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Abstract   

We describe the principles of counterfactual thinking in providing more precise definitions of causal 

effects and some of the implications of this work for the way in which causal questions in life course 

research are framed and evidence evaluated. Terminology is explained and examples of common life 

course analyses are discussed that focus on the timing of exposures, the mediation of their effects, 

observed and unobserved confounders, and measurement error. The examples are illustrated by 

analyses using singleton and twin cohort data. 
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1. INTRODUCTION  
 

1.1. The premise of life course epidemiology 

Many acute illnesses and other chronic or recurring impairing conditions that appear in later life are 

often shaped by developmental processes experienced in utero, childhood, adolescence or early 

adulthood. For public health policy decisions, knowledge of these processes is often helpful as it may 

identify the exposures that raise risk or promote resilience. For both early and later ill-health, the 

aetiological mechanisms are commonly largely hidden from direct observation but must be inferred from 

analyses of series of observations, typically gathered retrospectively from patients or prospectively from 

cohorts of healthy individuals. Addressing these research questions is the domain of what is generally 

referred to as life course epidemiology. In addition to this extended longitudinal perspective, life course 

epidemiology highlights the importance of a holistic approach to health, as this perspective considers 

the complex relationships between diseases, not just because of shared risks but because of potentially 

linked causal chains. 

 

1.2. Evidence 

There is accumulating evidence that many diseases typically diagnosed in adulthood have social and 

physiological antecedents much earlier in life. One of the original explanations for this is the Barker 

hypothesis, which drew a link between foetal nutritional experience and later adult heart disease (Barker 

and Osmond 1986). In the years since, this has become much generalized into the foetal origins of 

adult disease (FOAD) (Gillman 2002) and the disease origins of health and disease (DOHaD) 

paradigms (Bianco-Miotto et al. 2017), both identifying long-term associations that include examples 

from most areas of medicine. In mental health placing the origins of adult conditions in childhood 

experience has been seen as important from the earliest days of psychiatry (Breuer and Freud 2004) 

and though the proposed exposures and mechanisms have changed, the early origins of liability for 

many mental health conditions remain accepted (Mayer et al. 2021). Despite various forces that press 

for increasing medical specialisation, we now recognise the full extent of the co-occurrence of multiple 

chronic conditions and the more limited response to treatment for any one condition in the presence of 

another (Academy of Medical Sciences 2018).  

 

1.3. Implications 

While description of patterns and associations over the life course can be fascinating, a focus on 

identifying the causal mechanisms underlying ill-health is primarily motivated by the desire to intervene: 

We are wanting to identify opportunities to intervene to improve population health, whether via clinical 

treatments, behavioural interventions, or policy changes.  While reductions or removal of risk factors 

may be the obvious target, a life course perspective may suggest other opportunities such as displacing 

exposure to a time when the individual is more resilient or providing compensatory beneficial exposures. 

Alternatively, it may be possible to interrupt the disease mechanism or reduce the impairments 



3 

associated with the disease state. These interventions may be directed towards individual patients, 

groups at high risk, or require changes at the population level, for example by influencing behaviour, 

such as alcohol drinking habits.  The kind of data and designs that will yield evidence of causal effects 

is likely to differ in each case, and researchers might decide to focus on various more specific research 

questions, such as testing long-standing hypotheses about the determinants of adult disease, 

understanding population health trends during rapid demographic transformations, or comparing 

disease progression with onset of impairment to elucidate causal mechanisms.  

 

1.4. Analytical challenges 

For any particular problem, the potential solutions to the analytical challenge of attributing cause with 

sufficient evidential power to justify intervention are many and varied. However, the multidimensional 

nature of health and well-being in adulthood immediately presents a challenge as to the scope of an 

investigation and within that, the dimensions to be considered. That disease aetiology may extend over 

many years, together with the evolving nature of the human organism during the life course, also offers 

many different ways in which exposure(s) can be characterised, for example cumulatively or pointwise 

at times that are linked to particular developmental transitions. There may be lags between exposure 

and evidence of impact, for example incubation or the requirement for a second, or further, exposure 

(e.g., exposure to stress).  Early exposures may increase the risk for later exposures, or an early 

disease may increase the risk of a second co-occurring one. And even with all these complications, 

there will likely be not just a single aetiology accounting for all cases, but heterogeneity in both causes 

that give rise to a common outcome, so-called equifinality, and common patterns of exposures that give 

rise to variable outcomes, so-called pleiotropy. 

These are the challenges presented by the disease process. Numerous additional challenges are 

invariably presented by shortcomings in the available data. The paucity of early-life confounders, 

survivor bias affecting studies of disease in later life, measurement error, to name just a few. 

The above suggests our task as a daunting one, and sufficiently so such that the methodological failings 

in most public health research should encourage considerable scepticism. Nonetheless progress is 

possible. While we focus here on the conceptual clarity and accompanying analytical tools that can help 

overcome these challenges, we should emphasize that these alone are not enough.  Contextual 

knowledge, strong theory and imaginative use and construction of elegant study designs are as 

essential.  

 

The paper is structured as follows. In section 2 we review the best-known life course models which are 

then revisited within a counterfactual-based approach in section 3, where enquiries are refined and 

estimands introduced. In section 4 we examine the challenges of estimating causal effects when, as it 

is most likely, assumptions are not met.  Here we review possible approaches and also study designs 

that may be suitable for such tasks. In section 5 we consider the impact of more precise definition of 

effects on reproducibility and generalisation, key issues for public health policy. We then draw some 

general conclusions in section 6.  Throughout we illustrate issues with examples taken from our applied 

field, using data form the Avon Longitudinal Study of Parents and Children (ALPAC) (Fraser et al. 2013) 
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and from the Virginia Twin-Family Study of Adolescent Behavioral Development (VTSABD) (Hewitt et 

al. 1997). 

 

2. LIFE COURSE INVESTIGATIONS  

 

2.1. Conceptual models 

Empirical investigations of early life determinants of later disease or health have traditionally addressed 

these concerns within a simplified - but broadly accepted- structure. Consider an investigation of the 

association between childhood socio-economic status (SES) and cognition in later life. Alternative 

hypotheses for this associations have been proposed (Liu, Jones, and Glymour 2010), in particular 

apportioning the long lasting effect of childhood SES on cognition to act via its impact on either: 

a) education attainment and hence adult occupation, SES, and health behaviours;  

b) poor early-life nutrition, and hence poor brain growth and later brain development; or,  

c)  both.  

 

The first two hypotheses are examples of “critical period models” (Liu, Jones, and Glymour 2010; Ben-

Shlomo, Mishra, and Kuh 2014) , within which for (a), the critical period is adulthood, and for (b) 

childhood (Figure 1). However, most empirical investigations of this question have been more consistent 

with explanation (c): that both periods are relevant. If the latter applies and impact from the two periods 

is of different intensity, then this hypothesis would be an example of the “sensitive period model”, with 

the associations represented by the arrows from either of A1 or A2 into Y (A1 → Y or A2 → Y)  in Figure 

1(c) corresponding to the stronger (more sensitive) association.  If instead these associations are of 

similar magnitude, this would be an example of the “cumulative exposure model”.  

There are still other possible explanations, however. For example, experiencing exposure at later times 

may enhance the effect of an initial exposure, leading to synergies (or compressions). These might 

reveal themselves as different final outcomes for individuals with distinct exposure trajectories (e.g., 

upward, downward, or stable). These would be examples of “pathway” or “chain of risk models”.  

 

2.2. Statistical models 

There is a strong tradition of comparing these four models formally (Mishra et al. 2009; Smith et al. 

2015; Green and Popham 2017), if exposure data at relevant times are available.  These formal 

comparisons rely on their nested nature when viewed in terms of regression models. For example, the 

most general linear regression model for a continuous outcome Y and a single binary exposure A 

observed at two time points on individuals, indexed by j, would be, 

 

𝐸(𝑌| 𝐴ଵ, 𝐴ଶ  ) = 𝛽  +  𝛽ଵ 𝐴ଵ  + 𝛽ଶ 𝐴ଶ  + 𝛽ଷ 𝐴ଵ 𝐴ଶ                                     (1) 

 

where E(.) stands for expectation,  𝛽, 𝛽ଵ, 𝛽ଶ, and 𝛽ଷ are unknown regression coefficients. It is easy to 

see that setting certain constraints on the regression coefficients leads to one of the models described 
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above. For example, setting 𝛽ଷ = 0 would imply that there is no synergism between the exposures at 

different times, and additionally setting 𝛽ଵ = 𝛽ଶwould be equivalent to assuming that it is the 

accumulation of exposure that influences the outcome, irrespective of its timing. If instead both 𝛽ଶ and 

𝛽ଷ were set to be zero, we would assume a critical period model, with 𝛽ଵ capturing the effect of early 

exposure. Fitting model 1 to the available data would allow the formal comparison of these nested 

models, with the significance (and equivalence) of the relevant regression parameters assessed either 

via likelihood ratio tests, or other, more flexible, selection criteria.  

 

There are several drawbacks to employing this structured approach to the empirical investigation of life 

course models. First, the specification of these models should address issues of confounding, especially 

given the time-varying nature of the exposures. Confounding of an exposure-outcome association 

occurs when they have (at least) one common cause, adding a non-causal component to their marginal 

association. Because the processes underlying the evolution of the exposures are most likely to be 

influenced by other time-varying factors that also influence the outcome of interest, time-varying 

confounding (also referred to as intermediate confounding) is a particular concern.  Ignoring this is likely 

to lead to substantial biases. Second, it should not be overlooked that most exposures of interest are 

not just time-varying but also span across multiple, interconnected, dimensions. In the study of cognition 

described above, adult SES might be understood to capture a broad class of variables, including 

education, income, and health behaviours, while childhood SES might capture family stability, nutrition, 

and the home environment. It may also be that this high dimensionality could be conceptualized as 

evidence of a latent dimension that is the actual driver of the outcome. Ignoring the measurement error 

in the observed exposure data might therefore also lead to biases. This is especially relevant if the 

observation times of the exposure do not correspond to the most relevant times in the evolution of the 

latent drivers (e.g., observed height vs. hormonal spurt experienced in adolescence). Third, the life 

course models described above may not help address all the questions that one wishes to pose: for 

example, trying to disentangle whether a critical period or a cumulative exposure model is supported 

by the data would not help identify the most effective period to implement an intervention (Green and 

Popham 2017) (see discussion of example 2). 

 

 

3. COUNTERFACTUAL REASONING 

 

3.1. Causal diagrams  

Recent developments in causal inference offer several tools to deal with these challenges. Causal 

directed acyclic graphs (DAGs; see Box 1) are particularly useful tools to encode one’s assumptions 

with regards to the processes linking exposures and outcome, including their associations with other 

(observed and unobserved) variables (Pearl 1995).  Once assumptions are encoded in causal graphs 

that reflect both the nature of the process being investigated and of the available data, empirical 
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investigations of alternative life course models can be initiated. Given the longitudinal nature of the 

exposures, and the likely considerable number of time-varying confounders involved, such formal 

graphical representation is very useful for highlighting their complexities.  The translation of the 

conceptual model driving the DAG into relevant targets of estimation, however, is better achieved by 

adopting the language of counterfactuals, that is of the outcomes that would be experienced under 

alternative hypothetical interventions on the exposure trajectories. 

 

 

Box 1 

Causal directed acyclic graphs (DAGs) 

DAGs are not just a visualization of the conceptual framework (e.g., as shown in Figure 1), but a 

representation of all possible causal and non-causal relationships involving exposures and outcomes.  

They are said to be causal when they include all possible common causes of the variables that are 

included in the diagram, and for this reason are particularly useful to identify sources of confounding 

bias. Data structures leading to selection bias, such as missing data processes and measurement error 

for some of the variables, can also be included, as shown in Figures 2(a) and (b) (where R is a missing 

data indicator and A2* the unmeasured true exposure at time 2). DAGs can therefore be interrogated to 

identify the non-causal paths between exposures and outcomes, due to confounding and/or selection 

bias, and to compare possible strategies to remove (“block”) them in order to identify the causal 

relationships of interest.   

 

 

3.2. Potential outcomes and estimands 

Let 𝑌(𝑎ଵ) be the potential outcome, i.e., the value that 𝑌 would take if we were hypothetically to intervene 

on 𝐴ଵ and set it to take the value 𝑎ଵ. We can similarly define the potential outcome 𝑌(𝑎ଶ) for hypothetical 

interventions on 𝐴ଶ. The total causal effect (𝑇𝐶𝐸) of 𝐴 on 𝑌 can be defined in terms of linear contrasts 

of mean potential outcomes as   

𝑇𝐶𝐸 = 𝐸ൣ𝑌൫𝑎൯൧ − 𝐸ൣ𝑌൫𝑎
∗൯൧                                           (2)  

with 𝑎 and 𝑎
∗ representing the exposed and unexposed status of 𝐴, j=1,2, and 𝐸[… ] indicating 

expectation over the population of interest.   

The 𝑇𝐶𝐸 is expressed in terms of potential outcomes, that is entities that are not estimable from the 

data unless certain assumptions are made. Those mostly invoked in causal inference are: no 

interference and consistency for the exposure, and conditional exchangeability for the exposure-

outcome relationship [(Hernan and Robins 2020), Chapters 1 and 3; see Box 2]. Together these 

assumptions allow us to replace the expectations of potential outcomes that make up the definition of 

the 𝑇𝐶𝐸 with functions of the observed data. Estimation can be achieved using for example outcome 

regression methods  (including structural equation models, SEM), propensity score based methods 

(e.g. inverse probability weighting (IPW) of marginal structural models [(Hernan and Robins 2020), 

Chapter 11], or double robust methods (e.g. augmented IPW and targeted maximum likelihood 
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estimation; (Hernan and Robins 2020); Chapter 13). Depending on the chosen estimation method, the 

assumptions of positivity (i.e. that in each stratum defined by the confounders there is a non-zero 

probability of experiencing either levels of exposure)  and correct model specifications (for  the outcome 

or exposure score), are also invoked [(Hernan and Robins 2020) Chapter 11)]. Estimation methods that 

rely on the availability of instrumental variables replace the NUC assumption with the assumption of 

homogeneity of the causal effect within the population [(Hernan and Robins 2020) Chapter 16)]. 

 

 

Box 2 

Identifiability assumptions 

The assumption of no interference is met when the exposure of one individual does not affect the 

outcome of another; it is thought to be reasonable in most circumstances unless an individual’s outcome 

is affected by interactions with others, as in occurs with vaccination against infectious diseases. 

Consistency is the notion that clarifies the type of intervention we wish to draw inferences for: it states 

that the potential outcome for an individual whose exposure is set to take a particular value is the same 

as the observed outcome for that same individual if they had actually experienced that level of exposure. 

Assuming consistency implies that we are envisaging interventions that are not invasive (Vanderweele 

and Vansteelandt 2009).Conditional exchangeability is equivalent to the assumption of no unaccounted 

confounding (NUC) and states that, within strata defined by the confounders (hence the use of the term 

“conditional”), the chance of experiencing or not experiencing the exposure is random, i.e. exposed and 

unexposed individuals are exchangeable (akin to a randomized controlled trials).  

 

 

3.3.  Causal questions and life course models 

Having defined the 𝑇𝐶𝐸 in terms of potential outcomes, we can now revisit the critical period model 

discussed in the previous section by investigating what would happen to 𝑌 if we intervened on 𝐴ଵ while 

leaving 𝐴ଶ unchanged, in other words what would the effect of 𝐴ଵ that does not involve 𝐴ଶ be: intuitively, 

its direct effect.  

Let the potential outcome 𝑌(𝑎ଵ, 𝑎ଶ) be the value that 𝑌 would take if we were hypothetically to intervene 

on 𝐴ଵ and set it to take the value 𝑎ଵ while setting 𝐴ଶ to take the value 𝑎ଶ. Then we could compare 

𝐸[𝑌(𝑎ଵ, 𝑎ଶ)] and  𝐸[𝑌(𝑎ଵ
∗, 𝑎ଶ

∗)], with their difference giving what is known as the controlled direct effect 

(𝐶𝐷𝐸) of 𝐴ଵ (for a given value 𝑎ଶ of 𝐴ଶ), expressed as a linear contrast again:  

 

𝐶𝐷𝐸ଵ(𝑎ଶ) = 𝐸[𝑌(𝑎ଵ, 𝑎ଶ)] − 𝐸(𝑌(𝑎ଵ
∗ , 𝑎ଶ

∗)]             (3)  

 

This estimand captures the effect of 𝐴ଵ  on 𝑌 that does not involve 𝐴ଶ  (since we have set the value of 

𝐴ଶ to be the same in both expressions).  If 𝐶𝐷𝐸ଵ(𝑎ଶ) were different from zero, for at least some values 

of 𝐴ଶ, there would be evidence for the first period of exposure to be important for the outcome. However, 

we would not be able to conclude which life course model was supported by the data without further 
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investigation. For example, if  𝐶𝐷𝐸ଵ(𝑎ଶ) changed for different values of 𝐴ଶ, there would be evidence 

supporting the pathways model, as it would be the combination of values of the exposure experienced 

at different times that would matter. 

If 𝐶𝐷𝐸ଵ(𝑎ଶ) did not vary with 𝐴ଶ (i.e., 𝐶𝐷𝐸ଵ(𝑎ଶ) = 𝐶𝐷𝐸ଵ), and were different from zero, either a 

critical/sensitive period model or a cumulative exposure model would be supported by the data. In this 

case we would want to compare the causal effect of 𝐴ଵ on 𝑌 that is not mediated by 𝐴ଶ with the causal 

effect of 𝐴ଶ on 𝑌 (i.e., 𝑇𝐶𝐸ଶ, as there are no later, downstream, exposures we are considering here).  If 

𝐶𝐷𝐸ଵ⩬𝑇𝐶𝐸ଶ, there would be evidence in favour of a cumulative exposure model; if one were larger than 

the other, the evidence would be for a sensitive period model; if only one were (close to) zero, then 

there would be support for a critical period model (Table 1). 

Note that, as for 𝑇𝐶𝐸ଵ and 𝑇𝐶𝐸ଶ, estimation of 𝐶𝐷𝐸ଵ requires certain assumptions, namely no 

interference and consistency for the exposure, and NUC for the relationship between 𝐴ଵ and 𝑌, and 

also between 𝐴ଶ and 𝑌.  

 

Example 1 

The following examples serve as illustrations of the different methods described above.  It is recognised 

that the incidence of eating disorders in adolescents is associated with higher body mass index (BMI) 

in childhood as well as with birth weight (Zehr et al. 2007; Nicholls and Viner 2009; Micali et al. 2018) 

features that are known to be unequally distributed across different social strata. Thus, to devise 

preventive strategies, it would be useful to identify whether there are critical or sensitive periods of 

growth.   

To address this question, we use data on female participants from ALSPAC (see Appendix 1). For 

simplicity, we consider only two periods of exposure, birth and adolescence. Specifically, we use 

internally standardized birth weight and internally standardized (log transformed) body mass index 

(BMI) at age 12 years as the exposures of interest (𝐴ଵ and 𝐴ଶ in model 1), and standardized binge 

eating score (derived from parental questionnaire data) when the girls were 13.5 year old as the 

outcome of interest (BE; Figure 3(a)).   

Assuming no interference, consistency and NUC (and also correct outcome and mediator model 

specifications when performing estimation by g-computation), we estimated that the 𝑇𝐶𝐸 of BMI at 12 

on binge eating (𝑇𝐶𝐸ଶ) is to increase 0.24 SD per 1SD increase in BMI (95% confidence interval (CI): 

0.21, 0.28),  and that the 𝐶𝐷𝐸௦ of birth weight (𝐶𝐷𝐸ଵ(𝑎ଶ)), when BMI at 12 is set to take the mean value 

of 0 or +/- 1 SD are small (in each case it is about 0.02SD change per SD increase in birth weight- 

around 0.5kg- with small variations). It appears therefore that adolescence is a critical period for the 

onset of binge eating, while exposure in early life (as captured by birth weight) seems to have a limited 

impact, although it increases when adolescent BMI is also greater (Table 2).    

One should not ignore the possibility that there may be variables on the causal pathway from birth 

weight to binge eating that act as confounders of the latter’s relationship with BMI at 12 (such as       𝐿  

in Figure 3(b)). This source of confounding should be taken into account when estimating 𝐶𝐷𝐸ଵ(𝑎ଶ)),.  

One such variable could be  earlier BMI, as this variable is characterized by strong tracking (Bogin 
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1999). Re-estimating 𝐶𝐷𝐸ଵ(𝑎ଶ))  while controlling for BMI at 7 leads to slightly increased estimates but 

does not change our earlier conclusions (Table 2). 

 

3.3. Mechanisms 

Simply comparing life course models of this sort may leave many questions unanswered. For example, 

even if we found strong evidence in favour of a critical period model (as per example 1), we would still 

not be able to say when an intervention might be most effective. This is because the value of the 

exposure at later times might depend on several earlier factors and intervening on the earlier ones may 

be more effective than intervening on later ones (Green and Popham 2017).  

Specifically, we might wish to quantify what the consequences would be if we intervened on the 

exposure at selected times after initial exposure and shifted the population distribution of the exposure 

at those times in a beneficial direction. To do this we consider two new estimands: the interventional 

direct and indirect effects (𝐼𝐷𝐸 and 𝐼𝐼𝐸; (Didelez, Dawid, and Geneletti 2006; Vanderweele, 

Vansteelandt, and Robins 2014; Vansteelandt and Daniel 2017). These can be viewed as a variation 

of the natural direct and indirect effects (Robins and Greenland 1992; Pearl 2001) that avoids their 

strongest identifying assumption.  This is the “cross-world independence assumption”, which implies 

the absence of intermediate confounding, an assumption that is hard to justify in most life course 

settings for which multiple causal processes often interact with each other. 

The attraction of natural effects is that they allow the partitioning of the 𝑇𝐶𝐸 into causal pathways that 

involve and do not involve the mediator. In simple linear settings for both mediator and outcome these 

estimands are numerically equivalent to the direct and indirect effects most familiar to users of SEM 

(Daniel and De Stavola 2019), although they lack the formality (and clarity) given by the counterfactual 

definitions given above. 

 

3.3.1. Interventional effects 

Assume the causal diagram of Figure 4(a) is correct, with 𝐶 representing a set of baseline confounders, 

and 𝐿 a set of intermediate confounders.  We could then imagine a world where the distribution of 𝐴ଶ 

was changed to resemble that which would occur had 𝐴ଵ been set to take the beneficial value 𝑎ଵ
ற  (e.g., 

low deprivation).  Let  𝐴ଶ|,
ற  be a random draw from that distribution, conditional on confounders 𝐶 and 

𝐿, and  𝐴ଶ|,
∗  a random draw from the distribution of 𝐴ଶ, had 𝐴ଵ been set to take the harmful value 

𝑎ଵ
∗  (e.g., high deprivation).  Further let  𝑌൫𝑎ଵ

∗, 𝐴ଶ|,
ற ൯  be the potential outcome had 𝐴ଵ been set to take 

the harmful value 𝑎ଵ
∗ and 𝐴ଶ  to take the randomly drawn value 𝐴ଶ|,

ற , with an equivalent definition for  

𝑌൫𝑎ଵ
ற, 𝐴ଶ|,

ற ൯. Then, when expressed as linear contrasts of mean potential outcomes, 𝐼𝐷𝐸 and 𝐼𝐼𝐸 are 

defined as:   

 

𝐼𝐷𝐸 = 𝐸ൣ𝑌൫𝑎ଵ
∗, 𝐴ଶ|,

ற ൯൧ − 𝐸ൣ𝑌൫𝑎ଵ
ற, 𝐴ଶ|,

ற ൯൧              (4) 

𝐼𝐼𝐸 = 𝐸ൣ𝑌൫𝑎ଵ
∗ , 𝐴ଶ|,

∗ ൯൧ − 𝐸ൣ𝑌൫𝑎ଵ
∗, 𝐴ଶ|,

ற ൯൧               (5) 
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These interventional estimands capture the impact of changing distributions, instead of intervening on 

individuals (which is what the definitions of natural effects would envisage). For this reason, they are 

thought to be more useful for assessing the impact of public health policies. Their identification does 

not require the cross-world independence assumption invoked for natural effects. However, unlike 

natural effects, their sum does not necessarily equal the 𝑇𝐶𝐸  of the exposure (and thus cannot be used 

to quantify mediated proportions). 

Interventional direct effects resemble 𝐶𝐷𝐸𝑠  (compare equations 3 and 4): where they differ is in terms 

of how the second (intermediate) exposure is set. Because the definition of interventional effects 

involves a random draw from a chosen distribution, while the definition of 𝐶𝐷𝐸 involves a preselected 

value, interventional effects are better suited for continuous exposures (earlier in example 1 we selected 

three values for BMI at 12 years and hypothetically assigned those same values to everybody which is 

not realistic at all). However, identifying interventional effects requires additional assumptions to those 

invoked for the identification of 𝐶𝐷𝐸𝑠: no interference and consistency for the mediator, and NUC for 

the exposure-mediator relationship. Estimation can be achieved using a selection of approaches (Daniel 

and De Stavola 2019). 

 

Example 1 revisited  

Consider now the question of what the impact on adolescent binge eating scores would be, if we 

intervened on birth weight as opposed to intervening on BMI at 12.  The estimated effect of 1SD 

increase in birth weight is to increase binge eating scores by about 0.05SD (𝑇𝐶𝐸=0.047, 95% 

confidence interval (CI): 0.016, 0.078; Table 3). This undesirable impact is small but could be much 

reduced (𝐼𝐷𝐸=0.023, 95% CI: 0.010, 0.038; Table 3) if we could intervene on BMI at 12 and change its 

distribution to replicate that expected had birth weight not increased by 1SD (conditionally on 

confounders). 

These estimates were obtained after specifying flexible models for the outcome and BMI at 12 (with 

non-linear terms and several interactions) and assuming no interference and consistency for exposure 

and mediator, and NUC for the exposure-mediator, mediator-outcome and exposure-outcome 

relationships. 

If we had simply assumed linear relationships, and fitted a linear SEM to the same data, we would have 

obtained much smaller 𝑇𝐶𝐸 and 𝐼𝐷𝐸 estimates (Table 3).  

 

3.3.2. Multiple mediators 

So far, we have considered only two possible exposure periods, and just one dimension of exposure. 

Life course investigations such as those framed within the DOHAD approach, are more complex than 

this and involve multiple interlinked and time-varying exposures. Pursuing them requires studying 

chains of exposures, in other words, dealing with multiple mediators.  

 

In general, unless each mediator acts along distinct pathways, or all relationships are linear, it is not 

possible to identify the specific contributions of the various mediators. Some interesting questions can 

however be addressed using a multiple mediator generalization of the interventional effects that does 
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not require a priori knowledge of the causal order among the mediators, nor that there is no unmeasured 

confounding among them (Vansteelandt and Daniel 2017). This has several advantages because in 

most situations our substantive knowledge is limited. Being agnostic about their order is possible 

because these estimands measure the effect of shifting the distribution of each mediator in turn from 

their counterfactual distribution under no exposure to that under exposure, while the other mediator(s) 

are set to take values drawn from their marginal distribution under no exposure (and also setting the 

exposure to exposed status). Thus, if other mediators act downstream from the mediator being studied, 

they will not contribute to its indirect effect.  

The interventional direct effect measures the effect of the exposure on the outcome that involves none 

of the mediators by holding their joint distribution to be that under no exposure. Note that the sum of 

the interventional effects specific to each mediator is not the same as the interventional indirect effect 

of all mediators together because the latter involves shifting the joint distribution of all mediators. The 

difference (“the remainder”) is however in most cases minimal and, once accounted for, the sum of the 

direct and all indirect effects plus this residual term gives the total effect of the exposure.  

 

Example 2 

 In Example 1 we found that adolescence was a critical period for how body size influences binge eating 

scores. We now consider a range of mediators, as shown in Figure 4, and wish to study how early and 

later childhood BMI contribute to the association of birth weight with binge eating scores. We first study 

the joint mediated pathways involving childhood BMI and then focus on separating effects that involve 

BMI from 7 to 9 (and upstream) and BMI from 10 to 12 (and upstream) using g-computation. 

The estimated 𝐼𝐷𝐸 is 0.018 (95% CI: -0.004, 0.040; Table 4). This represents the extent of the 𝑇𝐶𝐸 due 

to an increase of 1SD in birth weight that would remain, if the joint distribution of the five mediators were 

set to be that of children without that increase. By complement, the estimated 𝐼𝐼𝐸 involving all mediators 

is 0.027 (95% CI: 0.017, 0.037) and represents the extent by which the binge eating score would 

increase if the five mediators were set to have the same joint distribution as that of children whose birth 

weight was set to be, or not to be, shifted by 1SD, while their birth weight had not changed.  

When the distinct pathways involving each of the subgroups of mediators (𝑀ଵ=[BMI7, BMI9] and  

𝑀ଶ=[BMI10, BMI11, BMI12]) were examined we found that the interventional indirect effect involving 

BMI from age 10 to 12 was the largest contributor to the indirect effects (𝐼𝐼𝐸ଶ=0.029, 95% CI  0.017, 

0.041; Table 4). Because this effect captures the impact of mediators upstream from these ages, and 

since BMI has such strong tracking, 𝐼𝐼𝐸ଶ includes the impact of earlier BMI.  In contrast 𝐼𝐼𝐸ଵ is negligible, 

indicating no contribution of BMI from 7 to 9 to the outcome that does not involve later BMI.  

An equivalent partitioning can be achieved by assuming linear relationships among all the variables in 

the diagram (as one would with a linear SEM). The results are on the right-hand side of Table 4. As 

observed before, estimates of the 𝑇𝐶𝐸 and 𝐼𝐷𝐸 appear to suffer from downward bias because of model 

misspecification. 

3.3.4. Other estimands 

Sometimes we are not prepared to make the assumptions of NUC for the exposure-mediator(s) 

relationships. Also, crucially, certain hypothetical interventions may not be well defined. This is the case 



12 

for birth weight, BMI, and SES (VanderWeele and Hernan 2012; Naimi and Kaufman 2015):  for each 

of these exposures we could construe interventions that would change their value but that would have 

very different consequences for the outcome, and therefore for the validity of the consistency 

assumption. 

To avoid invoking the consistency assumption for these exposures the mediation question could be 

rephrased as: “To what extent the exposure-outcome association can be reduced if we intervened on 

the mediators?”. An estimand that targets this question is the counterfactual disparity measure. It is 

defined as: 

  𝐶𝐷𝑀(𝑎ଶ) = 𝐸[𝑌(𝑎ଶ)|𝐴ଵ = 1] −  𝐸[𝑌(𝑎ଶ)|𝐴ଵ = 0]                       (6)   

 

The  𝐶𝐷𝑀 is identifiable under the assumptions on NUC for the mediator-outcome relationships and 

consistency only for the mediator. This definition has been extended to deal with multiple mediators in 

the form of interventional disparity measures, allowing for the partitioning of the indirect contributions 

by multiple sets of mediators to the disparity associated with an exposure  (Micali et al. 2018). 

 

 

4.  POTENTIAL BIASES 
The causal quantities (estimands) described in the previous section are useful for addressing some of 

the most compelling questions posed by life course investigations. However, their identification and 

estimation require invoking strong and generally unverifiable assumptions such as consistency (of 

exposures and mediators) and NUC for the relationships involving exposures, mediators, and outcome. 

In most applications they also invoke the assumption of correct model specifications (although the 

models requiring correct specification will depend on the estimation method). The importance of the 

latter was highlighted in the two examples so far, where incorrectly assuming linear models led to 

smaller (most likely biased) estimates. Incorrect model specifications however can also derive from 

unaccounted measurement error in the data. As already highlighted, a major source bias would also be 

introduced by unaccounted confounding. In the next section we focus therefore on the biases that may 

derive from measurement error and unaccounted confounding, and discuss how one could attempt to 

address, and hopefully reduce, their impact. 

 

4.1. Measurement Error and Misclassification 

 

4.1.1. Measurement Error in the Exposure  

As VanderWeele et al (2012) noted, the problems posed by confounding in the attribution of causal 

effects have received considerable attention, but those posed by measurement error are discussed 

rather less (VanderWeele and Hernan 2012).  Measurement error can have both systematic 

(differential) and random (non-differential) components. While the scope for bias arising from systematic 

errors in an exposure that are correlated with confounders, outcome, or mediators is obvious, rather 

less well-known are the malign effects of errors uncorrelated with any of these.  Where errors are 
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independent, intuition would suggest some loss of power associated with the extent of measurement 

error together with some expectation that coefficient estimates for mismeasured exposures would be 

attenuated towards the null. Indeed, in the case of bivariate exposure-outcome analysis this is generally 

the case. Although the loss of power remains, the availability of an external reliability coefficient can be 

used to “disattenuate” this estimate, replacing the original biased estimate 𝛽  of the regression 

coefficient β, by 
ఉ


 where r is an intraclass correlation coefficient derived from other studies. Similar 

attenuation arises with misclassified binary exposures, although the attenuation factor is a function of 

the specificity and sensitivity of the observed exposure,  as well as its prevalence. Such neat corrections 

however are not transportable to the setting where there are multiple error-prone covariates, as the bias 

can go in either direction (Keogh et al. 2020).  

 

4.1.2. Measurement Error in the Mediator 

In simple settings involving a continuous (non-differentially) mismeasured mediator,  correctly 

measured exposure and confounders, and a correctly measured continuous outcome, (and no non-

linearities), the expected attenuation of the mediator to outcome coefficient leads to a corresponding 

shift away from the null in the direct effect, since an underestimate of the mediator-outcome relationship 

impacts on the estimation of the indirect effect and the sum of (natural) direct and indirect effects 

equates the total effect between exposure and outcome. With an external knowledge of the reliability 

(ie r) the replacement of the mediator to outcome coefficient by its disattenuated estimate can be used 

to correct the estimate of the indirect effect in this simple setting. This can  then be subtracted from the 

total effect of the exposure to obtain an unbiased direct effect.  These simple adjustment methods can 

be used when the outcome is modelled using linear regression for continuous outcomes or logistic 

regression for binary outcomes (le Cessie et al. 2012)  with similar results for binary mediators subject 

to misclassification (Ogburn and VanderWeele 2012). 

These adjusted estimates both assume that the reliability coefficients obtained from other studies are 

applicable and are also known without error. If additional data on the variable affected by error were 

available, then a joint multivariate analysis of the outcome and mis-measured variable using additional 

data from an embedded reliability study provides an approach that allows error propagation, since the 

contribution to the target estimates arising from uncertain reliability can be considerable. Joint analysis 

with both embedded and external reliability data can reduce this and allows scope to test the stability 

of reliability across studies. 

 

Loeys et al (2014) consider the estimation of the controlled direct effect where the mediator is 

considered as latent, measured only indirectly through indicator variables (Loeys et al. 2014). They 

identify several circumstances where the routine estimation of the direct effect from a SEM model would 

not provide unbiased estimates of the controlled direct effect, circumstances not just relating to non-

linearity but also to the need for correct specification of the exposure-mediator relationship and its 

confounders. Their proposed two-step g-estimator nonetheless uses standard SEM tools to estimate 

the values of the latent mediator, but importantly estimated from the fitting of the whole model and not 

just a factor model to the indicators (Skrondal and Laake 2001). This work has been extended by Loh 
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et al (2020) to controlled direct effects with time-varying mediators and outcomes,  estimated by g-

estimation (Loh et al. 2020). 

 

These developments are particularly relevant for life course research where growth curve models have 

become a popular and parsimonious way of characterizing development over a possibly extended 

period of time by means of a limited number of individual latent growth intercept and slope parameters, 

typically treating variation around the growth trajectories implied by these quantities as conditionally 

independent measurement errors. Linked models of this type allow us to consider a mediational 

process, such as that of Figure 5. Here the trajectories of the repeated measures of both the mediator 

𝑀 and the outcome 𝑌 are assumed determined by latent/random intercepts and slopes.  The effect of 

an exposure variable 𝑋 on the trajectory of 𝑌 is decomposed into its effects directly on the growth of the 

outcome 𝑌 that does/does not involve the growth of the mediator 𝑀. 

Sullivan et al (2021) provide counterfactual based derivations for the natural direct and indirect effects 

of a change in the level of exposure 𝑋  on 𝑌 , which are coincident with those that would be calculated 

for the same model and change in exposure (say 𝑥  to 𝑥∗) using the methods of traditional SEM path 

calculus (Sullivan et al. 2021).  However, as discussed in section 3, natural effects require the 

identification assumption of no intermediate confounding and this is quite unrealistic in life course 

settings. They do however clarify via their counterfactual derivation the importance of explicating  the 

identification assumptions that are instead left implicit within the traditional SEM framework. There are 

also differences in the models that are considered eligible by the SEM and counterfactual approach. 

For the first, MacKinnon (2008) allows the intercept of the outcome IY to affect the slope of the mediator 

SM (MacKinnon 2008), an effect that Sullivan et al (2021) argue would break the last assumption of 

those listed above. Indeed, whether using either counterfactual or SEM path calculus, the apparent 

influence of slope terms, whose values only become apparent post-baseline, on the values of intercepts 

makes for a certain discomfort in relation to wanting causes and effects to follow a natural temporal 

precedence. While resolvable by assuming that both intercept and slope are determined and fixed at 

baseline (e.g. genetically determined) this may be a conceptually more restrictive model than many 

users had conceived it to be. 

 

Example 2 revisited 

To illustrate this approach, we revisit the causal enquiry regarding the role of childhood BMI on binge 

eating scores by focussing on the growth features underlying the observed BMI measures, as shown 

in Figure 6, namely latent size and latent velocity. These are derived from the information from all ages 

from 7 to 12 years, after selecting the best fitting specification for the effect of birth weight and age, 

controlling for the baseline confounders and including several interactions with both exposure and age.   

By addressing issues of measurement error in the observed BMI values, and adopting g-computation 

as a generalization of the approach described by Loh et al (2014), we obtain a marginally larger estimate 

of the interventional indirect effect involving all mediators (0.028, 95% CI: 0.18, 0.38 vs. the earlier 

estimate of 0.027; Table 4) and consequently a marginally smaller estimate of the interventional direct 

effect (0.017, -0.005, 0.039 vs. the earlier estimate of 0.018). Of the two mediators, only size appears 
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to contribute to the interventional indirect effect (0.026, 95% CI: 0.016, 0.036). If the relevant 

assumptions hold, these results indicate that it is not just BMI in later childhood that matters, what we 

had concluded before, but the average size that is expressed by all BMI measures starting from age 7. 

This agrees with the earlier results that found that the indirect effect via the later BMI measures and 

upstream from them was the main pathway of increased scores.  

The estimates obtained by fitting a linear SEM are again smaller (Table 4). 

 

4.2. Unaccounted confounding 
Unaccounted confounding affects the majority of observational studies. The extent of the bias induced 

by this depends on our understanding of the processes that lead to the observed exposure distribution, 

as well as the availability of data on the variables that may aid our ability to control the confounding 

paths. There are however other possible strategies. In the following we discuss some of them. 

 

 4.2.1. Experimental designs 

Experimental designs such as randomized trials are sometimes possible even for long-term 

public health studies. Step-wedge designs in which an intervention is introduced sequentially 

over randomised geographical or service units have been promoted (Medical Research 

Council 2000). Some interventions can be evaluated by the use of encouragement designs, 

in which rates of take-up are increased by some stimulus, such as a letter (Wardle et al. 2016), 

a stimulus so modest that of itself it has no impact on the health outcome under investigation 

but nonetheless offers sufficient encouragement to achieve a modest increase in uptake.  Sent 

to a random subset of participants, the assignment to the encouragement group can be used 

as an instrumental variable (IV), that allows estimation of the effect of the intervention 𝐴 on 

the health outcome 𝑌 (Figure 7(a)) that is unaffected by both measured and unmeasured 

confounders, therefore gaining an  interpretation as total causal effect of the intervention, 𝑇𝐶𝐸,  

provided that: (i) the instrument is relevant, i.e., instrument and intervention 𝐴  are associated; 

(ii) the instrument does not share any common causes with 𝑌 (the marginal exchangeability 

assumption); (iii) the instrument has no other causal pathways to 𝑌 besides via 𝐴 (the 

exclusion restriction (ER) assumption); and (iv) the causal effect is in some form 

homogeneous (Hernan and Robins 2006). The first and second condition should be met 

because of randomization, while the third might not be satisfied for example if those receiving 

the encouragement modify other behaviours because of knowing that they were receiving the 

encouragement.  

An alternative assumption to the fourth assumption of effect homogeneity is the monotonicity 

condition, informally stating that the relationship between instrument and intervention is in the 

same direction for all individuals. This would not yield an estimate of the 𝑇𝐶𝐸, however.  

Swanson and Hernan (2018) show that the interpretation of the causal effect estimate under 
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this assumption as a local effect (among those who “comply”) is only valid when the instrument 

itself is causal (Swanson and Hernan 2018). This seriously limits the range of useful 

instruments. It is not surprising that finding instruments for mediators is even more challenging.  

However , where a moderator of the effects of the intervention on a potential mediator can be 

found, this can be used as an instrument for the mediator and the set-up of Figure 7(b) allows 

for mediation estimates with a causal interpretation, assuming effect homogeneity for both 

instruments (Emsley, Dunn, and White 2010). 

 

4.2.2. Natural experiments  

There have been many imaginative suggestions for natural sources of variation that mimic the 

randomised assignment to encouragement of the previous section. A common variable that has 

influenced treatment participation has been geographical distance to the service (Baiocchi et al. 2010). 

Though distance has frequently been used as an instrumental variable, the plausibility of the necessary 

assumptions has been hard to judge.  More recently the availability of genotyped cohorts means that 

measured genetic variation is becoming available as an indicator of variation that could be plausibly 

assumed to be conditionally random.  One exploitation of these data, now widely known as Mendelian 

Randomisation (MR), has led to numerous publications, some landmark in seeming to resolve major 

debates of long-standing causal questions (Lawlor et al. 2008; Zheng et al. 2017).  In the case of single 

genes of large-effect the standard Instrument variable (IV) model of Figure 7(a), is directly applicable, 

but the rarity of the availability of large effect genes (e.g., alcohol dehydrogenease) has required 

adaptations to the approach. Cumulating sources of genetic variation into polygenic scores as a single 

instrumental variable reduces the plausibility of the IV assumptions by increasing the risk of pleiotropy 

– that at least some of the genomic variants in the risk score would not satisfy the exclusion restriction. 

Retaining the individual variants as a collection of IVs also increases the problem of weak instruments. 

However, the realisation that larger genetic effects on the exposure should go along with larger effects 

on the outcome provided scope for not only reducing weak-instrument bias but also testing for pleiotropy 

and is an approach now known as MR-Egger regression (Bowden, Davey Smith, and Burgess 2015).  

The genes-as-instruments approach has been a motivation for resolving issues of reverse causality, for 

example highlighting that rather than C-reactive protein (CRP) being a cause of inflammatory disease 

it is now considered more likely that its raised levels are a consequence of that disease (Marott et al. 

2010). However, the time-varying nature of CRP renders the exclusion restriction assumption most 

unlikely as it needs to be satisfied for all life-time exposures. Consider Figure 7(c) where for simplicity 

only two measurements of CRP are shown (as 𝐴ଵ and 𝐴ଶ). If studying the causal effect of CRP 

experienced during this  timeframe, the two red arrows from the instrument to 𝐴ଶ and from 𝐴ଵ to  𝑌 

should be absent. If we were interested only in exposure at the earlier time point, 𝐴ଵ, then the arrow 

labelled 1 should be absent; if we were interested in later exposure then it would be the arrow labelled 

2 that should be absent. Generalizing the argument to lifetime exposure (as often referred to in MR 

studies) it becomes apparent that the ER is unlikely to be satisfied. 
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 If the outcome too were time-varying as shown in Figure 7(d), other sources of bias may affect our 

causal investigation. Reverse causality could be an issue if there is feedback from exposure to outcome 

and vice-versa, with the genetic association with the exposure being distorted by reverse causality 

(Burgess, Swanson, and Labrecque 2021). It follows that for life course studies where exposures and 

outcomes are dynamic, causal investigations that rely on genetic instruments require strong 

assumptions and clear specification of the timeframe for both exposures and outcomes. 

 

Finally, It is important to distinguish between genetics – the between individual variation in the DNA 

sequence considered as relatively immutable – from epigenetic and gene-expression (transcriptomic) 

variation with which it is commonly discussed.  Epigenetic and genetic expression measures can and 

often do change over time and they do so in response to the environment, and form the core of much 

research within the DOHAD paradigm (Bianco-Miotto, Craig et al. 2017). Thus, unlike genetic variation, 

their variation is subject to the same sources of confounding as other measures of exposure.  However, 

as mediators of genetic differences, they become themselves amenable to the confounder control that 

could be obtained from genes. 

4.2.3. Using related individuals 
In addition to contemporary methods using observed genetic variants, there is a rich history of analysing 

data from related individuals in health research, including twin studies. The substantially random 

segregation of maternal and paternal autosomal genes during fertilization, relatives with varying 

degrees of shared parentage, and the chance division into the genetically identical embryos of mono-

zygotic twins provide scope for sources of structured variation that can be exploited to advantage to 

provide counterfactuals from which causal estimates can be derived. Figure 8 presents a DAG for twin-

pairs that we will examine for the effects of life-events (𝑋) on subsequent behaviour (𝑌ଶ) in the presence 

of confounding effects of prior behaviour (𝑌ଵ) and unknown shared confounder 𝑈.  

Various estimators have been proposed for exploiting data of this kind but as Sjolander et al (2012) 

elaborate some of these provide estimators that can be shown not to be causal, while others do not all 

give estimates of the same counterfactual comparison or require additional assumptions (Sjölander, 

Frisell, and Öberg 2012). The standard twin model decomposes variation within and between twin pairs 

in a single phenotype into additive random components of variation for additive (and dominant) genes, 

shared and non-shared environment.  In a setting of two phenotypes, one considered an exposure and 

the other an outcome, when considered jointly the twin model allows a decomposition of not just the 

variation and covariation of each phenotype between twins in a pair, but also of the covariance between 

the phenotypes, including some components that would ordinarily be considered as major sources of 

unmeasured confounding. In the linear case it is possible to construct a complex and highly 

parameterised SEM with all the correlated and uncorrelated components variance that follow the 

standard genetic and environmental effects decomposition of the classical twin model (McAdams et al. 

2020).  However, most analyses attempt to condition away many of these components and a commonly 

proposed model is the between-within or between-within (BW) model (e.g., Carlin et al. 2005) that 

adjusts for all shared confounders. 
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𝑔ൣ𝐸൫𝑌ห𝑋, 𝑋ത൯൧ = 𝛽 +  𝛽ௐ𝑋 + 𝛽𝑋ത, 
 

Where 𝑔 is a collapsible link function such as identity, and the exposure 𝑋 is continuous, an assumption 

of linearity of effects across pairs allows the estimate of 𝛽ௐ, in the absence of non-shared confounders, 

to be interpretable as a population causal effect (𝑇𝐶𝐸). Where the exposure is binary the estimate can 

only be considered as applying to the discordant sub-population of twins. Where 𝑔 is a non-collapsible 

link e.g., logit, there is the further complication arising from the non-equality of the conditional, or 

subject-specific, and marginal estimates of the effect coefficients. 

The BW model is frequently extended to allow for an observed non-shared confounder covariate by the 

addition of the single variable 𝑉 measured for the target twin. However, Sjolander et al (2012) show 

how conditioning on the twin-mean exposure induces a collider bias in the exposure-confounder 

association but that the inclusion of the measured covariate for both twins as shown below results in 

unbiased estimates. 

 

𝑔ൣ𝐸൫𝑌ห𝑋, 𝑋ത, 𝑉 , 𝑉 ᇲ൯൧ =  𝛽 +  𝛽ௐ𝑋 +  𝛽𝑋ത +  𝛾𝑉 +  𝛾′𝑉ᇱ 

 
 
 
 
Example 3 

We illustrate these estimation steps using data from the Virginia Twin Study of Adolescent Behavioural 

Development sample of 733 MZ twins and 376 DZ twins (see Appendix).Using the same-sex twins  from 

the Virginia Twin Study of Adolescent Behavioural Development (733 MZ twins and 376 DZ twins) as if 

they were a sample of singletons, but allowing for their within-pair correlation by the use of cluster robust 

standard errors, the estimated effect of time 1 life-events on behaviour score at time 2, adjusting for 

behaviour score at time 1,  is to increase the later behavioural score by 0.159 SD (95% CI 0.063, 0.253).  

This estimate is potentially biased by uncontrolled confounding, both those shared and non-shared by 

twins.  Applying the standard BW model with the adjustment for prior behaviour for only the target twin 

gave a much smaller estimate (0.069; 95% CI: -0.068,0.324) which while controlling for shared 

confounders potentially induces collider bias as demonstrated by Sjolander et al (2012).  Adding the 

prior behaviour score of the cotwin as an additional confounder removes this bias, and provides an 

estimate of the effect per life-event of 0.134SD (95%CI: 0.006, 0.262).Variations of the model of Figure 

8 can be applied to contemporaneously measured phenotypes over time to assess direction of causality 

and extend the model to deal with mediation pathways while allowing control of genetic and shared 

environmental confounders for each of the exposure-mediator, mediator-outcome and the conditional 

exposure-outcome paths. Further extension to consider cross-lagged models is possible (Rommel et 

al. 2015). The use of IVs and data on related individuals can be combined, which in the case of 

Mendelian randomisation allows for potential adjustment for pleiotropic effects of the IV on exposure 

and outcome.  The genotyping of both parents and children allows a powerful combination of the 

measured genes and family approaches in that one can distinguish transmitted and non-transmitted 
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alleles from parents, the latter not contributing to the child’s genetic risk but only to environmental 

exposure (Cheesman et al. 2020). Care is however called upon in order to avoid reverse causality from 

parents to offspring (Burgess et al, 2021) and, as for all IV based approaches, a full explication of the 

implicit assumptions (Swanson and Hernan 2013). 

 

5.  REPLICATION AND GENERALIZATION  

5.1. Replication 
Even a rigorous causal analysis of a high-quality study of substantial size is rarely sufficient by itself as 

proof of a causal effect nor as a valid estimate of the causal effect in another setting.  Some form of 

multiplicity of evidence is necessary. The Reproducibility Project has highlighted how fragile are many, 

some long-held, beliefs of causation, and we are now seeing publication of many more replication 

studies of the kind that would previously never have seen the light-of-day. Rarely do these replications 

involve an exact replication of the sample setting and design, measurement battery, measurement 

schedule, implementation protocol, response rates and data analysis. Differences in the measures used 

can present challenges (Open Science Collaboration 2015). For example, when pooling and testing for 

heterogeneity of estimates using an effect-size scale may not correspond to using a common causal 

effect scale  (Mathur and VanderWeele 2019). Some authors suggest that exact replication is not 

evidence of reproducibility (Drummond 2009), being unable to provide the evidence for the robustness 

of the relationship that should be expected, and that what we often need is evidence for the proof of the 

causal effect of change in the construct rather than change in the specific measure. A recognition that 

no study is perfect, that each and every one has some methodological flaw, argues for the need for 

triangulation, the bringing together of several studies, each with different, but hopefully unrelated, 

sources of bias (Lawlor, Tilling, and Davey Smith 2016).  They propose that the different approaches 

address the same underlying causal question; for each approach the duration and timing of exposure 

that it assesses is taken into account when comparing results; that the key sources of bias are explicitly 

acknowledged when comparing results and that for each the expected direction of all key sources of 

potential bias are made explicit where this is feasible, and ideally within the set of approaches being 

compared there are approaches with potential biases that are in opposite directions.  These conditions 

make it clear that this perspective remains some distance from the more informal seeking of support for 

a causal effect by triangulation of evidence from methodologically quite distant studies, such as human 

and animal studies. 

 

 5.2. Generalization 

The considerations of the previous paragraph do not directly address the question of what the causal 

effect would be within a different setting. The focus is more strongly, sometimes exclusively, on internal 

validity, with much less consideration as to external validity. Stuart, in various articles has highlighted 

the importance of the latter, and that consideration of both is required, proposing the term target validity 

as a combining of the two (Westreich et al. 2019). One aspect influencing transportability of estimates 
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relates to the fact that estimates of an average effect in one population may vary if the distribution of 

effect is different within the new target population. Ackerman et al (2021) propose the use of 

methodology from complex survey research to reweight estimates on stratification factors thought to be 

relevant to this variation (Ackerman et al. 2021). Where concerns remain in relation to potential residual 

confounding their distribution within the new target population may remain relevant, for example for 

inclusion in a propensity score adjustment (Dugoff, Schuler, and Stuart 2014). 

  

 

6. CONCLUSIONS 
While the distinction between association and cause has been a perennial concern in epidemiology, in 

the last two decades there has been an increasing shift away from the prevailing criteria (actually 

“guidelines”) to assess causality outlined by Austin Bradford Hill in 1965, who presented them as 

“viewpoints from all of which we should study association before we cry causation” (Hill 1965). The shift 

is towards a more precise definition of what “effect” is being targeted. This has revealed unexpected 

multiplicity and complexity, especially in the setting of long-term causation typical of life course 

research. Choosing an appropriate design and estimator are important, but these should be preceded 

by choosing the right estimand which ideally should correspond to the comparisons at the heart of the 

substantive question being investigated. 

  

Analysis in public health should be about informing us of the likely impact of alternative actions and 

policy decisions. It is therefore surprising that so much of what is presented specifies what these 

alternatives are with considerable imprecision.  The counterfactual approach attempts to remove this 

imprecision, specifying exactly the hypothetical scenarios to be compared, and the choice of 

assumptions you may have for identifying and estimating their contrasts. At times, this approach can 

be seen as over-elaborate, but we would argue that its influence is having a variety of desirable effects. 

First, in encouraging an approach to analysis that focuses on targeting well-defined alternatives, this 

should both help clarify and specify policy alternatives and help make the relevance of the analysis to 

policy making more transparent. Second, the specification of the factual is as relevant as the 

counterfactual. This is especially true for pooled and meta-analyses where greater attention should be 

being paid that the estimates of effects that are being combined correspond to the same contrast of 

counterfactuals (Elango et al. 2015). Forcefully recognised by those attempting to reconcile causal 

effect estimates from epidemiological and RCT studies, this concern for consistency of the exposure 

definition is central to those attempting trial emulation from observational data. It has also been found 

that a number of estimators of causal effects proposed for observational and twin data, either make 

implausible assumptions that were laid bare by counterfactual expositions. The traditional focus on 

distinguishing among life course models has also been found not to be very informative for investigate 

alternative interventions, while understanding mechanisms by exploiting developments in mediation 

analysis may be more fruitful. 
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We have seen how counterfactuals can be derived from otherwise similar individuals but who 

experienced different levels of exposure, or the same individual but with periods of different exposure, 

or on siblings with similarities and differences in exposure and so on. Each derivation requires different 

assumptions to be satisfactorily interpretable as counterfactual, with sometimes the task having to be 

recognised as impossible.  Some estimators of counterfactual-based contrasts can use information from 

only a subset of the available sample data – for example from only those that are “matchable” or not 

already at the maximum (or minimum) level of the policy manipulable variable or have experienced 

change in the focal exposure.  Inferring that the causal estimate applies to those excluded is clearly a 

separate inferential step, so identifying the population to whom a causal estimate applies is thus also 

important, with generalisation to other populations requiring both careful thought as to the equivalence 

of the distributions and likely some additional analysis and adjustment methods such as weighting.   

 

We have tried to show that the estimation of life course relevant counterfactual based estimands 

requires not just appropriate consideration of assumptions but the exploitation of various study designs 

that can allow estimators or generalization that require different assumptions. A feature of much causal 

inference has been to make as few parametric assumptions as possible, including minimizing 

assumptions as to functional forms. This may restrict the value of the work for prediction. Heckman and 

Pinto (2015) argue that the counterfactual approach lacks models of mechanism, that it focuses on 

effects of causes rather than causes of effects.  Therefore, it can have nothing to say about the effects 

of previously unexperienced levels of risks, or entirely novel risks or policy initiatives, for example of the 

kind that the COVID-19 pandemic presented so plentifully. In the context where the counterfactual may 

be entirely hypothetical, such as involving the extrapolation of exposures into currently unobserved 

ranges, a purely theoretical justification of the necessary assumptions is required but can sometimes 

still be persuasive. This brings us to the final conclusion, that these endeavours have some 

unsurmountable challenges, especially when the scope is as broad ranging as the last one discussed. 

In each case, contextual knowledge is an unavoidable requirement, without which counterfactuals 

cannot be defined, nor sources of bias recognised. In presenting structures of thought, assumptions 

and methods that are of general relevance, considerable abstraction is inevitable. However, their 

meaningful application requires making full use of contextual knowledge, without which useful 

counterfactuals cannot be defined, nor the implications of assumptions understood, nor potential 

sources of bias recognised. 
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TABLES  

 

Table 1. Overview of conceptual life course models and their corresponding causal contrasts expressed 
in terms of potential outcomes, for a setting where exposure is measured at two time points. 

Life course 
Model 

Specification Relevant 
estimands 

Comment 

Cumulative 
exposure 

The exposure causally affects the 
outcome at both time points with 
similar magnitude 

 CDE1(a2) 

  TCE2 

If model is correct, the 
estimands are equal 

Sensitive 
period 

The exposure causally affects the 
outcome at both time points but with 
different magnitude 

  CDE1(a2) 

   TCE2 

If model is correct, one of 
the estimands  is larger 
than the other 

Critical 
period  

  

The exposure causally affects the 
outcome at only one time point t 

  CDE1(a2) 

   TCE2 

If model is correct, one of 
the estimands  is equal to 
zero 

Pathway The earlier exposure causally affects 
the outcome but with an intensity that 
depends on the later exposure 

  CDE1(a2) 

  

If model is correct, the 
estimand varies with 
values taken by A2   

Abbreviations: CDE: Controlled direct effect, TCE: Total causal effect; suffices indicate the timing of 
exposure 
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Table 2.  Estimates and 95% confidence intervals (CI) for the total causal effect (TCE) of 
standardized birth weight and BMI at 12 years, and the controlled direct effect (CDE) of standardized 
birth weight for different values of BMI at 12 years†; ALSPAC Study, N=1,953 

  
 Controlling for baseline 

confounders 
Controlling for baseline and 
intermediate confounders 

Exposure Estimand Estimate (SE) 
 

Estimate (SE) 
 

BMI at 12 years 
(standardized) 

TCE2 
 

0.244 (0.018) 

 
 

— 

 

Birth weight 
(standardized) 

CDE1(0) 
 

0.020 (0.019) 

 
 

0.023 (0.016) 

 

 

CDE1(1) 
 

0.027 (0.018) 

 
 

0.031 (0.017) 

 

 

CDE1(-1) 
 

0.013 (0.021) 

 
 

0.017 (0.020) 

 

†Estimation of CDE1(a2) was performed by g-computation controlling for baseline confounders; TCE2 
was additionally controlled for birth weight. Standard errors were derived from 1000 bootstraps samples. 

Abbreviations: TCE: Total causal effect, CDE: Controlled direct effect; CI: confidence interval; BMI: 
body mass index, ALSPAC: Avon longitudinal studies of parents and children 
Baseline confounders: maternal education, family occupation, maternal smoking during pregnancy; 
maternal pre-pregnancy BMI, maternal pre-pregnancy history of psychopathology. 
Intermediate confounder: BMI at age 7 years.  
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Table 3.  Estimates and 95% confidence intervals (CI) for the total causal effect (TCE) 
of standardized birth weight and the interventional direct and indirect effect of birth weight via BMI at 
12 years; ALSPAC Study, N=1,953. 

 

Estimands Allowing for non-linear relationships Assuming linear relationships 
 

Estimate (SE) Estimate (SE) 

TCE 0.047 (0.016) 0.030 (0.012) 

IDE 0.023 (0.016) 0.008 (0.011) 

IIE 0.024 (0.007) 0.023 (0.006) 

 †Estimation was performed by g-computation controlling for baseline and intermediate confounders. 
Standard errors derived from 1000 bootstraps samples. 

Abbreviations: TCE: Total causal effect, IDE: Interventional direct effect; IIE: Interventional indirect 
effect; CI: confidence interval; BMI: body mass index 

 
Baseline confounders: maternal education, family occupation, maternal smoking during pregnancy; 
maternal pre-pregnancy BMI, maternal pre-pregnancy history of psychopathology. 
 
Intermediate confounder: BMI at age 7 years.  
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Table 4.  Estimates and 95% confidence intervals (CI) for the total causal effect (TCE) of 
standardized birth weight and the interventional direct and indirect effect of birth weight via BMI 
growth from age 7 to 12 years; ALSPAC Study, N=1,953. 

  

Estimands Allowing for non-linear relationships Assuming linear relationships 
 

Estimate† (SE) Estimate†† (SE) 

TCE 0.045 (0.012) 0.031 (0.011) 

IDE 0.018 (0.011) 0.004 (0.011) 

IIE -all 0.027 (0.005) 0.027 (0.004)  

   IIE1-Via BMI from 7 to 9y 
and upstream 

-0.002 (0.004) -0.001 (0.002) 

   IIE2-Via BMI from 10 to 12y 
and upstream 

0.029 (0.006) 0.028 (0.011) 

Remainder -0.00002 (10-6) – 
 

TCE 0.045 (0.011) 0.031 (0.012) 

IDE 0.017 (0.011) 0.006 (0.011) 

IIE -all 0.028 (0.005) 0.024 (0.006) 
 

   IIE1-Via latent size and 
upstream 

 
0.029 (0.004) 

 
0.026 (0.005) 

   IIE2-Via latent velocity and 
upstream 

-0.0004 (0.001) -0.002 (0.002) 

Remainder -0.00002 (10-6) – 
 

 

†Estimation was performed by g-computation controlling for confounders. Standard errors derived from 
1,000 bootstraps samples. 

†† Estimation was performed by maximum likelihood controlling for confounders. Standard errors 
derived by the delta method. 

Abbreviations: TCE: Total causal effect, IDE: Interventional direct effect; IIE: Interventional indirect 
effect; CI: confidence interval; BMI: body mass index 

 
Baseline confounders: maternal education, family occupation, maternal smoking during pregnancy; 
maternal pre-pregnancy BMI, maternal pre-pregnancy history of psychopathology. 
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Legends  

 

Figure 1. Conceptual models corresponding to the two explanations for the association between 

childhood SES (A1) and later life cognition (Y): (a) Childhood SES as precursor of the true cause, adult 

SES (A2); (b) Childhood SES as the cause; (c) both as causes.  

 

Figure 2. (a) Causal DAG of the association between childhood SES (A1), adult SES (A2), and later life 

cognition (Y), with confounders C and L, and  the binary indicator R capturing whether study members 

are observed (R=1) or missing (R=0).The square around R indicates that analysis are restricted to 

complete records. (b) Causal directed acyclic graph of the association between childhood SES (A1), 

adult SES (A2), and later life cognition (Y), with A*2  being unobserved (indicated by a circle) but proxied 

by the variable A2.   

 

Figure 3. (a) Causal DAG of the association between childhood birth weight (BW), BMI at 12y (BMI12), 

and binge eating score at 13.5y (BE), with C representing confounders. (b) Expanded DAG that includes 

an intermediate confounder L. 

 

Figure 4. Causal DAG of the association between childhood birth weight (BW), childhood BMI, and 

binge eating score at 13.5y (BE), with C representing baseline confounders and L intermediate 

confounders. Not all arrows are included to aid the visual display. 

 

Figure 5. Causal DAG of the association between an exposure X, a time-varying mediator represented 

by a latent intercept (IM) and a latent slope (SM), and a latent outcome represented by a latent intercept 

(IY) and a latent slope (SY). Double headed arrow represents correlation indued by a common factor 

(not included for simplicity).  

 

Figure 6. Causal DAG of the association between childhood birth weight (BW), latent intercept and 

slope of the childhood BMI measures, and binge eating score at 13.5y (BE), with C representing 

baseline confounders and L intermediate confounders.  

 

Figure 7. (a) Causal DAG depicting the setting with a randomised encouragement to uptake an 

intervention, the intervention  A, the outcome Y, unmeasured confounders U and measured 

confounders C ; (b) Causal DAG depicting the setting with a randomised encouragement to uptake an 

intervention, the intervention  A, a mediator M, outcome Y and measured and unmeasured confounders 

U and C, with the addition of an indicator of the interaction between encouragement and measured 

confounders C; (c) Causal DAG depicting the setting with an instrumental variable Z, an exposure A 

measured at two time points (A0, A1), an outcome Y  and unmeasured confounders U; (d) Causal DAG 

depicting the setting with an instrumental variable Z, an exposure A measured at two time points 

(A0, A1), an outcome Y  measured at two time points (Y0, Y1), and unmeasured confounders U. 
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Figure 8. Causal DAG of the relationship between life events X and behaviour Y at two time points for 

two twins: X1 life event for twin 1, X2 life event for twin 2, Y11 and Y12 behaviour for twin1 at time points 

1 and 2; Y21 and Y22  for twin 2, U shared unmeasured confounders.  

 

 

 

 



Figure 1. Conceptual models corresponding to the two explanations for the association between

childhood SES (A1) and later life cognition (Y): (a) Childhood SES as precursor of the true cause,

adult SES (A2); (b) Childhood SES as the cause; (c) both as causes.
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Figure 2. (a) Causal DAG of the association between childhood SES (A1), adult SES (A2), and later

life cognition (Y), with confounders C and L, and the binary indicator R capturing whether study

members are observed (R=1) or missing (R=0).The square around R indicates that analysis are

restricted to complete records. (b) Causal directed acyclic graph of the association between

childhood SES (A1), adult SES (A2), and later life cognition (Y), with A*2 being unobserved

(indicated by a circle) but proxied by the variable A2.
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Figure 3. (a) Causal DAG of the association between childhood birth weight (BW), BMI at 12y

(BMI12), and binge eating score at 13.5y (BE), with C representing confounders. (b) Expanded

DAG that includes an intermediate confounder L.
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Figure 4. Causal DAG of the association between childhood birth weight (BW), childhood

BMI, and binge eating score at 13.5y (BE), with C representing baseline confounders and L

intermediate confounders. Not all arrows are included to aid visual clarity.
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Figure 5. Causal DAG of the association between an exposure X, a time-varying mediator

represented by a latent intercept (IM) and a latent slope (SM), and a latent outcome

represented by a latent intercept (IY) and a latent slope (SY). Double headed arrow

represents correlation indued by a common factor (not included for simplicity).
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Figure 6. Causal DAG of the association between childhood birth weight (BW), latent intercept and

slope of the childhood BMI measures, and binge eating score at 13.5y (BE), with C representing
baseline confounders and L intermediate confounders.
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Figure 7. (a) Causal DAG depicting the setting with a randomised encouragement to uptake an intervention, the
intervention A, the outcome Y, unmeasured confounders U and measured confounders C ; (b) Causal DAG
depicting the setting with a randomised encouragement to uptake an intervention, the intervention A, a mediator
M, outcome Y and measured and unmeasured confounders U and C, with the addition of an indicator of the
interaction between encouragement and measured confounders C; (c) Causal DAG depicting the setting with an
instrumental variable Z, an exposure A measured at two time points (A0, A1), an outcome Y and unmeasured
confounders U; (d) Causal DAG depicting the setting with an instrumental variable Z, an exposure A measured at two
time points (A0, A1), an outcome Y measured at two time points (Y0, Y1), and unmeasured confounders U.
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Figure 8. Causal DAG of the relationship between life events X and behaviour Y at two time points for two

twins: X1 life event for twin 1, X2 life event for twin 2, Y11 and Y12 behaviour for twin1 at time points 1 and 2;

Y21 and Y22 for twin 2, U shared unmeasured confounders.
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APPENDIX 

A.1 Data 

Avon Longitudinal Study of Parents and Children (ALSPAC) 

Participants included in this study are a subsample of adolescents of the population-based ALSPAC 

cohort that recruited pregnant women in the southwest of England (Boyd, Golding et al. 2013, Fraser, 

Macdonald-Wallis et al. 2013). All pregnant women that were expected to have a child in the period of 

1 April 1991 until 31 December 1992 were contacted to participate in the original cohort. At the 

beginning, 14,451 pregnant women took part, and 13,988 children were alive at the end of year one. 

To guarantee independence of individuals, one sibling per set of multiple births (n = 203 sets) is 

randomly included in our sample. Please note that the study website contains details of all the data that 

are available through a fully searchable data dictionary and variable search tool and reference the 

following webpage: http://www.bristol.ac.uk/alspac/researchers/our-data/. 

 

Ethical approval for the ALSPAC participants was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committees: 

www.bristol.ac.uk/alspac/researchers/research-ethics/.   Informed consent for the use of data collected 

via questionnaires and clinics was obtained from participants following the recommendations of the 

ALSPAC Ethics and Law Committee at the time. 

 

MEASURES 

First Exposure: birth weight (grams) was obtained from obstetric records. 

Later exposure/Mediators: Body mass index (BMI; in kg/m2), objectively measured up to six times 

when participants were (around) 7.5, 8.6, 9.8, 10.6, 11.8 (referred to as 7,9,10,11,12) years.  Height 

was measured to the nearest millimetre with the use of a Harpenden Stadiometer (Holtain Ltd.). 

Weight was measured with a Tanita Body Fat Analyzer (Tanita TBF UK Ltd.) to the nearest 50 g. 

Outcome: Parentally-reported ED behaviors (p-ED: at mean child age 13.1 years (standard deviation, 

SD=0.2), data were collected via the Developmental and Well-being assessment (DAWBA), a semi-

structured validated interview that generates a range of psychiatric diagnoses in children and 

adolescents (Goodman, Ford et al. 2000). The ED section of the DAWBA was given to parents and 

comprises 28 questions on ED behaviors and cognitions. These were used to derive three disordered 

eating patterns: 1. Binge eating/overeating; 2. shape and weight concern and weight control behaviors, 

and 3. food restriction, using exploratory structural equation modeling. Data on these three patterns 

were available on 3,529 girls. Because these are latent factors derived from structured questionnaires, 

they are standardized measures with mean 0 and standard deviation (SD) of 1. Only the binge eating 

score is used in this paper. 

Confounders: High maternal education at birth of child was defined by mothers having completed 

education up to A-Levels, the requirement for applying to university in the UK. Maternal age and lowest 

parental social class were obtained at enrolment. At 12 weeks gestation, women were asked about any 

recent or past history of severe depression, schizophrenia, alcoholism, anorexia nervosa, bulimia 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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nervosa, and other psychiatric disorders. Multiple answers were possible; therefore, women could 

report more than one disorder. This information was combined into a variable indicating presence of 

any pre-pregnancy psychopathology. 

 

Analyses were restricted to 1,953 girls with complete birth weight, binge eating scores, confounders 

and at least one BMI measure. 

 

Virginia Twin Study of Adolescent Behavioural Development (VTSABD) 

SAMPLE: The VTSABD is an ongoing cohort-longitudinal study of twins born between 1974 and 1983. 

The study was limited to white families because there were too few data from other ethnic groups to 

provide adequate power to detect differential effects. A sample of 6,837 putative twin pairs born 

between 1970 and 1985 was ascertained through the state school system and participating private 

schools in Virginia, and through families who contacted the VTSABD. Parents of these twins were sent 

a brief letter describing the study and asked to complete a questionnaire regarding zygosity. Non-

responders were followed up with 2 further mailings and attempted telephone contact. After the contact, 

1,424 putative pairs were removed for a variety of reasons, including having moved out of state, having 

moved and left no forwarding address, the children not being twins, and duplicate ascertainment. Of 

the 5,413 twin families, 1,894 were selected for interview in the main study. Others were excluded 

because they were not white, were outside the age range, had moved out of state by the time of 

interviewing, or had moved without leaving a forwarding address. A total of 1,412 families (2824 

children) participated in the first wave, 75% of the targeted sample 2 subsequent waves of data 

collection occurring at approximately 1 year intervals (Meyer, Silberg et al. 1996). 

MEASURES: The principal measures used in our analysis were the child reported total life-events score 

from the Life-Events Questionnaire (Johnson & McCutcheon, 1980; Johnson, 1986) and the total 

behaviour score from the Olweus Aggression Scale (Olweus, 1989). 

 

A.2 Codes 

Stata and Mplus codes used to produce the results reported in the examples are to be found 

here: https://github.com/bldestavola/ARSIA-lifecourse 
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