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1 Introduction

A natural class of observables of the N = (2, 0) 6d SCFT is that of surface operators [1].
These operators share many properties with the much studied Wilson loops of gauge the-
ories: they are extended objects which can enjoy superconformal symmetry [2], in some
cases have a holographic description [3], and in the abelian N = (2, 0) theory admit a field
realisation as the integral of the 2-form B field, akin to a gauge connection [4–8]. These
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similarities suggest that some of the methods which have proven successful in the study
of Wilson loops can be applied to the N = (2, 0) theory as well, providing a window into
its dynamics.

In this paper we apply the framework of defect CFT to the surface operators of the
N = (2, 0) theory. We adopt the approach of the conformal bootstrap program [9–14] and
use the symmetries preserved by the surface operators to constrain their correlators with
other bulk operators as well as local operator insertions on the surface. One of the virtues
of this description is that it does not rely on a field realisation and therefore is applicable
to the nonabelian theory.

We focus on 1/2-BPS defects because they preserve the largest amount of symmetry.
These are surface operators defined over a plane and expected to be labeled by a repre-
sentation of the ADE group of the N = (2, 0) theory [15–17]. We consider local operator
insertions into the defect, the simplest example encoding an infinitesimal geometric de-
formation of the plane itself. Because the plane preserves superconformal symmetry, the
correlators of local operator insertions are constrained and obey the axioms of a dCFT—
the 2- and 3-point functions are fixed up to a small set of numbers defining the dCFT,
which make up the dCFT data.

Explicitly, consider a correlator involving such a surface operator V . While translating
the plane along parallel directions leaves the correlator invariant, translations in directions
transverse to the plane do not. Instead, the stress tensor receives a contribution from a
contact term localised on the defect (at x = 0):

∂µT
µm(σ, x)V = V [Dm(σ)]δ(4)(x). (1.1)

The index µ = 1, . . . , 6 runs over all spacetime coordinates, while m = 1, . . . , 4 are the
coordinates transverse to the plane. We use the notation V [Ô(σ)] to denote the planar
surface operator with a defect operator Ô inserted at a point σ on the plane.

Equation (1.1) is an operator equation, so it holds inside correlation functions. It
defines D, known as the displacement operator. In addition, because V preserves some
supersymmetries, the displacement operator sits in a multiplet containing also contact
terms for the divergence of the broken super- and R-current, which we label
Q and O, respectively.

It turns out that these defect operators enjoy a very favorable position: not only are
they highly constrained by the residual symmetry (which includes the 2d rigid supercon-
formal symmetry), but they also correspond to interesting physical quantities [18, 19].1
Indeed it is easy to show that, as a consequence of (1.1), the insertion of a displacement
operator D corresponds to small deformations of the plane, and thus captures the shape
dependence of surface operators.

This paper revolves around two correlators that capture physical properties of the
defect. The first one is the 2-point function of displacement operators. Using the residual
conformal symmetry of the plane and reading the conformal dimension ∆D = 3 from (1.1),

1Note that the dCFT is not expected to contain a conserved stress tensor [20] and the rigid conformal
symmetry is not necessarily enhanced to Virasoro symmetry.
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the 2-point function is constrained up to a single coefficient CD to be

〈V [Dm(σ)Dn(0)]〉 = CDδ
mn

π2|σ|6
. (1.2)

Notice however that, unlike most operators, the normalisation of D is already fixed by the
normalisation of Tµν from (1.1), so that CD is part of the data characterising the dCFT [21]
(the factor π2 is for convenience).

The second is the stress tensor, which in the presence of the defect acquires an expec-
tation value. Both the components of the tensor along the defect T ab and orthogonal to it
Tmn can have a nonzero 1-point function, and they are fixed by conformal invariance up
to an arbitrary coefficient hT to be

〈
T ab(σ, x)V

〉
= hT η

ab

π3x6 , 〈Tmn(σ, x)V 〉 = −hT (δmn − 2xmxn/x2)
π3x6 . (1.3)

T (σ, x) is inserted at a distance x from the defect, and obviously the correlators do not
depend on the coordinate σ by translation invariance along the plane. ηab = diag (−1, 1)
is the Minkowski metric.

In theories with only conformal invariance the coefficients hT and CD are independent
quantities [22], but in theories with enough supersymmetries one can use superconformal
Ward identities to relate them [23]. For our surface operators we show in section 3 that

hT = 3CD
80 . (1.4)

To derive this result, we obtain the transformations of the stress tensor multiplet under
supersymmetry (3.7), which is also an important result of section 3.

Analogous relations between hT and CD were first derived using the same techniques
for the 1/2-BPS Wilson loops of 4d N = 2 theories [23] and the 1/6-BPS bosonic loops of
ABJM [24], proving the conjecture of [25, 26]. A similar analysis was also applied recently
to surface operators in 4d N = 1 theories [27]. All these different examples show how the
language of dCFT is a powerful and universal tool to study superconformal defects.

More than simply equating different constants, the relation (1.4) has an important
physical consequence. Recall that surface operators in CFTs typically have a conformal
anomaly, which manifests itself as a divergence in the expectation value. The anomaly
density AΣ is the sum of conformal invariants [28, 29] and can be written as

AΣ = 1
4π
[
aRΣ + b1 tr ĨI2 + b2 trW + c(∂n)2

]
, (1.5)

where the invariants RΣ, tr ĨI2, trW, (∂n)2 are local quantities depending on the embedding
of the surface (see appendix B for a review), while the coefficients a, b1, b2 and c are known
as anomaly coefficients and depend on the specifics of the theory and operator in question.

In section 4 we relate the coefficients b1, b2, c to CD, hT and an additional constant CO
to be introduced in (2.3). In the language of anomaly coefficients, the result (1.4) along
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with the relative normalisations (2.6) of the operators in the displacement multiplet can
be stated as

c = −b1/2 , b1 = −b2 . (1.6)

We emphasize that these identities are a consequence of supersymmetry and hold for any
1/2-BPS operator of the N = (2, 0) theory and for any ADE group. In particular, the
second identity agrees with the explicit holographic calculations of [8, 30, 31] and was
conjectured to come from supersymmetry in [27]. The two remaining anomaly coefficients
a and b1 were calculated at N = 1 in [8] and for N > 1 using holographic entanglement
entropy in the presence of surface operators [32–35], and the superconformal index [36].

Finally, in section 5 we expand our scope and consider the analog of the operator
product expansion but for bulk operators in the presence of a defect—the defect operator
expansion (dOE) [37, 38]. This expansion gives a representation of bulk operators near the
defect in terms of insertions of defect operators. To understand what these defect operators
are more generally, we classify unitary multiplets of the algebra preserved by the defect.
We then look at operators in the stress tensor multiplet and determine the short multiplets
arising in their dOE. We find a new marginal defect operator, which we associate with the
RG flow between the nonsupersymmetric and 1/2-BPS surface operator discussed in [31].2

In addition to this result, we find that the defect operator expansion provides a use-
ful framework and makes the constraints imposed by the preserved symmetries manifest.
In fact, in section 5.4 we use the dOE and representation theory to give a different per-
spective on the relation (1.4). Unlike in section 3, where (1.4) follows from a technical
calculation, we are able to conclude directly that hT and CD must be related. This sug-
gests a strategy for determining the minimal amount of supersymmetry required in order
for the conjecture of [25], which relates these coefficients in the case of supersymmetric
Wilson loops, to hold (see also [19] and references therein for a similar conjecture in the
context of entanglement entropy).

Some auxiliary results are collected in appendices. appendix A summarises our con-
ventions and the gamma matrices used throughout the paper. appendix B provides a short
review of the Weyl anomaly for surface operators. In appendix C we show how to con-
strain correlators containing both bulk and defect operators using conformal symmetry.
appendix D reviews the 2 algebras used in this paper: the osp(8∗|4) symmetry of the bulk
theory and the osp(4∗|2)⊕ osp(4∗|2) symmetry preserved by the defect.

Note added. In the last stages of preparation of this paper, we were made aware by [41]
that the classification of unitary multiplets of osp(4∗|2) (here presented in section 5.2) had
previously been worked out in the context of line operators [42].

2 Displacement multiplet

As far as defect operators go, the displacement operator is pretty universal. As (1.1)
suggests, any defect breaking translation symmetry contains that defect operator. For this

2This is analogous to the flow of Wilson line operators introduced in [39, 40].
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reason, it has appeared in many contexts: the prototypical example is the 1/2-BPS Wilson
line in N = 4 SYM, where the study of deformations and operator insertions was initiated
in [43], but many other examples have been studied over the years and follow the general
analysis of [22].

In the case of N = (2, 0), we are mostly interested in the multiplet which contains
the displacement operator. Of the full superconformal algebra osp(8∗|4), the 1/2-BPS
plane preserves a 2d conformal algebra so(2, 2)‖ in the directions parallel to the plane,
along with rotations of the transverse directions so(4)⊥ and an so(4)R R-symmetry. In
addition, it also preserves half the supersymmetries Q+ (and S̄+) such that Q+V = 0.
These are obtained by a half-rank projector Q+ = Π+Q whose explicit definition can be
found in (D.12). The preserved generators form an osp(4∗|2) ⊕ osp(4∗|2) subalgebra [44],
detailed in appendix D.2.

Importantly, in direct analogy to (1.1), the Ward identities associated to the remaining
broken super- and R-symmetries also receive contributions localised on the defect, which
give rise to defect operators Q and Oi, encoding the nontrivial response of the defect to
the broken generators. Explicitly, the conservation laws associated with the R-current j
and the supercurrent J are broken as follows:

∂µT
µmV = V [Dm]δ(4)(x) ,

∂µ(Π−Jµ)V = V [Q]δ(4)(x) ,
∂µj

µi5V = V [Oi]δ(4)(x) .
(2.1)

In this equation, i = 1, . . . , 4 is the R-symmetry index of so(4)R. The spinor indices of Jµαα̌
and Qαα̌ are suppressed and follow the conventions outlined in appendix A (see however
footnote 4). For the definition of Π−, see (D.12).

As mentioned previously, the (nonabelian) theory does not have a known field realisa-
tion, so we cannot write these operators in terms of fundamental fields. We can however
derive some of their properties purely from representation theory. The full multiplet as
derived in appendix D.2.1 reads

δ+Dm = 1
2ε+γam∂

aQ ,

δ+Q = 2ε+γmDm − 2ε+γaγ̌i5∂
aOi ,

δ+Oi = −1
2ε+γ̌i5Q .

(2.2)

δ+ = ε+Q+ is a variation with respect to the preserved supercharges and ε+ = ε+Π+.

2.1 Superconformal Ward identity

The 2-point functions of these operators is easy to find. Both D and O transform as
scalars with respect to the 2d conformal symmetry, while Q is a spinor. Their conformal
dimensions can also be read from (2.1) and are ∆D = 3, ∆Q = 5/2 and ∆O = 2. Conse-
quently, using the preserved bosonic symmetries, their 2-point functions are (up to some
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arbitrary coefficients CD, CQ, CO)

〈V [Dm(σ)Dn(0)]〉 = CDδ
mn

π2 |σ|6
,

〈V [Q(σ)Q(0)]〉 = CQ (γaσaΠ−)
π2 |σ|6

,

〈V [Oi(σ)Oj(0)]〉 = COδij

π2 |σ|4
.

(2.3)

As Q is a 2d spinor, its 2-point function should be written in terms of the corresponding
2d gamma matrices. In order to emphasize the relation between the respective symmetry
algebras in 6d and 2d, we write these matrices as blocks of their 6d counterparts obtained
by the projector Π−.

We can now relate CO and CQ to CD using superconformal Ward identities associated
to the preserved supersymmetries. Apply the supersymmetry transformations (2.2) to the
vanishing correlator

〈
V [Qββ̌Oi]

〉
to find

− 1
2 (γ̌i5) γ̌

α̌

〈
V [Qββ̌Qαγ̌ ]

〉
= 2 (γaγ̌j5Π−cΩ)αβα̌β̌ ∂

a
〈
V [OjOi]

〉
. (2.4)

Substituting the explicit 2-point functions (2.3), we obtain the linear relation CQ = −16CO.
In the same fashion, the Ward identity associated to

〈
V [Qββ̌Dm]

〉
leads to

2 (γnΠ−cΩ)αα̌ββ̌ 〈V [DnDm]〉 = −1
2 (γam) γ

α ∂a
〈
V [Qββ̌Qγα̌]

〉
, (2.5)

which serves to relate CD to CQ. Altogether, we find that the normalisations of the 2-point
functions obey

CD = −CQ = 16CO. (2.6)

3 Stress tensor correlators

Some of the most important operators in any theory are the stress tensor and its multiplet.
In the presence of the 1/2-BPS defect, their expectation values are highly constrained by
the residual symmetry: typically the so(2, 2)‖ ⊕ so(4)⊥ ⊕ so(4)R bosonic subalgebra of
preserved symmetries is powerful enough to fix them up a to a constant (see e.g. (1.3)).

In addition to the constraints imposed by conformal symmetry, supersymmetry relates
correlators of different operators in the same multiplet. Adapting the strategy of [23, 24, 27],
the key to deriving (1.4) is to focus on the correlator 〈Tµν(x)V [Dm(σ)]〉, which is entirely
fixed in terms of the constants CD and hT [22]. The kinematics of that correlator admit 2
independent tensor structures with their own coefficient. They are related to CD by taking
the divergence

∂µ〈TµmV [Dn]〉 = 〈V [DmDn]〉 ∝ CD , (3.1)

– 6 –
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and to hT by integrating the displacement operator over the surface, which simply translates
the defect ∫

R2
d2σ〈Tµν(0, x)V [Dm(σ)]〉 = ∂m〈Tµν(0, x)V 〉 ∝ hT . (3.2)

We stress that this does not provide in itself a relation between CD and hT , as can be
checked using the explicit form of the correlators (see equation (6.2) of [19]).

Instead, to derive the relation, we should use superconformal Ward identites to relate
this correlator to

〈
Oi5V [Oj ]

〉
, where O is the superconformal primary of the stress tensor

multiplet. Because the latter admits only a single tensor structure, this would imply that
CD and hT are related.

In order to derive this result, we need the explicit supersymmetry transformations
of the stress tensor multiplet, which are summarised in (3.7). We also need the 1-point
functions of the stress tensor appearing on the right-hand side of (3.2), which are derived in
section 3.2 (the 2-point functions of the displacement multiplet are given in (2.3)). Then,
we use the supersymmetric Ward identities associated with correlators of the form 〈OV [Ô]〉
to derive (1.4).

3.1 Stress tensor multiplet

We begin by obtaining explicit supersymmetry transformations for the stress tensor multi-
plet, whose content is derived from representation theory and can be found in [45], where
it is presented as a massless graviton multiplet (see also [46, 47] for an overview of super-
conformal multiplets in various dimensions).

The primaries of any multiplet are labelled by their transformation under Lorentz
symmetry [j1, j2, j3]su(4), R-symmetry (R1, R2)sp(2) as well as their conformal dimension
∆.3 In the notation of [46], the stress tensor multiplet is the D1[0, 0, 0](0,2)

4 multiplet (with
representations written as [j1, j2, j3](R1,R2)

∆ ). Its primaries are

• Tµν , the stress tensor ([0, 2, 0](0,0)
6 = 20). It contains a null state, since ∂µTµν = 0,

and has 20− 6 degrees of freedom.

• Jµαα̌, the supercurrent ([1, 1, 0](1,0)
11/2 = 20 · 4). It also has a null state ∂µJµαα̌ = 0,

satisfies (γ̄µ) β
α̇ Jµ

ββ̌
= 0, and contains 80− 16 degrees of freedom.4

• jµ[IJ ], the R-current ([0, 1, 0](2,0)
5 = 6 · 10). It has a null state ∂µjµIJ = 0, and

contains 60− 10 degrees of freedom.

• HI
µνρ, a self-dual 3-form ([2, 0, 0](0,1)

5 = 10 · 5) containing 50 degrees of freedom.
3These Dynkin labels are related to the usual so(1, 5) and so(5) labels by

[j1, j2, j3]su(4) = [j2, j1, j3]so(1,5) , (R1, R2)sp(2) = (R2, R1)so(5) .

4Note that J transforms in the [1, 1, 0] irrep. Since the tensor product of a vector and a chiral spinor
decomposes into [1, 1, 0]⊕[0, 0, 1], we can write J with indices µ and α, provided we project out the antichiral
spinor by requiring (γ̄µ) β

α̇ Jµ
ββ̌

= 0.
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• χIαα̌, a fermion ([1, 0, 0](1,1)
9/2 = 4 · 16) satisfying (γ̌I) β̌

α̌ χI
ββ̌

= 0 and containing 64
degrees of freedom.

• O(IJ), a scalar ([0, 0, 0](0,2)
4 = 14) with 14 degrees of freedom. It is the superprimary

of the multiplet.

Together with their descendants, these form an on-shell multiplet with 128 bosonic opera-
tors (and a matching number of fermionic operators).

In addition to the operator content, we need below the explicit supersymmetry trans-
formations, which have not been calculated before to the best of our knowledge. These can
be obtained in a variety of ways (e.g. oscillator constructions [45] and superspace transfor-
mations [48, 49]), but here we simply list the terms allowed by Lorentz and R-symmetry
and fix the coefficients by requiring closure of the algebra, i.e. imposing that on every
operator {Q,Q}Φ = 2PΦ. Importantly, imposing this condition is made easy because we
already know the operator content.

We start from the superprimary OIJ . Since Q transforms as [1, 0, 0](1,0)
1/2 , we know from

representation theory that the product QO can contain

[1, 0, 0](1,2)
9/2 ⊕ [1, 0, 0](1,1)

9/2 , (3.3)

but as [1, 0, 0](1,2)
9/2 does not appear in the multiplet, we remove it. The remaining term

[1, 0, 0](1,1)
9/2 can be constructed explicitly and is fixed up to a constant c1

Qαα̌O
IJ = c1(γ̌(IχJ))αα̌ . (3.4)

The transformation of χ is more complicated but the same analysis leads to

Qαα̌χ
I
ββ̌

= c2(γµνρ)αβ
(
γ̌IJ + 4δIJ

)
α̌β̌
HJ
µνρ + c3(γµ)αβ

(
γ̌IJK + 3δIJ γ̌K

)
α̌β̌
jµJK

+ d1(γµ)αβ
(
γ̌J
)
α̌β̌
∂µO

IJ .
(3.5)

It is easy to check that

{
Qαα̌,Qββ̌

}
OIJ = 2c1d1(γµ)αβΩα̌β̌∂µO

IJ , (3.6)

so the algebra closes provided c1d1 = 1 (we identify Pµ = ∂µ, see (C.1)).
We can proceed this way for the full multiplet and build the supersymmetry transfor-

mations. Checking for closure of the algebra becomes a tedious (if straightforward) task
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and is not very illuminating, so we omit the details. The end result is (with δ = εαα̌Qαα̌)

Tµν

Jµαα̌

jµIJHI
µνρ

χIαα̌

OIJ

Q

δTµν = 1
2εγ

ρ(µ∂ρJ
ν) ,

δJµ = 2εγνTµν+ 2c2
5c3

(
6ηρµ

(
γνσλ+3ησνγλ

)
−ηµνγρσλ

)
γ̌I∂νH

I
ρσλ

+ 1
10ε(γµνρ−4ηµργν) γ̌IJ∂νjρIJ ,

δjµIJ = −1
2εγ̌IJJ

µ+ 1
5c3

εγµν∂ν γ̌[IχJ ] ,

δHI
µνρ = c3

8c2
εγ̌Iγ[µνJρ]+

1
120c2

εγσγ̄µνρ∂
σχI ,

δχI = c2εγ
µνρ

(
γ̌IJ+4δIJ

)
HJ
µνρ+c3εγµ

(
γ̌IJK+3δIJ γ̌K

)
jµJK

+ 1
c1
εγµγ̌J∂µO

IJ ,

δOIJ = c1εγ̌
(IχJ) . (3.7)

There are still some arbitrary constants ci that remain unfixed and can be absorbed into
the normalisations of O,χ and H. On the other hand, the normalisation of the conserved
currents must match that of the algebra, so these operators cannot be rescaled. This
can be seen by checking that the variation of the currents reproduces the corresponding
commutator in (D.3). For example, the variation of jµ computed using (3.7) is

∫
Qαα̌j

0
IJd

5x = −1
2

∫ (
γ̌IJJ

0
)
αα̌
d5x = −1

2 (γ̌IJQ)αα̌ , (3.8)

which is indeed the correct normalisation for the commutator [Qαα̌,RIJ ] of (D.3).

3.2 Defect without insertions

Among the operators of the stress tensor multiplet, some can acquire an expectation value
in the presence of V . For the stress tensor, this happens when hT 6= 0 in (1.3), and we can
similarly constrain the 1-point functions of the other operators. This computation is done
explicitly in appendix C and the only nonvanishing correlators are

〈
T abV

〉
= hT η

ab

π3x6 , 〈TmnV 〉 = − hT
π3x6

(
δmn − 2x

mxn

x2

)
,〈

H5
01mV

〉
= hHxm

π3x6 ,
〈
H5
lmnV

〉
= −hHεlmnpx

p

π3x6 ,〈
O55V

〉
= hO
π3x4 ,

〈
OijV

〉
= − hOδ

ij

4π3x4 ,

(3.9)

where hO, hH , and hT are as yet undetermined constants. They are however related by
the supersymmetry transformations (3.7) derived above. Specifically, consider the Ward
identities associated with the preserved supersymmetries Q+ = Π+Q (with the projector
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Π+ defined in (D.12))

0 =
〈
Q+
αα̌(χ5

ββ̌
V )
〉

= −4
(

12c2hH + hO
c1

) [Π+γmx
mγ̌5]

αα̌ββ̌

π3x6 ,

0 =
〈
Q+
αα̌(Ja

ββ̌
V )
〉

= 2
(
hT + 36c2

5c3
hH

) [Π+γ
a]αα̌ββ̌

π3x6 .

(3.10)

These equations fix

hO = −12c1c2hH = 5
3c1c3hT , (3.11)

and the correlators in (3.9) are fixed up to a single constant hT .

3.3 Defect with an insertion

We are now in a position to derive the result (1.4) by relating
〈
Oi5V [Oj ]

〉
to 〈T amV [Dn]〉

using superconformal Ward identities. There are two Ward identities to consider,〈
Q+χV [O]

〉
= 0 and

〈
Q+JV [D]

〉
= 0, but one can check that they yield the same con-

straint, so we present only the first one.
The correlators we need are derived in appendix C by using the constraints of conformal

symmetry. Importantly, the correlators 〈OV [O]〉, 〈χV [Q]〉 and 〈HV [O]〉 are related to hT
by integrated relations like (3.2), while 〈jV [O]〉 is related to CD by (3.1), as we show below.
They are

〈
Oi5V [Oj ]

〉
= COOδ

ij

x2(σ2+x2)2 ,
〈
χ5
αα̌V [Qββ̌ ]

〉
=
CχQ

[
γ̌5 (γaσa+γmxm)Π−cΩ

]
αβα̌β̌

x2 (x2+σ2)3 ,

〈
ji5a V [Oj ]

〉
= CjOδ

ijσa
x2(σ2+x2)3 ,

〈
ji5mV [Oj ]

〉
= CjOδ

ij(x2−σ2)xm
2x4(σ2+x2)3 , (3.12)

〈
H i

01mV [Oj ]
〉

= CHOδ
ijxm

x2(σ2+x2)3 ,
〈
H i
lmnV [Oj ]

〉
= CHOδ

ijεlmnpx
p

x2(σ2+x2)3 .

Explicitly, the Ward identity is

0 =
〈
Q+
αα̌

(
χ5
ββ̌
V [Oi]

)〉
= 6c2

[
Π+γ

01m(γ̌5
J +4δ5

J)
]
αα̌ββ̌

〈
HJ

01mV [Oi]
〉

+6c2
[
Π+γ

lmn(γ̌5
J +4δ5

J)
]
αα̌ββ̌

〈
HJ
lmnV [Oi]

〉
+3c3 [Π+γ

µγ̌j ]αα̌ββ̌
〈
j5j
µ V [Oi]

〉
+ 1
c1

[Π+γ
µγ̌J ]αα̌ββ̌ ∂µ

〈
O5JV [Oi]

〉
+ 1

2(γ̌i5) γ̌
α̌

〈
χ5
ββ̌
V [Qαγ̌ ]

〉
. (3.13)

Plugging in the explicit forms of these correlators (3.12), and demanding that the terms
proportional to γaσa vanish, we obtain a linear relation

0 = 3c3CjO + 4
c1
COO − CχQ . (3.14)

The terms proportional γmxm give the same constraint.

– 10 –



J
H
E
P
0
3
(
2
0
2
1
)
2
6
1

Next, recall that O and Q respectively encode the action of a broken infinitesimal
R-symmetry or supersymmetry variation. Therefore we can relate

0 =
〈
Rj5(Oi5(x)V )

〉
= δij

〈
O55(x)V

〉
−
〈
Oij(x)V

〉
+
∫
d2σ

〈
Oi5(0, x)V [Oj ](σ)

〉
. (3.15)

Using (3.9) and (3.12), we obtain

COO = − 5
4π4hO = −25c1c3

12π4 hT . (3.16)

A slightly more involved but entirely analogous calculation yields

CχQ = −5 · 8
3π4 hT , CHO = 5c3

36c2π4hT . (3.17)

Finally, CjO is related to the normalisation of the displacement operator multiplet by (2.1)

∂µ
〈
jµi5(σ, x)V [Oj(0)]

〉
=
〈
V [Oi(0)Oj(σ)]

〉
δ(4)(x) . (3.18)

Plugging the correlator of jµi5 and Oj into the right hand side and integrating against a
test function allows us to fix

CjO = − 1
π4CO = − 1

16π4CD . (3.19)

Combining the above results into (3.14), we obtain

c3
π4 (3CO − 5hT ) = 0 =⇒ hT = 3CO

5 = 3CD
80 , (3.20)

which proves (1.4).

4 Relation to anomaly coefficients

In this section we explore the consequences of the relation between the coefficients CD and
hT (1.4) for physical observables. These pieces of dCFT data appear in the Weyl anomaly
of surface operators as defined in (1.5), and as we show below the relations (2.6) and (3.20)
relate the anomaly coefficients as (1.6).

The relation between correlators and anomaly coefficients is not specific to 2d defects
in the N = (2, 0) theory, but applies for any surface operator in a CFT. The anomaly
coefficient b1 was first shown to be related to CD in [19], while the relation between b2
and hT was obtained in [18, 19]. Here we review their derivation and apply it to surface
operators in the (2,0) theory to prove c = −b1/2, b1 = −b2.

In a slightly different direction, the anomaly coefficients also feature notably in en-
tanglement entropy in 4d [50] and were discussed in the entanglement entropy literature,
see [19] and references therein.
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4.1 Displacement operator

In order to isolate the contribution of CD to the anomaly coefficients, we separately switch
on each of the terms in (1.5). Since the displacement operator generates geometric de-
formations, one expects that inserting sufficiently many Dm into the planar surface oper-
ator V leads to a logarithmic divergence in the expectation value, signalling a conformal
anomaly associated to the curvature of the surface. Similarly, inserting Oi to sufficient
order will allow us to access the anomaly coefficient c associated with deformations in
R-symmetry space.

To make this relation precise, we formally write deformations of the 1/2 BPS plane in
terms of operator insertions

Vξ,ω = exp
[∫

d2σξm(σ)Pm + ωi(σ)Ri5
]
V. (4.1)

Here Pm =
∫
d4x∂µT

µm generates translations transverse to the defect, while R-symmetry
rotations are generated by Ri5 =

∫
d4x∂µj

µi5. For constant parameters ξ, ω, the currents
can be freely integrated and we recover the standard action of the charges Pm and Ri5.

equation (4.1) is generally a complicated expression involving contact terms like (1.1),
but also contact terms from Pm acting on defect operators and possibly other operators
from the OPE. We can calculate its expectation value to quadratic order by expanding the
exponential and noting that the 1-point functions of defect operators vanish:

log 〈Vξ,ω〉− log 〈V 〉 = 1
2

∫
R2×R2

(
〈V [DmDn]〉ξmξn+〈V [OiOj ]〉ωiωj

)
d2σ d2σ′+cubic. (4.2)

We can discard log 〈V 〉 since for the 1/2-BPS plane in a flat background, all anomaly terms
vanish separately. Since the anomaly is quadratic in ξ and ω, it is related to the two point
functions written here and we can safely ignore the higher order terms in the expansion.

To extract the anomaly coefficients, we study the UV divergence of the integrals
in (4.2). The relevant correlators are found in (1.2) and (2.3). Fixing σ, the σ′ inte-
gral can be evaluated explicitly by Taylor expanding ξm(σ′) and ωi(σ′) around σ. Starting
with the second integrand and using τ = σ′ − σ,

1
2

∫
R2

〈
V [Oi(σ)Oj(σ′)]

〉
ωi(σ)ωj(σ′) d2σ′

= CO
2π2

∫
R2

δij

|τ |4
ωi(σ)

[
ωj(σ) + τa∂aω

j(σ) + 1
2τ

aτ b∂a∂bω
j(σ) +O(τ3)

]
d2τ. (4.3)

While this integral leads to power law singularities as well, a logarithmic divergence arises
only from the term quadratic in τ . We adopt polar coordinates τa = τea where ea are
orthonormal vectors parametrised by an angle ϕ. Using the identities∫

dϕ eaeb = πηab,

∫
dϕ eaebeced = π

4 (ηabηcd + ηacηbd + ηadηbc) , (4.4)

and dropping all but the logarithmic divergence, we obtain

CO
4π2πη

ab
∫
ε

τ3dτ

τ4 ωi(σ)∂a∂bωi(σ) = CO
4π (∂ω)2 log ε. (4.5)
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To leading order, the R-symmetry transformation in (4.1) takes the 1/2-BPS plane to a
surface operator with ∂ani(σ) = ∂aω

i, so we can read the anomaly coefficient as

c = CO. (4.6)

The logarithmic divergence of the first integrand in (4.2) can be evaluated in a similar
way, and arises only from the fourth order in the Taylor expansion of ξn

1
2

∫
R2
〈V [DmDn]〉ξmξnd2σ′

= CD
2π2

∫
R2

δmn

|τ |6
ξm(σ)

[
· · ·+ 1

24τ
aτ bτ cτd∂a∂b∂c∂dξ

n(σ) +O(τ5)
]
d2τ . (4.7)

Performing the angular integral with (4.4) leads to

CD
48π2

3π2

4

∫
ε

τ5dτ

τ6 ξm(σ)(∂2)2ξm(σ) = − CD
64π∂

a∂bξm(σ)∂a∂bξm(σ) log ε . (4.8)

This is the trace of the second fundamental form squared of the deformed surface (see (B.3)),
which can be rewritten using the Gauss-Codazzi equation (B.4) as

∂a∂bξm∂a∂bξ
m = II2 = 2 tr ĨI2 +RΣ − trW . (4.9)

Since we are on flat space, the Weyl tensor vanishes. The volume form for the deformed
surface gets corrected, but to leading order in ξ does not affect the calculation. Therefore
the contribution of this term to the anomaly density is

− CD
64π

∫
Σ

(
2 tr ĨI2 +RΣ

)
volΣ log ε . (4.10)

Note that the integral of RΣ vanishes for small deformations of the plane. It therefore does
not contribute to the anomaly, and we find

b1 = −CD/8 . (4.11)

Using (2.6) along with (4.6) and (4.11) we find a relation for the anomaly coefficients

c = −b1/2 . (4.12)

4.2 Stress tensor

The relation between b2 and hT is derived in a similar fashion, but instead of deforming the
surface itself, we can relate the insertion of a stress tensor to a change in the background
geometry.5 The expectation value of the planar surface operator now receives a contribution
from the metric variation:

〈V 〉η+δg = 〈V 〉η −
1
2

∫
R2×R4

δgµν(σ, x)〈TµνV 〉ηd2σd4x+O(δg2) . (4.13)

5In the same way one can show that the bulk anomaly coefficients are related to the 2- and 3-point
functions of the stress tensor [51].
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In this equation, the subscript 〈•〉g means the expectation value is calculated on a curved
background metric g.

Since the insertion of a stress tensor sources a metric perturbation of linear order δg,
we can only reproduce the anomaly to that order, which, expanding (1.5), is

A|δg = 1
4π

[
− b210

(
∂2
pδ
mn − ∂m∂n

)
δgmn + 3b2

20 η
ab∂2

pδgab + ∂a(. . . )
]
. (4.14)

These two terms are respectively associated to 〈TmnV 〉 and
〈
T abV

〉
in (4.13), and the

total derivative drops out of the integral over the plane.
Using (3.9), we can evaluate the first term of (4.13). The logarithmic divergence

arises as∫
R4
δgmn〈TmnV 〉d4x = −hT

π3

∫
R4
d4xδgmn(σ, x)δ

mn − 2xmxn/x2

x6 (4.15)

= −hT
π3

∫
R4

d4x

x6

(
· · ·+ 1

2 ∂pqδgmn|x=0 x
pxq + . . .

)(
δmn − 2x

mxn

x2

)
.

In the second step we expanded δg(x) in a Taylor series and dropped powers of x not
contributing to the anomaly. We again switch to spherical coordinates xm = rem and take
note of the 4d analogue of (4.4)

∫
volS3 emen = π2

2 δ
mn ,

∫
volS3 emenepeq = π2

12 (δmnδpq + δmpδnq + δmqδnp) . (4.16)

The integral then becomes

− 2π2hT
2π3

2
3

∫
ε

dr

r
∂pqδgmn|x=0 (δmnδpq−δmpδnq) = 1

4π log ε
[2hT

3
(
∂2
pδ
mn−∂m∂n

)
δgmn

]
x=0

.

(4.17)
Comparing against (4.14), we identify

hT = 3b2
10 . (4.18)

The calculation for
〈
T abV

〉
is similar and gives the same result.

With expressions for b1, b2, c in terms of CD and hT in hand, we can finally translate the
result of the previous section (3.20) into a constraint on the anomaly coefficients, and find

b2 = −b1 , (4.19)

as claimed.
A direct consequence of this relation (together with (4.12)) is that one only needs

to calculate two nontrivial surface operators to calculate all the independent anomaly
coefficients, for instance the sphere and cylinder.
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5 Defect operator expansion

A useful tool in dCFT is the defect operator expansion (dOE), also known as the bulk-
defect operator product expansion [37, 38] (see [13] for a recent review of some dCFT
techniques, including the dOE, in the context of the CFT bootstrap program). This is a
convergent expansion representing bulk operators in terms of insertions of defect operators

Oi(σ, x)V =
∑
k

CVik(x, ∂σ)
x∆i−∆̂k

V [Ôk(σ)] , (5.1)

where the sum is over defect primaries. The differential operators CVik(x, ∂σ) are fixed by
conformal symmetry. Their exact form can be obtained from the corresponding bulk-defect
2-point function of Oi and Ôk by equating

〈
Oi(σ, x)V [Ôk(0)]

〉
=
∑
j

CVij (x, ∂σ)
x∆i−∆̂j

〈
V [Ôj(σ)Ôk(0)]

〉
= 1
x∆i−∆̂k

CVik(x, ∂σ)
CÔk

σ2∆̂k

, (5.2)

where we denote by CÔk the numerator of the 2-point function of Ôk. Explicit expressions
for CVik can be found in [22, 52], but are not needed in this paper.

The list of defect primaries appearing on the right-hand side of (5.1) can include the
defect operators of section 3 (namely the defect identity and the displacement operator
multiplet), but it certainly includes more defect operators. This can be viewed as a conse-
quence of the associativity of the OPE: since (5.1) maps bulk operators to defect operators
and is valid in any correlator, all the CFT data of the bulk operators must be encoded, in
some way, in the OPE of defect operators. Hence there must be at least as many defect
degrees of freedom as bulk degrees of freedom.

Here we initiate the study of these other defect operators. We first classify the unitary
multiplets of defect operators in sections 5.1 and 5.2. This allows us to find the decomposi-
tion of the stress tensor multiplet in multiplets of the preserved algebra, see figures 1 and 2.

After this detour into representation theory, we write the leading terms in the dOE
for some operators and discuss the appearance of a new marginal operator. We finally
comment on constraints imposed by supersymmetry and show how the dOE sheds light on
the derivation of section 3.

5.1 Representations of osp(4∗|2)⊕ osp(4∗|2)

Defect operators sit in multiplets of the algebra preserved by the defect. For the 1/2-BPS
plane V , the preserved algebra consists of 2 copies of osp(4∗|2), so we are interested in
constructing representations of osp(4∗|2) ⊕ osp(4∗|2). The formulation of the algebra as
a 2d superconformal algebra is reviewed in the appendix D.2, along with its embedding
inside the bulk algebra osp(8∗|4).

As usual, we can label primaries by their representation under the bosonic subalgebra,
which here is

[sl(2)⊕ su(2)⊥ ⊕ su(2)R]⊕ [sl(2)⊕ su(2)⊥ ⊕ su(2)R] . (5.3)
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The corresponding labels are [r1, r2]h[r̄1, r̄2]h̄, with r1 and r2 the Dynkin labels for su(2)⊥
and su(2)R, and h the conformal twist and labels representations of sl(2). The labels r̄1,
r̄2 and h̄ are similar, but for the second subalgebra. We note that while (5.3) is equivalent
to so(2, 2)‖⊕ so(4)⊥⊕ so(4)R, the factorisation above in terms of 2 algebras is dictated by
supersymmetry, see D.2 for more details. The joint representation has conformal dimension
∆̂ = h+ h̄ and spin s = h− h̄.

The simplest nontrivial example of a multiplet of osp(4∗|2)⊕ osp(4∗|2) is the familiar
displacement multiplet of section 2. Unlike our previous treatment however, here we label
operators according to (5.3). In order to match that decomposition, we can express the
superprimary Oi ∼ (γ̌i)α2α̇2Oα2α̇2 in spinor indices. In this notation, the indices α = 1, 2
are all su(2) indices. We use α1, β1, . . . for su(2)⊥ and α2, β2, . . . for su(2)R; similarly for
the second set of su(2)’s, but with dotted indices.

The values of h and h̄ can also be read from (2.1), they are h = h̄ = 1 (O is a scalar
of dimension 2). The representation of O is therefore [0, 1]1[0, 1]1. Acting with Q and
Q̄ (which transform respectively as [1, 1]1/2[0, 0]0 and [0, 0]0[1, 1]1/2), one can build the
full multiplet:

Dα1α̇1

Qα1α̇2 Qα2α̇1

Oα2α̇2

Q Q̄

• Dα1α̇1 , which transforms in the representation [1, 0]3/2[1, 0]3/2.

• Qα1α̇2 and Qα2α̇1 are respectively in [1, 0]3/2[0, 1]1 and
[0, 1]1[1, 0]3/2. Together they form Qαα̌ in (2.1).

• Oα2α̇2 is in the representation [0, 1]1[0, 1]1.

The structure of the multiplet as a product of two representations of osp(4∗|2) is
apparent in the diagram above. Under the action of Q, the operators transform as two
multiplets of osp(4∗|2), for instance the lower diagonal is

Qα1α2Oβ2β̇2
= cεα2β2Qα1β̇2

, Qα1α2Qβ1β̇2
= ic−1εα1β1∂Oα2β̇2

, (5.4)

which is easily obtained from an ansatz as in section 3.1 (the constant c is arbitrary). This
is the simplest representation of osp(4∗|2) and it contains the weights [0, 1]1 and [1, 0]3/2.
Because it is ubiquitous, it is convenient to introduce some notation here and denote it
B[0, 1], in anticipation of the results of section 5.2.

5.2 Unitary multiplets of osp(4∗|2)

Since the algebra preserved by the defect factorises, we now turn our focus to general
multiplets of a single copy of osp(4∗|2). Importantly, we can classify allowed multiplets
by working out the constraints imposed by unitarity.6 This follows the method described
in [53] used to classifiy multiplets in superconformal theories for d ≥ 3.

The idea is the following. In radial quantisation, any operator O defines a correspond-
ing state |O〉. While |O〉 has positive norm (by assumption), there is no guarantee that
the norm of all the other states of the multiplet is also positive, as required by unitarity.

6These results appeared previously in [42]. We thank Pedro Liendo for pointing this out.
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Demanding that negative norm states are absent from the multiplet leads to a lower bound
on the conformal dimension of the superprimary h ≥ hA. In particular, as we show below,
at h = hA (5.7) some states become null, and the corresponding multiplets are the short
multiplets A. In addition, we find yet shorter multiplets B with superprimary of conformal
dimension hB (5.8).

Consider the state |O〉 of a superprimary operator in the representation [r1, r2]h. Uni-
tarity constrains the states Q|O〉 to satisfy

‖Q|O〉‖2 = 〈O|{S,Q}|O〉 = 〈O|D+ + σiTi(1) − 2σjTj(2)|O〉 ≥ 0 , (5.5)

where we use Q†α1α2 = Sα1α2 and the anticommutator (D.11), written in terms of su(2)⊥
and su(2)R generators Ti(1,2). We suppress the indices of Q and |O〉, but the constraint
should hold for any choice of Q, |O〉, and linear combinations thereof.

The matrix elements
〈
s|σiTi|s

〉
are bounded by the eigenvalues of σiTi. Since σi is the

fundamental representation, the product σiTi can be decomposed as [1]⊗[r] = [r−1]⊕[r+1],
for both r1 and r2. The eigenvalues are expressed in terms of the quadratic Casimirs
C2(j) = j(j + 2)/4 (using e.g. equation (2.38) of [53]), so that (5.5) takes the form

h ≥ − (C2(j1)− C2(1)− C2(r1)) + 2 (C2(j2)− C2(1)− C2(r2)) , (5.6)

with j1 and j2 taking any values in r1 ± 1 and r2 ± 1. This assumes that both r1 > 0 and
r2 > 0, otherwise the tensor product decomposition is simply [1]⊗ [0] = [1] and j = 1.

For r1 > 0, we then find that the strongest bound on the scaling dimension implied
by (5.6) is

h ≥ hA = 1 + r1
2 + r2 . (5.7)

For r1 = 0, we should instead take j1 = 1 and we obtain

h ≥ hB = r2, if r1 = 0 . (5.8)

If these bounds are saturated, a subset of states become null and may be consistently
removed from the multiplet.

While (5.7) and (5.8) are necessary conditions for unitarity, there could be, in principle,
additional states whose norm becomes null (or negative), imposing further restrictions on
h. It would be tedious to perform the above calculation for all states, but fortunately the
conditions under which a representation is reducible (but not necessarily unitary) are listed
by Kac in [54] (see also [55]). These match precisely the values obtained for the 4 choices
of j1 and j2 in (5.6), which indicates that there are no further constraints.

We therefore conclude that for multiplets satisfying h ≥ hA, with hA given in (5.7),
there are no stronger constraints from requiring unitarity at higher levels. Generically,
these are long multiplets, and they thus contain 24(r1 + 1)(r2 + 1) operators. Multiplets
saturating the bound h = hA have a null state at level one,

∣∣∣[r1 − 1, r2 + 1]h+1/2
〉
, and

their dimension is reduced. The special case r1 = 0 still leads to a unitary multiplet, but
in this case the first null state is at level 2.
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In the case hA > h ≥ hB (5.8) however, since h is below the unitarity bound hA,
some states in the multiplet would have a negative norm unless h = hB exactly: this is an
isolated multiplet. It has a null state at level one,

∣∣∣[1, r2 + 1]h+1/2
〉
.

These short multiplets A and B are important to our discussion. For example, the
B[0, 1] multiplet of section 5.1 contains only 2+2 operators, so it is indeed a short multiplet.
From the argumentation above, the conformal dimension of its superprimary is thus fixed
by unitarity to h = hB = 1, in accordance with (2.1).

The broader question of determining the content of all short multiplets is interesting
but lies beyond the scope of this work. However, specific short multiplets play a role in
section 5.3, and it is useful to know their content explicitly. It is sufficient for our present
purposes to construct some representations heuristically by taking the tensor product de-
composition of known multiplets. For instance, taking the product of two B[0, 1] multiplets,
the superprimary decomposes into 2 representations [0, 1] ⊗ [0, 1] = [0, 0] ⊕ [0, 2], so the
tensor product gives 2 multiplets, which we identify as

B[0, 1]⊗B[0, 1] = A[0, 0]⊕B[0, 2] . (5.9)

The multiplet A[0, 0] contains the weights [0, 0]1, [1, 1]3/2 and [2, 0]2, while the multiplet
B[0, 2] contains [0, 2]2, [1, 1]5/2 and [0, 0]3. Both of these representations appear as defect
operators, see figures 1 and 2 below.

5.3 The stress tensor dOE

Having gained some understanding of representations of the preserved algebra, we turn
now to the main goal of this section: constructing the dOE (5.1) for the bulk operators of
our theory. We focus on operators of the stress tensor multiplet (which should exist in any
local quantum field theory), but the same analysis could be applied to other multiplets.

A naive way of thinking about (5.1) is as branching rules for the breaking of symmetry
due to the presence of the defect. Indeed, it is natural to decompose, for example, the
bulk superprimary OIJ into representations of the preserved R-symmetry O55, Oi5 and
Oij , respectively the representations

[0, 0][0, 0] , [0, 1][0, 1] , [0, 2][0, 2] . (5.10)

The dOE (5.1) is particularly simple for a trivial surface defect, where it is just the Taylor
expansion of the bulk insertion:

O55(x)I = I[O55(0) + xm∂mO
55(0) + . . . ] , (5.11)

While this expression merely amounts to a rewriting of the bulk degrees of freedom, the
dOE becomes much more interesting if we consider a defect V which interacts with the
bulk nontrivially.

A first sign that the dOE for general V contains additional terms is that the bulk oper-
ators couple to the defect identity 1V and the displacement multiplet (cf. for instance (3.9)
and (3.12)). It is clear that these operators do not appear in the branching rules and
encode additional interactions between bulk and defect degrees of freedom.
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[2, 0]2[2, 0]2

[2, 0]2[1, 1]3
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[1, 1]3
2
[2, 0]2

[2, 0]2[0, 0]1 [0, 0]1[2, 0]2[1, 1]3
2
[1, 1]3

2

[1, 1]3
2
[0, 0]1 [0, 0]1[1, 1]3

2

[0, 0]1[0, 0]1
Q Q̄

[0, 0]3[0, 0]3

[0, 0]3[1, 1]5
2

[1, 1]5
2
[0, 0]3

[0, 0]3[0, 2]2 [0, 2]2[0, 0]3[1, 1]5
2
[1, 1]5

2

[1, 1]5
2
[0, 2]2 [0, 2]2[1, 1]5

2

[0, 2]2[0, 2]2
Q Q̄

Figure 1. On the left, the A[0, 0]A[0, 0] multiplet containing 32 + 32 degrees of freedom. Its
superprimary is Ô55. On the right, the B[0, 2]B[0, 2] multiplet also containing 32+32 degrees of
freedom. Its superprimary is Ôij .

[1, 0]3
2
[2, 1]3

[0, 1]1[2, 1]3[1, 0]3
2
[1, 2]5

2[1, 0]3
2
[1, 0]5

2

[1, 0]3
2
[0, 1]2 [0, 1]1[1, 0]5

2

[0, 1]1[1, 2]5
2

[0, 1]1[0, 1]2

Q̄Q

[2, 1]3[1, 0]3
2

[2, 1]3[0, 1]1 [1, 2]5
2
[1, 0]3

2[1, 0]5
2
[1, 0]3

2

[0, 1]2[1, 0]3
2

[1, 0]5
2
[0, 1]1

[1, 2]5
2
[0, 1]1

[0, 1]2[0, 1]1

Q Q̄

Figure 2. Multiplets B[0, 1]A[0, 1] and A[0, 1]B[0, 1]. They both contain 32+32 degrees of freedom.

The second way in which the dOE is interesting is more subtle. The decomposition of
operators in terms of the preserved algebra can be performed, as above, for all the oper-
ators in the stress tensor multiplet. The resulting representations can be organised in the
multiplets of figures 1 and 2 and the displacement multiplet, leading to the branching rules
under the breaking of symmetry osp(8∗|4)→ osp(4∗|2)⊕ osp(4∗|2). The superprimaries of
the multiplets in figure 1 are easily identified as the defect counterparts of the operators
O55 and Oij by their representation, and with a bit of work this correspondence between
bulk and defect operators can be also established for all the other operators.

Observe that the conformal dimension of these defect operators is, in some cases, lower
than that of the corresponding bulk operators, leading to singular terms in the dOE. For
instance, the dimension of Ô55 is 2, whereas the dimension of O55 is 4. A similar behavior
occurs in the context of Wilson loops in 4d N = 4 SYM, where the 1/2-BPS line operator
takes the form

W ∼ trP exp i
∫ (

Aτ + Φ6
)
dτ. (5.12)
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In that case, the dOE of the stress tensor superprimary includes a defect operator of
dimension 1, which can be understood as the insertion of Φ6 in the line. Here, we do not
have a field realisation of the N = (2, 0) theory but Ô55 plays an analogous role.

Consider then the dOE for O55. From figures 1 and 2 we know some of the defect
operators that can appear on the right-hand side of (5.1). This leads to

O55(x)V = 1
x4C

V
O1V [1V ] + 1

x2C
V
OÔ

(x, ∂σ)V [Ô55] + xm
x2 C

V
OD(x, ∂σ)V [Dm] + . . . (5.13)

The list of defect operators that may appear in this expansion is constrained by supersym-
metry and can be treated systematically, but we do not pursue this direction further.

equation (5.13) can be made more precise. The coefficients of the defect primaries en-
code the normalisation of bulk-defect correlators as in (5.2): 1-point functions such as (3.9)
compute the coefficient of 1V , 2-point functions such as (3.12) capture the coefficients of
other defect primaries. Explicitly,

〈
O55(x)V

〉
calculates the defect identity component of

the dOE, such that

CVO1 = hO
π3 . (5.14)

The coefficient of the displacement operator can be found without computing
〈
O55V [Dm]

〉
explicitly, using the fact that the displacement operator is related to the broken translation
symmetry. Integrating over the position of Dm, we can replace it by a derivative:∫

d2σ
〈
O55(x)V [Dm(σ)]

〉
= −∂m

〈
O55(x)V

〉
. (5.15)

The left hand side is easily computed from (5.13) and related to CD and CVOD, while the
right hand side is given in terms of hO. Matching coefficients, we find

CVOD(x, ∂σ) = 8hO
π4CD

(1 + . . .) . (5.16)

By contrast, the coefficient CV
OÔ

is not obviously related to the remaining coefficients, and
thus an independent piece of dCFT data.

5.4 Constraints from supersymmetry

We conclude this section by sketching an alternative derivation of the results of section 3.
It turns out that the dOE provides a simple and elegant way to understand the origin
of the linear relations (3.10) and (3.14) without doing explicit calculations, by reframing
them in terms of coefficients of displacement primaries in the stress tensor dOE. Indeed,
the method we use can in principle be applied far more generally to obtain analogous
constraints for the remaining dOE coefficients.

To reproduce these results, consider the dOE of χ5. Following the analysis of sec-
tion 5.3, we decompose χ5 into representations of the preserved algebra

[1, 1][0, 0]⊕ [1, 0][0, 1]⊕ [0, 1][1, 0]⊕ [0, 0][1, 1] , (5.17)
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which we label χ5
α1α2 , χ

5
α1α̇2 , χ

5
α̇1α2 , χ

5
α̇1α̇2 . We only need the dOE of χ5

α1α̇2 , which takes
the form

χ5
α1α̇2V = 1

x2C
V
χQ(x, ∂σ)V [Qα1α̇2 ] + . . . (5.18)

Again, there are other terms that could be included in this expansion, but they don’t play
a role in what follows so we ignore them. We also emphasise that (5.18) is related to the
dOE of the stress tensor superprimary by supersymmetry.

We can now proceed as in section 3 and find the constraints imposed by the preserved
supersymmetries. Consider first acting with Q on the bulk operator χ5

α1α̇2 to find

Qχ = H + j + ∂O , (5.19)

with some coefficients. (The exact expression can be obtained by restricting (3.7) to the
relevant representations of the preserved algebra.) Using the dOE on the right-hand side
and focusing on the defect identity component gives

(
Qχ(x)

)
V ∼

(
H(x) + j(x) + ∂O(x)

)
V ∼ 1

x5 (CH1 + Cj1 + C∂O1)V [1V ] + . . . (5.20)

Note that Cj1 = 0 and C∂O1 can be obtained from (5.15). We call this the “bulk” channel,
since we calculate the action of Q on χ before taking the dOE.

The expression (5.20) is to be contrasted with the “defect” channel, where we first
use (5.18) and then apply Q. Clearly, since 1V is not the variation of anything 1V 6= Q(. . . ),
the result does not have an identity component. Consequently, the identity component
of (5.20) must vanish as well, giving a linear constraint equivalent to (3.10) relating the
normalisations of the stress tensor 1-point functions.

Similarly, (3.14) can be reproduced by focusing on the scalar displacement component
of the same equation. The bulk channel gives schematically

QχV ∼ 1
x3

(
CVHO + CVjO + CV∂OO

)
V [O] + . . . (5.21)

For the defect channel, we act on (5.18) with Q. From (5.4), we see that the variation
only leads to descendants like ∂O, and no primary. Since equality between defect and bulk
channel must hold at the level of each defect operator, we conclude that the contribution of
the displacement superprimary O to the bulk channel must vanish, and we obtain a linear
constraint on the dOE coefficients CVjO, CVHO, C

V
∂OO, which is equivalent to (3.14). These two

relations are only the simplest examples of a much larger set of constraints obeyed by the
dOE coefficients. Indeed, equating the bulk and defect channel of any supercharge acting
on any primary dOE at the level of each defect operator, it is straightforward to derive
further such linear relations. These conditions greatly reduce the number of independent
coefficients of stress tensor dOE coefficients, until we are left with what we could call a
super-dOE, i.e. a set of dOEs which is fully consistent under the preserved supersymmetry.
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6 Conclusion

In this paper, we initiate the application of defect CFT techniques to describe surface
operators of the 6d N = (2, 0) theory, that is, we apply the ideas and tools of CFT
to study local operator insertions into the 1/2-BPS plane. An important insertion is the
displacement operator (1.1) which literally deforms the plane, but there are also other defect
operators corresponding to inserting bulk operators near the defect—they are captured by
the dOE (5.1).

One of our results is the construction of unitary multiplets of osp(4∗|2)⊕osp(4∗|2), the
algebra preserved by a 1/2-BPS defect, in section 5.2. These multiplets are the building
blocks for discussing other aspects of the dCFT, like its spectrum, the OPE of defect
operators and the dOE. In this work we focus on the dOE, but it would also be interesting
to pursue these other directions, for instance using the tools of conformal bootstrap [13].

There are two important applications of the dOE (5.1) in our analysis: in section 5.3 we
use it to find new defect operators and in section 5.4 we sketch how it makes the preserved
symmetries manifest.

First, we use it to give the example of how the bulk stress tensor multiplet decomposes
into defect multiplets. There are of course the operators D, Q and O of the displacement
multiplet, but also other defect multiplets whose operator content is shown in figure 1
and 2. Although we focus on the stress tensor multiplet, this analysis could also be applied
to any other multiplet of the N = (2, 0) theory. In addition to the multiplets presented
above, the dOE can include additional terms, and it would be interesting to obtain the
selection rules as was done for 4d N = 4 SYM [56], by treating systematically all the
superconformal Ward identities.

The important aspect of this decomposition of bulk operators is that it is convergent.
In particular, it encodes all the information of the bulk OPE, which opens the possiblity of
studying the N = (2, 0) theory from the point of view of a 2d defect CFT. This direction
could lead to additional constraints on the bulk theory, since the defect operators are not
a trivial rewriting of those in the bulk. This is manifested for instance by the appearance
of divergences in the dOE of O55 (5.13).

Instead, the dOE captures some important reorganisation of degrees of freedom in the
dCFT. For instance, in the expansion of the bulk operator O55 (5.13) we find a defect
operator which is of dimension 2 and therefore marginal (we expect it to be marginally
irrelevant). The analogous expansion of the superprimary of the stress tensor multiplet is
well understood in the context of Wilson loops in 4d N = 4 SYM: using the definition of
the 1/2-BPS Wilson loop (5.12) the marginal operator there corresponds to inserting Φ6

into the line defect [39]. Here the interpretation is similar: inserting the analog of Ô55

in the non-supersymmetric surface operator triggers an RG flow which comes to a stop
when Ô55 becomes marginal at the conformal fixed point, which is the 1/2-BPS surface
operator. This flow is verified in holography [31] and should hold more generally for all
N = (2, 0) theories.

A second use of the dOE is to make the preserved symmetries manifest. As we sketch
in section 5.4, we can explain the origin of the relation between hT and CD (1.4) simply
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by looking at the structure of multiplets of defect operators. This is to be contrasted with
the derivation of section 3, where the relation is the result of a calculation and not obvious
from the outset. We believe this approach could shed light on determining the minimal
amount of supersymmetry required to prove (1.4), that is whether it also holds for defects
of the N = (1, 0) theory, and more generally what are the necessary conditions to prove
the conjecture of [25].

In addition to the methods, the result (1.4) and the corresponding relation between the
anomaly coefficients (1.6) are themselves interesting. In the context of Wilson loops, CD was
shown to appear in the Bremsstrahlung function [21] and hT both in the radiation emitted
by a quark undergoing constant acceleration and the entanglement entropy associated
with Wilson lines [25]. While these calculations can be generalised to the case of surface
operators, they do not give a finite answer: as shown in section 4 respectively inserting
displacement operators in the defect or introducing a stress tensor in its vicinity leads to
a logarithmic divergence caused by an anomaly. To obtain a finite result, one can define a
renormalised surface operator

Vε = ε−
∫
AΣd

2σV , (6.1)

so that Vε effectively acquires a dimension (AΣ is defined in (1.5)). The interpretation of CD
and hT are then as the anomaly coefficients b1 and b2, which are the relations (4.11), (4.18)
(also (4.6) between c and CO). The net result of the relations between the anomaly coef-
ficients (1.6) is that the anomaly depends on the geometry only through the combination
(H2 + 4 trP )− (∂n)2 (defined in (B.4)), while the anomaly term RΣ integrates to a topo-
logical invariant, the Euler characteristic of the surface Σ. We note that for some classes of
BPS operators, H2 and (∂n)2 are related and either cancel out or give interesting quanti-
ties. A simple example is the uplift of the BPS Wilson loops of [57] for which the anomaly
vanishes, but more examples will be presented elsewhere [? ].

Finally, there are other interesting directions which we haven’t explored in this paper.
For the Wilson line, a point of confluence between different techniques is the cusp, whose
anomalous dimension at small angles is related to the Bremsstrahlung function [21] and can
be calculated using integrability [59–61] and supersymmetric localization [62]. Its analog
here are conical singularities which exhibit a peculiar log2 ε divergence, see [8, 63–66].
The coefficient of the divergence is entirely fixed by the behavior of the surface near the
singularity, so it is natural to consider an operator inserting a conical singularity and to
try and find its interpretation in the dCFT.

Another possibility is to study further the OPE for BPS operators. The N = (2, 0)
theory contains a sector isomorphic to a chiral algebra [67] which can be used to calculate
for instance the 3-point functions of 1/4-BPS local operators. For 4d N = 2 SCFTs,
it was shown in [68] that the supercharges defining the cohomology are compatible with
N = (2, 2) surface defects, and it would be interesting to extend their construction to the
N = (2, 0) theory with 1/2-BPS surface defects. This could lead to exact results for a
sector of the dOE and defect OPE.

It would also be interesting to study BPS operators in the context of the AGT corre-
spondence. At large N one can use holography to calculate the expectation values, in the
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presence of the defect, of operators in the traceless symmetric representation of so(5)R [69],
which contains in particular OIJ in the stress tensor multiplet. Since the AGT correpon-
dence can be used to calculate the expectation value of the stress tensor [36], it might also
calculate expectation values for this larger class of operators at finite N .
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A Conventions

We make use of the following indices:

Index Usage
µ = 1, . . . , 6 6d spacetime coordinates
m = 1, . . . , 4 coordinates transverse to the surface xm
a = 1, 2 worldsheet coordinates σa
α (α̇) = 1, . . . , 4 6d chiral (antichiral) spinors
I = 1, . . . , 5 R-symmetry vectors
i = 1, . . . , 4 preserved R-symmetry
α̌ = 1, . . . , 4 R-symmetry spinors

We work in Minkowski space with mostly positive signature. Below we detail the properties
of gamma matrices arising in the osp(8∗|4) algebra. More details can be found in [70] and
references therein.

A.1 Spinors and γ-matrices

We suppress contracted spinor indices in the main text. We use the NW-SE spinor index
convention, so that

εψ ≡ εαα̌ψαα̌, (A.1)

where α is the index of a chiral 6d spinor (α̇ for antichiral) and α̌ that of an R-symmetry
spinor. These indices are raised and lowered by the charge conjugation matrices c,Ω,
which obey

c†c = cαα̇cα̇β = δβα , c∗cT = cα̇αcαβ̇ = δβ̇α̇ , Ω†Ω = Ωα̌β̌Ωβ̌γ̌ = δα̌γ̌ . (A.2)

We also make use of two types of γ-matrices: 6d chiral (γµ) β̇
α (antichiral (γ̄µ) β

α̇ ) and 5d
(γ̌I) β̌

α̌ associated to R-symmetry. Their algebra is

γ̄µγν + γ̄νγµ = 2ηµν , γµγ̄ν + γν γ̄µ = 2ηµν , {γ̌I , γ̌J} = 2δIJ . (A.3)
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The chiral and antichiral representations are related through

γ̄†µ = γ0γ̄µγ0 = γµ , (A.4)

and the matrices are antisymmetric

(γµc) = − (γµc)T ,
(
γ̄µc

T
)

= −
(
γ̄µc

T
)T

, (γ̌IΩ) = − (γ̌IΩ)T . (A.5)

Because the matrices are chiral, they also satisfy

γ012345 = I , γ̄012345 = −I , γ̌12345 = I , (A.6)

with γµν...ρ ≡ γ[µγ̄ν . . . γρ] the antisymmetrised product of γ-matrices.
A representation of this algebra is given by

γ0 = γ̄0 = iI2 ⊗ I2 , γ1 = −γ̄1 = −iσ1 ⊗ I2 , γ2 = −γ̄2 = −iσ2 ⊗ I2 ,

γ3 = −γ̄3 = iσ3 ⊗ σ1 , γ4 = −γ̄4 = iσ3 ⊗ σ2 , γ5 = −γ̄5 = −iσ3 ⊗ σ3 ,

γ̌1 = σ1 ⊗ σ2 , γ̌2 = σ2 ⊗ σ2 , γ̌3 = σ3 ⊗ σ2 , γ̌4 = I2 ⊗ σ1 , γ̌5 = I2 ⊗ σ3 ,

c = −cT = σ1 ⊗ iσ2 , Ω = iσ2 ⊗ I2 . (A.7)

B Weyl anomaly for surface operators

Surface operators in CFT typically suffer from UV divergences which make their expecta-
tion value ill-defined. Up to power-law divergences (which can be removed by appropriate
counterterms) their expectation value takes the form

log 〈VΣ〉 ∼ log ε
∫

Σ
volΣAΣ + finite, (B.1)

where ε is a regulator, Σ is the surface (in this paper we take the plane) and AΣ is known
as the anomaly density.

This conformal anomaly is constrained by the Wess-Zumino condition to take the form

AΣ = 1
4π
[
aRΣ + b1 tr ĨI2 + b2 trW + c(∂n)2

]
. (B.2)

The conformal invariants of this expression are
RΣ: the Ricci scalar on Σ.

tr ĨI2: the square of the traceless part of the second fundamental form.

trW : W is the pullback of the Weyl tensor.

(∂n)2: the norm of the variation of the coupling to R-symmetry.
The exact definition of these invariants in our conventions can be found in appendix B
of [8]. Here we use the definition of the second fundamental form in (4.9)

IIµab =
(
∂a∂bx

λ + ∂ax
ρ∂bx

σΓλρσ
) (
δµλ − gκλ∂

cxκ∂cx
µ) , (B.3)

which for Γλρσ = 0 and xm = ξm reduces to (4.9). It can be decomposed into its trace,
Hµ, and its traceless part, ĨIµab, which are related by the Gauss-Codazzi equation to
other invariants (

H2 + 4 trP
)

= 2RΣ + 2 tr ĨI2 − 2 trW . (B.4)
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C Conformal Ward identities for defect correlators

In this appendix, we derive explicit expressions for the structure of the expectation values
of stress tensor primaries in the presence of a flat conformal surface defect. Up to overall
normalisation constants, which we further constrain in section 3 using supersymmetry, these
correlators are completely fixed by the bosonic symmetries (conformal and R-symmetry)
preserved by the defect. We consider both defects with an insertion of a single primary of
the displacement operator multiplet, and defects without such insertions. For brevity, we
do not give an exhaustive list of such correlators and instead focus on those we require in
the main text. More specifically, we compute only the expectation values of the primaries
in the stress tensor multiplet, and some 2-point functions involving low-level primaries,
namely OIJ , χIαα̌, H

I
λµν in the stress tensor, and Oi,Qαα̌ in the displacement multiplet.

The remaining correlators can of course be calculated using the same method.
We proceed in two steps. First, we fix the dependence on σ and x by implementing the

Ward identities associated with the conformal symmetry preserved by the defect as well as
transverse rotational symmetry. For clarity, in this calculation we suppress the R-symmetry
indices of the operators and leave the scaling dimensions general. Indeed, as much of the
kinematics is easily generalised to defects of dimension p in arbitrary spacetime dimension
d = p + q, we state the more general result wherever we can do so without obscuring
the results we presently need. Secondly, we fix the R-symmetry tensor structure of these
correlators by demanding invariance under the residual so(4)R symmetry. Throughout, we
denote generic operators in the bulk O and on the defect Ô.

Many of the kinematical results have been obtained by different methods in the past.
In particular, the embedding space formalism allows for the efficient computation of bosonic
correlators [22]. However, it is not straightforwardly applicable to correlators involv-
ing fermions.

C.1 Defect without insertions

We want to solve the constraints that the residual conformal symmetry places on expec-
tation values of the form 〈OV 〉 with O a bulk operator of scaling dimension ∆. The
representation of the conformal algebra (D.1) acting on O is given in terms of the repre-
sentation of O under Lorentz transformations Sµν and is

Pµ = ∂µ, Mµν = 2x[µ∂ν] + Sµν , D = −xµ∂µ −∆ ,

Kµ = x2∂µ − 2xµ(xν∂ν + ∆) + 2xνSνµ. (C.1)

Treating separately the coordinates along the plane σa and tranverse xm, translation in-
variance on the plane implies that 〈O(σ, x)V 〉 is a function of xm only. The other Ward
identities can be cast into the form:

0 = Sab〈OV 〉 ,
0 = (xm∂m + ∆) 〈OV 〉 ,
0 = xmSam〈OV 〉 ,
0 = (xm∂n − xn∂m) 〈OV 〉+ Smn〈OV 〉 .

(C.2)
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These constraints are now straightforwardly solved. We focus on scalars O, vectors jµ,
selfdual 3-forms Hλµν and traceless symmetric 2-tensors Tµν , as operators of those types
make up the bosonic degrees of freedom of the stress tensor multiplet, while the correlators
of fermionic operators with a scalar defect vanish identically.

For a Lorentz scalar O, all Sµν vanish and the conformal Ward identities (C.2) are
immediately solved to give

〈O(σ, x)V 〉 = hO
x∆ , (C.3)

with hO an as yet undetermined constant.
The transformation law for a vector reads

(Sµνj)ρ = δµρjν − δνρjµ , (C.4)

which, plugged into (C.2) eventually leads to7

〈jaV 〉 = 〈jmV 〉 = 0. (C.5)

For higher spin bosonic operators, each Lorentz index separately transforms as (C.4).
For a 3-form Hλµν , the Ward identities (C.2) imply that the only components with non-
vanishing expectation value in the presence of V are Habm and Hlmn, and furthermore
restricts the available terms for their one-point functions to

〈Habm(x)V 〉 ∼ εabxm
x∆+1 , 〈Hlmn(x)V 〉 ∼ εlmnpx

p

x∆+1 . (C.6)

In this work, we are concerned with 3-forms which come with a selfduality condition, which
serves to relate the proportionality constants in (C.6). We are left with

〈Habm(x)V 〉 = hH
εabxm
x∆+1 , 〈Hlmn(x)V 〉 = hH

εlmnpx
p

x∆+1 . (C.7)

Lastly, we repeat the same analysis for a symmetric traceless 2-tensor. Exactly the same
line of argument as above yields

〈Tab(x)V 〉 = hT
x∆ δab , 〈Tam(x)V 〉 = 0 ,

〈Tmn(x)V 〉 = hT
x∆+2

(
2xmxn − x2δmn

)
.

(C.8)

We are now in a position to construct the correlator of V with any bosonic primary
in the stress tensor multiplet. To that end, recall that, under the unbroken so(5)R, OIJ

7More generally, for a p-dimensional defect in a spacetime of dimension d = p+ q, one obtains

〈ja(x)V 〉 = 0 , (q − 2)〈jm(x)V 〉 = 0 .

Indeed, for q = 2, the transverse components of j can take the form

〈jm(x)V 〉 ∼ εmnx
n

x∆+1 ,

which is compatible with conservation.
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and HI
λµν transform as a symmetric traceless 2-tensor and a vector, respectively, while

the stress tensor Tµν is an R-symmetry singlet.8 Without explicitly applying the Ward
identities associated with the preserved so(4)R, we can fix the R-symmetry structure of
the 1-point functions by writing down the available terms and, for OIJ , implementing
tracelessness. Plugging in the correct scaling dimensions ∆O = 4, ∆H = 5, and ∆T = 6,
we find the only nonvanishing 1-point functions of stress tensor primaries in the presence
of V are (3.9).

C.2 Defect with an insertion

We now repeat the above discussion for correlators
〈
O(σ, x)V [Ô(σ′)]

〉
involving a defect

with an insertion of a displacement multiplet primary. The kinematical analysis is more
involved than, but technically very similar to, the previous subsection. We use translation
invariance to center Ô at σ′ = 0 and suppress the arguments of O(σ, x). The conformal
Ward identities may be cast into the form:

0 =
(
(σa∂b − σb∂a) + Ŝab + Sab

) 〈
OV [Ô]

〉
,

0 =
(
(xm∂n − xn∂m) + Ŝmn + Smn

) 〈
OV [Ô]

〉
,

0 =
(
σa∂a + xm∂m + ∆ + ∆̂

) 〈
OV [Ô]

〉
,

0 =
(
2xmSam + 2σbSab + 2∆̂σa + (σ2 + x2)∂a

) 〈
OV [Ô]

〉
.

(C.9)

For the simplest case of a scalar O on the defect and a scalar O in the bulk, (C.9) become
particularly simple, and imply9

〈O(σ, x)V [O]〉 = COO

x∆−∆̂(σ2 + x2)∆̂
, (C.10)

with COO some normalisation constant.
For a defect scalar O and a bulk vector jµ we obtain:

〈ja(σ, x)V [O]〉 = CjOσa

x∆−∆̂−1(σ2 + x2)∆̂+1
,

〈jm(σ, x)V [O]〉 = CjO(x2 − σ2)xm
2x∆−∆̂+1(σ2 + x2)∆̂+1

.

(C.11)

Indeed, these correlators are exactly the same for defects of generic dimension and codimen-
sion. It is easily checked that (C.11) is compatible with conservation of j in the bulk if and
only if ∆ = d − 1 and ∆̂ = p, which is indeed satisfied by the displacement superprimary
Oi and the bulk R-symmetry current jIJµ . The conservation equation

∂µ〈jµ(σ, x)V [O]〉 = 〈V [O(σ)O(0)]〉, (C.12)

8The R-symmetry current jIJµ transforms as an antisymmetric tensor, but as seen above, its 1-point
function vanishes identically regardless of the R-symmetry structure.

9In particular, inserting for O the defect identity operator 1V , we recover the form of (C.3), as expected.
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then allows us to fix CO in terms of COj in equation (3.19). For the remaining required
bosonic correlator, consider a defect scalar O and a bulk 3-form Hλµν . The conformal
Ward identities (C.9) imply that the only components of the correlator that do not vanish
identically are

〈Habm(σ, x)V [O]〉 = hHεabxm

x∆−∆̂+1(σ2 + x2)∆̂
,

〈Hlmn(σ, x)V [O]〉 = hHεlmnpx
p

x∆−∆̂+1(σ2 + x2)∆̂
,

(C.13)

where, as for the 1-point function, we have used the selfduality of Hλµν to relate the
two normalisation constants. Lastly, we compute the only correlator of fermions that we
require in this paper. Consider a bulk chiral spinor χα and a defect chiral spinor Qα.10

Their transformation laws are familiar:

(Sµνχ)α = 1
2 (γµν) β

α χβ , (SabQ)α = 1
2 (γab) β

α Qβ , (SmnQ)α = 1
2 (γmn) β

α Qβ .

(C.14)
In order to apply the Ward identities (C.9), we expand 〈χαV [Qβ ]〉 in terms of antisym-
metrised products of gamma matrices. The only such matrices with the appropriate chi-
rality properties are γµ and γµνρ (we can omit γµνρστ since it is related to γµ by duality):

〈χαV [Qβ ]〉 = aµ (γµc)αβ + 1
3!bλµν

(
γλµνc

)
αβ
. (C.15)

Writing out and simplifying the conformal Ward identities explicitly then leads to

〈χα(σ, x)V [Qβ ]〉 =
cχQ [(σaγa + xmγ

m)c]αβ
x∆−∆̂

√
σ2 + x21+2∆̂

. (C.16)

Having completed the kinematic analysis, we can now restore the R-symmetry struc-
ture in order to construct the full bulk-defect 2-point functions. The Ward identities
associated with the generators of so(4)R decouple from the kinematics, and therefore take
a purely algebraic form (with R, R̂ the representations of O, Ô)

0 =
(
Rij + R̂ij

) 〈
OV [Ô]

〉
. (C.17)

Among the bosonic 2-point functions we consider, the only nonvanishing ones are (we again
suppress coordinate dependence and Lorentz indices):〈

Oi5V [Oj ]
〉
∼ δij ,

〈
ji5V [Oj ]

〉
∼ δij ,

〈
H iV [Oj ]

〉
∼ δij . (C.18)

To restore the correct R-symmetry structure of the fermionic 2-point function, recall that
χIαα̌ transforms in the tensor product of the vector and spinor representation of so(5)R
and is subject to a constraint γ̌IχI = 0, while Qαα̌ transforms as an ordinary R-symmetry

10Since ultimately we are interested in a defect operator defined in terms of a chiral fermionic bulk
current, we take Q to transform as a spinor under both parallel and transverse rotations, and consider only
chiral objects.

– 29 –



J
H
E
P
0
3
(
2
0
2
1
)
2
6
1

spinor but obeys a constraint Π+Q = 0 mixing Lorentz and R-symmetry. Since we only
need the correlator involving χ5

α̌, we make the ansatz〈
χ5
α̌Qβ̌

〉
∼
(
γ̌5
)
α̌β̌
, (C.19)

which is indeed compatible with (C.17).
With the kinematical data and R-symmetry structure in hand, we can now assemble the

full 2-point functions. Plugging in the correct defect operator scaling dimensions ∆O = 2
and ∆Q = 5/2, we obtain (3.12).

D Algebras

In this appendix we collect some results on the algebras osp(8∗|4) and osp(4∗|2)⊕osp(4∗|2).
For a general reference on Lie superalgebra, see [71, 72] and references therein.

D.1 The algebra osp(8∗|4)

The quaternionic orthosymplectic algebra osp(8∗|4) = D(4, 2) is a 6d superconformal alge-
bra containing 38 bosonic and 32 fermionic generators.11 Its bosonic part so(2, 6)⊕ so(5)
contains a 6d conformal algebra

[Mµν ,Mρσ] = 2ησ[µMν]ρ − 2ηρ[µMν]σ , [Pµ,Kν ] = 2 (Mµν + ηµνD) ,
[Mµν ,Pρ] = 2P[µην]ρ , [Mµν ,Kρ] = 2K[µην]ρ ,

[D,Pµ] = Pµ , [D,Kµ] = −Kµ ,
(D.1)

along with an so(5) R-symmetry

[RIJ ,RKL] = 2δK[IRJ ]L − 2δL[IRJ ]K . (D.2)

The fermionic generators Q and S̄ form a representation under that bosonic algebra and obey

[Mµν ,Qαα̌] = −1
2 (γµνQ)αα̌ ,

[
Mµν , S̄α̇α̌

]
= −1

2
(
γ̄µν S̄

)
α̇α̌

,

[Kµ,Qαα̌] =
(
γµS̄

)
αα̌

,
[
Pµ, S̄α̇α̌

]
= (γ̄µQ)α̇α̌ ,

[D,Qαα̌] = 1
2Qαα̌ ,

[
D, S̄α̇α̌

]
= −1

2 S̄α̇α̌ ,

[RIJ ,Qαα̌] = 1
2 (γ̌IJQ)αα̌ ,

[
RIJ , S̄α̇α̌

]
= 1

2
(
γ̌IJ S̄

)
α̇α̌

.

(D.3)

Finally, the anticommutator of Q generates a translation P, while the anticommutator of
S̄ generates a special conformal transformation K{

Qαα̌,Qββ̌

}
= 2 (γµc)αβ Ωα̌β̌Pµ ,

{
S̄α̇α̌, S̄β̇β̌

}
= 2

(
γ̄µc

T
)
α̇β̇

Ωα̌β̌Kµ ,{
Qαα̌, S̄β̇β̌

}
= 2

[(
D + 1

2γµνM
µν + γ̌IJRIJ

)
cTΩ

]
αβ̇α̌β̌

. (D.4)

All the other commutators vanish.
11More precisely, it is a real form of D(4, 2) given by P†

µ = Kµ (which also implies (Qαα̌)† = Sαα̌) and
compatible with radial quantisation in Euclidean space. Hermitean generators can be obtained by redefining
all generators P→ iP.
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Note that this algebra has a natural structure in terms of supermatrices. This point
of view, along with its relation to the 6d algebra presented above, is elaborated in [70].
We also note that the so(5) generators can be expressed in terms of sp(2) generators by
the relation

Uα̌β̌ = 1
2 (γ̌IJΩ)α̌β̌ RIJ , RIJ = −1

4
(
Ω†γ̌IJ

)α̌β̌
Uα̌β̌ . (D.5)

The appropriate commutators are then[
Uα̌β̌ ,Uγ̌δ̌

]
= 2Ωα̌(γ̌Uδ̌)β̌ + 2Ωβ̌(γ̌Uδ̌)α̌ ,[

Uα̌β̌ ,Qαγ̌

]
= 2Qα(α̌Ωβ̌)γ̌ ,

[
Uα̌β̌ , S̄α̇γ̌

]
= 2S̄α̇(α̌Ωβ̌)γ̌ . (D.6)

D.2 The subalgebra osp(4∗|2)⊕ osp(4∗|2)

In the presence of the plane, the original symmetry osp(8∗|4) is reduced to the subalgebra
osp(4∗|2)⊕ osp(4∗|2) [44], a real form of D(2, 1, α)⊕D(2, 1, α) with α = −1/2. Each copy
of the osp(4∗|2) is a (rigid) 1d superconformal algebra, whose bosonic part is

[P+,K+] = 2D+ , [D+,P+] = P+ , [D+,K+] = −K+ ,[
Ti(a),T

j
(b)

]
= −iδ(ab)ε

ijkTk(b), (a) = 1, 2. (D.7)

In addition to the 1d conformal algebra, there are 2 additional su(2). Together, they
form the “chiral” part of the so(2, 2)‖ ⊕ so(4)⊥ ⊕ so(4)R preserved by the plane, with the
“antichiral” part (denoted by a “−” subscript) given by the other osp(4∗|2). They are
related to the bulk generators by

P± = 1
2(P0 ± P1) , D± = 1

2(D±M01) , K± = 1
2(−K0 ± K1) , (D.8)

where for definiteness we assume that the plane spans the directions x0,1. The decomposi-
tion of so(4)⊥,R is given by the ‘t Hooft symbols

Ti1(1) = i

4η
i1
mnMmn , Ti2(2) = − i4η

i2
ijR

ij , (D.9)

and similarly for T̄ in terms of the antichiral ‘t Hooft symbols η̄.
In addition to these generators, the algebra includes supersymmetries Qα1α2 and special

supersymmetries Sα1α2 charged under both su(2). These satisfy

[K+,Qα1α2 ] = −iSα1α2 , [P+, Sα1α2 ] = iQα1α2 ,

[D+,Qα1α2 ] = 1
2Qα1α2 , [D+, Sα1α2 ] = −1

2Sα1α2 ,[
Ti1(1),Qα1α2

]
= 1

2(σi1) β1
α1 Qβ1α2 ,

[
Ti1(1), Sα1α2

]
= 1

2(σi1) β1
α1 Sβ1α2 ,[

Ti2(2),Qα1α2

]
= 1

2(σi2) β2
α2 Qα1β2 ,

[
Ti2(2), Sα1α2

]
= 1

2(σi2) β2
α2 Sα1β2 ,

(D.10)
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where σi are the Pauli matrices. They anticommute to

{Qα1α2 ,Qβ1β2} = 2iεα1β1εα2β2P+ , {Sα1α2 , Sβ1β2} = 2iεα1β1εα2β2K+ ,

{Qα1α2 , Sβ1β2} = 2
[
εα1β1εα2β2D+ + (σi1ε)α1β1εα2β2Ti1(1) − 2εα1β1(σi2ε)α2β2Ti2(2)

]
. (D.11)

The ratio α = −1/2 between the coefficients of T(1) and T(2) is a specific case of the
exceptional Lie algebra D(2, 1;α) (see [73] for the algebra with general α and its Kac-
Moody extension).

The precise embedding of these supercharges inside Qαα̌ is obtained by restricting to
the preserved supercharges Π+Q = Q, where the projector is [8]

(Π±) ββ̌
αα̌ = 1

2 [1± γ01γ̌5] ββ̌
αα̌ , (Π±) β̇β̌

α̇α̌ = 1
2 [1∓ γ̄01γ̌5] β̇β̌

α̇α̌ , (D.12)

which has a different expression acting respectively on chiral and antichiral representations.
This projector decomposes as

1
2 [1 + γ01γ̌5] = 1

2 [1 + γ01] 1
2 [1 + γ̌5] + 1

2 [1− γ01] 1
2 [1− γ̌5] , (D.13)

which gives, respectively for the two terms, two anticommuting supercharges Q̄α̇1α̇2 and
Qα1α2 . Their chirality is derived from the projector: (1 + γ01) projects onto the pos-
itive chirality component, which is correlated with the positive chirality under so(4)⊥
since γ01 = γ2345.

D.2.1 Subalgebra as an embedding inside osp(8∗|4)

Lastly, in section 2 and 3 it is convenient to discuss the subalgebra directly within the
larger osp(8∗|4). Here we decompose some of the commutators of osp(8∗|4) into preserved
and broken generators directly with the projector. We make use of the following identities

Π†± = Π±, (Π±C)T = −Π±CT ,
[Π±,Γa] = [Π±, γ̌5] = 0 ,

Π±Γm = ΓmΠ∓, Π±Γi = ΓiΠ∓ .

Note that here we don’t differentiate between the action of Q and Q̄ for simplicity.
Using these properties, one can easily derive the induced subalgebra and its represen-

tation by acting with Π±. The only nontrivial part of the preserved algebra is for the
supercharges, which now obey{

Q+
αα̌,Q

+
ββ̌

}
= 2 (γaΠ+cΩ)αβα̌β̌ Pa ,

{
S̄+
α̇α̌, S̄

+
β̇β̌

}
= 2

(
γ̄aΠ+c

TΩ
)
α̇β̇α̌β̌

Ka ,{
Q+
αα̌, S̄

+
β̇β̌

}
= 2

[(
γ̌ijRij + D + 1

2γmnMmn + 1
2γabM

ab
)

Π+c
TΩ
]
αβ̇α̌β̌

. (D.14)
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The broken generators satisfy

Pm

Q−

Ri5Mam

S̄−

Km
Q+

Pa

[
Q+
αα̌,Pm

]
= 0,{

Q+
αα̌,Q

−
ββ̌

}
= 2 (γmΠ−cΩ)αβα̌β̌ Pm,[

Q+
αα̌,Ri5

]
= −1

2
(
γ̌i5Q−

)
αα̌ ,[

Q+
αα̌,Mam

]
= 1

2
(
γamQ−

)
αα̌ ,{

Q+
αα̌, S̄

−
β̇β̌

}
= 4

[(
γ̌i5Ri5 + 1

2γamMam
)

Π−cTΩ
]
αβ̇α̌β̌

,[
Q+
αα̌,Km

]
= −

(
γmS̄−

)
αα̌
.

(D.15)

These transformations are related to (2.2) using (2.1) to write the displacement operator
as contact terms in the presence of the defect:

Ri5V =
∫
R2
d2σV [Oi(σ)] . (D.16)

We can recover the full representation by acting with Q+, e.g.,∫
R2
V [Q+Oi(σ)]d2σ =

[
Q+,Ri5

]
V = −1

2 γ̌i5Q−V = −1
2

∫
R2
d2σV [γ̌i5Q−(σ)] . (D.17)

The action of Q+ on Q can similarly be read from (D.15), but it misses the descendant.
These are fixed instead by requiring closure under the Jacobi identity as in (3.6) (see also
for instance the discussion in section 2 of [74]).
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