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Membership-Function-Dependent Control Design
and Stability Analysis of Interval Type-2

Sampled-Data Fuzzy-Model-Based Control System
Ming Chen, Hak-Keung Lam, Fellow, IEEE, Bo Xiao, Member, IEEE and Chengbin Xuan

Abstract—This paper investigates the design and stability
analysis of the interval type-2 (IT2) sampled-data (SD) fuzzy-
model-based (FMB) control system with the optimal guaranteed
cost performance. An IT2 Takagi–Sugeno (T–S) fuzzy model
is applied to describe the dynamics of the nonlinear systems
where the parameter uncertainties are captured by the lower and
upper membership functions. To conduct the stability analysis
for the SD FMB control system, a looped-functional approach
taking the advantage of the information about the sampling
periods is employed. Because of the SD control strategy, the
state will be sampled at each sampling instant and the control
signal generated by the IT2SD fuzzy controller will be kept
by the zero-order holder (ZOH) during the sampling period,
which will result in mismatched membership grades between
IT2 T-S fuzzy model and IT2SD fuzzy controller that leads to
the complexity in carrying out stability analysis. Thanks to the
imperfect premise matching (IPM) concept, which allows the
difference on the number of rules and the premise membership
functions between model and controller, the design of the IT2SD
fuzzy controller can be more flexible. To further relax the stability
conditions and minimize the upper bound of the guaranteed
cost index, the membership-function-dependent (MFD) stability
analysis approach which can make use of the features of the
IT2 membership functions is adopted. The performance of the
control system can also be adjusted through the choice of the
weighting matrices in the cost function. The stability conditions
building on the Lyapunov stability theory and the performance
conditions building on the concept of the guaranteed cost control
in the shape of linear matrix inequalities (LMIs) are established
to assure the system stability and acquire the optimal guaranteed
cost performance. The proposed IT2SDFMB control design is
tested on the inverted pendulum system and the simulation results
verify the effectiveness of the proposed approach.

Index Terms—Sampled-data (SD) control, interval type-2 (IT2)
fuzzy control, looped-functional approach, membership-function-
dependent (MFD) stability analysis approach, linear matrix
inequalities (LMIs).

I. INTRODUCTION

NONLINEARITIES are inevitable in various real-world
systems, such as mass-spring-damping systems, teleop-

eration systems, active magnetic bearing systems [1]–[5]. To
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handle the control problem of nonlinear systems which are
ill-defined, the fuzzy control approaches have been success-
fully applied during the past years [6]. Among fuzzy control
approaches, the fuzzy-model-based (FMB) control approach
attracts much attention [7]. In the FMB control approach,
Takagi-Sugeno (T-S) fuzzy model is an important tool which
supports the stability analysis and control of nonlinear systems
due to the favourable modeling property [8] and [9]. The
type-1 fuzzy model has been the mainstream model in the
fuzzy control, but the lack of the ability to tackle uncertainties
directly is a drawback [10] and [11]. Under the circumstance,
more and more attention is paid to type-2 fuzzy model which
can capture uncertainties directly by the type-2 fuzzy sets
[12]. However, the general type-2 fuzzy sets will result in
the complex design process and high computational expense.
Therefore, the interval type-2 (IT2) fuzzy sets which are the
generalization of type-1 fuzzy sets and interval-valued fuzzy
sets [13] are applied. The IT2 fuzzy model not only retains
the ability of capturing uncertainties but also decreases the
computational expense compared with the general type-2 fuzzy
sets [14]. The work in [15] was the first paper proposing
the IT2 fuzzy model, stability analysis and control synthesis
techniques in IT2 FMB control framework. Since then, it has
drawn the attention from the fuzzy control community and led
to many follow-up works regarding different techniques and
control methodologies [7] and [16].

Thanks to the fast renovation of the computer science and
digital circuit technologies, control strategies are able to be
operated on low-cost digital computer or microcontrollers that
turns the control system into a sampled-data (SD) control
system. The control signal of the SD control system is
held by the zero-order holder (ZOH) during the sampling
period leading to discontinuities of the control signal which
complicates the system dynamics and increases the difficulty
in the analysis [17]. To implement the control synthesis and
stability analysis for the SD control system, a variety of
approaches have been put forward and applied, such as input
delay approach [18], discretization approach [19], equivalent
jump system [20] and looped-functional approach [21]. In
recent years, increasing attention has been paid to looped-
functional approach as it is able to take the information of
the sampling period into the consideration [22]. Furthermore,
the limitation on the positivity of the functional is alleviated
by the looped-functional approach because the functional is
only demanded to be positive definite at each sampling instant
[23]–[26]. Due to its prominent properties, looped-functional
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approach has been broadly applied in the SD control of fuzzy
systems. In [27], looped-functional approach is applied to the
investigation on the stabilization problem of the dissipativity-
based T-S fuzzy system with the memory SD control. [28]
applies the looped-functional approach to the investigation
on the stability problem of the T-S fuzzy system where
there exists the time delay under the SD control. In [29],
fuzzy control approach and looped-functional approach are
employed for investigating the SD control problem of the
semi-Markovin jump systems and the condition of actuator
saturation is included. Nevertheless, the control gain of each
rule in these researches are often same or very close, which
indicates the effect of fuzzy control approach is little and
control design results are conservative.

To alleviate the conservative system analysis and control
design results, parallel distributed compensation (PDC) tech-
nique is often utilized in the traditional analysis [30] and
[31]. However, only sampled state variables can be observed
by the SD fuzzy controller, which will lead to mismatched
membership grades between fuzzy model and fuzzy con-
troller, resulting in the inapplicability of the PDC technique
that demands the number of rules and premise membership
functions of the fuzzy model and fuzzy controller to be the
same [7]. Fortunately, the problem of mismatched membership
functions in SD FMB control system has been first handled in
[32] and then the later proposed imperfect premising match-
ing (IPM) concept [33] and membership-function-dependent
(MFD) analysis techniques [7], [17] and [34] offer further idea
to deal with this class of FMB control systems.

In addition to system stability, it is essential to take the con-
trol performance into account as well [35]. In [36], guaranteed
cost control (GCC) was first proposed for the problem. The
proposed GCC can not only achieve the system stabilization
but also offer an upper bound of the given performance index.
GCC approach was employed in [37] for time-varying delayed
nonlinear systems. In [38], GCC approach was applied to
discrete-time nonlinear systems with polytopic uncertainties.
In [39], MFD approach and GCC approach were considered in
the stability analysis of FMB control systems. [40] proposed a
robust guaranteed cost SD control method for time-delay T-S
fuzzy systems with uncertainties. It is worth noting that GCC
approach used in some works has to know the initial states
in advance, but this paper will optimize the guaranteed cost
performance without relying on initial states [41]–[43].

On the basis of aforementioned contents, this paper in-
vestigates problems on system stability and guaranteed cost
performance of an interval type-2 sampled-data fuzzy-model-
based (IT2SDFMB) control system. The minimal upper bound
of the guaranteed cost index will be obtained independent
of the initial states. The IT2 T-S fuzzy model is utilized to
represent nonlinear systems subject to parameter uncertainties.
A looped-functional approach which is able to make use
of the information related to sampling periods is applied to
the stability analysis. Although the PDC technique is not
applicable due to the mismatch issue, the design flexibil-
ity can be improved with the introduction of IPM concept
which permits to freely choose the number of rules and the
premise membership functions [33]. In addition, the MFD

stability analysis approach which includes the information
of membership functions into the stability analysis will be
employed to further achieve less conservative results and
lower the upper bound of the guaranteed cost index. However,
the membership functions of the SD fuzzy controller and
the fuzzy model might not correspond one by one in the
SD control system, which is often not perceived and might
affect the results of the stability analysis. In [17], the relation
between the sampled states and continuous states is presented
to circumvent the problem. Also, the control performance can
be adjusted by choosing the weighting matrices in the cost
function. Stability conditions based on the Lyapunov stability
theory and performance conditions based on the concept of
GCC in the shape of LMIs are derived for the assurance on
system stability and the optimal guaranteed cost performance.

The main contributions of the paper are shown as below:

1) An IT2SD fuzzy controller is proposed to solve the
stabilization problem of the nonlinear systems subject to
parameter uncertainties based on FMB control design.

2) The guaranteed cost performance is taken into account
to optimize the control performance. The minimal upper
bound of the guaranteed cost index is acquired without
relying on the initial states.

3) A looped-functional approach which can make use of the
information about the sampling periods is employed to
conduct the stability analysis for the SD control system.
The concept of IPM which allows the free selection
of the number of rules and the premise membership
functions is introduced for a flexible design of the IT2SD
fuzzy controller. With the utilization of the MFD stability
analysis approach, further relaxed results and lower upper
bound of the guaranteed cost index can be acquired.

The rest of the paper is organized as follows. IT2 T-
S fuzzy model, IT2SD fuzzy controller, cost function and
the lemma are shown in Section II. Section III presents the
stability analysis of the IT2SDFMB control system with the
consideration of the guaranteed cost performance. Section IV
verifies the performance of the IT2SDFMB control system by
simulations. Section V draws a conclusion.

Notations: Superscript “−1” represents the inverse of a
matrix and superscript “T ” represents the matrix transposi-
tion, “Sym{X}” stands for X+XT , “∗” indicates symmetric
elements of a symmetric matrix, “diag{· · ·}” indicates the
diagonal matrix of which terms in the bracket are diagonal,
“In” stands for the n×n identity matrix and “0m×n” stands for
the m×n zero matrix, “|x|” denotes the absolute value of x.

II. PRELIMINARIES

The IT2 T-S fuzzy model, IT2SD fuzzy controller, cost
function and lemmas which will be used are shown as below.

A. IT2 T-S Fuzzy Model

An IT2 T-S fuzzy model [10] consisting of p rules is applied
to represent the nonlinear system. The ith rule of the IT2 T-S
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fuzzy model where the antecedents include IT2 fuzzy sets and
the consequent is a linear dynamical system is as below:

Rule i: IF f 1(x(t)) is M̃i
1 AND . . . AND f Ψ(x(t)) is M̃i

Ψ,

THEN ẋ(t) = Aix(t)+Biu(t)

where M̃i
α means the IT2 fuzzy set of the ith rule corresponding

to the f α(x(t)), i = 1, 2, 3, . . . , p and α = 1, 2, 3, . . . , Ψ, i
and α are always positive; x(t) = [x1(t) x2(t) x3(t) · · · xn(t)]T

denotes the state vector; u(t) = [u1(t) u2(t) u3(t) · · · um(t)]T

denotes the input vector; Ai is the known system matrix and
Bi is the known input matrix. The firing strength of the ith
rule is in the following interval sets:

w̃i(x(t)) ∈ [wi(x(t)), wi(x(t))], i = 1, 2, . . . , p (1)

where wi(x(t)) =
∏

Ψ

α=1 µ
M̃i

α

( f α(x(t))), wi(x(t)) =∏
Ψ

α=1 µM̃i
α
( f α(x(t))), µ

M̃i
α

( f α(x(t))) indicates the
lower grade of membership and µM̃i

α
( f α(x(t)))

indicates the upper grade of membership that satisfy
0 ≤ µ

M̃i
α

( f α(x(t))) ≤ µM̃i
α
( f α(x(t))) ≤ 1, and then

0 ≤ wi(x(t)) ≤ wi(x(t)) ≤ 1. Furthermore, w̃i(x(t)) is
defined as below [10] and [44]:

w̃i(x(t)) = λ i(x(t))wi(x(t))+λ i(x(t))wi(x(t))≥ 0, for ∀i
(2)

where 0≤ λ i(x(t))≤ 1, 0≤ λ i(x(t))≤ 1, λ i(x(t))+λ i(x(t))=
1, for ∀i, λ i(x(t)) and λ i(x(t)) are nonlinear functions which
exist but not necessarily to be known.

The IT2 T-S fuzzy model is shown as below:

ẋ(t) =
p∑

i=1

w̃i(x(t))
(

Aix(t)+Biu(t)
)
, (3)

where
∑p

i=1 w̃i(x(t)) = 1.

B. IT2SD Fuzzy Controller

An IT2SD fuzzy controller [10] having c rules is applied to
handle the nonlinear system. The jth rule of the IT2SD fuzzy
controller is described as below:

Rule j: IF g1(x(tk)) is Ñ j
1 AND . . . AND gΩ(x(tk)) is Ñ j

Ω
,

THEN u(t) = G jx(tk)

where Ñ j
β

means the IT2 fuzzy set of the jth rule corresponding
to the gβ (x(tk)), j = 1, 2, 3, . . . , c, k = 0, 1, 2, . . . , ∞ and
β = 1, 2, 3, . . . , Ω, c and Ω are always positive. G j denotes
the constant feedback gains to be acquired. The firing strength
of the jth rule is in the following interval sets:

m̃ j(x(tk)) ∈ [m j(x(tk)), m j(x(tk))], j = 1, 2, . . . , c (4)

where m j(x(tk)) =
∏

Ω

β=1 µ
Ñ j

β

(gβ (x(tk))), m j(x(tk)) =∏
Ω

β=1 µ Ñ j
β

(gβ (x(tk))), µ
Ñ j

β

(gβ (x(tk))) indicates the

lower grade of membership and µ Ñ j
β

(gβ (x(tk)))
indicates the upper grade of membership that satisfy
0 ≤ µ

Ñ j
β

(gβ (x(tk))) ≤ µ Ñ j
β

(gβ (x(tk))) ≤ 1, and then

0 ≤ m j(x(tk)) ≤ m j(x(tk)) ≤ 1. Furthermore, m̃ j(x(tk))
is defined as below:

m̃ j(x(tk)) =
κ j(x(tk))m j(x(tk))+κ j(x(tk))m j(x(tk))∑c

l=1(κ l(x(tk))ml(x(tk))+κ l(x(tk))ml(x(tk)))
≥ 0, for ∀ j

(5)

where 0 ≤ κ j(x(tk)) ≤ 1, 0 ≤ κ j(x(tk)) ≤ 1, κ j(x(tk)) +
κ j(x(tk)) = 1, for ∀ j, κ j(x(tk)) and κ j(x(tk)) are predefined
functions.

The inferred IT2SD fuzzy controller is shown as below:

u(t) =
c∑

j=1

m̃ j(x(tk))G jx(tk), tk ≤ t < tk+1 (6)

where
∑c

j=1 m̃ j(x(tk)) = 1, and hs = tk+1− tk stands for the
sampling period.

C. Cost Function

The following index is introduced to evaluate the control
performance in a quantitative way [32] and [45]:

J =

∫
∞

t0

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
dt, (7)

where J1, J2 and J3 are weighting matrices. J1 = JT
1 > 0,

J3 = JT
3 > 0 and

[
J1 J2
∗ J3

]
> 0, which are predefined.

Lemma 1: [46] Let x: [α, β ] be a differentiable signal. For
the vector ς , matrices Z=ZT> 0, N1 and N2, the inequality
holds as below:

−
∫

β

α

ẋT (s)Zẋ(s)ds≤ (β −α)ςT
(

N1Z−1NT
1 +

(β −α)2

3
N2Z−1NT

2

)
ς +2ς

T
(

N1

(
x(β )−x(α)

)
−2N2

∫
β

α

x(s)ds
)
+2(β −α)ςT N2

(
x(β )+x(α)

)
.

(8)

Schur Complement Lemma: [8] and [47] For the matrices
Q=QT , R=RT> 0 and S, the inequality Q−ST R−1S > 0 is

equivalent to
[

Q ST

∗ R

]
> 0.

III. STABILITY ANALYSIS

From (3) and (6), the closed-loop system can be acquired:

ẋ(t) =
p∑

i=1

c∑
j=1

w̃i(x(t))m̃ j(x(tk))
(

Aix(t)+BiG jx(tk)
)
. (9)

In this subsection, stability conditions and performance con-
ditions in the shape of LMIs are derived to assure the stability.
The following notations are used to simplify representations:

ς(t) =
[

xT (t) ẋT (t) xT (tk)
∫ t

tk
xT (s)ds

]T
,

ei =
[

0n×(i−1)n In 0n×(4−i)n
]
, i = 1, 2, 3, 4.

Theorem 1: Suppose G j in (6) has been known beforehand.
For a given constant sampling period hs and scalars κr (r = 1,
. . . , 3), if there exist matrices P = PT > 0, R = RT , S1 = ST

1 ,
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S2, Z = ZT > 0, Nw,i j, X̃, Ti jl = TT
i jl > 0, Ti jl = TT

i jl > 0,
(w = 1, 2; i = 1, . . . , p; j = 1, . . . , c, l = 1, . . . , L), such
that satisfying LMIs shown as below:[

Φ1,i jl +hsΦ2,i j Λ1
∗ Λ2

]
< 0, (10)

 Φ1,i jl +hsΦ3,i j hsNi j Λ1
∗ −hsZ 02n×3n
∗ ∗ Λ2

< 0, (11)

where Φ1,i jl = Ξ1 + Ξ3,1 + Ξ4,4,i j + Ξ6,i j + Ti jl −
Ti jl −

∑p
r=1
∑c

s=1 νrslTrsl +
∑p

r=1
∑c

s=1 νrslTrsl ,
Φ2,i j = Ξ2,1 + Ξ3,2 + Ξ4,1, Φ3,i j = Ξ2,2 + Ξ4,3,i j,
Ξ1 = Sym

{
eT

2 Pe1
}

, Ξ2,1 = eT
3 Re3, Ξ2,2 = −eT

3 Re3,
Ξ3,1 = −

[
eT

1 − eT
3 eT

4
]

S1
[

eT
1 − eT

3 eT
4
]T −

Sym
{[

eT
1 − eT

3 eT
4
]

S2e3

}
, Ξ3,2 =

Sym
{[

eT
1 − eT

3 eT
4
]

S1
[

eT
2 eT

1
]T

+
[

eT
2 eT

1
]

S2e3

}
,

Ξ4,1 = eT
2 Ze2, Ξ4,3,i j = Sym

{
N2,i j(e1 + e3)

}
,

Ξ4,4,i j = Sym
{

N1,i j (e1− e3) − 2N2,i je4

}
, Ξ6,i j =

Sym
{

U(Aie1 +BiG je3− e2)
}

, U = κ1eT
1 X̃ + κ2eT

2 X̃ +

κ3eT
3 X̃, Ni j =

[
N1,i j hsN2,i j

]
, Z = diag{Z, 3Z}, Λ1 =[

eT
1 J1 + eT

3 GT
j JT

2 eT
1 J2 + eT

3 GT
j J3

]
, Λ2 = −

[
J1 J2
∗ J3

]
,

the closed-loop system (9) is asymptotically stable. In
addition, (7) satisfies the inequality shown as below:

J < xT (t0)Px(t0), (12)

Proof: A quadratic Lyapunov function and looped-
functionals are constructed as below:

V (t) =
4∑

i=1

Vi(t), t ∈ [tk, tk+1), (13)

V1(t) = xT (t)Px(t), (14)

V2(t) = (t− tk)(tk+1− t)xT (tk)Rx(tk), (15)

V3(t) = (tk+1− t)
[

x(t)−x(tk)∫ t
tk

x(s)ds

]T

×
(

S1

[
x(t)−x(tk)∫ t

tk
x(s)ds

]
+2S2x(tk)

)
,

(16)

V4(t) = (tk+1− t)
∫ t

tk
ẋT (s)Zẋ(s)ds. (17)

V̇i(t) (i = 1, 2, 3, 4) can be obtained as below:

V̇1(t) = ẋT (t)Px(t)+xT (t)Pẋ(t)
= Sym

{
ẋT (t)Px(t)

}
= ς

T (t)Ξ1ς(t).

(18)

V̇2(t) = (tk+1− t)xT (tk)Rx(tk)− (t− tk)xT (tk)Rx(tk)

= ς
T (t)

(
(tk+1− t)Ξ2,1 +(t− tk)Ξ2,2

)
ς(t),

(19)

V̇3(t) =−
[

x(t)−x(tk)∫ t
tk

x(s)ds

]T (
S1

[
x(t)−x(tk)∫ t

tk
x(s)ds

]
+2S2x(tk)

)
+2(tk+1− t)

([
x(t)−x(tk)∫ t

tk
x(s)ds

]T

S1

[
ẋ(t)
x(t)

]
+

[
ẋ(t)
x(t)

]T

S2x(tk)
)

= ς
T (t)

(
Ξ3,1 +(tk+1− t)Ξ3,2

)
ς(t).

(20)

From Lemma 1, the following can be acquired:

V̇4(t) = (tk+1− t)ẋT (t)Zẋ(t)−
∫ t

tk
ẋT (s)Zẋ(s)ds

≤
p∑

i=1

c∑
j=1

p∑
v=1

c∑
h=1

w̃i(x(t))m̃ j(x(tk))w̃v(x(t))m̃h(x(tk))ςT (t)
(

(tk+1− t)Ξ4,1 +(t− tk)
(
Ξ4,2,i jvh +Ξ4,3,i j

)
+Ξ4,4,i j

)
ς(t),

(21)

where Ξ4,2,i jvh = N1,i jZ−1NT
1,vh +

h2
s

3 N2,i jZ−1NT
2,vh.

The following can be obtained based on the cost function:[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
= xT (t)J1x(t)+

c∑
j=1

m̃ j(x(tk))xT (tk)GT
j JT

2 x(t)

+

c∑
j=1

m̃ j(x(tk))xT (t)J2G jx(tk)

+

c∑
j=1

m̃ j(x(tk))xT (tk)GT
j J3

c∑
q=1

m̃q(x(tk))Gqx(tk)

=

c∑
j=1

c∑
q=1

m̃ j(x(tk))m̃q(x(tk))ςT (t)Ξ5, jqς(t),

(22)

where Ξ5, jq = eT
1 J1e1 + Sym{eT

1 J2G je3} + eT
3 GT

j J3Gqe3.
Based on (9), the equality shown as below holds

Γ = 2
p∑

i=1

c∑
j=1

w̃i(x(t))m̃ j(x(tk))ςT (t)U(Aix(t)+BiG jx(tk)− ẋ(t))

=

p∑
i=1

c∑
j=1

w̃i(x(t))m̃ j(x(tk))ςT (t)Ξ6,i jς(t) = 0,

(23)

where U = κ1eT
1 X̃+κ2eT

2 X̃+κ3eT
3 X̃.

In the paper, the MFD stability analysis approach is applied
to further relax stability conditions and reduce the upper bound
of the guaranteed cost index. Assume the modeling domain ϒ

is divided into L connected sub-domains ϒl , i.e., ϒ =
⋃L

l=1 ϒl .
Define ν i jl = wilm jl and ν i jl = wilm jl satisfying 0 ≤ ν i jl ≤
w̃i(x(t))m̃ j(x(tk))≤ ν i jl ≤ 1, where wil , wil denote the lower,
upper bounds for w̃i(x(t)) in the lth sub-domain and m jl , m jl
denote the lower, upper bounds for m̃ j(x(tk)) in the lth sub-
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domain. Through the usage of the ν i jl , ν i jl and slack matrices
Ti jl ≥ 0, Ti jl ≥ 0, the inequalities shown as below hold

L∑
l=1

p∑
i=1

c∑
j=1

(
ν i jl− w̃i(x(t))m̃ j(x(tk))

)
Ti jl ≥ 0, (24)

L∑
l=1

p∑
i=1

c∑
j=1

(
w̃i(x(t))m̃ j(x(tk))−ν i jl

)
Ti jl ≥ 0. (25)

Using (18)-(25) for t ∈ [tk, tk+1), it follows that

V̇ (t)+
[

x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
= V̇ (t)+Γ+

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
≤

L∑
l=1

p∑
i=1

c∑
j=1

p∑
v=1

c∑
h=1

c∑
q=1

ξlw̃i(x(t))m̃ j(x(tk))w̃v(x(t))m̃h(x(tk))

m̃q(x(tk))ςT (t)
(

Ξ1 +Ξ3,1 +Ξ4,4,i j +Ξ5, jq +Ξ6,i j

+(tk+1− t)(Ξ2,1 +Ξ3,2 +Ξ4,1)

+(t− tk)
(
Ξ2,2 +Ξ4,2,i jvh +Ξ4,3,i j

))
ς(t)

≤
L∑

l=1

p∑
i=1

c∑
j=1

p∑
v=1

c∑
h=1

c∑
q=1

ξlw̃i(x(t))m̃ j(x(tk))w̃v(x(t))m̃h(x(tk))

m̃q(x(tk))ςT (t)
(

Φ1,i jl +Ξ5, jq +(tk+1− t)Φ2,i j

+(t− tk)
(
Φ3,i j +Ξ4,2,i jvh

))
ς(t)

=

L∑
l=1

p∑
i=1

c∑
j=1

p∑
v=1

c∑
h=1

c∑
q=1

ξlw̃i(x(t))m̃ j(x(tk))w̃v(x(t))m̃h(x(tk))

m̃q(x(tk))ςT (t)
(
(tk+1− t)

hs

(
Φ1,i jl +Ξ5, jq +hsΦ2,i j

)
+

(t− tk)
hs

(
Φ1,i jl +Ξ5, jq +hs(Φ3,i j +Ξ4,2,i jvh)

))
ς(t),

(26)

where ξl = 1 when system is located at the sub-domain ϒl ;
otherwise ξl = 0;

∑L
l=1 ξl = 1.

Based on the convex combination technique [41], [42] and
[48], the inequality (26) will be less than 0, if and only if

Φ1,i jl +Ξ5, jq +hsΦ2,i j < 0, (27)

Φ1,i jl +Ξ5, jq +hs
(
Φ3,i j +Ξ4,2,i jvh

)
< 0. (28)

Through the application of the Schur complement, to require
(27) to be valid is equivalent to require (10) to be valid, and
(28) is equivalent to (11). In conclusion, if (26)< 0 is satisfied,

then the closed-loop system (9) will be asymptotically stable.
In addition, the following can be obtained:∫ tkl

t0

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
dt <−

∫ tkl

t0
V̇ (t)dt∫ tkl

t0

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
dt

<−
∫ tkl

tk0

V̇ (t)dt−
k0−1∑
i=0

∫ ti+1

ti
V̇ (t)dt

∫ tkl

t0

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
dt

<−V (tkl )+V (tk0)−V (tk0)+V (tk0−1)−·· ·−V (t1)+V (t0)∫ tkl

t0

[
x(t)
u(t)

]T [ J1 J2
∗ J3

][
x(t)
u(t)

]
dt <−V (tkl )+V (t0).

(29)

When tkl →∞, (12) can be obtained. The proof is completed.
Remark 1: w̃i(x(t)) and m̃ j(x(tk)) are dependent on x(t)

and x(tk) respectively. The definition of regional boundaries
will be a problem. If m̃ j(x(tk)) can be estimated by m̃ j(x(t)),
only x(t) will be considered [17]. Then the rational regional
boundaries could be determined, which ensures the m̃ j(x(tk))
corresponding to w̃i(x(t)) is inside the defined regional bound-
ary. The relationship of x(t) and x(tk) during the sampling
period is investigated to realize the estimation, which is shown
as below:

x(t)−x(tk) =
∫ t

tk
ẋ(s)ds. (30)

Definie |ẋ| ≤ ẋmax in the operating domain, then the follow-
ing equation can be obtained through (30):

|x(t)−x(tk)| ≤ (t− tk)ẋmax ≤ hsẋmax. (31)

From (30) and (31), we can obtain

x(tk) ∈ [x(t)−hsẋmax, x(t)+hsẋmax] (32)

which suggests that given any x(t), and suppose that |ẋ| ≤ ẋmax
is satisfied, then the range of x(tk) is [x(t)− hsẋmax, x(t)+
hsẋmax].

On the basis of Theorem 1, the following Theorem 2 is
derived for the design of the IT2SD fuzzy controller.

Theorem 2: For a given constant sampling period hs and
scalars κr (r = 1, . . . , 3), if there exist matrices Y j, X, Ṕ =

ṔT
> 0, Ŕ = ŔT

, Ś1 = ŚT
1 , Ś2, Ź = ŹT

> 0, Ńw,i j, T́i jl = T́T
i jl >

0, T́i jl = T́
T
i jl > 0, (w= 1, 2; i= 1, . . . , p; j = 1, . . . , c, l =

1, . . . , L), such that satisfying LMIs shown as below:[
Φ́1,i jl +hsΦ́2,i j Λ́1

∗ Λ2

]
< 0, (33)

 Φ́1,i jl +hsΦ́3,i j hsŃi j Λ́1

∗ −hsŹ 02n×3n
∗ ∗ Λ2

< 0, (34)

where Φ́1,i jl = Ξ́1 + Ξ́3,1 + Ξ́4,4,i j + Ξ́6,i j + T́i jl −
T́i jl −

∑p
r=1
∑c

s=1 νrslT́rsl +
∑p

r=1
∑c

s=1 νrslT́rsl ,
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Φ́2,i j = Ξ́2,1 + Ξ́3,2 + Ξ́4,1, Φ́3,i j = Ξ́2,2 + Ξ́4,3,i j,
Ξ́1 = Sym

{
eT

2 Ṕe1
}

, Ξ́2,1 = eT
3 Ŕe3, Ξ́2,2 = −eT

3 Ŕe3,
Ξ́3,1 = −

[
eT

1 − eT
3 eT

4
]

Ś1
[

eT
1 − eT

3 eT
4
]T −

Sym
{[

eT
1 − eT

3 eT
4
]

Ś2e3

}
, Ξ́3,2 =

Sym
{[

eT
1 − eT

3 eT
4
]

Ś1
[

eT
2 eT

1
]T

+
[

eT
2 eT

1
]

Ś2e3

}
,

Ξ́4,1 = eT
2 Źe2, Ξ́4,3,i j = Sym

{
Ń2,i j(e1 + e3)

}
,

Ξ́4,4,i j = Sym
{

Ń1,i j (e1− e3) − 2Ń2,i je4

}
, Ξ́6,i j =

Sym
{

Ú(AiX1e1+BiY je3−X1e2)
}

, Ú=κ1eT
1 +κ2eT

2 +κ3eT
3 ,

Ńi j =
[

Ń1,i j hsŃ2,i j
]
, Ź = diag{Ź, 3Ź},

Λ́1 =
[

eT
1 XT

1 J1 + eT
3 YT

j JT
2 eT

1 XT
1 J2 + eT

3 YT
j J3

]
,

Λ2 = −
[

J1 J2
∗ J3

]
, the closed-loop system (9) is

asymptotically stable. In addition, (7) satisfies the inequality
shown as below:

J < xT (t0)X−T
1 ṔX−1

1 x(t0). (35)

The gain matrices of the IT2SD fuzzy controller are re-
trieved by:

G j = Y jX−1. (36)

Proof: The matrix shown as below is introduced:

Xn = diag{X, . . . , X} ,

where n denotes the number of X in Xn.
Then, define Ṕ = XT

1 PX1, Ŕ = XT
1 RX1, Ś1 = XT

2 S1X2,
Ś2 = XT

2 S2X1, Ź = XT
1 ZX1, Ńw,i j = XT

4 Nw,i jX1, X̃ = X−T

and Ú = κ1eT
1 + κ2eT

2 + κ3eT
3 , T́i jl = XT

4 Ti jlX4, T́i jl =

XT
4 Ti jlX4, (w = 1, 2; i = 1, . . . , p; j = 1, . . . , c, l =

1, . . . , L), ∆1 = diag{X4, I3n}, ∆2 = diag{X6, I3n}. Pre-
and post-multiplying (10) by ∆T

1 and ∆1, and pre- and post-
multiplying (11) by ∆T

2 and ∆2, then (33) and (34) are obtained.
The minimization process of the upper bound of the guar-

anteed cost index is shown as follows:

J < xT (t0)X−T
1 ṔX−1

1 x(t0)< ϒ. (37)

In this paper, there is no need knowing x(t0) but all the
vertex points xz(t0) of a polyhedron containing x(t0) are
known. Then x(t0) can be described as below:

x(t0) =
nz∑

z=1

mzxz(t0), (38)

where mz ≥ 0, and
∑nz

z=1 mz = 1. Then the following equation
can be obtained:

nz∑
z=1

mzxT
z (t0)X−T

1 ṔX−1
1

nl∑
l=1

mlxl(t0)< ϒ. (39)

Through the application of the Schur complement, the
inequality shown as below can be obtained:[

−ϒ xT
z (t0)

∗ −X1Ṕ−1XT
1

]
< 0. (40)

To deal with the term −X1Ṕ−1XT
1 , the following inequality

is introduced [42]:

−X1Ṕ−1XT
1 ≤−X1−XT

1 + Ṕ. (41)

From (40) and (41), we can obtain[
−ϒ xT

z (t0)
∗ −X1−XT

1 + Ṕ

]
< 0. (42)

In conclusion, the minimum upper bound of the guaranteed
cost index can be obtained by solving the generalized eigen-
value minimization problem (GEVP) shown as below:

minimize ϒ (43)

subject to: (33), (34) and (42).

IV. SIMULATION EXAMPLE

In this section, the proposed IT2SD fuzzy controller is em-
ployed to stabilize the inverted pendulum system for showing
the advantages.

The dynamic model of the inverted pendulum system is
described as below [17] and [49]:

ẋ1(t) = x2(t), (44)

ẋ2(t) =

(
gsin(x1(t))−ampl(x2(t))2 sin(2x1(t))/2
−acos(x1(t))u(t)

)
4l/3−ampl(cos(x1(t)))2 ,

(45)

where x1(t) stands for the angle (rad), x2(t) stands for the
angular velocity (rad/s), g stands for the gravity acceleration
which is 9.8 m/s2, mp ∈ [mpmin , mpmax ] = [2, 3]kg stands for
the mass of the pendulum, Mc ∈ [Mcmin , Mcmax ] = [8, 12]kg
stands for the mass of the cart, a = 1

mp+Mc
, l stands for the

half length of the pendulum which is 0.5 m, u(t) stands for
the force which is applied to the cart (N).

A 4-rule IT2 T–S fuzzy model in the shape of (3) is
applied to the description of the inverted pendulum system.

Define x(t) =
[

x1(t)
x2(t)

]
, A1 = A2 =

[
0 1

f1min 0

]
, A3 = A4 =[

0 1
f1max 0

]
, B1 = B3 =

[
0

f2min

]
, B2 = B4 =

[
0

f2max

]
,

where f1min = 10.0078, f1max = 18.4800, f2min =−0.1765, and
f2max = −0.0261. The operation domains of x1(t) and x2(t)
considered in the control process are [− 5π

12 , 5π

12 ] and [−5, 5],
respectively. Table I shows the lower and upper membership
functions for the IT2 T-S fuzzy model of the inverted pendu-
lum system where f 1(x(t) =

g−ampl(x2(t))2 cos(x1(t))
4l/3−ampl(cos(x1(t)))2

(
sin(x1(t))

x1(t)

)
and f 2(x(t) = − acos(x1(t))

4l/3−ampl(cos(x1(t)))2 . A 2-rule IT2SD fuzzy
controller is applied to fulfil the control objectives on
the inverted pendulum system, and the membership func-
tions of the IT2SD fuzzy controller are defined as below:
m1(x1(tk)) = {0 for x1(tk) < − 5π

12 ; x1(tk)+5π/12
5π/12 for − 5π

12 ≤
x1(tk)≤ 0; −x1(tk)+5π/12

5π/12 for 0≤ x1(tk)≤ 5π

12 ; 0 for x1(tk)> 5π

12 },
m1(x1(tk)) = {0 for x1(tk)<− 5π

12 ; 0.9(x1(tk)+5π/12)
5π/12 for − 5π

12 ≤
x1(tk)≤ 0; 0.9(−x1(tk)+5π/12)

5π/12 for 0≤ x1(tk)≤ 5π

12 ; 0 for x1(tk)>
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TABLE I
LOWER AND UPPER MEMBERSHIP FUNCTIONS FOR THE IT2 T-S FUZZY MODEL OF THE INVERTED PENDULUM SYSTEM.

µ
M̃1

1
( f 1(x(t))) = µ

M̃2
1
( f 1(x(t))) =

− f 1(x(t))+ f1max
f1max− f1min

;

µM̃3
1
( f 1(x(t))) = µM̃4

1
( f 1(x(t))) =

f 1(x(t))− f1min
f1max− f1min

;
with x2(t) = 0,mp = mpmax and Mc = Mcmin

µ
M̃1

2
( f 2(x(t))) = µ

M̃3
2
( f 2(x(t))) =

− f 2(x(t))+ f2max
f2max− f2min

;

µM̃2
2
( f 2(x(t))) = µM̃4

2
( f 2(x(t))) =

f 2(x(t))− f2min
f2max− f2min

;
with mp = mpmax and Mc = Mcmax

µM̃1
1
( f 1(x(t))) = µM̃2

1
( f 1(x(t))) =

− f 1(x(t))+ f1max
f1max− f1min

;

µ
M̃3

1
( f 1(x(t))) = µ

M̃4
1
( f 1(x(t))) =

f 1(x(t))− f1min
f1max− f1min

;

with x2(t) = x2max ,mp = mpmax and Mc = Mcmin

µM̃1
2
( f 2(x(t))) = µM̃3

2
( f 2(x(t))) =

− f 2(x(t))+ f2max
f2max− f2min

;

µ
M̃2

2
( f 2(x(t))) = µ

M̃4
2
( f 2(x(t))) =

f 2(x(t))− f2min
f2max− f2min

;

with mp = mpmin and Mc = Mcmin

TABLE II
WEIGHTING MATRICES J1 , J2 AND J3 FOR THE 3 CASES.

Case J1 J2 J3

1
[

1 0
0 1

] [
0
0

]
0.01

2
[

1000 0
0 1

] [
0
0

]
0.01

3
[

2000 0
0 1

] [
0
0

]
0.01

TABLE III
RESULTS FOR CASE 1.

Information of
Membership

Functions

Minimal
ϒ

Control Gains

No Information 18117.2 G1 =
[

1133.5 277.1
]

G2 =
[

1133.5 277.1
]

Global Boundary
Information 16470.9 G1 =

[
1069.7 270.1

]
G2 =

[
1069.7 270.1

]
Regional Boundary
Information with

L = 3
15546.9 G1 =

[
1025.8 266.4

]
G2 =

[
1026.7 266.6

]
Regional Boundary
Information with

L = 5
13360.3 G1 =

[
977.4 265.2

]
G2 =

[
984.1 266.4

]
Regional Boundary
Information with

L = 7
15629.5 G1 =

[
887.0 247.3

]
G2 =

[
912.4 254.3

]
Regional Boundary
Information with

L = 9
15251.7 G1 =

[
851.9 240.1

]
G2 =

[
891.3 251.5

]

5π

12 }, m2(x1(tk)) = 1−m1(x1(tk)), m2(x1(tk)) = 1−m1(x1(tk)),
and κ j(x(tk)) = κ j(x(tk)) = 0.5, for j = 1, 2.

The sampling period of the control system is set as 0.02s.
The parameters κ1, κ2 and κ3 are chosen as 0.8, 0.1 and
1.0, respectively. The membership functions are dependent on
x1(t). ẋ1(t) = x2(t) ∈[−5, 5], then |x1(t)− x1(tk)| ≤ 0.1 can
be found based on Remark 1, which will also be verified
by simulations. Through the above information, the range of
x1(tk) is obtained as [x1(t)−0.1, x1(t)+0.1].

To demonstrate the effect on the guaranteed cost per-
formance imposed by the MFD stability analysis approach,

TABLE IV
RESULTS FOR CASE 2.

Information of
Membership

Functions

Minimal
ϒ

Control Gains

No Information 19317.1 G1 =
[

1166.8 278.4
]

G2 =
[

1166.8 278.4
]

Global Boundary
Information 17824.9 G1 =

[
1106.0 271.7

]
G2 =

[
1106.0 271.7

]
Regional Boundary
Information with

L = 3
16674.8 G1 =

[
1071.7 269.4

]
G2 =

[
1072.4 269.5

]
Regional Boundary
Information with

L = 5
14624.1 G1 =

[
1025.9 268.0

]
G2 =

[
1032.4 269.2

]
Regional Boundary
Information with

L = 7
13704.8 G1 =

[
977.3 261.5

]
G2 =

[
1002.7 266.9

]
Regional Boundary
Information with

L = 9
12979.0 G1 =

[
946.5 257.2

]
G2 =

[
994.4 268.0

]

different information of membership functions is used in the
controller design. In addition, the three cases shown in Table II
are also considered to further illustrate how the guaranteed
cost performance is affected by the MFD stability analysis
approach with the different weighting matrices in the cost
function. For Case 1, it can be seen from Table III that
the biggest value of the minimal ϒ which is 18117.2 occurs
when no information is used; when the regional boundary
information with L = 5 is considered, the smallest value which
is 13360.3 appears. As seen from Table IV and Table V, the
values of the minimal ϒ for Case 2 and Case 3 both keep de-
clining from no information to regional boundary information
with L = 9. The results verify that the MFD stability analysis
technique has a significant influence on further improving
the control performance. When the appropriate information
of membership functions is used, the upper bound of the
guaranteed cost index can be reduced. In addition, when the
regional boundary information with L = 7 or L = 9 is used, the
minimal ϒ for Case 1 is bigger than the minimal ϒ for Case 2
and the minimal ϒ for Case 3, while the minimal ϒ for Case
2 is the smallest. Except the above two situations, with the
same information of membership functions, the value of the
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TABLE V
RESULTS FOR CASE 3.

Information of
Membership

Functions

Minimal
ϒ

Control Gains

No Information 20402.1 G1 =
[

1198.3 279.9
]

G2 =
[

1198.3 279.9
]

Global Boundary
Information 18863.9 G1 =

[
1141.6 273.5

]
G2 =

[
1141.6 273.5

]
Regional Boundary
Information with

L = 3
18048.9 G1 =

[
1104.0 270.5

]
G2 =

[
1105.3 270.8

]
Regional Boundary
Information with

L = 5
15994.9 G1 =

[
1060.6 268.8

]
G2 =

[
1069.2 270.3

]
Regional Boundary
Information with

L = 7
14822.6 G1 =

[
1023.2 265.0

]
G2 =

[
1049.6 270.0

]
Regional Boundary
Information with

L = 9
14148.3 G1 =

[
992.4 260.7

]
G2 =

[
1041.4 270.8

]

(a) Response of x1(t)
with Condition 1.

(b) Response of x2(t)
with Condition 1.

(c) Control signal u(t)
with Condition 1.

(d) Response of x1(t)
with Condition 2.

(e) Response of x2(t)
with Condition 2.

(f) Control signal u(t)
with Condition 2.

Fig. 1. Response curves.

minimal ϒ is great when the weighting coefficient in the x1(t)
position of the cost function is large. The results demonstrate
the large weighting coefficient in the x1(t) position of the cost
function will lead to the great upper bound of the guaranteed
cost index in most instances.

In addition, Table III, Table IV and Table V show the
feedback gains obtained by the different information of mem-
bership functions. It can be seen from three tables, the control
gains of two different fuzzy rules are totally same when no
information or global boundary information is considered. The
same control gains demonstrate that the controller turns out to
be a linear one. However, the difference between G1 and G2
will increase when more information of membership functions

(a) Case 1 with Condi-
tion 1.

(b) Case 2 with Condi-
tion 1.

(c) Case 3 with Condi-
tion 1.

(d) Case 1 with Condi-
tion 2.

(e) Case 2 with Condi-
tion 2.

(f) Case 3 with Condi-
tion 2.

Fig. 2. Phase portraits of x1(t) and x2(t).

is used. The outcome shows that the MFD stability analysis
approach is helpful to achieve more relaxed results and has
more potential to address the nonlinearity.

To further demonstrate the impact on the control perfor-
mance caused by the weighting matrices in the cost function,
the feedback gains for three cases with the initial states ( 4π

12 ,
0) and (− 2π

12 , 0) under the regional boundary information with
L = 9 are applied to obtain the transient responses shown in
Fig. 1. Furthermore, to demonstrate the uncertainties handling
ability of the proposed IT2SD fuzzy controller, two sets of mp
and Mc which are Condition 1 (mp = 3kg and Mc = 12kg) and
Condition 2 (mp = 2kg and Mc = 8kg) are utilized. Referring
to Fig. 1, the settling time of x1(t) (the time required for
x1(t) arriving at and staying within ±2% of the steady state
as defined in [50]) is compared among the three cases. With
respect to mp = 3kg and Mc = 12kg, when the initial state is
( 4π

12 , 0), the settling time of x1(t) for Case 3 is around 1.12s
which is shorter than Case 1 requiring around 1.24s and Case 2
requiring around 1.18s; when the initial state is (− 2π

12 , 0), x1(t)
for Case 3 is also the fastest which needs around 1.08s while
x1(t) for Case 1 is the slowest which requires around 1.20s.
With respect to mp = 2kg and Mc = 8kg, when the initial state
is ( 4π

12 , 0), the settling time of x1(t) for Case 3 is around 1.08s
which is shorter than Case 1 requiring around 1.18s and Case
2 requiring around 1.12s; when the initial state is (− 2π

12 , 0),
x1(t) for Case 3 is also the fastest which needs around 1.06s
while x1(t) for Case 1 is the slowest which requires around
1.16s. The results verify that the larger weighting coefficient in
the x1(t) position of the cost function suppresses x1(t) harder.
In addition, the results illustrate that the proposed IT2SD fuzzy
controller can drive the inverted pendulum system subject to
parameter uncertainties to the equilibrium, which is further
verified by the phase portraits. As shown in Fig. 2, the inverted
pendulum system with each initial state under two sets of mp
and Mc can be stabilized.

To sum up, the results of the minimal ϒ, feedback gains,
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transient responses and phase portraits verify the proposed
approach can obtain the optimal guaranteed cost performance
and the relaxed design results. Meanwhile, the proposed ap-
proach is capable of coping with the stabilization problem of
the nonlinear systems subject to parameter uncertainties.

V. CONCLUSION

This paper presents an IT2SDFMB control system with
the consideration of the guaranteed cost performance. Non-
linear systems subject to uncertainty are modeled by the
IT2 T–S fuzzy model that the parameter uncertainties can
be captured by the lower and upper membership functions.
Looped-functional approach making use of the information
of the sampling periods is applied to facilitate the stability
analysis of the SD FMB control system. The design flexibility
is enhanced by employing the IPM concept which allows
the free selection on the number of rules and the premise
membership functions. The MFD stability analysis approach
is applied to utilize the information of membership functions
for achieving more relaxed results and minimizing the upper
bound of the guaranteed cost index. Through the use of the
weighting matrices in the cost function, the performance of
the IT2SDFMB control system can be adjusted to satisfy
different requirements as well. A simulation example of the
inverted pendulum system is presented to demonstrate the
effectiveness and merits of the proposed approach. In the
future, improving the control performance by adaptively fine-
tuning the IT2 parameters and adopting the polynomial fuzzy
model will be potential directions. In addition, applications of
IT2 FMB control design will be taken in to account, such as
the tracking control system, the event-triggered control system
and the time-varying system.
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