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Attesting Digital Discrimination Using Norms
Natalia Criado∗, Xavier Ferrer∗, Jose M Such∗

∗King’s College London, United Kingdom

Abstract—More and more decisions are delegated to machine
learning systems. Despite initial misconceptions about machine
learning (ML) systems being faultless and fair, public distrust
in machine learning has been fueled in recent years by shocking
examples of digital discrimination such as racist algorithms being
used to inform parole decisions in the US, low-income neighbor-
hood’s targeted with high-interest loans or low credit scores,
and women being undervalued by 21% in online marketing.
This poses a significant challenge to the adoption of ML by
companies or public sector organisations, despite ML having
the potential to lead to significant reductions in cost and more
efficient decisions. This has motivated technical research in the
area of fair ML. However, users of ML systems do not always
have the technical skills to use the fairness metrics proposed by
this research and understand to what extent their algorithms can
commit discrimination. To allow non-technical users to benefit
from ML, simpler notions and concepts to represent and reason
about digital discrimination are needed. In this paper, we use
norms as an abstraction to represent different situations that may
lead to digital discrimination. In particular, we formalise non-
discrimination norms in the context of ML systems and propose
an algorithm to check whether ML systems violate these norms.

I. INTRODUCTION

Digital discrimination is a form of discrimination in which
automated decisions taken by algorithms, increasingly based
on AI techniques like machine learning, treat users unfairly,
unethically, or just differently based on their personal data [1]
such as income, education, gender, age, ethnicity, or religion.
Digital discrimination is a serious problem [2] that is becoming
even more important because an increasing number of tasks
are being delegated to automated decision-making systems
embedding those algorithms, such as computers, mobile de-
vices, autonomous systems, etc. Just to give one example
among many, some firms in the UK now base at least part
of their decisions regarding screening or hiring candidates on
automated decision-making systems1.

Frequently the users of such machine learning (ML) systems
are not technical experts and cannot assess by themselves
if these algorithms are discriminatory. For example, many
public organizations would like to reduce operational costs and
delegate some decisions to algorithms, but at the same time
need some guarantees about the ML systems not breaking anti-
discrimination laws. Our approach has been precisely designed
to allow non-technical users to determine if ML systems are
potentially discriminatory and to make explicit under which
assumptions the systems are discrimination free.

Author’s copy of the manuscript accepted in the International Journal of
Interactive Multimedia and Artificial Intelligence (IJIMAI). Corresponding
author: Natalia Criado (email: natalia.criado@kcl.ac.uk).

1http://www.bbc.co.uk/news/business-36129046

This paper is organised as follows: Section II introduces
background knowledge on discrimination legislation; Section
III introduces our formalization of non-discrimination norms
in the context of ML systems; Section IV contains our attest-
ing algorithm; Section V illustrates the performance of our
algorithm in three case studies; Section VI contains related
work; and Section VII contains a discussion of the paper
contribution.

II. BACKGROUND

Legislation about discrimination in general, not necessarily
just about digital discrimination, is varied and extensive.
National and international governments and organisations have
legislation that specifically prohibits discrimination; e.g., the
European Convention for the Protection of Human Rights.
Most of this legislation states a non-exhaustive list of criteria
or protected attributes, e.g., race, gender, sexual orientation,
based on which discrimination is prohibited. This means
that, from a legal perspective, discrimination are usually the
actions, procedures, etc., that disadvantage citizens based on
their personal characteristics, which most of the time imply
membership of particular groups defined by those protected
attributes.

Legislation about discrimination typically distinguishes be-
tween two main types of discrimination [3]:

1) Direct discrimination. This type of discrimination, also
known as disparate treatment, considers the situations
in which an individual is treated differently because of
their membership to a social group defined by protected
attributes. This means that different social groups are
being treated differently, with some of them being disad-
vantaged by the differences in treatment. One example
of direct discrimination would be a company that has
a policy of not considering candidates for hiring who
are women with young children. Note, however, that
direct discrimination does not necessarily mean that
discrimination is explicit. Direct discrimination can be
both:

a) Explicit, as in the previous example, in which
members of a particular social group, i.e., women
with young children, are explicitly disadvantaged
by a decision, i.e., women with your children will
be treated differently and not considered for hiring.

b) Implicit, in which the discriminated group is not
explicitly mentioned or considered. Coming back
to the previous example, the same company could
replace the hiring policy with a new policy of not
hiring candidates who have had a career break in
recent years. The new policy would not explicitly
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consider the relevant social group (women with
children), yet it may accomplish the same exact
objective, because woman with young children are
statistically more likely to have had a recent career
break.

2) Indirect discrimination. This type of discrimination, also
known as disparate impact, considers the situations in
which an apparently neutral act has a disproportion-
ately negative effect on the members of a particular
social group. This is considered discrimination, even
if: i) there is no clear intention to discriminate against
that particular social group, and ii) there is not any
unconscious prejudice motivating the discriminatory act.
For example, a company having the policy to only
consider customer satisfaction scores to award promo-
tions may have a disproportionate impact on women, as
there is empirical evidence [4] suggesting that women
are undervalued when evaluated for a similar objective
performance, compared to their male counterparts. That
is, it could be argued that the company may not have an
intention to discriminate against female employees, but
the promotion criteria set may effectively disadvantage
them in a disproportionate way when compared to male
employees.

III. DIGITAL DISCRIMINATION NORMATIVE MODEL

The term digital discrimination refers to those direct or
indirect discriminatory acts that are based on the automatic
decisions made by an ML system. In this section, we formalise
the notion of digital discrimination norms accounting for the
different types of discrimination introduced in the previous
section: explicit, implicit, and indirect discrimination.

An ML system can be defined by a set of input features
I = {I1, ...Im}, where each feature Ii takes values from a
discrete domain DIi ; and an output feature O, which also takes
values from a discrete domain DO.2 Note that, in this paper,
we are interested in ML systems where the input may contain,
directly or indirectly, personal information about individuals
in order to attest discrimination. For this reason, the set of
protected features is also defined; i.e., P = {P1, .., Pn}, where
each protected feature Pi ∈ P takes values from a discrete
domain DPi

. It may be that protected features are part of the
input directly used by an ML system, but it is not necessary,
e.g., as we will see later, protected features could be strongly
associated with the inputs even if not directly used as inputs.

The decisions of an ML system can be represented as a
dataset DS formed by tuples (p1, ...pn, i1, ...im, o), where
each tuple represents a previous decision made by the ML
system about a particular individual with protected attributes
p1, ...pn, input attributes i1, ...im, and algorithm outcome3 o.
In particular, each pi ∈ DPi

, ii ∈ DIi and o ∈ DO.

2For simplicity we assume domains are discrete, but this is without loss of
generality, as any continuous domain can be discretized.

3Note that it is possible to consider discrimination in an algorithm by
considering the ground-truth labels as well. See Appendix VIII-B for more
details about this particular type of discrimination, which in some cases is
known as disparate mistreatment [5].

In the following, we provide a formalization of non-
discrimination norms for ML systems and define how domain
knowledge can be represented using norm exceptions. These
normative notions are illustrated with an example.

A. Digital Discrimination Norms

As aforementioned, in the legislation around the world,
we find the following types of discrimination: direct (also
known as disparate treatment), which further classifies into
explicit and implicit; and indirect (disparate impact) [6]. Next,
we contextualise these notions in the context of digital dis-
crimination and we formally represent them as computational
norms using deontic logic4. These deontic norms express
anti discrimination rules of behaviour for ML systems using
concepts and terminology easily understood by non-technical
users.

1) Direct Discrimination: Direct Discrimination is the un-
equal behavior toward someone because of a protected char-
acteristic. We consider the two types of direct discrimination
identified in previous literature, as discussed in Section II:
explicit and implicit discrimination.

a) Explicit Discrimination.: In terms of ML systems,
this type of discrimination is equivalent to having some
of the protected attributes considered in the systems’ input.
Norms preventing explicit discrimination can be formalised as
prohibitions to include protected attributes in the input of the
system as follows:

∀Pi ∈ P : F(Pi ∈ I)

The set of all explicit discrimination norms is denoted by
NE and has a size of |P|.

b) Implicit Discrimination. : This type of discrimination
can be formalised as a situation where the values of a
set of input attributes of an ML system correlate with the
value of one or more of the protected attributes. Therefore,
norms preventing implicit discrimination can be formalised as
follows:

∀Pi ∈ P : F(Pi is a function of I)

Note that Pi is a function of I is defined in terms of a
process to detect associations, correlations or dependencies
between attributes (Section VI provides more details about
techniques and metrics that can be used for this). Also note
that the set of all implicit discrimination norms is denoted by
NI and has a size of |P|.

Remark 1: If an explicit discrimination norm for a protected
feature Pi is violated, then the implicit discrimination norm
for Pi is also violated. The inverse inference, however, does
not hold.

2) Indirect Discrimination: Indirect Discrimination (dis-
parate impact) refers to decisions that adversely affect one
group of people of a protected characteristic more than an-
other. This equals to state that for a particular protected
attribute value p ∈ DPi

, the probability of a given outcome

4For simplicity, we don’t consider compound discrimination in the main
part of this paper. For a definition of compound discrimination norms see
Appendix VIII-A.
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o ∈ Do is x times lower than that of the values of the same
protected attribute P with the highest probability. Formally,
we can define the norm prohibiting indirect discrimination as:

∀Pi ∈ P,∀p ∈ DPi
,∀o ∈ DO : F(Pi ↓po)

where Pi ↓po denotes:

Pr(O = o|Pi = p) < x× max
∀p′∈DPi

\{p}
Pr(O = o|Pi = p′)

with Pr(O = o|Pi = p) standing for the probability that the
outcome o is given to an individual with protected attribute
p. Therefore, the norm states that it is forbidden that for a
given group, characterised by having p as the value for the
protected feature Pi, the probability of an outcome o is x
times lower than the probability of the same outcome o for all
the alternative groups, which are characterised by having the
other values for Pi (i.e., DPi

\ {p}).
Note that different methods can be used to estimate this

probability. In Section VI, we provide a review of the different
techniques that may be used. Also note that the value x ∈
[0, 1] is a constant representing the extent of the disproportion
allowed in a particular domain5.

The set of all disparate impact norms is denoted by ND

and has a size of |P| × DP × |DO|, where DP denotes the
average number of values belonging to the domain of protected
attributes. That is, there is one disparate impact norm per each
group, characterised by having a particular value for a given
protected feature, and each possible outcome.

3) Norm Violations: Based on the definitions above, the
full set of anti-discrimination norms considered is represented
as a collection denoted by N = (NE , NI , ND), where
NE , NI , ND are as defined above, representing norms against
explicit, implicit and indirect discrimination.

Whenever any of the norms in N are violated, there may
then be a case of discrimination. However, some of these
violations could be considered inconsequential, as we describe
next, or there may also be domain-dependent exceptions (as
defined later on in Section III-B).

In this paper, we define inconsequential norm violations
as those violations which can be considered trivial, since
they have little effect on the decisions made by the ML
system. Importantly, inconsequential violations are anyway
worth considering, as they may be an indicator of bad practices
(e.g., considering disability status of students in university ad-
missions may be immoral even if that information is ultimately
not influencing much the decision).

Remark 2: If an explicit discrimination norm for a protected
feature Pi is violated and no indirect discrimination norm for
Pi is violated, then the violation is inconsequential as the
protected feature Pi is not affecting significantly the decision-
making process. If an implicit discrimination norm for pro-
tected feature Pi is violated and no indirect discrimination
norm for Pi is violated, then the violation is inconsequential
as the protected feature Pi is not affecting significantly the
decision-making process.

5For example, the US fourth-fifth rule from the Equal Employment Oppor-
tunity Commission (1978) states a job selection rate for the protected group
of less than 4/5 of the selection rate for the unprotected group [7].

B. Norm Exceptions

The previous section formalises the general definition of
anti-discrimination norms. In general, when these norms are
violated there is a potential case of digital discrimination.
However, there are domains in which the violation of these
norms is justifiable, and hence not result in discrimination.
To allow for such type of domain knowledge to be explicitly
represented and accounted for, we use the notion of domain
permission norms, which define exceptions to the general anti-
discrimination norms.

1) Exceptions to Direct Discrimination Norms:
a) Exception to Violate Explicit Norms. : This refers

to the cases where permission to use protected attributes in
decision making may be justified. For example, legislation
does not usually consider discriminatory to use religion as
a criteria for hiring a religion teacher at a school. An explicit
permission to use a protected attribute Pi ∈ P can be defined
as follows:

P(Pi ∈ I)

The set of all exceptions to explicit discrimination norms is
denoted by EE .

b) Exception to Violate Implicit Norms.: This refers to
the cases where permission to allow for correlations between
a protected attribute and input attributes is justified. For exam-
ple, for some particular jobs, (e.g., firefighters) the candidates
may need to demonstrate physical strength, which is correlated
with gender. In such cases, it may be lawful to consider
the results of fitness tests in hiring decisions. This allowed
correlation between a protected attribute Pi ∈ P and a subset
of the input attributes I ⊂ I can be represented as a permission
norm as follows:

P(Pi is a function of I)

The set of all exceptions to implicit discrimination norms is
denoted by EI .

Remark 3: An exception to an explicit discrimination norm
about protected attribute Pi entails an exception for the im-
plicit discrimination norm related to Pi and all input attributes.
The inverse relationship does not hold.

2) Exceptions to Indirect Discrimination Norms: This
refers to the cases where permission to treat different groups
disparately may be explainable. For example, on average,
women Uber drivers are paid less than men drivers [8], but
that could be explained by factors such as driver experience,
time and location of rides, etc. An exception to allow for a
significant difference on an outcome o ∈ Do for a particular
protected group p ∈ DPi

where Pi ∈ P can be formalised as
follows:

P(Pi ↓po)

The set of all exceptions to indirect discrimination norms is
denoted by ED.

Remark 4: An exception to an explicit discrimination norm
about protected attribute Pi does not entail an exception to
any indirect discrimination norms for Pi. An exception to an
implicit discrimination norm about protected attribute Pi does
not entail an exception to any indirect discrimination norms
for Pi.
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There may be cases in which it is lawful to consider protected
attributes in the decision-making process, either explicitly or
implicitly, as long as that information is not used to dispropor-
tionately disadvantage the members of a certain group; e.g.,
positive discrimination practices allows the use of gender and
race information to increase the number of employees from
minority groups in a company or business, which are known
to have been discriminated against in the past. In this case
there is an exception to an explicit discrimination norm about
gender and race, as long as that information is not used to
adversely affect any group; e.g., gender information can be
used by the ML system as long as all genders do not have
disproportional probabilities to obtain the different outcomes.

Domain exceptions to discrimination norms are represented
as a collection denoted by E = (EE , EI , ED).

C. Example: Credit Risk Assessment

To illustrate the different types of norms and exceptions
let us consider an example of a decision making system that
classifies individuals as high or low risk in a credit risk
assessment scenario.

The attributes used to describe invididuals are:

I = {Age, Job, Salary}

where and Age ∈ {[20, 30], [30, 40], ...}, Job ∈
{Unemployed, Unskilled, ...}, and Salary ∈
{[0, 20k], [20k, 30k], ...}. According to common
discrimination law, protected attributes are defined as:

P = {Gender,Age}

where Gender ∈ {Male, Female}. The output variable is:

O = Risk

where Risk ∈ {High, Low}.
In this example the following norms are generated consid-

ering protected attributes:

F(Gender ∈ I),F(Age ∈ I),
F(Gender is a function of I),F(Age is a function of I)

F(Gender ↓Male
High),F(Gender ↓Male

Low ),

F(Gender ↓Female
High ),F(Gender ↓Female

Low ),

F(Age ↓[20,30]High ),F(Age ↓[20,30]Low ), ...

...,F(Age ↓[70,80]High ),F(Age ↓[70,80]Low ),

In addition, in this example, there are also several exceptions
to the norms as follows:

P(Age ∈I)
P(Gender is a function of {Salary}),

P(Age ↓[20,30]High ),P(Age ↓[20,30]Low ), ...

...,P(Age ↓[70,80]High ),P(Age ↓[70,80]Low ),

In particular, it may be considered lawful to use age in the
credit risk assessment, as it is common practice to use age
to estimate health risks, insurance, unemployment rates, etc.
By Remark 3, it is implicitly permitted that age is a function

Fig. 1. Overview of the Attesting Process

of input attributes. The pay gap phenomenon also explains
a degree of correlation between salary and gender. In this
case, however, the use of salary for credit risk assessment
may be considered lawful (i.e., salary has not been used as
a way to discriminate women, but as a way to determine the
capability of individuals to pay a credit back). Finally, it is
considered permitted to allow age to have a significant impact
on credit risk assessment decisions and any age groups to be
discriminated on this basis.

IV. DIGITAL DISCRIMINATION ATTESTING PROCESS

The digital discrimination attesting process, which is de-
picted with all its steps in Figure 1, takes as input a decision
dataset and the domain exceptions defined by the user, and
it returns a discrimination report with information about any
potential discrimination cases (i.e., the minimal list of norm
violations) and the assumptions made in the attesting process
(i.e., the list of exceptions provided by the user and the allowed
disproportion ratio)6.

The attesting algorithm (see Algorithm 1) starts by gen-
erating the list of discrimination norms based on the input,
protected and output attributes (line 7), and then, it checks
compliance with the different types of norms.

a) Explicit direct discrimination: The algorithm starts
by checking compliance with explicit direct discrimination
norms (lines 8-15). In particular, for each protected attribute
it checks if there is an permission norm allowing the ML
system to use it as input (line 9). If not, it checks if the
explicit discrimination norm is violated, which is the same
as checking for set membership. For each explicit norm that
is violated, a new inconsequential violation is added (line 11);
later on the algorithm will confirm if this violation is actually
inconsequential or not. Finally, the implicit norm related to
that protected attribute is removed (line 12). Note that our goal
is to produce the minimal set of violations and, by Remark
III-A1b, the explicit norm is more general.

6Note the purpose of our paper is to allow non-technical users to attest
whether ML systems discriminate. We do not focus on the mitigation of
discrimination when found. For examples of the growing research field on
mitigating discrimination see [9], [10], [11], [12].
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b) Implicit direct discrimination: The algorithm checks
for implicit direct discrimination in lines 16-24. For each
implicit norm, the algorithm checks if there is an exception to
an explicit norm for the same protected attribute (as stated in
Remark 3). If not, the algorithm checks if the norm is violated
using the dataset DS as a representative sample7. An implicit
norm is violated when there is a subset of input attributes
determining the value of a protected attribute. If the norm is
violated, the algorithm checks for a permission norm allowing
for that particular violation. In particular, the algorithm checks
if there is an exception for that set of input attributes, or a
subset of it, determining the protected attribute (lines 18-19).
Again, if the norm is finally considered to be violated, a new
inconsequential violation is created (line 21). As before, the
algorithm will determine later on if that violation is actually
inconsequential or not.

c) Indirect discrimination: The algorithm checks for
indirect discrimination in lines 25-39. The algorithm starts by
checking for each indirect norm whether there is an exception
to it (line 26). If there is not, it checks if the indirect norm is
violated (line 27). To determine if an indirect norm is violated
the dataset DS is used as a representative sample to calculate
probabilities associated to each outcome and protected group
8. For each indirect norm that is violated, a new violation
is created (line 28). As stated in Remark 2, if there are
inconsequential violations of explicit norms related to that
protected attribute, these are converted into consequential ones
(lines 29-32). The violation of the indirect norm associated to
a protected attribute demonstrates that decisions are having
a disproportionate impact based on that protected attribute.
Similarly, if there are inconsequential violations of implicit
norms related to that protected attribute, these are converted
into consequential ones (lines 33-36).

d) Discrimination Report: Finally, the algorithm outputs
the list of inconsequential and consequential violations found.
Note that the discrimination report will contain not only
the information about norm violations (if any), but also the
information about the exceptions considered in its analysis
and the level of allowed disproportion specified by the user.

e) Complexity: The complexity of the algorithm to attest
digital discrimination is determined by the size of the biggest
norm set (or exception set). In this case, the complexity is
given by O(|P| × DP × |DO|). This assumes that the norm
violation checks are performed offline and can be retrieved in
constant time. Section VI discusses different methods to check
compliance of implicit and indirect norms (note checking com-
pliance of explicit norms equates to checking set membership).

V. CASE STUDIES

In this section, we illustrate the performance of our digi-
tal discrimination attesting algorithm using three well-known

7Different statistical methods can be used to determine if there is a
correlation between input attributes and protected attributes. Refer to Section
VI for more details.

8Different statistical methods can be used to determine the probability of
obtaining an outcome value for a particular protected group. Refer to Section
VI for more details.

Algorithm 1: Digital Discrimination Attesting
1 DiscriminationAttesting (P, I, O,DS,E, x)

inputs : A set of protect attributes P
A set of input attributes I
An output attribute O
A dataset DS
A collection of exceptions (EE , EI , ED)
x ∈ [0, 1] a constant representing the

disproportion allowed
output: A collection of violated norms (VE , VI , VD)

A collection of norms that have been violated
inconsequentially (ID, II)

2 VE ← ∅
3 VI ← ∅
4 VD ← ∅
5 IE ← ∅
6 II ← ∅
7 (NE , NI , ND)← GenerateNorms(P, I, O)

// Attesting Explicit Discrimination
8 foreach F(Pi ∈ I) ∈ NE do
9 if 6 ∃P(Pi ∈ I) ∈ EE then

10 if Pi ∈ I then
11 IE ← IE ∪ {F(Pi ∈ I)}
12 NI ← NI \ {F(Pi is a function of I)}
13 end
14 end
15 end

// Attesting Implicit Discrimination
16 foreach F(Pi is a function of I) ∈ NI do
17 if 6 ∃P(Pi ∈ I) ∈ EE then
18 foreach I ⊆ I : I is the minimal set

such that Pi is a function of I do
19 if 6 ∃P(Pi is a function of I ′) : I ⊆ I ′ then
20 II ← II ∪ {F(Pi is a function of I)}
21 end
22 end
23 end
24 end

// Attesting Indirect Discrimination
25 foreach F(Pi ↓po) ∈ ND do
26 if ¬∃P(Pi ↓po) ∈ ED then
27 if ∃p′ ∈ DPi :

Pr(O=o|Pi=p)
Pr(O=o|Pi=p′) < x then

28 VD ← VD ∪ {F(Pi ↓po)}
29 if F(Pi ∈ I) ∈ IE then
30 IE ← IE \ {F(Pi ∈ I)}
31 VE ← VE ∪ {F(Pi ∈ I)}
32 end
33 if F(Pi is a function of I) ∈ II then
34 II ← II \ {F(Pi is a function of I)}
35 VI ← VI ∪ {F(Pi is a function of I)}
36 end
37 end
38 end
39 end
40 V ← (VE , VI , VD)
41 I ← (IE , II)
42 return V,I
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datasets: the German dataset9, the Adult dataset10, and the
COMPAS Recidivism dataset11.

In our implementation12, we have used the sklearn library
for normalised mutual information [13] to detect violations of
implicit discrimination norms. The normalised mutual infor-
mation (NMI) is a measure of the mutual dependence between
the two variables that quantifies the ”amount of information”
obtained about one random variable through observing the
other random variable. The NMI returns 0 when there is no
mutual information between the variables tested, and 1 when
there exist a perfect correlation. In the implementation, the
minimum coefficient for mutual information can be config-
ured; we used a minimum threshold of 0.6 in the experiments
below as indicative of a strong correlation between input and
protected attributes. To detect indirect discrimination we have
set to 0.8 the allowed disproportion ratio, inspired by the
US fourth-fifth rule from the Equal Employment Opportunity
Commission (1978), a threshold commonly used to detect
disparate impact in domains like employee selection proce-
dures13; and we have calculated the probabilities using the
frequencies in the dataset as a representative sample. Also,
due to the small size of the datasets used in the case studies,
we have used the Chi-Squared Test [14] to determine those
violations of indirect discrimination norms that are statistically
significant (p-value < 0.05). To discretise numeric values,
we have used quantile discretisation, which is a well-known
method for discretising continuous variables in ML [15].

A. Adult Dataset

The Adult dataset uses 14 attributes to determine if a
given person makes over 50K a year. The attributes include
education, work class, age, sex, race, and occupation, among
others. The dataset contains 48842 instances.

Let us assume that the gender, age, native country and race
are protected and that the other attributes are the inputs of a
ML system.

I = {workclass, education, education num, occupation,

capital gain, capital loss, hours per week, fnlwgt}

Note attribute education num represents the number of edu-
cation years, and fnlwgt represents the number of people the
census believes the entry represents.

P = {age, gender, native country, relationship,

marital status, race}

O = income

where income = {<= 50k,> 50k}. In this case age is related
to experience and seniority so it is considered lawful to use
age to discriminate:

P(age ↓[0,16)<=50k),P(age ↓[0,16)>50k ),

9https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
10https://archive.ics.uci.edu/ml/datasets/adult
11https://github.com/propublica/compas-analysis/
12Available on Github at https://github.com/xfold/

NormativeApproachToDiscrimination
13http://www.uniformguidelines.com

...

P(age ↓[75,99)<=50k),P(age ↓[75,99)>50k )

After executing our algorithm several violations of indirect
discrimination norms are detected. For example:

F gender ↓female
>50k

F race ↓black>50k

F native country ↓Nicaragua
>50k

F marital status ↓Married−civ−spouse
<=50k

The first violation above indicates that females have a dis-
proportionate lower probability of being classified as making
more than 50k when compared with males. In particular, the
dataset contains 21790 male instances out of which 6662
are classified as high income (i.e., the probability of income
greater than 50k for male is 30%), whereas only 1179 female
records out of 10771 are classified as high income (i.e., the
probability of income greater than 50k for female is 11%). In
this case 11% < 0.8×30% and it is considered disproportion-
ate. The other violations above indicate that black people and
nicaraguans have a disproportionate lower probability of being
classified as making more than 50k when compared with other
groups, in accordance with previous reports of discrimination
in the dataset [16]. On the contrary, married people are
significantly less likely of being classified as making less
than 50k. Found violations are associated with particular
values of gender, native country, relationship and marital-status
attributes. This indicates that the decision making process may
have a disparate impact on people belonging to particular
protected groups.

B. German Credit Dataset

The German dataset contains information about people who
ask for a credit. Each person is classified as good or bad credit
risks. This is the inspiration for the small example contained
in section III-C. In particular, the full dataset uses 20 attributes
to represent each person, which include information like age,
employment status, gender and personal status of the applicant;
and the duration, amount and purpose of the credit. The dataset
contains 1000 instances.

Let’s us assume an ML system where age, personal status
and sex, and being a foreign worker are considered protected
attributes, and the rest of the features in the German dataset
are considered inputs:

I = {job, housing, savings, .., amount, duration, purpose}

P = {age, personal status and sex, foreign worker}

O = risk

where risk = {high, low}. In this case, it is considered lawful
to use age to discriminate credit risks as people are less likely
to repay credits as they become older, hence, we consider age
as an exception:

P(age ↓[0,16)good ),P(age ↓[0,16)bad ),

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/propublica/compas-analysis/
https://github.com/xfold/NormativeApproachToDiscrimination
https://github.com/xfold/NormativeApproachToDiscrimination
http://www.uniformguidelines.com
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...

P(age ↓[75,99)good ),P(age ↓[75,99)bad )

After executing our algorithm, the following violation is
detected:

F(foreign worker ↓yesgood)

The violation means that foreign workers have a dispropor-
tionate low probability of being considered a good credit risk.

C. COMPAS Recidivism Dataset

The COMPAS (Correctional Offender Management Profil-
ing for Alternative Sanctions) algorithm is a popular commer-
cial algorithm used by judges and parole officers for scoring
criminal defendant’s likelihood of re-offending (recidivism),
and is increasingly being used in pretrial and sentencing. The
dataset has been widely used to study automatic decision
systems related with recidivism [17], and it was found to
be strongly biased against blacks [18]. The original dataset
contains 28 columns which correspond to the variables used by
the COMPAS algorithm to make its predictions, including data
regarding sex, ethnicity, and marital status (among others),
together with the final assessment made by the algorithm, the
estimated recidivism score.

In the analysis below, we focus on pretrial instances and
assessments about the risk of recidivism and risk of violence,
following the analysis performed by ProPublica14, considering
sex and ethnicity as protected variables:

I = {marital status, legal status, . . .}

P = {sex, ethnicity}

O = recidivism score

where recidivism score = {low,medium, high}. After
executing our algorithm, the following violation is detected:

F(ethnicity ↓African−American
low )

The violation means that African-Americans have a dispro-
portionate low probability of being considered with a low
recidivism score when compared with other sub-populations,
coinciding with the results reported in [18]. The reported
bias becomes especially apparent when comparing African-
American with Caucasian ethnicities, with African-Americans
being consistently tagged by the COMPAS algorithm with
higher and medium recidivism scores way more frequently
than the Caucasian sub-population.

14https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm

VI. RELATED WORK

Recent research has addressed the problem of discrimination
and bias in machine learning. These novel tools are most of the
time aimed at technical users capable of interpreting different
statistical results, programming, etc. Our algorithm is, on the
contrary, aimed at non-technical users (albeit they may be do-
main experts). The notion of norm and exception is a suitable
abstraction to represent the results these statistical analysis to
non-technical users. For example, IBM’s AI Fairness 360 Open
Source Toolkit15 and Google’s What-if-tool16, are probably
two of the most comprehensive toolkits offering a great
choice of bias metrics. However, its intended audience are
technical users with previous knowledge of machine learning
and statistics. Indeed, there are a large number of fairness
metrics that may be appropriate for a given application [6],
[19]. Also it is difficult for non-technical users to represent
domain knowledge in a way that it can be taken into account
by the metrics.

Closely related to our work is [20], where the authors
proposed to infer classification rules from a given dataset and
to detect those classification rules that can cause direct and
indirect discrimination. They also allow for domain knowl-
edge, expressed as rules, to be taken into account. Despite the
similarities with this work, our proposal has two additional,
potential benefits: it doesn’t assume that meaningful rules can
be inferred, note that it may be impossible to infer rules from
complex decision-making algorithms; and it hides to the user
the complexities of the analysis process using the notions of
norms and exceptions.

a) Implicit Discrimination. : Tramèr et al. [21] developed
a methodology and toolkit combining different metrics for
discovering associations, or proxies, between attributes. In
particular, they studied different metrics that can be used to
analyse the relationship between protected attributes and input
attributes such as the Pearson correlation, which only works
for scalar attributes linearly related; and Mutual Information,
which can be applied to categorical attributes.

b) Indirect Discrimination. : There have been many
different metrics proposed to measure indirect discrimination
both in the raw data used for training as well as the decisions
made by the systems. We refer the reader to [22] for an
extensive survey in the topic. This survey also discusses other
traditional statistical measures that could be applied to measure
discrimination. In particular, the authors classify the metrics
into: statistical tests, which are used to compute and calculate
whether there is discrimination in a dataset; absolute measures,
which are used to calculate the magnitude of the discrimi-
nation present in a dataset; conditional measures, which are
used to capture the extent to which the differences between
groups are due to protected attributes or other characteristics
of individuals; and structural measures, which are used to
identify, for each individual in the dataset, whether they are
being discriminated. Next, we also give some more detailed
examples of work on indirect discrimination.

15https://aif360.mybluemix.net
16https://pair-code.github.io/what-if-tool/

https://aif360.mybluemix.net
https://pair-code.github.io/what-if-tool/
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In [23], the authors proposed metrics to determine the extent
of influence that the inputs to an automated decision-making
system may have on its outputs. Although this paper is not
intended to detect indirect discrimination per se, the measures
the authors of the paper propose have the potential to increase
the transparency of decisions made by opaque machine learn-
ing algorithms. This, in turn, may provide useful information
for the detection of discrimination[24]. Other works have
also attempted to propose metrics to capture discrimination in
particular applications of Machine Learning. For instance, one
example is the work that has attempted to detect discrimination
in the applications of ML to Natural Language processing [25],
[26], [27]. In these works, the approach followed is to explore
the relationships between the words learned by the ML model
to detect whether particular words or meanings are more
associated to particular individuals based on their personal
characteristics.

In addition to the work on detecting discrimination, there is
also work focusing on making ML models fairer to start with.
For instance, in [28], they test for fairness based on a similarity
measure between individuals. For fairness to hold, the distance
between the distributions of outputs for individuals should at
most be the distance between the two individuals as estimated
by means of the similarity metric. In [29], the authors first
gather human judgments about the different protected features
in the context of two real-world scenarios using Amazon
Mechanical Turk. Using the set of human-assessed protected
features, they compare the accuracy of different classifiers to
test the trade-off between process fairness and output accuracy.
In [30], they assume fairness can be attested by means of
a directed causal graph, in which attributes are presented as
nodes joined by edges which, by means of equations, represent
the relations between attributes. Finally, the set of violations
presented in our approach could also be extended with recent
advances in explainable AI. One example is the post-hoc
approach of Local Interpretable Model-Agnostic Explanations
(LIME), which makes use of adversarial learning to generate
counterfactual explanations [31].

VII. CONCLUSION

Digital discrimination is becoming a significant problem
as more decisions are delegated to ML systems. Indeed,
recent legislation and citizen initiatives are demanding more
transparency about the way in which decisions are made using
their data. In response to that, several metrics and tools have
been proposed to analyse biases in ML systems. However,
these tools often require expert ML or statistical knowledge
that many users of ML systems do not necessarily possess.

In this paper, we proposed to use normative notions as
an abstraction that may be more easily understood by non-
technical users; simplifying the representation of the potential
discrimination risks and the input of domain knowledge. Our
digital discrimination attesting algorithm not only checks if
ML systems are potentially discriminatory but also makes
explicit under which assumptions these systems are discrimi-
nation free.

As future work, we plan to: i) investigate different metrics
to be used in the attesting algorithm and to identify the most

usable ones; ii) conduct user studies to further refine the way
in which norms could be accessed and influenced by non-
technical users to help them understand discrimination risks;
and iii) explore interfaces to allow non-technical users to easily
introduce exceptions and explanations to communicate the
algorithm outputs to these users.
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VIII. APPENDIX

A. Compound Discrimination

Compound discrimination is discrimination based on a
combination of protected attributes. In that case of compound
discrimination the previous discrimination norms are rewritten
as follows:
• Direct.

– Explicit. There is no need to change the defini-
tion of explicit discrimination norms to account for
compound discrimination, since the prohibition to
include a set of protected attributes in the input can
be represented by a set of explicit norms referring to
each individual protected attribute.

– Implicit. There is no need to change the definition
of implicit discrimination norms to account for com-
pound discrimination, since the prohibition to have
a set of protected attributes as a function of input
attributes can be represented by a set of implicit
norms referring to each individual protected attribute.

• Indirect (disparate impact). In this case the norms need
to represent that for a particular combination of protected
attribute values p1, ..., pk, where each pi ∈ Pi; the
probability of a given outcome o ∈ Do is x times lower

than for values of the same protected attributes with the
highest probability:

∀{P1, ..., Pk} ⊆ P, (p1, ..., pk) ∈DP1 × ...×DPk
, o ∈ DO :

F({P1, ..., Pk} ↓(p1,...,pk)
o )

where {P1, ..., Pk} ↓(p1,...,pk)
o denotes:

Pr(O = o|P1 = p1, ..., Pk = pk) < x×max
∀{(p′

1,...,p
′
k)}∈DP1

×...×DPk

Pr(O = o|P1 = p′1, ..., Pk = p′k)

B. Discrimination in Classification Process

In this paper we have focused on digital discrimination;
i.e., discriminatory acts facilitated by the automatic decisions
made by a ML system. However, it is possible to consider
the discrimination in the algorithm itself. This is also know
as disparate mistreatment [5]. In those cases it is necessary
consider not only the outcome of the algorithm but also the
ground-truth labels for the individuals, denoted by G. In those
cases, it could be possible to formalise that for no particular
value of a protected attribute the ML system can perform
significantly worse than for the others groups. This equals to
state that for a particular protected attribute value p ∈ DPi

, the
probability of the ML assigning the correct outcome (O = g)
is x times lower than that of the values of the same protected
attribute P with the highest probability. Formally, we can
define the norm prohibiting disparate treatment as:

∀Pi ∈ P, p ∈ DPi
, g ∈ DG : F(Pi ↑pg)

where Pi ↑pg represents:

Pr(O = g|Pi = p,G = g) < x× max
∀p′∈DPi

Pr(O = g|Pi = p′, G = g)

Pr(O = g|Pi = p,G = g) stands for probability that the
algorithm outcome O is equal to the ground-truth label g for
an individual with protected attribute Pi = p.

https://people.mpi-sws.org/~nghlaca/papers/fair_feature_selection.pdf
https://people.mpi-sws.org/~nghlaca/papers/fair_feature_selection.pdf
https://arxiv.org/pdf/1902.01876.pdf
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