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ABSTRACT
In this paper we describe a method to apply the AgileUML toolset
to synthesise mobile apps from UML models. This is a lightweight
model-driven engineering (MDE) approach suitable for app devel-
opers who need to rapidly produce native apps for either or both
Android or iOS platforms.

In contrast to other MDE approaches for app development, the
approach aims to minimise the extent of manual effort by using
very concise high-level specifications which abstract from technical
details as far as possible, while still providing explicit definitions of
functional app behaviour.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments.
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1 INTRODUCTION
Mobile apps have become a key means by which users access a
wide range of software services such as online shopping, banking,
mapping and location services and social media. There are over
2 million apps on each of the main app stores (Google Play for
Android and Apple iTunes for iOS).

However, development for Android or iOS can be a complex
and time-consuming activity, due to the specialised programming
mechanisms and libraries of each platform, and the impact of evo-
lution and diversification within these platforms. For example, in
the case of iOS, apps can be developed based on either the Swift
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or Objective-C languages, and using either the UIKit event-based
approach, or the SwiftUI data-centered approach. In the case of
Android either Kotlin or Java programming languages can be used,
and differing levels of support provided for devices running older
versions of the OS. Despite the facilities offered by the respective
app development toolsets (Android Studio and Xcode), manual de-
velopment for either platform requires a high level of specialised
expertise, comparable to that needed for enterprise information
system (EIS) platforms such as Java EE or .Net.

There are some similarities between mobile app technologies
and EIS technologies (for example, systems in both domains should
separate UI aspects from functional aspects, and need to manage
persistent data and interaction with remote services), but there
are also specific issues in mobile apps. Both network connections
and data rates may be variable and intermittent, leading to re-
quirements to cache data to ensure some functional capabilities in
offline situations. Limited device processing and memory resources
also encourage the use of caching to avoid unnecessary network
access, and the use of asynchronous or off-device processing for
computationally-intensive tasks. Restricted screen size on mobile
devices leads to the need to simplify interfaces and user interaction.

Model-driven engineering (MDE) has been applied to the prob-
lem of accelerating app development, for example in the MD2 and
PIMAR methods [12, 31]. MD2 also takes a lightweight MDE ap-
proach to app specification, via the use of simple textual models
of app UI, data and behaviour, but it is focussed on data-driven
business apps for tablets. PIMAR uses graphical process models
and class diagrams, and requires significant MDE expertise. Both of
these approaches use the familiar MVC architecture for app front
ends, but do not incorporate other app patterns. They do not appear
to support the specification of detailed customised functionality at
the modelling level – instead such functionality must be written
manually in the generated app code.

In our approach, we adopt the existing lightweight MDE tech-
niques of the AgileUML toolset [8]. AgileUML uses a simplified
UML subset (UML-RSDS [16]) to define the data and behaviour
of applications via class diagrams and use cases with behaviour
defined by pseudocode statements or OCL postconditions. A purely
textual specification of classes and use cases can also be writ-
ten, in KM3 notation [14]. For mobile apps, we provide a prede-
fined set of components representing services such as authentica-
tion (𝐹𝑖𝑟𝑒𝑏𝑎𝑠𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟 ), data retrieval from remote services
(𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 ) and graph display (𝐺𝑟𝑎𝑝ℎ𝐷𝑖𝑠𝑝𝑙𝑎𝑦). These com-
ponents and their operations can be utilised within app specifica-
tions.

https://doi.org/10.1145/3452383.3452409
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From app specifications, complete functional code can be gen-
erated in a variety of implementation languages (Java, C#, C++,
C, Python, etc). An emphasis is placed on code efficiency and
correctness-by-construction. AgileUML already synthesises Java
web systems using JSPs and Servlets [17]. These use the MVC UI
pattern, and EIS patterns such as Session Facade, Data Access Ob-
ject (DAO) and Value Object (VO) [9]. We also adopt these patterns
for Android and iOS app architectures, together with app-specific
patterns such as cached DAOs, and Service Activator.

We also take account of more advanced app patterns such as
VIPER and MVVM, and build in UI and security best practices. For
example, we avoid the use of forward/backward navigation (akin to
following links in a web interface), instead lateral navigation using
tabs is enforced. We also prefer tabs to the use of hamburger menus,
which conceal the available command options [24]. To improve
security and data integrity, all data entered by a user has to pass
through a validation bean before being submitted to the back end of
the app. Standard security checks, such as the absence of SQL injec-
tion code in string data, can be defined by OCL conditions. Features
can be stereotyped as ≪𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑≫ or as ≪ℎ𝑖𝑑𝑑𝑒𝑛≫ so that they
are obscured on data entry, and are not displayed on list screens.
Login functionality can be specified using cloud-based authentica-
tion via Firebase1. By using the 𝐹𝑖𝑟𝑒𝑏𝑎𝑠𝑒𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟 component,
access to particular functionalities can be restricted to logged-in
users. Use case authorisation levels could be introduced, so that
only users with sufficient authorisation can utilise functionalities
marked as restricted.

In general, the advantages of MDE for mobile apps are:
• A substantial reduction in the manual effort required for
defining layouts, and the code for data management and UI
interaction.

• Systematic architectures can be imposed on apps, following
best practices for app architectural patterns.

• The same functionality can be implemented for multiple plat-
forms and versions (eg., for Android, iOS/UIKit and iOS/SwiftUI)
without additional effort.

• Apps can be quickly modified and extended by changing
their specification and re-generating their code.

• App test cases can be generated from the app specifications
(model-based testing).

We target general-purpose apps, but exclude game apps, which
require specialised modelling approaches [7]. Our specific focus
is in financial and health apps, which typically involve complex
custom functionality with high efficiency and security requirements
[1, 13].

The specific goals of the AgileUML approach for mobile apps
are:

(1) Minimise the extent of manual coding needed;
(2) Simplify user interaction andminimise the number of screens

needed;
(3) Optimise efficiency via the use of caching and asynchronous

execution of time-consuming tasks where possible;
(4) Optimise modularity via separation of app code into tiers

(client, presentation, business, integration and resource tiers)
and cohesive components.

1https://firebase.google.com

Section 2 summarises AgileUML and UML-RSDS. In Sections
3, 4 and 5 we describe in detail the app synthesis approach used,
Section 6 gives an evaluation on case studies, Section 7 compares
our approach to related work, and Section 8 discusses limitations
and future work.

2 AGILEUML AND UML-RSDS
UML-RSDS is a subset of UML 2.5, consisting of class diagram
notation, use cases, a subset of OCL 2.4, and pseudocode text no-
tation for activities. It is more declaratively oriented than other
executable UML approaches such as fUML [23], and permits com-
plete applications to be specified using high-level representations
(class diagrams, OCL and use cases), close to requirements. OCL
constraints are automatically mapped to pseudocode activities via a
“generate design" process. Alternatively, activities may be directly
written in the specification.

In textual KM3-based notation, a class definition can include
definitions of stereotypes, invariants, data features and operations
of the class:
class C extends D
{ stereotypes;

invariants;
attributes and references;
operations

}

Stereotypes are either single strings such as “interface" or “abstract"
to mark the category of the class, or are tag-value pairs such as “au-
thor=‘kcl’". Stereotypes are also written in the form≪𝑠𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒≫,
eg., ≪𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡≫ to mark a class as persistently stored.

Figure 1: Bond app class diagram

For example, the text version of the 𝐵𝑜𝑛𝑑 class in Figure 1 has
the form:
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class Bond
{ invariant term > 0;

invariant coupon >= 0;

attribute name identity : String;
attribute term : double;
...

operation discount(amount: double, rate: double,
time: double) : double

pre: r > -1
post: result = amount/((1+r)->pow(time));

...
}

This class represents fixed-interest rate financial products such as
UK government gilts. Class invariants can be used to construct
and check test cases for the class, and as the basis of validator
components for use cases that modify instances of the class. Op-
erations are specified with pre and post conditions in OCL format.
The preconditions can also be used to guide test case production,
and are checked at execution time. An alternative approach is to
specify an operation 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 in pseudocode. Further examples of
operation specifications are given in Figure 2. Note that 𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛
is recursively defined.

Figure 2: Bond app operations and use cases

Use cases also have a textual format with the general form:
usecase Uc : resultType

{ extend/include relationships;
parameter declarations;
stereotypes;
invariants;
local attributes;
local operations;
preconditions;
postconditions;

}

UML use cases combine aspects of classes and operations, they can
also be related by extension and inclusion dependencies. Stereo-
types can indicate the actor of the use case, or that a use case is
private, etc. Use cases represent global operations of the system, and
their behaviour is defined by a series of postconditions which can
create/delete instances of classes, invoke operations on instances,
invoke included use cases or local operations, and display infor-
mation to the user. The definitions of the use cases 𝑓 𝑖𝑛𝑑𝑌𝑖𝑒𝑙𝑑 and
𝑓 𝑖𝑛𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 are given in Figure 2.

The AgileUML toolset [8] supports the construction, analysis
and implementation of UML-RSDS specifications, via a set of code
generators (for Java, C#, C++, C, Python, etc). An important feature
of AgileUML is the ability to add new code generators using the
CSTL specification notation [19]. This enables code generators
to be defined by concrete syntax text-to-text rules, so that users
can add a new code generator without knowing the abstract syntax
(metamodels) of the target language or of UML-RSDS. Code gener-
ators for Swift 5 and for Java 8 are defined in this manner, and are
used to generate iOS and Android apps.

Use cases represent the application-level functionalities or ser-
vices offered by a system. There are several kinds of UML-RSDS
use case which can be defined:

• General use cases, which can either be ≪𝑝𝑟𝑖𝑣𝑎𝑡𝑒≫ or
≪𝑝𝑢𝑏𝑙𝑖𝑐≫ (the default).

• EIS use cases, representing CRUD operations on class data.
These are public.

General use cases can depend on each other via 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 and 𝑒𝑥𝑡𝑒𝑛𝑑
relationships. An included use case represents a subtask within
the including use case, whilst an extension use case represents
a variation or additional functionality dependent upon the main
use case. Eg., in Figure 1, 𝑓 𝑖𝑛𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is an extension of the
main 𝑓 𝑖𝑛𝑑𝑌𝑖𝑒𝑙𝑑 use case. One use case can be directly or indirectly
extended by any number of extension cases. We refer to the main
use case of such a cluster of extensions as the primary use case.

Use cases are implemented in a𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 component, which
contains their generated code. The𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 is the central point
of access to business tier functionality and data.

Table 1 summarises the use of UML-RSDS elements to express
mobile app elements.

3 APP SYNTHESIS
Android and iOS are completely predominant in the mobile OS mar-
ket, with Android having over 80% of the market and iOS around
15% of the market2. Thus we provide support only for these plat-
forms.

2Gartner Inc, press release 23rd May 2017.
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UML-RSDS Element Mobile app Element
≪𝑝𝑢𝑏𝑙𝑖𝑐≫ use case UI screen with ViewController,
with postconditions or validation bean, and
activity 𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 operation
≪𝑝𝑟𝑖𝑣𝑎𝑡𝑒≫ use case 𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 operation
with postconditions or representing callback
activity or internal UI event
Use case 𝑒𝑥𝑡𝑒𝑛𝑑 Grouping of related use
relationship cases on one screen
Use case preconditions or Validation checks in
class invariants validation bean
≪𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡≫-stereotyped SQLite database table
classes and DAO
≪𝑐𝑙𝑜𝑢𝑑≫-stereotyped Cloud datastore
classes and DAO
≪𝑟𝑒𝑚𝑜𝑡𝑒≫ 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 and
classes cached DAO
Predefined Utilities and platform
components services
Customised Non-platform/specialised
components services

Table 1: Conceptualisation of mobile app elements

The 𝐵𝑢𝑖𝑙𝑑 menu of the AgileUML Version 2.0 toolset [8] pro-
vides three options for generating mobile apps from UML-RSDS
specifications:

(1) For Android (Versions 7+, SDK API level 25+), using Java 8.
(2) For iOS (versions 10+), using UIKit interfaces with Swift 4

or 5.
(3) For iOS (versions 12+) using SwiftUI.

In each case, a common five-tier architecture is used, with UI screens
in a client tier, view controllers3 and validation beans in the pre-
sentation tier, and 𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 (session facade) and entity bean
classes to implement business tier functionality. Further data ac-
cess object and service activator classes are also defined for the
integration tier. Value object classes are defined to support transfer
of data between tiers. The resource tier can include files, databases
and remote resources accessed via URLs (Figures 3 and 4 show the
schematic architectures for Android apps).

To initiate app synthesis, a specification class diagram and use
case model is created or loaded into AgileUML. Figures 1, 2 show an
example of a loaded specification. Selecting the 𝐴𝑛𝑑𝑟𝑜𝑖𝑑 or 𝑖𝑂𝑆 op-
tions on the 𝐵𝑢𝑖𝑙𝑑 menu will then generate code and layout artifacts
of the app in appropriate subdirectories, mimicking the structure of
an Android Studio or Xcode app. A manifest file defining appropri-
ate app permissions is also generated for Android, together with a
gradle app build file. For iOS, a podfile is generated in cases where
external libraries need to be incorporated into the build.

3.1 Data and resources
There is a key distinction between persistent and non-persistent
classes. If 𝐸 is a non-persistent class, then conventional Java or
Swift code is generated for 𝐸, and use cases can use its instances
3For SwiftUI, view controllers are omitted.

Figure 3: Architecture for single-screen Android apps

Figure 4: Architecture for multiple-screen Android apps

and operations, but these instances are not persisted. Normally, 𝐸
should have a String-typed primary key, so that its instances can be
referenced in the specification by the notation 𝐸 [𝑖𝑑], denoting the
instance of 𝐸 with primary key value 𝑖𝑑 . In the case of persistent
classes, an SQLite database is used to store their instances, and the
class must have a primary key. Data is transferred into and out of the
database by a DAO component, 𝐷𝑏𝑖. 𝑗𝑎𝑣𝑎 or 𝐷𝑏𝑖.𝑠𝑤𝑖 𝑓 𝑡 , invoked by
the𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 . For each persistent class 𝐸, the DAO component
supports operations 𝑐𝑟𝑒𝑎𝑡𝑒𝐸, 𝑑𝑒𝑙𝑒𝑡𝑒𝐸, 𝑒𝑑𝑖𝑡𝐸, 𝑙𝑖𝑠𝑡𝐸, 𝑠𝑒𝑎𝑟𝑐ℎ𝐵𝑦𝐸𝑎𝑡𝑡 to
create, delete, modify and list instances of 𝐸. Synchronisation of 𝐸
instances in runtime memory with the database is not performed
automatically, instead the operation 𝑙𝑜𝑎𝑑𝐸 () can be called to load
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all database instances of 𝐸 into runtime memory, and 𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝐸 (𝑒𝑥)
can be called to update the database data of a specific instance
𝑒𝑥 : 𝐸 – the database must already hold a row for the key of 𝑒𝑥 .

Remote data sources can be represented in the specification as
classes 𝐸 with the stereotype≪𝑟𝑒𝑚𝑜𝑡𝑒≫. A cached DAO is used to
manage≪𝑟𝑒𝑚𝑜𝑡𝑒≫ data sources. For each≪𝑟𝑒𝑚𝑜𝑡𝑒≫ 𝐸, the com-
ponent 𝐸_𝐷𝐴𝑂 will be automatically included in the specification,
and its operations can be invoked (eg., as 𝐸_𝐷𝐴𝑂.𝑝𝑎𝑟𝑠𝑒𝐶𝑆𝑉 (𝑑𝑎𝑡𝑎))
from use cases. Operations are provided for decoding CSV4, XML
and JSON data into 𝐸 instances, checking the cache, and deriving a
URL for specific data retrievals. A base URL string for the remote
data source should be specified as a stereotype 𝑢𝑟𝑙 = “𝑏𝑎𝑠𝑒𝑢𝑟𝑙”
of 𝐸. An 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 predefined component is also included,
which provides asynchronous invocation of Internet connections
using 𝐻𝑡𝑡𝑝𝑈𝑅𝐿𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 on Android or𝑈𝑅𝐿𝑆𝑒𝑠𝑠𝑖𝑜𝑛 on iOS. The
𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 is a listener/delegate for callbacks 𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 issued by the component. Thus typically the specifier
will need to define the actions to be taken when the connection
session is completed, by writing a specification for the private
𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 use case.

Figure 5 shows the schematic architecture used for remote data
sources, for Android apps.

Figure 5: Architecture for remote data sources

An alternative to locally-persisted data is to define an entity with
the ≪𝑐𝑙𝑜𝑢𝑑≫ stereotype. This is then persisted via the Firebase
cloud realtime database. Local entity data is synchronised with the
cloud data via the Firebase update notification mechanism.

4In finance, datasets are often available in CSV format, eg., Yahoo Finance exchange
rate and share price daily data.

3.2 Predefined and custom components
Remote or local services used by the app are represented in the spec-
ification as ≪𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡≫ classes, possibly accompanied by asso-
ciated callback interfaces. Utilities (such as 𝐷𝑎𝑡𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ) and
wrappers for platform services (such as 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 , 𝐹𝑖𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 )
are defined as predefined components: their specifications cannot
be changed, and code is automatically generated for them for each
platform utilising the built-in APIs. Thus these components are
adapters, providing a uniform specification of operations for com-
mon services which are available in different forms on different
platforms. They are usually singleton or static classes.

A singleton component 𝐶 is used by use case 𝑢𝑐 via the activity
code:

var cinst : C ;
cinst := C.getInstance() ;
cinst.op()

If 𝐶 has a 𝐶𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 interface, then 𝑢𝑐 can set its host class (the
model facade) as the delegate for callbacks:

cinst.setDelegate(self)

The private use cases representing the callback operations would
also be specified. Whenever 𝐶 is added to the system explicitly or
implicitly, 𝐶𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 is added as an interface of the𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 ,
and the callback operations are added as private use cases of the sys-
tem. Components 𝐼𝑚𝑎𝑔𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦, 𝐺𝑟𝑎𝑝ℎ𝐷𝑖𝑠𝑝𝑙𝑎𝑦 and𝑊𝑒𝑏𝐷𝑖𝑠𝑝𝑙𝑎𝑦

are used only as result types of use cases, to display results as
images, graphs or web pages.

Other components are defined as customised components, with
user-defined specifications and code. This enables flexible cus-
tomisation of service adapters. For example, 𝑀𝑒𝑑𝑖𝑎𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ,
𝑃ℎ𝑜𝑛𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑆𝑀𝑆𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 have KM3 specifications
and supplied Android and iOS implementations.

4 ANDROID APPS
From system specifications, both single-screen and multi-screen
Android apps can be generated:

• Single screen apps are specified using a single public primary
use case together with possibly one or more extension use
cases. The parameters of the primary use case become input
fields of the screen, and there is also a field for its result.
Extension use cases can access these input parameters and
the results of the primary use case via attributes of the main
use case. A stereotype 𝑖𝑚𝑎𝑔𝑒 = “𝑓 𝑖𝑙𝑒” of the main use case
defines an image for the app screen.

• Multi-screen apps are specified by two or more independent
public use cases (not related by 𝑒𝑥𝑡𝑒𝑛𝑑 or 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 dependen-
cies). Each use case becomes a screen within a tabbed array
of screens. Images can be nominated for the independent
use cases.

All the specification use cases become operations in the business
tier of the app, however only public general use cases and EIS use
cases have visible screens in the UI of the app.

Private use cases are typically either (i) used to represent com-
mon functionality called from several 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 use cases, or (ii)
represent callbacks from asynchronous services/resources, or oper-
ations called from interactive UI components such as maps.
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Public use cases should not normally be included in other use
cases, however they can be extensions of other public use cases. A
group of a primary use case and its extensions are treated as closely-
related functionalities to be represented together on a single app
screen. Eg., Figure 6.

Figure 6: Multi-screen Android app

4.1 Single-screen apps
In the single-screen case, a public general use case 𝑢𝑐 with input
parameters 𝑝1 : 𝑇1, ..., 𝑝𝑛 : 𝑇𝑛 and result of type 𝑇 is mapped to:

• A layout XMLfile𝑚𝑎𝑖𝑛_𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦.𝑥𝑚𝑙 which defines the screen
using a table layout, with appropriate widgets for each of
the 𝑝𝑖 , buttons to execute 𝑢𝑐 and to clear the screen, and a
field to display the result.

• A view controller𝑀𝑎𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦. 𝑗𝑎𝑣𝑎 to read data from the
screen, invoke the validator bean, display errors, call 𝑢𝑐 via
the validator, and display its result.

• A validator 𝑢𝑐𝐵𝑒𝑎𝑛. 𝑗𝑎𝑣𝑎 which checks that the form field
data items represent values of the parameter types, and con-
verts the string values from these fields into values of the
parameter types. A check is also included that each pre-
condition of 𝑢𝑐 is valid for the converted values. These pre-
conditions can express security checks (eg., that there is a

logged-in user, or that input data fields do not contain SQL
injection coding).

• 𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒. 𝑗𝑎𝑣𝑎, which contains the code of the 𝑢𝑐 as an
operation 𝑢𝑐 (𝑇 ′

1 𝑝1, ...,𝑇 ′
𝑛 𝑝𝑛) where the 𝑇 ′

𝑖
are the Java 8

types of the 𝑇𝑖 . This operation returns a value of type 𝑇 ′.
𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 is a singleton class, and provides a single point
of access to the functional core of the app. Presentation tier
components relay UI-initiated requests to the𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 .
Typically it is also the delegate of callbacks from integration
tier components performing asynchronous request process-
ing, eg., Internet access.

Auxiliary Java files are also produced:
• 𝐸. 𝑗𝑎𝑣𝑎 for any class 𝐸 used by the app;
• 𝐸𝑉𝑂.𝑗𝑎𝑣𝑎 for each entity 𝐸, which is a value object class to
transfer the data of 𝐸 between app components;

• If some class is ≪𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑡≫, a DAO called 𝐷𝑏𝑖. 𝑗𝑎𝑣𝑎 is
created, to manage an SQLite database which stores the
persistent class data (device support for SQLite version 3.8+
is required);

• If some class is ≪𝑐𝑙𝑜𝑢𝑑≫, a DAO called 𝐹𝑖𝑟𝑒𝑏𝑎𝑠𝑒𝐷𝑏𝑖. 𝑗𝑎𝑣𝑎

is created, to manage a realtime database which stores the
cloud class data;

• Enumerated types𝑇 are defined as Java enumerations in files
𝑇 . 𝑗𝑎𝑣𝑎;

• 𝑈𝑐. 𝑗𝑎𝑣𝑎 for use case 𝑢𝑐 is the classifier corresponding to 𝑢𝑐 ,
and contains the (static) attributes and operations of 𝑢𝑐 ;

• 𝑂𝑐𝑙 . 𝑗𝑎𝑣𝑎 is the OCL library for Java 8.
• The 𝐹𝑖𝑙𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 . 𝑗𝑎𝑣𝑎 component is always provided.

The 𝑐𝑔/𝑐𝑔.𝑐𝑠𝑡𝑙 file should be an appropriate code generation script
for Java 8 generation when the “Android" option is selected on the
𝐵𝑢𝑖𝑙𝑑 menu. The .𝑐𝑠𝑡𝑙 file is used to generate functional code of
𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 and the auxiliary classes. It is possible to change the
code generation strategy by editing or replacing 𝑐𝑔/𝑐𝑔.𝑐𝑠𝑡𝑙 . Other
generators, eg., for Kotlin or for Java 7, could be substituted [19].

If there are (public) extension use cases 𝑒𝑥𝑡𝑢𝑐 of 𝑢𝑐 , then the
input fields, buttons and result field for these are also placed on
the same screen as 𝑢𝑐 . 𝑒𝑥𝑡𝑢𝑐 can read attributes 𝑈𝑐.𝑎𝑡𝑡 of 𝑢𝑐 , but
otherwise is independent of 𝑢𝑐 . The behaviour of 𝑒𝑥𝑡𝑢𝑐 is defined
in an operation 𝑒𝑥𝑡𝑢𝑐 of𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 . Private use cases also have
corresponding operations in𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 , but no UI components.

Figure 3 shows the general Android architecture for single-screen
apps. In terms of the VIPER pattern, the screen has the View role, the
𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 the Interactor role, the 𝑀𝑎𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 the Presenter
role, and the entity beans and 𝐷𝑏𝑖 the Entity role. A Router is only
included for multi-screen apps.

4.2 Multiple-screen apps
When there are two or more independent public use cases (includ-
ing EIS use cases of the standard forms 𝑐𝑟𝑒𝑎𝑡𝑒𝐸, 𝑑𝑒𝑙𝑒𝑡𝑒𝐸, 𝑒𝑑𝑖𝑡𝐸,
𝑙𝑖𝑠𝑡𝐸, etc), a tabbed app is generated, with a separate tab/screen
for each use case, implemented as an Android 𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡 . The
𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑃𝑎𝑔𝑒𝑟𝐴𝑑𝑎𝑝𝑡𝑒𝑟 and 𝑉𝑖𝑒𝑤𝑃𝑎𝑔𝑒𝑟 Android classes are used
to manage transitions between screens (lateral navigation) via tab
selections or swipe gestures. 𝑀𝑎𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦. 𝑗𝑎𝑣𝑎 defines the host
activity for the individual fragments. Figure 6 shows an example of
the interfaces produced for such apps.
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The general Android architecture for multi-screen apps is shown
in Figure 4. In the case of 𝑙𝑖𝑠𝑡𝐸 operations, a 𝑅𝑒𝑐𝑦𝑐𝑙𝑒𝑟𝑉 𝑖𝑒𝑤 is used
to provide scrollable lists of 𝐸 instances. This provides cell recycling
for efficient display of large collections. Selection events on the list
are handled by the 𝑀𝑎𝑖𝑛𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 view controller, which updates
the model facade accordingly (Figure 4). A 𝐺𝑟𝑖𝑑𝐿𝑎𝑦𝑜𝑢𝑡 is used for
individual list items by default, however the developer may substi-
tute any alternative layout which supports the required widgets
for items.

A share price analysis app using predefined components for In-
ternet access, data conversion and graph display of share price
data is shown in Figure 7. Components 𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑒_𝐷𝐴𝑂 and
𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟 with 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡𝐶𝑎𝑙𝑙𝑏𝑎𝑐𝑘 are included automati-
cally in the system specification as a result of 𝐷𝑎𝑖𝑙𝑦𝑄𝑢𝑜𝑡𝑒 being
defined with a ≪𝑟𝑒𝑚𝑜𝑡𝑒≫ stereotype. Other components (𝐷𝑎𝑡𝑒
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝐺𝑟𝑎𝑝ℎ𝐷𝑖𝑠𝑝𝑙𝑎𝑦) are manually added.

Figure 7: Interface of share analysis app

5 IOS APPS
A similar approach is adopted for iOS apps based on UIKit and
Swift 4+, and for SwiftUI apps based on Swift 5. The organisation of
the business and integration tiers are essentially the same as with
Android.

5.1 UIKit apps
For single-screen UIKit apps the architecture of Figure 8 is used.

Figure 8: Architecture for single-screen UIKit iOS apps

Instead of AndroidActivities or Fragments, iOS𝑈 𝐼𝑉𝑖𝑒𝑤 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

components are generated to manage screens. These depend on
the UIKit library. Other parts of the app, such as validation beans
and model facade, are written in standard Swift 5. In this case,
the code generator 𝑐𝑔/𝑐𝑔.𝑐𝑠𝑡𝑙 should be the Swift 5 code generator
specification.

As with Android, a tabbed interface is assumed for multi-screen
apps. For list views,𝑈 𝐼𝑇𝑎𝑏𝑙𝑒𝑉𝑖𝑒𝑤 is used to display scrollable lists
with cell recycling. The actual screen layouts for iOS/UIKit apps
are not synthesised, due to the proprietary nature of the iOS XML
screen description format. Instead, the developer can produce appro-
priate UI screens using Xcode, and connect these to the generated
view controllers.

5.2 SwiftUI apps
Whilst Android and iOS/UIKit apps use an event-based UI approach,
SwiftUI is based instead on the principle that the UI layouts and
content should be a function of the app business data. UI screens
are defined as SwiftUI View components, which can contain local
data (@State variables) and observe model data (@ObservedObject
or @EnvironmentObject variables). Our architectural approach
is consistent with SwiftUI, with the 𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 serving as the
central data source for the UI content.

Instead of a VIPER architecture, we use a MVVM approach for
SwiftUI apps, with SwiftUI views taking the role of both the screens
and view controllers of the UIKit approach. The𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 has
the ViewModel role as a source of observable data to which views
subscribe. We also combine the roles of use case value objects
and use case validators. Other tiers of the architecture remain un-
changed from the UIKit approach. Figure 9 shows the architecture
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for multiple-screen SwiftUI apps. Figure 10 shows the bond analysis
app version in SwiftUI.

Figure 9: Architecture for multiple-screen SwiftUI iOS apps

Figure 10: App 5 in SwiftUI

The authentication and realtime datastore services of Firebase
also utilise MVVM, so that a SwiftUI app generated by our approach
will have a consistent architecture at each tier.

6 EVALUATION
We evaluate the approach using some small but useful apps from
different domains: a health and fitness advisory app; a business app
for bond valuation (Figures 1, 2, 6, 10); an app for share price analysis
(Figure 7), and an app for environmental impact rating of journeys.
The three larger apps all involve non-trivial functionality such
as numerical optimisation procedures, computation of financial
indicators, and distance computations and map interaction. The
specifications and code of all the examples are available at the
AgileUML Github site.

We compare the size of the app specifications, the development
effort, and the size of the generated app code for each app frame-
work (Table 2). We also evaluate the number of quality flaws (du-
plicated code; excessive cyclomatic complexity; excessive numbers
of parameters and local variables; excessive coupling; excessive
class or operation size; excessive numbers of operations) in the
generated code, using the flaw indicators and thresholds of [11].

For each target platform, the average ratio of the size of the
generated code to the authored specification size is over 10 times,
producing in principle a 90% reduction in effort of our approach
compared to manual coding of the apps. The code quality is also
generally higher (lower flaw density) than that of developer-coded
Eclipse projects in [11]. The Eclipse projects of [11] had flaw density
values ranging from 0.005 to 0.04 flaws per LOC, with an average
around 0.015. Thus for these cases we can show that the approach
is potentially beneficial in terms of development effort and quality.

7 COMPARISONWITH RELATEDWORK
There are many approaches to app production, ranging from web
app technologies and tools (eg., Sencha Touch), through hybrid apps
(React Native, Xamarin) to MDE approaches targeted at native plat-
forms [2, 4, 6, 10, 13, 26, 28, 29], of which the leading examples are
MD2 [12] and PIMAR [31]. These are both based on the definition
of specialised DSLs for the mobile domain, which is the principal
MDE approach for mobile development [20, 25, 30]. However, there
are problems arising from the maintenance and management of
DSLs, and we have decided to base our approach on a subset of
standard UML, as with [15, 21].

A comparison of cross-platform approaches showed that MDE
approaches can be superior in performance to other approaches,
and attain a similar level of efficiency to manually-coded native
apps [5].

Our approach is focussed on the primarily declarative specifica-
tion of apps via UML class diagrams and operations and use cases
with pre- and post-conditions. In contrast, both MD2 and PIMAR
adopt an event/action specification paradigm, which is appropriate
for an MVC architecture, but not well-aligned to the SwiftUI data-
centered paradigm. We have chosen a textual notation for defining
detailed functionality, because text is generally faster to write and
modify compared to graphical notations such as the UML activity
diagrams used in PIMAR.

Table 3 compares the approach of this paper to MD2 and PIMAR.
MD2 and PIMAR are mainly focussed on data-driven business

apps, supporting data management of persistent data. PIMAR also
supports AR apps, but with the use of manual coding. We prefer
to provide fully-automated code generation, requiring no manual
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App case Specification Development Generated Generated Generated Flaws/ Flaws/ Flaws/
size time code LOC code LOC code LOC LOC LOC LOC
(LOC) (hours) (Android) (iOS/UIKit) (SwiftUI) (Android) (iOS) (SwiftUI)

Health app 55 1 1514 903 450 0.002 0.003 0.007
Bond app 95 4 2014 1247 885 0.0025 0.005 0.0045
Share app 180 12 2279 1653 1644 0.003 0.003 0.004
Environmental app 144 8 1374 1690 1780 0.0043 0.005 0.004

Table 2: Evaluation on app cases

Aspect AgileUML MD2 PIMAR
Specification Graphical or Textual Textual and
Notations textual UML. DSL. graphical DSL.
Scope Produces complete Manual coding needed Manual coding needed

functional code. for custom functionality. for custom functionality.
Code User-configurable code generation; Fixed code generator; Fixed code generator;
Generation Full OCL support partial OCL support partial OCL support
Domains Finance; mHealth; general. Data-driven business Data-driven business

Not games/AR apps apps; AR
Platforms Android/Java 8; Android/Java Android/Java

iOS Swift 4/5 iOS Objective-C iOS Objective-C
UIKit/SwiftUI UIKit UIKit

Table 3: Comparison of mobile app synthesis approaches

coding. This eliminates the problem of duplicated coding effort for
multiple platforms, and the work of integrating and maintaining
generated and manual code. Instead of defining a new specification
notation for mobile apps, we have reused the UML-RSDS subset of
the standard UML and OCL languages. We have conceptualised app
framework elements (such as view controllers, cached DAOs, cloud
datastores) in terms of existing UML-RSDS elements (Table 1). This
has the benefit that not only can apps for different platforms be
generated from one specification, but also conventional desktop
application, web service or EIS versions of the same system can
be produced. The same tooling can be used to generate additional
C, Swift or C++ code files for use with an app. Relevant code-
generation techniques and software patterns can be directly reused
for mobile apps from other application types. Configurable code
generation is a particular advantage for the mobile domain, where
language turnover and evolution has been rapid. Another minor
advantage of our approach is that our tooling is independent of any
external software such as Eclipse. Only a Java runtime is required.
The tool footprint is small, under 2MB.

In comparison to the other UML-based approaches [21] and [15],
while [21] offers the additional capability of specifying temporal
relationships between use cases, it only appears to support Android
currently, and to generate only skeleton code. The approach of [15]
uses fine-grainedmodelling of Android components/services within
UML, and detailed specification of functionality as UML activity
diagrams. As noted above, text is probably more appropriate for
detailed functional modelling, instead of process diagrams. We
also adopt a component-based approach, but our components are
specified in a high-level manner, abstracting from the details of
corresponding iOS and Android services.

Other rapid development approaches include tools which con-
vert UI sketches into UI code [3], [22]. These could be used as a
means of specifying UI designs for the front end of apps. Compared
to template-based or data-based app builders such as Microsoft
PowerApps5 or Google AppSheet6, we provide greater flexibility in
functional specification and control over app elements.

8 LIMITATIONS AND FUTUREWORK
One omission in our approach is the capability to define alternative
visual styles or themes for app UIs. We intend to address this by
defining a declarative UI description language (DSL), which could
specify desired styling for visual elements at an application level
or individual screen or widget level [1]. DSL specifications for
elements would override the default code generation choice for
the elements (eg., that GridLayout is used for object list displays in
Android). Thus they would be relatively concise.

We do not consider game apps, which require specialised tech-
niques and elaborate UI mechanisms. An MDE approach for game
apps is investigated by [7].

The generators and sets of predefined components will be ex-
tended to includemoremobile services and the handling of events/data
from specialised sensors. Further optimisation and security strate-
gies will be applied, for example, enabling use cases with an
≪𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠≫ stereotype to be implemented asynchronously,
in order to reduce load on themain thread. Components formachine
learning algorithms and NLP will be added to support m-health
app specification.

5https://powerapps.microsoft.com
6https://www.appsheet.com
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While UML and OCL have the advantage of being
internationally-standardised and widely-used languages, they also
have limitations. In particular, OCL lacks both map types and func-
tion types, which are extensively used in typical Android and iOS
apps (eg., JSON data is represented as maps in iOS, and Java lambda
expressions and Swift closures are used to facilitate callbacks from
asynchronous processes to their initiators). We are in the process
of extending OCL to include map and function types [18].

Currently we do not formally track specification changes to en-
able selective update of generated app code. However the modular
nature of the code generation process enables code changes to be
limited. For example, modification of one use case activity will only
result in changes to its own view controller and validator bean code
and to the𝑀𝑜𝑑𝑒𝑙𝐹𝑎𝑐𝑎𝑑𝑒 .

In the long term we aim to derive mobile app data models and
UI specifications from natural language requirements and sketches.
This could further accelerate app development and reduce the effort
expended by developers.We also aim to provide a design assistant to
guide developers in the choice of app components and organisation.

9 BROADER IMPACTS
Short time-to-market and high usability are priorities for mobile
applications. In addition, apps should conform to the architectures
supported by the mobile platforms, avoid security problems, and
avoid inefficient or bloated code.

Agile MDE development of native mobile applications can avoid
the cost of manually writing code for the same app for multiple
device platforms/versions, and can enable correct architectures, se-
curity policies and high-quality coding practices to be automatically
imposed.

While increased automation of software production may cause
reduced employment opportunities for software developers, this is
likely to be counterbalanced by continuing demand for new and
more advanced software applications.

CONCLUSIONS
We have described the AgileUML approach to synthesis of mobile
apps, which is a lightweight MDE approach emphasising the pro-
duction of complete functional apps based on minimal coding in
high-level specifications. In contrast to other MDE approaches for
mobile apps, we provide a mapping from declarative UML models
to app elements. The effectiveness of the approach has been shown
by applying it for practical app development.
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