55.4% (i.e. (57.2% + 59.8% + 54.3% + 50.5% + 55.2% + 55.7%) / 6). Hence, the
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improvement is 84.4% − 55.4% = 29.0%. The paired t-test [83] for the CNN models with our proposed
ROI-based algorithms against the CNN models without our proposed ROI-based algorithms shows that
the p-value (1-tailed) is 0.000065 < 0.01, which demonstrates the effectiveness of our proposed ROI-
based algorithms.

Tables 2, 3, 5 and 6 show the comparison of ROI-based CNN models and SVM classifiers in the
subject-dependent experiment.

It can be seen that the average mean of ten-fold test accuracy of the CNN models with our proposed
ROI-based algorithms on image level is 84.4% (i.e. (73.4% + 86.7% + 87.0% + 84.6% + 87.4% + 87.0%)
/ 6), while the average mean of ten-fold test accuracy of the SVM classifiers on image level is 63.9% (i.e.
(74.2% + 56.0% + 61.4%) / 3). Hence, the improvement is 84.4% − 63.9% = 20.5%, which demon-
strates the SVM classifiers only extract a small amount of information from the data and considerable
information may be lost, while the ROI-based CNN models take all information into account, and extract
the features from low-dimensional to high-dimensional space by its hierarchical structure, so that they
have better classification performance than the SVM classifiers.

On the other hand, it can be seen that the means of ten-fold test accuracy of the ROI-based ResNet50
(86.7%), the ROI-based ResNet101 (87.0%), the ROI-based InceptionV3 (87.4%) and the ROI-based
Inception-ResNetV2 (87.0%) are very close, while the mean of ten-fold test accuracy of the ROI-based
DenseNet201 (84.6%) is distinctly lower than others, which indicates that this dataset may not be suitable
for the DenseNet models that make full use of each layer’s features. It implies this dataset may not has
enough features that could be directly used, hence we need to do more non-linear transformation from
these few features, like what the ResNet models and the Inception models do.

Moreover, the means of ten-fold test accuracy of the ROI-based ResNet50, the ROI-based ResNet101,
the ROI-based InceptionV3 and the ROI-based Inception-ResNetV2 reach 86.7%, 87.0%, 87.4% and
87.0%, respectively, which demonstrates the practicality of our selected CNN models for the proposed
classification system.

4.2. Subject-Independent Experiment

In this experiment, we use the new collected 556 clinical full-size NF-NBI images from additional 18
subjects to test the trained classifiers from the previous experiment on both image level and subject level.
We retain all the components of the proposed system shown in Figure 3 except the classifier part, which
means the inputs of the CNN models are the full-size NF-NBI images, while the inputs of the ROI-based
CNN models and the SVM classifiers are the generated image patches.

Specifically, we divide all the full-size NF-NBI images (for the CNN models) and the generated
image patches (for the ROI-based CNN models and the SVM classifiers) by subject. Then we test all
the trained classifiers on image level and record the classification result of each image. After that, we
employ the majority voting to obtain the classification results on subject level. That is, if more than 50%
of the images corresponding to a subject were classified as one class, we classify this subject as this class.
Hence, it is a subject-independent classification.

Tables 7, 8, 9, 10, 11 and 12 show the test accuracy of CNN models, ROI-based CNN models and
SVM classifiers on image level and subject level in the subject-independent experiment.
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It can be seen that the test accuracy of all the classifiers in the subject-independent experiment are
remarkably lower than the test accuracy in the subject-dependent experiment, which demonstrates the
intra-class variety including the complicated shooting conditions in the esophagus of human and the
difference of esophagus’ physiological characteristics between different human significantly affect the
performance of the classifiers.

Fold
Accuracy Test Accuracy on Image Level

ResNet18 ResNet50 ResNet101 DenseNet201 InceptionV3 Inception-ResNetV2

1 60.1% 49.8% 59.5% 58.8% 58.0% 46.1%
2 59.2% 57.2% 54.6% 41.3% 59.0% 51.1%
3 57.7% 59.0% 59.0% 46.1% 59.0% 44.3%
4 60.8% 59.8% 53.8% 54.9% 40.8% 41.0%
5 53.8% 59.0% 58.2% 49.5% 50.8% 52.1%
6 51.6% 46.1% 44.1% 41.0% 42.8% 55.2%
7 59.0% 57.0% 48.4% 58.3% 59.0% 63.7%
8 53.8% 57.8% 41.0% 41.7% 61.1% 67.2%
9 41.0% 59.0% 58.8% 59.3% 58.8% 59.3%

10 51.6% 59.5% 59.2% 52.6% 59.3% 59.0%

Mean 54.9% 56.4% 53.6% 50.4% 54.9% 53.9%
SD 5.7% 4.4% 6.5% 7.1% 7.0% 8.1%
Best 60.8% 59.8% 59.5% 59.3% 61.1% 67.2%

Worst 41.0% 46.1% 41.0% 41.0% 40.8% 41.0%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 7: Test Accuracy of CNN Models on Image Level in Subject-Independent Experiment

Fold
Accuracy Test Accuracy on Image Level

ROI-Based
ResNet18

ROI-Based
ResNet50

ROI-Based
ResNet101

ROI-Based
DenseNet201

ROI-Based
InceptionV3

ROI-Based
InceptionResNetV2

1 55.6% 60.9% 67.8% 62.0% 67.7% 70.4%
2 60.9% 69.4% 63.1% 70.0% 67.7% 72.1%
3 49.4% 62.1% 67.3% 60.4% 67.3% 73.6%
4 64.0% 65.8% 67.4% 58.0% 69.2% 66.7%
5 65.0% 65.0% 61.9% 66.7% 69.4% 67.6%
6 44.0% 62.5% 66.8% 62.1% 69.5% 69.3%
7 44.5% 66.2% 64.7% 54.4% 70.0% 70.8%
8 60.6% 63.5% 64.0% 58.2% 71.0% 70.7%
9 57.1% 67.5% 66.1% 68.5% 69.3% 71.5%

10 55.9% 65.5% 67.6% 58.2% 69.1% 67.4%

Mean 55.7% 64.9% 65.7% 61.8% 69.0% 70.0%
SD 7.1% 2.5% 2.0% 4.8% 1.1% 2.1%
Best 65.0% 69.4% 67.8% 70.0% 71.0% 73.6%

Worst 44.0% 60.9% 61.9% 54.4% 67.3% 66.7%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 8: Test Accuracy of ROI-Based CNN Models on Image Level in Subject-Independent Experiment
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Fold
Accuracy Test Accuracy on Image Level

LBP-Based SVM HOG-Based SVM SIFT-Based SVM

1 60.3% 46.6% 44.1%
2 60.1% 45.3% 43.6%
3 60.3% 46.9% 44.1%
4 60.0% 45.0% 44.1%
5 61.5% 45.7% 43.8%
6 60.4% 49.2% 43.9%
7 60.4% 49.0% 43.7%
8 60.6% 47.2% 43.8%
9 61.2% 48.5% 43.9%

10 62.5% 47.5% 42.7%

Mean 60.7% 47.1% 43.8%
SD 0.7% 1.4% 0.4%
Best 62.5% 49.2% 44.1%

Worst 60.0% 45.0% 42.7%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation
** SVM Kernel: Gaussian Kernel

Table 9: Test Accuracy of SVM Classifiers on Image Level in Subject-Independent Experiment

Fold
Accuracy Test Accuracy on Subject Level

ResNet18 ResNet50 ResNet101 DenseNet201 InceptionV3 Inception-ResNetV2

1 66.7% 61.1% 66.7% 66.7% 66.7% 50.0%
2 66.7% 66.7% 66.7% 33.3% 66.7% 44.4%
3 66.7% 66.7% 66.7% 33.3% 66.7% 27.8%
4 66.7% 66.7% 66.7% 66.7% 33.3% 33.3%
5 66.7% 66.7% 66.7% 38.9% 38.9% 55.6%
6 66.7% 33.3% 33.3% 33.3% 33.3% 72.2%
7 66.7% 66.7% 33.3% 66.7% 66.7% 66.7%
8 66.7% 66.7% 33.3% 33.3% 66.7% 72.2%
9 33.3% 66.7% 66.7% 66.7% 66.7% 66.7%

10 66.7% 66.7% 66.7% 61.1% 66.7% 66.7%

Mean 63.3% 62.8% 56.7% 50.0% 57.2% 55.6%
SD 10.0% 10.0% 15.3% 15.7% 14.5% 15.3%
Best 66.7% 66.7% 66.7% 66.7% 66.7% 72.2%

Worst 33.3% 33.3% 33.3% 33.3% 33.3% 27.8%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 10: Test Accuracy of CNN Models on Subject Level in Subject-independent Experiment

Fold
Accuracy Test Accuracy on Subject Level

ROI-Based
ResNet18

ROI-Based
ResNet50

ROI-Based
ResNet101

ROI-Based
DenseNet201

ROI-Based
InceptionV3

ROI-Based
InceptionResNetV2

1 66.7% 55.6% 83.3% 66.7% 72.2% 88.9%
2 72.2% 77.8% 61.1% 77.8% 72.2% 77.8%
3 66.7% 55.6% 72.2% 55.6% 66.7% 83.3%
4 77.8% 66.7% 77.8% 66.7% 72.2% 77.8%
5 72.2% 61.1% 55.6% 83.3% 83.3% 72.2%
6 66.7% 55.6% 83.3% 83.3% 83.3% 77.8%
7 66.7% 72.2% 72.2% 61.1% 83.3% 72.2%
8 72.2% 55.6% 55.6% 66.7% 83.3% 77.8%
9 72.2% 72.2% 72.2% 77.8% 83.3% 77.8%

10 33.3% 72.2% 61.1% 50.0% 77.8% 72.2%

Mean 66.7% 64.4% 69.4% 68.9% 77.8% 77.8%
SD 11.7% 8.3% 10.0% 10.9% 6.1% 5.0%
Best 77.8% 77.8% 83.3% 83.3% 83.3% 88.9%

Worst 33.3% 55.6% 55.6% 50.0% 66.7% 72.2%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation

Table 11: Test Accuracy of ROI-Based CNN Models on Subject Level in Subject-Independent Experiment
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Fold
Accuracy Test Accuracy on Subject Level

LBP-Based SVM HOG-Based SVM SIFT-Based SVM

1 61.1% 55.6% 61.1%
2 66.7% 55.6% 61.1%
3 66.7% 50.0% 61.1%
4 66.7% 61.1% 61.1%
5 66.7% 50.0% 61.1%
6 66.7% 50.0% 61.1%
7 66.7% 61.1% 61.1%
8 66.7% 55.6% 61.1%
9 66.7% 61.1% 61.1%

10 66.7% 55.6% 61.1%

Mean 66.1% 55.6% 61.1%
SD 1.7% 4.3% 0.0%
Best 66.7% 61.1% 61.1%

Worst 61.1% 50.0% 61.1%
* Mean, SD, Best and Worst denote mean, standard deviation, the best and the worst of results from ten-fold cross-validation
** SVM Kernel: Gaussian Kernel

Table 12: Test Accuracy of SVM Classifiers on Subject Level in Subject-Independent Experiment

Tables 7, 8, 10 and 11 show the comparison of CNN models and ROI-based CNN models in subject-
independent experiment.

It can be seen that for the test accuracy on image level, all the CNN models with our proposed ROI-
based algorithms obtain higher mean of ten-fold accuracy than the CNN models without our algorithms.
As shown in Tables 7 and 8, the maximal improvement is for the InceptionResNetV2 that is 16.1% (i.e.
70.0% − 53.9%). The minimal improvement is for the ResNet18 that is 0.8% (i.e. 55.7% − 54.9%).

Similarly, for the test accuracy on subject level, all the CNN models with our proposed ROI-based
algorithms obtain higher mean of ten-fold accuracy than the CNN models without our algorithms. As
shown in Tables 10 and 11, the maximal improvement is for the InceptionResNetV2 that is 22.2% (i.e.
77.8% − 55.6%). The minimal improvement is for the ResNet50 that is 1.6% (i.e. 64.4% − 62.8%).

The average mean of ten-fold test accuracy of the CNN models with our proposed ROI-based algo-
rithms on image level is 64.5% (i.e. (55.7% + 64.9% + 65.7% + 61.8% + 69.0% + 70.0%) / 6), while the
average mean of ten-fold test accuracy of the CNN models without our proposed ROI-based algorithms
on image level is 54.0% (i.e. (54.9% + 56.4% + 53.6% + 50.4% + 54.9% + 53.9%) / 6). Hence, the
improvement is 64.5% − 54.0% = 10.5%. The paired t-test [83] for the CNN models with our proposed
ROI-based algorithms against the CNN models without our proposed ROI-based algorithms shows that
the p-value (1-tailed) is 0.002488 < 0.01, which demonstrates the effectiveness of our proposed ROI-
based algorithms.

Tables 8, 9, 11 and 12 show the comparison of ROI-based CNN models and SVM classifiers in
subject-independent experiment.

It can be seen that the average mean of ten-fold test accuracy of the CNN models with our proposed
ROI-based algorithms on image level is 64.5% (i.e. (55.7% + 64.9% + 65.7% + 61.8% + 69.0% + 70.0%)
/ 6), while the average mean of ten-fold test accuracy of the SVM classifiers on image level is 50.5% (i.e.
(60.7% + 47.1% + 43.8%) / 3). Hence, the improvement is 64.5% − 50.5% = 14.0%, which demonstrates
the ROI-based CNN models have better classification performance than the SVM classifiers.

On the other hand, it can be seen that the ROI-based InceptionV3 obtains considerably higher means
of ten-fold test accuracy (69.0% and 77.8%) than all the ROI-based ResNet models on both image level
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and subject level, and the ROI-based Inception-ResNetV2 obtains a slightly higher mean of ten-fold
test accuracy (70.0%) on image level and the same mean of ten-fold test accuracy (77.8%) on subject
level. An important difference between the ResNet models and the Inception models is that the Inception
models have different sizes of filters in each Inception module, which is shown in Figure 9. It implies the
features of this dataset need different sizes of filters in a CNN model to be extracted.

Moreover, it can be seen that the mean of ten-fold test accuracy of the ROI-based InceptionV3
(87.4%) is higher than the ROI-based Inception-ResNetV2 (87.0%) on image level in the subject-dependent
experiment, but the mean of ten-fold test accuracy of the ROI-based InceptionV3 (69.0%) is lower
than the ROI-based Inception-ResNetV2 (70.0%) on image level in the subject-independent experiment,
which suggests the ROI-based Inception-ResNetV2 has better generalization ability than the ROI-based
InceptionV3.

Furthermore, the highest mean of ten-fold test accuracy (77.8%) on subject level obtained by using
the ROI-based InceptionV3 or the ROI-based Inception-ResNetV2 demonstrates the practicality of our
proposed classification system for assisting clinical diagnosis of the NERD.

5. Conclusion

In this paper, we proposed a deep learning classification system using the NF-NBI images to diag-
nose the NERD. In the classification system, we proposed an algorithm to automatically extract the ROI
from the NF-NBI images and then generated image patches through a patch-generating algorithm. After
that, we trained six representative state-of-the-art deep CNN models (ResNet18, ResNet50, ResNet101,
DenseNet201, InceptionV3, and Inception-ResNetV2) to extract robust hierarchical features from these
patches and classify them based on the hierarchical features. Finally, to determine the classification
results of each subject, majority voting was employed to the corresponding generated NF-NBI image
patches. We verified our classification system by ten-fold cross-validation using the clinical dataset.
We performed the subject-dependent and the subject-independent experiments. In both experiments,
we compared the classification performance of the ROI-based CNN models (the CNN models with our
proposed ROI-based algorithms) with the CNN models. Meanwhile, we compared the classification per-
formance of the ROI-based CNN models with the SVM classifiers (LBP-based SVM, HOG-based SVM,
and SIFT-based SVM).

The results from the experiments demonstrated that the ROI-based CNN models obtained higher
average mean of ten-fold test accuracy on image level than the CNN models in the subject-dependent
experiment (29.0% improvement) and the subject-independent experiment (10.5% improvement), which
demonstrated the effectiveness of our proposed ROI-based algorithms. Meanwhile, the ROI-based CNN
models obtained higher average mean of ten-fold test accuracy on image level than the SVM classifiers in
the subject-dependent experiment (20.5% improvement) and the subject-independent experiment (14.0%
improvement), which demonstrated the ROI-based CNN models had better classification performance
than the SVM classifiers.

Among the ROI-based CNN models, the ROI-based InceptionV3 model achieved the best classifica-
tion performance in the subject-dependent experiment, while the ROI-based Inception-ResNetV2 model
achieved the best classification performance in the subject-independent experiment, which suggested the
ROI-based Inception-ResNetV2 model had better generalization ability than the ROI-based InceptionV3
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model. Moreover, the highest mean of ten-fold test accuracy (77.8%) on subject level obtained by us-
ing the ROI-based InceptionV3 model or the ROI-based Inception-ResNetV2 model demonstrated the
practicality of our proposed classification system for assisting clinical diagnosis of the NERD.

In our proposed classification system, we used the majority voting (refer to Section 3.5) to determine
the class of a subject, which could be replaced by weighted voting in the future. Because different
image patches corresponding to a subject may have different classification accuracy corresponding to the
classification on subject level. For example, some image patches may have fewer task-specific features
and more common image features (e.g. textures, edges, angular points, and marginal points) than others,
while the classification accuracy based on the task-specific features may be better than the classification
accuracy based on the common image features. In such cases, if a higher voting weight is given to
the image patches that have more task-specific features, the classification performance on subject level
could be improved. In future work, we plan to design an algorithm to distinguish which image patches
have more task-specific features and which image patches have more common image features. Then,
assigning a higher voting weight to the image patches that have more task-specific features may improve
the classification performance on subject level.
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ing approach to medical image classification: Detecting age-related macular degeneration in fundus
images, Computers & Electrical Engineering 75 (2019) 218–229.

[58] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in
the brain, Psychological Review 65 (6) (1958) 386–408.

[59] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015) 85–
117.

[60] S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee, P. K. S. Tam, A novel genetic-algorithm-based
neural network for short-term load forecasting, IEEE Transactions on Industrial Electronics 50 (4)
(2003) 793–799.

[61] S. H. Ling, H. K. Lam, Playing Tic-Tac-Toe using genetic neural network with double transfer
functions, Journal of Intelligence Learning Systems and Application 3 (2011) 37–44.

[62] F. H. F. Leung, H. K. Lam, S. H. Ling, P. K. S. Tam, Tuning of the structure and parameters of a
neural network using an improved genetic algorithm, IEEE Transactions on Neural Networks 14 (1)
(2003) 79–88.

[63] S. H. Ling, F. H. F. Leung, H. K. Lam, An improved genetic algorithm based fuzzy-tuned neural
network, International Journal of Neural Systems 15 (6) (2005) 457–474.

[64] H. K. Lam, U. Ekong, B. Xiao, G. Ouyang, H. Liu, K. Y. Chan, S. H. Ling, Variable weight
neural networks and their applications on material surface and epilepsy seizure phase classifications,
Neurocomputing 149 (2015) 1177–1187.

32



[65] B. Xiao, W. Xu, J. Guo, H. K. Lam, G. Jia, W. Hong, H. Ren, Depth estimation of hard inclusions in
soft tissue by autonomous robotic palpation using deep recurrent neural network, IEEE Transactions
on Automation Science and Engineering (2020).

[66] Y. Wang, Y. Chen, N. Yang, L. Zheng, N. Dey, A. S. Ashour, V. Rajinikanth, J. M. R. S. Tavares,
F. Shi, Classification of mice hepatic granuloma microscopic images based on a deep convolutional
neural network, Applied Soft Computing 74 (2019) 40–50.

[67] S. Pang, A. Du, M. A. Orgun, Z. Yu, A novel fused convolutional neural network for biomedical
image classification, Medical & Biological Engineering & Computing 57 (1) (2019) 107–121.

[68] J. Shi, S. Zhou, X. Liu, Q. Zhang, M. Lu, T. Wang, Stacked deep polynomial network based rep-
resentation learning for tumor classification with small ultrasound image dataset, Neurocomputing
194 (2016) 87–94.

[69] J. Yang, Y. Xie, L. Liu, B. Xia, Z. Cao, C. Guo, Automated dental image analysis by deep learning
on small dataset, in: Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applica-
tions Conference (COMPSAC), Vol. 1, IEEE, 2018, pp. 492–497.

[70] P. Shi, C. Wu, J. Zhong, H. Wang, Deep learning from small dataset for BI-RADS density classi-
fication of mammography images, in: Proceedings of the 2019 10th International Conference on
Information Technology in Medicine and Education (ITME), IEEE, 2019, pp. 102–109.

[71] Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, R. Watanabe, N. Okiyama,
K. Ohara, M. Fujimoto, Deep-learning-based, computer-aided classifier developed with a small
dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis, British
Journal of Dermatology 180 (2) (2019) 373–381.

[72] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors,
Nature 323 (6088) (1986) 533–536.

[73] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approxima-
tors, Neural Networks 2 (5) (1989) 359–366.

[74] C. R. Huang, Y. T. Chen, W. Y. Chen, H. C. Cheng, B. S. Sheu, Gastroesophageal reflux disease
diagnosis using hierarchical heterogeneous descriptor fusion support vector machine, IEEE Trans-
actions on Biomedical Engineering 63 (3) (2015) 588–599.

[75] R. Fass, Erosive esophagitis and nonerosive reflux disease (NERD): comparison of epidemiologic,
physiologic, and therapeutic characteristics, Journal of Clinical Gastroenterology 41 (2) (2007)
131–137.

[76] S. Gulati, J. Bernth, J. Liao, D. Poliyivets, S. Chatu, A. Emmanuel, A. Haji, H. Liu, B. Hayee,
Tu1962 Near focus narrow band imaging driven artificial intelligence for the diagnosis of gastroe-
sophageal reflux disease, Gastrointestinal Endoscopy 89 (6) (2019) AB633.

[77] Y. Sano, S. Tanaka, S.-e. Kudo, S. Saito, T. Matsuda, Y. Wada, T. Fujii, H. Ikematsu, T. Uraoka,
N. Kobayashi, et al., Narrow-band imaging (NBI) magnifying endoscopic classification of colorec-
tal tumors proposed by the Japan NBI Expert Team, Digestive Endoscopy 28 (5) (2016) 526–533.

[78] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on Knowledge and Data
Engineering 22 (10) (2009) 1345–1359.

33



[79] M. Kato, J. Yamamoto, Y. Shimizu, H. Takeda, M. Asaka, Magnifying endoscopic findings of non-
erosive reflux disease, Digestive Endoscopy 18 (2006) S33–S35.

[80] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li, Imagenet: A large-scale hierarchical image
database, in: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2009, pp. 248–255.

[81] L. Torrey, J. Shavlik, Transfer learning, in: Handbook of Research on Machine Learning Applica-
tions and Trends: Algorithms, Methods, and Techniques, IGI Global, 2010, pp. 242–264.

[82] C. E. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine 8 (4) (1978) 283–298.

[83] H. Hsu, P. A. Lachenbruch, Paired t test, Encyclopedia of Biostatistics 6 (2005).

34


