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THE SPECTRAL DENSITY OF HARDY KERNEL MATRICES

ALEXANDER PUSHNITSKI

Communicated by Albrecht Böttcher

ABSTRACT. We consider infinite matrices obtained by restricting Hardy in-
tegral kernels to natural numbers. For a suitable class of Hardy kernels we
describe the absolutely continuous spectrum, the essential spectrum and the
asymptotic spectral density of these matrices.

KEYWORDS: Hardy kernel, Toeplitz matrix, spectral density, absolutely continuous
spectrum.
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1. INTRODUCTION

Let k = k(x, y) be a complex valued function of two variables x > 0 and
y > 0 which satisfies two conditions:

• k is Hermitian: k(x, y) = k(y, x);
• k is homogeneous of degree −1: k(ax, ay) = k(x, y)/a.

We will call k(x, y) a Hardy kernel; see the remarks about the terminology at the
end of this section.

The purpose of this paper is to consider some spectral properties of the in-
finite matrices

(1.1) K = {k(n, m)}∞
n,m=1 in `2(N)

as well as their finite truncations

KN = {k(n, m)}N
n,m=1 in CN

as N → ∞. Our point of view is the comparison between the Hardy kernel ma-
trices K and KN and their “continuous analogues”, i.e. integral operators T in
L2(1, ∞),

T f (x) =
∫ ∞

1
k(x, y) f (y)dy, f ∈ L2(1, ∞)
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as well as their truncations TN in L2(1, N),

TN f (x) =
∫ N

1
k(x, y) f (y)dy, f ∈ L2(1, N).

In fact, T and TN are Wiener-Hopf operators in disguise. Indeed, an exponential
change of variable x = eu, y = ev, u, v ∈ (0, ∞), effects a unitary transforma-
tion which transforms T (resp. TN) into the integral operator on L2(0, ∞) (resp.
L2(0, log N)) with the Wiener-Hopf kernel k(eu−v, 1)e(u−v)/2.

Obviously, such exponential change of variables is not available on inte-
gers, and therefore the spectral analysis of the Hardy kernel matrices K and KN
presents considerable challenges. However, we will show that under suitable
restrictions on the kernels:

• the essential spectra of K and T coincide;
• the absolutely continuous (a.c.) parts of K and T are unitarily equivalent;
• the asymptotic spectral density of KN coincides with that of TN and is

therefore given by the First Szegő Limit Theorem;
• KN may have some eigenvalues (in contrast to TN).

To enable meaningful analysis, we need to impose some constraints on the
kernels k. First observe that the homogeneity of k is equivalent to the representa-
tion

k(x, y) =
1
√

xy
k̃(x/y)

with some function k̃ on (0, ∞). In what follows, we shall assume that

k(x, y) =
1
√

xy
1

2π

∫ ∞

−∞
ϕ(t)(x/y)−itdt =

1
√

xy
ϕ̂(log x

y ),

where ϕ ∈ L1(R) is real-valued and

ϕ̂(u) =
1

2π

∫ ∞

−∞
ϕ(t)e−itudt

is the Fourier transform of ϕ. We shall call ϕ the symbol in this context. With this
notation, after the exponential change of variables T becomes the integral opera-
tor with the kernel ϕ̂(u− v), in agreement with the standard notion of a symbol
of a Wiener-Hopf integral operator. We shall henceforth indicate explicitly the de-
pendence on the symbol and denote the above operators by K(ϕ), KN(ϕ), T(ϕ)
and TN(ϕ).

We finish this section with some remarks on the terminology and the history
of the problem; see Section 3 for further discussion of related literature.

Hardy kernels are often associated with integral operators acting on the
space L2(0, ∞) rather than on L2(1, ∞). By the same exponential change of vari-
ables, such integral operators are unitarily equivalent to the operators of con-
volution with ϕ̂ on L2(R). Thus, by the Fourier transform, they are unitarily
equivalent to the operators of multiplication by the symbol ϕ in L2(R), and so
the spectral theory of this class of operators is extremely simple.
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The most famous Hardy kernel is

k(x, y) =
1

x + y
,

whose study, both in discrete and continuous versions, goes back to Hilbert and
Schur. More generally, sufficient conditions for boundedness of Hardy kernel ma-
trices, as well as (sometimes sharp) operator norm bounds for them on `p spaces
are discussed in detail in Chapter 9 of the classical monograph [8] by Hardy, Lit-
tlewood and Polya. They mostly argue by comparing matrices K with the corre-
sponding integral operators on L2(0, ∞) and impose the condition

(1.2)
∫ ∞

0

|k(x, 1)|√
x

dx < ∞

together with some monotonicity conditions.
The term “Hardy kernel” is usually applied to real-valued kernels which

are symmetric, homogeneous of degree −1 and satisfy (1.2). We will not need
(1.2), but instead we will impose some conditions on the symbol ϕ.

2. MAIN RESULTS

We start with some general remarks. Let us write the quadratic form of
KN(ϕ) on a vector a = {an}N

n=1 ∈ CN as follows:

〈KN(ϕ)a, a〉CN =
N

∑
n,m=1

k(n, m)anam =
1

2π

N

∑
n,m=1

anam

∫ ∞

−∞
ϕ(t)n−

1
2−itm−

1
2+itdt

=
1

2π

∫ ∞

−∞
ϕ(t)

∣∣∣∣∣ N

∑
n=1

ann−
1
2−it

∣∣∣∣∣
2

dt .(2.1)

This formula suggests the following:
• KN(ϕ) depends monotonically on ϕ in the quadratic form sense; in par-

ticular, if ϕ ≥ 0, then KN(ϕ) is positive semi-definite.
• The study of KN(ϕ) is related to the theory of Dirichlet series. We will

touch upon this aspect of the problem only briefly in Lemma 6.2.
• It is easy to see that ϕ ∈ L1(R) is a necessary condition for the definition

of KN(ϕ) to make sense.
As a warm-up, let us compute the asymptotics of the trace of KN(ϕ). We have

k(n, n) =
1
n

ϕ̂(0) =
1
n

1
2π

∫ ∞

−∞
ϕ(t)dt,

and therefore

Tr KN(ϕ) =
1

2π

∫ ∞

−∞
ϕ(t)dt

N

∑
n=1

1
n
=

1
2π

∫ ∞

−∞
ϕ(t)dt

(
log N + O(1)

)
, N → ∞.
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Now, considering the case ϕ ≥ 0, it follows that for any ε > 0 we have

#{j : λj(KN(ϕ)) > ε} ≤ Tr(KN(ϕ)/ε) = O(log N), N → ∞,

where {λj(KN(ϕ))}N
j=1 are the eigenvalues of KN(ϕ) and # is the number of el-

ements in a given set. So we see that “most” of the N eigenvalues of KN(ϕ) are
located near zero and only O(log N) eigenvalues are located above ε > 0. Our
first result concerns this logarithmically small proportion of the eigenvalues of
KN(ϕ) and gives their asymptotic density.

THEOREM 2.1. Let ϕ ∈ L1(R) be a real-valued symbol, and let g be a Lipschitz
continuous function on R with g(0) = 0. As above, set

KN(ϕ) = {k(n, m)}N
n,m=1, k(n, m) =

1√
nm

ϕ̂(log n
m ).

Then

(2.2) lim
N→∞

(log N)−1 Tr g(KN(ϕ)) =
1

2π

∫ ∞

−∞
g(ϕ(t))dt .

The proof is given in Section 5. Since by our assumptions

|g(ϕ(t))| ≤ C|ϕ(t)|,

the integral in the right hand side of (2.2) converges absolutely.
Formula (2.2) with TN(ϕ) in place of KN(ϕ) is well known (after the expo-

nential change of variables reducing TN(ϕ) to a Wiener-Hopf operator), see e.g.
[7, Section 8.6]. It is more commonly used for Toeplitz matrices and in that context
it is known as the First Szegő Limit Theorem, see e.g. [1, Section 5.4].

As it is standard in this circle of questions, one can replace a Lipschitz func-
tion g in (2.2) by the characteristic function of an interval (λ, ∞), λ > 0, as long
as the set {t ∈ R : ϕ(t) = λ} has zero Lebesgue measure. This leads to a more
expressive formula

lim
N→∞

(log N)−1#{j : λj(KN(ϕ)) > λ)} = 1
2π

meas{t : ϕ(t) > λ} ,

where meas is the Lebesgue measure on R.
Our second result characterises the essential and the absolutely continuous

spectra of K(ϕ). Here for simplicity we restrict ourselves to bounded positive
semi-definite operators.

THEOREM 2.2. Let ϕ ∈ L∞(R) be a non-negative function satisfying

(2.3)
∫ ∞

−∞
ϕ(t)(log(2 + |t|))δdt < ∞

for some δ > 2; assume that ϕ is not identically equal to zero. Then K(ϕ), defined by the
matrix (1.1), is a bounded positive semi-definite operator on `2(N). The kernel of K(ϕ)
is trivial. The essential spectrum of K(ϕ) coincides with the essential spectrum of T(ϕ),
and the a.c. part of K(ϕ) is unitarily equivalent to T(ϕ).
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The proof is given in Section 6.

REMARK. (1) By a theorem of M. Rosenblum (see [13]), the spectrum of
a self-adjoint Toeplitz operator is purely a.c. (unless the symbol is constant).
The same applies to T(ϕ), since it is unitarily equivalent to a Toeplitz operator.

(2) The location of the a.c. spectrum of a self-adjoint Toeplitz operator and its
multiplicity function can be explicitly described in terms of the symbol; see
[10, 14] and [15, 16]. Therefore, the same applies to T(ϕ). In particular, if
the symbol ϕ ∈ L1(R) is continuous, then the multiplicity function of T(ϕ)
coincides with 1/2 times the multiplicity function of the operator of multi-
plication by ϕ in L2(R). For example, if ϕ(t) is positive, strictly increasing
on (−∞, 0) and strictly decreasing on (0, ∞), then the spectrum of T(ϕ) is
[0, ϕ(0)] with multiplicity one. We will see symbols of such type in Section 3.

(3) It seems to be an interesting open question to determine the class of symbols ϕ
that corresponds to bounded operators K(ϕ); it is unlikely that (2.3) is optimal
and it is not clear what the optimal condition should be.

Theorem 2.2 may suggest that the spectrum of K(ϕ) coincides with that of
T(ϕ). In fact, this is false; we demonstrate this below by showing that in some
natural asymptotic regime, eigenvalues of K(ϕ) always appear (in contrast to
T(ϕ)). For a self-adjoint operator A let us denote by n(λ; A) the rank of the spec-
tral projection EA(λ, ∞). In other words, n(λ; A) is the number of eigenvalues
(counting multiplicities) of A in (λ, ∞) and n(λ; A) = ∞, if A has some essential
spectrum in (λ, ∞).

THEOREM 2.3. Let ϕ be as in Theorem 2.2 and for α > 0, let

ϕα(t) =
1
α

ϕ(t/α).

Then for all λ > 0 and for all sufficiently large α we have

n(λ; K(ϕα)) ≥ #{j ∈ N :
1
j

ϕ̂(0) > λ}.

In particular, the number of eigenvalues of K(ϕα) above the essential spectrum tends to
infinity as α→ ∞.

Proof. By min-max, for all λ > 0 we have n(λ; K(ϕα)) ≥ n(λ; KN(ϕα)). By
the Riemann-Lebesgue lemma, ϕ̂ tends to zero at infinity and therefore, for all
off-diagonal elements of KN(ϕα) we have

kα(n, m) =
1√
nm

ϕ̂(α log n
m )→ 0, α→ ∞.

It follows that ‖KN(ϕα) − KN,∞‖ → 0 as α → ∞, where KN,∞ is the diagonal
matrix with elements {ϕ̂(0), 1

2 ϕ̂(0), . . . , 1
N ϕ̂(0)} on the diagional. Thus, for any

ε > 0,
n(λ; KN(ϕα)) ≥ n(λ + ε; KN,∞)
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for all sufficiently large α. Putting this together and sending ε → 0 and N → ∞,
we get the desired inequality. By Theorem 2.2, the essential spectrum of K(ϕα) is
[0, ‖ϕα‖L∞ ] = [0, 1

α‖ϕ‖L∞ ]; as it shrinks to zero, the number of eigenvalues above
it tends to infinity.

REMARK. (1) Observe that T(ϕ) satisfies the estimate ‖T(ϕ)‖ ≤ ‖ϕ‖L∞(R).
In contrast to this, the last theorem shows that the norm of K(ϕ) may be
strictly greater than ‖ϕ‖L∞(R). Moreover, considering the asymptotics α→ ∞,
we see that the estimate

‖K(ϕ)‖ ≤ C‖ϕ‖L∞(R)

is false.
(2) If ϕ̂ tends to zero sufficiently fast at infinity, one can upgrade the above ar-

gument to conclude that if the eigenvalues of K(ϕα) are listed in the non-
increasing order, then the j’th eigenvalue satisfies

(2.4) λj(K(ϕα)) =
1
j

ϕ̂(0) + O(1/α), α→ ∞.

This is exactly what was proven in [3], see Example 3.2 below.

3. EXAMPLES

Here we consider several examples of Hardy kernels with references to the
existing literature.

EXAMPLE 3.1. Let

k(x, y) =
1

x + y
, ϕ(t) =

π

cosh πt
.

This example is very special because in this case k(x, y) is a Hankel kernel, i.e. it
depends on the sum x + y. The corresponding matrix K(ϕ) is the classical Hilbert
matrix, which was explicitly diagonalised by M. Rosenblum in [12, 13] in terms
of special functions (see also [11]). Rosenblum proved that K(ϕ) has a purely a.c.
spectrum [0, π] of multiplicity one.

The asymptotic spectral density of the truncated Hilbert matrix was deter-
mined by Widom in [17, Theorem 4.3] (note that there is a factor of 2π missing in
[17]). See also [5] for an alternative proof and for a more general class of Hankel
matrices.

Our Theorems 2.1 and 2.2 specialised to this case are in agreement with all
of the above but do not add anything new.

However, the scaled version of this example,

kα(x, y) =
1
√

xy
1

(x/y)α/2 + (y/x)α/2 , ϕα(t) =
π

α cosh(πt
α )

, α > 0,
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seems to be new. By Theorem 2.2, the a.c. spectrum of K(ϕα) is [0, π/α] and has
multiplicity one.

EXAMPLE 3.2. For α > 0, let

kα(x, y) =
1
√

xy
min{(x/y)α, (y/x)α}, ϕα(t) =

2
α(1 + (t/α)2)

.

The operator K(ϕα) was introduced in [2] in connection with a question about
composition operators on the Hardy space of Dirichlet series. Some estimates
for the norm of K(ϕα) were given in [2], and a detailed spectral analysis of this
operator was accomplished in [3]. It was established that K(ϕα) has a.c. spec-
trum [0, 2/α] of multiplicity one, no singular continuous spectrum and finitely
many eigenvalues above 2/α, satisfying (2.4). These facts are in full agreement
with Theorems 2.2 and 2.3, as the Wiener-Hopf operator T(ϕα) has a purely a.c.
spectrum [0, 2/α] of multiplicity one.

This example is very special because, as shown in [3], the operator K(ϕα)
is the inverse of a Jacobi matrix. In particular, since the spectrum of any Jacobi
matrix is simple, all eigenvalues of K(ϕα) are simple. It was also shown that if
a Hardy kernel matrix with a continuous kernel is the inverse of a Jacobi matrix,
then it coincides, up to a factor, with K(ϕα) for some α > 0.

The spectral density of K(ϕα) was not computed in [3], and Theorem 2.1 in
this case seems to be new. The author is grateful to Uzy Smilansky for asking the
question about spectral density in this context.

EXAMPLE 3.3. For α > 0, let

kα(x, y) =
1
√

xy

(√
x
y
+

√
y
x

)−α

=
1
√

xy
(xy)α/2

(x + y)α
, ϕα(t) =

1
Γ(α)

|Γ( α
2 + it)|2,

where Γ is the Gamma-function. We note that the scaling in α here is different
from the one in Theorem 2.3. According to Theorem 2.2, the essential spectrum
and the a.c. spectrum of K(ϕα) is [0, ϕα(0)], with multiplicity one.

For α = 1 this is the Hilbert matrix, and for α = 2 this is a variant of the
so-called Bergman-Hilbert matrix, considered in [6, 4, 11]. More generally, for
all α ∈ N, the following matrix was considered in [11] (as part of a larger three-
parameter family of infinite matrices):

Bα = {bn,m}∞
n,m=1, bn,m =

√
(n)α−1(m)α−1

(n + m− 1)α
,

where (x)α = x(x + 1) · · · (x + α − 1) is the Pochhammer symbol. This is not
a Hardy kernel matrix, but for large n, m it has the same asymptotics as K(ϕα).
This matrix was explicitly diagonalised in [11] in terms of orthogonal polynomi-
als; it was found that the a.c. spectrum of Bα is [0, ϕα(0)] with multiplicity one,
that it has no singular continuous spectrum and that for large α there are some
eigenvalues above the continuous spectrum.
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It is easy to see (cf. the argument of [11, Proposition 9]) that K(ϕ2)− B2 is a
trace class operator, and therefore, by the Kato-Rosenblum theorem, the a.c. parts
of B2 and K(ϕ2) are unitarily equivalent and by Weyl’s theorem (invariance of
essential spectrum under compact perturbations) the essential spectra of B2 and
K(ϕ2) coincide. This is in agreement with Theorem 2.2. It is not clear whether
the trace class argument works for α > 2, but in any case comparing Theorem 2.2
with the results of [11] we see that the essential spectra and the a.c. spectra of Bα

and K(ϕα) coincide.
We are not aware of the spectral density of K(ϕα) having been discussed in

the literature.

EXAMPLE 3.4. Let

k(x, y) =
log(x/y)

x− y
, ϕ(t) =

π2

(cosh πt)2 ,

and k(x, x) = 1/x by continuity. As far as we are aware, the spectral properties
of the corresponding Hardy kernel matrix K(ϕ) have not been considered in the
literature, except for the norm bound in [8, Inequality 342] as a “miscellaneous
example”. (The norm bound there is π2.) Theorem 2.2 in this case ensures that
the a.c. spectrum of K(ϕ) is [0, π2] and has multiplicity one.

EXAMPLE 3.5. A more general version of the previous example is

k(x, y) =
ω(log(x/y))

x− y
, ϕ̂(u) =

ω(u)
2 sinh(u/2)

,

where ω is a smooth odd function which satisfies the growth condition

ω(u) = O(eα|u|), α < 1/2,

as |u| → ∞. For example, ω(u) = 2 sinh(αu), 0 < α < 1/2 gives

k(x, y) =
(x/y)α − (y/x)α

x− y
, ϕ(t) =

2π sin(2πα)

cos(2πα) + cosh(2πt)

with k(x, x) = 2α/x by continuity.

EXAMPLE 3.6. Let

k(x, y) =
1
√

xy
sin(log(x/y))

log(x/y)
, ϕ(t) = πχ(−1,1)(t),

and k(x, x) = 1/x by continuity. This example may be of interest because the
symbol here is discontinuous. By Theorem 2.2, the a.c. spectrum of K(ϕ) is [0, π]
and has multiplicity one. By Theorem 2.1, the asymptotic spectral density of K(ϕ)
is concentrated at the points π and 0.
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4. KEY NOTATION AND THE OUTLINE OF THE PROOF

First we discuss the proof of Theorem 2.1. In order to motivate what comes
next, we factorise ϕ = |ϕ|1/2 ϕ1/2, where ϕ1/2 = |ϕ|1/2 sign(ϕ), and rewrite for-
mula (2.1) for the the quadratic form of KN(ϕ) as follows:

〈KN(ϕ)a, a〉CN =
1

2π

∫ ∞

−∞

(
|ϕ(t)|1/2

N

∑
n=1

ann−
1
2−it

)(
ϕ(t)1/2

N

∑
n=1

ann−
1
2−it

)
dt .

This suggests the following factorisation of KN(ϕ). For ψ ∈ L2(R), let us define
an operator AN(ψ) : L2(R)→ CN ,

(AN(ψ) f )n =
1√
2π

∫ ∞

−∞
f (t)ψ(t)n−

1
2+itdt , n = 1, . . . , N.

Then
KN(ϕ) = AN(ϕ1/2)AN(|ϕ|1/2)∗.

In a similar way, we factorise the operator TN(ϕ) as

TN(ϕ) = BN(ϕ1/2)BN(|ϕ|1/2)∗,

where BN(ψ) : L2(R)→ L2(1, N),

(BN(ψ) f )(x) =
1√
2π

∫ ∞

−∞
f (t)ψ(t)x−

1
2+itdt , x ∈ (1, N).

The main step of the proof of Theorem 2.1 is the proof of (2.2) for g(λ) = λm,
m ∈ N and for a suitable dense class of symbols ϕ. By the cyclicity of trace,

Tr
(
KN(ϕ)m) = Tr

(
(AN(ϕ1/2)AN(|ϕ|1/2)∗)m) = Tr

(
(AN(|ϕ|1/2)∗AN(ϕ1/2))m) ,

Tr
(
TN(ϕ)m) = Tr

(
(BN(ϕ1/2)BN(|ϕ|1/2)∗)m) = Tr

(
(BN(|ϕ|1/2)∗BN(ϕ1/2))m) .

Now let us compare A∗N AN and B∗N BN . Observe that the integral kernel of the
operator AN(|ϕ|1/2)∗AN(ϕ1/2) is

1
2π
|ϕ|1/2(t1)ϕ1/2(t2)ζN(1 + i(t1 − t2)), ζN(s) :=

N

∑
n=1

n−s

and similarly the integral kernel of BN(|ϕ|1/2)∗BN(ϕ1/2) is

1
2π
|ϕ|1/2(t1)ϕ1/2(t2)ηN(1 + i(t1 − t2)), ηN(s) :=

∫ N

1
x−sdx.

Using elementary estimates of ζN(s)− ηN(s), we shall prove the trace norm esti-
mate

‖AN(|ϕ|1/2)∗AN(ϕ1/2)− BN(|ϕ|1/2)∗BN(ϕ1/2)‖S1 = O(1), N → ∞,

for a suitable dense subclass of symbols ϕ. Here and in what follows ‖·‖S1 is the
trace norm. Using this estimate, it is easy to derive the relation

Tr
(
(KN(ϕ))m) = Tr

(
(TN(ϕ))m)+ O(1), N → ∞.
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The asymptotics of the trace in the right hand side is well known, see e.g. [7,
Section 8.6]:

(4.1) lim
N→∞

(log N)−1 Tr
(
(TN(ϕ))m) = 1

2π

∫ ∞

−∞
ϕ(t)mdt .

By linearity, we obtain formula (2.2) for polynomials g. Standard arguments al-
low us to extend this to all symbols ϕ ∈ L1(R) and all Lipschitz continuous func-
tions g.

The outline of the proof of Theorem 2.2 is similar. Recall that here ϕ ≥ 0 by
hypothesis. We denote ψ = ϕ1/2 and write

K(ϕ) = A(ψ)A(ψ)∗, T(ϕ) = B(ψ)B(ψ)∗,

where A(ψ) : L2(R)→ `2(N) and B(ψ) : L2(R)→ L2(0, ∞) are defined by

(A(ψ) f )n =
1√
2π

∫ ∞

−∞
ψ(t) f (t)n−

1
2+itdt ,(4.2)

(B(ψ) f )(x) =
1√
2π

∫ ∞

−∞
ψ(t) f (t)x−

1
2+itdt .(4.3)

One slight technical complication is that A(ψ) and B(ψ) are not automatically
bounded for ϕ ∈ L1(R); but they are bounded under the additional assumptions
on ϕ, listed in the hypothesis of Theorem 2.2. We prove that under these assump-
tions, the difference

A(ψ)∗A(ψ)− B(ψ)∗B(ψ)

is a trace class operator. After this, Theorem 2.2 follows by an application of the
Kato-Rosenblum theorem (invariance of a.c. spectrum under trace class pertur-
bations) and Weyl’s theorem (invariance of essential spectrum under compact
perturbations).

5. PROOF OF THEOREM 2.1

For ψ ∈ L2(R), let AN(ψ) : L2(R) → CN and BN(ψ) : L2(R) → L2(1, N) be
the operators defined in the previous section.

LEMMA 5.1. Let ϕ ∈ L1(R) satisfy

(5.1)
∫ ∞

−∞
|ϕ(t)|(log(2 + |t|))δdt < ∞

for some δ > 2. Let

(5.2) DN(ϕ) = AN(|ϕ|1/2)∗AN(ϕ1/2)− BN(|ϕ|1/2)∗BN(ϕ1/2).

Then DN(ϕ) converges in the trace norm as N → ∞; in particular, ‖DN(ϕ)‖S1 =
O(1).
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Proof. For x ≥ 1, denote

ux(t) = ϕ1/2(t)x−it, vx(t) = |ϕ|1/2(t)x−it.

We consider ux and vx as elements of L2(R); observe that

‖vx‖2
L2(R) = ‖ux‖2

L2(R) = ‖ϕ‖L1(R).

Below 〈·, ·〉 is the inner product in L2(R). With this notation we can write

AN(|ϕ|1/2)∗AN(ϕ1/2) =
1

2π

N

∑
n=1

1
n
〈·, un〉vn,

BN(|ϕ|1/2)∗BN(ϕ1/2) =
1

2π

∫ N

1

1
x
〈·, ux〉vx dx

=
1

2π

N

∑
n=2

∫ n

n−1

1
x
〈·, ux〉vx dx .

Our aim is to estimate the trace norm of the difference of n’th terms in the two
sums in the right hand sides. For n ≥ 2 we have

1
n
〈·, un〉vn−

∫ n

n−1

1
x
〈·, ux〉vx dx =

∫ n

n−1

(
1
n
− 1

x

)
〈·, un〉vn dx

+
∫ n

n−1

1
x
〈·, un − ux〉vn dx +

∫ n

n−1

1
x
〈·, ux〉(vn − vx) dx .

The first term is easy to estimate:∥∥∥∥∫ n

n−1

(
1
n
− 1

x

)
〈·, un〉vn dx

∥∥∥∥
S1

≤ 1
n(n− 1)

‖〈·, un〉vn‖S1 =
1

n(n− 1)
‖ϕ‖L1(R).

In order to estimate the second and third terms, we need to consider the differ-
ences un − ux and vn − vx. We have

un(t)− ux(t) = ϕ1/2(t)(n−it − x−it) = ϕ1/2(t)(e−it log n − e−it log x) .

We use the elementary estimate |eia − 1| ≤ min{|a|, 2}. Then, for n− 1 ≤ x ≤ n,
we have

|un(t)− ux(t)| ≤ |ϕ|1/2(t)min{|t|
∣∣log x

n

∣∣ , 2} ≤ 2|ϕ|1/2(t)min{ |t|n , 1},

because
∣∣log x

n

∣∣ ≤ ∣∣∣log(1− 1
n )
∣∣∣ ≤ 2/n. It follows that

‖un − ux‖2
L2(R) ≤ 4

∫ ∞

−∞
|ϕ(t)|min{ t2

n2 , 1}dt = 4
∫ ∞

−∞
|ϕ(t)|(log(2 + |t|))δFn(t)dt,

where
Fn(t) = (log(2 + |t|))−δ min{ t2

n2 , 1}.
Elementary considerations show that

Fn(t) ≤ C(log n)−δ,
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and therefore

‖un − ux‖2
L2(R) ≤ C(log n)−δ

∫ ∞

−∞
|ϕ(t)|(log(2 + |t|))δdt.

Of course, exactly the same estimate holds for vn − vx. Putting this together, we
find ∥∥∥∥ 1

n
〈·, un〉vn −

∫ n

n−1

1
x
〈·, ux〉vx dx

∥∥∥∥
S1

≤ C(ϕ)(n−2 + n−1(log n)−δ/2).

Since by assumption δ > 2, it follows that the operator DN(ϕ) is represented as
a partial sum of a series that converges absolutely in trace norm. This yields the
required statement.

LEMMA 5.2. Let ψ ∈ L∞(R); then the operator BN(ψ) satisfies the operator norm
estimate

‖BN(ψ)‖ ≤ ‖ψ‖L∞ .

Proof. We have

(BN(ψ) f )(x) =
√

2π
1√
x

ψ̂ f (− log x),

and therefore∫ N

1
|(BN(ψ) f )(x)|2dx = 2π

∫ N

1
|ψ̂ f (− log x)|2 dx

x
= 2π

∫ log N

0
|ψ̂ f (−t)|2dt

≤ 2π
∫ ∞

−∞
|ψ̂ f (t)|2dt = ‖ψ f ‖2

L2(R) ≤ ‖ψ‖
2
L∞(R)‖ f ‖2

L2(R),

as required.

LEMMA 5.3. Let ϕ ∈ L∞(R) satisfy condition (5.1) for some δ > 2. Then the
operator AN(|ϕ|1/2) satisfies the operator norm estimate ‖AN(|ϕ|1/2)‖ = O(1) as
N → ∞.

Proof. Of course, it suffices to prove the statement for ϕ ≥ 0. In this case,
combining the results of the two previous lemmas, we find

‖AN(|ϕ|1/2)‖2 = ‖AN(|ϕ|1/2)∗AN(|ϕ|1/2)‖

≤ ‖DN(ϕ)‖+ ‖BN(|ϕ|1/2)∗BN(|ϕ|1/2)‖ = O(1)

as N → ∞.

LEMMA 5.4. Let ϕ ∈ L∞(R) satisfy (5.1) for some δ > 2. Then for each m ∈ N
we have

lim
N→∞

(log N)−1 Tr
(
(KN(ϕ))m) = 1

2π

∫ ∞

−∞
ϕ(t)mdt .



SPECTRAL DENSITY OF HARDY KERNELS 113

Proof. The case m = 1 is a direct calculation (see Section 2); below we as-
sume m ≥ 2. Using the cyclicity of trace, we find

Tr
(
(KN(ϕ))m)− Tr

(
(TN(ϕ))m)

= Tr
(
(AN(ϕ1/2)AN(|ϕ|1/2)∗)m)− Tr

(
(BN(ϕ1/2)BN(|ϕ|1/2)∗)m)

= Tr
(
(AN(ϕ1/2)∗AN(|ϕ|1/2))m)− Tr

(
(BN(ϕ1/2)∗BN(|ϕ|1/2))m) .

Denoting

X = AN(ϕ1/2)∗AN(|ϕ|1/2), Y = BN(ϕ1/2)∗BN(|ϕ|1/2),

we have

Xm −Ym = (X−Y)Xm−1 + · · ·+ Ym−1(X−Y),

and therefore

|Tr(Xm −Ym)| ≤ ‖X−Y‖S1(‖X‖
m−1 + · · ·+ ‖Y‖m−1).

By Lemma 5.1, we have ‖X − Y‖S1 = O(1) and by Lemmas 5.2 and 5.3 the sum
in the brackets above is also O(1) as N → ∞. We conclude that

Tr(KN(ϕ)m)− Tr(TN(ϕ)m) = O(1), N → ∞.

Using (4.1), we conclude the proof.

The rest of the proof of Theorem 2.1 is a standard approximation argument.

LEMMA 5.5. Let g be a Lipschitz continuous function with g(0) = 0, and let
ϕ ∈ L∞(R) be a real-valued symbol with compact support. Then the asymptotic formula
(2.2) holds true.

Proof. First let us choose Λ > 0 such that ‖ϕ‖L∞(R) ≤ Λ and ‖KN(ϕ)‖ ≤ Λ

for all N (this can be done by Lemma 5.3). Next, let R > 0 be such that supp ϕ ⊂
[−R, R].

It suffices to consider the case of real-valued g. Let ε > 0 be given. Using
the Weierstrass approximation theorem, it is not difficult to construct two poly-
nomials p+ and p− with real coefficients such that p+(0) = p−(0) = 0,

p−(λ) ≤ g(λ) ≤ p+(λ), |λ| ≤ Λ

and

(5.3) 0 ≤ p+(λ)− p−(λ) ≤ ε, |λ| ≤ Λ.

Then

Tr p−(KN(ϕ)) ≤ Tr g(KN(ϕ)) ≤ Tr p+(KN(ϕ)).



114 SPECTRAL DENSITY OF HARDY KERNELS

By taking linear combinations of monomials in Lemma 5.4, we find that (2.2)
holds for all polynomials vanishing at zero, and therefore

lim sup
N→∞

(log N)−1 Tr g(KN(ϕ)) ≤ lim sup
N→∞

(log N)−1 Tr p+(KN(ϕ))

=
1

2π

∫ ∞

−∞
p+(ϕ(t))dt =

1
2π

∫ R

−R
p+(ϕ(t))dt

and similarly

lim inf
N→∞

(log N)−1 Tr g(KN(ϕ)) ≥ 1
2π

∫ R

−R
p−(ϕ(t))dt.

On the other hand, by (5.3) we have∫ R

−R
(p+(ϕ(t))− p−(ϕ(t)))dt ≤ 2Rε.

Since ε > 0 is arbitrary, we find that

lim sup
N→∞

(log N)−1 Tr g(KN(ϕ)) = lim inf
N→∞

(log N)−1 Tr g(KN(ϕ))

=
1

2π

∫ R

−R
g(ϕ(t))dt,

as required.

Proof of Theorem 2.1. Throughout the proof, we fix a Lipschitz function g
with g(0) = 0 and we denote by ‖g‖Lip the norm of g in the Lipschitz class.
Our task is to extend (2.2) from compactly supported bounded symbols to all
real-valued symbols in L1(R). For ϕ = ϕ ∈ L1(R) we denote

MN(ϕ) = (log N)−1 Tr g(KN(ϕ)), M∞(ϕ) =
1

2π

∫ ∞

−∞
g(ϕ(t))dt.

Further, we set

M(ϕ) = lim sup
N→∞

MN(ϕ), M(ϕ) = lim inf
N→∞

MN(ϕ).

Now (2.2) is equivalent to

M(ϕ) = M(ϕ) = M∞(ϕ).

Let us discuss the continuity of the (nonlinear) functionals M(ϕ), M(ϕ), M∞(ϕ)
with respect to ϕ ∈ L1(R). Below ϕ1, ϕ2 are two real-valued symbols. By the
Lipschitz continuity of g, we have

|M∞(ϕ2)−M∞(ϕ1)| ≤
1

2π
‖g‖Lip‖ϕ2 − ϕ1‖L1(R),

and so M∞(ϕ) is Lipschitz continuous in ϕ ∈ L1(R).
Next, suppose ϕ1 ≤ ϕ2 for a.e. t ∈ R; then by (2.1) we have

KN(ϕ1) ≤ KN(ϕ2)
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in the quadratic form sense. By min-max, it follows that for all eigenvalues of
KN(ϕ1) and KN(ϕ2) (labelled in the non-decreasing order and counted with mul-
tiplicities) we have

λj(KN(ϕ1)) ≤ λj(KN(ϕ2)), j = 1, . . . , N

and therefore for all j

|g(λj(KN(ϕ2)))− g(λj(KN(ϕ1)))|
≤ ‖g‖Lip|λj(KN(ϕ2))− λj(KN(ϕ1))| = ‖g‖Lip(λj(KN(ϕ2))− λj(KN(ϕ1))).

Summing over j, we obtain

|Tr g(KN(ϕ2))− Tr g(KN(ϕ1))| ≤ ‖g‖Lip(Tr KN(ϕ2)− Tr KN(ϕ1))

= (log N)‖g‖Lip
1

2π

∫ ∞

−∞
(ϕ2(t)− ϕ1(t))dt = (log N)‖g‖Lip

1
2π
‖ϕ2− ϕ1‖L1(R) .

It follows that for ϕ1 ≤ ϕ2 we have

|MN(ϕ2)−MN(ϕ1)| ≤
1

2π
‖g‖Lip‖ϕ2 − ϕ1‖L1(R) .

Taking upper and lower limits, we finally conclude that

|M(ϕ2)−M(ϕ1)| ≤
1

2π
‖g‖Lip‖ϕ2 − ϕ1‖L1(R),

|M(ϕ2)−M(ϕ1)| ≤
1

2π
‖g‖Lip‖ϕ2 − ϕ1‖L1(R),

for ϕ1 ≤ ϕ2. Of course, the same is true for ϕ1 ≥ ϕ2. Thus, the functionals M(ϕ)
and M(ϕ) are Lipschitz continuous with respect to monotone convergence of ϕ

in L1(R).
Now it remains to approximate a given ϕ ∈ L1(R) by compactly supported

bounded symbols while using monotone convergence. This is an easy exercise,
we leave out the details.

6. PROOF OF THEOREM 2.2

Let ϕ be as in the hypothesis of the theorem and let ψ = ϕ1/2. Our first task
is to prove that the operators A(ψ) and B(ψ), formally defined by (4.2) and (4.3),
are well-defined and bounded. For B(ψ) this is an easy task, given by the same
calculation as in the proof of Lemma 5.2:∫ ∞

1
|(B(ψ) f )(x)|2dx = 2π

∫ ∞

1
|ψ̂ f (− log x)|2 dx

x
= 2π

∫ ∞

0
|ψ̂ f (−t)|2dt

≤ ‖ψ f ‖2
L2(R) ≤ ‖ψ‖

2
L∞(R)‖ f ‖2

L2(R),

and so B(ψ) is bounded if ψ is bounded.
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LEMMA 6.1. The operator A(ψ) : L2(R) → `2(N) is well defined by (4.2) and
bounded. On the set of finitely supported elements a ∈ `2(N), the adjoint is given by the
formula

(A(ψ)∗a)(t) =
1√
2π

ψ(t)
∞

∑
n=1

ann−
1
2−it

for a.e. t ∈ R. The factorisation

K(ϕ) = A(ψ)A(ψ)∗

holds true in the sense that on arbitrary finitely supported elements a, b ∈ `2(N), we
have

〈K(ϕ)a, b〉`2(N) = 〈A(ψ)∗a, A(ψ)∗b〉L2(R).

In particular, the operator K(ϕ), defined initially on finitely supported elements, extends
to a bounded positive semi-definite operator on `2(N).

Proof. The sequence (A(ψ) f )n, n ∈ N, is clearly well defined. By Lemma 5.3,
there exists a constant C > 0 independent of N, such that for all f ∈ L2(R),

N

∑
n=1
|(A(ψ) f )n|2 ≤ C‖ f ‖2.

It follows that A(ψ) f ∈ `2(N) and the operator A(ψ) is bounded. Computing the
adjoint and checking the factorisation of K(ϕ) is a direct calculation.

The following lemma is the only point in the paper where we use some
results from the theory of Hardy spaces of Dirichlet series.

LEMMA 6.2. The kernel of K(ϕ) is trivial.

Proof. First let a ∈ `2(N) and let f = f (s) be the corresponding Dirichlet
series

f (s) =
∞

∑
n=1

ann−s, Re s > 1/2.

The space of all such functions f is known as the Hardy space of Dirichlet series
H 2. It is known (see e.g. [9, Theorem 4.11]) that H 2 is embedded into the locally
uniform Hardy space in the half-plane Re s > 1/2, i.e.

sup
τ∈R

sup
σ>1/2

∫ τ+1

τ
| f (σ + it)|2dt ≤ C‖a‖2

`2(N).

In particular, the boundary values f ( 1
2 + it) := lim

ε→0+
f ( 1

2 + ε + it) exist and are

non-zero for a.e. t ∈ R. Moreover, if

fN(s) =
N

∑
n=1

ann−s,
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then for every τ ∈ R,

(6.1) lim
N→∞

∫ τ+1

τ
| f ( 1

2 + it)− fN(
1
2 + it)|2dt = 0.

Suppose A∗(ψ)a = 0; let us prove that a = 0. For a(N) = (a1, . . . , aN , 0, . . . ) we
have ‖A∗(ψ)a(N)‖L2(R) → ‖A∗(ψ)a‖L2(R) = 0 as N → ∞. By the formula for the
adjoint of A(ψ) in the previous lemma, this means that

lim
N→∞

∫ ∞

−∞
|ψ(t)|2

∣∣∣∣∣ N

∑
n=1

ann−
1
2−it

∣∣∣∣∣
2

dt = lim
N→∞

∫ ∞

−∞
|ψ(t)|2| fN(

1
2 + it)|2dt = 0.

Combining this with (6.1), we find that ψ(t) f ( 1
2 + it) = 0 for a.e. t ∈ R. Since by

our assumption ψ is not identically zero, we find that f ( 1
2 + it) = 0 on a set of a

positive measure; hence f must vanish identically and so a = 0.

LEMMA 6.3. The operator D(ϕ) = A(ψ)∗A(ψ)− B(ψ)∗B(ψ) is trace class.

Proof. Let us assume that CN is embedded in `2(N) in a natural way; then
the operator AN(ψ) can be regarded as an operator from L2(R) to `2(N). In
the same way, BN(ψ) can be regarded as an operator from L2(R) to L2(1, ∞).
From the boundedness of A(ψ) and B(ψ) it is clear that we have the convergence
AN(ψ) → A(ψ) and BN(ψ) → B(ψ) in the strong operator topology as N → ∞.
It follows that DN(ϕ) → D(ϕ) in the weak operator topology; here DN(ϕ) is de-
fined in (5.2). From Lemma 5.1 we know that DN(ϕ) converges to a trace class
operator; therefore, by the uniqueness of the weak limit, D(ϕ) is trace class.

Proof of Theorem 2.2. We first note that by Weyl’s theorem about the invari-
ance of essential spectrum under compact perturbations, the essential spectra of
A(ψ)∗A(ψ) and B(ψ)∗B(ψ) coincide. Similarly, by the Kato-Rosenblum theorem
on trace class perturbations, the a.c. parts of A(ψ)∗A(ψ) and B(ψ)∗B(ψ) are uni-
tarily equivalent. Next, we recall that we have already proved that

K(ϕ) = A(ψ)A(ψ)∗, T(ϕ) = B(ψ)B(ψ)∗.

It is well known that for any bounded operator X in a Hilbert space, the operators
X∗X|(Ker X)⊥ and XX∗|(Ker X∗)⊥ are unitarily equivalent. We conclude that the es-
sential spectra of K(ϕ)|(Ker K(ϕ))⊥ and T(ϕ)|(Ker T(ϕ))⊥ coincide. Since the kernels
of both T(ϕ) and K(ϕ) are trivial, we find that the essential spectra of K(ϕ) and
T(ϕ) coincide. Similarly, the a.c. parts of K(ϕ) and T(ϕ) are unitarily equivalent;
since T(ϕ) is purely a.c., we find that the a.c. part of K(ϕ) is unitarily equivalent
to T(ϕ).
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