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Algebras of convolution type
operators with continuous data
do not always contain
all rank one operators

Alexei Karlovich and Eugene Shargorodsky

Dedicated to Bernd Silbermann on the occasion of his 80th birthday

Abstract. Let X(R) be a separable Banach function space such that
the Hardy-Littlewood maximal operator is bounded on X(R) and on

its associate space X ′(R). The algebra CX(Ṙ) of continuous Fourier
multipliers on X(R) is defined as the closure of the set of continuous

functions of bounded variation on Ṙ = R ∪ {∞} with respect to the
multiplier norm. It was proved by C. Fernandes, Yu. Karlovich and the
first author [11] that if the space X(R) is reflexive, then the ideal of
compact operators is contained in the Banach algebra AX(R) generated

by all multiplication operators aI by continuous functions a ∈ C(Ṙ) and

by all Fourier convolution operators W 0(b) with symbols b ∈ CX(Ṙ).
We show that there are separable and non-reflexive Banach function
spaces X(R) such that the algebra AX(R) does not contain all rank one
operators. In particular, this happens in the case of the Lorentz spaces
Lp,1(R) with 1 < p < ∞.

Mathematics Subject Classification (2010). Primary 47G10; 46E30 Sec-
ondary 42A45.

Keywords. Continuous Fourier multiplier, algebra of convolution type
operators, Hardy-Littlewood maximal operator, rank one operator, sep-
arable Banach function space, Lorentz space.

1. Introduction

We denote by S(R) the Schwartz class of all infinitely differentiable and
rapidly decaying functions (see, e.g., [14, Section 2.2.1]). Let F denote the



2 A. Karlovich and E. Shargorodsky

Fourier transform, defined on S(R) by

(Ff)(x) := f̂(x) :=

∫
R
f(t)eitx dt, x ∈ R,

and let F−1 be the inverse of F defined on S(R) by

(F−1g)(t) =
1

2π

∫
R
g(x)e−itx dx, t ∈ R.

It is well known that these operators extend uniquely to the space L2(R). As
usual, we will use the symbols F and F−1 for the direct and inverse Fourier
transform on L2(R). The Fourier convolution operator

W 0(a) := F−1aF

is bounded on the space L2(R) for every a ∈ L∞(R).

In this paper, we study algebras of operators generated by operators of
multiplication aI and Fourier convolution operators W 0(b) on so-called Ba-
nach function spaces in the case when both a and b are continuous. We post-
pone a formal definition of a Banach function space X(R) and its associate
space X ′(R) until Section 2.1. The Lebesgue spaces Lp(R) with 1 ≤ p ≤ ∞
constitute the most important example of Banach function spaces. The class
of Banach function spaces includes classical Orlicz spaces LΦ(R), Lorentz
spaces Lp,q(R), all other rearrangement-invariant spaces, as well as (non-
rearrangement-invariant) weighted Lebesgue spaces Lp(R, w) and variable
Lebesgue spaces Lp(·)(R).

Let X(R) be a separable Banach function space. Then L2(R) ∩ X(R)
is dense in X(R) (see Lemma 2.2 below). A function a ∈ L∞(R) is called
a Fourier multiplier on X(R) if the convolution operator W 0(a) := F−1aF
maps L2(R)∩X(R) into X(R) and extends to a bounded linear operator on
X(R). The function a is called the symbol of the Fourier convolution operator
W 0(a). The setMX(R) of all Fourier multipliers on X(R) is a unital normed
algebra under pointwise operations and the norm

‖a‖MX(R)
:=
∥∥W 0(a)

∥∥
B(X(R))

,

where B(X(R)) denotes the Banach algebra of all bounded linear operators
on the space X(R). Let K(X(R)) denote the ideal of all compact operators
in the Banach algebra B(X(R)).

Recall that the (non-centered) Hardy-Littlewood maximal function Mf
of a function f ∈ L1

loc(R) is defined by

(Mf)(x) := sup
Q3x

1

|Q|

∫
Q

|f(y)| dy,

where the supremum is taken over all intervals Q ⊂ R of finite length con-
taining x. The Hardy-Littlewood maximal operator M defined by the rule
f 7→Mf is a sublinear operator.
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Suppose that a : R → C is a function of bounded variation V (a) given
by

V (a) := sup

n∑
k=1

|a(xk)− a(xk−1)|,

where the supremum is taken over all partitions of R of the form

−∞ < x0 < x1 < · · · < xn < +∞
with n ∈ N. The set V (R) of all functions of bounded variation on R with
the norm

‖a‖V (R) := ‖a‖L∞(R) + V (a)

is a unital non-separable Banach algebra.
Let X(R) be a separable Banach function space such that the Hardy-

Littlewood maximal operator M is bounded on X(R) and on its associate
spaceX ′(R). It follows from [16, Theorem 4.3] that if a function a : R→ C has
a bounded variation V (a), then the convolution operator W 0(a) is bounded
on the space X(R) and

‖W 0(a)‖B(X(R)) ≤ cX‖a‖V (R), (1.1)

where cX is a positive constant depending only on X(R).
For Lebesgue spaces Lp(R), 1 < p <∞, inequality (1.1) is usually called

Stechkin’s inequality. We refer to [8, Theorem 2.11] for the proof of (1.1) in
the case of Lebesgue spaces Lp(R) with cLp = ‖S‖B(Lp(R)), where S is the
Cauchy singular integral operator.

Let C(Ṙ) denote the C∗-algebra of continuous functions on the one-

point compactification Ṙ = R ∪ {∞} of the real line. For a subset S of a
Banach space E , we denote by closE(S) the closure of S with respect to the
norm of E . Consider the following algebra of continuous Fourier multipliers:

CX(Ṙ) := closMX(R)

(
C(Ṙ) ∩ V (R)

)
. (1.2)

It follows Theorem 2.3 below that CX(Ṙ) ⊂ C(Ṙ). The aim of this paper is
to continue the study of the smallest Banach subalgebra

AX(R) := alg{aI,W 0(b) : a ∈ C(Ṙ), b ∈ CX(Ṙ)}
of the algebra B(X(R)) that contains all operators of multiplication aI by

functions a ∈ C(Ṙ) and all Fourier convolution operators W 0(b) with symbols

b ∈ CX(Ṙ) started in the setting of reflexive Banach function spaces in [11].
The main result of that paper says the following.

Theorem 1.1 ([11, Theorem 1.1]). Let X(R) be a reflexive Banach function
space such that the Hardy-Littlewood maximal operator M is bounded on
X(R) and on its associate space X ′(R). Then the ideal of compact opera-
tors K(X(R)) is contained in the Banach algebra AX(R).

Note that results of this kind are well known in the setting of (weighted)
Lebesgue spaces (see, e.g., [24, Lemma 6.1], [29, Theorem 5.2.1 and Propo-
sition 5.8.1] and also [4, Lemma 8.23], [29, Theorem 4.1.5]). They constitute



4 A. Karlovich and E. Shargorodsky

the first step in the Fredholm study of more general algebras of convolution
type operators with more general function algebras in place of C(Ṙ) and

CX(Ṙ), respectively (see, e.g., [23, 24, 25]), by means of local principles (see,
e.g., [5, Sections 1.30–1.35]).

Let A be a Banach algebra with unit e. The center CenA of A is the
set of all elements z ∈ A with the property that za = az for all a ∈ A. One
can successfully apply the Allan-Douglas local principle [5, Section 1.35] to
the algebra A if it possesses a (hopefully large) closed subalgebra C lying in
its center. Having applications of the Allan-Douglas local principle in mind,
the authors of [11] asked whether the quotient algebra

AπX(R) := AX(R)/K(X(R))

is commutative under the assumptions of Theorem 1.1. Our first result is the
positive answer to [11, Question 1.2].

Theorem 1.2. Let X(R) be a reflexive Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-
ciate space X ′(R). Then the quotient algebra AπX(R) is commutative.

It is well known that a Banach function space X(R) is reflexive if and
only if the space X(R) and its associate space X ′(R) are separable (see [27,
Chap. 1, §2, Theorem 4 and §3, Corollary 1 to Theorem 7] or [3, Chap. 1,
Corollaries 4.4 and 5.6]). So, it is natural to ask whether the assumption
of the reflexivity of the space X(R) in Theorem 1.1 can be relaxed to the
assumption of the separability of the space X(R). Our main result says that
this is impossible.

Theorem 1.3 (Main result). There exists a separable non-reflexive Banach
function space X(R) such that

(a) the Hardy-Littlewood maximal operator is bounded on X(R) and on its
associate space X ′(R);

(b) the algebra AX(R) does not contain all rank one operators.

This theorem means that the usual methods of the Fredholm study of al-
gebras of convolution type operators with discontinuous data on non-reflexive
separable Banach function spaces will require a modification to overcome an
obstacle that certain compact operators do not belong to the algebra AX(R)

and, therefore, the quotient algebra AX(R)/K(X(R)) cannot be defined.
In fact, Theorem 1.3 holds for a familiar example of separable and non-

reflexive Banach function spaces, namely the classical Lorentz spaces Lp,1(R)
with 1 < p <∞. Let us recall their definition. The distribution function µf
of a measurable function f : R→ C is given by

µf (λ) := |{x ∈ R : |f(x)| > λ}|, λ ≥ 0.

The non-increasing rearrangement of f is the function f∗ defined on [0,∞)
by

f∗(t) = inf{λ : µf (λ) ≤ t}, t ≥ 0

(see, e.g., [3, Chap. 3, Definitions 1.1 and 1.5]).



Algebras of convolution type operators 5

For given 1 < p <∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q(R) consist
of all measurable functions f : R→ C such that the norm

‖f‖(p,q) :=


(∫ ∞

0

(
t1/pf∗∗(t)

)q dt
t

)1/q

, q <∞,

sup
0<t<∞

(
t1/pf∗∗(t)

)
, q =∞,

is finite, where

f∗∗(t) :=
1

t

∫ t

0

f∗(x) dx

(see [3, Chap. 4, Lemma 4.5]).

Theorem 1.4. Let 1 < p < ∞. The Lorentz space Lp,1(R) is a separable and
non-reflexive Banach function space satisfying assumption (a) of Theorem 1.3
and such that the algebra ALp,1(R) does not contain all rank one operators.

The paper is organized as follows. In Section 2, we collect definitions
of a Banach function space and its associate space X ′(R), recall that the set
of Fourier multipliers MX(R) on a separable Banach function space X(R),
such that the Hardy-Littlewood maximal operator M is bounded on X(R)
and on its associate space X ′(R), is continuously embedded into L∞(R).
Consequently, MX(R) is a unital Banach algebra. Further, we prove several
lemmas on approximation of continuous functions (or Fourier multipliers)
vanishing at infinity by compactly supported continuous functions (or Fourier
multipliers, respectively).

In Section 3, we show that if X(R) is a separable Banach function
space such that the Hardy-Littlewood maximal operator M is bounded on
X(R) and on its associate space X ′(R) and a ∈ C(Ṙ), b ∈ CX(Ṙ), then the
commutator aW 0(b) −W 0(b)aI is compact on the space X(R). Combining
this result with Theorem 1.1, we arrive at Theorem 1.2.

Section 4 is devoted to the proof of Theorems 1.3 and 1.4. For R > 0, let
χ{R} := χR\[−R,R]. We show that if a is a compactly supported continuous
function and b is a compactly supported function of bounded variation, then
the norm of the operator aW 0(b)χ{R}I goes to zero as R→∞. If a Banach
function space X(R) is separable and non-reflexive, its associate space X ′(R)
may contain a function g such that ‖gχ{R}‖X′(R) is bounded away from zero
for all R > 0 (this cannot happen if X(R) is reflexive). If, in addition, the
Hardy-Littlewood operator is bounded on X(R) and on its associate space
X(R), then we show that for every h ∈ X(R) \ {0} the rank one operator

(Tg,hf)(x) := h(x)

∫
R
g(y)f(y) dy

does not belong to the algebra AX(R), which implies Theorem 1.3 under the
assumption that the function g ∈ X ′(R) mentioned above does indeed exist.
Let 1 < p < ∞ and 1/p + 1/p′ = 1. Finally, we prove Theorem 1.4 first
recalling that the classical Lorentz space Lp,1(R) is a separable non-reflexive
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Banach function space with the associate space Lp
′,∞(R), that the Hardy-

Littlewood maximal operator is bounded on both Lp,1(R) and Lp
′,∞(R); and

then showing that the function g(x) = |x|−1/p′ belongs to Lp
′,∞(R) and

‖χ{R}g‖(p′,∞) is bounded away from zero for all R > 0. This completes the
proof of Theorem 1.4 and, thus, of Theorem 1.3.

In Section 5, we define the algebra of continuous Fourier multipliers
C0
X(Ṙ) as the closure of C+̇C∞c (R), where C∞c (R) is the set of smooth com-

pactly supported functions and C denotes the set of constant functions. It
is not difficult to see that C0

X(Ṙ) ⊂ CX(Ṙ). We do not know whether these
algebras coincide, in general. We prove a possible refinement of Theorem 1.1
for the algebra A0

X(R), where the latter algebra is defined in the same way

as the algebra AX(R) with CX(Ṙ) replaced by C0
X(Ṙ). Further, we recall

the definition of the set of slowly oscillating functions SO� and slowly os-
cillating Fourier multipliers SO�X(R) (see [12, 18]). Since C(Ṙ) ⊂ SO� and

C0
X(Ṙ) ⊂ SO�X(R), the ideal of compact operators K(X(R)) is contained in the

algebra DX(R) generated by the operators aI with a ∈ SO� and b ∈ SO�X(R)

under the assumptions that X(R) is a reflexive Banach function space such
that the Hardy-Littlewood maximal operator is bounded on X(R) and on
its associate space X ′(R). We conclude the paper with an open question on
whether or not the quotient algebra DπX(R) := DX(R)/K(X(R)) is commuta-

tive in this case.

2. Auxiliary results

2.1. Banach function spaces

The set of all Lebesgue measurable complex-valued functions on R is denoted
by M(R). Let M+(R) be the subset of functions in M(R) whose values lie in
[0,∞]. For a measurable set E ⊂ R, its Lebesgue measure and the charac-
teristic function are denoted by |E| and χE , respectively. Following [27, p. 3]
(see also [3, Chap. 1, Definition 1.1] and [28, Definition 6.1.5]), a mapping
ρ : M+(R) → [0,∞] is called a Banach function norm if, for all functions
f, g, fn (n ∈ N) in M+(R), for all constants a ≥ 0, and for all measurable
subsets E of R, the following properties hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) E is bounded⇒ ρ(χE) <∞,

(A5) E is bounded⇒
∫
E

f(x) dx ≤ CEρ(f),

where CE ∈ (0,∞) may depend on E and ρ but is independent of f . When
functions differing only on a set of measure zero are identified, the set X(R)
of functions f ∈ M(R) for which ρ(|f |) < ∞ is called a Banach function
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space. For each f ∈ X(R), the norm of f is defined by

‖f‖X(R) := ρ(|f |).

With this norm and under natural linear space operations, the set X(R)
becomes a Banach space (see [27, Chap. 1, §1, Theorem 1] or [3, Chap. 1,
Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate norm
ρ′ is defined on M+(R) by

ρ′(g) := sup

{∫
R
f(x)g(x) dx : f ∈M+(R), ρ(f) ≤ 1

}
, g ∈M+(R).

Then ρ′ is itself a Banach function norm (see [27, Chap. 1, §1] or [3, Chap. 1,
Theorem 2.2]). The Banach function space X ′(R) determined by the Banach
function norm ρ′ is called the associate space (Köthe dual) of X(R). The
associate space X ′(R) is a subspace of the (Banach) dual space [X(R)]∗.

Remark 2.1. We note that our definition of a Banach function space is slightly
different from that found in [3, Chap. 1, Definition 1.1] and [28, Defini-
tion 6.1.5]. In particular, in Axioms (A4) and (A5) we assume that the set
E is a bounded set, whereas it is sometimes assumed that E merely satisfies
|E| < ∞. We do this so that the weighted Lebesgue spaces with Mucken-
houpt weights satisfy Axioms (A4) and (A5). Moreover, it is well known
that all main elements of the general theory of Banach function spaces work
with (A4) and (A5) stated for bounded sets [27] (see also the discussion
at the beginning of Chapter 1 on page 2 of [3]). Unfortunately, we over-
looked that the definition of a Banach function space in our previous works
[9, 10, 11, 12, 16, 17, 18, 20, 21] had to be changed by replacing in Axioms
(A4) and (A5) the requirement of |E| < ∞ by the requirement that E is
a bounded set to include weighted Lebesgue spaces in our considerations.
However, the results proved in the above papers remain true.

2.2. Density of nice functions in Banach function spaces

Let Cc(R) and C∞c (R) denote the sets of continuous compactly supported
functions on R and of infinitely differentiable compactly supported functions
on R, respectively.

Lemma 2.2. Let X(R) be a separable Banach function space. Then the sets
Cc(R), C∞c (R) and L2(R) ∩X(R) are dense in the space X(R).

The density of Cc(R) and C∞c (R) in X(R) is shown in [21, Lemma 2.12].
Since Cc(R) ⊂ L2(R)∩X(R) ⊂ X(R), we conclude that L2(R)∩X(R) is dense
in X(R).

2.3. Banach algebra MX(R) of Fourier multipliers

The following result plays an important role in this paper.

Theorem 2.3. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) or on its associate
space X ′(R). If a ∈MX(R), then

‖a‖L∞(R) ≤ ‖a‖MX(R) . (2.1)
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The constant 1 on the right-hand side of (2.1) is best possible.

Proof. If the Hardy-Littlewood maximal operator M is bounded on the space
X(R) or on its associate space X ′(R), then in view of [15, Lemma 3.2] we
have

sup
−∞<a<b<∞

1

b− a
‖χ(a,b)‖X(R)‖χ(a,b)‖X′(R) <∞.

If this condition is fulfilled, then inequality (2.1) follows from [20, inequality
(1.2) and Corollary 4.2]. �

Inequality (2.1) was established earlier in [17, Theorem 1] with some
constant on the right-hand side that depends on the space X(R) under the
assumption that the operator M is bounded on both X(R) and X ′(R) (see
also [10, Theorem 2.4]).

Since (2.1) is available, an easy adaptation of the proof of [14, Proposi-
tion 2.5.13] leads to the following (we refer to the proof of [17, Corollary 1]
for details).

Corollary 2.4. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) or on its associate
space X ′(R). Then the set of Fourier multipliers MX(R) is a Banach algebra
under pointwise operations and the norm ‖ · ‖MX(R) .

2.4. Approximation of continuous functions vanishing at infinity

Let C0(R) denote the set of all continuous functions on R that vanish at ±∞.

Lemma 2.5. For a function υ ∈ C∞c (R) such that 0 ≤ υ ≤ 1 and υ(x) = 1
when |x| ≤ 1, let

υn(x) := υ(x/n), x ∈ R, n ∈ N.

(a) If a ∈ C0(R), then

lim
n→∞

‖a− υna‖L∞(R) = 0. (2.2)

(b) If a ∈ C0(R) ∩ V (R), then

lim
n→∞

‖a− υna‖V (R) = 0. (2.3)

Proof. (a) If a ∈ C0(R), then for every ε > 0 there exists N ∈ N such that

sup
x∈R\[−N,N ]

|a(x)| < ε

2
.

For all n > N and x ∈ [−N,N ], we have vn(x) = 1. Since 0 ≤ υn ≤ 1, for
n > N , we get

‖a− υna‖L∞(R) = sup
x∈R\[−N,N ]

|a(x)− υn(x)a(x)| ≤ 2 sup
x∈R\[−N,N ]

|a(x)| < ε,

which completes the proof of equality (2.2).
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(b) Let V (g; Ω) denote the total variation of a function g over a union
of intervals Ω ⊂ R. Then for all n ∈ N,

V (a− υna) =V (a(1− υn);R \ [−n, n])

≤V (a;R \ [−n, n])‖1− υn‖L∞(R\[−n,n])

+ ‖a‖L∞(R\[−n,n])V (1− υn;R \ [−n, n])

≤V (a;R \ [−n, n]) + ‖a‖L∞(R\[−n,n])V (υ). (2.4)

Since a ∈ C0(R), we have

lim
n→∞

‖a‖L∞(R\[−n,n]) = 0 (2.5)

(see the proof of part (a)). On the other hand,

lim
n→∞

V (a;R \ [−n, n]) = lim
n→∞

(
V (a)− V (a; [−n, n])

)
= V (a)− V (a) = 0. (2.6)

It follows from (2.4)–(2.6) that

lim
n→∞

V (a− υna) = 0. (2.7)

Combining equalities (2.2) and (2.7), we arrive at equality (2.3). �

2.5. Approximation of continuous Fourier multipliers vanishing at infinity

Lemma 2.6. Let X(R) be a Banach function space such that the Hardy-Little-
wood maximal operator M is bounded on X(R) and on its associate space
X ′(R).

(a) If b ∈ C0(R)∩V (R) and {υn}∞n=1 is the sequence of functions in C∞c (R)
defined in Lemma 2.5, then

lim
n→∞

‖b− υnb‖MX(R) = 0.

(b) If b ∈ CX(Ṙ) is such that b(∞) = 0, then there exists a sequence {bn}∞n=1

of functions in C0(R) ∩ V (R) such that

lim
n→∞

‖bn − b‖MX(R) = 0.

Proof. Part (a) follows from Lemma 2.5(b) and inequality (1.1).

(b) It follows from the definition of CX(Ṙ) that there exists a sequence

{dn}∞n=1 in C(Ṙ) ∩ V (R) such that

lim
n→∞

‖dn − b‖MX(R) = 0. (2.8)

Take bn := dn − dn(∞). Then bn ∈ C0(R) ∩ V (R). It follows (2.8) and
Theorem 2.3 that {dn}∞n=1 converges uniformly to b on R. In particular,

lim
n→∞

dn(∞) = b(∞) = 0. (2.9)

Combining (2.8) and (2.9), we see that

lim
n→∞

‖bn − b‖MX(R) = lim
n→∞

‖dn − dn(∞)− b‖MX(R)

≤ lim
n→∞

‖dn − b‖MX(R) + lim
n→∞

|dn(∞)| = 0,
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which completes the proof. �

3. Commutativity of the algebra Aπ
X(R)

3.1. Compactness of convolution operators from a subspace of compactly
supported functions of L1(R) to a subspace of compactly supported
functions of C(R)

Let Ck(R), k = 0, 1, 2, . . . be the space of functions with continuous bounded
derivatives of all orders up to k, C(R) = C0(R). For any space of functions
Y (R) and any R > 0, let Y[R](R) denote the subspace of Y (R) consisting
of functions with supports in [−R,R]. As usual, the support of a function
f : R→ C will be denoted by supp f .

Lemma 3.1. Suppose that R1, R2 > 0. If k ∈ C1(R) is such that supp k ⊂
[−R1, R1], then the convolution operator with the kernel k defined by

(Kf)(x) := (k ∗ f)(x) =

∫
R
k(x− y)f(y) dy, x ∈ R, (3.1)

is compact from the space L1
[R2](R) to the space C[R1+R2](R).

Proof. It follows from [6, Propositions 4.18 and 4.20] that the operator K
is bounded from the space L1

[R2](R) to the space C1
[R1+R2](R). Further, by

the Arzelà-Ascoli theorem (see, e.g., [28, Theorems 2.2.12 and 2.5.10]), the
space C1

[R1+R2](R) is compactly embedded into the space C[R1+R2](R), which

completes the proof. �

3.2. Compactness of products of Fourier convolution operators and multipli-
cation operators

The main step in the proof of Theorem 1.2 consists of proving the following.

Theorem 3.2. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-

ciate space X ′(R). If a ∈ C(Ṙ) and b ∈ CX(Ṙ) are such that a(∞) = b(∞) =
0, then

aW 0(b),W 0(b)aI ∈ K(X(R)).

Proof. A part of the proof is quite standard (see, e.g., [29, Theorem 5.3.1(i)]).
It follows from Lemma 2.6(b) that there exists a sequence {bn}∞n=1 of func-
tions in C0(R) ∩ V (R) such that ‖bn − b‖MX(R) → 0 as n→∞. Then

‖aW 0(b)− aW 0(bn)‖B(X(R)) → 0, ‖W 0(b)aI −W 0(bn)aI‖B(X(R)) → 0

as n → ∞. So, we can assume without loss of generality that b ∈ C0(R) ∩
V (R). Let {υn}∞n=1 be the sequence of functions in C∞c (R) as in Lemma 2.5.
Since

‖aW 0(b)− υnaW 0(υnb)‖B(X(R))

≤ ‖(a− υna)W 0(b)‖B(X(R)) + ‖υnaW 0(b− υnb)‖B(X(R))

≤ ‖a− υna‖L∞(R)‖b‖MX(R) + ‖a‖L∞(R)‖b− υnb‖MX(R) ,
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Lemmas 2.5(a) and 2.6(a) imply that

lim
n→∞

‖aW 0(b)− υnaW 0(υnb)‖B(X(R)) = 0.

Analogously we can show that

lim
n→∞

‖W 0(b)aI −W 0(υnb)υnaI‖B(X(R)) = 0.

Taking into account that υn ∈ C∞c (R) and

υnaW
0(υnb) = a(υnW

0(υn))W 0(b), W 0(υnb)υnaI = W 0(b)(W 0(υn)υn)aI,

it is enough to prove that a0W
0(b0) and W 0(b0)a0I are compact operators

for all a0, b0 ∈ C∞c (R).
Since F−1b0 ∈ S(R), it is easy to see that υnF

−1b0 → F−1b0 in S(R)
as n → ∞. Then bn := F

(
υnF

−1b0
)
→ b0 in S(R) as n → ∞. It is easy to

see that the convergence in S(R) implies the convergence in V (R). Therefore
‖bn − b0‖V (R) → 0 as n → ∞. It follows from the Stechkin type inequality
(1.1) that

lim
n→∞

‖a0W
0(bn)− a0W

0(b0)‖B(X(R))

≤ cX‖a0‖L∞(R) lim
n→∞

‖bn − b0‖V (R) = 0,

lim
n→∞

‖W 0(bn)a0I −W 0(b0)a0I‖B(X(R))

≤ cX‖a0‖L∞(R) lim
n→∞

‖bn − b0‖V (R) = 0.

Thus, it is sufficient to prove that a0W
0(bn),W 0(bn)a0I ∈ K(X(R)) for all

n ∈ N. Let kn := F−1bn = υnF
−1b0 ∈ C∞c (R). It follows from the convolution

theorem for the inverse Fourier transform (see, e.g., [14, Proposition 2.2.11,
statement (12)]) that for all n ∈ N and f ∈ C∞c (R),

W 0(bn)f = F−1(bnFf) = (F−1bn) ∗ F−1(Ff)

= (F−1bn) ∗ f = kn ∗ f =: Knf, (3.2)

where Kn is the convolution operator with the kernel kn defined by (3.1). In
view of Lemma 2.2, equality (3.2) remains valid for all f ∈ X(R).

TakeR1, R2 > 0 such that supp kn ⊂ [−R1, R1] and supp a0 ⊂ [−R2, R2].
Equality (3.2) implies that

a0W
0(bn) = a0Knχ[−R1−R2,R1+R2]I.

It follows from Axiom (A5) that there exists C[−R1−R2,R1+R2] ∈ (0,∞) such
that for all f ∈ X(R),∫ R1+R2

−R1−R2

|f(x)|dx ≤ C[−R1−R2,R1+R2]‖f‖X(R),

which means that the operator χ[−R1−R2,R1+R2]I is bounded from the space

X(R) to the space L1
[R1+R2](R). By Lemma 3.1, the operator Kn is compact

from the space L1
[R1+R2](R) to the space C[2R1+R2](R). It follows from Ax-

iom (A2) that the operator a0I : C[2R1+R2](R)→ X(R) is bounded. Thus, for



12 A. Karlovich and E. Shargorodsky

every n ∈ N, the operator a0W
0(bn) : X(R)→ X(R) is compact as the com-

position of the bounded operator χ[−R1−R2,R1+R2]I : X(R) → L1
[R1+R2](R),

the compact operator Kn : L1
[R1+R2](R) → C[2R1+R2](R), and the bounded

operator aI : C[2R1+R2](R)→ X(R).

Similarly, for every n ∈ N, the operator W 0(bn)a0I : X(R) → X(R) is
compact as the composition of the bounded operator a0I : X(R)→ L1

[R2](R),

the compact operator Kn : L1
[R2](R)→ C[R1+R2](R), and the bounded oper-

ator I : C[R1+R2](R)→ X(R). �

3.3. Compactness of commutators of Fourier convolution operators and mul-
tiplication operators

The previous theorem implies the following.

Corollary 3.3. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-

ciate space X ′(R). If a ∈ C(Ṙ) and b ∈ CX(Ṙ), then

[aI,W 0(b)] := aW 0(b)−W 0(b)aI ∈ K(X(R)).

Proof. Since a = a(∞) + ã and b = b(∞) + b̃, where ã ∈ C(Ṙ), b̃ ∈ CX(Ṙ),

and ã(∞) = 0 = b̃(∞), Theorem 3.2 implies that

[aI,W 0(b)] = (a(∞) + ã)(b(∞) +W 0(̃b))− (b(∞) +W 0(̃b))(a(∞) + ã)I

= ãW 0(̃b)−W 0(̃b)ãI ∈ K(X(R)). �

3.4. Proof of Theorem 1.2

Since a Banach function space X(R) is reflexive if and only if the space X(R)
and its associate space X ′(R) are separable (see [27, Chap. 1, §2, Theorem
4 and §3, Corollary 1 to Theorem 7] or [3, Chap. 1, Corollaries 4.4 and 5.6]),
Theorem 1.2 follows from Theorem 1.1 and Corollary 3.3. �

4. Proof of the main result

4.1. Estimate for the norm of a product of multiplication operators and a
Fourier convolution operator

For n ∈ N0 := N ∪ {0}, let

`n(x) :=
logn(1 + |x|)

1 + |x|
, x ∈ R.

Lemma 4.1. If Y (R) is a Banach function space such that the Hardy-Littlewood
maximal operator M is bounded on it, then `n ∈ Y (R) for all n ∈ N0.

Proof. Since χ[−1,1] ∈ Y (R) by Axiom (A4), Mχ[−1,1] ∈ Y (R). It is easy to
see that 0 ≤ `0 ≤ Mχ[−1,1] (see [14, Example 2.1.4]). Hence `0 ∈ Y (R) in
view of Axiom (A2).
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Now let k ∈ N0. It follows from the definition of the Hardy-Littlewood
maximal operator that for x 6= 0,

(M`k)(x) ≥


1

x+ ε

∫ x+ε

0

logk(1 + |t|)
1 + |t|

dt if x, ε > 0,

1

−x− ε

∫ 0

x+ε

logk(1 + |t|)
1 + |t|

dt if x, ε < 0.

Passing to the limit as ε→ 0±, we obtain for x 6= 0,

(M`k)(x) ≥


1

x

∫ x

0

logk(1 + |t|)
1 + |t|

dt if x > 0,

1

−x

∫ 0

x

logk(1 + |t|)
1 + |t|

dt if x < 0

=
1

|x|

∫ |x|
0

logk(1 + t)

1 + t
dt

=
1

(k + 1)|x|
logk+1(1 + |x|) ≥ 1

k + 1
`k+1(x).

So

0 ≤ `k+1 ≤ (k + 1)M`k, k ∈ N0,

and one gets by induction that `n ∈ Y (R) for all n ∈ N0. �

For R > 0, let χ{R} := χR\[−R,R].

Theorem 4.2. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator is bounded on X(R) and on its associate
space X ′(R). Let a ∈ Cc(R) and b ∈ Cc(R) ∩ V (R). Then for every n ∈ N0,
there exists a constant cn(a, b) ∈ (0,∞) depending only on a, b and n, such
that for all R > 0,

‖aW 0(b)χ{R}I‖B(X(R)) ≤
cn(a, b)

logn(R+ 2)
. (4.1)

Proof. Since b ∈ Cc(R) ⊂ L1(R), it follows from the convolution theorem
for the inverse Fourier transform (see, e.g., [1, Theorem 11.66]) that for f ∈
C∞c (R),

W 0(b)f = F−1(b · Ff) = (F−1b) ∗ F−1(Ff) =: k ∗ f, (4.2)

where k := F−1b. In view of Lemma 2.2, formula (4.2) remains valid for all
f ∈ X(R). Since b ∈ V (R), using integration by parts, similarly to the proof
of [26, Chap. I, Theorem 4.5], we get for x ∈ R,

k(x) = (F−1b)(x) =
1

2π

∫
R
e−ixξb(ξ) dξ =

1

2πix

∫
R
e−ixξdb(ξ),

and hence

|k(x)| ≤ V (b)

2π|x|
, x ∈ R. (4.3)
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Take R1 > 0 such that supp a ⊂ [−R1, R1]. If x ∈ [−R1, R1] and |y| > R ≥
max{2R1, 1}, then

|x− y| ≥ |y| − |x| ≥ |y| −R1 ≥ |y| −
|y|
2

=
|y|
2
≥ |y|+ 1

4
(4.4)

and

log(R+ 1) ≥ 1

2
log(R+ 2). (4.5)

Combining (4.3)–(4.5) and taking into account the definition of `n, we get
for every x ∈ [−R1, R1], R ≥ max{2R1, 1}, and n ∈ N0,

|k(x− y)|χ{R}(y) ≤ V (b)

2π|x− y|
χ{R}(y) ≤ 2V (b)

π(1 + |y|)
χ{R}(y)

≤ 2V (b)

π logn(R+ 1)
`n(y) ≤ 2n+1V (b)

π logn(R+ 2)
`n(y). (4.6)

It follows from (4.6), Lemma 4.1 and Hölder’s inequality for Banach function
spaces (see [27, Chap. 1, §1, Lemma 2] or [3, Chap. 1, Theorem 2.4]) that for
x ∈ [−R1, R1], R ≥ max{2R1, 1}, n ∈ N0 and f ∈ X(R),

|k ∗ (χ{R}f)(x)| =
∣∣∣∣∫

R
k(x− y)χ{R}(y)f(y) dy

∣∣∣∣
≤ ‖k(x− ·)χ{R}‖X′(R)‖f‖X(R)

≤
2n+1V (b)‖`n‖X′(R)‖f‖X(R)

π logn(R+ 2)
. (4.7)

It follows from Axiom (A4) that χ[−R1,R1] ∈ X(R). Since supp a ⊂ [−R1, R1],
in view of Axiom (A2), equality (4.2) and inequality (4.7), we obtain for
R ≥ max{2R1, 1}, f ∈ X(R) and n ∈ N0,

‖aW 0(b)χ{R}f‖X(R) ≤ ‖a‖L∞(R)‖χ[−R1,R1]‖X(R) ess sup
x∈[−R1,R1]

|k ∗ (χ{R}f)(x)|

≤
2n+1‖a‖L∞(R)V (b)‖`n‖X′(R)‖χ[−R1,R1]‖X(R)

π logn(R+ 2)
‖f‖X(R).

(4.8)

If R ∈ (0,max{2R1, 1}), then log(R+ 2) ≤ log(2 + max{2R1, 1}) and

‖aW 0(b)χ{R}I‖B(X(R)) ≤ ‖aW 0(b)‖B(X(R))

≤
logn(2 + max{2R1, 1})‖aW 0(b)‖B(X(R))

logn(R+ 2)
. (4.9)

It follows from (4.8) and (4.9) that (4.1) is fulfilled with

cn(a, b) := max

{
2n+1

π
‖a‖L∞(R)V (b)‖`n‖X′(R)‖χ[−R1,R1]‖X(R),

logn(2 + max{2R1, 1})‖aW 0(b)‖B(X(R))

}
,

which completes the proof. �



Algebras of convolution type operators 15

4.2. Sufficient condition on the space X(R) implying that the
algebra AX(R) does not contain all rank one operators

Now we prove a conditional statement, which will lead to the proof of Theo-
rem 1.3.

Theorem 4.3. Let X(R) be a separable non-reflexive Banach function space
such that the Hardy-Littlewood maximal operator is bounded on X(R) and on
its associate space X ′(R). Suppose that there exist a function g ∈ X ′(R) and
a constant δ > 0 such that ‖χ{R}g‖X′(R) ≥ δ for all R > 0. Then for any
function h ∈ X(R) \ {0}, the rank one operator Tg,h ∈ B(X(R)), defined by

(Tg,hf)(x) := h(x)

∫
R
g(y)f(y) dy,

does not belong to the algebra AX(R).

Proof. Fix h ∈ X(R) \ {0}. Suppose the contrary: Tg,h ∈ AX(R). Fix ε > 0.
By the definition of the algebra AX(R) there exist numbers N,M ∈ N and
operators

Aij ∈ {aI,W 0(b) : a ∈ C(Ṙ), b ∈ CX(Ṙ)}
for i ∈ {1, . . . , N}, j ∈ {1, . . . ,M} such that∥∥∥∥∥Tg,h −

N∑
i=1

Ai1 . . . AiM

∥∥∥∥∥
B(X(R))

<
ε

6
. (4.10)

Put

L := 2 max
{
‖Aij‖B(X(R)) : i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}

}
. (4.11)

Let b1, . . . , br ∈ CX(Ṙ) be such that for k ∈ {1, . . . , r},

W 0(bk) ∈
{
Aij : i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}

}
\
{
aI : a ∈ C(Ṙ)

}
and a1, . . . , as ∈ C(Ṙ) be such that for l ∈ {1, . . . , s},

alI ∈
{
Aij : i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}

}
\
{
W 0(bk) : k ∈ {1, . . . , r}

}
.

It follows from the definition of the algebra CX(Ṙ) that for each k ∈ {1, . . . , r}
there exists a function ck ∈ C(Ṙ) ∩ V (R) such that

‖W 0(bk)−W 0(ck)‖B(X(R)) = ‖bk − ck‖MX(R)

< min

{
ε

6NMLM−1
,
L

4

}
. (4.12)

Further, in view of Lemma 2.6(a), there exists a function b̃k ∈ Cc(R)∩ V (R)
such that

‖W 0(ck)− ck(∞)I −W 0(̃bk)‖B(X(R)) = ‖ck − ck(∞)− b̃k‖MX(R)

< min

{
ε

6NMLM−1
,
L

4

}
. (4.13)
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Combining (4.12) and (4.13), we get

‖W 0(bk)− ck(∞)I −W 0(̃bk)‖B(X(R)) < min

{
ε

3NMLM−1
,
L

2

}
.

Analogously, by Lemma 2.5(a), for every l ∈ {1, . . . , s}, there exists ãl ∈
Cc(R) such that

‖alI − al(∞)I − ãlI‖B(X(R)) ≤ ‖al − al(∞)− ãl‖L∞(R)

< min

{
ε

3NMLM−1
,
L

2

}
.

We have shown that for every i ∈ {1, . . . , N} and j ∈ {1, . . . ,M} there exists
an operator

Bij ∈
{
cI + ãI, cI +W 0(̃b) : c ∈ C, ã ∈ Cc(R), b̃ ∈ Cc(R)∩ V (R)

}
(4.14)

such that

‖Aij −Bij‖B(X(R)) < min

{
ε

3NMLM−1
,
L

2

}
.

Then, taking into account (4.11), we get∥∥∥∥∥
N∑
i=1

Ai1 . . . AiM −
N∑
i=1

Bi1 . . . BiM

∥∥∥∥∥
B(X(R))

=

∥∥∥∥∥∥
N∑
i=1

M∑
j=1

Ai1 . . . Ai,j−1(Aij −Bij)Bi,j+1 . . . BiM

∥∥∥∥∥∥
B(X(R))

≤
N∑
i=1

M∑
j=1

(
j−1∏
k=1

‖Aik‖B(X(R))

)
‖Aij −Bij‖B(X(R))

 M∏
l=j+1

‖Bil‖B(X(R))



<

N∑
i=1

M∑
j=1

(
L

2

)j−1
ε

3NMLM−1

(
L

2
+
L

2

)M−j
<

N∑
i=1

M∑
j=1

ε

3NM
=
ε

3
.

(4.15)

It follows from (4.10) and (4.15) that

‖Tg,h − Tε‖B(X(R)) <
ε

6
+
ε

3
=
ε

2
, (4.16)

where

Tε :=

N∑
i=1

Bi1 . . . BiM .

Taking into account (4.14), we can rearrange terms and write the operator
Tε in the form

Tε = cI +W 0(̃b0) +

p∑
i=1

D1,iã1,iI +

t∑
j=1

D2,j ã2,jW
0(̃bj), (4.17)
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where c ∈ C, b̃j ∈ Cc(R) ∩ V (R) for j ∈ {0, . . . , t}, ã1,i, ã2,j ∈ Cc(R)
and D1,i, D2,j are some operators in AX(R) \ {0} for i ∈ {1, . . . , p} and
j ∈ {1, . . . , t}.

Since the space X(R) is separable, it follows from [27, Chap. 1, §2, Def-
inition 1 and §3, Corollary 1 to Theorem 7] (or [3, Chap. 1, Definition 3.1 and
Corollary 5.6]) that there exists R1 > 0 such that ‖χ{R1}h‖X(R) ≤ 1

2‖h‖X(R).
Then

‖χR1h‖X(R) ≥ ‖h‖X(R) − ‖χ{R1}h‖X(R) ≥
1

2
‖h‖X(R), (4.18)

where

χR1
:= 1− χ{R1} = χ[−R1,R1].

Since ã1,i ∈ Cc(R) for i = 1, . . . , p, there exists R2 > R1 such that for R ≥ R2,

χR1(cI)χ{R}I + χR1

p∑
i=1

D1,iã1,iχ{R}I = 0. (4.19)

Let ã0 ∈ Cc(R) be such that ã0 = 1 for x ∈ [−R1, R1]. Then

χR1
W 0(̃b0) = χR1

ã0W
0(̃b0).

It follows from Theorem 4.2 that there exists R0 > R2 such that for all
R ≥ R0 and j ∈ {1, . . . , t},

‖χR1 ã0W
0(̃b0)χ{R}I‖B(X(R)) ≤ ‖ã0W

0(̃b0)χ{R}I‖B(X(R)) <
ε

2(t+ 1)
,

(4.20)

‖ã2,jW
0(̃bj)χ{R}I‖B(X(R)) <

ε

2(t+ 1)‖D2,j‖B(X(R))
. (4.21)

Combining (4.17) and (4.19)–(4.21), we see that for all R ≥ R0,

‖χR1Tεχ{R}I‖B(X(R)) <
ε

2(t+ 1)
+

t∑
j=1

ε

2(t+ 1)
=
ε

2
. (4.22)

It follows from (4.16) and (4.22) that for all R ≥ R0,

‖χR1Tg,hχ{R}I‖B(X(R)) ≤ ‖χR1(Tg,h − Tε)χ{R}I‖B(X(R))

+ ‖χR1Tεχ{R}I‖B(X(R))

≤ ‖Tg,h − Tε‖B(X(R)) +
ε

2
< ε. (4.23)
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On the other hand, in view of [3, Chap. 1, Lemma 2.8] (see also [27,
Chap. 1, §1, Remark (2) after Theorem 2]), we have

‖χR1
Tg,hχ{R}I‖B(X(R))

= sup

{∥∥∥∥χR1h

∫
R
g(y)χ{R}(y)f(y) dy

∥∥∥∥
X(R)

: f ∈ X(R), ‖f‖X(R) ≤ 1

}

= sup

{∣∣∣∣∫
R
g(y)χ{R}(y)f(y) dy

∣∣∣∣ ‖χR1
h‖X(R) : f ∈ X(R), ‖f‖X(R) ≤ 1

}
= ‖χR1h‖X(R) sup

{∣∣∣∣∫
R
g(y)χ{R}(y)f(y) dy

∣∣∣∣ : f ∈ X(R), ‖f‖X(R) ≤ 1

}
= ‖χR1h‖X(R)‖gχ{R}‖X′(R).

This equality, inequality (4.18) and inequality ‖χ{R}g‖X′(R) ≥ δ imply that

‖χR1
Tg,hχ{R}I‖B(X(R)) ≥

δ

2
‖h‖X(R). (4.24)

Inequalities (4.23) and (4.24) yield a contradiction for ε ≤ δ
2‖h‖X(R). �

Remark 4.4. Note that a Banach function spaces X(R) is reflexive if and only
if X(R) and its associate space X ′(R) are separable (see [27, Chap. 1, §2,
Theorem 4 and §3, Corollary 1 to Theorem 7] or [3, Chap. 1, Corollaries 4.4
and 5.6]). In turn, if X ′(R) is separable, then for any g ∈ X ′(R) one has
‖χ{R}g‖X′(R) → 0 as R→∞ in view of [27, Chap. 1, §2, Definition 1 and §3,
Corollary 1 to Theorem 7] (or [3, Chap. 1, Definition 3.1 and Corollary 5.6]).

To complete the proof of Theorem 1.3, we have to show that there exists
a separable non-reflexive Banach function space satisfying the hypotheses of
Theorem 4.3. In the next subsection, we will show that the classical Lorentz
spaces Lp,1(R), 1 < p <∞, perfectly fit our needs.

4.3. Proof of Theorem 1.4

The space X(R) = Lp,1(R) is separable and[
Lp,1(R)

]∗
=
(
Lp,1

)′
(R) = Lp

′,∞(R),

where 1/p + 1/p′ = 1 (see [3, Chap. 1, Corollaries 4.3 and 5.6, Chap. 4,
Corollary 4.8]). It is also known that

Lp,1(R) $ [Lp
′,∞(R)]∗ = [Lp,1(R)]∗∗

(see [7, p. 83]). Hence Lp,1(R) is non-reflexive. The lower and upper Boyd

indices of Lp,1(R) (resp., of Lp
′,∞(R)) are both equal to 1/p (resp., to 1/p′);

see [3, Chap. 4, Theorem 4.6]. Hence the Hardy-Littlewood maximal operator
is bounded on the space X(R) and on its associate space X ′(R) in view of
the Lorentz-Shimogaki theorem (see [3, Chap. 3, Theorem 5.17]). Thus, the
space Lp,1(R) is a separable non-reflexive Banach function space satisfying
condition (a) of Theorem 1.3.
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Consider the function g(x) = |x|−1/p′ . Its distribution function is

µg(λ) = |{x ∈ R : |x|−1/p′ > λ}| = |{x ∈ R : |x| < λ−p
′
}| = 2λ−p

′
, λ ≥ 0,

and its non-increasing rearrangement is

g∗(t) = inf{λ ≥ 0 : 2λ−p
′
≤ t} = inf{λ ≥ 0 : 21/p′t−1/p′ ≤ λ}

= 21/p′t−1/p′ , t ≥ 0.

Then

g∗∗(t) =
1

t

∫ t

0

21/p′y−1/p′dy =
21/p′t−1/p′

1− 1/p′
= 21/p′pt−1/p′ , t ≥ 0

and

‖g‖(p′,∞) = 21/p′p <∞.
The distribution function of χ{R}g for every R > 0 is given by

µχ{R}g(λ) = |{x ∈ R : χ{R}(x)g(x) > λ}|

=

{
2λ−p

′ − 2R if 0 ≤ λ < R−1/p′ ,

0 if λ ≥ R−1/p′ .

Then

(χ{R}g)∗(t) = inf{λ ≥ 0 : 2λ−p
′
− 2R ≤ t} = inf

{
λ ≥ 0 : λ−p

′
≤ t

2
+R

}
= inf

{
λ ≥ 0 :

2

t+ 2R
≤ λp

′
}

= 21/p′(t+ 2R)−1/p′ , t ≥ 0.

Since (χ{R}g)∗ is non-increasing, we have (χ{R}g)∗∗ ≥ (χ{R}g)∗ and

‖χ{R}g‖(p′,∞) ≥ sup
0<t<∞

(
t1/p

′
(χ{R}g)∗(t)

)
= 21/p′ sup

0<t<∞

(
t

t+ 2R

)1/p′

= 21/p′ .

Thus, the conditions of Theorem 4.3 are satisfied for X(R) = Lp,1(R), g(x) =

|x|−1/p′ and δ = 21/p′ . The desired result now follows from that theorem. �

5. Final remarks on algebras of convolution type operators
with continuous and slowly oscillating data

5.1. Algebra C0
X(Ṙ) of continuous Fourier multipliers

Let C stand for the constant complex-valued functions on R. Notice that
C(Ṙ) decomposes into the direct sum C(Ṙ) = C+̇C0(R). It follows from the
mean value theorem that

C+̇C∞c (R) ⊂ C(Ṙ) ∩ V (R). (5.1)

SupposeX(R) is a separable Banach function space such that the Hardy-
Littlewood maximal operator M is bounded on X(R) and on its associate



20 A. Karlovich and E. Shargorodsky

space X ′(R). Along with the algebra CX(Ṙ) of continuous Fourier multi-
pliers defined by (1.2), consider the following algebra of continuous Fourier
multipliers:

C0
X(Ṙ) := closMX(R)

(
C+̇C∞c (R)

)
. (5.2)

It follows from embeddings (5.1) and definitions (1.2) and (5.2) that

C0
X(Ṙ) ⊂ CX(Ṙ). (5.3)

For large classes of Banach function spaces, including separable rear-
rangement-invariant Banach function with nontrivial Boyd indices, weighted
Lebesgue spaces with Muckenhoupt weights, reflexive variable Lebesgue spaces
Lp(·)(R) such that the Hardy-Littlewood maximal operator M is bounded on
Lp(·)(R), the above embedding becomes equality (see [9, Theorem 3.3] and
[19, Theorem 1.1]). Proofs of [9, Theorem 3.3] and [19, Theorem 1.1] are
based on an interpolation argument. Unfortunately, interpolation tools are
not available in the general setting of Banach function spaces. So, we arrive
at the following.

Question 5.1. Is it true that C0
X(Ṙ) = CX(Ṙ) for an arbitrary separable Ba-

nach function space X(R) such that the Hardy-Littlewood maximal operator
is bounded on X(R) and on its associate space X ′(R)?

5.2. The ideal of compact operators is contained in the algebra of convolution
type operators with continuous data

Since we do not know the answer on Question 5.1, along with the Banach
algebra AX(R), we will also consider the smallest Banach subalgebra

A0
X(R) := alg{aI,W 0(b) : a ∈ C(Ṙ), b ∈ C0

X(Ṙ)}

of the algebra B(X(R)) that contains all operators of multiplication aI by

functions a ∈ C(Ṙ) and all Fourier convolution operators W 0(b) with symbols

b ∈ C0
X(Ṙ).
If the answer to Question 5.1 is negative, then the following result pro-

vides a refinement of Theorem 1.1.

Theorem 5.2. Let X(R) be a reflexive Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-
ciate space X ′(R). Then the ideal of compact operators K(X(R)) is contained
in the Banach algebra A0

X(R).

The proof of Theorem 5.2 repeats word-by-word the proof of Theo-
rem 1.1 with [11, Lemma 4.2] replaced by the following.

Lemma 5.3. Let X(R) be a separable Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-
ciate space X ′(R). Suppose a, b ∈ Cc(R) and a one-dimensional operator T1

is defined on the space X(R) by

(T1f)(x) = a(x)

∫
R
b(y)f(y) dy. (5.4)

Then there exists a function c ∈ C0
X(Ṙ) such that T1 = aW 0(c)bI.
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Proof. The idea of the proof is borrowed from [24, Lemma 6.1] (see also [29,
Proposition 5.8.1]). Since a, b ∈ Cc(R), there exists a numberM > 0 such that
the set {x− y : x ∈ supp a, y ∈ supp b} is contained in the segment [−M,M ].
By the smooth version of Urysohn’s lemma (see, e.g., [13, Proposition 6.5]),
there exists k ∈ C∞c (R) such that 0 ≤ k(x) ≤ 1 for x ∈ R, k(x) = 1 for
x ∈ [−M,M ] and k(x) = 0 for x ∈ R \ (−2M, 2M). Then (5.4) can be
rewritten in the form

(T1f)(x) = a(x)

∫
R
k(x− y)b(y)f(y) dy =

(
aW 0(k̂)bf

)
(x), x ∈ R.

By [14, Example 2.2.2 and Proposition 2.2.11], C∞c (R) ⊂ S(R) and k̂ ∈ S(R).
Since S(R) ⊂ C0(R) ∩ V (R), it follows from Lemma 2.6(a) that

S(R) ⊂ closMX(R)

(
C∞c (R)

)
⊂ C0

X(Ṙ).

Hence c := k̂ ∈ C0
X(Ṙ). �

5.3. Slowly oscillating Fourier multipliers

For a set E ⊂ Ṙ and a function f : Ṙ→ C in L∞(R), let the oscillation of f
over E be defined by

osc(f,E) := ess sup
s,t∈E

|f(s)− f(t)|.

Following [2, Section 4] and [23, Section 2.1], [24, Section 2.1], we say that

a function f ∈ L∞(R) is slowly oscillating at a point λ ∈ Ṙ if for every
r ∈ (0, 1) or, equivalently, for some r ∈ (0, 1), one has

lim
x→0+

osc
(
f, λ+ ([−x,−rx] ∪ [rx, x])

)
= 0 if λ ∈ R,

lim
x→+∞

osc
(
f, [−x,−rx] ∪ [rx, x]

)
= 0 if λ =∞.

For every λ ∈ Ṙ, let SOλ denote the C∗-subalgebra of L∞(R) defined by

SOλ :=
{
f ∈ Cb(Ṙ \ {λ}) : f slowly oscillates at λ

}
,

where Cb(Ṙ \ {λ}) := C(Ṙ \ {λ}) ∩ L∞(R).
Let SO� be the smallest C∗-subalgebra of L∞(R) that contains all the

C∗-algebras SOλ with λ ∈ Ṙ. The functions in SO� are called slowly oscil-
lating functions.

For a point λ ∈ Ṙ, let C3(R \ {λ}) be the set of all three times contin-
uously differentiable functions a : R \ {λ} → C. Following [23, Section 2.4]
and [24, Section 2.3], consider the commutative Banach algebras

SO3
λ :=

{
a ∈ SOλ ∩ C3(R \ {λ}) : lim

x→λ
(Dk

λa)(x) = 0, k = 1, 2, 3

}
equipped with the norm

‖a‖SO3
λ

:=

3∑
k=0

1

k!

∥∥Dk
λa
∥∥
L∞(R)

,

where (Dλa)(x) = (x− λ)a′(x) for λ ∈ R and (Dλa)(x) = xa′(x) for λ =∞.
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The following result leads us to the definition of slowly oscillating Fourier
multipliers.

Theorem 5.4 ([18, Theorem 2.5]). Let X(R) be a separable Banach func-
tion space such that the Hardy-Littlewood maximal operator M is bounded
on X(R) and on its associate space X ′(R). If λ ∈ Ṙ and a ∈ SO3

λ, then the
convolution operator W 0(a) is bounded on the space X(R) and

‖W 0(a)‖B(X(R)) ≤ dX‖a‖SO3
λ
,

where dX is a positive constant depending only on X(R).

Let SOλ,X(R) denote the closure of SO3
λ in the norm ofMX(R). Further,

let SO�X(R) be the smallest Banach subalgebra ofMX(R) that contains all the

Banach algebras SOλ,X(R) for λ ∈ Ṙ. The functions in SO�X(R) will be called

slowly oscillating Fourier multipliers.

5.4. The ideal of compact operators is contained in the algebra of convolution
type operators with slowly oscillating data

Consider the smallest Banach subalgebra

DX(R) := alg{aI,W 0(b) : a ∈ SO�, b ∈ SO�X(R)}

of the algebra B(X(R)) that contains all operators of multiplication aI by
slowly oscillating functions a ∈ SO� and all Fourier convolution operators
W 0(b) with slowly oscillating symbols b ∈ SO�X(R).

Now we are in a position to formulate the main result of this section.

Theorem 5.5. Let X(R) be a reflexive Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-
ciate space X ′(R). Then the ideal of compact operators K(X(R)) is contained
in the Banach algebra DX(R).

This result follows from Theorem 5.2.
Under the assumptions of Theorem 5.5, we can define the quotient al-

gebra
DπX(R) := DX(R)/K(X(R)).

We conclude this section with the following.

Question 5.6. Let X(R) be a reflexive Banach function space such that the
Hardy-Littlewood maximal operator M is bounded on X(R) and on its asso-
ciate space X ′(R). Is it true that the quotient algebra DπX(R) is commutative?

We know that the answer is positive for some particular cases of Banach
function spaces. For Lebesgue spaces Lp(R, w), 1 < p < ∞, with Mucken-
houpt weights w, the positive answer to the above question follows from [24,
Theorem 4.6], whose proof relies on a version of the Krasnosel’skii interpola-
tion theorem for compact operators (see, e.g., [22, Corollary 5.3]). The answer
is also positive for reflexive variable Lebesgue spaces Lp(·)(R) such that the
Hardy-Littlewood maximal operator M is bounded on Lp(·)(R). It is based
on a similar interpolation argument (see [16, Lemma 6.4]). However, as far
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as we know, for arbitrary Banach function spaces, interpolation tools are not
available.
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