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modynamics and statistical mechanics, together with the relationships between
their constituent parts. Based on this analysis, using the renormalization group
and finite-size scaling, we give a definition of a large but finite system and argue
that phase transitions are represented correctly, as incipient singularities in such
systems. We describe the role of the thermodynamic limit. And we explore the
implications of this picture of critical phenomena for the questions of reduction
and emergence.

Keywords scaling, renormalization, large systems, incipient singularities,
reduction, emergence.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 From Classical Thermodynamics to Scaling Theory . . . . . . . . . . . . . . . . . . . 6

2.1 The Structure of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Extensivity and the Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . 9
2.3 Thermodynamics with PTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Thermodynamics with Scaling Theory . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Dimensionality and Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 18

3 From Gibbsian Statistical Mechanics to the Renormalization Group . . . . . . . . . 18
3.1 Inter-Theory Connecting Relationships . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Correlation Function and Correlation Length . . . . . . . . . . . . . . . . . . . 20
3.3 Transfer-Matrix Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 The Renormalization Group Method . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Finite-Size Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 Renormalization Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The Thermodynamic Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 Phase Transitions in Infinite Systems . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Infinite Systems and the Renormalization Group . . . . . . . . . . . . . 40

King’s College London, Department of Mathematics, London WC2R 2LS, U.K. (for RK and
DAL); London School of Economics, Centre for Philosophy of Natural and Social Science, Lon-
don WC2A 2AE, U.K. (for RF and DAL). For correspondence: E-mail: david.lavis@kcl.ac.uk



2 David A. Lavis, Reimer Kühn and Roman Frigg
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1 Introduction

Thermodynamics and statistical mechanics coexist in a collaborative relationship
within the envelope of thermal physics. In many presentations of the subject, par-
ticularly in undergraduate texts, it is heuristically advantageous to intermingle
the macroscopic concepts of thermodynamics with the micro-picture provided by
statistical mechanics. And it is, of course, self-evident that statistical mechanics1

needs the basic structure of thermodynamics with inter-theory connecting relation-
ships defining the thermodynamic quantities like internal energy, temperature and
entropy. On the other hand, there are some advantages, both aesthetic and mathe-
matical, in producing an account of thermodynamics which makes no reference to
the underlying microstructure of the system, as would seem to be one of the aims
of (among others) the books of Giles (1964) and Buchdahl (1966) and the papers
of Lieb and Yngvason.2 For Buchdahl we have the first law implying the existence
of the internal energy function U and Carathéodory’s (1909) version of the second
law yielding the entropy S and temperature T ; for Lieb and Yngvason three sets
of axioms accomplish the same task. This, together with an account of the nature
of adiabatic processes (as described, for example, in Buchdahl 1966, Chaps. 5 and
6; Lieb and Yngvason 1999, Sect. 2.1; Lavis 2018, Sect. 2.1.1) provides the basic
framework into which the models of statistical mechanics are embedded.

This raises the question of how statistical mechanics and thermodynamics re-
late to each other. Attempts to answer this question run up against a problem. The
neat labels ‘statistical mechanics’ and ‘thermodynamics’ mask the fact that neither
theory is a monolithic bloc. Indeed, each has a complicated internal structure with
several layers of different theoretical postulates and assumptions. So the question
of how statistical mechanics and thermodynamics relate ought to be interpreted
as the more complex question of (a) what the internal structure of each theory is
and of (b) how the various parts of each theory relate to the various other parts
of the other theory. The complexity of the internal structures of both theories, as
well as the intricacy of their interrelations, seems to have been somewhat under
appreciated in the philosophical literature on the subject, and so the first aim of

1 At least in its application to physics, rather than to its more modern application to soci-
ological and geographical problems.

2 Lieb and Yngvason (1999) is the most comprehensive account of their work, with briefer
versions in Lieb and Yngvason (1998) and Lieb and Yngvason (2000). The extension to non-
equilibrium is given in Lieb and Yngvason (2013).
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this paper is to present an in-depth analysis of the anatomy of both theories and
the connections between their parts.3
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Fig. 1 Schematic representation of the relationship between thermodynamics and statistical
mechanics.

Fig. 1 provides a schematic advance summary of the analysis that we develop
in this paper. It sees statistical mechanics and thermodynamics as parallel devel-
opments, each decomposed into separate levels representing the stages of theory-
based development in which features are added to the system. The cross-interactions
between the levels in the two columns contain interventions integral to this devel-
opment. On the left are the levels for thermodynamics, as described in detail in
Sect. 2. These levels are related to each other by adopting special assumptions, be-
ginning at the bottom with basic thermodynamic theory (labelled TD1). Adding
the extensivity assumption to this theory takes us to the next level, the density

representation of thermodynamics (labelled TD2). Augmenting TD2 with the

3 For surveys of the philosophical discussions about statistical mechanics and thermody-
namics see, for instance, Sklar (1999), Uffink (2007) and Frigg (2008).
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notion of phase transitions and critical phenomena (PTCP) gives thermodynam-

ics with PTCP (labelled TD3). Finally, supplementing TD3 with a version of
the Kadanoff scaling hypothesis leads us to thermodynamics with scaling theory

(labelled TD4).
The parallel development for statistical mechanics is represented on the right

of Fig. 1, as described in detail in Sect. 3. The picture here is a little more com-
plicated, involving, as we explain in our discussion, three different paths. At the
bottom is the fundamental theory, which we here take to be Gibbsian statisti-

cal mechanics (labelled SM1).4 Assuming that the systems to which the theory
is applied are large leads us to the next layer, large statistical mechanical sys-

tems (labelled SM2). This marks a branching point in the structure of the theory:
three different additions can be made to SM2, resulting in three different branches.
Adding the thermodynamic limit to SM2 leads to the statistical mechanics of in-

finitely large systems (labelled SM3). Adding renormalization group techniques
to SM2 leads to the renormalization group approach to statistical mechanics

(labelled SM4). Finally, adding the analysis of phase transitions for finite systems5

to SM2 leads to the statistical mechanics of finite-system phase transitions

(labelled SM5).

It is our aim in this work to keep the developments of thermodynamics and sta-
tistical mechanics as separate as possible, in order to make visible the internal
structure of each separate theory. However, as indicated above, on close exami-
nation it becomes evident that there are in fact some ‘messages’, both implicit
and explicit, sent from statistical mechanics (FSM), that is to say from the mi-
crostructure, to thermodynamics, which provides the macrostructure. These are
spelled out in FSM––1, FSM––2, FSM––3, FSM––4. In the other direction the connect-
ing relationships from thermodynamics (FTD), labelled FTD––1, FTD––2, FTD––3,
identify quantities in statistical mechanics with thermodynamic variables. As we
shall see FSM––1 also plays a role in the connecting process and can be seen as in
dialogue with FTD––3. The remaining interventions FSM––2, FSM––3, FSM––4, can
be viewed as an aid to the clarification of a number of important issues. We discuss
these links between elements of both theories in the appropriate places in Sects. 2
and 3.

Much of the recent interest in the relationship between thermodynamics and sta-
tistical mechanics has concentrated on PTCP. It is the second aim of this paper
to revisit the issue of PTCP in the light of our analysis of the internal structure of
the two theories and their interrelations. Doing so will lead us to some unexpected,
and we think important, conclusions.

In the modern theory of critical phenomena, dating from the middle of the
1960s,6 critical exponents, which classify the type of singular behaviour in the
approach to a critical region, play an important role. In our development of ther-
modynamics in Sect. 2 scaling theory is the final destination with scaling laws
relating these critical exponents. However, as already indicated and as described

4 We set aside Boltzmannian statistical mechanics. For discussion of the relation between
Gibbsian and Boltzmannian statistical mechanics see Lavis (2005) and Frigg and Werndl
(2019).

5 Where, as described in Sect. 4, phase transitions are defined in a way which avoids the
involvement of singularities.

6 For an historic account see Domb (1985).
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below, thermodynamics is a structured shell into which particular models are em-
bedded, either by the assumption of a phenomenological form for the entropy
function or from statistical mechanics. In the absence of such an embedding it is
not possible to calculate values for critical exponents, nor to discuss universality.
This is the idea (Kadanoff 1976) that all critical situations7 can be divided into
universality classes, characterized by the values of their critical exponents and
differentiated by a small number of properties of which the most important are
the (physical) dimension d of the system and the symmetry group of the order
parameter. The first, but not the second, of these plays an important role in our
discussions,8 in particular in the case of the Ising model, which we shall use as an
illustrative example throughout this work. This, the most well-known and thor-
oughly investigated model in the statistical mechanics of lattice systems, is briefly
described in Appen. B. With the list of critical exponents given there for d := 2,
d := 3 and d ≥ 4, it provides an example of the dependence of these exponents
and hence the universality class on the dimension of the system. The dimension d
is also of importance, in our discussion of scaling theory in Sect. 2.4, of finite-size
scaling in Sect. 3.4.2 and of phenomenological renormalization in Sect. 3.4.3 (c).

These observations concerning universality classes together with the inter-theory
connecting relationships FSM––2, FSM––3, FSM––4, provide the impetus to investi-
gate, and clarify a number of important issues relating to PTCP. These are (not
necessarily in the order in which they arise in the discussion):

(i) Are infinite systems really necessary in thermodynamics or statistical me-
chanics and:
(a) If so what for?
(b) If they are, is this solely because extensivity is not exactly true in most

cases in statistical mechanics?
(c) Is the thermodynamic limit irrelevant to thermodynamics or has it al-

ready been implicitly applied?9

(d) Is the thermodynamic limit in statistical mechanics necessary for the
implementation of the procedures of the renormalization group?

(e) Is there a meaningful way to represent PTCP in finite systems?
(ii) Given that, in thermodynamics, critical behaviour involves discontinuities in

densities and singularities in response functions, is this necessarily still the
case in statistical mechanics?

(iii) Are the ideas of enrichment and substantiation helpful in describing the
relationship between thermodynamics and statistical mechanics?

(iv) Where do reduction and emergence feature in the accounts of the relationship
between thermodynamics and statistical mechanics?

As indicated, in the title of this work and by the progression between levels in the
statistical mechanical column in Fig. 1, we will discuss these issues with a special
focus on large systems and infinite systems. In particular we shall address the
question as to where realism is to be found, in the study of large systems, because

7 Of which there may be more than one in any model.
8 For an account of the role of the order parameter in critical phenomena see, for example,

Binney et al. (1993, Sect. 1.2).
9 It is an interesting observation that discussions of PTCP in the context purely of ther-

modynamics (e.g. Pippard, 1957, Chap. 9; Buckingham, 1972) rarely if ever feel the need to
invoke or even refer to the thermodynamic limit.
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real systems are finite but large (in the sense that they typically have ∼ 1023 con-
stituents), or in the thermodynamic limit of an infinite system, because singular
behaviour (in susceptibilities and compressibilities) is believed to be experimen-
tally observed, and in theories this arises only in the thermodynamic limit. This
broad categorization of large systems is refined in Sect. 4. The process of taking
the thermodynamic limit is the determination of the asymptotic properties of a
system as it becomes infinitely large. In general this will involve taking d limits
in each of the linear dimensions of the system and such a d-dimensionally infinite
system, which where appropriate we call a fully-infinite system, is implicitly the
object of investigation by scaling theory in Sect. 2.4.10 However, relevant to our
discussions is the case of a partially-infinite system, where the limit is taken in
only d < d dimensions. Here it is d rather than d which should count for the critical
behaviour as the dimension of the system. The idea underlying our approach to
PTCP is that reality lies with fully-finite systems (d = 0) and that the judgment
as to whether the large system will show behaviour which in practical terms is
indistinguishable from singular behaviour is based on comparing the behaviour of
systems of ever increasing size to see whether their properties indicate convergence
towards those of the infinite system. In principle, as described in Sect. 4 this lim-
iting process is in all d dimensions. In practice, as we see in our discussion of d = 2
transfer matrix calculations in Sect. 3.3, it also has relevance to the case where one
limit has already been taken and increasing size is in the remaining dimension.

Thus, as we have indicated, Sects. 2 and 3 trace the steps in our developments
of thermodynamics and statistical mechanics with the inter-theory connections
between them; with Sect. 3.5 addressing different proposed resolutions to the con-
tradiction between the finiteness of real systems and the perceived necessity of
phase transitions being portrayed as singularities in infinite systems. Sect. 3.6 dis-
cusses the proposal of Mainwood (2006) for representing the occurrence of phase
transitions in finite systems. Using the account of finite-size scaling in Sect. 3.4.2
we propose in Sect. 4 our alternative quantitative account for phase transitions in
finite large systems. Sect. 5 contains some after-thoughts on enrichment, substan-
tiation, reduction and emergence and our conclusions are in Sect. 6.

2 From Classical Thermodynamics to Scaling Theory

Accounts of thermodynamics range from those designed for the practical needs
of engineers to those which aim for a degree of mathematical rigour. However,
all share some common features and assumptions some of which are at variance
with the insights gained in statistical mechanics. As indicated above, we flag these
differences in the form of messages from statistical mechanics (FSM––1 to FSM––4).

10 Underlying this description is, of course, the question of the existence of the thermodynamic
limit and whether it depends on the boundary conditions of the erstwhile finite system. For
a discussion of these questions see, for example, Griffiths (1964), Griffiths (1972, 10–41) and
Ruelle (1999, Chaps. 2 and 3).
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2.1 The Structure of Thermodynamics

All accounts of thermodynamics contain (in some form or another) the first law,
which establishes the existence of the internal energy function U and the second
law which establishes the existence of the entropy S and temperature T . Details are
not necessary for the present discussion. The only thing we need to carry forward is
the fundamental thermodynamic differential form. Given a thermodynamic system
with:

(i) One mechanic extensive/intensive11 conjugate variable pair (X, ξ), where X
could stand for the volume V or magnetic momentM with conjugate intensive
variables, which in the case of V is the (negative) pressure −P and in the
case of M is the magnetic field H;

(ii) A (dimensionless) extensive variable N which counts the number of units of
mass in the system with a conjugate (intensive) energy µ, called the chemical
potential, carried by each unit of mass;12

for a differential change in the space Ξ0 of the variables (U,X,N) the differential
change in the entropy S satisfies13

dS = ζ1dU − ζ2dX − ζ3dN, (2.1)

where

ζ1 := ε/T, ζ2 := ξ/T, ζ3 := µ/T, (2.2)

are couplings. It is clear that the couplings are intensive and dimensionless. That
the variables (U,X,N) ∈ Ξ0 appear as differentials on the right of (2.1) should
be understood as signifying that they are independent variables. This means that
the system is thermally, mechanically and chemically isolated with U , X and N

fixed by an experimenter. Legendre transformations can be used to replace U and
X successively as independent variables by ζ1 and ζ2. Firstly, with Helmholtz free
energy

Φ1 := ζ1U − S, (2.3)

11 The extensive variables U , X and N scale with the size of the system, intensive variables
T , ξ and µ are invariant with respect to such scaling.
12 In most presentations of thermodynamics N is simply taken to be the number of particles
in the system. Our usage is designed to avoid reference to the microstructure of the system
and to allow N to have non-integer values.
13 At this point it is convenient:

(i) To clarify the dimensionality of the thermodynamic variables. It is straightforward to
show that, by scaling with respect to suitable constants, T and ξ can be made of the
dimensions of energy (J := m2kg s−2) and U , S and X made dimensionless. In the case
of U this is achieved by factoring out an energy constant ε > 0. This is the field–extensive
variable representation of Lavis (2015, Sect. 1.1), where scaling for S and T is effected
using Boltzmann’s constant kB. The further change to the coupling–extensive variable
representation is achieved by taking ratios of ε, ξ and µ with respect to T as shown in
(2.2).

(ii) To observe that the generalization to more than one mechanical variable pair is straight-
forward.

(iii) To emphasise that this differential form should not be understood as some sort of equi-
librium process in the space Ξ0 (Lavis 2018).
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we have

dΦ1 = Udζ1 + ζ2dX + ζ3dN, (2.4)

so that the independent variables are (ζ1, X,N) ∈ Ξ1. The system is in contact
with a source of thermal energy at temperature T = ε/ζ1. Secondly, with Gibbs
free energy

Φ2 := ζ1U − ζ2X − S, (2.5)

we have

dΦ2 = Udζ1 −Xdζ2 + ζ3dN, (2.6)

so that the independent variables are (ζ1, ζ2, N) ∈ Ξ2. The system is now, through
ζ2, also in mechanical contact with its environment, be it a fluid system subject
to a pressure P or a magnetic system subject to a field H. The couplings ζ1 and
ζ2 are referred to as the thermal and field (or mechanical) couplings respectively.

It is tempting to suppose that this process could be taken one step further,
interchanging the roles of N and ζ3. However, it is not difficult to see that the
Legendre transformation implementing this would involve a free energy Φ3 which
is constant and can thus without loss of generality be taken to be identically zero.
A viable form of thermodynamics must retain (at least) one extensive variable
(here we choose that to be N , although we could have used X) which registers the
size of the system.

Observing that in thermodynamics the uncontrolled variables remain constant
when the corresponding controlled variables are held constant, this is now the
point for the first message from statistical mechanics:

FSM–1:Unlike in thermodynamics, extensive variables in statistical mechanics
that are uncontrolled quantities fluctuate even when the corresponding controlled
variables are kept constant. (In Ξ1 the energy corresponding to the internal energy
U fluctuates, and in Ξ2 the variable corresponding to X, be it the volume or the
magnetic moment, fluctuates. This is born out by experiment (MacDonald 2013).)
The variances of the fluctuations are given in terms of response functions and
are O(N). This means that standard deviations of fluctuations are O(

√
N) and

become negligibly small compared to O(N) variables only in the thermodynamic
limit N → ∞.

For fixed N let (U,X,N) A→ (U ′, X ′, N) denote an adiabatic process. It can be
shown (Lavis 2019), from Carathéodory’s first version of the second law
(Carathéodory 1909),14 that thermodynamic systems are of four types accord-
ing to whether the adiabatic process gives U ≤ U ′ or U ≥ U ′ and S ≤ S′ or
S ≥ S′ corresponding, respectively, to the possibilities of the temperature and
heat capacity being positive or negative.15 Standard accounts of thermodynamics
concentrate solely on the case where both internal energy and entropy increase,

14 Or from some extensions to the approach of Lieb and Yngvason (1999).
15 The Clausius version of the second law needs modification to include negative tempera-
tures (Ramsey 1956; Landsberg 1977) and both the Kelvin-Planck and Clausius versions need
modification to accommodate negative heat capacities (Lavis, op. cit.).
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which is the situation where both temperature and heat capacity are positive. We
shall restrict out attention to that case.16

2.2 Extensivity and the Thermodynamic Limit

Departing from the formulation TD1 of the structure of thermodynamics we ascend
the left-hand column in Fig. 1, where it is now useful to consider the embedding
of particular models. In this context they are of two types, ones which posit a
phenomenological equation of state and ones derived from some microstructure
according to the procedures of statistical mechanics. Most examples in the first
category, the perfect gas equation, the Weiss-field equation for ferromagnetism
and the van der Waals equation17 introduce the models in terms of an equation
relating the mechanical variable pair (X, ξ) and N to the temperature. However, it
is more consonant with our approach to begin with a defining relationship for the
entropy surface S(U,X,N), from which T , ξ and µ, or equivalently the couplings
ζ1, ζ2 and ζ3 can be calculated using (2.1). Thus:

• For the perfect gas

S(U, V,N) := Nc+ 3
2N ln

(
U
N

)
+N ln

(
V
N

)
, (2.7)

for some constant c,18 giving19

T = 2Uε
3N , P = NT

V . (2.8)

• For the van der Waals fluid

S(U, V,N) := Nc+ 3
2N ln

(
U
N + N

V

)
+N ln

(
V
N − 1

)
, (2.9)

giving

T = 2
3ε

(
U
N + N

V

)
, P = NT

V−N − εN2

V 2 . (2.10)

The entropy (2.7) is a concave function of (U, V ), but for (2.9) it is necessary to take
the concave envelope. This is, of course, equivalent in the case of the van der Waals
(1873) fluid and other phenomenological equations of state to the application of
Maxwell’s equal areas rule (Maxwell 1875), which avoid the inclusion of unstable
states and leads to a first-order gas-liquid phase transition (see Sect. 2.3).

It will be noted that, for both the perfect gas and van der Waals fluid with
densities u := U/N and v := V/N , there exists an entropy density s satisfying

s :=
S(uN, vN,N)

N
= s(u, v), (2.11)

16 It is a matter of dispute (see, for example, Lavis 2019, and references therein) whether
statistical mechanical models support the existence of negative temperatures, and the experi-
mental evidence is also questioned. The same is the case for negative heat capacities.
17 And a number of lesser known relationships like the Redlich–Kwong and Dieterici equations
of state.
18 Which can be evaluated using statistical mechanics but whose value is unimportant here.
19 Remember that ζ2 := −P/T .
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for all N > 0, which avoids any reference to the size N of the system. But, of course,
these are rather special models and the question arises as to whether entropy, in
general, when X replaces V and x := X/N replaces v, satisfies

s :=
S(uN, xN,N)

N
= s(u, x), ∀ N > 0. (2.12)

For this question the following result is important:

Theorem 1: (2.12) is true iff

S(λU, λX, λN) = λS(U,X,N), ∀ λ > 0, (2.13)

is true.

Proof That (2.12) follows from (2.13) is easily seen by taking λ := 1/N and defining
s(u, x) := S(u, x, 1).

In the reverse direction, this last relationship s(u, x) = S(u, x, 1) in fact follows
from (2.12) by setting N = 1. Then from (2.12) S(U,X,N) = NS(U/N,X/N, 1)
and again setting λ := 1/N recovers (2.13). ⊓⊔

Equation (2.13) is the condition that S is an extensive function and it is easily
shown from (2.3) and (2.5) that the free energies Φ1 and Φ2 are extensive functions
if and only if the entropy is an extensive function. But, as pointed out by Menon
and Callender (2013, Sect. 2) and show in Sect. 3.3,

FSM–2:The extensivity of entropy and of free energies assumed in thermodynam-
ics is not exactly true for all systems in statistical mechanics, but is approximately
true for large systems.

For entropy the thermodynamic limit in statistical mechanics, assuming it exists,20

is given by

lim
N→∞

S(uN, xN,N)

N
= s(u, x). (2.14)

But for thermodynamics the corresponding formula is (2.12), without the need
for the limiting process. Exact extensivity in thermodynamics can be regarded as
unnecessary or trivially true.

Differentiating (2.13) with respect to λ, and substituting from (2.1) gives

S = ζ1U − ζ2X − ζ3N, (2.15)

when λ is put equal to 1. From (2.1) and (2.15),

udζ1 − xdζ2 − dζ3 = 0 , (2.16)

20 See footnote 10.
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which is a version of the Gibbs-Duhem relationship. In terms of densities (2.15)
becomes

s = ζ1u− ζ2x− ζ3, (2.17)

and substituting into (2.1)–(2.6)

ds = ζ1du− ζ2dx− (s− ζ1u+ ζ2x+ ζ3)dN/N

= ζ1du− ζ2dx. (2.18)

Then, for free-energy densities ϕ1 := Φ1/N and ϕ2 := Φ2/N ,

ϕ1 = ζ1u− s = ζ2x+ ζ3, dϕ1 = udζ1 + ζ2dx, (2.19)

ϕ2 = ζ1u− ζ2x− s = ζ3, dϕ2 = udζ1 − xdζ2. (2.20)

These are the fundamental size-free thermodynamic relationships in terms of den-
sity variables and density functions. They are exact in thermodynamics but ap-
proximately true only for large systems in statistical mechanics. The question of
large systems and the thermodynamic limit in statistical mechanics is treated in
Sects. 3.3, 3.5 and 4.

2.3 Thermodynamics with PTCP

Having arrived at a formulation of thermodynamics in terms of densities and cou-
plings the modern theory of PTCP is largely concerned with an investigation and
classification of the singular properties of systems (see e.g. Buckingham 1972).
Specifically the singularities which could occur on the hypersurface of the entropy
density, or the appropriate free-energy density, which defines the state of the sys-
tem. However we should be forewarned that the account of statistical mechanics
in Sect. 3 concludes that:

FSM–3:The association of PTCP with singularities in the entropy and free-energy
densities which is made in thermodynamics can be made in statistical mechanics
only for infinite systems.

The association of PTCP with singularities in both TD3 and SM3 leads to a
tendency for them to be mistakenly conflated. (We shall discuss this in more
detail in relation to limit reduction in Sect. 5.1.)

We now consider three thermodynamic spaces, Ξ̃0, Ξ̃1 and Ξ̃2, which correspond
respectively to the spaces Ξ0, Ξ1 and Ξ2 defined in Sect. 2.1 except that now den-
sities replace extensive variables. In reverse order, since this is more heuristically
transparent:

(i) In the space Ξ̃2 of the vector ζζζ := (ζ1, ζ2) the free-energy density ϕ2(ζ1, ζ2)
is a surface with normal in the direction (1,−u, x) and phases are separated
by lines of transitions. The simplest example is a line L⋆ across which there
is a discontinuity of the gradient ∇ϕ2 = (u,−x); an isothermal section (ζ1
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t ζ∗
2

φ∗

2

ζ2

φ2

Fig. 2 A first-order transition showing as a discontinuity of slope in an isothermal section
(ζ1 = ζ⋆1 ) of ϕ2 = ζ3 plotted against ζ2.

C⋆

φ
(⋆−)
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Fig. 3 A first-order transition showing as the linear section C⋆ in an isothermal section of the
ϕ1 surface.
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x(⋆−) x(⋆+) x
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ζ∗2

Fig. 4 A first-order transition showing as a horizontal part C⋆ of an isotherm of ζ2 plotted
against x together with the isotherm through the critical point C. As ζ1 varies the ends of C⋆

trace the boundary of the coexistence region (shaded).

θ1

θ2

ζζζc := (ζ1c, ζ2c)

ζ2 = ζ2(ζ1, xc)

ζ2 = ζ⋆
2
(ζ1)

ζ1

ζ2

Fig. 5 A critical point (ζ1c, ζ2c) in Ξ̃2. The first-order transition (coexistence curve) ζ2 =
ζ⋆2 (ζ1) is represented by a broken line and the critical isochore, along which the density x takes
its critical value x = xc by a dotted line. The directions of the axes of the two relevant scaling
fields at the critical point, as described in Sect. 2.4, are shown.
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constant) of this surface is shown in Fig. 2. The point ζζζ⋆ := (ζ⋆1 , ζ
⋆
2 ) ∈ L⋆,

with ζ⋆3 = ϕ2(ζζζ
⋆). L⋆ can be regarded as representing the coexistence of two

phases with different densities. As ζζζ is varied across L⋆ through ζζζ⋆ there is
a first-order phase transition where the densities change discontinuously.
In the case of both fluid and magnetic systems a first-order transition will
involve a discontinuity of the internal energy density u. In a fluid system there
will be a discontinuity of (physical) density as the system changes between
a liquid and a gas. In a magnetic system there will be a discontinuity in the
magnetization (or equivalently the magnetization density) as shown for the
Ising model in Fig. 9.

(ii) In the space Ξ̃1 of the vector (ζ1, x) the free-energy density ϕ1(ζ1, x) is a sur-
face convex with respect to x with normal in the direction (1,−u,−ζ2), as
shown by an isothermal (ζ1 = ζ⋆1 ) section in Fig. 3. A first-order transition
corresponds to the part of the isotherm, labelled C⋆, which is linear with
respect to x. At the ends of (ζ⋆1 , x

(⋆+) and (ζ⋆1 , x
(⋆−)) of C⋆ all three cou-

plings ζ1, ζ2 and ζ3 have the same values as is otherwise shown in Fig. 2.
Typically, as ζ⋆1 varies along L⋆ the ends of C⋆ converge to a critical point

where the system exhibits a second-order transition. There the densities
are continuous but one or more of the response functions (that is to say the
curvature components of the free-energy surface) is singular.21 A projection
of the linear coexistence region in Fig. 3 is shown in Fig. 4, and the situation
where the corresponding transition line L⋆ terminates is shown in Fig. 5.

(iii) The space Ξ̃0 of the vector (u, x), in which the entropy density s(u, x) is a

concave surface is similar to that for ϕ1(ζ1, x),
22 except that now the lin-

ear generator C⋆ of the coexistence region has endpoints (u(⋆+), x(⋆+) and
(u(⋆−), x(⋆−)). As ζζζ⋆ varies along L⋆, C⋆ traces out the boundary of a ruled23

region on the entropy surface with C⋆ converging in one direction to the
critical point described in (ii).

Critical exponents at the critical point are associated with the curvature of the
coexistence curve in Ξ̃1 and the coexistence line in Ξ̃2, and the asymptotic singular
behaviour of the (per particle) heat capacities cx and cξ at constant density and
field respectively and a response function φT , which in a fluid corresponds to the
compressibility and in a magnet to the susceptibility. It will also be useful to
include the coefficient of thermal expansion αξ. These are defined together with
their critical exponents in Appen. A. The heat capacities cx and cξ are normally
positive and from (A.4) it follows that, if φT > 0, then cξ dominates both cx
and α2

ξ/φT as T → Tc. For the critical exponents σ and σ′ characterizing the
singularity of cx on approach to the critical point from above and below Tc, and
the analogously defined critical exponents α and α′ characterizing the singularity
of cξ, and γ and γ′ characterizing the singularity of φT , as well β characterizing
the curvature of the coexistence curve, this means that

σ ≥ α , σ′ ≥ α′, σ′ + 2 β+γ′ ≥ 2 . (2.21)

21 Such critical points can also occur as lines. A line of first-order transitions can terminate
on a line of second-order transitions at a point called a critical end-point, or be continued as
a line of second-order transitions at a point called a tricritical point.
22 That convexity is replaced by concavity is clear from the negative sign of s in (2.19).
23 A ruled surface (like, for example, the surface of a cylinder) is one densely covered by a
set of straight lines.



14 David A. Lavis, Reimer Kühn and Roman Frigg

The condition φT > 0 is true for a magnetic system and in this case the third
inequality in (2.21) was first established by Rushbrooke (1963). The stronger con-
dition

α′ + 2 β+γ′ ≥ 2 (2.22)

was obtained by Griffiths (1965) for both magnetic and fluid systems using the
convexity properties of the free energy. In fact it is a consequence of scaling theory
(Sect. 2.4) that, for systems with a special symmetry which is present in magnetic
systems where, as for the Ising model in Appen. B, the coexistence curve coincides
with the zero field axis, σ′ = α′ and inequalities (2.21) and (2.22) become identical.
Otherwise σ′ = γ′. Griffiths (1965) also derived a number of other inequalities. In
particular

γ′ ≥ β(δ− 1), (2.23)

where δ, given by (A.8), is the exponent characterizing the (critical) equation of
state.

2.4 Thermodynamics with Scaling Theory

In view of our aim to keep as distinct as possible the developments of thermo-
dynamics and statistical mechanics, we choose here to present scaling theory as
a mathematical axiomatization of the properties of PTCP in thermodynamics.
Although, as we see below, it has deep roots in, and is substantiated by, statis-
tical mechanics, in particular renormalization group theory,24 where, in almost
all cases,25 the realization of this picture of scaling involves approximations and
yields scaling forms of only local validity.

Originating in the work of (among others) Widom (1964, 1965) and Kadanoff
(1966) our approach is essentially that of Hankey and Stanley (1972). Given here
in brief outline26 it is sufficient for an analysis of power-law singularities in the
critical region.27

Suppose we have the free-energy density of a system in terms of its maximum
number of independent couplings. In the discussion above that maximum number
was two, but for the moment we generalize to n couplings so the free-energy
density is ϕn(ζζζ), where ζζζ := (ζ1, ζ2, . . . , ζn), which is represented as a hypersurface
of dimension n in the (n+1)-dimensional space (ϕn, ζζζ). Now suppose that there is
a critical region C of dimension n−s. Although ϕn(ζζζ) itself is continuous and finite
across and within C it may have discontinuous first-order derivatives, meaning that
C is a region of phase coexistence with a first-order transition when, as is shown
in Fig. 2, the phase point crosses through C, or it may have singular second-order

24 The assumption (2.24) that, near to a critical region, the free-energy density can be divided
into smooth and singular parts is justified in terms of the form of the Hamiltonian (Hankey
and Stanley 1972, p. 3519).
25 An exception being the one-dimensional Ising model (see e.g. Lavis 2015, Sect. 15.5.1).
26 For a more detailed account see, for example, Lavis (2015, Chap. 4).
27 For statistical mechanical systems like the Ising model with d = 2 which exhibit logarithmic
singularities, it has been shown by Nightingale and ’T Hooft (1974) that a slight generalization
needs to be used.
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derivatives in C, as is the case in the situation described above where a line of
first-order transition terminates at a critical point.28

With respect to some origin ζζζ◦ ∈ C a system of orthogonal curvilinear coordi-
nates θ1, θ2, . . . , θn called scaling fields is constructed. These are smooth functions
of the couplings which parameterize C so that θ1 = · · · = θs = 0 within C. The
scaling fields in this subset are called relevant with those in the remaining subset
θs+1, θs+2, . . . θn, called irrelevant, acting as a local set of coordinates within C.29
The free-energy density ϕn(ζζζ) is separated into two parts

ϕn(ζζζ) = ϕsmth(ζζζ) + ϕsing(△ζζζ) , (2.24)

where ϕsmth(ζζζ) is a regular function and, with △ζζζ := ζζζ − ζζζ◦, ϕsing(△ζζζ), for which
ϕsing(000) = 0, contains all the non-smooth parts of ϕn(ζζζ) in C. It is now assumed
that ϕsing(△ζζζ) can be re-coordinated in terms of the scaling fields so that it is a
generalized homogeneous function satisfying the Kadanoff scaling hypothesis30

ϕsing(λ
y1θ1, . . . , λ

ynθn) = λdϕsing(θ1, . . . , θn) , (2.25)

for all real λ > 0, where d is the physical dimension of the system, and yj , j =
1, 2, . . . , n are scaling exponents satisfying

yj > 0, j = 1, . . . , s, yj < 0, j = s+ 1, . . . , n. (2.26)

The exponents in the first subset are, like the corresponding scaling fields, called
relevant and those in the latter subset are called irrelevant.31 Of the assumptions
made here, that scaling fields can be derived is not particularly demanding; at the
very least it is usually straightforward to obtain their linear parts near to the
origin. And the division of the free-energy density (2.24) into smooth and singular
parts has very little content until we explore in more detail the consequences of
the scaling hypothesis (2.25) which we now do for the case of a critical point
terminating a coexistence curve.

There are many general accounts of scaling theory, treating a variety of critical
phenomena. Here we restrict attention to the case of a critical point terminating
a line of first-order transitions, as shown in Fig. 5. So we have two critical regions.
The first is the critical point with two relevant scaling fields and scaling exponents
with axes chosen perpendicular to and along the coexistence curve. For this we
shall show that the critical exponents defined in Appen. A, can be expressed in

28 Or there may be discontinuities or singularities in higher-order derivatives; but we shall
for simplicity concentrate solely on cases involving first- and second-order derivatives.
29 ‘Relevance’ here refers to their role in an understanding of the nature of the criticality in
C.
30 The physical dimension d of the system is not something which plays a significant role
in most of thermodynamics. It is included here to bring compatibility with the discussion of
statistical mechanics. It could be removed by redefining λ.
31 We have for the sake of simplicity excluded the possibility of a zero exponent; such an
exponent is called marginal. Marginal exponents are associated in renormalization group the-
ory with an ‘underlying’ parameter of the system, often resulting in lines of fixed points as
we see in our treatment of the one-dimensional Ising model in Sect. 3.4.3. It will also be as-
sumed that no exponent is complex. In practice this is not always the case (see e.g. Lavis 2015,
Sect. 15.5.2), but situations arising from complex exponents are not difficult to interpret in
particular examples.
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terms of the two scaling exponents. The second is the coexistence curve which
has one relevant and one irrelevant scaling field constructed with respect to some
chosen origin (not shown in Fig. 5) on the coexistence curve.

For the sake of further simplifying our presentation we restrict attention to
a simple ferromagnetic system with ξ := H, the magnetic field, X := M, the
magnetization and x := m = M/N , the magnetization density. The coupling ζ1 is
the thermal coupling so we relabel it as ζT = ε/T and ζ2 is the field coupling which
we relabel as ζH = H/T . This model, of which an example in statistical mechanics
is the Ising model described in Appen. B, has the advantage of having the special
symmetry that the coexistence curve lies along the zero-field axis in an interval
T ∈ [0, Tc] with Hc = mc = 0. This axis with T > Tc is the critical isochore. Thus
(referring to Fig. 5) the coexistence curve lies along the ζH = 0 axis in an interval
[ζTc,∞). This same phase diagram for the Ising model, now plotted with respect
to the temperature T and the magnetic field H, is shown in Fig. 8.

We consider separately the critical point and the coexistence curve, beginning with
the critical point where we can take the scaling fields to be

θT := ζT − ζTc = ε
(
1
T − 1

Tc

)
≥ 0, θH := ζH = H

T . (2.27)

The scaling hypothesis (2.25) becomes

ϕsing(λ
yT θT , λ

yHθH) = λdϕsing(θT , θH) , (2.28)

and, from (2.24) and (A.2),

m = −∂ϕsmth

∂ζH
−
∂ϕsing
∂θH

, (2.29)

∂ϕsing
∂θH

(λyT θT , λ
yHθH) = λd−yH

∂ϕsing
∂θH

(θT , θH). (2.30)

Since mc = 0, ∂ϕsmth/∂ζH = 0 at the critical point. For an approach to the critical

point along the coexistence curve θH = 0 and setting λ := θ
−1/yT
T in (2.30) and

substituting into (2.29) gives

m ≃ −θ(d−yH)/yT
T

∂ϕsing
∂θH

(1, 0) ∼ (Tc − T )(d−yH)/yT , (2.31)

which, when comparing with (A.6) establish the identification

β = (d− yH)/yT . (2.32)

At this point we could carry out a similar procedure for the response functions
in (A.3) and (A.4) to determine the critical exponents defined in (A.5)–(A.9).
However, the analysis can be shortened by a closer examination of the way that
the expression (2.32) for β was obtained. From this we see that the scaling exponent
yH in the numerator indicates that differentiation was once with respect to ζH.
And that the approach was in the direction of varying ζT is indicated by the scaling
exponent yT in the denominator. So with the same reasoning it follows from (A.8)
that

δ = yH/(d− yH), (2.33)
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and bearing in mind that the analysis yields singularities for response functions so
ϕsmth can play no role, from (A.7),

γ = γ′ = (2yH − d)/yT . (2.34)

When we come to consider cξ := cH, given by (A.3), the situation becomes a
little more complicated, since there are three terms and we need to know which
dominates as the critical point is approached. This will depend on the relative
magnitudes of yT and yH and it can be shown (Lavis, ibid, Sect. 4.5.1) that, in
general for a critical point terminating a line of first-transitions, the exponent asso-
ciated with approaches tangential to the coexistence curve is smaller (less relevant)
than that associated with an approach at a non-zero angle to this curve. These
are called respective weak and strong approaches and in the present context we
have yH > yT , these being respectively the weak and strong exponents. Returning
to the formula for cH in (A.3) we see that the third term on the right-hand side
would be the one that dominates meaning that, from (A.9), σ = σ′ = γ. However,
because of the symmetry of the magnetic model ζ2c := ζHc = 0 and the only
remaining term is the first, meaning that

σ = σ′ = (2yT − d)/yT . (2.35)

Finally we need to determine the asymptotic form for cx := cm using (A.4). Here
the situation need a more detailed analysis, when it can be shown (Lavis, ibid, Sect.
4.5.4) that, whether or not the magnetic symmetry applies cancellation of coefficients
leads to an asymptotic form equivalent to that of a second-order derivative with
respect to ζT ; that is,

α = α′ = (2yT − d)/yT . (2.36)

This means that it is the asymptotic form of the heat capacity with constant
intensive variable (pressure or magnetic field) which is dependent on symmetry.
In the magnetic system the exponent is the same as that of the heat capacity
with constant extensive variable (the magnetization) and in a fluid, where there
is no symmetry it is equal to that of φT , which is the compressibility. Equations
(2.32)–(2.36) are formulae for the exponents α, β, γ and δ in terms of yT and yH.
They are, therefore, not independent and two relationships exist between them.
These can be expressed in the form α + 2 β +γ = 2, called the Essam–Fisher

scaling law, which is a strengthening of the inequality (2.22) and γ′ = β(δ − 1),
called the Widom scaling law, which is a strengthening of the inequality (2.23).

For the coexistence curve, scaling fields, chosen with respect to some arbitrary
origin ζT = ζ◦T , ζH = 0 are

θ′T := ζT − ζ◦T , θ′H := ζH = H/T, (2.37)

with y′T and y′H irrelevant and relevant exponents respectively. In general it can
be shown that relevant exponents are less than or equal to d meaning in this case
that 0 < y′H ≤ d. With primes attached to the exponents and fields (2.29) and
(2.30) continue to applied to the magnetization density. If y′H < d

∂ϕsing
∂θH

(0, 0) = 0 (2.38)

and m is continuous at the origin; there is no first-order phase transition. If y′H = d

then (2.38) does not necessarily hold. There may be a contribution to (2.29) from
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the derivative of ϕsing. This will be the only way in which the magnetization can
be discontinuous across the coexistence curve. So a scaling exponent equal to d is
a necessary, but not sufficient condition for a first-order transition. An example of
such a first-order transition with an exponent of d is at zero temperature in the one-
dimension Ising model (Sect. 3.4.3(a)). Discontinuities in higher-order derivatives
can be treated in a similar way.

2.5 Dimensionality and Phase Transitions

Although, as we have seen, thermodynamics, and particularly its treatment of
PTCP, assumes that the system is infinite, the dimension d of the system entered
into the discussion in Sect. 2.4. And once dimensionality has entered then finiteness
has also appeared. Thus, for example, a two-dimensional system can be viewed as
a three-dimensional system of ‘thickness’ one in the third dimension and it is only
a small step from there to increase the thickness to two. In Sect. 1 we referred
to the classification of singularities in terms of universality classes. This, as we
asserted, can be discussed only in the context of statistical mechanics, with d

one of the factors determining the universality class of an occurrence of singular
behaviour. If the number of directions in which the system is infinite is increased,
then its critical behaviour will change from one universality class to another. This
is an example of what in scaling and renormalization group theory is called ‘cross-
over’.32 The dimension of the system affects not just the universality class of
singular behaviour but whether it occurs at all. However, that dimension is not d
but d ≤ d, the number of directions in which the system is infinite.33 And the final
message sent from statistical mechanics to thermodynamics is that:

FSM–4:There exists a lower-critical dimension dLC such that, if d ≤ dLC < d singular
behaviour can occur in the fully-infinite system but not in the partially-infinite
system. If d > d > dLC then singular behaviour can occur in both, but in different
universality classes.

3 From Gibbsian Statistical Mechanics to the Renormalization Group

The move from thermodynamics to statistical mechanics is, we shall argue, an
enrichment and substantiation of the picture we have of any system under investi-

32 Of course, such a change of universality class is counter-factual (Hüttemann et al. 2015),
in the sense that one cannot change the dimension or extensivity properties of a real system.
33 The connection between the thermodynamic limit and extensivity is retained in a partially-
infinite system with Nk sites in the k-direction and N1N2 · · ·Nd = N , when, in the case, for
example, of entropy, (2.13) is replaced by

S(λ′U, λ′X,λ1N1, λ2N2, . . . , λdNd, N
(d)) = λ′S(U,X,N1, N2, . . . , Nd, N

(d)) ,

where N(d) := Nd+1Nd+2 · · ·Nd and λ′ := λ1λ2 · · ·λd.
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gation. This operates at two levels. The first is structural, where renormalization
group theory embedded in statistical mechanics provides a fuller picture in terms
of renormalization group transformations and fixed points than scaling theory em-
bedded in thermodynamics. The second is in the provision of specific models which
arise from assumptions about the microstructure of the system. We now consider
the development represented by the right-hand column in Fig. 1, beginning with
the basic structure of statistical mechanics.

3.1 Inter-Theory Connecting Relationships

Let the microstate of the system be given by a value of the vector variable σσσ in
the phase space Γ . In the case of a fluid system σσσ will be a set of values for the
positions and momenta of all the particles; for a spin system on a lattice, like the
Ising model in Appen. B, σσσ will be the set of values of all the spin variables. The
microscopic and macroscopic structure of the system is then determined by the
Hamiltonian. This is an explicit function of the independent couplings with the
independent extensive variables imposing constraints on σσσ. Thus we have three
cases:

(i) When (U,X,N) ∈ Ξ0 are the independent variables the Hamiltonian is
Ĥ0(σσσ;X,N), with values constrained by

Ĥ0(σσσ;X,N) = U, (3.1)

and σσσ constrained, according to the nature of the particular model by X and
N .34

(ii) When (ζ1, X,N) ∈ Ξ1 are the independent variables the Hamiltonian
Ĥ1(σσσ; ζ1, X,N) is a linear function of ζ1. The constraint (3.1) is removed
but σσσ remains constrained by X and N .

(iii) When (ζ1, ζ2, N) ∈ Ξ2 are the independent variables the Hamiltonian
Ĥ2(σσσ; ζ1, ζ2, N) is a linear function of ζ1 and ζ2. The only remaining con-
straint is from N .

Connecting relationships are now invoked in three stages:

FTD–1: The independent variables in Ξ0, Ξ1 and Ξ2 are endowed with their
thermodynamic meanings.

To proceed to the next stage of the inter-theory connecting process we need to give
a form in cases (i), (ii) and (iii), respectively, for the entropy, and the free energies
Φ1 and Φ2. Case (i) gives the microcanonical distribution35 and cases (ii) and
(iii) give, respectively, the canonical distribution and the constant pressure or

34 N fixes the number of particles in σσσ. If the system is a fluid, with X := V the volume of
it container, then this constrains the range of the configuration component of σσσ. Rather less
physically achievable, if the system is a magnet, with X := M the magnetization, this will
constrain the spin configuration of the microsystems.
35 Where there is still some dispute about the appropriate form for the entropy (see, for
example, Lavis 2019, and references therein).
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magnetic field distribution. For the sake of simplicity we concentrate exclusively
on case (iii), where the Gibbs free energy is defined by

Φ2(ζ1, ζ2, N) := − ln{Z2(ζ1, ζ2, N)}, (3.2)

where

Z2(ζ1, ζ2, N) :=
∑
{σσσ}

exp{−Ĥ2(σσσ; ζ1, ζ2, N)}, (3.3)

is the Gibbs partition function.36 Then

FTD–2: Φ2 is endowed with its thermodynamic properties and, using (2.3)–(2.6),

U =
∂Φ2

∂ζ1
, X = −∂Φ2

∂ζ2
, ζ3 = −∂Φ2

∂N
, (3.4)

Φ1 = Φ2 + ζ2X, S = ζ1U − Φ1, (3.5)

establishes the connection between U , X, ζ3, Φ1 and S and their thermodynamic
equivalents.

This completes a sufficient set of the connecting relationships. However, we can
make some further links. Suppose that

Ĥ2(σσσ; ζ1, ζ2;N) := Û(σσσ)ζ1 − X̂(σσσ)ζ2. (3.6)

Then, from (3.2)–(3.5),

U = ⟨Û(σσσ)⟩, X = ⟨X̂(σσσ)⟩. (3.7)

FTD–3: U and X are identified respectively as the expectation values of Û(σσσ)
and X̂(σσσ) with respect to the probability distribution with density

ρ(σσσ; ζ1, ζ2) :=
exp[−Ĥ2(σσσ; ζ1, ζ2;N)]

Z2(ζ1, ζ2, N)
. (3.8)

And it further follows from (3.2)–(3.8) that

Var[X̂(σσσ)] =
∂2Φ2

∂ζ22
= NφT , (3.9)

where φT is the response function given by (A.3). This is an example of a fluctuation–

response function relationship. Similar relationships apply to Û(σσσ) and all uncon-
trolled extensive variables.

36 Of course, according to the nature of the system this could involve an integral rather than
a sum.
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3.2 Correlation Function and Correlation Length

As is already evident, thermodynamics is a ‘black-box’ theory with a set of macro-
variables some of which are independent and controllable and others whose values
change in response to the changes in the independent variables. The only conces-
sion made to internal structure was, in Sect. 2.1, to allow a counting of the number
N of mass units of the system. Now with the ‘enrichment’ provided by statistical
mechanics we are able to record the microstate σσσ of the system, which is simply
the aggregate of the states of the individual microsystems.

Suppose that we take the d-dimensional hypercubic lattice37 Nd with sites rrr :=
(n1, n2, . . . , nd)a, for nk = 1, 2, . . . , Nk with N = N1N2 · · ·Nd, where a is the lattice
spacing.38 Then, given that the states of the microsystems on sites rrr and rrr′ of the
lattice are σ(rrr) and σ(rrr′), respectively, how does the state of one effect the state
of the other; that is to say, how are their states correlated? More specifically, how
is the correlation between σ(rrr) and σ(rrr′) affected by:

(i) the distance |rrr − rrr′| between the sites?
(ii) the closeness of the thermodynamic state of the system to a critical region?

To begin to answer these questions suppose that, as for the Hamiltonian (3.6) in
the Ising model in Appen. B, X̂(σσσ) is a linear sum of the states on the sites of N .
And (temporarily) suppose that the coupling ζ2 takes different values ζ2(rrr) at the
sites. Then, denoting the set of couplings ζ2(rrr) by the vector ζζζ2,

Ĥ2(σσσ; ζ1, ζζζ2;N) := Û(σσσ)ζ1 −
∑
{rrr}

σ(rrr)ζ2(rrr) (3.10)

and from (3.8), the expectation values of σ(rrr) is

⟨σ(rrr)⟩ =
∑
{σσσ}

σ(rrr)ρ(σσσ; ζ1, ζζζ2) = − ∂Φ2

∂ζ2(rrr)
. (3.11)

If the states σ(rrr) and σ(rrr′) are uncorrelated ⟨σ(rrr)σ(rrr′)⟩ will factor into ⟨σ(rrr)⟩⟨σ(rrr′)⟩.
So

Γ(rrr, rrr′; ζ1, {ζ2(rrr)}) := ⟨σ(rrr)σ(rrr′)⟩ − ⟨σ(rrr)⟩⟨σ(rrr′)⟩ = − ∂2Φ2

∂ζ2(rrr)∂ζ2(rrr′)
, (3.12)

called the pair correlation function is a measure of the degree of correlation
between σ(rrr) and σ(rrr′). If all the couplings ζ2(rrr) are set equal to ζ2, it follows
from (A.3) that ∑

{rrr,rrr′}

Γ(rrr, rrr′; ζ1, ζ2) = NφT , (3.13)

37 The restriction of this presentation to a hypercubic lattice is in the interests of simplicity.
It can easily be generalized to other lattices.
38 It is convenient for our discussions to suppose that the microsystems are confined to the
sites of a lattice. It is, of course, the case that a whole area of statistical mechanics concerned
with fluid systems treats the case of microsystems/molecules moving in a continuum.
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which is a fluctuation-response function relationship. If translational invariance
is assumed, then Γ(rrr, rrr′; ζ1, ζ2) = Γ(r̄rr; ζ1, ζ2), where r̄rr := rrr − rrr′ and∑

{r̄rr}

Γ(r̄rr; ζ1, ζ2) = φT with Γ⋆ (000; ζ1, ζ2) = φT , (3.14)

where Γ⋆(kkk; ζ1, ζ2) is the Fourier transform of Γ(r̄rr; ζ1, ζ2).
39 The correlation length

ξ(ζ1, ζ2), given by40

ξ2(ζ1, ζ2) := c(d)

∑
{r̄rr} |r̄rr|

2 Γ (r̄rr; ζ1, ζ2)∑
{r̄rr} Γ(r̄rr; ζ1, ζ2)

= −c(d)
∇2

kkk Γ⋆ (000; ζ1, ζ2)

Γ⋆(000; ζ1, ζ2)
, (3.15)

is a measure of distance over which microscopic degrees of freedom are statistically
correlated.

We are now able to augment the scaling theory, described in Sect. 2.4, by applying
it to the correlation function and correlation length. Again adopting the magnetic
model used in of Sect. 2.4, suppose that near a critical point these functions can
be re-expressed in terms of the scaling fields θT and θH; r̄rr and kkk can also be treated
as scaling fields which, on dimensional grounds will have exponents −1 and +1
respectively. Then the relationships (3.14) between the correlation function and
the response function φT , together with the formula (A.11) derived from Ginzburg-
Landau theory suggests a scaling form41

Γ(λ−1r̄rr;λyT θT , λ
yHθH) = λη+d−2 Γ (r̄rr; θT , θH), (3.16)

for the correlation function, and, hence

Γ⋆(λkkk;λyT θT , λ
yHθH) = λη−2 Γ⋆ (kkk; θT , θH), (3.17)

for its Fourier transform. Then, from (3.15), the scaling form for the correlation
length is

ξ(λyT θT , λ
yHθH) = λ−1 ξ (θT , θH). (3.18)

From (3.14), (3.17) and (A.3), d− 2yH = η− 2 and, setting λ = |θ2|−1/yT in (3.18)
gives, from (A.10)

ν = ν′ = 1/yT . (3.19)

Then, from (2.34) and (2.36), ν(2−η) = γ, which is the Fisher scaling law (Fisher
1969) and dν = 2 − α, which is the Josephson hyper-scaling law (Josephson
1967).42

39 Given by

Γ⋆(kkk; ζ1, ζ2) :=
∑
{r̄rr}

Γ(r̄rr; ζ1, ζ2) exp(−ikkk · r̄rr), Γ(r̄rr; ζ1, ζ2) =
1

N

∑
{kkk}

Γ⋆(kkk; ζ1, ζ2) exp(ikkk · r̄rr).

40 The prefactor c(d) is dependent on the number of dimensions d, in which the system is
infinite. It can be show from Ginzburg-Landau theory that c(d) = 1/(2d) (Lavis 2015, Sect.
5.6).
41 The exponent of minus one for r̄rr is chosen on dimensional grounds. It is also equivalent to
the rescaling of length in the renormalization group (item (iii) in Sect. 3.4.1).
42 This is the only scaling law which involves the dimension d of the system. For reasons
which become evident if Ginzburg-Landau theory is used in the Gaussian approximation (Lavis
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3.3 Transfer-Matrix Methods

As we have already shown S, Φ1 and Φ2 are all extensive functions of their extensive
variables or none of them is. The message FSM––2 sent from statistical mechanics
to thermodynamics is that the latter is the case, and in particular that

ϕ2 :=
Φ2(ζ1, ζ2, N)

N
= ϕ2(ζ1, ζ2) (3.20)

is true only as an approximation for large systems.43 We shall now substantiate
this claim by considering a particular way to develop statistical mechanical models,
namely the method of transfer matrices. Although, of course, statistical mechanics
can model systems of microsystems (molecules) moving, as in a fluid, through a
continuum of points, transfer matrix methods are restricted to microsystems con-
fined to the points of a lattice. In principle lattices of any dimension can be con-
sidered, but we shall, for easy of presentation, consider only the two-dimensional
case. A virtue of this development is that it can be clearly seen how it unfolds
as the two lattice directions in which the system gets larger and then infinite are
applied separately.

Consider a square lattice, of lattice spacing a, with NH sites in the horizontal direc-
tion, NV in the vertical direction, so that N = NHNV. This situation is like the one
considered for finite-size scaling in Sect. 3.4.2, when extensivity can be considered
separately in the two directions. Periodic boundary conditions are applied so that
the lattice forms a torus with horizontal rings of NH sites and rings in a vertical
plane of NV sites.44 We suppose that the sites of the lattice are occupied by iden-
tical microsystems having ν possible states.45 The state of the whole system is
σσσ := (σ̃σσ1, σ̃σσ2, . . . , σ̃σσNH

), where σ̃σσi, the state of the i-th vertical ring of sites, has one
of NR := νNV values. Given that contributions to the Hamiltonian arise (at least
in the horizontal direction) only between first-neighbour sites the Hamiltonian can
be decomposed into interactions between neighbouring rings of sites and within
rings. The latter can be distributed between interacting pairs of rings so that the
Hamiltonian takes the form of the sum of contributions of interactions between
rings and it is straightforward to show that the partition function is expressible in
the form

Z2(ζ1, ζ2, N) = Trace{VVV NH}, (3.21)

where VVV is the NR-dimensional transfer matrix with elements consisting of the
exponentials of the negatives of the inter-ring interactions. Assuming that VVV is

2015, Sect. 5.6) it becomes invalid when d > dUC, the upper-critical dimension. This is the
dimension such that, when d ≥ dUC, critical exponents become dimensionally independent
with the classical values given by, for example, the van der Waals fluid. For the Ising and
similar non-quantum systems (see Appen. B) dUC = 4.
43 In fact the Sackur-Tetrode formula for the entropy of a perfect gas given by (2.7) and
treated there as an assumption is, when derived from statistical mechanics, also not completely
extensive. This condition is achieved only when N is large and the Stirling formula for N ! is
applied.
44 The point we are establishing with respect to extensivity is even more evident in systems
with open boundaries.
45 The Ising model of Appen. B is an example of such a model with ν = 2.
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diagonalizable,46 it is an elementary algebraic result that its trace is equal to
the sum of its eigenvalues, which in decreasing order of magnitude we denote as
Λ(ℓ)(ζ1, ζ2, NV), ℓ = 1, 2, . . . , NR. Then, from (3.2) and (3.21),

Φ2(ζ1, ζ2, N) = − ln{[Λ(1)(ζ1, ζ2, NV)]
NH + · · ·+ [Λ(NR)(ζ1, ζ2, NV)]

NH}. (3.22)

As we can see the factors NH and NV of N are ‘buried’ at different places in
this expression and it is clear that the extensivity condition (3.20) is not satis-
fied and the negative aspect of the message FSM––2 from statistical mechanics to
thermodynamics is justified. However, we can make some progress because, if all
the elements of VVV are strictly positive, as will usually be the case, an important
theorem of Perron (1907) (see also, Gantmacher 1959, p. 64; Lavis 2015, p. 673)
states that the largest eigenvalue of VVV is real, positive and non-degenerate. This
means that, in the approximation when NH becomes large,

Φ2(ζ1, ζ2, N) ≃ −NH ln{Λ(1)(ζ1, ζ2, NV)} (3.23)

with extensivity achieve in the horizontal direction. Two strategies emerge at this
point:

The first is to calculate an expression of the form

Λ1(ζ1, ζ2, NV) := [ψ(ζ1, ζ2)]
NV , (3.24)

valid in the limit NV → ∞ and giving

ϕ2(ζ1, ζ2) = − ln{ψ(ζ1, ζ2)} (3.25)

in the limit N → ∞. If this calculation can be carried out it is an effective proof of
the existence of the thermodynamic limit,47 which achieves complete extensivity,
with free-energy density given by (3.25). It is, however, a strategy that has been
successfully applied in only a few cases, of which Onsager’s (1944) solution of the
two-dimensional zero-field Ising model and Baxter’s (1972) solution of the eight-
vertex model are the most well-known instances.

In the absence of a complete solution as represented by (3.25), the strategy most
often adopted is to treat NV as a parameter indexing a sequence of models. That
is

Ψ (NV)(ζ1, ζ2) := Λ(1)(ζ1, ζ2, NV) (3.26)

and

ϕ
(n)
2 (ζ1, ζ2) ≃ − ln{Ψ (n)(ζ1, ζ2)}

n
. (3.27)

In the case of the Ising and similar semi-classical models it can be shown by a

method due to Peierls (1936) that ϕ
(n)
2 (ζ1, ζ2) is a smooth function for all n > 0

which exhibits maxima in response functions. A quantitative analysis using finite-
size scaling theory (see Sect. 3.4.2) shows that such maxima become increasingly
steep for increasing values of n, with convergence to the singularity associated with

46 The condition for this to be the case is that VVV is simple (Lancaster and Tismenetsky 1985,
p. 146).
47 Although, of course, the current absence of such a calculation is not a proof of the contrary
assertion.
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the transition in the two-dimensionally infinite system as n→ ∞. In particular to
the corresponding singularities in Onsager’s solution of the two-dimensional zero-
field Ising model. However, in view of the discussion later in this work it should
be noted that the limiting process is singular. Although the maxima in the finite-
NV models converge to the singularities in the NV = ∞ model they remain of a
different (non-singular) character however large NV becomes.

The pair correlation function and correlation length were defined in Sect. 3.2. In
terms of this transfer matrix formulation it can be shown (Lavis 2015, Sect. 11.1.3)
that in the limit NH → ∞

ξ(ζ1, ζ2, NV) ≃ −a{ln |Ω2(ζ1, ζ2, NV)|}−1
, (3.28)

where a, the lattice spacing, is now the distance between neighbouring rings of
sites,

Ω2(ζ1, ζ2, NV) := Λ(2)(ζ1, ζ2, NV)/Λ
(1)(ζ1, ζ2, NV) (3.29)

and

Γ2(rrr, rrr
′; ζ1, ζ2, NV) ∼ exp{−|rrr − rrr′|/ ξ (ζ1, ζ2, NV)}, (3.30)

in the limit |rrr−rrr′| → ∞, where rrr and rrr′ lie on the same vertical ring of sites which
establishes an asymptotic form for fd(|r̄rr|/ξ) in (A.11).

The situation where NH → ∞ and NV is finite corresponds to that to be discussed in
Sect. 3.4.2, below, for finite-size scaling, where here d := 1 and the thickness of the
lattice ℵ := NV, with a maximum in φT and in other response functions signalling
an incipient singularity.48 The eigenvalue ratio Ω2(ζ1, ζ2, NV) can also be used as a
means of detecting an incipient singularity, but in a slightly different way. Since, in
Onsager’s solution for the Ising model, the largest eigenvalue is degenerate along
the first-order transition line below the critical temperature (Domb 1960, p. 194),
we expect that Ω2(ζ1, ζ2, NV) will begin, as NV is increased, to form a ‘plateau’
with small (negative) slope for small temperature temperatures. The end of this
plateau, where the negative curvature is a maximum can then be construed as
the location of an incipient singularity.49 The finite-size scaling argument of Sect.
3.4.2 can be applied to all these quantities showing that the maxima converge
towards the infinite-system critical value as NV increases. However, of course, for
finite NV we cannot expect these locations to exactly coincide. These perceptions
are given further weight by the phenomenological renormalization group procedure
described in Sect. 3.4.3 (c).

As we have already indicated, the use of transfer matrix methods to determine
exact solutions for infinite systems leads into our discussion in Sect. 3.5.1 of the
thermodynamic limit. In a similar way our account of incipient singularities result-
ing from an analysis of systems with NV finite leads into our discussion of phase
transitions in finite systems is Sect. 3.6.

48 In Sect. 3.4.2 we are primarily concerned with fully-finite systems, although as we indicated
there, the analysis also applies to cases where, like here, 0 < d ≤ dLC < d.
49 Similar arguments apply to the three-state Potts model (Lavis 2015, Sect. 11.32).
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3.4 The Renormalization Group Method

Once it became evident, around the turn of the twentieth century that the expo-
nents associated with a critical point, both in experimental systems and theoretical
models were not those derived from classical models, like van der Waals equation,
an interest developed in determining their exact values, in experimental systems
and also in theoretic models, where of course it was also necessary in many cases to
derive the critical temperature. Before the advent of renormalization group meth-
ods the most successful way to do this was by using high and low temperature
series. These were very successful in obtaining critical temperatures and expo-
nents at second-order critical points. However, although they can be adapted to
deal with first-order transitions, this is not their main strength and they are also
not designed to map out the whole picture of phase transition curves in thermo-
dynamic space. This contrasts with the renormalization group methods developed
in the late sixties – early seventies. They are able (when they work) not only to
deal with critical points but also curves of first-order and second-order transitions.
However, any account of these methods should be proceeded by some words of
warning, like those of John Cardy. As he says (Cardy 1996, pp. 28–29):

“Not only are the words ‘renormalization’50 and ‘group’51 examples of un-
fortunate terminology, the use of the definite article ‘the’ which usually
precedes them is even more confusing. It creates the misleading impression
that the renormalization group is a kind of universal machine through which
any problem may be processed, producing neat tables of critical exponents
at the other end. This is quite false. It cannot be stressed too strongly that
the renormalization group is merely a framework, a set of ideas, which has
to be adapted to the nature of the problem at hand. In particular, whether
or not a renormalization group approach is quantitatively successful de-
pends to a large extent on the nature of the problem, but lack of success
does not necessarily invalidate the qualitative picture it provides.

Here we shall concentrate solely on the approach to the renormalization group
which is usually referred to as happening in ‘real space’; in contrast to the ap-
proach initiated by Wilson (1975) where renormalization is performed in wave-
vector space resulting in expansions in the parameter ϵ := d− 4.52

The core of real-space renormalization group (RSRG) methods is the construc-
tion of a semi-group of transformations on the independent couplings, or functions
thereof. There is a variety of procedures for doing this. Many are based on the
block-spin method of Kadanoff (1966), and another popular technique is deci-
mation, where the states of a proportion of the microsystems is summed out of
the partition function. In fact decimation applied to the one-dimensional Ising
model, or related models like the Potts model, (see, e.g. Lavis 2015, Sect. 15.5.1,

50 A carry-over on the part of Wilson (1975) from his work on the high-energy behaviour of
renormalized quantum electrodynamics.
51 It is in fact a semi-group since it has no inverse.
52 A comprehensive collection of articles on both types of renormalization group methods is
contained in the articles in Domb and Green (1976) and on real-space methods in the volume
edited by Burkhardt and van Leeuwen (1982). For a description of renormalization methods
in wave-vector space the reader is referred to Ma (1976) and Amit (1978). Accounts of both
approaches are given by Goldenfeld (1992), Binney et al. (1993) and Cardy (1996).
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and Sect. 3.4.3 (a) below) is one of the few examples of an exact RSRG trans-
formation. Most transformation involve approximations, which thus means that
the critical exponents are approximations with, in many cases no obvious way to
make improvements, unlike series methods where, in principle and often with a
great deal of labour, improvements are made by extending the series.

In essence the RSRG transformation involves some fractional reduction in the
number of degrees of freedom. It would, therefore, seem to follow that there must
have been a prior application of the thermodynamic limit. Whether this is required
for the renormalization group and, more generally, whether it is needed at all in
the statistical mechanics of critical phenomena is a question that we return to in
Sect. 3.5, following a brief account of the ideas involved in the RSRG.

3.4.1 General Theory

Underlying the semigroup of transformations on couplings, which is the real-space
renormalization group, is a mapping from a lattice N to a lattice Ñ . For the sake
of simplicity we suppose that both are hypercubic lattices with periodic boundary
conditions. Then:

(i) The number of sites N and Ñ of N and Ñ are related by Ñ = N/λd, where
λ > 1.

(ii) The lattice spacings a and ã of N and Ñ are related by ã = λa.
(iii) The size of Ñ is reduced by a length scaling |r̃rr| = |rrr|/λ.

The renormalization group is constructed by imposing onto the lattice transforma-
tion a statistical mechanical transformation. To do this we modify the Hamiltonian
(3.6) to

Ĥ ′
2(σσσ; ζ0, ζζζ;N) := Nζ0 + Ĥ2(σσσ;ζζζ;N), (3.31)

where, for reasons that will become evident below, we have added a term including
a trivial coupling ζ0 and, as in the presentation of scaling theory at the beginning
of Sect. 2.4, generalized the number of non-trivial couplings from two to n, with
ζζζ := (ζ1, ζ2, . . . , ζn).

53 The terminology ‘trivial’ signals the fact that, if in (3.8) Ĥ2

is replaced by Ĥ ′
2 and Z2 by

Z′
2(ζ0, ζζζ,N) :=

∑
{σσσ}

exp{−Ĥ ′
2(σσσ; ζ0, ζζζ,N)}, (3.32)

then the probability density function is left unchanged and

Φ2(ζζζ,N) := − ln{exp(Nζ0)Z′
2(ζ0, ζζζ,N)}. (3.33)

Bearing in mind the remarks of Cardy, given above, a successful application of this
method depends on being able to construct relationships between the couplings
ζ0, ζζζ in the system on N and the couplings ζ̃0, ζ̃ζζ in the system on Ñ , done in such
a way that the values for the couplings for N place it in a critical region if and

53 As we see in the example of the two-dimensional Ising model in Sect. 3.4.3(b) below, the
renormalization group transformation will in many cases generate further couplings beyond
the set dictated by the physics of the model under consideration.
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only the same is the case for the values of the couplings for Ñ . Since the critical
properties of a system are contained within the partition function the invariance

Z′
2(ζ̃0, ζ̃ζζ, Ñ) = Z′

2(ζ0, ζζζ,N) (3.34)

of that function is a sufficient guarantee; and this is achieved by the relationship

exp{−Ĥ ′
2(σ̃σσ; ζ̃0, ζ̃ζζ, Ñ) =

∑
{σσσ}

w(σσσ, σ̃σσ) exp{−Ĥ ′
2(σσσ; ζ0, ζζζ,N)}, (3.35)

where the weight function w(σσσ, σ̃σσ) satisfies∑
{σ̃σσ}

w(σσσ, σ̃σσ) = 1. (3.36)

Running over the set of states σ̃σσ in (3.35) will, in principle, produce recurrence

relationships54

ζ̃j = Kj(ζζζ), j = 1, 2, . . . , n, (3.37)

and for ζ̃0 a recurrence relationship which we choose, for convenience to express
in the form

ζ̃0 = λd[ζ0 +K0(ζζζ)]. (3.38)

The ‘in principle’ caveat entered here is important. As we shall see it is rarely
possible to implement this programme and to choose a weight function without
some kind of approximation being applied. And it is frequently the case that
consistency can be achieved only by increasing the value of n from its initial value.
When this happens it is necessary, in order to apply repeated iterations, to back-
track and for the extra couplings to be included from the start.

The importance of (3.38) is that it can be used, together with (3.33) and (3.34)
to obtain the relationship

ϕ2(ζ̃ζζ) = λdϕ2(ζζζ)− λdK0(ζζζ). (3.39)

between the free-energy densities per lattice site at ζζζ and ζ̃ζζ. Then, given that (3.37)
can be iterated to produce a sequence of points ζζζ(0) → ζζζ(1) → ζζζ(3) → · · · in Ξ2,

ϕ(ζζζ(0)) =
∞∑
s=0

1

λsd
K0(ζζζ

(s)) (3.40)

is the free-energy density at an initial point ζζζ(0). Although this result seems to
imply the need for an infinite number of iterations, this is clearly not possible
in practical computations. It is, therefore, fortunate that it is usually found that
this series converges after a very few iterations, allowing densities and response
functions to be calculated (see the discussion Sect. 3.5.1).

A fixed point ζζζ⋆ of (3.37) is associated with either a single-phase region or a
critical region C in Ξ2. To analyze its nature we linearize with [△△△ζζζ(s)]T := ζζζ(s)−ζζζ⋆

to give △△△ζζζ(s+1) ≃ LLL⋆△△△ζζζ(s), where LLL⋆ is the fixed-point value of the matrix LLL

with elements Lij := ∂Ki/∂ζj . In general LLL⋆ is not symmetric, with different left

54 To be precise, the recurrence relationships are derived from (3.35) as relationships between

the Boltzmann factors exp(ζ̃j) and exp(ζj), j = 0, 1, . . . , n of the couplings.
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and right eigenvectors wwwj and xxxj for the eigenvalue Λj . It can then be shown55

that in a neighbourhood of the fixed point there exist scaling fields θj = θj(△△△ζζζ),
j = 1, 2, . . . , n which are smooth functions of the couplings with

θj(0) = 0, θ
(s+1)
j = Λjθ

(s)
j , (3.41)

θj ≃ wwwj �△△△ζζζ, △△△ζζζ ≃
n∑

j=1

xxxjθj . (3.42)

which is a realization of the relationship between scaling fields and couplings de-
scribed in Sect. 2.4.

From (3.41) θ
(s+k)
j = Λk+s

j θ
(0)
j and the semi-group character of this transforma-

tion implies that Λj := λyj , for j = 1, 2, . . . , n and a set of exponents y1, y2, . . . , yn.
Then, in a neighbourhood of the fixed point ζζζ⋆ the couplings ζj and ζ̃j in (3.39)
can be expressed as

ζj = ζ⋆j +
n∑

i=1

x
(j)
i θi, ζ̃j = ζ⋆j +

n∑
i=1

x
(j)
i λyiθi, (3.43)

where xxxi := (x
(1)
i , x

(2)
i , . . . , x

(n)
i ). In (3.39) the function K0(ζζζ) is regular. So in a

region around ζζζ⋆ the singular part ϕsing(△ζζζ) of ϕ2(ζζζ), with ϕsing(0) = 0, can be
re-expressed in terms of the scaling fields to give

ϕsing(λ
y1θ1, . . . , λ

ynθn) = λdϕsing(θ1, . . . , θn) , (3.44)

which is a substantiation of (2.25).

3.4.2 Finite-Size Systems

This treatment of criticality, which plays an important role in our understand-
ing of PTCP in real systems (see Sect. 4), was initiated by Fisher (1971) and
Fisher and Barber (1972).56 For simplicity we suppose, as in Sect. 3.3, that the
system under consideration consists of N identical microsystems on the sites
of a d-dimensional hypercubic lattice Nd with Nk sites in the k-direction and
N1N2 · · ·Nd = N . A partially-infinite system of thickness ℵ := [N (d)]1/(d−d),
where N (d) := Nd+1Nd+2 · · ·Nd, is obtained if the thermodynamic limit Nk → ∞
is taken only for k = 1, 2, . . . , d < d. In a fully-finite system d = 0 and N (d) = N .
We denote the critical region in the partially-infinite system, when d > dLC, by
C(d;ℵ), with C(d;∞) = C. Finite-size scaling theory can be applied both to a
partially-infinite system, where there is the possibility of a critical region consist-
ing of some kind of singular behaviour, and a fully-finite system where there is
not. In a fully-finite system or a partially infinite system with d ≤ dLC the critical
region is replaced by:

55 Assuming that LLL⋆ is a simple matrix.
56 For a review see Barber (1983) and, for a collection of papers on finite-size scaling, Cardy
(1988).
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Definition 1 For a fully-finite, or partially-infinite system with d ≤ dLC, a region
IS(d;ℵ) in the space of couplings is one of incipiently singularity,57 if in the limit
ℵ → ∞, it maps into a critical region C of the infinite system.

Expressed in a slightly different way a system has an incipient singularity at certain
size-dependent values of it couplings if, as the system size ℵ is increased, those
values converge to ones where thermodynamic functions exhibit properties that

have no finite limits.

The basic assertion of finite-size scaling is that θℵ := 1/ℵ can be treated as another
scaling field with yℵ = 1, meaning that θℵ is a relevant scaling field, and θℵ = 0
for the infinite system. The only condition required for this is that the system
is sufficiently large for the renormalization group transformation in the space of
all the other couplings to be unmodified by the finite size of the system. That
is to say, that the renormalized couplings can be represented in the system. For
simplicity we confine our attention to the simple magnetic system used in Sect.
2.4. The critical region for the infinite system is just a critical point T = Tc, H = 0
with scaling fields θT and θH, given by (2.27), measuring departures from this
point. When the system has finite thickness (θℵ ̸= 0), the incipient singularity is
at a different temperature, but because of the symmetry of the system still with
H = 0. Again, for simplicity, attention will be restricted to the zero-field axis
where two temperatures come into play:

(i) For a system of finite thickness ℵ, T̃ (ℵ) is the shift temperature such that,
as ℵ → ∞, T̃ (ℵ) → Tc, the temperature at which the infinite system has a

singularity. If d > dLC then T̃ (ℵ) is also a critical temperature, but for the
system of finite thickness. If d ≤ dLC, and in particular when d = 0 and the
system is fully-finite, T = T̃ (ℵ) is a quasicritical temperature (Fisher and
Barber 1972) which is exhibited by a maximum in the susceptibility.58 This
temperature is an example of an incipient singularity. In keeping with the
other assumptions of scaling theory it is assumed that this convergence is
algebraic, so, with scaling field

θ̃T (T,ℵ) := ε

(
1
T − 1

T̃ (ℵ)

)
, (3.45)

the condition

△̃(ℵ) := θT (T )− θ̃T (T,ℵ) = ε

(
1

T̃ (ℵ)
− 1

Tc

)
= θT (T̃ (ℵ)) = −θ̃T (Tc,ℵ) ≃ Csℵ−χ as ℵ → ∞, (3.46)

where χ > 0 is the shift exponent, is sufficient to ensure convergence.
(ii) T̊ (ℵ), called the rounding temperature is an important, but rather more elu-

sive, property of the system. It is the temperature at which the susceptibility
first shows significant deviation from that of the fully-infinite system. With

θ̊T (T,ℵ) := ε

(
1

T
− 1

T̊ (ℵ)

)
, (3.47)

57 It should be noted that this is a slightly different usage from that in Lavis (2015, Chap.
11), where such occurrences are called ‘incipient phase transitions’.
58 Another response function like the heat capacity can replace the susceptibility, with a
slightly different quasicritical temperature.
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ℵ

Crθ
τ

ℵ

Fig. 6 Scaling around the critical point C, showing the curves θ̊(T,ℵ) = 0 and θ̃(T,ℵ) = 0 of
rounding and shift temperatures.

it is supposed that

△̊(ℵ) := θ̃T (T,ℵ)− θ̊T (T,ℵ) = ε

(
1

T̊ (ℵ)
− 1

T̃ (ℵ)

)
= θ̃T (T̊ (ℵ),ℵ) = −θ̊T (T̃ (ℵ),ℵ) ≃ Crℵ−τ, as ℵ → ∞, (3.48)

where τ > 0 is the rounding exponent.

Scaling around the infinite system critical point is shown in Fig. 6. Our interest
in this work is in the occurrence of an incipient singularity; so henceforth the as-
sumption is that d ≤ dLC.

59 Thus we have three relevant scaling fields with the
critical region of the infinite system at the origin (θT , θH, θℵ) = (0, 0, 0). However,
this is not the complete picture; in general there will be a number of irrelevant
scaling fields, which parametrize the critical region and affect its asymptotic prop-
erties. For the sake of simplicity we just include the most nearly relevant.60 of
these designated as θ⋆, with exponent y⋆ < 0. Then on the zero-field axis (3.44) is
replaced by

ϕsing(λ
yT θT , λ

y⋆θ⋆, λθℵ) = λdϕsing(θT , θ⋆, θℵ) . (3.49)

As we have already seen, singular parts of thermodynamic functions like densities
and response functions are obtained by differentiations with respect to the scaling
fields. In particular, for the susceptibility φT , given by (A.7),

φT (θT , θ⋆, θℵ) = λωφT (λ
yT θT , λ

y⋆θ⋆, λθℵ) , (3.50)

with ω := 2yH − d = γ/ν, where γ is given by (2.34) and ν := 1/yT , given in
(3.19), is the critical exponent of the correlation length. Asymptotic behavior in a
neighbourhood of the critical point, that is when |θT ≪ 1, is then as usual exposed
by choosing the scale parameter λ := |θT |−1/yT , giving

φT (θT , θ⋆, θℵ) = |θT |−γφT (±1,X⋆,Xℵ) , (3.51)

59 In Sect. 3.3 on transfer matrix methods, and Sect. 3.4.3(c) on phenomenological renor-
malization, d = dLC = 1 and d = 2. Our later discussion in Sect. 4 is concerned with phase
transitions in fully-finite systems where d = 0.
60 That is |y⋆| := minj∈s+1,...,n |yj |.
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where the ±1 branches of φT (±1,X⋆,Xℵ) apply to the cases θT > 0 and θT < 0,
respectively, and X⋆(T,ℵ) := |θT (T )|−y⋆νθ⋆, Xℵ(T,ℵ) := |θT (T )|−νℵ−1 are scaling
functions. In a similar way, with λ := ℵ,

φT (θT , θ⋆, θℵ) = ℵωφT (X
−1/ν
ℵ ,X

1/y⋆
⋆ , 1) . (3.52)

In the thermodynamic limit ℵ → ∞, it follows from (3.51) that the susceptibility
has the form

φT (θT , θ⋆, 0) = A
(±)
T (X⋆)|θT |−γ, (3.53)

where the amplitudes

A
(±)
T (X⋆) := φT (±1,X⋆, 0), (3.54)

which are, in general, different for θT > 0 and θT < 0, are dependent on θT by
virtue of the presence of the irrelevant scaling field θ⋆. This contribution will
become small, as |θT |−y∗ν → 0 for |θT | → 0, eventually becoming negligible for
sufficiently small |θT |. The susceptibility will then display an asymptotic algebraic

singularity of the form

φT ≃ A
(±)
T (0)|θT |−γ , as |θT | → 0 . (3.55)

The singularity is a divergence, if γ > 0, which is generally the case for response
functions.

Given that both (3.51) and (3.52) are valid, and that a finite statistical mechanical
system cannot exhibit non-analytic behaviour, whereas singular behaviour does

occur at critical points in the limit of infinite system size, the scaling function
φT (±1,X⋆,Xℵ) in (3.51) must exhibit asymptotic behaviour of the form

φT (±1,X⋆,Xℵ) ≃ B
(±)
T (X⋆)X

−ω
ℵ . (3.56)

Since the susceptibility has maxima along the curve T = T̃ (ℵ) of shift temperatures

in Fig. 6 these maxima will be in one of the branches of B
(±)
T (X⋆) with the other

branch being a monotonically decreasing function of X⋆ in the vicinity of X⋆ = 0.
Along the curve of shift temperatures, from (3.46), X⋆(T̃ (ℵ),ℵ) ≃ C−νy⋆

s ℵχνy⋆θ⋆
and Xℵ(T̃ (ℵ),ℵ) ≃ C−ν

s ℵχν−1. On this curve θ⋆ ̸= 0, and if it is supposed that the
two shift functions have the same asymptotic dependence on ℵ, the shift exponent
will be related to yT = 1/ν and y⋆ < 0 by χ = yT/(1− y⋆) with the shift amplitude
Cs ≃ [X⋆(T̃ (ℵ),ℵ)/Xℵ(T̃ (ℵ),ℵ)θ⋆]χ.

As already indicated finite-size corrections to the pure power-law behaviour of φT ,
as described by (3.55), will begin to be observed whenever the system is finite (with
θℵ := ℵ−1 ̸= 0) at the rounding temperature T̊ (ℵ). It has been argued (Ferdinand
and Fisher 1969) that this is the temperature at which the size ℵ of the system
is of the same order as the correlation length ξ(T ).61 It follows from (A.10) that
|θ̃T (T̊ (ℵ),ℵ)|−νℵ−1 ≃ C, where C is a constant, which establishes, from (3.48),
that C := Cr and the rounding exponent τ = 1/ν = yT with ω = γτ. Thus on the
basis of some plausible assumptions we have the condition χ < τ, which, for large
systems, motivates the disposition of the curves in Fig. 6.

61 This can quite easily be established explicitly for a one-dimensional Ising model on a
ring of N sites, where the magnetization density m(T,H, N) is given by m(T,H, N) =
tanh[N/2ξ(T )]×m(T,H,∞).
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3.4.3 Renormalization Schemes

The practical implementation of the renormalization group procedure in Sect.
3.4.1 involves the choice of a weight function and leads to recurrence relationships
between systems related by a size parameter λ, together with a method for calcu-
lating the free-energy density which satisfies the scaling relationship. In (a) and
(b) in this section we give examples of the implementation of two of the most
commonly used weight functions and in (c) we briefly outline a different scheme
which, using transfer matrix methods, relates the correlation lengths of systems of
different sizes.

For d-dimensional lattices, most weight functions are based on a division of
the lattice N into equal blocks of λd sites. The mapping from N to Ñ is given by
associating each lattice site r̃rr ∈ Ñ with a blocks of sites in N denoted by B(r̃rr).

(a) The decimation weight function

For this weight function the sites of Ñ consist of a subset of the sites of N ,
chosen so that Ñ forms a lattice which is isomorphic to N . So we can take
r̃rr ∈ B(r̃rr) with

w(σσσ, σ̃σσ) :=
∏
{r̃rr}

δKr(σ̃(r̃rr)− σ(r̃rr)) . (3.57)

The effect of this is that the summation on the right-hand side of (3.35) is
a partial sum over all the sites of the lattice N except those of Ñ . For a
range of one-dimensional models (including the Ising and Potts models), which
can be solved exactly using transfer matrix methods, exact RSRG decimation
transformations can also be obtained.

For the one-dimensional ferromagnetic case of the Ising model it can be shown
(Nelson and Fisher 1975; Lavis 2015) that the most convenient variables are
not those given in Appen. B but rather ζ1 := tanh([2J + H]/2T ), ζ2 :=
exp(−2H/T ), and for λ := 2, with the partial summation in (3.35) over al-
ternate sites, the recurrence relationships take the form

ζ̃1 =
4ζ1

2 − (1− ζ2)(ζ1
2 − 1)

4 + (1− ζ2)(ζ1
2 − 1)

, ζ̃2 =
ζ2

2(1 + ζ1)
2 + (1− ζ1)

2

2(1 + ζ1
2)

. (3.58)

It is then not difficult to show that there is a fixed point ζ1 = ζ2 = 1 (T = H =
0), with both scaling exponents equal to d = 1. As we saw in the discussion of
scaling theory in Sect. 2.4, an exponent equal to the dimension of the system is
indicative of the possibility of a first-order transition. In this case the critical
point is at zero temperature on the zero field line, meaning that the first-order
coexistence curve has contracted to a point coinciding with the critical point
at zero-temperature. At this point there is a first-order transition across the
zero-field axis with a change of sign of the magnetization. It can also be shown
that the curve

ζ2 =

(
1− ζ1
1 + ζ1

)2

, (3.59)

which corresponds to the interaction J between microsystems being set to zero,
is invariant under (3.58). At every point it has exponents 0 and −∞; the first
of these is marginal, which indicates that the line consists of fixed points, and
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Fig. 7 The trajectory flows for the renormalization group transformation of the one-
dimensional Ising model.

the latter that it is ‘infinitely attractive’ to points not on the line. The end
points of the line ζ1 = 0, ζ2 = 1 (H = ∞, T = 0) and ζ1 = 1, ζ2 = 0 (T = ∞,
H = 0) are fixed points in their own right in the invariant subspaces T = 0 and
H = 0 respectively. The phase diagram is shown in Fig. 7.

Of course, for reasons just explained, the one-dimensional Ising model is less
interesting than the two-dimensional model where the ferromagnetic critical
point is not at zero temperature. So, suppose that we try to carry out the
same procedure in that case. A possibility is to choose blocks of two sites
as shown in Fig. 8. The lattice Ñ consists of the black sites and the partial
summation in (3.35) is over the spin states on white sites. But this will create
an interaction between the four sites surrounding each white site. So we would
need to back-track and increase n from two to three, inserting this interaction
from the beginning. But this would in turn generate an interaction between
nine sites. And so on. This proliferation of interactions is typical of the problems
encountered with decimation. The usual trick is to cut off the proliferation at a
certain level. Such an approximation for this model was investigated by Wilson
(1975) with a rather poor outcome compared to the known exact results.

(b) The majority-rule weight function

This weight function was introduced by Niemeijer and van Leeuwen (1973,
1974). The first step in assigning σ̃(r̃rr) for the block B(r̃rr) can be described in
terms of the ‘winner takes all’ voting procedure used in some democracies.
Given that each microsystem has ν states and that among the sites of B(r̃rr) one
of the ν state occurs more that any other, σ̃(r̃rr) is assigned to have this value.
If ν := 2 and the number of sites λd in a block is odd this rule works; a case in
point being the treatment of the Ising model on the triangular lattice with a
block of nine sites (λ := 3) by Schick et al. (1976). But unless these conditions
hold it is clear that the simple majority rule is not sufficient to determine σ(r̃rr)
for every configuration of the block. A ‘tie’ can occur in the voting procedure
and a strategy must be adopted to deal with such cases. One possibility is to
assign to σ(r̃rr) one of these predominating values on the basis of equal proba-
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Fig. 8 Two site blocks for the first-neighbour Ising model on a square lattice. The lattice N
consists of both white and black sites and Ñ of only black sites.

bilities. In some cases this may not, however, be the most appropriate choice.
In their work on the Ising model using a square first-neighbour block (λ := 2)
Nauenberg and Nienhuis (1974) divided the configurations with equal numbers
of up and down spins between block spins up and down with equal probabil-
ities. The rule (one of four) which they chose ensured that the reversal of all
the spins in the block reversed the block spin.

(c) Phenomenological renormalization

The idea of finite-size scaling, introduced in Sect. 3.4.2, leads quite naturally
(Barber 1983, Sect. IV) to the RSRG method developed by Nightingale (1976).
The essential feature of finite-size scaling is that, for a d-dimensional system,
infinite in d dimensions and of thickness ℵ, the quantity 1/ℵ is treated as an
additional scaling field θℵ. If attention is restricted to the simple magnetic
system with the two other scaling fields θT and θH, the response function φT

satisfies the scaling relationship (3.50). A similar inclusion of θℵ in the scaling
relationship (3.18) for the correlation length gives

ξ(λyT θT , λ
yHθH, λθℵ) = λ−1 ξ (θT , θH, θℵ). (3.60)

With the slight change of notation ξ(ℵ)(θT , θH) := ξ(θT , θH, θℵ), (3.60) can
be regarded as relating the correlation lengths of two similar systems denoted
by Ld(ℵ) and Ld(ℵ̃) with couplings ζT , ζH and ζ̃T , ζ̃H and thicknesses ℵ and
ℵ̃ := ℵ/λ, λ > 1, respectively. The relationship (3.60) can be reexpressed as

ξ(ℵ)(θT , θH) = λξ(ℵ̃)(θ̃T , θ̃H), (3.61)

where

θ̃T = θT (ζ̃T , ζ̃H) = λyT θT (ζT , ζH), θ̃H = θH(ζ̃T , ζ̃H) = λyHθH(ζT , ζH)
(3.62)

relate the scaling fields for Ld(ℵ) and Ld(ℵ̃). These relationships form the
basis of Nightingale’s phenomenological renormalization method, where the
correlation lengths for systems of the two widths are obtained from transfer
matrix calculations using (3.28). In the case of one scaling field (H = 0) the
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method yields the critical temperature fixed point θ⋆T := θT = θ̃T and the
thermal exponent for a number of different models (Nightingale 1976, 1977;
Sneddon 1978; Kinzel and Schick 1981), which in the case where exact results
are know are at a high level of accuracy.62

3.5 The Thermodynamic Limit

In the development of statistical mechanics represented by the right-hand column
in Fig. 1 system size appears twice. Firstly in the passage for SM1 to SM2, where
the system becomes large yielding approximate extensivity. This is needed for the
discussion of finite-size phase transitions represented by SM5. Secondly in the other
branch from SM2, via the thermodynamic limit, to an infinite system represented
by SM3. This entails the identification of the infinite statistical mechanical system
SM3 with thermodynamics, or at least the version, labelled TD3 in Fig. 1, of ther-
modynamics with some PTCP defined. But are SM3 and TD3 actually identical?
The answer is clearly ‘no’. TD3 is the result of a development in the left-hand
column of Fig. 1, from the basic structure through the assumption of extensivity
to a grafting on of a picture of PTCP, in the manner of Pippard (1957) or Buck-
ingham (1972). On the other hand, as we have just indicated, SM3 is the result of
a statistical mechanical development in the right-hand column in Fig. 1. It retains
its microstructure with a probability distribution, and in most cases it is the re-
sult of the implementation of the thermodynamic limit for a particular model, the
most well-known examples being the two-dimensional zero-field Ising model and
the eight-vertex model. Thus it should be recognised for later reference (see Sect.
5.1) that this way of understanding the relation between thermodynamics and
statistical mechanics involves the unwarranted conflation of two quite different

pictures. Although one can argue that SM3 is an enrichment of TD3, since the
former has all the features of the latter together with the extra ones provided by
microstructure and precise results concerning critical values and exponents. That
having been said, one may still question whether the thermodynamic limit is:63

(1) Necessary, in principle, because statistical mechanics is not complete without
it.

(2) Useful because calculations become much simpler in the thermodynamic limit
and the relationship FSM––3 of SM3 to TD3 makes it easier to identify the
order of phase transitions.

Although both of these possibilities deserve consideration it is the the first which
has received the most attention, principally because of the role of the thermody-
namic limit in the understanding of PTCP; this will be discussed in detail is Sect.
3.5.1.

In this work we propose, in Sect. 4, a particular view of the usefulness of the
thermodynamic limit in the context of phase transitions in finite systems. However,

62 However, if there is more than one coupling (H ̸= 0) then substituting θ⋆T := θT = θ̃T and

θ⋆H := θH = θ̃H in (3.61), does not completely define the critical point. A number of methods
for dealing with this case have been developed, (Sneddon 1978; Kinzel and Schick 1981)
63 A third possibility that the thermodynamic limit is neither necessary nor useful can surely
be discounted, with respect to usefulness, after a cursory survey of the corpus of work on
statistical mechanics.
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it is pertinent to note the range of possible circumstances calling for the use of
the thermodynamic limit. In particular one might suppose an additional kind of
necessity interposed between the two items in our list:

(1a) Necessary in practice, because calculations for particular models are not
tractable without its use.

However, of course, tractability, and hence necessity in practice, is ephemeral,
evolving (one might hope) with an increase in computing power and technical
ingenuity into mere usefulness.

3.5.1 Phase Transitions in Infinite Systems

The argument for the necessity in principle of the thermodynamic limit for PTCP
effectively involves asserting the truth of the contradictory set of propositions:

P–IA: PTCP occur in nature.
P–IB: PTCP occur in nature as discontinuities in densities (first-order transi-

tions) and as singularities in response functions (higher-order transitions).64

P–IIA: PTCP in thermodynamics are defined by singularities in derivatives of
first or higher order in the free energies and are treated as such using scaling
theory.

P–IIB: PTCP must necessarily be represented in thermodynamics by singulari-
ties.

P–IIIA: PTCP should be able to be modelled in statistical mechanics.
P–IIIB: PTCP should be modelled in statistical mechanics in the same way that

they are in thermodynamics.
P–IV: Real systems are of finite size.
P–V: Thermodynamic functions for finite systems in statistical mechanics are

regular functions.
P–VI: Thermodynamic functions for infinite systems in statistical mechanics can

show singularities.

For later use it is relevant to compare this list with that of Callender (2001, p.
589) (repeated by Mainwood 2006, pp. 13–14):

CP–I: Real systems have finite [size].
CP–II: Real systems display phase transitions.
CP–III: Phase transitions occur when the partition function has a singularity.65

CP–IV: Phase transitions are governed/described by classical or quantum statis-
tical mechanics (through [the partition function]).

A number of items in our list are indisputable and are not included in Callender’s
list:

• That PTCP are defined in thermodynamics by singularities, can be confirmed
by a visit to the thermodynamics section of any academic library (P–IIA is
true). Whether it is necessary for thermodynamics to be formulated in this way
(that P–IIB should be accepted), given a possible denial that PTCP occur in
nature as singularities (that P–IB is true) is a different question.

64 This latter group also includes other sorts of weaker singular behaviour.
65 In relation to this statement, see footnote 76.
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• The joint assertions that thermodynamic functions are regular for finite systems
but can have singularities for infinite systems (included in our list as P–V and
P–VI, respectively, but not contained in Callender’s list) are facts about the
mathematical structure of statistical mechanics which cause the total list to be
contradictory.

And on Callender’s list:

• It is difficult to argue that phase transitions do not occur in real systems (that
P–IA (CP–II) is false), although it is plausible to deny that they arise as some
kind of singularities (to argue that P–IB (not in Callender’s list) is false), on
the grounds that a first-order transition (say that between liquid water and wa-
ter vapour) may look like a sudden change of density, but on closer observation
would turn out to be a very steep continuous change. Likewise, apparent sin-
gularities in compressibility in fluids and susceptibility in magnets may just be
very steep maxima.

• It is also difficult to argue that real systems are not finite (that P–IV (CP–

I) is false), given that no system takes up the whole of the universe.66 A sort
of argument could be constructed on the basis that no system is completely
isolated, but this would mean accepting the need for computation, not with an
infinite system as envisaged here, but with a system joined to a complicated and
largely undetermined environment.

• If the ability to model PTCP were not deemed to be a necessary part of sta-
tistical mechanics (P–IIIA (CP–IV) is rejected), then most of the work on
statistical mechanics in the last half century and more would be pointless. It is,
however, relevant here to mention the work of the late Ilya Prigogine (in partic-
ular, Prigogine 1996). Although, in a sense he accepts P–IIIA, it is a radically
different form of statistical mechanics that he has in mind. From the assertion
that “[a]s long as we consider merely a few particles, we cannot say if they form
a liquid or gas” (ibid, p. 45) he concludes that “[s]tates of matter as well as
phase transitions are ultimately defined by the thermodynamic limit. . . . Phase
transitions correspond to emerging properties. They are meaningful only at the
level of populations and not of single particles” (op. cit). This entails for him
the reformulation of statistical mechanics so that the underlying dynamics in
not that of trajectories but of measure.67

There remain P–IB and P–IIIB, which together with P–IIB is equivalent to
CP–III, and we now consider the consequences of denying one or both of them.

(i) If P–IB is accepted, that is that PTCP in nature do occur as singularities,
then it is clearly necessary for thermodynamics to represent them in this way;
P–IIB must be accepted. Then we seem to be driven toward the conclusion
that statistical mechanics should model them in the same way (that is the
acceptance of P–IIIB) which leads back to the contradiction. This is avoided
by denying P–IIIB. Then PTCP can be modelled in statistical mechanics
without singularities, by, for example, transfer matrix methods, while at the
same time admitting that this is not the situation in reality.

(ii) If P–IB is denied then it can be argued either:

66 Which, in any event, may be finite.
67 This being the approach that he and his Brussels group also used to resolve the problem
of irreversibility (see, for example, Prigogine 1999).
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(a) That it is not necessary for thermodynamics to model PTCP as singular-
ities (P–IIB is false). In this case P–IIIB can be accepted, with PTCP
modelled without singularities in statistical mechanics, with thermody-
namics reformulated to do the same.

or

(b) That in statistical mechanics PTCP should be modelled without singu-
larities, but because for large systems steep maxima in response func-
tions and steep changes in densities look very much like singularities and
discontinuities, it is still necessary (on the grounds of tractability and
simplicity) to model PTCP in thermodynamics as singular behaviour;
P–IIB is accepted and P–IIIB is rejected.68

So given that all of P–I to P–VI are accepted is there any way out of the para-
dox? One radical approach, which has already been noted, is that due to Pri-
gogine, where statistical mechanics is reformulated to ‘build in’ the thermodynamic
limit.69 Somewhat similar, but less radical, is the approach of Robert Batterman,
a philosopher of physics who has written extensively on questions related to phase
transitions, the renormalization group and the thermodynamic limit (Batterman
2002, 2005, 2010, 2011, 2017, 2019). Rather than formulating a novel form of the
mechanics underlying statistical mechanics, his argument, following the lead of
Kadanoff (2013a), is that the renormalization group is itself a novel approach,
revolutionary in the sense of Kuhn (1963), which has the thermodynamic limit
built in. His starting point is that thermodynamics70

“ is correct to represent [phase transitions] mathematically as singularities.”
(A: Batterman 2005, p. 234.)

And:

“Further, without the thermodynamic limit, statistical mechanics would
completely fail to capture a genuine feature of the world. Without the
thermodynamic limit, in fact, statistical mechanics is incapable even of estab-

lishing the existence of distinct phases of systems.” (B: op. cit.)

If there is any doubt about his view of real systems, this is dispelled by his
forthright assertion that he wants

“to champion the manifestly outlandish proposal that despite the fact that
real systems are finite, our understanding of them and their behaviour
requires, in a very strong sense, the idealization of infinite systems and the
thermodynamic limit.” (C: ibid, p. 231.)

‘Outlandish’ or not his position is one which would appear, in our experience, to be
that adopted implicitly or explicitly by many working physicists, including, albeit
in a radical sense as indicated above, by Prigogine, and Kadanoff (2000, p. 238),
who asserts that the “ existence of a phase transition requires an infinite system.
No phase transitions occur in systems with a finite number of degrees of freedom.”

68 To preview Sect. 4, this is the position we shall defend.
69 This involves an extension of the Koopman (1931) formulation to a space beyond the
Hilbert space in which it is set.
70 For reference in the summary (a)–(f) of his position on the renormalization group in Sect.
3.5.2 the quotations from Batterman’s work are given labels A–F.
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Kadanoff calls this the “extended singularity theorem” (Kadanoff 2013a, pp. 154–
156) because “these singularities have effects that are spread out over large regions
of space” (Kadanoff 2013b, p. 24). Having asserted that

“the idea that we can find analytic partition functions that “approximate”
singularities is mistaken, because the very notion of approximation required
fails to make sense when the limit is singular, [which it is in this case
because the] behaviour at the limit (the physical discontinuity, the phase
transition) is qualitatively different from the limiting behaviour as that limit
is approached.” (D: ibid, p. 236)

Batterman’s proposal for resolving the puzzle is to resort to the renormalization
group. In the next section this possibility is examined.

3.5.2 Infinite Systems and the Renormalization Group

‘Infinity’ as it arises in accounts of renormalization group methods consists not so
much in the limiting process, evident in, say, Onsager’s solution of the zero-field
two-dimensional Ising model, whereby the dimensions of the system are taken to
infinity, but rather in the perception that to make the method intelligible one must
be working with a system which is already infinite (Palacios 2018, 2019). To spell
this out, a renormalization group scheme consists of the following:

(i) In the space of couplings (or of functions thereof) a semigroup of transfor-
mations is derived which generates recurrence relationships under which any
critical regions are invariant.

(ii) In this ‘dynamic system’ the critical regions are the basins of attraction of
critical fixed points. And there are sinks associated with non-critical regions
(phases) of the system.

(iii) A critical fixed point determines the universality class of the system at each
point in its basin of attraction, with an associated set of critical exponents.

(iv) In general a system may be able to be in more than one universality class
determined by the symmetry group of the Hamiltonian when there is a par-
ticular relationship between the couplings.71

It is clear that this way to do statistical mechanics is very different from the
standard procedures (mean-field and other classical approximations, series expan-
sions and exact solutions). So much so that, as we have already indicated, it is
characterized by Kadanoff (2013a) as a Kuhn-type revolution, a view endorsed by
Batterman (2017). The argument presented by Batterman concerning the whole
question of singularites/real singular systems/the thermodynamic limit needs to
be carefully rehearsed and for this his 2017 tribute to Leo Kadanoff provides the
clearest account.

He presents his view in contradistinction to that of Jeremy Butterfield who
contends (Butterfield 2011b, p. 1077) that: “The use of the infinite limit . . . is
justified, despite N being actually finite, by its being mathematically convenient
and empirically correct (up to the required accuracy).” For an understanding of
Batterman’s view two quotes are particularly useful. In the first he asserts that:

71 For example, a renormalization scheme for the spin-1 Ising model will have fixed points
for both the spin- 1

2
Ising model and the 3-state Potts model.
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“the RG is not just a theory of the critical point, but rather it is a theory

of the critical region. And this covers large but finite systems. So contrary
to the line of reasoning presented [by Butterfield] the explanation of the
behaviour of real finite systems requires the use of mathematical infinities,
but does not require there to be infinite real systems.” (E: Batterman 2017,
p. 571.)

At this point we have cause to be grateful to a referee of his paper, who objected
that this quote was actually in line with “the claims of those supporting the idea
that real phase transitions aren’t sharp”. In response to this Batterman added a
footnote in which he clarified his position in the following way:

“It seems to me that if one is going to hold that the use of the infinite limits
is a convenience, then one should be able to say how (even if inconveniently)
one might go about finding a fixed point of the RG transformation without
infinite iterations. I have not seen any sketch of how that is to be done. The
point is that the fixed point, as just noted, determines the behaviour of the
flow in its neighbourhood. If we want to explain the universal behaviour of
finite large systems using the RG, then we need to find a fixed point and,
to my knowledge, this requires an infinite system.”(F: op. cit.)

So to summarize his view (using the labelled quotes A–F, given above):

(a) Phase transitions are real discontinuities in experimental systems (A). [An
acceptance of P–IA,B and P–IIA,B].

(b) The thermodynamic limit is needed in statistical mechanics to exhibit phase
transitions (B). [An implicit acceptance of P–V and P–VI and an endorsement
of P–IIIA,B.]

(c) Real systems are finite but in order to understand them we need the idealiza-
tion of infinite systems and the thermodynamic limit (C). [An endorsement of
P–IV, and more.]

(d) The idea that the study of large systems can play a role here is wrong because
the properties of large systems and infinite systems are qualitatively different
(D).

(e) To represent the situation correctly we need to engage with mathematical
singularities but not real infinite systems (E).

(f) We need infinite iteration (of the RG transformation) to obtain fixed points
(and all the information they provide) (F).

And to summarize the summary of Batterman’s position:

Although phase transitions in real systems are accompanied by singular

behaviour, and in statistical mechanical models this singular behaviour

is exhibited only by infinite systems, we don’t need infinite systems, just

the use of mathematical singularities, these being required to derive the

fixed points in renormalization group calculations.

At this point we wish to challenge the last part of this statement by providing72

the ‘sketch’ that Batterman (quote F) requires of the means of the determination
of renormalization group fixed points.

72 Based on practical experience (Young and Lavis 1979; Southern and Lavis 1979, 1980;
Lavis et al. 1982; Lavis and Southern 1984).
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The first thing to note is that the recurrence relationships (3.37) and (3.38) are
derived (almost always with some approximations involved) between the couplings
of two finite systems with sizes N and Ñ with N/Ñ = λd > 1. Once this is done
no point in the space of couplings is intrinsically associated with a system of a
particular size and, by the same token, fixed points, obtained from (3.37) with
ζ̃j = ζj , are not associated with infinite systems. However, if we were to choose to
associate a particular system-size N with the first point of a trajectory, it would be
necessary to assume only that we are working with a system large enough to allow
the required number of iterations.73 (Hence the inclusion of SM2 in the path from
SM1 to SM4 in Fig. 1.) As Norton (2012, p. 222) says, fixed points are the “limit
points” of the sequences generated by the recurrence relationships; the “mathe-
matical pegs on which to hang limit properties” which are never reached in a finite
number of iterations. They do not arise from an investigation of the properties of
infinite limit systems, and, although they are properties of the transformation,
iteration is not always needed for their determination. In some simple cases, like
the one-dimensional Ising model described in Sect. 3.4.3, the fixed points can be
extracted by direct analytic solution of the fixed point equations. But, in more
complicated cases numerical computation comes into play. Although in principle
iteration of the recurrence relationships starting from a point in the basin of at-
traction of a fixed point will generate a sequence of points approaching the fixed
point, this is not usually a viable strategy for their determination. Since those of
greatest interest, associated with critical regions, have both irrelevant directions
of attraction within the critical region (the basin of attraction) and relevant di-
rections along which the trajectory is driven away from the critical region. Except
in special cases it is difficult to start a trajectory in a critical region, but nearby
points are useful and possible. Then the trajectory will hover near the critical
fixed point before it moves away to the sink associated with the phase containing
the trajectory. These ‘hover points’ can be spotted by inspection of the computer
output and used as initial guesses for a numerical solution of the fixed point equa-
tions. These kinds of numerical techniques, used also to map the critical regions
themselves, provide a good picture of the whole phase diagram. And linearization
of the recurrence relationships about the fixed points allows the critical exponents
to be obtained.

3.6 Phase Transitions in Finite Systems: Mainwood’s Proposal

Given, as we have concluded in the previous section, that the thermodynamic
limit is not necessary to enable renormalization group calculations to provide the
PTCP structure, is it still useful in other statistical mechanical treatments of
PTCP? An assessment of usefulness, as distinct from necessity, is obviously heav-
ily influenced by the position adopted with respect to whether PTCP occur in
nature as singularities (P–IB). If it is false and real systems, by virtue of their size
(∼ 1023 microsystems) exhibit behaviour approximating to singular behaviour, in
the sense, say, that the maximum in the compressibility of a fluid is experimentally
indistinguishable from a singularity, then we have the means to remove the con-
tradiction in the set of statements at beginning of Sect. 3.5.1. One way would be

73 Here we are agreeing with Batterman that an infinite system is not required.
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to deem it unnecessary for PTCP to be treated as singularities in thermodynamics
(a denial of P–IIB). Although this would allow thermodynamics and statistical
mechanics to be modelled in the same way (for P–IIIB to be accepted) we would
argue, for the reasons given in Sect. 4, that it is not a tenable possibility.

The alternative, which is the one discussed in this section, and which is favoured
by ourselves, is to accept that thermodynamics must represent PTCP in terms of
singularities (P–IIB) on the basis that this is an appropriate approximation to
real systems. Thus rejecting the assertion that thermodynamics and statistical me-
chanics must model PTCP in the same way (P–IIIB), since statistical mechanics
models phase transitions in finite systems. Given that real systems are very large
(in terms of the number of microsystems) and finite, with phase transition giving
the appearance, but not the exact reality of singularities, can calculations avoid
using the thermodynamic limit? Or, more generally can recourse to a system where
PTCP occur as singularities be avoided? Here we examine a proposal of Mainwood
(2006) which definitely answers the question in the negative and in the next section
we propose an answer which is more nuanced.

The definition of a phase transition provided by Mainwood (ibid, p. 28) can74 be
described in the following way. For a statistical mechanical system SN of size N
with partition function Z2(ζ1, ζ2, N), the free energy Φ2(ζ1, ζ2, N) is given by (3.2)
and satisfies (2.5) and (2.6).75 Suppose that the thermodynamic limit

lim
N→∞

Φ2(ζ1, ζ2, N)

N
= ϕ2(ζ1, ζ2) (3.63)

exists, with ϕ2(ζ1, ζ2) the free-energy density of the system S∞. Then:

Definition 2 (ζ1, ζ2) is a point with a particular criticality for SN iff (ζ1, ζ2) is a
point where S∞ has a singularity associated with this same criticality.

And Mainwood (ibid, p. 29) asserts that:76

“Rather surprisingly, using this definition it is possible to hold on to all
of Callender’s four statements [(given above as CP–I to CP–IV)] without
contradiction; though only in a Pickwickian sense — it is a “trick” possible
only due to his choice of wording. Namely, the singularity referred to in
[CP–III] is one not in the partition function [of SN ] but in [the partition
function of S∞].

74 With some changes of notation to give conformity with our usage.
75 We have chosen the system with two independent couplings for convenience.
76 In relation to both this assertion and CP–III, the following quibble might not be out of
place. The thermodynamic limit is taken for thermodynamic functions which are approximately
extensive for large systems and become extensive in the thermodynamic limit (Griffiths 1964).
The partition function is not of this sort, as one can see by using a little ‘reverse engineering’ to
define the partition function of S∞ as Z∞(ζ1, ζ2, N) := exp{−Nϕ2(ζ1, ζ2)}. Apart from the
retained dependence on N , a singularity, which is an infinity of ϕ2(ζ1, ζ2) would be a zero of
Z∞(ζ1, ζ2, N). In fact this brings to the fore a problem with CP–III. Phase transitions do not
correspond to points “when the partition function has a singularity”. For (say a lattice system)
the partition function is, for a finite system, a polynomial whose zeros give singularities of the
free energy, none of which lies on the positive real axis. In the thermodynamic limit a phase
transition corresponds to a point of accumulation of zeros on the real axis. The quibble is
resolved by replacing ‘partition function’ by ‘free energy’ in CP–III and Mainwood’s assertion.
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If this is regarded as a positive point in favour of Mainwood’s definition, the overall
conclusion seems to be more mixed. Mainwood ‘worries’ that:77

(1) The definition means that a phase transition can be predicted in a finite sys-
tem, however small it might be (ibid, p. 32).

(2) “While there exist standard procedures for taking the thermodynamic limit,
. . . these procedures are human inventions, and choices could have been made
differently. . . . The definition of a phase transition thus seems arbitrary in a
disastrous sense: we can choose whether one is occurring or not by modelling
it differently, or taking the limit according to a different scheme” (ibid, p. 31).

(3) “[T]he facts we need to decide whether or not [a physical system] is undergoing
a phase transition should be physical facts, about actual states of affairs . . .
They should not exist only in an idealized model on a theoretician’s black-
board” (ibid, p. 29).

Although Mainwood adds (1) as a final difficulty it is probably the one which
would first spring to mind, since the definition would imply a phase transition
in an Ising model of four spins in a square at the critical temperature given by
Onsager’s solution. Mainwood thinks that “this bullet can and should be bitten”
(ibid, p. 32), but the consequences are not, we think, ones which would recommend
themselves to any working physicists; not to put too fine a point on it, they would
bring chaos to discussions of critical phenomena. The tractable alternative, also
suggested by Mainwood, is to restrict the definition to large systems.78 This would
seem to us to be an inevitable step, but it also has consequences which we discuss
in more detail below.

At one level both (2) and (3) are examples of the standard concern with respect
to modelling, namely that we may not have a very good model which is not giving
results which agree with experiment. And Mainwood’s response to this is, as would
be expected, that we should find a better model. But worry (3) also contains a
second element, namely that his definition contains the use of a counterfactual,
an idealized infinite model. His argument here is more complex and draws on a
strong parallel with Lewis’s (1986) analysis of counterfactuals. On this basis he
argues that

“it is the character of [the real finite system] that determines the nature
of the infinite system that we then consider. When we draw conclusions
about the nature of the phase transitions, they are conclusions about the
character of [the real finite system], but by reference to the infinite model
we can express them in a concise and illuminating form” (ibid, p. 30).

However we have worries of our own which do not seem to concern Mainwood.
These can best be described by considering the transfer matrix treatment in Sect.
3.3, where, if we restrict attention to the two-dimensional square-lattice spin-12

77 It is convenient to take his worries in reverse order.
78 This is also discussed by Ardourel (2018), who proposes to use the Lee–Yang formulation of
phase transitions in terms of the zeros of the partition function to describe, and to understand,
the emergence of anomalies of thermodynamic functions in terms of accumulations of Lee–Yang
zeros in the vicinity of the critical temperature on the real axis in the complex temperature
plane. While this does indeed provide a useful intuition, it is not substantially different from
exactly solving the statistical mechanics of finite systems, and does not by itself allow us to
predict the way in which anomalies approach singularities of the infinite system, when the
system size is increased.
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Ising model in zero field, the exact critical temperature is known for the model on
an infinite lattice (see Appen. B). To apply the transfer matrix method (see Sect.
3.3), the square lattice is taken to have NH sites in the horizontal direction and NV

sites in the vertical direction, so that N = NHNV. Periodic boundary conditions
are applied so that the lattice forms a torus with horizontal rings of NH sites
and rings in a vertical plane of NV sites. It is assumed that the system is large
in the horizontal direction, so that, parameterized by NV, we have a sequence of
one-dimensional models of increasing complexity. Each exhibits a maximum in the
heat capacity, including the simplest case NV = 1 (Domb 1960, p. 166).79 These
maxima (although they will differ slightly for all NV however large and finite) are
taken as incipient singularities80 and for increasing NV show good agreement with
the Onsager result, which is the case NV = ∞.

However, the prescription to be applied by the Mainwood proposal is that their
critical temperatures, for all NV, are the Onsager value. This would seem to us
to reverse the order of the way of working of physicists. We think it is probably
true to say that, with notable exceptions like Kadanoff (2009, 2013b,a), physicists
involved in model calculations do not consider whether their interest is in very large
systems or infinite systems. Their concern is whether a phase transition occurs. If
they suppose that it does, one tool81 to determine its location is to use transfer
matrix calculations (Runnels and Combs 1966; Runnels et al. 1967; Bellemans
and Nigam 1967; Orban and Bellemans 1968; Orban et al. 1968; Lavis 1976). The
method is to determine incipient singularities for as large a vertical width of system
as possible as an estimate for the transition temperature for a very large/infinite
width. Here one cannot use Mainwood’s prescription to assign the infinite-width
result to the finite-width systems, since the former is not known.82 When, as in
the case of the zero-field spin-12 Ising model, the infinite-width result is known
exactly or has been determined to a good approximation by series methods, the
motivation for determining finite-width results is to test the efficacy of the method,
or to cross-check with other results.

In his discussion of Mainwood’s proposal Butterfield (2011b, p. 1130) states it
in a more restricted form. Again using our notation this is:

Definition 3 A phase transition occurs in SN iff S∞ has non-analyticities.

This Mainwood–Butterfield proposal has the advantage that it doesn’t project
a result from the infinite system onto finite systems of any size (or maybe onto
just large-size systems). However, given that it asserts the existence of a phase
transition in a finite system of any size N , where does this occur? At the maximum
of one of the response functions (heat capacity or susceptibility/compressibility),
or by extraction from the behaviour of the ratio of the two largest eigenvalue of
the transfer matrix? These will all give different results, as will also the results

79 Although we have shown by an exact renormalization group method in Sect. 3.4.3 that
when NV = 1 the critical fixed point is at zero temperature.
80 As we have indicted in Sect. 3.3 maxima in other response functions and also the behaviour
of the ratio of the two largest eigenvalues of the transfer matrix can also be used as identifiers
of incipient singularities.
81 Among others, including duality transformations and series expansions.
82 Although one can, in some cases, prove the existence of a phase transition, even if the tran-
sition temperature is not known (Peierls 1936; Heilmann 1972, 1980; Heilmann and Huckaby
1979).
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of taking the limits in different ways and for differing numbers of dimensions, all
of which in turn will differ with N . If all these values are taken to be estimates
of some ‘true’ value will this be N-dependent or the same for all N , including
presumably N = ∞, when we would be back with the problems of Mainwood’s
original proposal?

4 Phase Transitions in Large Systems: Our Proposal

As we shall see, our discussion in previous sections of the structure of thermody-
namics and of statistical mechanics in general, and of PTCP in particular, will
allow us to paint a more nuanced and quantitative picture of their relationship
than that provided by previous approaches. In particular we are concerned with
the role in that relationship played by large finite systems. Mainwood suggests
that we ‘bite the bullet’ by countenancing the possibility of phase transitions in
small systems. However, we suggest that he is proposing to bite the wrong bullet.
The one which should be bitten is the need for a criterion giving a demarkation
in system size between small systems and large systems, and our proposal, which
uses the discussion of finite-size scaling in Sect. 3.4.2, is intended to encompass
this need.

Thermodynamics, on the one hand, characterises PTCP in terms of singularities
of thermodynamic functions, which may occur at special values of externally con-
trollable parameters. This characterisation appears, at first sight , to be warranted
by the phenomenology of phase transitions as they are observed in nature – ap-
parent discontinuities of thermodynamic functions at first-order phase transitions,
and apparent algebraic singularities of thermodynamic functions including diver-
gent response functions at second-order phase transitions. In statistical mechanics,
on the other hand, singularities of thermodynamic functions can emerge only in
the limit of infinite system size. As realistic systems are clearly of finite size, this
creates an internal inconsistency in the list P–I to P–VI of propositions given
above, if indeed the characterisation of PTCP as they occur in nature in terms of
singularities (that is proposition P–IB) is accepted.

Our aim now is to present an argument, based on the account of finite-size
scaling in Sect. 3.4.2, which shows that this inconsistency can be resolved within
statistical mechanics and in a fully quantitative manner. In Sect. 3.4.2, and also here,
discussion is restricted to a system with a thermal coupling θT and a magnetic
coupling θH, in the cases where (i) it is fully-finite with thickness ℵ and (ii) it is
fully-infinite with ℵ = ∞. In case (ii) on the zero-field axis H = 0, θH = 0 there is
a critical temperature T = Tc with θT = 0 where response functions are singular.
There is no singularity in the finite system but maxima appear in the response
functions. We now summarize the relevant conclusions of finite-size scaling:

FSS–I: In the thermodynamic limit ℵ → ∞ when θT is small, but not infinitesimal,
the asymptotic form for the susceptibility at T = Tc, given by (3.53), has a
singular component with exponent γ, but amplitudes which, by virtue of the
presence of an irrelevant field θ⋆, are dependent on θT .

FSS–II: As θT → 0, the influence of θ⋆ becomes negligible and the susceptibility
exhibits a pure power-law singularity at T = Tc as described by (3.55).
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FSS–III: When ℵ is finite there is no singular behavior and two temperatures are
defined:83 the shift temperature T̃ (ℵ) where the susceptibility has a maximum
and the rounding temperature T̊ (ℵ) at which the profile of the susceptibility
in the finite system begins to diverge from that in the infinite system.

FSS–IV: Assuming, as in (3.47) and (3.48), that |Tc−T̃ (ℵ)| ∼ O(ℵ−χ) and |T̊ (ℵ)−
T̃ (ℵ)| ∼ O(ℵ−τ), it can be shown that the shift exponent χ = [ν(1−y⋆)]−1 and
the rounding exponent τ = ν−1; that is that the rate of convergence of both
the incipient singularity and the range of influence of finite-size effects around
the incipient singularity are determined by exponents present in the infinite

system.

This renormalization group scaling approach to the description of critical phe-
nomena thus explains in a quantitative way, how singularities that might occur in
infinite systems are smoothed out by finite-size effects. This, being fully in line with
the fundamental observation that statistical mechanical systems of finite size can-
not exhibit any singularities, resolves the inconsistency in the list of propositions
P–I to P–VI. In particular FSS–IV gives a quantitative measure of the deviations
of critical phenomena, as observed in finite systems, from the behaviour expected
for infinite system size. From (3.51), deviations from critical behaviour character-
istic of the infinite system will be observable in a narrow region around the infinite
system critical point. This, however, is precisely the region, where one would stand
the chance of observing asymptotic singular behaviour , as only in this region is the
influence of irrelevant scaling fields on PCTP expected to be sufficiently small.
In order to observe asymptotic critical singularities it is thus required that |θT |
be sufficiently small to keep corrections to asymptotic critical singularities due to
irrelevant scaling fields under control, but also not too small , in order to prevent
finite-size corrections from becoming significant. As the range of θT within which
finite-size corrections dominate critical behaviour shrinks with system size ℵ like
ℵ−1/ν , one has to choose systems sufficiently large in a quantitatively well-defined

sense in order to be able to observe asymptotic critical singularities characteristic
of the respective universality class of a system.

In the context of the list P–I to P–VI of propositions, it is important to
realise that the characterisation of PTCP in terms of singularities of thermody-
namic functions constitutes an extrapolation of empirical observations, as properly
establishing the existence of a discontinuity of a thermodynamic function would
require experimental control of infinite precision, while establishing a divergence of
a response function would require an actual measurement of an infinite quantity.
Neither requirement can conceivably be met in any realistic experiment. Given
that realistic systems contain O(1023) constituents, the linear dimension ℵ of such
systems, measured in terms of atomic distances, is very large and the temperature
range over which finite-size corrections to singular behaviour would manifest them-
selves, will be very small. It is thus understandable that such effects have been
beyond experimental resolution.84 On the other hand, in computer simulations of
statistical mechanical systems, one can handle only relatively small systems, and
finite-size roundings of critical singularities are therefore quite prominent. In such
situations such roundings, as predicted (and captured) by finite-size scaling are
indeed observed and routinely used to extract asymptotic critical exponents from

83 Each will, of course, depend of the particular response function under consideration.
84 Except for fairly recently in thin films (Li and Baberschke 1992; Wang et al. 2011).
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Fig. 9 Isothermal curves of magnetization density plotted against the field coupling. System
size increases from the broken to the chain to the dotted curves with the infinite system
represented by the continuous line.

finite-size data (Binder 1981). The renormalization group and its formulation of
finite-size scaling theory thus predicts in a quantitative way, both, the emergence
of critical singularities, described as pure power-law singularities sufficiently close
to an infinite system critical point,85 and their shifting and rounding in systems
of finite size.

According to our definite of a incipient singularity (Def. 1, above) such will occur
in a finite system at certain values of their external parameters, if at those values
thermodynamic functions exhibit properties that have no finite limits as the system
size ℵ is increased. This could be a steep increase in the the slope of magnetization
as a function of the external field across the zero-field axis at low temperatures,
as shown in Fig. 9, which is indicative of the possibility of a first-order transition
in the infinite system. Or it could be the size-dependent height of the maximum
of a response function as shown in (3.52) with ω > 0, which is indicative of
the possibility of a second-order transition in the infinite system. However it is
important to note that an assertion of the occurrence of a incipient singularity in a
finite system can never be made with absolute certainty by looking at the behaviour
of a single system of any fixed finite size, but only by comparing the behaviour of

systems of different sizes. That said, our investigations have now provided us with
a well-defined notion of a large system:

Definition 4 For a system to be counted as large it must be big enough to ex-
hibit a range of values of a thermodynamic variable (for example, the temperature)
within which the following two phenomena can both be avoided:

(i) the corrections to scaling (due to the existence of non-zero irrelevant scaling
fields) which require the system to be close to an incipient singularity,

(ii) the noticeable finite-size corrections in a close neighbourhood of an incipient
singularity (due to a finite value of ℵ), which requires the system to be
sufficiently far away from an incipient singularity.

85 For the sake of completeness, it should be mentioned that under certain well understood
conditions, logarithmic corrections to pure power laws can occur (Wegner 1972). They translate
into analogous logarithmic corrections in finite-size scaling relations (Mazzeo and Kühn 1999).
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Although, as we saw above, these two conditions pull in opposite directions this
tension will become less acute as the system size increases. For such systems incipi-
ent singularities will be observable in a range of temperatures (or couplings), which
are described by the asymptotic critical exponents of infinite systems. These expo-
nents describe incipient singularities which will never fully materialize in a system
of finite extent. They do, however, provide an economy of description, and lead to
a classification of systems according to their universality class, as described earlier.
Quite often the full complexity of the crossover between behaviour described by
asymptotic critical exponents and finite-size rounding of thermodynamic functions
is far beyond the capabilities of available analytic tools. Taking the thermodynamic
limit in a statistical mechanical analysis of a system is also often,86 the only way
to carry the calculation through to its end.

The renormalization group approach to PTCP actually plays a dual role in
the analysis of critical phenomena.87 On the one hand it provides micro-reductive
methods, firmly embedded in the arsenal of techniques of statistical mechanics,
to evaluate critical exponents for given statistical mechanical systems, albeit in
most cases only approximately. On the other hand it embodies a new way of
looking at such systems, by describing statistical properties of systems at different
length scales. It is this radically new way of analysing systems which allows it to
put systems with different microscopic properties into a common context , which in
turn leads to the identification of fixed points and their basins of attraction as
universality classes, thereby revolutionizing the analysis of critical phenomena.

It is perhaps appropriate to add a final twist. Asymptotic critical exponents
characterising singularities at phase transitions as they would occur in infinite
systems, including exponents that describe corrections to scaling due to irrele-
vant scaling fields, are obtained from the eigenvalues of a renormalisation group
transformation that is linearized in the vicinity of (one of) its fixed points. They
are thus obtainable without ever touching or contemplating systems of infinite size!
As we have seen in our discussion above, these critical exponents also govern the
way in which finite-size corrections to critical phenomena manifest themselves. In
some sense, therefore, it would be fair to say that critical exponents are bona-fide

properties of finite systems – rather than, as mostly discussed, simply properties of
potentially infinite systems.

The aim of our analysis has been to eliminate some of the confusion that has
characterised much of the discussion surrounding PTCP in the philosophical (and
physics) literature. To summarize our position:

• It cannot be denied that phase transitions occur in nature. (P–IA is accepted).
• The assertion that they are characterized by singularities is an unwarranted

extrapolation of empirical findings. (P–IB is rejected). (Asserting the existence
of a singularity in an experimental result requires infinitely precise experimental
control, or an actual ‘measurement of the infinite’, which is clearly infeasible.)

• Within thermodynamics, there is no choice but to describe phase transitions in
terms of singularities. (That is, P–IIA and P–IIB are valid statements about the
structure of thermodynamics). Equations of state either have unique solutions

86 As in the case of the Onsager (1944) solution of the zero-field two-dimensional Ising model.
87 This aspect is also highlighted in Hüttemann et al. (2015).
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– in which case there is no phase transition – or they may exhibit bifurcations
in their solution manifolds, in which case singularities and discontinuities arise.

• Phase transitions, as they occur in nature, are correctly described by statistical
mechanics, the renormalization group and finite-size scaling. Thermodynamics,
on the contrary, is fundamentally incapable of an adequate description as it is,
from the outset, conceived as a theory of infinitely large systems. (P–IIIA is
accepted but P–IIIB is rejected).

• Investigating systems in the limit of infinite system size provides added value in
that it allows one to (i) identify exact asymptotic power laws, which the incipient
singularities would follow if system sizes could be taken arbitrarily large, (ii)
provide a classification of systems according to their universality class.

5 After-Thoughts on Reduction and Emergence

Figure 1 is a diagrammatic attempt to encapsulate the relationship between ther-
modynamics including scaling theory, and the Gibbsian version of statistical me-
chanics including various approaches to PTCP: the use of the thermodynamic
limit, the renormalization group and phase transitions in finite systems. Apart
from the formal links spelled out as messages FSM––1, . . ., FSM––4 from statistical
mechanics to thermodynamics and the connecting relationships FTD––1, . . ., FTD–-
3, provided by thermodynamics to statistical mechanics, there is another element
of collaborative interaction, as shown in Fig. 1, in the direction from statistical me-
chanics to thermodynamics; specifically from the renormalization group to scaling
theory. This has two aspects substantiation and enrichment :

• The Kadanoff scaling relationship (2.25) is introduced as a hypothesis, which is
substantiated as (3.44) in renormalization group theory.

• Scaling about an arbitrary origin in a critical region with relevant and irrele-
vant directions is a consequence of scaling theory. This picture is enriched in
renormalization group theory, where scaling origins are not arbitrary, but fixed
points of the flow determined by the recurrence relationships, and corresponding
to different universality classes. Relevant and irrelevant directions correspond to
directions in which a fixed point is repulsive and attractive to the flow. Follow-
ing a trajectory as it approaches one fixed point, but is finally repulsed towards
another, is an example of crossover between different types of critical behaviour,
that is between different universality classes.

Having spelled out a picture of the anatomy of thermodynamics and statistical
mechanics, as well as the relationships between their different parts, we can now
ask what consequences this has for our understanding of reduction and emergence
as regards PTCP. The literature on reduction and emergence is vast, even when
restricted to the specific area of PTCP. So reviewing and discussing this entire
literature is beyond the scope of this work,88 with a more extensive treatment
being the subject of a future paper. Our aim in this section is simply to sketch the

88 For surveys of the various positions in the discussion concerning reduction see Hüttemann
and Love (2015) and Van Riel and Van Gulick (2019). For surveys of the discussions of emer-
gence see Humphreys (2015) and the contributions of Gibb et al. (2019). For an overview of
discussions of phase transitions see Shech (2018).
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main contours of the lie of the land in the light of the picture we have developed,
hoping that this will serve as a springboard for further discussions.

To aid our account, we introduce the following terminology. Let TC and TF be two
theories, where ‘C’ stands for ‘coarse’, meaning less detailed, and ‘F’ stands for
‘finer’, meaning more detailed.89 Intuitively, TC is the theory that is supposed to
be reduced to TF. In the terminology that has become standard in the philosophical
literature on the topic, TF is supposed to be the reducing theory and TC is supposed
to be the reduced theory. We say ‘supposed to be’ because this is what reductionists
would expect. The question is whether this expectation bears out, and if so in what
sense of reduction.

Accounts of reduction might be divided into two broad families, called limit

reduction and deductive reduction.90 We now have a look at each in turn and consider
whether they can account for the relation between TC and TF that emerges from
our account.

5.1 Limit Reduction

The core idea of limit reduction is that TC reduces to TF if the former turns out
to be a regular limit of the latter. An example of such a reduction is letting the
parameter c, the speed of light in the special theory of relativity, tend toward
infinity and thereby recovering classical Newtonian mechanics (Nickles 1973).91 In
general, let us call the relevant parameter α; the limit, denoted as limα, can be
toward any value of α, the most frequent cases being α→ 0 and α→ ∞. Batterman
(2020) adds the further requirement that the limit be regular, which means that
the relevant formulae in TF approach the relevant formulae in TC smoothly as the
parameter approach the relevant limit value.92 Taking these elements together
yields the following:

Definition 5 Limit Reduction:

TC limit-reduces to TF iff limα TF = TC and the limit is regular.

This definition plays an important role in the discussion about the reduction of
PTCP because TC is commonly associated with thermodynamics and TF with
statistical mechanics. The failure of the limit to be regular as the number of
microsystems tends to infinity is then seen as an indication that reduction fails.

How does this argument play out in our scheme? To answer this question we
first need to identify certain elements in Fig. 1 with TC and TF. There are two
possibilities:

89 Butterfield (2011a, p. 928) replaces ‘C’ by ‘t’ to stand for top, tangible or tainted and ‘F’
by ‘b’ to stand for bottom, basic or best.
90 The distinction goes back to Nickles (1973). Batterman (2020) calls them the “physicist’s
sense of reduction” and the “philosopher’s sense of reduction”. We avoid this terminology
because, as we will argue, physicists do present deductive reductions.
91 We note that the terminology of what reduces to what varies. Nickles says that in taking
the limit TF reduces to TC; in keeping with the terminology previously introduced, we say that
TC reduces to TF. Nothing in what follows depends on this purely terminological matter.
92 See Berry (2002) and for discussions of singular and regular limits see Butterfield (2011b)
and Nguyen and Frigg (2020).
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(a) Work within the renormalization group SM4. In this case, as described in
Sect. 3.4.1, the limiting process is implemented by the renormalization trans-
formation which applies a succession of reductions in the number of lattices
sites. This reduces the fluctuations (and correlation length) away from critical
regions, but leaves the essential statistical mechanical structure intact.

(b) Apply the infinite system limit SM2 → SM3. Away from critical regions this
removes fluctuations in the uncontrolled extensive variables, but leaves the
microstructure and the probability distribution intact.

However, neither of these is a reduction to a version of thermodynamics. Both (a)
and (b) are procedures lying entirely within statistical mechanics. That having
been said, (b) is probably the closest to the above idea of reduction. However,
while it uses the thermodynamic limit, that limit does not take the system to a
thermodynamic system, but to an infinite statistical mechanical system (SM3). To
arrive at thermodynamics it is necessary to conflate SM3 with TD3. While SM3

like TD3 contains the singular characteristics deemed necessary (by some) for the
occurrence of phase transitions it also has a microstructure which is lacking in
TD3.

So there is no part of Fig. 1 which involves the kind of limit that would ground
a limit reduction. However, far from being a problem, this is simply irrelevant to
the issue of the reduction of PTCP. As we have indicated in Sect. 4 the role of the
thermodynamic limit is, in the first instance, to provide a condition for maxima in
response functions to be incipient singularities; some finite systems do not show
PTCP no matter how large they become. In the second instance it provides the
critical exponents that can be regarded as properties of the real system. Limits and
renormalization group techniques are classification tools that enable us to separate
phase transitions into different universality classes.

5.2 Deductive Reduction

This notion of reduction is closely associated with Nagel. The broad idea is that TC

is reduced to TF if the laws of TC are deducible from the laws of TF and some aux-
iliary assumptions. A mature formulation of this idea, known as the Generalised

Nagel-Schaffner Model of Reduction, is as follows:93

Definition 6 Deductive Reduction:

TC reduces to TF iff there is a corrected version T⋆
C of TC such that:

(i) Connectability : If TC contains terms that do not appear in to TF, then for
every such term there is a bridge law connecting it to a term in TF.

(ii) Derivability : Given the associations in (i), T⋆
C is derivable from TF plus bridge

laws and, possibly, some auxiliary assumptions.
(iii) Strong Analogy : TC and T⋆

C are strongly analogous to one another.

As a simple example, consider the derivation of the perfect gas law PV = NT

(given as the second of equations (2.8)) from the kinetic theory of gases. Here the

93 The original reference is the first (1961) edition of Nagel (1979), of which Schaffner (1976)
provide a reformulation. An alternative account by Butterfield (2011a,b) uses the notion of a
definitional extension. Our presentation here follows that of Dizadji-Bahmani et al. (2010).
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perfect gas law is TC and the kinetic theory is TF. TC contains the term ‘temper-
ature’, which is not in TF. The bridge law T := 2Uε/(3N) (which is the first of
equations (2.8)) with the internal energy U identified as the expectation value of
the kinetic energy of the gas, connects this term to TF. T

⋆
C is the version of the

perfect gas law in which, subject to the physical constraints on the system, P ,
V , and T are variables that can fluctuate (something they cannot do in TC). T

⋆
C

and TC are strongly analogous in that fluctuations are small (to the point of being
negligible) in contexts in which TC is applied.

The introduction of T⋆
C is a concession to practice. Ideally one would be able to

derive TC from TF, but that is usually not possible. So one rests content with
deriving a theory T⋆

C that is not identical with, but strongly analogous to, TC.
What does it mean to be strongly analogous? Schaffner (1976) blocks the worry
that an appeal to strong analogy is an entry ticket to ‘anything goes’ by imposing
the following two conditions:

(a) T⋆
C corrects TC in that T⋆

C makes more accurate predictions than TC.
(b) TC is explained by TF through T⋆

C being a deductive consequence of TF and T⋆
C

being strongly analogous to TC.

With this in place, we can now ask whether the above schema indicates that a
deductive reduction is taking place. For this we first need to know which theories
are in play: what is reduced to what? Since we are interested in a reduction of
PTCP, we should focus on a version of thermodynamics with PTCP in it. So
we set TC :=TD3. Then it might seem tempting to choose SM3 as the reducing
theory because, in Fig. 1, TD3 ‘communicates’ with SM3. This, however, would be
the wrong choice. What we are interested in is the reduction of thermodynamics
to a fundamental theory of large systems, and this is SM2. This is because SM2

contains the fundamental principles of statistical mechanics with the only added
assumption being that systems are large; so TF:=SM2 is appropriate. SM3, by
contrast, contains a limit assumption which does not belong in the fundamental
theory. So the task we set ourselves here is to check whether the reduction of TD3
to SM2 fits the mould of deductive reduction. We shall argue that it does and, to
this end, we now consider this contention in relation how to the elements (i)–(iii)
of Def. 6 play out in Fig. 1.

For (i) connectivity requires a number of bridge laws. We have avoided this des-
ignation for the relationships FTD––1, FTD––2 and FTD––3 in Fig. 1, preferring
to call them ‘inter-theory connections’. However, now we shall consider the
possibility that they can assume the role of bridge laws as required in the
present context. The paradigmatic example of a bridge law in the philosoph-
ical literature is provided, as indicated above, by the perfect gas. There the
bridge law identifies the temperature in statistical mechanics using the under-
lying identification of the expectation value of kinetic energy of the gas with
its internal energy. But, on closer examination, this example glosses over two
other identifications, of volume and pressure.94 In a perfect gas contained in
a cylinder closed by a movable piston, the piston position will fluctuate; that
is to say, from a statistical mechanical point of view, the volume of the gas is
a fluctuating quantity. So, just as the internal energy must be identified with

94 And also of the number of particles of the gas if it is enclosed in a permeable container.



54 David A. Lavis, Reimer Kühn and Roman Frigg

the expectation value of the kinetic energy, the thermodynamic volume must
be identified with the expectation value of the statistical mechanical volume.
Other instances of the same kind are provided by other systems and they are
all covered by FTD––3, which in the current context plays the role of a bridge
law. In the case of the perfect fluid the identification of internal energy and
the expectation value of the kinetic energy and of the thermodynamic volume
with the expectation value of the statistical mechanical volume is sufficient
to provide a bridge for temperature, pressure and for entropy via the Sackur-
Tetrode formula and consequentially for all other thermodynamic variables,
as described by the connecting relationships FTD––1 and FTD––2. These could,
therefore, be regarded as consequences of the underlying bridge law FTD––3,
rather than as bridge laws in their own right. In more complicated situations,
where there is a need to connect a larger set of thermodynamic and statistical
mechanical variables, it is a reasonable economy to regard them, together with
FTD––3 as comprising an exhaustive set of bridge laws.

For (ii) by definition T⋆
C is a corrected version of TC that can be derived from TF

plus bridge laws. In the current context T⋆
C is a version of TD3 in which the

relevant quantities are allowed to fluctuate, and the fluctuations show roughly
the pattern given in SM2 (but without T⋆

C containing any of the microstructure
of matter specified in statistical mechanics). It is obvious that T⋆

C thus defined
is a deductive consequence of SM2: it is obtained simply by applying the bridge
laws to SM2.95

For (iii) we need to show that T⋆
C and TC stand in the proper strong analogy rela-

tionship. In effect the derivation of SM3 from SM2 through the thermodynamic
limit and the fact that SM3 corresponds to TD3 amounts to saying that there
is a strong analogy between SM2 and TD3. However, a more detailed analysis
is useful and for this we check whether Schaffner’s two criteria are satisfied:

For (a) the messages FSM––1 and FSM––2 are relevant. FSM––1 asserts that
uncontrolled thermodynamic variables fluctuate with variances of O(N)
related to response functions. This means that the variances of the corre-
sponding density variables are O(1/N). That these fluctuations are small for
large systems is related to, but not exactly equivalent to the fact, asserted
in FSM––2, that extensivity is an approximate property of large systems. So
T⋆
C modifies TC by replacing equality in the basic relationship with approx-

imate equality, valid when the system is large. It also contains fluctuation–
response function relationships between fluctuations, which are recognised
in T⋆

C but not in TC, and response functions which appear in both. Thus
T⋆
C makes more adequate predictions than TC because real systems do show

fluctuations.
For (b) the way that TC :=TD3 is explained by TF :=SM2 follows straight-

forwardly from Sect. 4 once the bridge laws are accepted and we have in
place the definition of an incipient singularity (Def. 1). Maxima in response
functions are identified as incipient singularities if they map into real sin-

95 Terminological note: the term ‘corrected’, which is customary in the discussion of reduction,
is somewhat ill-chosen, because it might suggest that that TD3 is in some way faulty, which
it is not. It is in fact one of the most successful and enduring models in physics. The term
‘corrected’ here should be read in a unemphatic (and non-pejorative) way, as simply indicating
that conditions (a) and (b), listed above, are met.
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gularities in the thermodynamic limit, which is the step from SM2 to SM3.
And, as we have already noted, TD3 communicates with SM3 in the sense
that it communicates its understanding of the singularities in SM3 to TD3.

From the above we conclude, that TD3 reduces to SM2 in the sense of deductive
reduction. However, the structure of Fig. 1 prompts a consideration of the pos-
sibility of a further relationship of deductive reduction higher in the figure. In
particular does TC :=TD4 and TF :=SM4 satisfy the required conditions?96 It is
straightforward to see that connectability and derivability, where T⋆

C is a version
of TD4 that has certain of the features of SM4 built into it, are satisfied as before.
Scaling in TD4 is a phenomenological means of capturing the structure of the way
thermodynamic functions in critical regions depend on variables (in the form of
homogeneous functions of controllable variables). It can in a sense be regarded
as being built from renormalization group theoory with the scaffolding removed.
This is what we referred to above as the substantiation of scaling theory by the
renormalization group. On the other hand the values of critical exponents and the
interpretation of the origin of scaling as the fixed point of a semi-group transfor-
mation is absent from TD4 but present in SM4. In that sense the later provides an
explanation or enrichment of the former.

5.3 Emergence

In the case of emergence things are even more difficult than with reduction. As
Humphreys notes in a recent review of the field, not only is there no unified
framework or account of emergence, there is not even a generally agreed set of core
examples of emergent phenomena on which a discussion could build (Humphreys
2015). Our aim here is not, therefore, to comprehensively review the field; we
rather discuss some senses of emergence that have played a role in the debate and
assess whether, in the light of our analysis, PTCP are emergent in these senses.

For Butterfield, whose view of reduction is essentially Nagelian, there is no con-
flict between reduction and emergence. The view that reduction and emergence are
compatible is based on an understanding of emergence as there being “properties
or behaviour of a system which are novel and robust relative to some appropriate
comparison class” (2011a, p. 921, orig. emph.). He adds the comment that this is
intended to cover the case where a system consists of parts, where the idea is that
a composite system’s “properties and behaviour are novel and robust compared
to those of its component systems, especially its microscopic or even atomic com-
ponent” (op. cit.). We agree that thus understood, there is emergence in the large
but finite systems we are studying and PTCP can be regarded as both emergent
and reduced. Illustrative of this is the transfer matrix approach where maxima in
response functions and the correlation length (or critical properties if d > dLC),
calculated for a lattice which is infinite in d dimensions, converge towards the
critical properties of a (d+1)-dimensional system as the size in that dimension is
increased. This account, affords a understanding of dimensional crossover between
universality classes, with the ‘gradual emergence’ of critical behavior.

96 Replacing SM4 with SM5, would rather complicate the situation, since TD4 has extensivity
in all d dimensions, whereas this is the case for only d dimensions (which includes the fully-finite
case d = 0) in SM5.
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Humphreys (2015) introduces the triplet of conceptual emergence, ontological
emergence and epistemological emergence, which we now consider:

(1) We have conceptual emergence “when a reconceptualization of the objects
and properties of some domain is required in order for effective representation,
prediction, and explanation to take place” (op. cit. p. 762). This is close to
Butterfield’s notion of reduction, and there is emergence in this sense because
various notions that are not native to statistical mechanics, have been intro-
duced into the theory in order to deal with PTCP, both through inputs from
thermodynamics (FTD-1, FTD-2, and FTD-3) and through the introduction of
the notion of a large system at level SM2. As we have argued in Sect. 4 and in
our discussion of transfer matrix methods, it is precisely in such large systems
that PTCP are manifested in the form of incipient singularities.

(2) Ontological emergence amounts to the following:“A ontologically emerges
from B when the totality of objects, properties, and laws present in B are
insufficient to determine A” (op. cit. p. 762). As we have seen in Sect. 4, the
properties of a systems micro-constituents together with the laws that govern
them are sufficient to determine PTCP; in fact they can be shown to happen
in finite systems. So PTCPs are not ontologically emergent.

(3) Epistemological emergence is present when the limitations in our knowledge
prevent us from predicting the relevant phenomenon. As Humphreys puts it,
A epistemically emerges from B “when full knowledge of the domain to which
B belongs is insufficient to allow a prediction of A at the time associated with
B” (op. cit. p. 762). This is also the notion of emergence that Morrison appeals
to when she notes that “what is truly significant about emergent phenomena
is that we cannot appeal to microstructures in explaining or predicting these
phenomena, even though they are constituted by them” (Morrison 2012, p.
143).97 We submit that PTCP are not epistemically emergent because, as
we have seen in Sect. 4, they in fact can be deduced and predicted from the
underlying micro-theory. What is important here is PTCP appear in finite

systems.

Batterman’s account of emergence (Batterman 2011), centres around the applica-
tion of the renormalization group. As we have seen in Sect. 3.5.2 he (and Kadanoff)
regard the use of renormalization group as a wholly different type of approach to
PTCP from which novel properties emerge. In particular the fixed points of the
renormalization transformation which allocate the universality classes. We agree
with this except for two reservations:

(i) Batterman takes the thermodynamic limit as an essential feature of this
method. As we have indicated in Sect. 3.5.2 we do not regard this as being
necessary.

(ii) There is nothing automatic about setting up a renormalization group anal-
ysis of a system. It does not arise in a straightforward algorithmic way from
the basic structure of statistical mechanics. Indeed physical insight is required
both in the the choice of the lattice scaling N → Ñ and of the weight func-
tion. These must be compatible with the nature of the ordered state and

97 For detailed discussion of Morrison’s position see Hüttemann et al. (2015).
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the critical phenomena to be explored. The recurrence relationships are de-
termined by these choices, and the fixed points ‘emerge’ as properties of
the recurrence relationships. These in turn have exponents which give the
universality classes of the various critical regions. As we have already indi-
cated, most renormalization schemes involve some degree of approximation,
with a consequent variation in fixed points and their exponents.98 However,
weight-function dependent variations can also occur even when no approx-
imation is involved. An example of this is the one-dimensional Ising model
with the scheme described in Sect. 3.4.3 with λ := 2, but with J < 0, that is
the antiferromagnetic case. In principle one expects a fixed point associated
with antiferromagnetism, but, although the free-energy density is correctly
computed the fixed point is missing. For this to appear, as is shown by Nel-
son and Fisher (1975), one needs to take λ := 3; that is blocks of three sites.
That, in general, different fixed points and hence different universality classes
emerge from different choices of lattice scaling and weight function for the

same system means that this is a qualified type of emergence.

Finally, emergence is often characterised as the failure of reduction (Kim 1999, p.
21). That is, reduction and emergence are taken to be mutually exclusive and a
property is emergent only if it fails to be reducible. PTCP are not emergent in
this sense because, as we have seen above, they are reducible in the sense of a
deductive reduction.

6 Conclusions

We have presented a picture of the way that thermodynamics and statistical me-
chanics coexist and collaborate within the envelope of thermal physics. We showed
that the relationship between the two developments, represented by the columns
in Fig. 1 depends, on the one hand, on inter-theory connecting relationships from
thermodynamics to statistical mechanics, one of which, FTD––3, can, in the con-
text of deductive reduction be regarded as a bridge law, with the remaining two,
FTD––1 and FTD––2, being consequences of FTD––3. On the other hand, from sta-
tistical mechanics to thermodynamics, there is also a sequence of ‘messages’ that
are effectively warnings about the idealized nature of thermodynamics.

We address the problem that real systems are finite, and singular behaviour
associated with PTCP can occur only in infinite systems, using finite-size scaling
and a clear specification of a large system. This enables us to develop a picture
of the way that PTCP in finite systems can be defined in terms of incipient sin-
gularities. Within this picture the role of the infinite system is threefold: (a) the
existence of a critical region in the thermodynamic limit is a necessary condition
for there to be a region of incipient singularity in the real finite system, (b) as
one (but not the only) way to determine quantitative properties like the value of
critical exponents of the real system (c) to simplify calculations. In these senses
the infinite system is an indispensable, idealized approximation to the real finite
system.

98 An example of such variations, in the case of the Ising model on a triangular lattice, for
the exponents yT and yH and for the location of the fixed point (the Curie temperature) is
provided by Table IV on page 482 of Niemeijer and van Leeuwen (1976).



58 David A. Lavis, Reimer Kühn and Roman Frigg

The usual arguments for limit reduction are based on an unwarranted con-
flation between a thermodynamic system with critical behaviour (TD3) and an
infinite statistical mechanical system (SM3). On the other hand, the arguments
for the deductive reduction of TD3 to the statistical mechanics of a large system
(SM2) are valid. Next we argue that PTCP are neither ontologically or episte-
mologically emergent, but they are conceptually emergent. Rather less frequently
remarked upon are the ways that statistical mechanics both substantiates and
enriches the picture of PTCP in thermodynamics.
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Appendices

A Response Functions and Critical Exponents

In terms of densities and fields the response functions are

cx := kBT

(
∂s

∂T

)
x

, cξ := kBT
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ξ
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. (A.1)

And in the coupling–density representation the densities are given by

u =
∂ϕ2

∂ζ1
, x = −

∂ϕ2

∂ζ2
(A.2)

with the response functions by

cξ = −kB
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2
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(A.3)

The simplest way to treat cx is to use the standard formula

cξ − cx = kBα
2
ξ/φT . (A.4)

In the standardized notation of PTCP (Buckingham 1972) the critical exponents α, α′, β, δ,
γ and γ′ are defined by

cx ∼


(T − Tc)

−α , along the critical isochore, T > Tc,

(Tc − T )−α′
, along the coexistence curve, T < Tc,

(A.5)

x− xc ∼ (Tc − T )β , along the coexistence curve, T < Tc, (A.6)

φT ∼


(T − Tc)

−γ , along the critical isochore, T > Tc,

(Tc − T )−γ′
, along the coexistence curve, T < Tc,

(A.7)

ξ − ξc ∼ (x− xc)|x− xc|δ−1 , along the critical isotherm. (A.8)
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It also convenient to define the exponents σ and σ′ according to

cξ ∼


(T − Tc)

−σ , along the critical isochore, T > Tc,

(Tc − T )−σ′
, along the coexistence curve, T < Tc.

(A.9)

In addition to these purely thermodynamic critical exponents three more exponents ν, ν′ and
η arise, from statistical mechanics, for the pair correlation function and correlation length
defined in Sect. 3.2. For the correlation length the exponents ν and ν′ are given by

ξ ∼


(T − Tc)

−ν , along the critical isochore, T > Tc,

(Tc − T )−ν′
, along the coexistence curve, T < Tc.

(A.10)

which encapsulates the asymptotic behaviour of the correlation length in a neighbourhood of
that critical point. The situation for the correlation function is rather more complicated since
we are concerned not only with its dependence on the couplings near to a critical region but
also on its asymptotic form for a pair of widely separated lattice sites. However, the result

Γ(r̄rr; ζ1, ζ2) =
fd(|r̄rr|/ξ)
|r̄rr|d−2−η

, (A.11)

from Ginzburg–Landau theory (see, for example, Lavis 2015, Chap. 5) in which dependence on
the couplings is mediated through the correlation length is believed to have wide applicability.

B The Ising Model

For simplicity we consider a d-dimensional hypercubic lattice Nd of N sites with periodic
boundary conditions. At rrr ∈ Nd there is a microsystem σ(rrr) with values ±199 so that the
microstate of the system is σσσ := {σ(rrr)} and the Hamiltonian is

Ĥ(ζT , ζH;σσσ) := −ζT

(1)∑
{rrr,rrr′}

σ(rrr)σ(rrr′)− ζH
∑
{rrr}

σ(rrr) (B.1)

where the first summation is over all first-neighbour pairs of lattice sites and the thermal and
field couplings are

ζT := J/T, ζH := H/T, (B.2)

respectively, J being an energy parameter, so that J > 0 corresponds to ferromagnetic behav-
ior, where the states of all first-neighbour pair of sites are aligned, and J < 0 corresponds to
antiferromagnetic behaviour, where the states of all first-neighbour pairs are anti-aligned;100

H is a magnetic field. It will be noted that these are the couplings introduced for the simple
magnetic system in Sect. 2.4 except that there we used ε instead of J and it was assumed that
ε > 0. This two-state model which was first solved for d = 1 by Ising (1925),101 is usually now
called the spin- 1

2
Ising model.102 On the basis of this solution, and a wealth of other results

for larger dimensions (including the exact zero-field solution for a square lattice by Onsager
(1944)) the ferromagnetic phase diagram in the space of the temperature T and the field H is
known to have the form shown in Fig. 10, where, for d = 1, Tc = 0, for d = 2, Tc = 2.2692 J
and, for d = 3, Tc = 4.5108 J . Apart from in the one-dimensional case where the critical
point is at zero temperature (see Sect. 3.4.3(a)), there is a line of first-order transitions along
the interval [0, Tc) of the zero-field axis across which the magnetization M changes between

99 These states are usually thought of as spin directions up (+1) and down (-1).
100 A perfect arrangement like this is possible for hypercubic lattices, but not for so-called
‘close-packed’ lattices like the plane triangular lattice and the face-centred cubic lattice.
101 In fact it was suggested to Ising by his research director Wilhelm Lenz and historians of
science like Brush (1967) and Niss (2005) often call it the Lenz-Ising model.
102 The corresponding three-state model with states 0,±1 being the spin-1 Ising model.
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Tc T

H

M > 0

M < 0

0

Fig. 10 The phase diagram for the Ising model. The first-order transition is shown as a broken
line.

equal and opposite values. The universality class of the second-order transition at the critical
point depends on the dimension of the system. The critical exponents for d = 2 are α = 0 (a
logarithmic singularity), β = 1

8
, γ = 7

4
, δ = 15. For d = 3 the exponents are obtained to a

high level of accuracy by series methods with α = 0.11008, β = 0.326419, γ = 1.237075 and
δ = 4.78984. When d ≥ dUC = 4 the critical exponents take their classical values α = 0, β = 1

2
,

γ = 1 and δ = 3.103
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Hüttemann, A. and Love, A. (2015). Reduction, The Oxford Handbook of the Philosophy of
Science, Oxford: O.U.P., pp. 460–484.

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus, Z. Physik 31: 253–258.
Josephson, B. D. (1967). Inequality for the specific heat, Proc. Phys. Soc. 92: 269–275, 276–

284.
Kadanoff, L. P. (1966). Scaling laws for Ising models near Tc, Physics 2: 263–272.
Kadanoff, L. P. (1976). Scaling, universality and operator algebras, in C. Domb and M. S.

Green (eds), Phase Transitions and Critical Phenomena, Vol. 5a, London: Academic
Press, pp. 1–34.

Kadanoff, L. P. (2000). Statistical Physics: Statics, Dynamics, and Renormalization, Singa-
pore: World Scientific.

Kadanoff, L. P. (2009). More is the same; phase transitions and mean field theories, J. Stat.
Phys. 137: 777–797.

Kadanoff, L. P. (2013a). Theories of matter: infinities and renormalization, in R. W. Batterman
(ed.), The Oxford Handbook of Philosophy of Physics, Oxford: O.U.P.

Kadanoff, L. P. (2013b). Relating theories via renormalization, Stud. Hist. Phil. Mod. Phys.
44: 22–39.

Kim, J. (1999). Making sense of emergence, Phil.. Stud. 95: 3–36.
Kinzel, W. and Schick, M. (1981). Phenomenological scaling approach to the triangular Ising

antiferromagnet, Phys. Rev. B 23: 3435–3441.
Koopman, B. O. (1931). Hamiltonian systems and transformations in Hilbert space, Proc.

Nat. Acad. Sci. 17: 315–318.
Kuhn, T. S. (1963). The Structure of Scientific Revolutions, Chicago: University of Chicago

Press.
Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices, 2nd edn, London: Aca-

demic Press.
Landsberg, P. T. (1977). Heat engines and heat pumps at positive and negative absolute

temperatures, J. Phys. A 10: 1773–1780.
Lavis, D. A. (1976). An exact matrix calculation for a two-dimensional model of the steam-

water-ice system: bulk, J. Phys. A: Math. Gen. 9: 2077–2095.
Lavis, D. A. (2005). Boltzmann and Gibbs: An attempted reconciliation, Stud. Hist. Phil.

Mod. Phys. 36: 245–273.
Lavis, D. A. (2015). Equilibrium Statistical Mechanics of Lattice Systems, Berlin: Springer.
Lavis, D. A. (2018). The problem of equilibrium processes in thermodynamics, Stud. Hist.

Phil. Mod. Phys. 62: 136–144.
Lavis, D. A. (2019). The question of negative temperatures in thermodynamics and statistical

mechanics, Stud. Hist. Phil. Mod. Phy. 67: 26–63.
Lavis, D. A. and Southern, B. W. (1984). Renormalization group study of a three-dimensional

lattice model with directional bonding, J. Stat. Phys. 35: 489–506.
Lavis, D. A., Southern, B. W. and Bell, G. M. (1982). Phase transitions in monolayers at

air/water and oil/water interfaces, J. Phys. C 15: 1077–1088.
Lewis, D. K. (1986). On the Plurality of Worlds, Oxford: Blackwell.
Li, Y. and Baberschke, K. (1992). Dimensional crossover in ultrafine Ni(111) films on W(110),

Phys. Rev. Lett. 68: 1208–1211.
Lieb, E. H. and Yngvason, J. (1998). A guide to entropy and the second law of thermodynamics,

Notices of the Amer. Math. Soc. 45: 571–581.
Lieb, E. H. and Yngvason, J. (1999). The physics and mathematics of the second law of

thermodynamics, Phys. Rep. 310: 1–96. For Fig. 8 see ibid. (1999), 314, 699.
Lieb, E. H. and Yngvason, J. (2000). A fresh look at entropy and the second law of thermo-

dynamics, Physics Today 53: 32–37.
Lieb, E. H. and Yngvason, J. (2013). The entropy concept for non-equilibrium states, Proc.

R. Soc. A 469: 20130408.
Ma, S. K. (1976). Modern Theory of Critical Phenomena, Reading Mass: Benjamin.



Becoming Large, Becoming Infinite 63

MacDonald, D. K. C. (2013). Noise and Fluctuations: An Introduction, New York: Dover
Publications.

Mainwood, P. (2006). Phase transitions in finite systems. Unpublished MS (corresponds to
Chap. 4 of: Is More Different? Emergent Properties in Physics, D. Phil. thesis, University
of Oxford, 2006). At: http://philsci-archive.pitt.edu/8340/.

Maxwell, J. C. (1875). On the dynamical evidence of the molecular constitution of bodies,
Nature 11: 357, 374. Reprinted in The Scientific Papers of James Clerk Maxwll, Vol. 2,
Ed. W. D. Niven, Cambridge: C. U. P. 1890, pp. 418–438.
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