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Abstract

Antimicrobial resistance is one of the greatest global health threats of this generation.

Antimicrobial resistance in pathogens is leading to infections becoming untreatable with

antimicrobial chemotherapy treatments. The number of different types of antimicrobial

drugs are limited, meaning pathogens are rapidly developing resistance to commonly

used antimicrobial drugs. This has been driven by the overuse of antimicrobial drugs in

health care and agriculture, leading pathogens to evolve biological mechanisms to adapt

to  anthropogenic  levels  of  antimicrobials.  Microorganisms,  including  antimicrobial

resistant pathogens, spread and colonise between animals, humans and the environment.

Microorganisms  have  another  insidious  mechanism  of  spreading  antimicrobial

resistance, which is by transferring their genetic resistance determinants between their

genomes. This process, known as horizontal  gene transfer, has enabled pathogens to

acquire  antimicrobial  resistance  genes  from  other  non-pathogenic  and  pathogenic

microbes  in  close  proximity  within  microbial  communities.  These  antimicrobial

resistance genes are usually carried by mobile genetic elements that can integrate into

the genome of these pathogens. 

Global  surveillance using whole genome sequencing and molecular  techniques  have

been  adopted  to  monitor  the  spread,  genetic  evolution  and  resistance  severity  of

antimicrobial  resistant  pathogens  in  human  and  animal  populations.  Whole  genome

sequencing  has  allowed  scientists  to  determine  antimicrobial  resistance  genes  in

microbial genomes that cause antimicrobial resistance, and in some cases, how these

may have been acquired, e.g. carried by mobile genetic elements. Classical surveillance
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techniques  rely  on  sequencing  a  single  genome  from  an  isolated,  cultured  strain.

However,  this  cannot  be  achieved  for  microbes  that  are  unculturable.  Further,  it  is

incredibly  labour-intensive  to  characterise  genomes  from all  possible  strains  across

microbial  communities.  Metagenomic  sequencing  is  a  more  rapid  approach  that

sequences as many genomes from a microbial community as possible, without relying

on culturing. Metagenomics has revolutionised the ability to characterise genomes from

a  variety  of  species,  including  profiling  antimicrobial  resistance  genes  and  mobile

genetic  elements.  A caveat  with  metagenomics  is  that  it  is  unable  to  directly  show

whether microbes in the community produce antimicrobial resistance traits, which can

be  achieved  with  culture-based  techniques.  However,  advances  in  sequencing

technologies  and  computational  methods  to  interpret  metagenomic  data  may  help

predict  how  antimicrobial  resistance  genes  and  mobile  genetic  elements  lead  to

antimicrobial resistance in clinical settings. 

In this study, I developed computational tools to profile antimicrobial resistance genes

and  three  types  of  mobile  genetic  elements:  bacteriophages,  plasmids  and insertion

sequences/unit transposons, from whole, short-read metagenomic data. These tools were

applied to publicly available metagenomic sequences of microbial communities in the

human gastrointestinal tract across different countries worldwide. This study presents

the  first  attempt  at  comparing  the  antimicrobial  resistance  gene  profiles  and  their

associations with mobile genetic elements from metagenomes between sites in the oral

cavity and the gut with computational methods. Differences between these profiles are

found particularly between gut and oral sites. The gut, surface of the tongue and dental

plaque host the greatest diversity of antimicrobial resistance genes and mobile genetic
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elements. Antimicrobial  resistance genes are rarely found on bacteriophages, but are

commonly associated with plasmids and insertion sequences. Insertion sequences are

found to be associated with a greater diversity of antimicrobial resistance genes than

plasmids, but plasmids encoding antimicrobial  resistance genes are highly prevalent.

These  methodologies  and  results  provide  a  framework  for  future  development  in

surveillance  and  clinical  predictions  of  antimicrobial  resistance  using  metagenomic

sequencing technologies.
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MIC minimum inhibitory concentration

MITE miniature inverted-repeat transposable element

MLS macrolide, lincosamide and streptogramin

NDMS non-metric multidimensional scaling

NGS next-generation sequencing

nt nucleotide

PacBio Pacific Biosciences

PBP2A penicillin-binding protein 2A

PCR polymerase chain reaction

PERMONOVA permutational multivariate analysis of variance

PROTEST procrustean randomisation test

pVOG Prokaryotic Virus Orthologous Group

RNA ribonucleic acid

rRNA ribosomal RNA

RPKM reads per kilobase of read per million

SMRT single-molecule real-time

T thymine

TRACA transposon-aided capture
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TSD target site duplication

VLP virus-like particles

WGS whole genome sequencing

ZMW zero-mode waveguide
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1 Introduction

1.1 The human microbiome

Microorganisms are widespread on Earth thriving in living hosts (including humans),

indoor environments (such as hospitals), in outdoor environments (like soil), and even

in extreme environments (like hydrothermal vents). Microorganisms, or microbes, co-

exit  and  interact  with  each  other  and  the  surrounding  environment  as  microbial

communities, also known as the microbiota. The microbiota consists of a complex blend

of bacteria, fungi, viruses, archaea and protists in various amounts depending on the

environment. Microbiota composition can be broken down by taxonomic rank. Bacteria,

archaea and eukaryotes make up three domains, which represent the highest taxonomic

rank. Fungi are part of eukaryotes and represent the next taxonomic rank of kingdom.

Protists are also eukaryotes but do not belong to a clade (a natural group that includes

descendants  of  a  common  ancestor).  The  term  protist  informally  categorises  any

eukaryotic organism that are not within a kingdom. After kingdom, the hierarchy of

taxonomic  rank  moves  down  from phylum,  class,  order,  family,  genus,  to  species.

Viruses exist within their own group, separate from other domains. Unlike other living

organisms, viruses can only reproduce inside other host cells, and they do not belong to

any domain.  Viruses have their  own similar taxonomic ranking system, which starts

from realm, moving on to kingdom, phylum, class, order, to genus or sub-family. Within

these communities, microbes of these communities can either function as commensals,

mutualists,  amensalists,  pathogens  or  opportunistic  pathogens  (pathobionts).  A

commensal microbe gains benefits from living in the community without benefitting nor
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damaging another microorganism, whereas mutualism between two microbes is where

they both benefit. Amensalism describes the interaction between two microbes where

one is  inhibited and the other is  unaffected.  Pathogens are  microorganisms that  can

cause infections and diseases. Pathobionts can act as commensals that do no damage to

the  host  or  microbiota,  but  can  be  pathogenic  when  the  host  or  microbiota  are

compromised.  Until  recently,  the  10:1  ratio  was  used  to  summarise  the  ratio  of

microbial  to human cells. However,  this  estimate has been disputed as ill-evidenced

dogma1 and reevaluated to  be closer  to a 1:1 ratio2.  Other  studies scale  human and

microbial  matter  by  comparing  number  of  genes.  For  instance,  the  human  gut

microbiota has an estimated three million bacterial genes compared to the human body

with  approximately  20,000  human  genes3.  The  genomes  of  all  microbes  within

microbial communities are collectively known as the microbiome.  Predictions from a

collection  of  studies  estimate  ~93% bacterial,  ~5.8% viral,  ~0.8% archaeal,  ~0.2%

protista and ~0.1% fungal DNA make up the total gut microbiome4.  Although bacterial

genomes  are  the  dominant  component  of  the  microbiome,  the  importance  of  lower

abundant non-bacterial microorganisms can be exemplified by their unique metabolic

and mechanistic contributions. Viruses that infect bacteria, known as bacteriophages,

shape bacterial communities by lysing bacterial cells or modifying bacterial genomes4.

Larger  archaeal,  fungal  and  protist  cells,  act  like  metabolic  powerhouses5–7.  These

microbial communities can be stable or dynamic in composition over time depending on

the  environmental  context8.  A community’s  dynamics  are  shaped  by  metabolic  and

structural  interactions  between  constituent  microorganisms,  determined  by  their

individual fitness traits and adaptations to changing conditions. Microbial communities,

residing  across  multiple  body  sites  in  humans  and  animals  (including  the  gut,  oral
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cavity,  oesophagus,  skin  and  vagina)9,  also  interact  with  and  have  an  important

influence on the immune system and metabolism of their host8,10. Their compositions

differ  widely  between  body  sites  and  specific  biogeography  due  to  differences  in

environmental factors such as temperature, pH, oxygen and nutrient availability. When

exposed to environmental stressors, the growth rate and survival of particular microbes

can fluctuate.  For example,  the gut  microbiota is  sensitive to  changes in diet11.  The

microbiota’s  collective  metabolism interacts  with  the  human  host  (i.e.  the  immune,

endocrine  and  nervous  system),  which  can  influence  a  range  of  diseases,  from

inflammatory bowel disease12, cancer13 and major depressive disorder14. Particularly in

the  last  decade,  there  has  been a  surge  of  research  into  how the  microbiota  of  the

gastrointestinal tract impacts human health and disease, and what interventions can be

made.

1.1.1  The microbiome of the human gastrointestinal tract

The  gastrointestinal  tract  (GIT)  includes  the  oral  cavity  and  the  gut  (stomach  and

intestine).  Although  the  oral  cavity  and  the  gut  are  connected,  their  microbial

compositions differ due to variations in their environments, including differences in pH

dynamics, mechanical force, nutritional availability and oxygen levels15. Despite facing

changes  in  their  environments,  the  gut  and oral  cavity  microbiota  remain  relatively

stable. The stool microbiota is dominated by the Bacteroides genus. Whilst in the oral

cavity,  the  buccal  mucosa,  keratinised  gingiva  and  throat  are  dominated  by  the

Streptococcus genus, whereas the saliva, dorsum of the tongue, tonsils, throat and dental

plaque  tends  to  have  a  more  even  distribution  of  abundant  genera,  including

Streptococcus,  Veillonella,  Prevotella,  Neisseria,  Fusobacterium,  Actinomyces and
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Leptotrichia15. More invasive biopsy studies in patients sampling specific areas of the

human intestine have revealed heterogeneous patterns specific to the mucosal layer and

lumen, and distal and proximal sites of the intestine16. Some individuals will also have

significantly different GIT microbiota that may even vary between the most conserved

taxa.  Hunter-gatherer  communities  have  a  higher  level  of  microbial  richness  and

biodiversity  in  their  gut  microbiota,  with  enrichment  in  Prevotella,  Treponema and

Bacteroidetes species, than in humans living in urbanised areas17,18. These variations are

governed by multiple factors, including human genetics and immune system in early

life, colonisation of microbes in early life, diet, lifestyle, and use of antimicrobials and

other medication, which will be introduced hereafter.

1.1.1.1  Microbial colonisation in early life

The general consensus is that a human’s first  exposure to microorganisms is during

birth19. During and soon after a vaginal birth, newborns are inoculated with maternal

vaginal  and faecal  microbes20,21.  These  pioneering  microbes  seed  the  expansion and

colonisation  of  other  microbes  within  months.  Within  the  first  two  and  half  years,

phylogenetici diversity  increases  gradually,  but  the  abundance  of  emerging  major

taxonomic groups can vary with changes in diet and health status, conforming more to

the  characteristics  of  an  adult  microbiome22.  Dietary  changes  from weaning  further

shifts  the  core gut  microbiota,  which  remains  relatively  stable  throughout  a  healthy

adult’s life23. Neonates born via caesarian section have a higher level of colonisation by

opportunistic  pathogens  from  the  hospital  environment,  including  Enterococcus,

i Phylogeny is the evolutionary relationship of genetic or physical characteristics between species. 
(Included in Glossary)
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Enterobacter and  Klebsiella species,  and  less  exposure  from  maternal  Bacteroides

strainsii than infants born vaginally24. 

1.1.1.2  Human genetics and immune system in early life

The microbial composition is unique for an individual. Identical (monozygotic) twins

have  almost  as  varied  microbial  communities  as  non-identical  (dizygotic)  twins,

detected by a small but significant host genetic effect in a large twins cohort study25.

The impact of genetic differences can be seen in the immune response. Variability in the

human immune response is partly driven by human genetics, and it is predicted up to

10% of this  variability is associated with the microbiome26.  The immune-microbiota

interactions that are established in early life are critical27. Immunoregulatory T helper 17

(Th17) cells in the lamina propria of the small intestine (a thin layer of connective tissue

that forms part of the mucosal layer) are induced upon microbial colonisation of specific

commensals that direct the maturation of the developing immune system28. The absence

of commensal microbes in germ-free mice lead to profound defects in the lymphoid

system  (specifically  lacking  formation  of  isolated  lymphoid  follicles)  and  immune

functions of the intestine29,30. Although the immune-microbiota mechanisms are poorly

defined in humans, early-life microbial colonisation and the interactions that take place

with the immune system could be important determinants of susceptibility to infections,

allergies and inflammatory diseases in later life27.

ii A strain is a genetic variant or subtype of a species. (Included in Glossary)
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1.1.1.3  Diet

As well as in early life, the GIT microbial composition is influenced by dietary changes

throughout adult life11,31. The dynamics of the gut microbiome in response to dietary

changes  have  been  studied  extensively.  Long-term  (and  in  some  cases  short-term)

dietary changes can alter the gut microbiome significantly. For instance, in the Hadza

hunter-gather  community  in  Tanzania,  a  significantly  lower  abundance  of  the

Bacteriodetes phylum was detected during berry foraging and honey consumption in the

wet season compared to the dry season when hunting becomes more dominant18.  As

there are many variations in human diet, it is challenging to pinpoint dietary nutrients

that determine the existence of particular taxa from human studies alone. Alternatively,

controlled  experiments  using  mice  specifically  colonised  with  a  small  number  of

microbial strains have been conducted to measure more precise interactions between

diet, and microbial and mouse metabolism32. However, this is unlikely to fully reflect

the  complexity  of  metabolic  interactions  in  naturally  occurring  animal  and  human

microbiota.

1.1.1.4  Lifestyle

There is an incomprehensible variation of lifestyles that could impact the human GIT.

Out of these,  associations have been found with pet ownership33,  exercise34,  stress35,

occupation36, smoking37 and even sleep deprivation38. However, it is difficult to account

for other confounding factors in a non-controlled environment and to dissect how a

combination of lifestyle factors influence the microbiome.
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1.1.1.5  Antimicrobials and medication

Antimicrobials can have a profound effect on the human microbiome. Studies observing

effects of antibiotic exposure on the adult GIT show that the resident microbiota can be

permanently modified in response to these compounds39. For instance, broad-spectrum

antibiotics  (that  act  on  a  wide  range  of  bacteria,  both  Gram-positive  and  Gram-

negativeiii) reduce the bacterial diversity and select for bacteria that are resistant to these

antibiotics40. The microbiome can be modified in various ways depending on the type of

antimicrobial  drug,  the  dose  or  the  repetition.  Two  five-day  courses  of  antibiotic

ciprofloxacin treatment  (separated by six months)  have  a  greater  impact  on the  gut

microbiome than a single course41. A single antimicrobial drug as well as a cocktail of

several antimicrobials  can wipe out  many species  that  are  core to  what  is  currently

known  as  a  healthy  microbiota42,43.  Other  drugs  as  well  as  antimicrobials,  such  as

metformin44,  proton  pump  inhibitors  (PPIs)45,  nonsteroidal  anti-inflammatory  drugs

(NSAIDs)46 and atypical antipsychotics (AAPs)47, can also lead to long-term changes in

the  gut  microbiota,  including eradicating key species  related  to  health  status48.  Any

recovery from drug-induced changes in microbial composition may depend on the state

of the microbiota after treatment: what species are present and how they interact with

each  other,  alongside  diet  and  lifestyle  factors.  Exposure  to  antimicrobials  during

pregnancy affects gut microbiota maturation of infants in the first two years of life49. As

the  immune  response  at  the  GIT is  critically  dependent  on  microbial  colonisation,

antimicrobial perturbation of microbiota maturation can disrupt the homeostasis of the

iii Bacteria can be classified into two categories: either Gram-positive or Gram-negative. Gram-negative
bacteria have an outer membrane outside their cell wall, whereas Gram-positive bacteria do not. This
means  Gram-positive  bacteria  are  more  susceptible  to  cell  wall  targeting  by  antibiotics  that  Gram-
negative bacteria. (Included in the Glossary)
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immune system leading to inflammatory diseases like inflammatory bowel disease50 and

asthma51. 

1.2 Antimicrobial resistance

In  order  to  survive,  microbes  need  to  find  an  optimum  way  of  living  with  other

microbes  in  a  limiting  environment.  Microbes  compete  with  each  other  for  limited

nutrients and space in their environment. Thus, they have developed tactics to regulate

their own requirements by interacting with other microbes. One effective way of doing

so is  by producing antimicrobial  chemicals that  can impair  or kill  another  microbe.

However, some microbes have evolved ways of living under the exposure of naturally

occurring  antimicrobials,  making them a  stable  member  of  a  microbial  community.

Microorganisms  can  have  either  intrinsic  or  acquired  resistance  to  antimicrobials.

Intrinsic resistance is where a microorganism may have naturally occurring resistance to

an antimicrobial. Intrinsic resistance mechanisms have been present in microorganisms

for millennia, driving their co-evolution and integration with microbial communities. In

contrast,  acquired  resistance  is  the  process  of  a  microbe  gaining  a  new  resistance

mechanism to an antimicrobial drug (described in more detail in Sections 1.2.4.1. and

1.2.4.2.). The discovery and use of antimicrobial drugs to treat and eradicate microbial

infections is undoubtedly the greatest achievement in modern medicine. Penicillin, the

first mass-produced antibiotic to be used on a large scale from WW2, saved millions of

lives,  and  has  pioneered  the  discovery  and  synthesis  of  hundreds  of  different

antimicrobial  drugs  to  target  specific  pathogens.  All  known and  used  antimicrobial

drugs have originated from naturally occurring microbial sources, which some microbes
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had  already  developed  intrinsic  resistance  to.  Increased  use  of  antimicrobial  drugs

coupled with pre-existing resistance have led to an upsurge of microbes developing

acquired resistance to these antimicrobial drugs. Antimicrobial resistance (AMR) occurs

when bacterial, viral or fungal microbes become less susceptible to antimicrobials. This

leads to infections potentially becoming difficult to eradicate. 

Today, AMR is one of the greatest threats to global health, food security and economic

development52.  The World Health Organisation has  estimated 700,000 people die  of

AMR infections per year, and without sufficient interventions this figure is likely to

rise53.  An increase in the rate of AMR cases in the last 20 years is due to the overuse

and  misuse  of  antimicrobial  treatments  in  a  rapidly  growing  global  economy  and

population54. Antimicrobials  that  are  regarded as  a  panacea to  eradicating infections

have driven the evolution of AMR in pathogens55.

1.2.1  The use and misuse of antimicrobial drugs

1.2.1.1 Human health

Although antimicrobials have been used for thousands of years, it was not known that

infections  were  caused  by  microbes  until  the  late  19th century  when  Robert  Koch

determined the cause of infectious diseases. Paul Ehrlich discovered arsphenamine was

effective  against  syphilis,  which  became  the  first  modern  antibiotic.  Sulfonamides,

widely used in the dye-making industry, were also used as antibacterials to treat a range

of infections until  the early years of WW2, though they had toxic effects.  In 1928,

Alexander Fleming discovered that  Penicillium notatum could prevent the growth of
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Staphylococcus at  concentrations  less  toxic  to  humans. Penicillin  was  then  mass

produced  and  widely  used  to  treat  soldiers  for  infections  during  WW2.  The

development  of  mass  production  and the  discovery  of  penicillin  paved the  way for

development of other relatively non-toxic, naturally occurring antimicrobials between

1945 and 1960. Following this period until 1980, the pace of antimicrobial discovery

slowed56. The only new antimicrobials created were modifications and elaborations on

the biochemical structure of existing ones. Despite the shadow of AMR, antibiotics that

were discovered in the mid-twentieth century are still commonly used today. In 2015,

the most commonly consumed antibiotics were broad-spectrum penicillins, followed by

cephalosporins, quinolones and macrolides54. Amoxicillin, one of the most commonly

used penicillin drugs, is used to treat a variety of infections, including respiratory, dental

and urinary  tract  infections,  and is  often  used  in  combination  with  clathromycin  (a

macrolide) to treat stomach ulcers. Not only are the same antibiotics still in use, global

antibiotic consumption is rising. Between 2000 and 2015, the defined daily dose (DDD,

defined by the World Health Organisation as the assumed average maintenance dose per

day for a drug used for its main indication in adults) per 1,000 inhabitants by 39%54.

Particularly in rapidly developing countries and rural regions where antimicrobial use is

less regulated, citizens can buy antimicrobial treatments and remedies across the counter

without a prescription, with limited understanding of appropriate use57–59. Populations

who are exposed to more antimicrobials have a higher incidence of developing AMR

meaning antimicrobial treatments are rendered less effective, promoting a greater risk of

untreatable infections60. 
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1.2.1.2 Agriculture

Antibiotics are not only used in clinical health settings; they are also used in agriculture.

It is still common practice in animal husbandry worldwide that sub-therapeutic doses of

antibiotics are added to animal feed to prevent onset of infections, as well as to produce

the desirable side-effect of growing larger animals61.  Fungicides,  such as azoles, are

widely used in arable farming.

1.2.2  Tackling antimicrobial resistance

The rate of AMR infections is rising as a result of the increasing selective pressures by

the exposure of antimicrobial drugs54. Antimicrobial stewardship initiatives have been

set up and regulations have been legislated around the world to prevent misuse and

overuse of antimicrobials. For instance, the European Union member nations banned the

use  of  all  antimicrobials  for  use  as  animal  growth  promoters  in  200662.  Although

measures are being taken to regulate the use of antimicrobials,  AMR is present and

continues to persist  in our ecosystem. Microbial  strains have now been found to be

resistant to last-resort antimicrobial drugs (glycylcyclines, oxazolidinones, carbapenems

and polymixins)63. Although the development of AMR can be slowed by cutting back on

antimicrobial  use,  existing  antimicrobial  resistant  pathogens,  also  known  as

“superbugs”, can easily spread between humans and animals. Outbreaks are commonly

seeded in communities with high levels of contact between individuals, especially in

hospitals,  community  social  care  settings  and  burgeoning  urbanised  environments,

which are also where usage of antibiotics is higher64. The spread of superbug infections

(superinfections)  are  further  exacerbated  in  regions  of  people  living  in  unsanitary
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conditions or with poor access to healthcare65,66. Already resistant pathogens, such as

Neisseria gonorrhoeae67,  are spreading between countries worldwide. Superbugs that

persist under ongoing antimicrobial treatment can cause complications in individuals

and disrupt healthcare practices, such as surgery, in the long term68. Resistant infections,

fatal or otherwise, are emerging as silent epidemics.

Currently, there is no panacea to preventing AMR. Instead, multidisciplinary approaches

are being combined to tackle AMR from various angles, including drug discovery of

alternative antimicrobials69, better point-of-care diagnostics70, governmental stewardship

to  control  use  of  antimicrobials  and  to  incentivise  development  of  alternative

antimicrobials71,  and  surveillance72.  However,  out  of  these  approaches,  global

surveillance  has  been  recognised  by  the  World  Health  Organisation52 as  key  to

informing governments and institutions (such as Wellcome73) of appropriate actions in

emergencies or policies to prepare for future outbreaks.

1.2.3  Biochemical mechanisms of antimicrobial agents

There are three main types of antimicrobial agents. These are: 1) disinfectants, such as

bleach, that are non-selective and have the purpose of killing a range of microbes on

material surfaces; 2) antiseptics which can be applied topically to skin or tissue; and 3)

antibiotics  which are  more selective for  particular  bacteria  and can be  administered

orally,  topically  and  intravenously.  Antimicrobial  agent  is  also  a  general  term  for

collectively describing any agent that can kill or inhibit the growth of a microorganism,

including antibacterials and antifungals. Antibiotics and some antiseptics can be classed
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as  antibacterial  agents  that  can  be  either  bactericidal,  where  bacteria  are  killed,  or

bacteriostatic, which disrupts bacterial growth.

Antibiotics can be grouped into classes based on their molecular mechanisms: inhibition

of  cell  wall  synthesis  (β-lactam  antibiotics,  fosfomycins,  isoniazid,  glycopeptides),

plasma membrane disruption (lipopeptides, polymixins), inhibition of protein synthesis

(aminoglycosides,  tetracyclines,  phenicols,  lincosamides,  macrolides,  oxazolidinones

and streptogramins) or nucleic  acid synthesis  (fluoroquinolones and rifamycins)  and

disruption of metabolic pathways (sulfonamides, triclosans and diaminopyrimidines)74.

There are  also antibiotics that  do not group into one specific  class.  Nitrofurans,  for

example, are an unusual class that targets bacteria in a variety of ways. Nitrofurantoin,

is  a  broad-spectrum antibiotic  used  to  treat  bladder  infections.  It  disrupts  bacterial

ribosomal proteins leading to inhibition of protein and nucleotide synthesis, metabolic

and cell wall synthesis. Fusidic acid is another example that inhibits protein synthesis

but is bacteriostatic like tetracycline, and often applied topically on infected skin or as

eyedrops.

These agents can be grouped further into subclasses by their molecular structures. For

example, carbapenems, carbapenams, cephalosporins, monobactams and penicillins are

all subclasses of β-lactams that differ slightly in their structure. However, they all retain

the β-lactam four-atom ring.  Antibiotics  can also be classified based on their  target

range;  some  antibiotics  can  be  classified  as  narrow-spectrum  or  broad-spectrum

antimicrobials. Broad-spectrum antibiotics act on a wide range of bacteria or on Gram-

positive  and  Gram-negative  bacteria,  whereas  narrow-spectrum  antibiotics  are  only
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effective against  a limited group of bacteria.  Humans may also be exposed to other

antimicrobial agents that are not used for clinical or agricultural purposes but may be

implicated  in  AMR.  Many  acridines,  such  as  proflavine,  whilst  having  antiseptic

properties have also been used as dyes for fabrics.

There are fewer types of antifungals than antibacterials for treatment. The four main

classes  of  antifungal  treatments  are:  1)  antimetabolites  that  inhibits  the  use  of  a

metabolite (such as antimetabolite flucytosine); 2) azoles that inhibit fungal membrane

ergosterol synthesis; 3) echinocandins that inhibit the synthesis of a 1,3-β-glucan that is

necessary for maintaining the structure of the fungal cell walls; and 4) polyenes that

interfere with permeability and with transport functions in fungal cell membranes. 

1.2.4  Biochemical mechanisms of antimicrobial resistance

1.2.4.1 Antimicrobial resistance genes

In some cases, the mechanisms of AMR are caused by the presence of an antimicrobial

resistance  gene  (ARG)  within  chromosomal  or  plasmid  DNA.  DNA encodes  this

genetic  information  in  a  double-stranded  sequence  of  four  types  of  nucleotides  (or

bases): adenine (A), cytosine (C), guanine (G) and thymine (T). ARGs arise from genes

gaining mutations or  genes  acquired from another  microorganism resulting in AMR

pathways in the new host. Sometimes, the presence of an ARG is not sufficient to cause

resistance, either because it is not expressed because there is no promoter or cannot be

translated, or expression levels are low as parts of the protein synthesis pathway are not

available.
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To  increase  resistance,  ARGs  might  be  duplicated  to  increase  the  copy  number  of

transcripts  or  a  promoter  can  increase  ARG  expression  levels.  In  other  cases,  the

deletion  of  a  gene,  such  as  those  encoding  transporter  proteins  that  take  up

antimicrobials into the cell, can make a microbe more resistant. However, these genes

are not considered ARGs, as their absence rather than their presence can cause AMR.

ARGs encode antimicrobial  resistance proteins (ARPs) that act against antimicrobial

drugs in the five ways (Fig. 1.1). ARPs can function in several different ways. Firstly,

the ARPs can directly inactivate the antimicrobial. β-lactamases are a family of ARP

enzymes  that  break  the  four  carbon  ring  structure  in  a  β-lactam antibiotic,  such as

penicillin75.  Narrow-spectrum β-lactamases are enzymes that hydrolyse penicillins but

not  extended-spectrum  cephalosporins,  whereas  extended-spectrum  β-lactamases

(ESBLs)  hydrolyse  most  β-lactams  including  extended-spectrum cephalosporins  and

monobactams76,77.  Carbapenemases  are  a  group  of  β-lactamases  that  hydrolyse

carbapenems that are commonly the last resort treatment for ESBL-producing bacteria78.

Secondly, the antimicrobial target can be altered. Ligases VanA and VanB are examples

of ARPs that alter the target of vancomycin antibiotic. ARGs, vanA and vanB, code for

VanA and VanB that  synthesise  D-Ala-D-Lac instead  of  D-Ala-D-Ala,  reducing the

vancomycin binding affinity79. Thirdly, the target can be protected. Quinolone resistance

proteins are a family of ARPs that mimic the DNA structure as a pentapeptide repeat

and protect DNA gyrases from damage by fluoroquinolone antibiotics80. Fourthly, the

target can also be replaced. ARG mecA encodes penicillin-binding protein 2A (PBP2A),

a transpeptidase that replaces the wild type DD-transpeptidase to form the bacterial cell
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wall. PBP2A has a lower affinity for β-lactams than DD-transpeptidase meaning it does

not bind to the carbon ring of these antibiotics, which prevents them from inhibiting cell

wall synthesis81. Finally, the cell can reduce the uptake of antimicrobials or increase the

activation  of  efflux  mechanisms  to  extrude  antimicrobials.  For  instance,  the  MarA

activator protein, when overexpressed, downregulates the OmpF porin that makes cells

more  permeable  to  multiple  antimicrobials  and  can  also  induce  the  efflux  pump

AcrAB82. 

Figure 1.1. Molecular AMR mechanisms of antimicrobials in a cell. 

The predominant mechanisms of AMR are: 1) inactivation; 2) altering the target; 3) protecting the target;

4) replacing the target; and 5) increasing efflux and/or reducing permeability of the antimicrobial.

1.2.4.2 Intrinsic resistance

Intrinsic resistance is the innate ability of a microbe to resist or tolerate the activity of an

antimicrobial  through  its  inherent  structural  or  functional  characteristics.  The  most

common intrinsic resistance mechanisms are the impermeability of the outer membrane
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to large or hydrophilic molecules (like vancomycin) entering the cell and the presence

of  multidrug  efflux  pumps  that  can  transport  antimicrobials  out  of  the  cell.  These

intrinsic resistance mechanisms can be applied to counteract antimicrobial drugs. For

example,  Pseudomonas aeruginosa  has a low number of porins in its outer member

meaning many classes  of  antibiotics  cannot  enter  the  interior  of  the  cell83.  Another

example is the AcrAB efflux pump that is thought to have evolved in Escherichia coli to

pump out bile acid but is also able to expel a variety of antimicrobial drugs84. 

1.2.4.3 Acquired resistance

Microorganisms can also acquire ARGs either through mutation of existing genes or by

gaining an ARG from another microbe via horizontal gene transfer (Section 1.3). Unlike

ARGs encoding intrinsic resistance, acquired ARGs can be part of plasmids as well as

integrated in chromosomal DNA. The overuse and misuse of antimicrobial drugs that

have caused an increase in selective pressures have led to the rapid emergence of drug-

resistant microorganisms with acquired ARGs. It is not uncommon that microbes with

short generation times (some Escherichia coli strains can double every 20 minutes) can

adapt  to  acquire  resistance  during  exposure  to  an  antimicrobial  drug,  which  then

multiply and replace susceptible strains.

1.2.4.4 The resistome

Different  microbial  communities  have  different  profiles  of  ARGs  with  varying

abundances. The profile of ARGs in a microbiome are collectively termed the resistome.

The size (the number of total ARGs) and diversity (the number of unique ARGs) of the
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resistome is influenced by the microbial composition that can harbour different types of

ARGs  and  on  the  type  of  exposure  the  microbiota  has  had  to  anthropogenic

antimicrobials  that  drive  acquired  resistance.  Resistome  profiles  are  often  used  to

describe a microbiota’s AMR load, reservoir or potential. An AMR load is the number

of ARGs that a microbial community can carry at a single point in time85. An AMR

reservoir is often used to describe the presence ARGs that may be able to spread into

other ecosystems by ARG-carrying microbes86. AMR potential describes the presence of

ARGs in the resistome that have potential  to be expressed under antimicrobial  drug

exposure87.

1.3 Horizontal gene transfer of antimicrobial 

resistance genes

Horizontal gene transfer (HGT) is the movement of genetic material between genomes

of different organisms. Mobile genetic elements (MGEs) are a type of genetic material

that  can  move  within  or  between  genomes  via  HGT.  MGEs  can  transport  genes,

including virulence factors and ARGs, most commonly between prokaryotic (bacterial

and  archaeal)  genomes.  For  example,  it  is  suspected  that  the  methicillin-resistant

Staphylococcus  aureus (MRSA)  acquired  a  gene  cassette  (a  type  of  MGE  with  a

recombination  site)  containing  the  ARG  mecA via  HGT  from  a  non-pathogenic

Staphylococcus species88.  These  MGEs  can  then  transfer  ARGs  between  different

genomes  in  a  microbial  community  by  three  major  HGT mechanisms:  conjugation,

transduction and transformation  (Fig.  1.2).  MGEs can be broadly classified by their
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sequence structure into: 1) bacteriophages; 2) plasmids; 3) transposable elements; 4)

integrative  conjugative  elements;  5)  gene  cassettes/integrons;  and 6)  integrative  and

mobilisable genetic elements, which are described in Section 1.4.

Figure 1.2. Mechanisms of HGT between donor and recipient cells. 

There are three major mechanisms of HGT. Transduction is the process of transferring genetic material

via a viral vector. Transformation is the natural competence of the recipient cell to incorporate exogenous

genetic material. Conjugation is transfer of genetic material between two contacting cells.

1.3.1 Mechanisms of horizontal gene transfer

1.3.1.1 Conjugation

Conjugation is the HGT of MGEs between two directly contacting bacterial cells via

sex pili. This structure is the mode of transfer for integrative conjugative elements and
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conjugative plasmids, and integrative and mobilisable genetic elements that exploit the

conjugative functions of these MGEs. The donor cell produces a pilus that attaches to

the recipient cell.  A single strand of DNA from the conjugate plasmid or integrative

conjugative  element  is  transferred  to  the  recipient.  A  complementary  strand  is

synthesised in both cells to produce a double stranded circular plasmid, or an integrative

conjugative element that inserts into the chromosome.

1.3.1.2 Transduction

Transduction  is  a  mechanism of  transferring  genetic  material  into  a  cell  by  a  viral

vector. This is the typical mechanism for HGT of bacteriophages that infect bacterial

hosts.  There  are  three  types  of  transduction:  1)  generalised;  2)  specialised;  and  3)

lateral. Generalised transduction occurs when bacteriophages can package any bacterial

DNA and transfer it to another bacterium, whereas specialised transduction is limited to

transferring  a  particular  set  of  genes89.  Because  specialised  transduction  is  more

complex and limited to a certain set of genes, it is thought that most transduction events

are generalised90. More recently, lateral transduction was discovered in Staphylococcus

aureus, where  very  long  fragments  of  bacterial  DNA  are  transferred  to  another

bacterium90. In contrast to generalised and specialised transduction, bacteriophage DNA

that  is  integrated  into  the  host  genome  as  a  prophage  initiates  replication  before

excision, leading to replication of the bacterial host DNA. 
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1.3.1.3 Transformation

Transformation  is  a  process  where  exogenous  DNA is  integrated  into  a  recipient

bacterial  genome  by  homologous  recombination  (the  exchange  of  DNA sequences

between  identical  or  similar  regions)91.  Unlike  conjugation  and  transduction,

transformation  relies  on the  recipient  genome encoding and expressing the required

proteins during natural competence (the ability of bacterial to uptake exogenous DNA

naturally).  A  number  of  MGEs  can  be  transferred  via  transformation,  including

plasmids, insertion sequences and integrons/gene cassettes.

1.4 Mobile genetic elements

1.4.1  Bacteriophages

Bacteriophages (phages) are viruses ranging in size from a few to hundreds of kilobases

that  replicate  within  bacteria  and  archaea92 and  can  transfer  genetic  material  by

transduction. They replicate rapidly, have huge genetic diversity and have genomes that

can be comprised of single- or double-stranded DNA or RNA. Phages can replicate

through either the lytic or a lysogenic cycle. In the lytic cycle, the phage infects the host

cell,  replicates  and  lyses  their  host  at  the  completion  of  their  replication  cycle.  In

contrast, during the lysogenic cycle, phages inject their genetic material into the cell,

which  then  integrates  into  the  host  genome  becoming  a  prophage  as  part  of  their

replication cycle. Phages that can replicate using both lytic and lysogenic cycles are

called temperate phages, while phages that only replicate by the lytic cycle are known

as  virulent  phages.  Bacteriophages  play  an  influential  role  in  shaping  microbial
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composition93, which may impact the resistome94. In fact, bacteriophage cocktails can be

used to selectively kill bacterial species that may harbour ARGs in a technique known

as phage therapy95. 

Bacteriophages themselves rarely encode ARGs96. However, it is still debatable whether

phages significantly contribute to the spread of ARGs in microbial  communities via

HGT. Studies have argued that while a small minority of phages contain ARGs, they

still act as a vehicle of ARG transmission and may support an environmental reservoir

with potential  to  cross ecosystems97.  The reasons behind why phages rarely contain

ARGs remain speculative. It has been shown that ARGs are ten-fold less abundant in

phage particulate genomes than in integrated prophages98. An ARG within another MGE

that integrates into an already existing prophage may render it inactive and unable to

excise  from  the  host  genome  during  prophage  induction.  Prophage  induction  is  a

process whereby the prophage DNA is excised, transcribed and translated to create viral

structural proteins for the lytic cycle. There is some evidence to suggest prophages that

carry ARGs do not have any lytic potential96. Whether prophages can sustain an active

reservoir of transferable ARGs within replicable viral genomes is still under scrutiny.

However,  phages  could  encode other  determinants  of  resistance,  such as  alternative

metabolic pathways to bypass antimicrobials that disrupt host metabolic processes99.

1.4.2  Plasmids

Plasmids are extra-chromosomal replicons present in bacteria, archaea and fungi and

mostly transfer by the process of conjugation in bacteria (described in Section 1.3.1.1).

They range in size from less than a kilobase to the megabase size range100. Conjugative
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plasmids consist of a complex system of functional DNA, including its own origin of

replication  (ori)  (a  specific  sequence  where  replication  is  initiated),  at  least  one

replication initiation protein (Rep), and an origin of transfer (oriT) (a short sequence

required for  the transfer  of  DNA during conjugation)101.  The transfer  regions  of the

plasmids encode proteins for mating pair formation (MPF) that functions as a secretion

system pore and DNA transfer replication (DTR) that processes the plasmid DNA, such

as the relaxase protein that specifically nicks the oriT of the DNA strand that is exported

to the recipient cell102. A conjugative plasmid can cause the transfer of other DNA, when

it recombines with another plasmid or chromosomal DNA. Plasmids have an array of

functions. Some plasmids are cryptic (have no known function), but many carry genes

encoding important functions in the survival and fitness of their host. These include

virulence  traits  and,  notably,  resistance  to  antimicrobials.  There  is  currently  no

systematic  approach  to  classifying  resistance  plasmids,  i.e  those  that  carry  ARGs.

However, it is widely considered that many resistance plasmids implicated in human

health mostly originate from the Gram-negative family,  Enterobacterioceae103, and the

Gram-positive genera, Enterococcus and Staphylococcus104 (Table 1.1). Although they

have particular origins, plasmids are highly mobile between different species, but have

mostly been found to transfer within their taxonomic families105.

1.4.2.1 Enterobacteriaceae plasmids

The  Enterobacter species,  Escherichia  coli,  Enterococcus  faecium and  Klebsiella

pneumoniae are problematic pathogens of the Enterobacterioceae family and carriers of

resistance  plasmids,  which  are  often  reported  in  nosocomial  (hospital-acquired)

infections. Resistance plasmids in the  Enterobacterioceae family can be up to 200 kb



43

(kilobases) long, and include conjugative plasmids and small, mobilisable plasmids106

(Table  1.1).  Enterobacterioceae resistance  plasmids  can  be  categorised  by  their

mechanisms of replication but are often described by their resistance in the clinic. ARGs

encoding  for  narrow-spectrum  β-lactamases,  ESBLs  and,  less  commonly,

carbapenemases  are  found  in  Enterobacterioceae plasmids  of  resistant  clinical

isolates107.  Non-β-lactamase  ARGs,  such  as  those  encoding  for  aminoglycoside  and

quinolone resistance, are frequently located in the same plasmid encoding ESBLs and

carbapenemases, making  Enterobacterioceae carriers more difficult  to eradicate with

antibiotics108. 
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Table 1.1. ARGs, resistance plasmids and classes they confer resistance to in  Enterobacteriaceae

spp., Enterococci spp., Staphylococci spp., Pseudomonas aeruginosa and Acinetobacter baumannii. 

Collated  from  Partridge  et  al.,  2018106.  MLS  is  an  abbreviation  of  macrolide,  lincosamide  and

streptogramin.

Species ARG Class that ARG conferring resistance Plasmid type

Enterobacteriaceae 
spp.

armA aminoglycoside L/M plasmids

blaCMY-2 cephalosporin, cephamycin A/C, I-complex plasmids

blaCTX-M family cephalosporin F, HI, I2, X plasmids

blaCTX-M-1 cephalosporin I-complex plasmids

blaCTX-M-14 cephalosporin I-complex plasmids

blaCTX-M-15 cephalosporin F, I-complex, Y plasmids

blaCTX-M-15 cephalosporin R plasmids

blaCTX-M-2 cephalosporin T plasmids

blaCTX-M-27 cephalosporin F plasmids

blaCTX-M-3 cephalosporin L/M plasmids

blaCTX-M-62 cephalosporin N plasmids

blaFOX family cephalosporin, cephamycin L/M plasmids

blaGES-1 penam, carbapenem, cephalosporin Q plasmids

blaIMP family
carbapenem, cephalosporin, 
cephamycin, penam, penem HI, N plasmids

blaIMP-4
carbapenem, cephalosporin, 
cephamycin, penam, penem L/M plasmids

blaKPC family
monobacterium, carbapenem, 
cephalosporin, penam

A/C, F, I2, L/M, R, U and G/P-6, W, X, 
ColE1/ColE1-related plasmids

blaNDM family
carbapenem, cephalosporin, 
cephamycin, penam A/C, L/M, N, R plasmids

blaNDM-1
carbapenem, cephalosporin, 
cephamycin, penam HI, T plasmids

blaNDM-4-like
carbapenem, cephalosporin, 
cephamycin, penam X plasmids

blaNDM-5
carbapenem, cephalosporin, 
cephamycin, penam X plasmids

blaOXA-181 penam, cephalosporin T, X plasmids

blaOXA-48-like penam, cephalosporin L/M plasmids

blaSHV family carbapenem, cephalosporin, penam L/M plasmids

blaSHV-12 carbapenem, cephalosporin, penam X plasmids

blaTEM family
penam, monobactam, cephalosporin, 
penem ColE1/ColE1-related plasmids

blaVIM family
carbapenem, cephalosporin, 
cephamycin, penam, penem R plasmids

blaVIM-1/4
carbapenem, cephalosporin, 
cephamycin, penam, penem W plasmids

catA1 phenicol F plasmids

floR phenicol A/C plasmids

Continues next page
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mcr-1 peptide HI, I-complex, I2, P/P-1, X, Y plasmids

mcr-2 peptide X plasmids

mcr-3 peptide HI plasmids

oqxAB

tetracycline, fluoroquinolone, 
glycylcycline, nitrofuran, 
diaminopyrimidine (efflux pump) X plasmids

qnr family fluoroquinolone X plasmids

qnrB19 fluoroquinolone ColE1/ColE1-related plasmids

rmtC aminoglycoside A/C plasmids

strAB aminoglycoside A/C plasmids

sul2 sulfonamide A/C plasmids

tet tetracycline A/C plasmids

Enterococci spp. aadE aminoglycoside Inc18, RepA_N plasmids

aphA-3 aminoglycoside Inc18, RepA_N plasmids

cat phenicol Inc18 plasmids

cfr
oxazolidinone, streptogramin, 
lincosamide, phenicol, pleuromutilin Inc18 plasmids

erm(B) MLS Inc18, RepA_N plasmids

fexB phenicol Inc18 plasmids

sat4 nucleoside Inc18, RepA_N plasmids

tet(L) tetracycline (efflux pump) Rep_3

vanA glycopeptide Inc18, RepA_N plasmids

Staphylococci spp.
aacA-aphD aminoglycoside

Multi-resistance, Conjugative multi-
resistance plasmids

aadD aminoglycoside RC-replicating plasmids

aphA-3 aminoglycoside Multi-resistance plasmids

bcrA peptide (efflux pump) Multi-resistance plasmids

bcrB peptide (efflux pump) Multi-resistance plasmids

blaZ family penam
Multi-resistance, Conjugative multi-
resistance plasmids

ble glycopeptide RC-replicating plasmids

cat phenicol RC-replicating plasmids

dfrA family diaminopyrimidine
Multi-resistance, Conjugative multi-
resistance plasmids

erm(A) MLS Conjugative multi-resistance

erm(B) MLS Multi-resistance plasmids

erm(C) MLS RC-replicating plasmids

fosB fosfomycin RC-replicating plasmids

lnu(A) lincosamide RC-replicating plasmids

mphC macrolide Multi-resistance plasmids

msrA

oxazolidinone, tetracycline, 
streptogramin, macrolide, pleuromutilin,
phenicol, lincosamide Multi-resistance plasmids

qacA antiseptic/disinfectant Multi-resistance plasmids

qacC antiseptic/disinfectant Conjugative multi-resistance plasmids

sat4 nucleoside Multi-resistance plasmids

Continues next page
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spc aminoglycoside Conjugative multi-resistance

str aminoglycoside RC-replicating plasmids

tet(K) tetracycline (efflux pump) RC-replicating plasmids

vanA glycopeptide Conjugative multi-resistance

Pseudomonas 
aeruginosa blaIMP-45

carbapenem, cephalosporin, 
cephamycin, penam, penem IncP-2 plasmids

blaKPC family
monobacterium, carbapenem, 
cephalosporin, penam plasmids carrying carbapenemase genes

blaKPC-2
monobacterium, carbapenem, 
cephalosporin, penam plasmids carrying carbapenemase genes

blaSIM-2 penam, carbapenem, cephalosporin
IncP-2 plasmids and plasmids carrying 
carbapenemase genes

blaVIM-1
carbapenem, cephalosporin, 
cephamycin, penam, penem plasmids carrying carbapenemase genes

blaVIM-2
carbapenem, cephalosporin, 
cephamycin, penam, penem

IncP-2 plasmids and plasmids carrying 
carbapenemase genes

blaVIM-7
carbapenem, cephalosporin, 
cephamycin, penam, penem plasmids carrying carbapenemase genes

Acinetobacter 
baumannii

aadB aminoglycoside

aphA6 aminoglycoside

blaOXA-23 penam, cephalosporin

blaNDM-1
carbapenem, cephalosporin, 
cephamycin, penam

1.4.2.2 Staphylococci plasmids

Staphylococci  frequently contain one or more resistance plasmids and can be broadly

grouped into three categories based on size: 1) small rolling circle-replicatingiv (RC-

replicating)  plasmids  that  usually  encode  a  single  ARG  (<1  to  10  kb);  2)  multi-

resistance plasmids  that  consist  of  multiple  ARGs and ARG-associated transposable

elements (> 15 kb); and 3) larger, conjugative multi-resistance plasmids that transfer at

low frequencies and mediate conjugation of other smaller plasmids or even integrate

into chromosomes (> 30 kb)109,110 (Table 1.1).

iv In rolling circle replication, the double-stranded DNA is nicked. The 3’ end of the unnicked DNA is
elongated  and  the  5’ end  strand  is  displaced.  Once  replication  is  complete,  the  displaced  DNA
circularises and the second strand is synthesised. The 3’ end and 5’ end of both strands represent the
configuration of bonds between carbon atoms of the DNA pentose backbone. (Included in Glossary)
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1.4.2.3 Enterococci plasmids

Enterococci resistance plasmids are generally conjugative, range from 3.3 to 375 kb in

size111,112,  and  can  be  classified  into  their  replication  initiators  Rep_3,  Inc18  and

RepA_N families104. Sometimes they can encode multiple replication initiators which

confound classification. Inc18 and RepA_N frequently harbour ARGs, but the Rep_3

family plasmids rarely encode ARGs, apart from tet(L)113 (Table 1.1).

1.4.2.4 Other clinically important resistance plasmids

Other plasmids that originate in important clinical pathogens Acinetobacter baumannii

and Pseudomonas aeruginosa are not as well studied, but a few isolated plasmids have

been found in contain ARGs106 (Table 1.1).

1.4.3  Transposable elements

Transposable  elements  are  MGEs that  can  integrate  into prokaryotic  and eukaryotic

genomes by transposition. Transposition is the transfer of a section of DNA from one

genome to  another  or  to  another  site  on  the  same  genome.  Microbial  transposable

elements include insertion sequences,  composite transposons and miniature inverted-

repeat  transposable  elements.  Transposition  can  either  be  conservative,  where  an

insertion sequence is excised from the donor genome and inserted into the recipient

genome,  or  replicative,  when the  insertion sequence  is  duplicated so the  donor and

recipient each receive of a copy of the insertion sequence114. There are two mechanisms

of replicative transposition: copy-and-paste and copy-out-paste-in114,115. In the copy-and-

paste  mechanism,  the  donor  and  recipient  genomes  join,  the  insertion  sequence  is
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replicated, and the genomes separate to leave the original copy in the donor genome and

the duplicate in the recipient genome. The copy-out-paste-in mechanism describes an

insertion sequence in the donor genome that is replicated out into a circular double-

stranded intermediate, and is then integrated into the recipient genome.

1.4.3.1 Insertion sequences and composite transposons

Insertion sequences are short transposable elements containing genes that code for the

proteins involved in their own transposition in both chromosomes and plasmids. Most

insertion sequences contain  one or sometimes two  genes encoding transposases,  the

most ubiquitous gene in prokaryotic and eukaryotic sequences116.   Insertion sequences

and transposons can be broadly classified by their  amino acids in their  transposase,

commonly DDE (aspartic acid, aspartic acid and glutamic acid), DEDD or HUH (two

histidine residues separated by any large hydrophobic amino acid), and their mechanism

of transposition (either conservative or replicative)106. Common DDE types of insertion

sequences  contain  two  terminal  inverted  repeats  at  each  end  that  are  reverse

complement sequencesv of each other. Some insertion sequences are flanked by unique

shorter direct repeat sequences, also known as target site duplications (TSDs), which are

formed  by  the  duplication  of  the  target  site  of  the  insertion  sequence  when  it  is

inserted117. 

Composite transposons are mobile elements bounded by two copies of two different

insertion sequences that can move together in a single unit. A composite transposon can

v The reverse complement of a DNA sequence is the reverse strand that has complementary base pairs. 
The complementary base pair rule states DNA base pairs are always paired A – T  and C – G. This 
means the reverse complement of GCATGGA is TCCATGC, for example. (Included in the Glossary)
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contain one or more passenger genes, such as ARGs, flanked by these two insertion

sequences and with two TSDs at both ends  (Fig. 1.3). It is also possible for a single

insertion sequence to mobilise an adjacent region containing one or more ARGs by

being exercised from the genome as a circular translocatable unit118. Insertion sequences

that associate with ARGs can be broadly categories into five major categories: 1) IS26

and related elements; 2) ISEcp1 family and related elements; 3) ISApl1 containing mcr-

1; 4) IS91-like and ISCR elements; and 5) unit transposons (Table 1.2). Although these

represent  just  some of  the  types  of  transposable  elements  out  of  so  many  that  are

potentially capable of carrying ARGs, these categories cover the mechanisms of less

commonly known ones.
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Figure 1.3. A typical structure of a composite transposon with two insertion sequences. 

An insertion sequence consists  of  at  least  one  transposase  gene,  flanked by terminal  inverted  repeat

sequences.  A composite  transposon  contains  passenger  genes,  such  as  an  ARG,  surrounded  by  two

insertion sequences, which are flanked by two TSDs (direct repeats).

1.4.3.1.1 IS26 and related elements

IS26, IS257 and IS1216 in Gram-negative and Gram-positive bacteria are important in

the  dissemination  of  ARGs  (Table 1.2).  IS26 elements  are  commonly  found within

arrays of ARGs in resistance plasmids118.  One copy of IS26 and an adjacent  region

containing ARGs can form a circular translocatable unit, which tends to insert next to

another copy of IS26.

1.4.3.1.2 ISEcp1 family and related elements

The  insertion  sequence  family  ISEcp1 and  related  elements  IS1247,  ISKpn23 and

ISEnca1  have a unique method of transporting ARGs. The ISEcp1 family is able to

move an adjacent region beyond one of its inverted repeats to create a transposition

unit119. Their ability to capture many different ARGs is thought to be mediated in this

way  (Table  1.2).  In  addition,  ISEcp1 also  contains  at  least  one  promoter  that  can

increase  the  expression  of  ARGs,  such  as  blaCTX-M,  an  ARG  of  the  CTX-M  β-

lactamase family conferring resistance to cephalosporin120.
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1.4.3.1.3 ISApl1 containing mcr-1

ISApl1 is another insertion sequence involved in the capture and mobilisation of the

mcr-1 (mobile  colistin  resistance)  gene,  conferring  resistance  to  the  last-line

antimicrobial  drug, colistin63.  It  is  likely ISApl1 uses  a  copy-out-paste-in replicative

transposition mechanism121. This case exemplifies how important transposable elements

are to the transfer of emerging resistance to antimicrobials of last resort.

1.4.3.1.4 IS91-like and ISCR elements

IS91-like and ISCR elements are responsible for carrying a number of ARGs. IS91-like

elements  lack  conventional  terminal  inverted  repeats and  are  suspected  to  capture

adjacent sequences by rolling circle replication122. ISCR elements are common regions

associated with many types of ARGs in class 1 integrons123 (Table 1.2). Although this

has  not  be  demonstrated  experimentally,  ISCRs  are  thought  to  capture  adjacent

sequences by rolling circle replication as well as IS91-like elements124.

1.4.3.1.5 Unit transposons

Unit transposons are a large family of mobile elements that are thought to contain a pair

of  inverted  repeats  at  both  ends  rather  than  insertion  sequences,  and  includes  a

transposase gene as well as a possible passenger gene, such as an ARG. The distinction

between  unit  transposons  and  insertion  sequences,  however,  is  not  clearly  defined.

There are examples of common insertion sequences that have unit transposon names

and  relatives  of  unit  transposons  with  insertion  sequence  names125.  Broadly,  unit
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transposons that are most important in disseminating ARGs either belong to the Tn3

family that are much larger than typical insertion sequences and undergo replicative

copy-and-paste  transposition126 or the Tn7-like family that have different transposition

mechanisms. These are reviewed extensively in Partridge et al., 2018106. 
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Table 1.2. Examples of insertion sequences and unit transposons carrying ARGs and classes they

confer resistance to. 

Collated from Partridge et al., 2018106

Insertion sequence/ 
Unit transposon ARG Class that ARG conferring resistance

Insertion sequence/ Unit 
transposon type

IS26 and related 
elements (in Gram-
negative bacteria)

aph(3’)-IIa-ble-
aph(6)-Ic aminoglycoside, glycopeptide IS50

aphA1 aminoglycoside IS26, IS903

aphA6 aminoglycoside ISAba14

blaFOX-5 cephamycin, cephalosporin ISAs2

blaNDM carbapenem, cephalosporin, cephamycin, penam ISAba125

blaOXA-23 penam, cephalosporin ISAba1

blaOXA-237 penam, cephalosporin ISAba1

blaOXA-48-like penam, cephalosporin IS1999

blaSHV family carbapenem, cephalosporin, penam IS26

catA1 phenicol IS1

catA2 phenicol IS26

cfr
oxazolidinone, streptogramin, lincosamide, 
phenicol, pleuromutilin IS26, IS256

mcr-1 peptide ISApl1

mcr-2 peptide ISEc69

tet(B) tetracycline (efflux pump) IS10

tet(C) tetracycline (efflux pump) IS26

tet(D) tetracycline (efflux pump) IS26

IS26 and related 
elements (in Gram-
positive bacteria)

aacA-aphD aminoglycoside IS256, IS257, IS1216

aadD aminoglycoside IS257, IS21-558, ISSau10

aadE aminoglycoside IS1182, IS1216

aphA-3 aminoglycoside IS257, IS1182

bcrAB peptide (efflux pump) IS257

blaZ family penam IS1216

ble glycopeptide IS257

cfr
oxazolidinone, streptogramin, lincosamide, 
phenicol, pleuromutilin

IS256, IS1216, IS21-558, 
ISEnfa4

dfrA diaminopyrimidine IS257

dfrK diaminopyrimidine IS257, ISSau10

erm(C) MLS IS257, ISSau10

erm(B) MLS IS256, IS1216

erm(T) MLS ISSau10

fabI isoniazid, triclosan IS1272

fosB5 fosfomycin IS257

fusB fusidic acid IS257

ileS2 mupirocin IS257

Continues next page
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lsa(B)
phenicol, macrolide, pleuromutilin, lincosamide, 
streptogramin, tetracycline, oxazolidinone IS21-558

sat4 nucleoside IS257, IS1182

spc aminoglycoside IS257

str aminoglycoside IS1216

tet(K) tetracycline (efflux pump) IS257

tet(L) tetracycline (efflux pump) IS257, ISSau10

tet(M) tetracycline (efflux pump) IS1216

vanA glycopeptide IS1216

vanB1 glycopeptide IS16, IS256

vat(A) streptogramin IS257

vga(A)
streptogramin, oxazolidinone, tetracycline, 
lincosamide, phenicol, pleuromutilin, macrolide IS257

vgb(A) streptogramin IS257

ISEcp1 family and 
related elements

aac(3)-Iib aminoglycoside ISKpn23

aac(3)-IIf-arr aminoglycoside IS1247

aph(2’’)-Ie aminoglycoside ISEnca1

blaACC family monobactam, cephalosporin, penam ISEcp1

blaBKC family carbapenem ISKpn23

blaCMY-2-like cephalosporin, cephamycin ISEcp1

blaCTX-M-1 cephalosporin ISEcp1

blaCTX-M-2 cephalosporin ISEcp1

blaCTX-M-25 cephalosporin ISEcp1

blaCTX-M-9 cephalosporin ISEcp1

blaOXA-181-like penam, cephalosporin ISEcp1

qnrB fluoroquinolone ISEcp1

qnrE1 fluoroquinolone ISEcp1

rmtC aminoglycoside ISEcp1

ISApl1 mcr-1 peptide ISApl1

IS91-like and ISCR 
elements

ant(4’)-Iib aminoglycoside ISCR6

armA aminoglycoside ISCR1

blaAIM-1 penam, cephamycin, cephalosporin ISCR15

blaCMY/MOX-like cephalosporin, cephamycin, penam ISCR1

blaDHA family cephalosporin, cephamycin ISCR1

blaNDM family carbapenem, cephalosporin, cephamycin, penam ISCR27

blaOXA-45 cephalosporin, penam ISCR5

blaSPM-1 carbapenem ISCR4

catA2 phenicol ISCR1

dfrA10 diaminopyrimidine ISCR1

floR phenicol ISCR3

qnrB fluoroquinolone ISCR1

rmtB aminoglycoside ISCR14

rmtD aminoglycoside ISCR14

Continues next page
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sul2 sulfonamide ISCR2

tet(31) tetracycline (efflux pump) ISCR2

Unit transposons (in 
Gram-positive bacteria,
Staphylococci and 
Enterococci)

aadE aminoglycoside Tn5404

aphA-3 aminoglycoside Tn5404

blaZ family penam Tn552

dfrK diaminopyrimidine Tn559

erm(A) MLS Tn554, Tn6133 

erm(B) MLS Tn551, Tn917

fexA phenicol Tn558

spc aminoglycoside Tn554, Tn6133 

vanA glycopeptide Tn1546

vga(A)
streptogramin, oxazolidinone, tetracycline, 
lincosamide, phenicol, pleuromutilin, macrolide Tn5406

vga(E)
streptogramin, oxazolidinone, tetracycline, 
lincosamide, phenicol, pleuromutilin, macrolide Tn6133

1.4.3.2 Miniature inverted-repeat transposable elements

Miniature  inverted-repeat  transposable  elements  (MITEs)  are  short  transposable

elements generally up to 300 base pairs (bp) in length that, like insertion sequences,

contain terminal inverted repeats flanked by TSDs. Unlike insertion sequences, MITEs

do  not  code  for  their  own  transposases,  but  they  require  a  transposase  in  situ for

transposition127. Instead, they can carry structural motifs or promoter sequences128. Only

relatively recently have MITEs been discovered to mobilise  between bacteria129 and

have  been  found  capable  of  carrying ARGs  by  transposition  in  vivo  (experiments

conducted in live isolated cells)120. 

1.4.4  Integrative conjugative elements

The  most  complex  transposons  are  the  conjugative  transposons,  also  known  as

integrative conjugative elements  (ICEs)130.  These genetic elements encode their  own
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conjugation  functions  and  can  transfer  between  bacteria,  usually  using  a  similar

mechanism  as  that  employed  by  conjugative  plasmids.  Unlike  plasmids,  ICEs  are

usually integrated into the host chromosome. Their broad-functioning genotype enables

them to carry both gene cassettes and transposable elements associating with ARGs131.

ICEs are largely overlooked compared to  plasmids  but are  known to associate  with

numerous  types  of  ARGs,  such  as  those  conferring  resistance  to  carbapenems,

macrolides, phenicol, tetracyclines and vancomycins in bacterial pathogens131.

1.4.5  Gene cassettes/integrons

Other MGEs include gene cassettes that are commonly part of integrons132,133. Integrons

are genetic elements that contain a promoter, which direct transcription of genes within

the  gene  cassette,  and  an  integrase  and  a  proximal  recombination  site  where  gene

cassettes  can  insert  by  site-specific  recombination.  Mobilisable  gene  cassettes  are

between half to hundreds of kilobases in length134 and are associated with a variety of

functions,  including  the  spread  of  ARGs  that  are  usually  associated  with  virulence

factors,  enzymes and genes coding for heavy metal  resistance106.  Gene cassettes  are

moved between integrons as an intermediate circular DNA molecule and integrated into

the  same  genome  by  site-specific  recombination  (where  sequences  are  exchanged

between positions in the DNA using site-specific recombinases). Integrons themselves

can be mobilised between different genomes within composite transposons, conjugative

elements,  plasmids  or  by  transformation.  Gene  cassettes  frequently  contain  many

different ARGs and are named after the ARG they carry135. 
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1.4.6  Integrative and mobilisable genetic elements

There are highly heterogeneous elements of less than a kilobase to a megabase in length

that  transfer through conjugation. They do not contain enough genetic information for

independent conjugative transfer,  so they utilise the transfer functions of conjugative

plasmids or ICEs136. They can exist as plasmids or as integrative elements; the latter are

sometimes  called  integrative  and  mobilisable  elements  (IMEs)137.  They  commonly

contain cargo DNA including ARGs and virulence factors.

1.4.7  The mosaic of mobile genetic elements

Although  some  MGEs  can  be  categorised  by  their  structural  characteristics  and

mechanism of  transfer,  many  other  MGEs consist  of  a  spectrum of  mobile  genetic

structures and mechanisms. For instance, some plasmids are non-conjugative and are

transferred  horizontally  by  exploiting  the  MPF  pore  previously  provided  by  a

conjugative plasmid of the same cell138. Thus, they do not have to bear the large genetic

load  required  to  encode  conjugation  functions139.  This  has  challenged  whether

conjugative traits are necessary to determine a mobilisable plasmid. Again, there are

examples of plasmids in both Gram-positive and Gram-negative bacteria that are still

mobilisable without a relaxase gene140. As well as non-conjugative plasmids, IMEs rely

on the  conjugation  of  other  MGEs.  These  elements  can  exist  as  either  plasmids  or

integrative elements after excision from the genome. 

It is common to find MGEs integrated within other types of MGEs, meaning it can be

challenging to characterise an HGT event. For example, it  is typical for plasmids to
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contain gene cassettes/integrons and transposable elements. This provides an alternative

route for MGEs to transfer to a chromosome or other resident plasmids of the same cell

at times when its plasmid carrier cannot replicate and transfer to a recipient cell.  In

addition, more complex transposons, such as those of the Tn3 family, transpose via the

formation of a co-integrate, where an adjacent region to one of the insertion sequences

forms a transposition unit flanked by the TSD. This allows them to pick up adjacent

regions of various sizes during transposition and simultaneously collect sequences from

different genomes, such as class 1 integrons126.

1.4.8  The mobilome in the microbiome

There are a huge variety of MGEs that are an integral part of microbial DNA and the

microbiome as a whole. The mobilome is a collective term to describe the profile of

MGEs  in  the  microbiome.  As  well  as  acting  as  a  reservoir  for  ARGs,  the  close

proximity  of  microbes  within  dense  microbial  communities  provides an  ideal

environment for the exchange of MGEs between resident microbes. It is estimated over

13,500 genes related to HGT occurred in over 300 species across human body sites141.

However, this does not decouple whether HGT events occur historically before or after

colonisation of these body sites. Nonetheless, HGT is highly frequent in dense human

microbial communities, with a rate of 25 times more than in diverse soil ecosystems142. 
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1.4.9  The impact of horizontal gene transfer on antimicrobial 

resistance

The  mobilome enables  the  transfer  of  the  resistome  within  microbial  communities.

However, there is limited understanding of how the mobilome collectively impacts risk

to undesirable outcomes of AMR. These outcomes include alternative and prolonged

treatments to overcome AMR infections, fatalities caused by AMR infections, and other

complications, such as secondary infections. Here, I address how the mobilome may

influence the clinical outcomes of AMR.

The first consideration is which MGEs can transfer ARGs and what ARGs they carry.

MGEs that have the potential to transfer ARGs to a human pathogen pose a greater risk

to clinical outcomes of AMR than those that do not143,144. Some ARGs that have been

acquired  by  a  microbe  via  HGT  due  to  selection  pressures  by  anthropogenic

antimicrobials  have  a  greater  propensity  to  transfer  to  other  microbes,  including

pathogens, of the same ecological niche145. Transfer of naturally occurring and intrinsic

ARGs,  even  without  antimicrobial  drug  selection  pressures,  has  been  shown  to

potentiate resistant phenotypes146 that can also lead to undesirable clinical outcomes.

Secondly, once the ARGs are transferred in the recipient host, they may or may not

function to produce a resistance phenotype upon exposure to antimicrobial treatments.

In some cases, the acceptor organism may continue to recapitulate a similar or greater

resistance  phenotype  than  in  the  donor,  but  in  others  it  may  have  reduced  or  no

functionality. Once an ARG is acquired via HGT by a human pathogen, the pathogen
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itself may not necessarily pose a greater risk to clinical outcomes than without the ARG.

It is even probable that some acquired ARGs already residing in pathogens do not lead

to clinical cases of AMR. An ARG in one genome may not function in the same way

after  it  is  integrated  into  another  genome.  The  acceptor  host  may  have  alternative

regulatory or metabolic networks that interact differently to ARGs and other resistance

determinants,  like  promoter  sequences,  from  the  donor147.  Acquiring  an  ARG  may

sometimes  compromise  the  fitness  of  the  host,  but  compensatory  mutations  may

ameliorate its effect148. Alternatively, the function of an ARG against an antimicrobial

may  be  redundant  if  transferred  to  a  pathogen  that  already  has  a  more  efficient

mechanism of being resistant to the same antimicrobial149. 

The third consideration is whether the frequency of MGEs transferring ARGs influence

the risk of AMR outcome. An increased frequency could be considered to have a greater

risk, but given the appropriate context, a single, rare HGT event of an ARG, can have as

much  potential  to  cause  AMR  as  more  common  events150.  For  example,  an  ARG

acquired  by  an  HGT  event  in  a  pathogen  that  is  expressed  during  exposure  to

antimicrobial drugs, is a greater threat than an MGE that disseminates ARGs through

microbial colonies across divergent species, with a fitness cost or inability to persist

with the host machinery151.

Finally, once a genetic resistance determinant is integrated and functioning within the

genome of a pathogen, it may or may not lead to an AMR infection. Resistant pathogens

in  the  human  body  and  the  environment  can  only  become  detrimental  to  clinical

outcome of antimicrobial treatment if they spread and replicate at sites of infection. 
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In order to estimate the impact of the mobilome, analytical and computational models

can be developed to predict clinical outcomes of AMR infections. To model how the

mobilome can cause clinical AMR, the factors and events that lead up to its emergence

need to be deconstructed and evaluated for their relative impact. Relevant ground truths

and immutable frameworks, such as characteristics and mechanisms that define MGEs,

can  be  incorporated  in  a  model’s  representation  of  the  mobilome.  For  example,  a

resistance plasmid always carries a promoter region leading to ARG expression, but a

transposon  carrying  an  ARG  does  not  always  integrate  downstream  of  a  promoter

region  meaning  it  may  not  be  expressible.  However,  knowledge  about  how  the

mobilome spreads the resistome is still lacking. In the following discussion, I set out to

evaluate  what  experimental  approaches  have  been  applied  to  date  to  profile  the

resistome and mobilome, and the interactions between them.

1.5 Surveillance of antimicrobial resistance

Current methods of antimicrobial resistance surveillance in the clinic rely on culture-

based methods of determining a resistance phenotype from a colony of an isolated strain

and subsequent sequencing of the its genome for genetic AMR determinants. Molecular

approaches,  such  as  polymerase  chain  reaction  (PCR)-based  methods  and

metagenomics,  can  be  applied  to  discover  genetic  AMR  determinants  in  microbial

communities  without  relying  on  culture-based  methods.  The  relative  merits  and

contributions these approaches have to the surveillance of AMR globally is discussed

hereafter.
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1.5.1 Culture-based methods

1.5.1.1 Phenotypic testing

The phenotype of a microorganism with AMR is described by how resistant it is to a

certain  concentration  of  antimicrobial  drug.  There  are  two  measurements  that  are

commonly  used  to  define  this:  minimum  inhibitory  concentration  (MIC)  and

epidemiological  cut-off  values  (ECOFFs)  for  resistance.  The  MIC  is  the  lowest

concentration  of  an  antimicrobial  that  inhibits  visible  growth  of  a  single  microbial

strain. Different concentrations of antimicrobials are added to agar or broth dilutions152.

These  are  then  inoculated  with  a  standard  concentration  of  an  isolate.  The  lowest

concentration of antimicrobial that inhibits the growth of the inoculate is recorded as the

MIC (Fig. 1.4a). Alternatively, a disk diffusion test can be used to test the susceptibility

of a microbe to antimicrobials and its MIC153. Typically, filter paper disks soaked in a

standard concentration of antimicrobial drug are applied to a microbial culture on an

agar  plate  (Fig.  1.4b).  As  the  antimicrobial  diffuses  away  from  the  disk,  the

concentration decreases. Lower concentrations that are effective against the strain will

produce a wider ring of no microbial growth. In contrast, those disks with no visible

rings indicate persistent growth of microbes that are resistant to a high concentration of

the drug. In the clinic, breakpoint values can be used to determine whether the MIC is

greater or less than clinically relevant levels of AMR. Historically, breakpoints values

are chosen concentrations of an antibiotic which define whether a strain is susceptible or

resistant to an antibiotic. If an MIC is less than or equal to the susceptibility breakpoint

then it is considered to be susceptible to that antibiotic.
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Figure 1.4. Measuring MICs using a) broth dilutions and b) disk diffusion.

If breakpoint data are unavailable, ECOFF values are an alternative154. An ECOFF value

is an MIC value that is the upper limit of an MIC distribution of multiple wild type

strains rather than a single strain155. A microbe is defined as a wild type if it does not

contain resistance, and it has an MIC below an MIC phenotype established from other
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studies  of  unrelated  species.  Strains  presenting  MICs  above  this  ECOFF  value  are

considered resistant. An advantage of using an ECOFF over a breakpoint value is a

more continuous scale allows more sensitivity for detecting lower level and potentially

emerging  resistance.  Phenotypic  testing  has  provided  insights  into  the  geographical

differences in antimicrobial susceptibility. For example, a study used the disk diffusion

technique to  show differences in  susceptibility  to  12 antimicrobial  agents of  E. coli

isolates causing urinary tract infections across regions in the USA156. 

1.5.1.2  Whole genome sequencing

Culture-based  methods  alone  provide  information  on  how AMR is  facilitated  on  a

genotypic  level.  Whole  genome  sequencing  (WGS)  can  determine  the  complete  or

nearly complete genomes of these susceptible and resistant isolates. These genomes can

be compared to other sequenced genomes of related strains to identify novel genetic

resistance  determinants  and  whether  they  were  acquired  by  HGT.  Even  without

susceptibility  measures,  sequencing  pathogens  known  to  have  AMR  from  multiple

sources  can be compared to  track  how their  genomes evolve  as  they spread across

multiple locations157. This is useful in locating origins of outbreaks where differences in

genomes of strains converge64. Sequence comparison between species could also locate

the MGE responsible for ARG transfer. However, resolving the exact timing of an HGT

event would be challenging given how frequently microbes replicate. It is possible to

predict  antibiotic drug resistance and susceptibility using sequence comparison from

WGS only, which is faster than phenotypic testing. More accurate predictions can be

made  from  pathogens  where  HGT  rarely  occurs  and  acquired  genetic  resistant

determinants are mostly through mutations, such as Mycobacterium tuberculosis158. 
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One major limitation with using culture-based methods is that it cannot be applied to

unculturable microorganisms, such as intestinal TM7 species that have been shown to

harbour genetic resistance determinants159. In addition, growing a colony can take time

(up  to  several  days  of  culturing).  Molecular  approaches,  including  PCR  and

metagenomics,  can  identify  known  and  predict  alternative  genetic  resistance

determinants without relying on culturing the microbes.

1.5.2  PCR-based methods

PCR amplifies a target DNA sequence using a pair of oligonucleotide primers that are

both  complementary  to  each  end  of  the  sequence.  Thermostable  DNA polymerase

extends  the  oligonucleotides  towards  each  other  in  a  three-step  reaction  cycle  of

denaturing, primer annealing and polymerisation. The use of PCR and sequencing has

been used extensively to monitor the spread of ESBL-producing Enterobacteriaceae160–

162. PCR has also been able to uncover HGT mechanisms of ARG transfer. For example,

class 1 integrons and Salmonella genomic island 1 in carrier  Salmonella species were

detected using PCR in Salmonella species that were previously non-carriers163. Although

PCR is highly sensitive,  it  can only detect specific ARGs that have been previously

identified  and  ignores  homologous  sequences  that  could  also  contribute  to  similar

resistance  phenotypes.  To  alleviate  this  bias,  a  less  targeted  approach  is  needed  to

profile all  known and unknown ARGs, i.e.  the resistome. Metagenomics sequencing

provides a non-culture-based solution to profiling the resistome.
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1.5.3  Metagenomics

Metagenomics is the study of DNA from all organisms present in a samples or microbial

community, referred to as metagenomes. For the last decade, metagenomic sequencing

has been more commonly used to study microbial ecology in humans, animals, plants,

food and the environment. More recently, metagenomics is being applied to profile the

resistome in microbial communities. There are several types of metagenomics that have

been instrumental in the understanding of the microbiome and its interactions: targeted

amplicon,  whole  and  functional  metagenomics.  The  first  step  for  all  methods  is  to

extract the DNA from the sample. Metagenomic DNA extraction will be described first

followed by the types of metagenomic methods and how they have been applied to

profile the resistome.

1.5.3.1 Metagenomic DNA extraction

Before the DNA is extracted, samples may be frozen to keep them viable. It is important

to record the length of time between sample collection and freezing, and the number of

freeze-thaw  cycles,  as  these  factors  could  affect  the  diversity  of  genomes

recovered164,165.  One key objective for DNA extraction is to minimise contamination,

which  could  profoundly  impact  findings  from  which  microorganisms  are  scarce19.

During extraction, microbes have to be lysed to isolate the DNA, which involves either

mechanical lysis, such as bead beating, chemical lysis or a combination of both. Again,

the choice of extraction protocol can significantly alter the metagenomic composition of

the  microbial  community166.  Most  metagenomic  DNA  extraction  protocols  have

focussed on isolating bacterial  DNA167.  However,  any microbial  niche consists  of  a
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melting pot of DNA from viruses, eukaryotes, protists and archaea. Extraction protocols

that  are  optimised  for  bacterial  DNA can  also  easily  isolate  viral  DNA as  well165.

However, some kits have been less successful at obtaining fungal DNA168. Fungi have a

complex  cell  wall  structure  that  includes  chitin,  β-glucans  and  sometimes  other

structural components, such as melanin. This makes the fungal cell wall more robust

and  therefore  more  difficult  to  lyse  than  bacterial  cell  walls  and  viral  particulates.

Ultimately,  fungal  DNA has  been  estimated  to  make  up  ~0.1% of  the  human  gut

microbiome4.  As  well  as  being  a  likely  underestimate,  this  also  undermines  its

contribution to the microbiota, given its large cell size and unique eukaryotic metabolic

capabilities. Mechanical bead beating extraction protocols usually have more success

than chemical approaches to lysing fungal cells168.  However,  this  can result  in more

shearing of DNA and shortened fragments, leading to loss of DNA when fragments are

selected by size during library preparation for sequencing. 

1.5.3.2 Targeted amplicon metagenomics

Targeted amplicon metagenomics target a ubiquitous DNA sequence, most typically a

DNA region containing 16S ribosomal RNA (rRNA) genes for sequencing bacteria and

archaea or the 18S/internal transcribed spacer (ITS) rRNA gene for sequencing fungi.

This approach means only different types of microorganisms can be identified and also

mitigates sequencing genomes of other contaminants, such as human DNA. DNA is first

extracted from the sample,  then PCR is performed to amplify one or more selected

variable regions of the rRNA gene. The 16S rRNA gene contains nine, short variable

regions  (V1 – V9) that  are  part  of  the secondary  structurevi of  the  small  ribosomal

vi The secondary structure is the interaction between base pairs of a nucleic acid molecule or between 
two nucleic acid molecules



68

subunit  interspersed  with  conserved  regions  critical  for  core  functionality169.  These

highly  conserved  sequences  can  be  used  as  sites  where  universal  primers  can  be

designed for PCR amplification.  More conserved regions are shared between higher

level taxa, while less conserved regions are common to lower level taxa, such as genus

and species170. Many studies using short-read sequencing technologies (Section 1.5.4.1)

rely on sequencing smaller parts of the variable regions, meaning it can be challenging

to  fully  characterise  complex  bacterial  communities  down  to  species  level171.  It  is

possible  to  sequence  the  entire  region  with  short-read  sequencing.  However,  this

becomes more expensive and less high throughput172. Like 16S rRNA for prokaryotes,

18S  rRNA  provides  the  secondary  structure  of  the  small  ribosomal  subunit  of

eukaryotes  and  also  contains  both  variable  and  conserved  regions  for  taxonomic

classification  and  specific  primer  amplification,  respectively.  The  ITS  is  the  spacer

region between the small-subunit rRNA and the large-subunit rRNA genes. Part of its

sequence is universal for fungi making it ideal for acting as barcode to amplify fungi

specifically173. Again, the ITS1 and ITS2 subregions of the ITS are commonly used in

short-read sequencing technologies as they are smaller and the most universal for fungi.

As  18S  variable  regions  tend  to  be  more  specific  to  taxa  than  ITS  regions,  ITS

sequencing is usually applied to study fungal diversity, whereas 18S rRNA sequencing

is preferred for higher resolution taxonomic studies of fungi174.  It is also possible to

target  the  full  16S/18S/ITS region for  greater  taxonomic  resolution  using  long-read

sequencing (Section 1.5.4.2),  which is  becoming cheaper to  do175.  Given the remote

locations of many ARGs and MGEs relative to rRNA genes, amplified fragments of

16S/18S/ITS regions from amplicon metagenomics would not include the vast majority
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of ARGs and MGEs. However, a software tool, called PICRUSt, can predict functional

gene composition using reference sequences, including ARGs, from 16S rRNA data176. 

1.5.3.3 Whole metagenomic sequencing

In whole metagenomics (also known as shotgun metagenomics), all DNA is extracted

from a  sample,  as  with  targeted  amplicon  sequencing.  However,  after  the  DNA is

extracted and before sequencing, it  is  fragmented randomly into a DNA library and

these  fragments  are  ligated  with  adapters  that  are  recognisable  by  the  sequencing

platform (Section 1.5.4). In principle, whole metagenomic sequencing allows genomes

to  be  resolved  at  lower  level  taxa  (such  as  species  and  strain)  than  amplicon

metagenomics.  This  is  because  taxonomic  profiling  is  limited  to  the  specificity  of

16S/18S/ITS  regions  in  targeted  metagenomics,  whereas  whole  metagenomic

sequencing can include strain-level variability from other sequences. As a result, whole

metagenomics can profile multiple domains, including bacterial,  archaeal,  eukaryotic

and viral sequences, together. This means bacteriophages, which are a type of MGE, can

also  be  sequenced.  However,  the  accuracy  of  taxonomic  composition  is  heavily

dependent on the sequence read depthvii 177. Targeted amplicon metagenomic sequencing

is more accurate at profiling taxonomic composition and abundance based on previously

catalogued operational  taxonomic units  (OTUs)viii 178.  The major  advantage of  using

whole over targeted amplicon metagenomics  is  that it  can profile  the resistome and

mobilome  (or  indeed  any  gene  profile)  without  relying  on  outdated  or  incomplete

information from reference strain genomes.

vii The read depth (also known as coverage depth) is the number of unique reads that contain a particular 
nucleotide of the represented sequence. (Included in Glossary)

viii OTUs are a cluster of similar sequence variants of 16S/18S/ITS marker gene sequences, where each 
cluster represents a taxonomic unit of a genus or species
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1.5.3.4 Functional metagenomics

Instead of  applying bioinformatic  predictions,  functional  metagenomics  is  a culture-

based approach that  aims to  define the gene function,  including the mechanisms of

novel resistance genes179, based on phenotypic expression. Microbial DNA is extracted,

fragmented and inserted into a plasmid library. The plasmids are then introduced into a

culturable host microbe, such as a  E. coli, to create a metagenomic DNA library. An

environmental stressor, such as an antibiotic, is applied to this library. Those isolates

that survive, or produce another phenotypically positive response, are then sequenced to

identify potential  genetic determinants of that response. The plasmids of strains that

survive are sequenced, which enables both known and completely novel ARGs to be

discovered. In fact, a study found 79% of newly discovered ARGs in their functional

metagenomic libraries were not previously classified as ARGs in databases180. There are

flaws  to  this  technique,  however.  Depending on the  fragment  size  and locations  of

genetic resistance determinants, an ARG may be truncated or multiple ARGs coding for

multiple  regulatory  elements  and  promoters  could  be  omitted  in  a  plasmid181.  In

addition, an ARG that may be expressed in one organism may not have a discernible

phenotype in the surrogate host or is not expressible under in vitro growth conditions182.

1.5.4 Sequencing technologies

Sequencing is the process of determining the arrangement of nucleotides in DNA or

RNA.  Sanger  sequencing  in  1977  became  one  of  the  first  and  most  successful

commercially  viable  DNA sequencing  techniques.  Sanger  sequencing  exploits  the
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function  of  DNA  polymerase to  incorporate  chain-terminating  dideoxynucleotides

(ddNTPs) during DNA replication in vitro183. The ddNTPs are labelled with radioisotope

or fluorescent dye. Each radiolabelled ddNTP (ddATP, ddCTP, ddGTP and ddTTP) is

separated into four lanes of a gel, or if using fluorescent dye different wavelengths are

used for each type of ddNTP. When one of these ddNTPs form a phosphodiester bond

with a nucleotide from the original sequence, it  prevents the DNA polymerase from

extending the DNA. If using fluorescent dyes, the fluorescence is then captured by a

detector in computer automated instruments based on capillary electrophoresis. If using

radiolabelling,  once  DNA  synthesis  is  complete,  dark  bands  produced  by  the

radioisotopes on photographic film reveal the order of the nucleotide sequence.  The

resulting DNA fragments after DNA sequencing are heat denatured and separated by

size using electrophoresis. Largely driven by efforts to sequence the human genome in

the  Human  Genome  Project,  next-generation  sequencing  (NGS)  superseded  Sanger

sequencing  for  large-scale,  automated  sequencing  projects,  and  became  more

commercially  available  from  the  mid  2000s184.  However,  Sanger  sequencing  still

remains in use today for accurate sequencing of smaller DNA molecules. Also known as

short-read sequencing, NGS is based on sequencing spatially separated fragments (or

reads) of DNA molecules in parallel. The next breakthrough came by the end of the ‘00s

by third-generation sequencing, which allowed longer reads to be sequenced185. High-

throughput  sequencing  technologies  made  it  easier  and  faster  for  more  DNA to  be

sequenced,  meaning  metagenomes  could  be  sequenced  by  short-read  and  long-read

sequencing technologies. However, the quality of the metagenomic data can depend on

the  type  of  technologies  used.  In  the  following  sections,  short-read  and  long-read
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sequencing technologies are  evaluated for their  merits  and challenges in sequencing

metagenomes for their resistomes.

1.5.4.1 Short-read sequencing

The current “gold-standard” sequencing technology is short-read Illumina sequencing,

which is  commonly used both for its  affordability as well  as its  high accuracy.  For

example, the latest NovaSeq 6000 System has a 0.1% error rate in base calling (the

process of assigning nucleotide bases from signals). DNA fragments are attached on one

end  to  a  flow  cell  and  are  amplified  into  clusters  of  the  same  fragments.  After

amplification, the fragments are read using sequence by synthesis. Four nucleotides (A,

C, G and T), that are modified with a reversible fluorescent blocker, are washed over the

surface of the flow cell separately. A nucleotide that complements a nucleotide of the

fragment is added and the corresponding fluorescent dye is recorded. The fluorescent

blocker  only  allows  the  DNA polymerase  to  add one  nucleotide  at  a  time.  Once  a

recording  is  made,  the  fluorescent  blockers  are  then  removed  from  the  newly

synthesised nucleotides to allow the next cycle of extension. During sequencing, the

recorded images are processed into much smaller text files of nucleotide characters,

which can be interpreted and analysed by bioinformatics software. 

Illumina  sequencing  can  be  conducted  with  single-read  or  paired-end  sequencing.

Single-read  sequencing  involves  sequencing  fragments  from only  one  end,  whereas

paired-end sequencing allows sequencing of both ends of the fragments.
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Another  alternative  short-read  sequencing  technology  is  Ion  Torrent,  which  is

sometimes preferred for its  affordability but compromises on accuracy186.  Instead of

using a solid surface or fluorescent imaging, Ion Torrent uses emulsion PCR to amplify

fragments on micro-sized diameter beads. Natural nucleotides are applied in a similar

step-wise process to Illumina’s cycle, but instead change the pH of the solution which

are detected by electronic sensors. 

1.5.4.2 Long-read sequencing

Alternative  long-read  sequencing  technologies  are  available  for  metagenomic

sequencing.  Pacific  Biosciences  (PacBio)  technologies  use  single-molecule real-time

(SMRT)  sequencing  and  can  sequence  much  longer  strands  of  between  10-60  kb

compared to Illumina machines with a typical read length of up to 250 bp187.  DNA

polymerase molecules are attached to the bottom of 50 nm-wide wells called zero-mode

waveguides (ZMWs)188. There are typically tens of thousands of ZMWs on a SMRT

Cell. Each ZMW is illuminated from below, but the wavelength is too large for it to

efficiently pass through and instead attenuated light penetrates the lower part of each

ZMW. A DNA polymerase performs DNA synthesis on the stand that is immobilised to

the bottom of the ZMW, where it is exposed to the light. Modified nucleotides enter the

chamber. A fluorescent dye is attached to the phosphate chain of each nucleotide having

four different colours depending on the nucleotide (A, C, G or T). When a nucleotide is

added to the DNA at the bottom of the ZMW during DNA synthesis, a light pulse is

produced of a particular wavelength depending on the fluorescent dye, and is detected.

Once the nucleotide is incorporated, the phosphate chain is cleaved, and the fluorescent

dye is released. This process repeats across these ZMWs in parallel. The longer read
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lengths  allows  researchers  to  assemble  more  complete  genomes  de  novo  (Section

1.6.4.1)187. However, PacBio technologies are more costly than short-read sequencing.

Extracted  DNA libraries  are  not  amplified  so  PacBio  requires  a  greater  amount  of

extracted DNA. Thus, metagenomic DNA needs to be pooled together from multiple

samples189. This is far more challenging for metagenomic samples with lower levels of

microbial DNA, such as saliva.

Alternatively,  Oxford  Nanopore  technology  can  routinely  sequence  fragments  of

hundreds  kb  long.  It  is  generally  more  affordable  than  both  short-read  and  PacBio

technologies,  but  has  a  higher  nucleotide  error  rate190.  Unlike  other  sequencing

platforms, Nanopore technology monitors changes to the electrical current as nucleic

acids  are  passed  through  arrays  of  protein  nanopores.  Like  PacBio,  DNA does  not

require amplification, eliminating PCR bias, and sequencing data can be streamed in

real  time.  Due  to  the  length  of  its  reads,  as  well  as  its  speed,  affordability  and

portability, Nanopore technology is having ground-breaking success in large-scale WGS

of organisms and pathogens anywhere. For example, it has been applied clinically as a

real-time diagnostic  tool for AMR pathogens from bloodstream infections191 and the

surveillance of the Ebola virus192. Like PacBio, long read lengths allow for longer  de

novo genome assemblies that are able to resolve repeated regions of sequences (Section

1.6.4.1). However, in order to achieve a higher accuracy, more reads are required from a

single organism to provide enough read depth to overcome the error rate190. This can be

achieved  by  using  amplification  or  DNA  concentration  techniques  inspired  from

Illumina  sequencing  that  can  be  integrated  into  the  Nanopore  workflow  before

sequencing190.  Accuracy can also  be improved by sequencing 2D reads,  where  both
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strands  of  the  template  strand and its  complement  strand are  sequenced,  instead  of

sequencing 1D reads, where only the template strand is sequenced. However, different

protocols can influence the yield dramatically and should be optimised depending on the

sample or desired outcome. Although flow cells can be reused to increase throughput

with the aim of increasing yield, they are prone to degradation following washing and

carryover of DNA from previous runs, which can actually reduce yield and accuracy of

coverage depth.  In  order  to  profile  resistomes from complex metagenomic  samples,

such as faecal samples, DNA amplification or DNA concentration techniques are still

required to detect ARGs prior to sequencing193. Generally, resistome studies have relied

on  metagenomic  data  generated  from  short-read  technologies.  However,  long-read

technologies are increasingly useful for linking ARGs with MGEs and their host species

(discussed in Section 1.7.2).

1.5.4.3 Computational processing

After sequencing, reads are recorded in text files that are then processed for further

analysis. Firstly, any sequences of adapters that were added in the library preparation

are removed and sequences trimmed. Reads are then quality controlled using automated

software to measure metrics like base quality, GC content, sequence length distribution

and  adapter  content194.  In  the  context  of  metagenomics  of  microbial  communities,

human  DNA contamination  is  removed  using  mapping  software195.  From hereafter,

bioinformatics tools are applied to profile the resistome from whole metagenomes.
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1.5.5 Bioinformatic methods of profiling the resistome

Bioinformatic  software  tools  can  be  applied  to  identify  genes  including  genetic

determinants of AMR, such as ARGs, from files of whole metagenomic reads. There are

two approaches to identifying ARGs from metagenomic data: finding known ARGs that

have been previously recorded in reference databases or predicting new ARGs de novo.

Identifying known ARGs may be most relevant for studies that are interested in ARGs

known  to  cause  phenotypic  resistance  relevant  in  clinic  outcomes.  In  other  cases,

making predictions of candidate ARGs from whole metagenomes may be preferred over

finding known ARGs from reference catalogues. For instance, predicting what ARGs

may  be  missing  from reference  databases  may  need  to  be  validated  using  targeted

laboratory approaches, like PCR196.

1.5.5.1 Reference-based detection

To identify known ARGs, reads are mapped to ARG reference databases such as the

Comprehensive  Antibiotic  Resistance  Database  (CARD)197,  ResFinder198,  ARG-

ANNOT199 and  MEGAres200,  or  general  databases  that  contain  ARGs  like  NCBI201.

Reads can be mapped using an alignment-based algorithm, commonly Bowtie2195 or

BWA (Burrow-Wheeler  Alignment)202,  or  using  a  k-merix counting-based  algorithm,

such as KMA203, which matches the coverage of k-mer frequencies between query and

reference sequences.  k-mer-based mapping is more precise at distinguishing between

ARGs from databases that contain ARGs with sequence similarity and redundancy, as it

finds exact matches between sequences203. However, alignment-based algorithms have

the advantage of being able to estimate the absolute abundance of an ARG in a sample

ix A k-mer is a small sequence of length k. (Included in Glossary)
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based on the raw number of reads that are aligned, which can be applied to calculating

the difference in abundances between samples204.  Instead, the  k-mer-based alignment

algorithm KMA calculates the total number of k-mers mapped to each nucleotide of an

ARG divided by the number of base pairs of that ARG, which is a less accurate estimate

for ARG abundance.

Alternatively, metagenomic reads may be assembled into longer contiguous sequences

using assembly tools like metaSPAdes205 or MEGAHIT206 before ARG identification.

This  allows other  referenced-based methods to  be used which rely on longer  query

sequences. BLAST207 and DIAMOND208 are very commonly used alignment tools for

this purpose. Hidden Markov Models (HMMs)209 are probabilistic models of multiple

sequence alignments of proteins and are commonly used to detect remote homologies

between  protein  sequences.  Searches  of  HMMs are  sometimes  used  for  identifying

proteins that have structural or functional similarities that are difficult to detect from

sequencing alignment  alone.  Before  using HMMs, the nucleotide  sequence  must  be

translated into amino acid sequences using tools like Prodigal210. Unlike mapping reads,

it is not possible to quantify the abundance of ARGs from assemblies, as a metagenomic

assembly algorithm will aim to generate a single representation for each genome that

are distinct from each other.  However,  longer  assemblies allows annotation of other

genetic elements surrounding ARGs to inform its genetic context, for example, whether

an ARG is part of an MGE (Section 1.7.2).

One major challenge with using reference databases is that they are incomplete. This is

particularly  pertinent  for  antifungal  resistance  genes,  more  so  than  for  antibacterial
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resistance  genes.  Although  the  most  serious  fungal  infections  tend  to  be  more

opportunistic, occurring when the human immune system is compromised, research into

fungal infections has lagged behind bacterial infections211,212.  Consequently, there has

been a bias towards characterising and curating antibacterial over antifungal resistance

genes in microbial  ecology. Although there are  a plethora of antibacterial  resistance

gene databases available, only one exists for antifungal resistant genes. MARDy is an

antifungal  resistance  database  that  consists  of  36  genes  with  232  amino  acid

substitutions  causes  by nonsynonymous polymorphismsx 213.  However,  as  mentioned

above, many fungal sequences tend to be underrepresented in whole metagenomes that

have been isolated using extraction kits attuned to isolating bacterial and viral DNA,

meaning  antifungal  resistance  genes  are  difficult  to  identify  from  whole

metagenomes168. Given the lack of curated antifungal resistance gene databases, there is

a  motivation  to  characterise  antifungal  resistance  genes  by  sequencing  genomes  of

phenotypically resistant strains from culture214. 

1.5.5.2 De novo discovery

It is possible that ARGs in microbiomes, particularly in unculturable microbes, have

distant homologies to known ARGs in some databases, like CARD. One study used a

three-dimensional  (3D)  structure-based  method  to  predict  over  6,000  genetic  AMR

determinants in the intestinal microbiome196. The authors developed 3D structures of

known ARPs and used homology comparative modelling of the structures to predict

related  ARPs.  They  then  attempted  to  validate  their  predictions  using  pairwise

x Nucleotide substitutions in genes that lead to a change in amino acid



79

comparative modelling. This is based on the concept that their active sitesxi would be

more  conserved  between  proteins  that  are  functionally  similar.  Although  they  were

related by their 3D structure, these ARPs were not closely related to known ARPs by

their amino acid identity. Although they could not validate whether these ARPs were

functional in vivo, this allowed them to hypothesise the existence of unknown ARGs.

1.5.6  Future trends

There has been a paradigm shift towards using short-read and long-read sequencing for:

1) detecting the presence of genetic AMR determinants, like ARGs; 2) monitoring how

resistant pathogens spread; and 3) how these strains evolve, which is beginning to be

translated  from single  isolates  to  metagenomes.  Although WGS of  cultured  isolates

remain  the  gold-standard  for  characterising  novel,  putative  genetic  resistance

determinants,  metagenomic  approaches  are  beginning to  predict  ARGs with  notable

accuracy.  For  example,  a  recent  study  used  a  Nanopore  MinION  to  sequence

metagenomes to determine genetic determinants of resistance and susceptibility of the

resident  pathogen  Streptococcus  pneumoniae  using  genomic  neighbour  typing (a

computational method to predict the phenotype of a pathogen by their closest relatives

using k-mer content of reads)215. 

Metatranscriptomics  is  an  alternative  method  of  predicting  the  phenotype  based  on

measuring the ARG expression216. Instead of sequencing DNA, mRNA transcripts that

are  generated  from  DNA  transcription  of  the  cell  are  sequenced  from  whole

xi An active site of an ARP is the region which binds to the substrate as part of a 
chemical reaction that leads to an AMR phenotype.
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metagenomes  without  relying  on  culture-based  methods.  However,  the  expression

profiles only give a  snapshot of the current  phenotypic state.  Many ARGs are only

expressed  or  increase  in  expression  under  certain  conditions,  notably  while  being

exposed  to  their  target  antimicrobial.  Also  the  phenotype  may  be  altered  by  post-

translational modifications. Some ARGs that are acquired may not be expressed at all as

they confer a loss of fitness to the host, such as having to synthesise a novel protein

under a less effective metabolic pathway151.

Molecular  approaches,  like  metagenomics,  cannot  supersede  phenotypic  testing  to

measure the susceptibility of pathogens to antimicrobials. Nevertheless, with rapidly

developing  sequencing  technologies  and  computational  capabilities,  whole

metagenomics  is  a  promising  avenue  for  predicting  potential  ARGs,  which  can  be

verified  with  functional  metagenomics179.  In  addition,  more  genomic  datasets  are

becoming publicly available. These datasets are accessible for researchers on limited

budgets to undertake data-driven work to generate novel, but plausible, hypotheses that

can persuade funders to invest in validation studies with tangible results. 

1.6 Profiling the mobilome

Text,  tables  and  figures  have  been  copied  directly  from  “Probing  the  mobilome:

Discoveries  in  the  dynamic  microbiome”,  Carr  et  al.,  2020217.  Section,  figure  and

citation numbering have been modified and abbreviations included to agree with thesis

format.  To  conform  with  the  structure  of  this  thesis,  the  section  titled  “Mobilome

composition”, “Box 1” and “Outstanding Questions”, have been removed as they are
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covered in Section 1.3. Technical terminology is defined in the footnotes and Glossary.

The references for this paper are included in the full reference list of this thesis. The

published paper is available online: https://doi.org/10.1016/j.tim.2020.05.003

1.6.1  Abstract

There  has  been an  explosion  of  metagenomic  data  representing  human,  animal  and

environmental  microbiomes.  This  provides  an  unprecedented  opportunity  for

comparative and longitudinal studies of many functional aspects of the microbiome that

go beyond taxonomic classification,  such as profiling genetic determinants of AMR,

interactions with the host, potentially clinically relevant functions and the role of MGEs.

One of the most important but least studied of these aspects are the MGEs, collectively

referred to as the mobilome. Here we elaborate on the benefits and limitations of using

different  metagenomic  protocols,  discuss  the  relative  merits  of  various  sequencing

technologies, and highlight relevant bioinformatics tools and pipelines to predict  the

presence of MGEs and their microbial hosts.

1.6.2  Introduction

The  shift  to  high-throughput  sequencing  technologies  in  microbial  genomics  has

radically changed our understanding of microbial communities in different habitats. The

appreciation of the complexity of these communities is now undergoing a further shift

as  more  publicly  available  microbiome  datasets  based  on  shotgun  metagenomic

sequencing are becoming available. As well as establishing the taxonomy and relative

abundance of microbial populations, these datasets are allowing individual genes and

https://doi.org/10.1016/j.tim.2020.05.003
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their  variants  to  be  characterised,  including  ARGs.  MGEs  are  critical  to  our

understanding of how genes (and their  associate functions) move via HGT within a

community218.  These  elements  can  have  a  lasting  impact  on  the  composition  of

microbial communities, affecting their diversity and density, as well as their interaction

with the environment219. The profile of these MGEs (mobilome) is thus likely to be a

key  player  in  influencing  selection  pressure-driven  changes  in  the  composition  of

microbial communities and their impact on the host organism or tissue. MGEs are also

responsible  for  the  movement  of  genetic  AMR  determinants  and  virulence  factors

between microbes181. For example, the use of antimicrobials can increase the prevalence

of  MGEs  carrying  functioning  ARGs  that  are  integrated  in  microbial  genomes220.

Profiling the mobilome and its associated ARGs can provide insights into how ARGs

move across multiple genomes within the microbiome. To characterise the mobilome in

a microbial community, all MGEs sequences need to be identified from metagenomic

data and ideally would be assigned to a microbial host. Although detecting MGEs from

single  isolates  using  WGS  is  a  common  approach  that  is  significantly  more

straightforward,  metagenomic  sequencing  is  increasingly  being  used  to  detect  and

classify multiple MGEs from microbial communities. 

1.6.3 Targeted metagenomic approaches and challenges in 

extracting MGEs

Despite having to overcome significant hurdles, metagenomic sequencing of microbial

samples is increasingly being used to identify novel MGEs. Both targeted and whole

metagenomic methods are now being used to identify and discover novel as well as
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known MGEs  (Fig. 1.5.). In contrast to whole metagenomic methods where all DNA

extracts are sequenced, targeted metagenomics include a step that specifically selects a

type of MGE prior to sequencing.

Figure 1.5. Targeted and whole metagenomic technologies for extracting MGEs.

Targeted  metagenomic  methods  currently  include  purifying  MGEs  prior  to  shotgun

sequencing.  For  example,  free  phage  particles,  along  with  other  virus-like  particles

(VLPs),  are  purified in  several  stages  of  physical  and/or  enzymatic  treatments221–223.

Nucleic acids extracted from VLPs are then sequenced and assembled into contiguous

sequences  for  further  annotation223–225.  Circular  plasmids  are  isolated  using  high-

throughput  transposon-aided  capture  (TRACA)  from metagenomic  DNA,  which  are

then typically  transformed into  Escherichia coli for  cloning226,  followed by shotgun

sequencing and PCR-based approaches to close gaps in sequences227. However, these
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targeted approaches may misjudge the potential MGE load. Inefficiencies in the elution

of VLPs from faecal samples have been shown to result in an underestimation of the

viral load, and inconsistencies between protocols have led to discrepancies in results

between studies222. Size-fractionation is an alternative technique involving enrichment

of  extracted  DNA for  novel  viral  particles  by  filtering  the  samples  through  a  size

exclusion membrane that has been applied to the cow rumen virome228. Of 148 viral

genera  enriched  from  the  cow  rumen,  75%  had  no  counterpart  in  existing  viral

databases, highlighting the power of this technique to recover phages.

For plasmids,  TRACA enriches metagenomic DNA for circular plasmids by using a

DNAse that selectively removes linear DNA. Plasmids are subsequently “captured” by

inserting a transposon (in an in vitro transposition reaction) with an origin of replication

and  selection  marker  before  transforming  them  into  typically  Escherichia  coli  for

cloning226. This is followed by shotgun sequencing, with additional PCR to close gaps in

sequences227. However, TRACA has a bias towards capturing smaller plasmids between

3-10 kb, excludes linearised plasmids, and potentially inactivates plasmid genes as a

result  of  transposon  insertion229.  Alternatively,  inverse-PCR  together  with  multiple

displacement  amplification  (another  DNA  amplification  technique)  has  also  been

applied to identify small circular plasmids in metagenomic samples230. 

Finally,  a  targeted  metagenomic  approach  using  PCR amplification  can  be  used  to

identify transposable elements by targeting the repeat regions231. Metagenomic DNA is

amplified by PCR primers  targeting transposable elements,  purified and ligated into
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plasmid vectors, then transformed into host strains. After clonal expansion, the plasmids

are isolated, sequenced and annotated for transposable elements.

Targeted metagenomic approaches are highly specific and therefore useful for extracting

MGEs with distinct features, such as sequence composition. Given non-targeted MGEs

would be excluded,  these approaches would not be suitable  for determining a more

complete  representation  of  MGEs  within  the  whole  metagenome.  However,  recent

advances  in  sequencing technology and data  storage  mean that  whole metagenomic

DNA sequencing is  now a viable  option for investigating the wider pool  of MGEs,

giving us a better representative picture of the mobilome232–235. 

1.6.4 Whole metagenomics

Whole metagenomic DNA sequencing has great potential for both identifying known

and unknown MGEs and also for predicting the MGE hosts. However, there are several

limiting factors, specifically with current NGS technologies and bioinformatic software

tools, that need to be considered. 

1.6.4.1 Challenges in sequencing technologies

The current gold-standard for metagenome sequencing is using short-read sequencing

methodologies,  specifically  Illumina  and  Ion  Torrent  technologies.  Since  short-read

metagenomic sequencing produces reads that are too short to allow the identification of

plasmids,  phages  and  transposable  elements,  many  bioinformatic  pipelines  involve

assembling  the  metagenomic  reads  into  longer  contiguous  sequences  called  contigs.
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However,  assembling  metagenomes  is  computationally  intensive,  and  the  choice  of

assembly  tool  has  a  significant  impact  on  the  accuracy  of  identifying  MGEs236–238.

Dealing with the microbial complexity of a metagenome with limited read depth and

repeated regions is a challenge for current assembly algorithms. These tools are prone to

generate  erroneous  inter-species  chimeric  contigs  when  processing  complex

metagenomic  sequence  datasets.  Thus,  plasmid  and  transposon  contigs  are  often

inaccurate  or  incomplete.  Different  plasmids  often  contain  similar  replication  and

conjugative elements102,  whilst transposable elements contain repeated regions239. For

phages, assembly of short reads has further challenges including a high incidence of

repeat  regions  and/or  hypervariable  regions240,  genetic  diversity241,  frequent  modular

structures242,  and heterogeneity at strain level240,243.  To circumvent these issues, many

metagenomic assemblers attempt to produce shorter, less complete but more accurate

contigs  rather  than  longer,  inaccurate  ones.  A  direct  consequence  of  this  is  that

metagenomic contigs are often too short to accurately predict large MGEs.

Long-read  sequencing  technologies  (such as  Oxford  Nanopore  and PacBio’s  SMRT

sequencing), produce longer sequence reads, meaning it is possible to more accurately

assemble much longer scaffolds and even complete genomes. Nanopore technology, for

example,  has  been  used  to  successfully  recapitulate  complete  viral  genomes  from

metagenomes244,245.  However,  the  sequences  generated  contain  more  erroneous bases

than  short-read  technology  sequences  due  to  technical  defects  in  base  calling190,246.

PacBio  has  a  higher  accuracy  rate  in  single-nucleotide  and  structural  variants,  but

produces shorter reads than Nanopore and is more costly187,247. In addition, the limits in

coverage depth from a run on a single Nanopore flowcell is a bottleneck for identifying
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lower abundant MGEs in metagenomes with high microbial diversity190. However, it is

possible to improve and even complete the assembly of MGEs from complex whole

metagenomes  using  an  ensemble  of  short-read  and  long-read  sequencing

technologies248.

1.6.4.2 Bioinformatic methods in MGE sequence annotation

When analysing microbiome composition, isolation and sequencing of DNA forms only

part of the story – the subsequent computational analysis is every bit as important. This

is also the case when mining sequencing data for MGEs and other genetic elements.

Although  advances  in  technology  have  markedly  improved  the  accuracy  of  whole

metagenomic sequencing, accurate and efficient bioinformatics software is required to

resolve MGEs from a complex pool of fragmented microbial genomes.

Typically, genomic sequence features are identified broadly either by reference-based or

de novo methods, or a combination of both. Reference-based methods generally use

alignment  algorithms,  such  as  BLAST207,  to  align  query  nucleotide  or  amino  acid

assemblies  against  a  reference database or  search tools  against  probability  sequence

models,  such  as  HMMER  for  HMMs249.  Non-MGE-specific  nucleotide  sequence

databases,  such  as  RefSeq250,  and  protein  sequence  databases,  like  Pfam251 and

UniProt252, have been applied to detect HGT events in metagenomes253,254. Virus-specific

sequence databases have more recently been established, such as the Prokaryotic Virus

Orthologous Groups (pVOGs)255, curated viral databases from RefSeq, PATRIC256 and

IMG/VR257.  Databases  suited  for  searching  transposable  elements  in  metagenomic

assemblies  include  ISfinder  for  insertion  sequences258,  and  ICEberg  for  ICEs  and
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IMEs259.  PlasmidFinder  is  a  popular  database  for  identifying  plasmids  that  contains

plasmid replicon sequences from Enterobacteriaceae and gram positive bacteria103. In

all  cases,  MGE-containing  databases  contain  a  very  narrow  representation  of  the

mobilome with incomplete  coverage of  element  types,  and do not reflect  the actual

MGE diversity. For instance, transposable elements are one of the most ubiquitous and

genetically diverse elements in the microbiome239,260, making cataloguing all of them an

intractable task. Despite this obvious limitation, well-curated reference databases can be

useful for discovering novel MGEs as they are often used in benchmarking new de novo

bioinformatics tools261.

Despite their utility, MGE reference databases do not include all MGEs in existence.

Further, it is difficult to find novel MGEs that are dissimilar in sequence and structure to

known MGEs. Finding these novel MGEs requires the use of  de novo bioinformatics

methods and tools to make predictions based on sequence data. There is a plethora of

different algorithms used for discovering putative phages in assembled metagenomes,

such  as  VirSorter262,  VirFinder263,  MARVEL264,  VirMiner265 and  ViraMiner266 (Table

1.3).  Apart from VirSorter that uses primarily HMMs, all  these tools apply machine

learning to  identify viral-like domains.  A handful  of  tools  have  been developed for

identifying  plasmid  sequences  from  metagenomes,  including  cBar267,  PlasFlow238,

Recycler268 and metaplasmidSPAdes269 (Table 1.3).  Machine learning approaches are

also  used in  cBar  and PlasFlow to  predict  linear  and circular  plasmids.  Other  non-

machine  learning-based  tools,  Recycler  and  metaplasmidSPAdes,  identify  plasmids

using De Bruijn graph assembly of  k-mers. metaplasmidSPAdes also includes a naïve

Bayesian classifier on custom plasmid-specific profile-HMMs to improve its accuracy.
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For discovery of insertion sequences, only two de novo pipelines have been developed

using existing algorithms to identify direct repeats and palindromic inverted terminal

repeats (Table 1.3)270.

When designing and building bioinformatic tools, it is valuable to benchmark them for

specificity and sensitivity. For MGE identification tools applied to metagenomes, the

ideal dataset for benchmarking predictions would include labels of known MGEs within

real metagenomic sequences. Aside from VirMiner and metaplasmidSPAdes, these tools

have  not  been  benchmarked  using  representative  metagenomes.  Since  these  ground

truth  datasets  are  difficult  to  obtain,  many  of  these  tools  were  benchmarked  using

simulated metagenomic sequences generated from a representative set of genomes from

the most abundant species of a microbial community. Therefore, it is likely that when

these tools are applied to complex whole metagenomic samples, they would not perform

as well as their stated accuracy would suggest.



Table 1.3. Published tools for de novo MGE discovery intended for whole metagenomes.

MGE Tool Authors and Year Data Type Search algorithm Advantages Disadvantages

Insertion 
sequence

Pipelines: Two 
de novo and one
profile HMM 
search

Kamoun et al., 
2013270

Raw fragments De novo “Repeat search”: RepeatScout 
algorithm 271

De novo “inverted repeat search”: palindrome 
software of the EMBOSS package272

Profile HMM: MUSCLE273 and HMMER2 
package209

De novo methods do not rely on incomplete ISfinder database
Profile HMM search performs significantly better than 
BLAST on simulated and real metagenomic datasets

Repeat search had high false positive rate
inverted repeat search has lower true positive rate
Repeat search and inverted repeat search not tested on 
metagenomic datasets

Bacteriophage MARVEL Amgarten et al., 
2018264

Raw fragments in 
metagenomic bins

Random forest machine learning Better sensitivity and similar specificity to VirSorter and 
VirFinder

No option in software to retrain on alternative training data
Only tests algorithm on simulated metagenomic bins
Does not consider prophages

VirSorter Roux et al., 2015262 Contigs Prediction of circular sequences274

Gene predicting using MetaGeneAnnotator275

HMMER3 for pHMMs and
BLASTP for unclustered proteins

Prediction of novel prophages from reference-independent 
prediction of viral domains 

Not tested on metagenomics of whole microbial 
communities, only viral metagenomes
Does not have complete prophage prediction, as optimised 
for assemblies of fragments

VirFinder Ren et al., 2017263 Raw fragments k-mer-based
Logistic regression model with lasso 
regularisation machine learning

Outperforms VirSorter
Do not need to assemble metagenomes before using tool

Model limited to learning from training data before 1st 
January 2014 so may not be appropriate for recently 
discovered viral sequences, and no option in software to 
retrain on alternative training data,
Only tests algorithm on simulated metagenomes
Need to filter out eukaryotic host sequences, as may mis-
classify as viral

VirMiner Zheng et al., 2019265 Raw fragments Random forest machine learning on phage 
contigs

Validates algorithm and compares with VirSorter and 
VirFinder using metagenomic data from human gut samples. 
Better sensitivity than and similar specificity to VirSorter and
VirFinder
Also extends the pipeline to include raw read processing and 
assembly, sequence and functional annotation of phage 
contigs, and phage-host prediction using CRISPR-spacer 
recognition, and two-group comparison (e.g. case and 
control)
User-friendly website

Does not have a command-line or API tool, making it 
difficult to analyse multiple metagenomes
No option in software to use alternative tools in pipeline or 
retrain random forest on alternative training data

ViraMiner Tampuu et al., 
2019266

Contigs Deep Learning using Convolutional Neural 
Networks

Model can be retrained on alternative data unlike MARVEL 
or VirFinder

Does not directly compare performance against other tools
The accuracy of the model on human metagenomic contigs is
likely to be an overestimate because reference-based 
alignment is used to benchmark these contigs that would 
likely contain false negatives

Plasmid Recycler Rozov et al., 2016268 Raw fragments Circular de Bruijn graphs with coverage filters Even though lack of metagenome benchmark, tool compares 
plasmid prediction from cow rumen metagenomic data276 
with plasmids extracted using PCR validation from a 
previous study230

Ignores linear plasmids, and those integrated in 
chromosomes
Performance metrics, i.e. precision and recall, only 
calculated from applying to a simulated plasmidome
Only 35% of plasmid predictions from metagenomes 
matched plasmids reported in PCR validation

Continues next page



cBar Zhou and Xu, 
2010267

Contigs Sequential minimal optimization-based model 
on pentamer frequencies

First tool that attempts to distinguish plasmids from 
chromosomal DNA from whole metagenomes

Achieves 88.29% accuracy with independent test setbut does 
not describe how the independent test set was generated
Does not attempt to bin plasmids

PlasFlow Krawczyk et al., 
2018238

Contigs Machine learning model trained using a deep 
neural network on genome signatures

Outperforms cBar on plasmidome data Compares PlasFlow to cBar, Recycler and PlasmidFinder on 
whole metagenomes, but could not evaluate performance 
Assemblies required to be longer than 1 kb

metaplasmidSP
Ades

Antipov et al., 
2019269

Raw fragments Circular assembly graphs with coverage filters.
Includes a verification tool, plasmidVerifty, 
which uses a naive Bayesian classifier on 
plasmid-specific profile-HMMs

plasmidVerify outperforms cBar and PlasFlow annotation of 
custom plasmid and non-plasmid sequences from RefSeq
Generally identifies more plasmids than Recycler using 
metagenomic data, mock data, multiple genomic isolates and 
plasmidome data

Ignores linear plasmids
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1.6.5 Technological challenges in host prediction of MGEs

Identifying the microbial  hosts  of different  MGEs will  be central  to  developing our

understanding of how MGEs shape microbial communities and  vice versa. However,

this is problematic for a variety of reasons, not least of which is our limited ability to

find the specific microbial origin of MGEs in metagenomic samples. As technologies

move forward, additional approaches such as wet-lab protocols and bioinformatics tools

are being applied with both short and long-read metagenomic sequencing to link MGEs

with their host microbe. 

1.6.5.1 Wet-lab technologies for microbial host prediction

Although associating genetic elements with individual organisms within a community

initially seems insurmountable, there are promising laboratory-based techniques that can

be  exploited.  Some  of  these  can  make  use  of  features  of  different  sequencing

technologies,  whilst  other  methods  require  pre-processing  of  samples  prior  to

sequencing. Binning reads into groups prior to computational assembly is probably the

simplest  of  these  techniques.  As  SMRT sequencing  can  be  applied  to  identify  the

methylation status of a nucleotide  (Fig. 1.6a), metagenomic reads can be binned into

species or subspecies based on methylation motifs277. SMRT sequencing can be applied

to identify  the  methylation  status  of  a  nucleotide  (Fig.  1.6a).  Sequences  are  then

clustered  into  groups based on the  similarity  of  multiple  methylation  motifs.  These

motifs are usually shared by both chromosomes and plasmids within a microbe but are

often unique to a microbial strain.  However, as microbial communities become more
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complex, the methylation motifs become less unique as it  becomes more likely that

more than one strain or species contains the same motif. 

An alternative approach is the use of proximity ligation methodologies, specifically Hi-

C (Fig. 1.6b)278. DNA molecules in close proximity in the genome’s three-dimensional

structure are covalently bonded together. Thus MGEs that are in close proximity to their

host genome are covalently bonded to the host genome. These connected sequences are

then digested around the bond and ligated to form a continuous strand with ligation

junctions. After this proximity ligation, the DNA is fragmented and sequenced as usual.

Sequence  information  regarding  these  ligation  junctions  is  used  in  downstream

computational analysis pipelines to  assign assembled metagenomic reads to their host

microbe species. Hi-C has been used alongside short-read metagenomic sequencing to

link plasmids to their hosts with strain-level resolution in synthetic metagenomes279 and

species-level  resolution  in  real  metagenomic  communities280,281.  However,  Hi-C  has

limited resolution capabilities for closely related organisms due to their high sequence

similarity and uneven Hi-C link densities282. Proximity ligation has also been used to

link phages to species from cattle rumen metagenomes283. Since proximity ligation relies

on the three-dimensional structure of the host genome only, phages that do not integrate

into the genome as prophages are largely undetected by this process. However, single-

cell viral tagging with short-read metagenomic sequencing is an alternative approach

specifically for predicting the hosts of both lytic and lysogenic phages284.
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Figure 1.6. Wet-lab protocols for microbial host identification of MGEs (applicable to plasmids and

prophages) using a) SMRT sequencing and b) Hi-C.

1.6.5.2 Bioinformatic methods in microbial host prediction

Metagenomic reads and contigs containing MGEs and host genomes can be binned into

groups using computational  as  well  as  wet-lab  methods,  allowing for  two levels  of

identification and discrimination. There are many different algorithms for metagenomic

binning,  including analysing  sequence  composition  features  and  coverage,  sequence

signature properties, k-mer frequencies and gene co-abundance across samples235,285–291.

However,  these  binning  algorithms,  particularly  gene  co-abundance,  can  be

computationally intensive. 

An approach that can link MGEs with their hosts relies on distinct MGE sequences also

found in microbial genomes292–294. When an MGE enters a bacterium, the bacterium uses

a  defence  mechanism  of  Clustered  Regularly  Interspaced  Palindromic  Repeats

(CRISPR). Fragments of the MGE sequence, known as spacers, are integrated between

CRISPR loci in the bacterial genome. These spacers are transcribed into small RNA
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molecules  and  processed  into  a  ribo-protein  complex  which  targets  and  destroys

invading genomes.  The hosts  of  these  MGEs can then be predicted by aligning the

predicted MGE contigs  against  a  reference  database  of  candidate  host  genomes

containing CRISPR spacers.  This method has been previously used to identify phage

and  plasmid  hosts  in  human  gut  metagenomes93,295.  However,  since  many  of  these

reference databases are incomplete, it may only be possible to assign a small proportion

of MGE contigs to a host292. 

1.6.6  Conclusions and further perspectives

In general, there is currently no single sequencing, wet-lab or bioinformatics technique

for  whole  metagenomes  that  can  efficiently  profile  the  entire  mobilome  and  its

microbial context. As we have shown here, employing a combination of approaches is

the best solution to classifying novel MGEs and assigning these and known MGEs to

their  host  microbes.  In order  to  resolve longer  MGEs such as plasmids and phages

whilst maintaining accuracy, the ideal approach is to use a combination of short-read

and long-read sequencing. Highly accurate short metagenomic reads can be assembled

and  scaffolded  against  more  complete  but  less  accurate  contiguous  sequences  from

long-read  sequencing.  Identifying  the  microbial  hosts  of  the  MGEs presents  further

problems. However, SMRT long-read sequencing used in combination with proximity

ligation on short-read sequencing is a complementary approach that can be applied to all

MGE types and will allow for association of these elements to host genomes with a

reasonably high degree of certainty. 
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Having generated these sequences, many different bioinformatic methods can be highly

effective at identifying and classifying MGEs in these sequences accurately, or binning

MGEs with host sequences  from the acquired metagenomic data.  The bioinformatic

tools  listed  are  not  evaluated  computationally  in  this  review,  but  cited  reviews  and

papers  have done so for tools  identifying phages and plasmids265,296.  Due to  a  rapid

software developments, it is likely some tools outlined here will already be superseded

by the time of publication, with one or a few tools that have been iterated and become

standard.  Popular approaches, such as machine learning, will still be important tools.

However, a tool that has a high accuracy on simulated metagenomes may not perform

well  on  real  metagenomes  and  could  be  computationally  expensive. Therefore,

researchers will need to critically evaluate which tool is most suitable for their particular

requirements. 

There is no single correct solution for characterising the mobilome. The performance of

bioinformatics  tools  for  de  novo discovery  is  limited  by  the  data  quality  which  is

dependent  on  the  sequencing  platform.  Current  sequencing  technologies  for  whole

metagenomes  fall  short  of  the  levels  required  for  a  truly  accurate  and  fully

representative analysis  of the mobilome. However,  there is  cause for optimism. The

recent  development  of  new  methodologies,  such  as  proximity  ligation  and  SMRT

sequencing technologies,  means that we are rapidly evolving our ability to not only

identify potential MGEs, but also to associate them with their host genomes.  As these

technologies improve, so too will bioinformatic tools be developed to make full use of

these new datasets, and thus provide us with a more complete picture of the mobilome

and how it spreads genetic elements through microbial communities.



97

1.7 The mobile resistome of the human 

gastrointestinal tract using whole metagenomics

The human GIT consists of the human tissues of the mouth, oesophagus, stomach and

intestines, and host microbiomes that carry ARGs and MGEs297,298. The different sites of

the gut (stomach and intestines) and oral cavity (mouth) are inhabited by quite disparate

microbial communities15,299,300. As a consequence of being anatomically connected and

being part of the same food processing pathway, the GIT sites can influence each other’s

microbial  compositions13,301.  Thus,  ARGs and MGEs can mix between these sites as

well.  However,  the  gut  and  oral  cavity  have  different  environments  with  different

exposure to ingested factors, including anthropogenic antimicrobial exposure. Although

it  is  widely  accepted  that  the  gut  and  oral  cavity  harbour  reservoirs  of  ARGs  and

MGEs298,302,  there  has  been  very  little  research  into  the  compositions  of  the  oral

resistome  and  mobilome  using  whole  metagenomics  in  particular,  and  how  these

compare to the gut. In addition, there has been very little discourse about what impact

the GIT mobile resistome has on AMR infections and clinical outcomes.

1.7.1 The resistome

There  has  been  a  recent  flurry  of  metagenomic  resistome studies  focussing  on  the

human  gut  niches  (stomach  and  intestines)  of  the  GIT.  In  fact,  the  first  whole

metagenomic  study  to  profile  the  resistome  of  healthy  individuals  worldwide  was

conducted on stool samples303. A total of 507 distinct ARG types conferring resistance to

20 antibiotic classes were detected across 180 stool samples from 11 different countries,
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raising the status of the gut as an AMR reservoir.  As a result,  there has been more

emphasis on whole metagenomic resistome surveys in the gut than in the oral cavity,

even though the first functional metagenomics study to query ARGs was in the oral

microbiome, which led to the discovery of  tet(37)304. Larger functional metagenomic

studies  of human oral microbiota  revealed more ARGs conferring resistance against

tetracycline  (including  a  novel  ARG  tet(32))  gentamycin  and  amoxicillin305,306.  This

thesis  builds upon this  work to include the first  large-scale study to profile the oral

resistome  using  whole  metagenomics  (Chapter  2)307.  However,  other  whole

metagenomic studies of the gut resistome have provided insights into the dynamics of

the GIT resistome in early and adult life, and during different exposures to various types

of antimicrobial drugs.

1.7.1.1 The GIT resistome in early life

Profiling the gut resistome in preterm infants found the presence of clinically relevant

ARGs suggesting that pioneering microbes of early human microbiome already have

capacity for AMR308. These microorganisms may originate from environments rich in

microbes that have been selected for AMR by anthropogenic antimicrobial exposure, in

particular hospitals where many neonates are born, and potentially kept in intensive care

units309. In addition, resistant microbes can transfer from other humans in close contact

where their resistomes are more established (Section 1.7.1.3). For instance, there is a

transfer of microbes containing ARGs from maternal milk to the infant’s gut that drives

diversity  of  the  gut  resistome  in  early  life310.  No  metagenomic  studies  have  been

conducted on infant oral resistomes, but given their exposure to the environment, the

oral cavities of newborns are likely colonised by ARG-carrying microbes as well.
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1.7.1.2 Adult GIT resistome

Once the microbiome stabilises, the resistome then remains relatively stable, both in the

gut and the oral cavity307,311. The first study to profile gut resistomes worldwide also

found that differences in microbial phylogeny between individual guts also co-localised

with  differences  in  resistome  composition303.  The  microbial  composition  varies

considerably across the GIT, which is also influenced by factors discussed earlier in

Section 1.1.115. Certain microorgansisms may harbour particular ARGs that benefit their

survival,  meaning  different  GIT  sites  may  have  different  resistomes.  One  study

comparing the oral  and gut resistomes of uncontacted Amerindians found all  ARGs,

apart from tetracycline resistant ARGs coding for ribosomal protection proteins, were

exclusively found in either oral or gut whole metagenomes, but not both312. However,

these ARGs were chosen by their phenotypic resistance to antimicrobials by functional

metagenomics and not by profiling the entire metagenomic dataset. Early metagenomic

studies  using  targeted  microarray  probes  found  ARGs  conferring  resistance  to

tetracycline,  with  tet(M) and  tet(W) most  prevalent  in  saliva  and  stool  samples,

respectively313. 

1.7.1.3 The GIT resistome after antimicrobial intervention

Direct anthropogenic use of antimicrobials in hospitalised infants reveals an increase in

the  diversity  of  ARGs  in  the  gut  resistome,  carriage  of  multidrug-resistant

Enterobacteriaceae and changes in  the microbiota  composition that  all  persist  long-

term314.  Exposure  to  antimicrobials  may  have  a  profound  impact  in  infants  with
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developing microbiota communities that have not yet reached fruition, particularly for

infants on rudimentary diets. In the adult gut the effects of lower chronic and higher

acute doses of antimicrobials can have a varied impact on the microbiota and resistome

composition in the short- and long-term. For instance,  a cocktail  of three last-resort

antimicrobials (meropenem, gentamicin and vancomycin) were orally administered to

healthy adult men for four days leading to nine common species being undetected in gut

metagenomes  after  six  months43.  Species  harbouring  β-lactam,  glycopeptide  and

aminoglycoside ARGs colonised the gut in the long-term after the exposure. Although

these findings reflect mild long-term effects in the microbiome and resistome of healthy

adults, this study used a short course of multiple broad-spectrum antimicrobials, which

are not typically administered clinically or as a complete course of treatment. Lower

levels  of  chronic  exposure  to  antimicrobials  in  livestock  farming  can  perturb  the

microbiota and shape the resistome in guts of temporary farm workers311. These effects

on the microbiota are predicted to partially reverse after four months, but more ARGs

were still detectable after six months. Compared to the gut microbiota, a week course of

broad-spectrum antibiotics (clindamycin, ciprofloxacin, minocycline or amoxicillin) in

66 individuals revealed a greater recovery of the salivary microbiota after 12 months315.

Narrow-spectrum as well as broad-spectrum antimicrobials can also drive changes of

the resistome in the gut more than the oral cavity. A study looking into the longitudinal

resistome  of  the  stool  samples  and  the  oral  swabs  from  young  children  found  an

increase in ARG diversity in stool samples a month after the administration of narrow-

spectrum penicillin V administration, but not in the oral cavity42. Authors studying the

effect of the saliva and gut resistomes from broad-spectrum antibiotics suggest that the

oral microbiota has better intrinsic resistance to antimicrobial exposure than the gut315.
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This may be the case for oral biofilms that consist of extracellular polymeric substances

(EPSs),  which  can  exclude  antibiotics  from readily  targeting  bacteria  residing  deep

within the biofilm316. Further, high concentrations of antimicrobial compounds naturally

produced by microorganisms may accumulate within the EPS, selecting for localised

resistance.  However,  the  authors  of  this  study make  a  peculiar  assumption  that  the

exposure to antimicrobials in both sites are the same. In fact, different body sites have

variations  in  amount  and  time  of  exposure  to  orally  administered  drugs  (the

conventional  route  of  administration  for  the  majority  of  antibiotic  treatments)  as

governed by pharmacodynamics, with the gut having a greater bioavailability than the

oral cavity. One reason why the gut microbiome and resistome may be less resilient to

antimicrobials than the oral cavity, is that the gut is exposed more to orally administered

antimicrobial drugs than the oral cavity. These drugs pass rapidly through the oral cavity

before entering the stomach and intestines where they remain for much longer periods at

high  concentrations  before  being  absorbed  into  the  bloodstream,  metabolised  or

excreted. This extra exposure time and greater antimicrobial bioavailability in the gut,

particularly  in  the  small  intestine,  can  lead  to  increased  selection  of  antimicrobial

resistant microorganisms which may acquire resistance through mutation or via HGT.

Selection then presents a prime opportunity for resistant strains to proliferate as part of

the microbiota during recolonisation, unless a fitness cost prevents this151, explaining the

greater resistome diversity in the gut compared to the oral cavity.

1.7.2  The mobile resistome

The major types of MGEs that capture, accumulate and disseminate ARGs are insertion

sequences  and  composite  transposons,  gene  cassettes/integrons,  plasmids,  ICEs  and
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bacteriophages,  as  mentioned  above.  There  are  very  few  studies  that  use  whole

metagenomic sequencing to identify ARGs on MGEs. Most whole metagenomic studies

focussing  on  associations  between  the  resistome  and  mobilome have  been  done  in

microbiomes from the human gut or polluted/contaminated water310,317–320. A handful of

studies have applied whole metagenomics to identify ARG-MGE associations in the

oral cavity of the human GIT. 

Studies that have attempted to profile mobile resistomes from whole metagenomes have

done so in  several  different  ways.  One study working with short-read metagenomic

sequences from a polluted lake inferred potential ARG-MGE associations by identifying

ARGs with putative MGE proteins (rather than a whole MGE) on the same contig, such

as identifying the  RepC plasmid protein with fluoroquinolone resistance gene  qnrS320.

Another study reported a transposon carrying an integron with a  sul1 gene, an  aadA

gene  cassette  (resistant  to  sulphonamides,  spectinomycin  and  streptomycin)  and  a

dfrA17 gene  cassette  (resistance  to  trimethoprim)  encompassed  in  a  plasmid  from

assemblies  of  whole  metagenomes  from  an  infant  stool  sample319.  Although  it  is

possible  to  ascertain  ARG-MGE associations  from metagenomic  assemblies  from a

single sample, it is challenging to quantify the prevalence of ARG-MGE associations

with  short-read  whole  metagenomics  alone.  To  address  this,  a  study  implemented

correlation analysis of abundances between ARGs and MGEs across multiple samples

in whole short-read metagenomic sequences of planktonic microbial communities in the

river  Han317.  The  authors  found  ARG  density  was  significantly  correlated  with  the

abundance of integrases and verified ARGs were located on the same contigs as  intI1

integrons.
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One major challenge for all these studies is the difficulty in assembling contigs from

short-read  sequences  that  are  long  enough  to  cover  an  MGE  or  resolve  repeated

sequences in an MGE, especially ICEs, transposable elements and plasmids. A solution

to this as mentioned previously is use long-read sequences that resolve repeated regions

as  scaffolds  for  short-read  sequences  that  retain  accuracy.  For  instance,  one  study

combined  reads  from Illumina  short-read  and  Oxford  Nanopore  MinION  long-read

sequencing of wastewater microbiomes318.  This increased the accuracy and length of

metagenomic  contigs,  allowing  more  plasmids  and  ICEs  containing  ARGs  to  be

detected  with  high  confidence and for  ARG-carrying ICEs to  be tracked across  the

wastewater  treatment  process.  In  addition,  the  contigs  were  long  enough  that  the

bacterial hosts could be identified for the ICEs, although this could not be done for

plasmids. Proximity ligation methods,  such as Hi-C, can be applied to assign ARG-

carrying MGEs to microbial hosts from metagenomes321. Hi-C has been used to monitor

the  dynamics  of  MGEs  between  bacteria  in  longitudinal  stool  metagenomes  from

neutropenic patients (with abnormally low levels of neutrophils) taking multiple courses

of antibiotics105.  Here, this technique improved the accuracy of associations between

taxa  and  ARG-carrying  MGE  as  compared  to  metagenomic  assemblies  alone  and

showed  HGT is  more  frequent  in  neutropenic  patients  than  in  controls  taking  no

antibiotics. 

In general, the lack of comprehensive mobilome and associated resistome profiles in

whole metagenomes are down to the challenges of resolving large MGEs, incomplete

MGE  reference  databases  for  reference-based  MGE  identification  and  limited
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bioinformatic  tools  for  de  novo-based  MGE  sequence  annotation  as  discussed

previously217. In addition, many studies focus on profiling one or two types of MGEs.

For  example,  studies  focussing  on  ARG-bacteriophage  associations  rarely  consider

other  MGEs97,322,323.  As  a  consequence,  the  relative  associations  between  ARGs  and

different types of MGEs are not fully understood. However, there is a huge scope to

combine and develop bioinformatic methods to profile the entire mobilome, even from

short-read metagenomic data.  This would help us understand what proportion of the

resistome is associated with different types of MGEs, or at a more granular level, how

different types of ARGs are associated with particular MGEs.

1.7.3 Opportunities and challenges in using whole 

metagenomics

It is difficult to give an accurate description of the mobile resistome across the human

GIT, especially in healthy adults, since very few whole metagenomic studies have been

conducted and compared across GIT sites. Although there are a vast number of whole

metagenome studies  profiling faecal  samples,  it is  contested whether  faecal samples

give an accurate representation of the stomach or intestines of the GIT. The microbial

DNA in  stool  samples  are  over-represented  by  microbiomes  in  the  lumen  of  the

intestines and not the mucosal surface, failing to capture structural resolution324. As well

as in the gut, the oral cavity consists of many different ecological niches, including

hard, non-shedding surface of the teeth, and shedding mucosal surfaces, such as tongue,

cheek and the soft and hard palate300.
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As these studies in the gut resistome and mobile resistome flood the academic literature,

many scientists starting research in the human microbiome may see more potential to

work with the gut than other body sites. It is the case that researchers with limited funds

to  initiate  a  new  human  microbiome  study  would  be  more  inclined  to  use  freely

available metagenomic datasets or collaborate with other researchers where funding is

available.  Given that  most  human metagenomic  datasets  and studies  focus  on stool

samples,  this  may  only  serve  to  perpetuate  the  idea  of  the  gut  being  central  to

discussions on the human microbiome. However, the microbiome and metagenomics

fields are still in their infancy compared to other disciplines in genomics and there is

hope that innovative approaches can alleviate this bias.
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1.8 Objectives

There  is  an  unmet  need  to  address  the  associations  between  the  resistome and  the

mobilome  across  GIT  sites  and  how  these  can  affect  clinical  outcomes  of  AMR.

Therefore the specific aims of this thesis were:

I. Profiling  and  comparing  resistomes  between  oral  sites  and  stool  whole

metagenomes (Chapter 2)

II. Profiling  and comparing mobilomes  and mobile  resistomes between oral

sites  and  stool  whole  metagenomes  for  bacteriophages  (Chapter  3),

plasmids (Chapter 4) and transposable elements (Chapter 5)

III. Evaluating the contribution of bacteriophages, plasmids and transposable

elements to the HGT of ARGs (Chapter 6)

Firstly, I compare the resistome composition between oral cavity sites and gut using

publicly available whole metagenomic data of buccal mucosa (cheek), dental plaque,

dorsum  of  the  tongue  (top  surface  of  the  tongue),  saliva  and  stool  from  different

countries around the world. 

I then compare the mobilome and mobile resistomes between GIT sites from the same

publicly available whole metagenomic data.  Given the huge variety of MGEs but the

very limited research in whole metagenomes, this study focusses on profiling common
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MGEs: bacteriophages  (Chapter  3),  plasmids  (Chapter  4)  and transposable  elements

(Chapter 5) from whole metagenomic sequences. Metagenomic analyses of these other

ARG-carrying MGEs, like gene cassettes/integrons, are beyond the time afforded in this

thesis,  but  nonetheless,  have  important  roles  to  play  in  sequestering  of  ARGs  in

microbial genomes.  In Chapter 3, I compare the composition of bacteriophages from

whole metagenomes across GIT sites. I then analyse the diversity of phages and their

bacterial hosts, phage stability, and function and phylogeny of large, rare jumbo phages

across GIT sites. The prevalence of ARG-carrying bacteriophages is compared across

GIT sites. In Chapter 4, whole metagenomic data are assembled into circular plasmid

contigs to make a catalogue of plasmids using an existing software tool. I then construct

a  bioinformatics  pipeline  to  query  the  metagenomes  for  these  plasmids.  Similar  to

phages and transposable elements, the composition of plasmids and ARGs identified

from  these  plasmids  is  compared  between  GIT  sites.  Chapter  5  describes  the

development of a new software tool and bioinformatics pipeline to identify transposable

elements (in particular insertion sequences, composite and unit transposons)  de novo

from whole metagenomic data. The composition of transposable elements and ARGs

identified from them are compared across GIT sites.

Finally, in Chapter 6, I collate the results from the previous four chapters to compare

and  contrast  how  each  type  of  MGE  (bacteriophages,  plasmids  and  transposable

elements) associates with the resistome. I then discuss how the HGT of these ARG-

carrying MGEs might affect AMR infections and clinical outcomes. Lastly, I consider

how  this  research  can  be  continued  and  expanded  to  profile  and  characterise  the

resistome and mobile resistome.
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Chapter 2: The Resistome
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2 The Resistome

2.1 Introduction to study

Whole metagenomic data has been successfully applied to characterise resistomes in

humans,  particularly  of  human  gut  resistomes87,308,310,325–327,  but  comparatively  little

whole  metagenomic  research  has  been  conducted  for  oral  resistomes  and  how this

relates  to  the  gut.  This  is  the  first  study  profiling  oral  resistomes  with  a  direct

comparison to gut resistomes from the same individuals using whole metagenomes. It is

known from functional metagenomic studies that the oral cavity contains a diversity of

ARGs, such as those conferring resistance to tetracycline, amoxycillin and gentamicin

in  saliva  and  plaque  samples304,328.  The  presence  of  ARGs  from  smaller  whole

metagenomic studies of oral cavities from isolated Amerindian communities and ancient

humans (with little exposure to anthropogenic antimicrobials), indicates the presence of

ARGs is in fact an inherent characteristic of the oral microbiome312,329. Yet these ARGs

can have a serious impact on the clinical outcomes of AMR infections. ARG-carrying

oral  streptococci  have  been  shown  to  spread  to  other  body  sites  and  cause  AMR

infections, such as infective endocarditis330. 

Both the gut and oral cavity contain a reservoir of ARGs. However, little is known about

how the resistome composition differs between each other.  In  this  study,  resistomes

were  profiled  from  788  oral  and  386  paired  gut  whole  metagenomes  in  healthy

individuals  taken  from  pre-existing  studies  in  China331,  Fiji332,  the  Philippines333,

Western  Europe301,334,335 and  the  USA336.  The  gut  resistome  was  profiled  from stool
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metagenomes, whereas the oral resistome was characterised from multiple oral sites,

including buccal mucosa, dental  plaque, dorsum of the tongue and saliva. The main

findings  are  that  the  oral  resistome contains  the  highest  and  lowest  abundances  of

several ARGs compared to gut, and the gut and the surface of the tongue contained the

highest ARG diversity.  Although no metadata on antimicrobial use was available for

each individual, it is hypothesised that the differences in resistome composition between

GIT  sites  are  driven  by  variations  in  microbial  composition  and  differences  in

antimicrobial exposure. Finally, it is proposed that ARGs that are more abundant in the

oral cavity compared to the gut could be highly persistent and potentially important in

clinical outcomes of AMR infections in other body sites.

2.2 Published paper

Text, tables and figures have been copied directly from “Abundance and diversity of

resistomes  differ  between healthy  human oral  cavities  and gut”,  Carr  et  al.,  2020.

Section, figure and citation numbering have been modified and abbreviations have been

included to agree with thesis format. The Methods section has been moved before the

Results section for clarity. More detailed explanations of methodology and additional

methodology  have  been  included  in  the  Methods,  footnotes  and  Appendix  2A-C.

Supplementary Materials of this paper are in Appendix 2D-M. The references for this

paper  are  included  in  the  full  reference  list  of  this  thesis.  The  published  paper  is

available online: https://doi.org/10.1038/s41467-020-14422-w

https://doi.org/10.1038/s41467-020-14422-w
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2.2.1 Abstract

The global threat of AMR has driven the use of high-throughput sequencing techniques

to  monitor  the  profile  of  resistance  genes,  known  as  the  resistome,  in  microbial

populations. The human oral cavity contains a poorly explored reservoir of these genes.

Here we analyse and compare the resistome profiles of 788 oral cavities worldwide with

paired stool metagenomes. We find country and body site-specific differences in the

prevalence  of  ARGs,  classes  and  mechanisms  in  oral  and  stool  samples. Within

individuals, the highest abundances of ARGs are found in the oral cavity, but the oral

cavity contains a lower diversity of resistance genes compared to the gut. Additionally,

co-occurrence analysis shows contrasting ARG-species associations between saliva and

stool samples. Maintenance and persistence of AMR is likely to vary across different

body sites.  Thus,  we highlight the importance of characterising the resistome across

body sites to uncover the AMR potential in the human body. 

2.2.2 Introduction

In recent years, AMR has been highlighted as one of the biggest threats to global health,

food  production  and  economic  development52.  Given  this  rapidly  developing  global

crisis,  it  is imperative that the current gaps in our understanding of the distribution,

spread and associations of all AMR factors are filled. AMR is most often conferred

through the expression of ARGs that reduce a microbe’s susceptibility to the effects of

an antimicrobial compound. As such, monitoring the abundance and diversity of these

ARG profiles, or the resistome, has huge potential to increase our understanding of the

spread and persistence of AMR within a population. High-throughput NGS technologies
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are beginning to be used as tools for screening ARGs for potential surveillance of AMR

worldwide.  Shotgun  metagenomic  data  mapped  against  dedicated  ARG  reference

databases are providing a wealth of insight into the resistomes of human87,308,310,325–327 and

animal guts85,337 as well as the wider environment179,320,338,339. However, no large studies

have, to date, attempted to characterise the resistome profiles of the human oral cavity.

Commensal microbes from the oral cavity harbouring ARGs have potential to lead to

antimicrobial  resistant  infections  at  other  body  sites.  For  example,  ß-lactam,

clindamycin,  and  erythromycin  resistant  strains  of  oral  streptococci  have  caused

infections at distal body sites such as infective endocarditis330. 

Metagenomic  studies  of  the  oral  cavity indicate  that  this  site  potentially  contains a

diverse range of ARGs, including those encoding resistance to tetracycline, amoxycillin

and gentamicin in saliva and plaque samples304,328. Thus, oral ARGs appear to be natural

features  of  the  human  oral  cavity.  The  presence  of  an  oral  resistome  containing

aminoglycoside,  ß-lactam,  macrolide,  phenicol  and  tetracycline  ARGs  in  isolated

Amerindian communities and ancient humans, indicates that the presence of these genes

is  not  dependent  on  antibiotic  exposure  and  is  an  inherent  feature  of  the  oral

microbiome312,329. 

The oral microbial community faces unique ecological pressures, such as mechanical

force, nutritional availability, pH levels, oxidative stress and redox potential.  Despite

these  continually  changing  conditions,  these  communities  have  been  shown  to  be

relatively stable even after short-term antibiotic exposure. HGT has been documented as

an important mechanism for the transfer and acquisition of ARGs within and between
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oral bacterial species139,340. The erythromycin resistance mefA and mefE genes have been

found on the  MEGA MGE associated with Tn916-like conjugative transposons (also

ICEs),  and  this  has  been implicated  in  conjugative  transfer  between viridans  group

streptococci (VGS) and other streptococci341. Thus, the oral microbiome contains a long-

standing and mobile population of ARGs and is a significant reservoir for ARGs to be

transferred to pathogenic microbes.

Here, we derive and compare the oral and the gut resistomes from 788 and 386 shotgun

metagenomes,  respectively,  from  healthy  individuals  from  China331,  Fiji332,  the

Philippines333,  Western  Europe301,334,335 and  the  US336.  We  found country-specific

differences  in  the  proportion  of  saliva,  dental  plaque  and  stool  samples  containing

ARGs,  ARG  classes  and  mechanisms.  We  made  up  to  415  comparisons of oral

resistomes with paired gut resistomes derived from stool shotgun metagenomes from

the  same  individuals,  showing  the  oral  resistome  contains  the  highest  and  lowest

abundances of ARGs, but a lower diversity of ARGs than the gut resistome.  Overall,

these  results  demonstrate  the  requirement  for  wider  AMR  surveillance  studies  at

different  body sites,  including the oral  cavity,  to  understand the  composition  of  the

resistome across different human microbial habitats.

2.2.3 Methods

2.2.3.1 Metagenomic sequence data

A total of 1,174 publicly available metagenomic samples covering the USA, China, Fiji,

the  Philippines  and  Western  Europe  (France  and  Germany),  all sequenced  using
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Illumina HiSeq 2000,  were analysed. Longitudinal USA samples were excluded from

the  majority  of  the  study  after  the  first  time  point  to  ensure  each  sample  was

independent, unless specified otherwise. All metagenomes passed over half the quality

control  metrics  in  FastQC  0.11.3

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)  with  these  pass  rates

calculated in MultiQC194. These samples include 1) longitudinal data  across two years

with various timepoints from the Human Microbiome Project 1 (referred to as USA)336

containing buccal mucosa (n = 87: 32 with one, 36 with two, 18 with three and 1 with

six timepoints); dorsum of tongue (n = 91: 22 with one, 43 with two, 24 with three and

2 with four timepoints); dental plaque (n = 90: 23 with one, 43 with two, 20 with three,

1 with four and 3 with six timepoints); stool (n = 70: 13 with one, 33 with two, 21 with

three, 2 with four and 1 with six timepoints), 2) healthy control samples from a Chinese

rheumatoid arthritis study331 containing dental plaque (n = 32); saliva (n = 33); stool (n

= 72), 3) saliva (n = 136) and stool (n = 137) samples from Fiji332, 4) saliva samples (n =

23) from healthy hunter-gatherers and traditional farmers from the Philippines333, and 5)

saliva (n = 21) and stool (n = 21) samples from Western Europe (5 saliva and 5 stool

samples from Germany301,334, and 16 saliva and 16 stool samples from France301,335). 

Raw  paired-end  metagenomic  reads  from  Chinese and  Philippines  samples  were

downloaded  from  EMBL-EBI  (https://www.ebi.ac.uk/metagenomics/). Paired-end

metagenomic samples  from USA were downloaded from  https://portal.hmpdacc.org/.

Raw  paired-end  metagenomic  reads  from  Fiji  (project  accession  PRJNA217052

[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA217052/]),  France  and  Germany

(project  accession  PRJEB28422  [https://www.ncbi.nlm.nih.gov/bioproject/?

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB28422
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA217052/
https://portal.hmpdacc.org/
https://www.ebi.ac.uk/metagenomics/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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term=PRJEB28422])  were  downloaded  from  the  NCBI.  All  US,  China,  Fiji  and

Philippines samples,  and stool samples from France and Germany, were collected and

sequenced as described in the following cited studies331–336. Saliva samples from France

and Germany were collected and sequenced as described in the following cited study301.

Metadata  for  the  samples  can  be  found  in  Supplementary  Data  2.1  available  from

https://tinyurl.com/y3yxng3q.

 

https://tinyurl.com/y3yxng3q
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB28422
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB28422
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2.2.3.2 Processing metagenomic data

The raw reads for all samples were trimmed using AlienTrimmer 0.4.0342 using default

parameters  and  Illumina  contaminant  oligonucleotides

(https://gitlab.pasteur.fr/aghozlan/shaman_bioblend/blob/18a17dbb44cece4a8320cce818

4adb99665  83aaa/alienTrimmerPF8contaminants.fasta  ).  Human contaminant  sequences

were  removed  from all  samples  by  discarding  reads  that  mapped  against  a  human

reference  genome  (downloaded  from  Human  Genome  Resources  at  NCBI  on  27th

February 2017) using Bowtie2 2.2.3195 with parameters -N 1 -k 1 --end-to-end --very-

sensitive –phred33 --no-discordantxii. The quality of the raw reads and the filtered reads

of  each  sample  was  evaluated  using  the  FastQC 0.11.3

(https://github.com/s-andrews/FastQC).

2.2.3.3 Identifying ARGs

All  processed  metagenomes were  mapped  against

nucleotide_fasta_protein_homolog_model from the ARG database CARD 3.0.0197 using

xii
N is the number of mismatches allowed in a seed alignment during multiseed alignment. Multiseed 

alignment is where Bowtie2 aligns substrings (or seeds) from the read and its reverse complement.
 
k is the number of distinct, valid alignments for each read. The search terminates when the algorithm 

cannot detect anymore than k alignments.

--end-to-end mode is where Bowtie2 aligns the read from one end to the other, without trimming 
characters off either end of the read.

--very-sensitive is a preset of default parameters which makes the algorithm more sensitive and accurate 
but slower. The only value change is parameter N.

--phred33 is an option that specifies the encoded quality scores used in Illumina sequences.

--no-discordant specifies that Bowtie2 allows both mate pairs to align uniquely but that they do not need 
to satisfy paired-end constraints.

https://gitlab.pasteur.fr/aghozlan/shaman_bioblend/blob/18a17dbb44cece4a8320cce8184adb9966583aaa/alienTrimmerPF8contaminants.fasta
https://gitlab.pasteur.fr/aghozlan/shaman_bioblend/blob/18a17dbb44cece4a8320cce8184adb9966583aaa/alienTrimmerPF8contaminants.fasta
https://gitlab.pasteur.fr/aghozlan/shaman_bioblend/blob/18a17dbb44cece4a8320cce8184adb9966583aaa/alienTrimmerPF8contaminants.fasta
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KMA 1.2.6. The selection of an ARG database is described in Appendix 2A. Hits were

identified where the template coverage was greater than 90%. The metagenomes were

mapped against these hits using Bowtie2 2.2.5 with parameter --very-sensitive-localxiii.

The choice of mapping tools is addressed in Appendix 2B and the choice of coverage

threshold is explained in Appendix 2C.  Mapped reads were filtered from unmapped

reads,  sorted  and indexed  using  Samtools  1.9343.  Statistics for  the  number  of  reads

mapped for each ARG were identified using Bedtools 2.28.0344. 

2.2.3.4 Abundance of ARGs

The reads per kilobase of read per million (RPKM) was calculated for every sample as

the  number  of  reads  divided by the  total  number  of  library  reads  per  million,  then

divided by the  gene  length  in  kilobases.  The relative  abundance  of  ARGs for  each

country and sample type was calculated by dividing the RPKM by the sum of RPKM

for each country and sample type. The relative abundance of ARGs for each sample and

sample type was calculated by dividing the RPKM by the sum of the RPKM for each

sample.  Differential  abundance  of  ARGs  between  paired  sample  types  from  each

country  were  calculated  using  the  DESeq2  1.20.0  package204 as  recommended  by

Jonsson et al.345. ARGs that were significantly differentially abundant (adjusted p-value

< 0.05) across study cohorts  for paired sample comparisons were identified using a

meta-analysis random effects model with the metafor 2.1-0 package346.

xiii --very-sensitive-local is the preset of default parameters in local mode where Bowtie2 is not required 
to align the entire read from one end to the other (unlike end-to-end mode).
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2.2.3.5 ARG class abundance and antibiotic prescription rate

The mean RPKM and standard error for every ARG class was compared against the

antibiotic prescription rate measured as the DDD Per 1,000 individuals in 2015 from

China, the Philippines, Western Europe (France and Germany) and the USA. This data

was  derived from ResistanceMap (https://resistancemap.cddep.org/)  accessed  on 19th

February 2019. No antibiotic  use data  was available  for Fiji.  Linear  regression was

conducted on the log transformed mean RPKM versus the DDD Per 1,000 for all ARG

classes.

2.2.3.6 Percentage of samples with ARGs, ARG classes and 

mechanisms

To show whether the percentages of samples containing an ARG class were consistent

across the same number of reads, metagenomes were first subsampled using seqtk 1.2

(https://github.com/lh3/seqtk)  with  parameter  seed -s100.  6.9  million  reads  were

subsampled from 18 saliva samples with the lowest number of reads greater than 6.9

million reads, from each cohort: China, Fiji, the Philippines and Western Europe. 18

million reads were subsampled from 18 dental plaque with the lowest number of reads

greater than 18 million reads from both China and USA cohorts. 16.9 million reads were

subsampled from 18 stool samples with the lowest number of reads greater than 16.9

million  reads  from China,  Fiji,  the  USA and  Western  Europe  cohorts.  These  were

mapped to  CARD 3.0.0 as described in  Identifying ARGs.  R 3.5.1 was used for all

downstream  analysis.  Each  ARG  was  annotated  with  Drug  Class  and  Resistance

Mechanism using CARD 3.0.0 metadata.  Percentages of samples containing an ARG,

https://github.com/lh3/seqtk
https://resistancemap.cddep.org/
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ARG  class  and  mechanism  were  calculated  from  these  samples.  95%  confidence

intervals (CIs) were evaluated from percentages identified from bootstrapping samples

20 times for each cohort and sample typexiv. 

2.2.3.7 Principal Coordinates Analysis

790 metagenomes that contained at  least  1 millions reads and were not longitudinal

USA  samples  were  first  subsampled  to  1  million  reads  using  seqtk  1.2

(https://github.com/lh3/seqtk) with parameter seed -s100. These were mapped to CARD

3.0.0 as described in  Identifying ARGs. Principal Coordinates Analysis was applied to

the  binary  distance  between  ARG  presence  or  absence  profiles  for  each  sample

(excluding longitudinal  USA samples) using the vegan 2.5-2 package (https://cran.r-

project.org/web/packages/vegan/index.html). Principal Coordinates Analysis represents

and visualises dissimilarity between data points between a set of uncorrelated axes in

lower  dimensional,  Euclidean  space.  Resistotypes  were  identified  using  hierarchical

clustering  of  the  Euclidean distance  between principal  coordinates  with  eigenvalues

above  zero.  An  eigenvalue  of  an  axis  has  a  magnitude  representing  the  amount  of

variation captured in that axis. Silhouette analysis was used to determine the optimum

number  of  resistotypes  using  the  cluster  2.0.7.1  package

(https://cran.r-project.org/web/packages/cluster/index.html). The number of resistotypes

is defined by the number of clusters with the largest average silhouette width. Silhouette

analysis optimises for a number of clusters by measuring how well an observation is

clustered. 

xiv Bootstrapping is a resampling method where smaller subsets of samples of the same size are 
repeatedly drawn (20 times in this case) from the original dataset

https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://github.com/lh3/seqtk
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The silhouette width of an observation i is defined as:

(eq. 2.1) Si=
(bi−ai)

max (ai , bi)

where ai is the dissimilarity between i and all other points of the cluster it belongs to, bi

is the average dissimilarity between i and all other observations in the nearest cluster it

does not belong to. The average silhouette width across observations is calculated for

each number of clusters.

2.2.3.8 ARG diversity

To ensure the ARG richness could be compared statistically across different sample

types  from  the  same  individuals347,  the  metagenomes  (excluding  longitudinal  USA

samples) were subsampled using seqtk  1.2  with seed  -s100. Paired samples from the

same individuals in each of the following groups containing two sample types were

subsampled  to  a  number  rounded down by two significant  figures  from the  lowest

number of reads in the group.  China dental plaque vs. saliva:  3.5 million reads were

sampled from China dental plaque (n = 31) and paired saliva (n = 31) samples. China

stool vs. saliva: 3.5 million reads were sampled from China stool (n = 31) and paired

saliva (n = 31) samples. China stool vs. dental plaque: 14 million reads were sampled

from China stool (n = 30) and  paired dental  plaque  (n = 30)  samples. USA buccal

mucosa vs. dental plaque: 1 million reads were sampled from USA buccal mucosa (n =

78) and  paired dental  plaque (n =  78)  samples.  USA buccal  mucosa vs.  dorsum of

tongue: 1 million reads were sampled from USA buccal mucosa (n = 86) and  paired

dorsum of tongue (n = 86) samples. USA buccal mucosa vs. stool: 1 million reads were

sampled from and USA buccal mucosa (n = 64) and paired stool (n = 64) samples. USA
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dental plaque vs. dorsum of tongue: 4.2 million reads were sampled from USA dental

plaque (n = 89) and paired dorsum of tongue (n = 89) samples. USA dental plaque vs.

stool: 4.2 million reads were sampled from USA dental plaque (n = 68) and paired stool

(n = 68) samples. USA dorsum of tongue vs. stool: 14 million reads were sampled from

USA dorsum of tongue (n = 67) and paired stool (n = 67) samples. Fiji saliva vs. stool:

1.2 million reads were sampled from Fiji saliva (n = 132) and paired stool (n = 132)

samples. Fiji samples containing fewer than 1.2 million reads were excluded from the

analysis. Western Europe saliva vs. stool: 3.1 million reads were sampled from Western

Europe saliva (n = 21: 5 from Germany and 16 from France) and paired stool (n = 20: 5

from  Germany  and  16  from  France)  samples.  These  were  mapped  to  the  CARD

database as described in Methods Identifying ARGs.

Once the metagenomes were subsampled, ARGs identified and filtering by coverage,

the  ARG  diversity  per  sample  was  measured  as  the  ARG  richness,  recommended

previously  by  Bengtsson-Palme  et  al.60..  For  every  sample,  the  ARG  richness  was

calculated as the number of unique ARGs.  To account for multiple ARGs coding for an

efflux pump complex, the ARG richness was calculated excluding ARGs that regulate

or are part of an efflux pump complex. The ARG richness between samples in each

group was tested for statistical  significance with a Mann-Whitney, paired,  two-sided

test.
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2.2.3.9 Correlation analysis

MetaPhlAn2 2.6.0349 was  used to  identify taxonomic  composition  from all  samples.

Spearman’s correlation was applied to relative abundances of reads mapped to ARG and

MetaPhlAn2 species profiles for paired samples. ARGs and species that were not found

in more than half of samples for each country were removed, to alleviate the bias from

potential joint ranking of zero values by Spearman’s rank. The rhoxv and p-values were

calculated using the stats package in R and the p-values were adjusted with Benjamini-

Hochberg where FDR < 5%xvi. Correlations were found from China saliva and paired

stool  samples,  and  Philippines  saliva  samples.  No  significant  correlations  could  be

found from Fiji, Western Europe or USA samples.

2.2.3.10 Data availability

ARG  data,  figures  and  tables  are  available  at

https://github.com/blue-moon22/resistomeData.  Data  underlying  Figures  2.1-2.5  and

Appendix 2D-L (Supplementary Figures 2.1-2.9 in paper) are provided in the Source

Data file (https://tinyurl.com/y4nbpne4). 

xv rho is defined as:

rho=1−
6∑ d i

2

n(n2
−1)

where di is the difference between two ranks of each observation and n is the number of observations.

xvi The Benjamini-Hochberg procedure is described as follows.
Rank the p-values in ascending order, from smallest to largest. The largest p value that satisfies the 
inequality below is significant, and all other p values smaller than it are also significant. 

p<
i
m

a

where i is the rank, m is the total number of tests, and a is the FDR (in this case 0.05). The FDR is the 
false discovery rate which is the proportion of significant results that are false positives.

https://tinyurl.com/y4nbpne4
https://github.com/blue-moon22/resistomeData
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2.2.3.11 Code availability

R  package  for  resistome  analysis  is  available  at

https://github.com/blue-moon22/resistomeAnalysis.  The  script  to  run  the  analysis  is

available at https://github.com/blue-moon22/resistomeData.

2.2.4  Results

2.2.4.1 Country and body site-specific differences in resistomes

To establish the incidence of ARGs in oral as well as stool metagenomes collected from

various  regions,  metagenomes were mapped and quantified against  CARD197.  Saliva

samples were only available from China, Fiji, the Philippines and Western Europe.  To

account for the differences in read depths across different datasets, the samples were

subsampled to the same number of reads across cohorts for absolute ARG incidence

measures.  The percentages of saliva samples that contain at least one ARG for each

class and mechanism from these cohorts were evaluated. To account for varying read

depth across samples, the samples were subsampled to the same number of sequences.

Saliva samples from China, Fiji, the Philippines and Western Europe contain 20, 14, 23

and  17  ARG  classes,  respectively  (Fig.  2.1a). Further  ARG  classes  are  found  in

Philippines saliva samples, but most of this variability originates from one individual: a

farmer from Zambal who has carbapenem, fosfomycin, rifamycin, and triclosan ARG

classes333. All  or  almost  all  saliva  samples  from every  cohort  contain  cephamycin,

fluoroquinolone, lincosamide, macrolide, streptogramin and/or tetracycline ARGs, and a

high percentage (above 50%) of saliva samples from all cohorts contain pleuromutilin

ARGs. Unlike  most  cohorts,  all  saliva  samples  from China  contain  aminoglycoside

https://github.com/blue-moon22/resistomeData
https://github.com/blue-moon22/resistomeAnalysis
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ARGs  represented  by  one  ARG,  APH(3’)-Ia,  and  also  a  high  proportion  of  these

samples contain glycylcycline represented by one ARG, tet(A) (Appendix 2: Fig. 2Da).

The  peptide  ARG  class  is  only  found  in  saliva  from  Chinese  and  Philippines

individuals.  Mechanisms  of  AMR  including  antibiotic  efflux,  inactivation,  target

alteration and target protection are present in all saliva samples across all cohorts (Fig.

2.1b), whilst the antibiotic target replacement mechanism is found in China, Philippines

and Western Europe but not in Fiji. Reduced permeability to antibiotics is only found in

saliva from the same farmer in Zambal.

Dental plaque metagenomic data were only available from China and the USA. The

percentages of the China and USA plaque samples containing at least one ARG class

and  mechanism  were  compared  and  found  to  consist  of  16  and  18  ARG  classes,

respectively  (Fig.  2.1c).  A greater  percentage  of  Chinese  compared  to  USA plaque

samples contain pleuromutilin and/or sulfonamide/sulfone ARGs. Similarly to saliva, all

or  almost  all  plaque  samples  from  both  cohorts  contain  lincosamide,  macrolide,

streptogramin and/or tetracycline ARGs, with a high percentage (above 50%) of these

containing  cephamycin,  fluoroquinolone,  glycylcycline  and/or  pleuromutilin  ARGs.

Notably, fluoroquinolone and tetracycline ARG classes in dental plaque are comprised

of fewer ARGs compared to saliva samples (Appendix 2: Fig. 2Db). Antibiotic efflux,

inactivation,  target  alteration,  target  protection  and  antibiotic  target  replacement

mechanisms are present in all samples across both cohorts (Fig. 2.1d). 

Stool  samples  were  available  from  all  locations,  apart  from  the  Philippines.  Stool

samples from China, Fiji, the USA and Western Europe were found to contain 31, 30, 17
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and 30 ARG classes, respectively  (Fig. 2.1e). All or almost all stool samples contain

cephalosporin, cephamycin, diaminopyrimidine, lincosamide, macrolide, streptogramin

and/or  tetracycline  ARGs,  although  most  of  these  ARG classes  are  found in  lower

percentages of Fiji stool samples. Compared to oral samples, stool samples contain a

lower  proportion  of  the  fluoroquinolone  ARG  class  but  higher  proportions  of

cephalosporin and/or diaminopyrimidine ARG classes exclusively consisting of CblA-1

and  dfrF ARGs, respectively  (Appendix 2: Fig. 2Dc).  In addition to the USA stool

samples  containing  the  fewest  number  of  ARG  classes,   they  also  contain  a  low

proportion (less than 50%) of fluoroquinolones, penams (β-lactam with saturated five-

membered ring such as penicillin), penems (β-lactam with unsaturated five-membered

ring),  peptide  and/or  phenicols  ARG  classes  compared  to  China,  Fiji  and  Western

Europe.  Stool  samples  from  China,  Fiji  and  Western  Europe  contain  resistance  to

triclosan, an antimicrobial that can be found in many household cleaning products, with

the highest proportion found in China. Antibiotic efflux, inactivation, target alteration,

target  protection  and  antibiotic  target  replacement  mechanisms  are  present  in  all

samples across all cohorts, but reduced permeability to antibiotics is not found in the

USA (Fig. 2.1f). 



126

Figure 2.1. Percentage of individuals that contain ARG classes and ARG mechanisms. 

Percentage of saliva samples that contain  a) an ARG class and b) an ARG mechanism, of individuals

from China (n = 18), Fiji (n = 18), the Philippines (n = 18) and Western Europe (n = 18). Percentage of

dental plaque samples that contain c) an ARG class and d) an ARG mechanism, of individuals from China

(n = 18) and the USA (n = 18). Percentage of stool samples that contain, e) an ARG class and f) an ARG

mechanism, of individuals from China (n = 18), Fiji (n = 18), the USA (n = 18) and Western Europe (n =

18).  The height of bars are the means and the error bars are 95% CIs  of percentages extracted from

bootstrapping samples 20 times shown by points. 

a b

c d

e f
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To determine whether there are differences in ARG composition between oral and gut

samples as well as between countries, the ARG incidence profiles for every sample were

summarised  using  Principal  Coordinates  Analysis  and clustered  into  distinct  groups

termed  resistotypes.  Resistotypes  were  identified  using  hierarchical  clustering  and

silhouette  analysis350.  Four  resistotypes  in  total  were  identified  (Fig.  2.2a,  b).  Oral

samples are mainly found in two major resistotypes, R2 and R4. R2 is comprised of

mainly buccal mucosa and saliva, and R4 contains mainly dental plaque and dorsum of

tongue. All  stool samples are found in only two major resistotypes,  R1 and R3. R1

consists of mostly stool and saliva from Fiji, whereas R3 contains mainly stool from

China, Fiji, USA and Western Europe. 

To  evaluate  whether  the  resistome  is  related  to  antibiotic  prescription  rates,  the

abundance of ARGs for every ARG class was compared to the Defined Daily Doses Per

1,000 individuals  of equivalent  drug classes for each region.  Prescription data  were

derived  from  ResistanceMap  (https://resistancemap.cddep.org/).  This  comparison

indicates  that  overall  ARG  class  abundance  does  not  follow  a  significant  linear

relationship  with  antibiotic  prescriptions  for  any  country  and  body  site  (Fig.  2.2c,

Appendix 2: Table 2M).

https://resistancemap.cddep.org/
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Figure  2.2.  Clustering  of  ARG  incidence  profiles  into  distinct  groups,  and  comparing  ARG

abundance to antibiotic use. 

a)  Principal Coordinates Analysis of the incidence (presence/absence) of ARGs for all samples where

each  sample  is  represented  by  a  point.  Samples  are  labelled  as  Resistotype  clusters,  evaluated  from

hierarchical  clustering  of  binary  distance  between  ARG incidence  profiles.  Number  of  clusters  was

selected with the highest average silhouette width using silhouette analysis. Samples from individuals

from China (dental plaque: n = 29, saliva: n = 33, stool: n = 72), Fiji (saliva: n = 129, stool: n = 136), the

Philippines (saliva: n = 22), the USA (buccal mucosa: n = 86, dental plaque: n = 80, dorsum of tongue: n

= 91, stool: n = 70) and Western Europe (saliva: n = 21, stool: n = 21).  b) Percentage of Resistotypes that

contain samples from a body site and geographical location.  c)  Mean and standard error (error bars) of

RPKM of ARGs for each ARG class against the Defined Daily Doses Per 1,000 individuals in 2015 from

China, the Philippines, Western Europe (France and Germany) and the USA.  (Fiji antibiotic use data

unavailable.) Mean RPKM calculated from individuals from China (dental plaque: n = 32, saliva: n = 33,

stool: n = 72), Philippines (saliva: n = 23), USA (buccal mucosa: n = 87, dental plaque: n = 90, dorsum of

tongue: n = 91, stool: n = 70) and Western Europe (saliva: n = 21, stool: n = 21). 

a b

c
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The availability of longitudinal oral and stool samples from USA individuals who had

not taken antimicrobial agents over two years afforded us the ability to investigate the

stability of resistomes without antibiotics. Hierarchical clustering reveals that the same

individuals and body sites cluster together, verifying that resistomes at all sites remain

stable over a prolonged period with no antimicrobial selection pressure  (Appendix 2:

Fig. 2E).

2.2.4.2 ARG composition differs between the oral cavity and gut

To  further  investigate  the  differences  between  oral  and  gut  resistome  profiles,  the

abundance  and  diversity  between  oral  and  gut  samples  from China,  Fiji,  USA and

Western Europe were evaluated and compared.  The  total  abundance,  measured as the

total RPKM, of all ARGs in gut samples is lower than in oral (buccal mucosa,  dental

plaque, dorsum of tongue and  saliva) samples across all pairwise comparisons in all

cohorts  (Fig.  2.3a).  The overall abundance is similar between paired USA oral sites,

with  buccal  mucosa  and dental  plaque having a  slightly  higher  abundance  than  the

tongue dorsum samples (Appendix 2: Fig. 2F). Oral samples contain a higher relative

abundance  of  ARGs  coding  for  fluoroquinolone  efflux  pumps,

lincosamide/streptogramin/pleuromutilin  resistance,  macrolide  efflux  pumps  and

macrolide/lincosamide resistance than stool samples (Fig. 2.3b, Appendix 2: Fig. 2G).

These classes are mostly dominated by one of two ARGs across all cohorts, such as

patB (coding for part of the PatA-PatB efflux pump) in the fluoroquinolone efflux pump

class (Appendix 2: Fig. 2Ha-d). Stool contains a higher proportion of tetracyclines and

‘Other’ ARGs across all cohorts (Fig. 2.3b, Appendix 2: Fig. 2G). These ‘Other’ ARGs

are  mostly  found  in  aminocoumarins,  aminoglycosides,  cephalosporins,
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diaminopyrimidines, penams, penems and peptides across all cohorts (Appendix 2: Fig.

2Ha-d). 

The abundance  of  individual  ARGs  were  compared  between  sample  types  using

differential  analysis  with  DESeq2204.  A meta-analysis  strategy  was  implemented  to

combine results from all regions. Stool samples are enriched with more ARGs compared

to oral samples, but oral samples have enriched ARGs of highest and lowest abundances

compared  to  stool  samples  across  all  regions  (Fig.  2.3c,  Appendix  2:  Fig.  2Ia-k).

macB, OXA-85 and tetA(60) ARGs in dental plaque have the highest log fold changes

(20.8, 21.0 and 21.1 respectively), whilst patB and RlmA(II) in plaque, and RlmA(II) in

saliva have the lowest log fold changes (2.9, 2.6 and 2.3 respectively) compared to stool

samples (Fig. 2.3c). Highest log fold changes are seen in cmlA6, Lactobacillus reuteri

cat-TC,  macB,  TEM-1 and  tet32 from  saliva  (20.6,  20.5,19.8,  20.5  and  20.5

respectively), and cmlA6, macB, OXA-85, pmrA, tetA(60) and tet(G) from dental plaque

(20.8, 20.6, 20.7, 20.7, 20.8 and 20.8 respectively) compared to stool samples in China

that are not enriched across all cohorts  (Appendix 2: Fig. 2J). As well as differences

between oral and gut, differentially abundant ARGs were found between different sites

in the oral cavity  (Appendix 2: Fig. 2I). For  example,  between the USA dorsum of

tongue and plaque samples, and between the USA dorsum of tongue and buccal mucosa,

all ARGs are enriched in the dorsum of the tongue. Similarly, between dental plaque and

buccal mucosa, all ARGs are enriched in dental plaque. Most of these ARGs  confer

resistance to  cephamycin,  fluoroquinolone,  MLS and  tetracycline  antibiotics.  From

China, there are more significantly abundant ARGs in saliva than plaque with resistance

to  aminoglycoside,  cephalosporin,  fluoroquinolone  (pmrA and  patB),  lincosamides,
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macrolides (macB and mefA ARGs), MLS (in particular to the Erm 235 ribosomal RNA

methyltransferase  family)  and  tetracycline  antibiotics.  Overall,  stool  samples  are

enriched with more alternative ARGs and ARG classes compared to oral  samples, but

with  the  highest  and  lowest  enrichments  of  individual  ARGs  originating  from oral

samples. 
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Figure 2.3. Comparing ARG abundance between the oral cavity and gut. 

a) Absolute abundance in log10 of RPKM of ARGs for paired samples of individuals from China (stool

and dental plaque: n = 30, stool and saliva: n = 31), Fiji (saliva and stool: n = 132), the USA (stool and

dental plaque: n = 68, stool and dorsum of tongue: n = 69, stool and buccal mucosa: n = 64) and Western

Europe (saliva  and  stool:  n  =  21).  Centre  line  is  median,  box  limits  are  upper  and  lower  quartiles,

whiskers are 1.5x interquartile ranges and points beyond whiskers are outliers. b) Relative abundance of

reads labelled by the top ten most  abundant  ARG classes  across  all  geographical  locations or  Other

classes for each body site of individuals from China (dental plaque: n = 32, saliva: n = 33, stool: n = 72),

Fiji (saliva: n = 136, stool: n = 137), the USA (buccal mucosa: n = 87, dental plaque: n = 90, dorsum of

tongue: n = 91, stool: n = 70) and Western Europe (saliva: n = 21, stool: n = 21) . c) Estimated average

log2 fold change of ARGs between paired dental plaque and stool, and saliva and stool samples using

random  effects  meta-analysis  across  study  cohorts  (p-value  <  0.05).  Error  bars  are  95%  confident

intervals  from  meta-analysis.  ARGs  selected  for  meta-analysis  where  adjusted  p-value  <  0.05  from

differential  abundance  analysis  between  paired  samples  of  individuals  from China  (stool  and  dental

plaque: n = 30, stool and saliva: n = 31), Fiji  (saliva and stool: n = 132), the USA (stool and dental

plaque: n = 68) and Western Europe (saliva and stool: n = 21). 

c

ba
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To investigate ARG diversity further, the ARG richness was evaluated between pairwise

comparisons of sample types for each cohort with ARG richness defined as the number

of unique ARGs per sample. Although there are no significant difference between saliva

and stool samples from Fiji and Western Europe, both Chinese and USA samples have

significant  differences  in  ARG  richness.  China  and  USA  stool samples  have  a

significantly higher ARG richness than paired China plaque and saliva, and paired USA

plaque and buccal mucosa (Mann-Whitney, paired, two-sided test, p-value < 0.05) (Fig.

2.4).  In  contrast,  the  USA dorsum  of  tongue  contains  a  significantly  higher  ARG

richness than USA stool. Between oral sites, Chinese saliva has a greater ARG richness

than paired dental plaque (Mann-Whitney, paired, two-sided test,  p-value < 0.05). In

addition,  USA  dorsum of  tongue has  a  higher  ARG richness  than  both  plaque and

buccal mucosa,  whilst plaque has a greater ARG richness than buccal mucosa (Mann-

Whitney, paired, two-sided test, p-value < 0.05). It is important to note that while ARG

richness  only  measures  the  gene incidence  regardless  of  expression,  multiple  ARGs

have the potential to be involved in the expression of a single efflux pump complex,

meaning  ARG  richness  may  overestimate  this  potential  expression.  Therefore,  to

determine the impact of this overestimation, the analysis was repeated to exclude ARGs

that regulate or are part of an efflux pump complex. The differences in ARG richness

have the same significance across all paired samples and countries (Appendix 2: Fig.

2K).
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Figure 2.4. Comparing ARG richness between paired body sites. 

ARG richness is defined as the number of unique ARGs for paired samples of individual from China

(dental plaque and saliva: n = 31, stool and dental plaque: n = 30, stool and saliva: n = 31), Fiji (saliva

and stool: n = 132), the USA (buccal mucosa and dental plaque: n = 78, buccal mucosa and dorsum of

tongue: n = 86, dental plaque and dorsum of tongue: n = 89, stool and buccal mucosa: n = 64, stool and

dental plaque: n = 68, stool and dorsum of tongue: n = 69) and Western Europe (saliva and stool: n = 21)

with Mann-Whitney, paired, two-sided test (p-value < 0.05 as *, < 0.01 as **, < 0.005 as ***). Centre line

is median, box limits are upper and lower quartiles, whiskers are 1.5x interquartile ranges and points

beyond whiskers are outliers. 

2.2.4.3 Oral and gut ARG profiles associate with species

Spearman’s correlation analysis between ARG and species abundances were conducted

to predict the origin of ARGs. Only significant correlations are found in saliva and stool

from China, and saliva from the Philippines. The  CfxA β-lactamase family, RlmA(II),

tetQ,  tetA(46),  pgpB, patB  and pmrA ARGs are all  strongly correlated with specific

species found in both countries (Fig. 2.5a, b). The strongest co-occurrence can be found
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in saliva samples from China between APH(3’)-Ia and a Komagataella pastoris strain,

Lactococcus lactis, Enterococcus faecalis and Leuconostoc mesenteroides, whilst pgpB

correlates  with  Porphyromonas  gingivalis.  The highly  abundant  ARG  RlmA(II) in

Chinese  saliva  is  associated  with  Gemella  haemolysans,  Veillonella  parvula and

Streptococcus mitis/oralis/pneumoniae.  In  contrast  to  saliva,  there  are  fewer species

associated with  a  greater  number  of  ARGs in stool  samples  from China.  E.  coli  in

Chinese stool samples is co-associated with many ARGs that encode multidrug efflux

pumps and ARGs from E. coli including ampC β-lactamase, acrA and mdfA (Appendix

2: Fig. 2L). Thus, this analysis has the potential to be a predictive tool of ARG origin in

metagenomes. However, it can only be applied where an ARG or taxon is found in a

high  proportion  (in  this  case,  at  least  half)  of  the  samples  to  ensure  Spearman’s

correlation does not falsely rank many zero-values.
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Figure 2.5. Spearman’s correlation of ARG and species abundance from saliva samples. 

Each heatmap represents correlations of individuals from a) China (n = 31) and b) Philippines (n = 23).

Rows and columns are clustered by hierarchical clustering of Euclidean distance. Columns are coloured

by phylum. P-values are adjusted by Benjamini-Hochberg multiple test correction. Rho shown only where

adjusted p-value < 0.05. 

2.2.5  Discussion

AMR is one of the most serious health problems of recent times.  The advent of high-

throughput sequencing technologies has enabled us to analyse resistomes throughout a

microbiome.  In  this  study,  we provide  key insights  into  the  resistomes  of  different

intraoral  sites  from  healthy  individuals  across  diverse  geographical  locations  and

compare their composition to paired gut resistomes. At a population level, there are both

country and body site-specific differences in the prevalence of ARGs, ARG classes and

resistance mechanisms. It is possible that differences in extraction protocols and batch

effects may have a greater bias towards some ARGs over others. Therefore, we do not

make direct statistical comparisons between cohorts.   For China, the Philippines, USA

and Western Europe, the abundance of ARG classes does not correlate with antibiotic

a b
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prescription rates. A possible reason for this is the prescription data does not include

over-the-counter  antimicrobial  use,  which  is  especially  prevalent  in  China  and  the

Philippines, and thus may underestimate antimicrobial use351,352. In addition, antibiotics

are widely used in husbandry and the fishing industry with poorly understood impacts

on AMR incidence and dynamics in humans61,353,354. Prescription levels for a particular

antibiotic  are  unlikely to  be of  significant  value in  the surveillance  of  AMR in  the

regional  community.  Instead,  determining  the  population  resistome  would  be  more

informative355.

The  abundance  and  diversity  of  ARGs  at  different  body  sites  is  also  of  interest.

Although, there are significantly more distinct ARGs in stool compared to oral samples,

those ARGs present at the highest relative abundances exist in oral samples. There are

several potential reasons why this may be. It is notable that many sites in the oral cavity

(e.g.  plaque and tongue dorsum)  host  highly  complex and robust  microbial  biofilm

structures.  It  has  been  posited  that  the  compact  structure  of  microbes  within  oral

biofilms is a conducive environment for the aquistion of ARGs and their HGT within

biofilms298. Likewise, the generally protective nature of biofilms against antimicrobial

drugs may favour ARG acquisition. It is notable that the dorsum of tongue contains a

higher  diversity  of  these genes  than other  oral  sites.  This  may be explained by the

unique  papillary  structure  on  the  dorsum  of  the  tongue  which  acts  as  complex

microbiological  niche  favouring  the  deposition  of  oral  debris  and  microbes356,  thus

giving  rise  to  a  richer  microbial  community  with  potentially  greater  numbers  of

transient microbes. Another reason could be the difference in species resident in the gut

compared to the oral cavity.  E. coli strains in Chinese stool samples are predicted to
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contain a variety of ARGs, especially of the multidrug class, whereas species found in

Chinese saliva were estimated to contain fewer ARGs. Due to stringent constraints of

the correlation analysis, however, it was not possible to predict the origins for ARGs for

all cohorts. 

Antibiotic  use  leading  to  acquisition  of  ARGs  is  another  potential  factor.

Pharmacokinetics of orally administered antibiotics suggests that the oral  cavity and

oesophagus would be only briefly exposed to the antibiotic during swallowing, whilst

the gut  is  exposed over  a  more prolonged period.  As antibiotics  transit  through the

intestinal  tract,  they  are  gradually  absorbed  via  the  intestinal  epithelium  into  the

bloodstream. Therefore, microbes in the gut exposed to antibiotics for a longer period of

time  due  to  their  increased  bioavailability  will  receive  higher  antibiotic  selection

pressures than those in the oral cavity43. The incidences where the oral cavity is likely to

acquire ARGs from selective pressures of local antibiotics are from topical antibiotics

for  periodontal  infections  or  orally  administered  antibiotics  being  absorbed into  the

bloodstream.

The differences in ARG profiles across body sites has significant implications for the

characterisation and interpretation of resistome studies. Previous shotgun metagenomic

studies have focused almost exclusively on the resistome from the human gut87,308,325,327.

While the gut may be a diverse reservoir of ARGs, whether these genes are particularly

prevalent or have the potential for expression sufficient to drive resistant infections at

other  body  sites  is  not  clear357.  It  is  therefore  imperative  that  to  test  potential

applications  of  non-culture  based  metagenomic  AMR  surveillance,  we  need  to
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characterise  the  resistome  at  different  body  sites  with  different  pharmacokinetic

exposures to antimicrobials. This information can then be integrated with culture-based

susceptibility tests, culturomics358 and functional metagenomic screens359 to determine

the expression potential of these ARGs. In doing so, we will obtain a more complete

picture of the state of AMR within a population. 
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2.2.6 Further discussion

Although this study identified known ARGs from whole metagenomic data, it is likely

to have underestimated the diversity of ARGs across body sites. This is because the

number of identified ARGs was limited to the ARGs that are already defined in CARD.

As discussed in Chapter 1, reference-free approaches, such as functional metagenomics

can identify novel  ARGs.  Functional  metagenomics  of  the gut  resistome of  preterm

infants found 794 ARGs that only had a median of 25.4% amino acid identity with

known  ARGs  in  CARD  (retrieved  20th October  2014)180.  However,  functional

metagenomics is limited by the requirement for ARGs to be expressed and selected by

specific  antibiotics.  Alternatively,  predictive  models  of  potential  genetic  AMR

determinants can be elucidated from whole metagenomes196,360.

This  study also raises  other  questions  including why the resistomes differs between

body sites and how ARGs are acquired in different body sites and populations by HGT

or mutation. Differences in resistomes between GIT sites in this study is thought to be

influenced  by  differences  in  microbial  composition  and  variable  exposures  to

anthropogenic antimicrobials. 

To investigate how the resistome is dependent on microbial composition, the hosts of

these ARGs could be determined using long-read or proximity ligation approaches as

well as short-read sequencing metagenomics to resolve genomes between species and

strains more easily105,318. As microbial composition differs across the gut radially and

longitudinally324, biopsy samples of metagenomes from mucosal lining and lumen from

distal  to  proximal  intestines  would be ideal.  Since  biopsies  are  invasive,  alternative
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technologies could be considered to sample different parts of the gut lumen, such as

ingestible  capsules361.  In  terms  of  understanding  how  differential  antimicrobial

exposures  impact  resistomes  across  body  sites,  a  longitudinal  metagenomics  study

across different body sites could be conducted between individuals before, during and

after antibiotic treatment. 

Although  this  study  was  able  to  identify  homologous  ARGsxvii from  reference

sequences, variants of ARGs, particularly single-nucleotide polymorphisms (SNPs)xviii,

were not  identified.  Profiling SNPs can  inform how ARGs evolve and diverge into

distinct  groups  across  microbial  communities362,  and  potentially  across  human

populations327. Resolving SNPs from whole metagenomic data using a reference-based

approach that relies on calculating read depth is a major challenge363. As metagenomes

consist  of a complex mixture of  genomes (with many being incomplete  and at  low

abundance  levels),  it  is  not  possible  to  estimate  read  depth  accurately.  SNP calling

becomes a difficulty since many genomes of the same species are likely to be closely

related and it is difficult to calculate significance of a small number of variants based on

inaccurate read depth. As discussed in Section 1.5.3.4, functional metagenomics with

antibiotic selection pressures could determine novel ARGs, including variants of known

ARGs. Alternatively,  a  non-reference-based  de  novo method  using  de  Bruijn  graph

structures  of  co-assembled  multiple  genomes  can  identify  SNPs  and  indels  (short

insertions  or  deletions)364,365,  which  could  be  developed  for  more  complex,  whole

metagenomic data366. 

xvii Homologous sequences are similar sequences that are related by evolutionary changes from a 
common ancestral sequence. (Included in Glossary)

xviii A single-nucleotide polymorphism is a substitution of a single nucleotide at a specific position in a 
genome. (Included in Glossary)
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As well as mutations, ARGs can be acquired by HGT and are carried by MGEs. In the

following chapters, I investigate how ARGs may associate with bacteriophages (Chapter

3), plasmids (Chapter 4) and transposable elements (Chapter 5) using tools applied to

the same short-read whole metagenomic data from the human gut and oral cavity. In

contrast to profiling ARGs, bacteriophages, plasmids and transposable elements were

discovered  de  novo without  relying  on  reference  databases.  This  is  because  MGE

reference databases represent a very small proportion of the MGEs in existence and

cannot capture the extent of MGE diversity. Once these MGE sequences were profiled,

associated ARGs were identified by aligning these MGEs against CARD.
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Chapter 3: Bacteriophages and

their Association with the

Resistome
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3 Bacteriophages and their Association with 

the Resistome

3.1 Introduction

Bacteriophages  are  the  most  abundant  viral  components  of  the  human microbiome.

They are viruses that infect and replicate their genome within bacterial or archaeal cells

and are likely to have significant effects on microbial composition and function219,367.

Like  eukaryotic  viruses,  they  can  have  single  or  double  stranded  DNA or  RNA

genomes. They have two principal life cycles: virulent, which destroy bacterial cells

immediately  after  replication;  and  temperate,  during  which  the  phage  integrates  its

genome into the host genome (lysogeny).  The latter is involved in the  HGT of many

genetic elements, including virulence factors. Although phages encode functional genes

that can alter the cellular mechanisms of their hosts99, it is rarer to find ARGs in phage

genomes96.  Nevertheless,  they  may  have  some  contribution  to  the  spread  of  ARGs

across environmental and healthcare ecosystems97. 

Many  studies  that  attempt  to  profile  bacteriophages  in  human  microbiomes  use

computational  analysis  of  faecal  metagenomic  data,  often  following  enrichment  of

VLPs223,368.  Between  2016  and  2018,  750,000 uncultivated  virus  genomes  were

identified  from  metagenomic  datasets,  five  times  greater  than  the  total  number  of

genomes  sequenced  from  virus  isolates369.  These  include  crAssphages,  a  highly

abundant bacteriophage clade currently thought to play a special  role in human and
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primate gut microbiomes370–372;  the discovery of  bacteriophages with  atypically large

genomes greater  than  200  kb  in  length,  known  as  jumbo  phages373;  and  the  more

recently identified megaphages with genomes larger than 500 kb374. A few studies have

profiled  bacteriophages  using  metagenomic  data  from  the  oral  cavity375,376.  The

heterogeneity  of  bacteriophage  genomes  and  the  lack  of  correlation  between  phage

phylogeny and that of their hosts makes classification and host assignment challenging

tasks, leaving a relatively unexplored melting pot of “viral dark matter”368,377. 

Here, bacteriophage DNA was profiled  from  whole metagenomes of the  human  GIT,

specifically comparing gut (represented by faecal samples) with paired saliva and dental

plaque from China, and the dorsum of tongue, dental plaque and buccal mucosa from

longitudinal samples from the USA.  Novel  bacteriophages,  including jumbo phages,

were  identified from  assembled  metagenomic  contigs  using  de  novo  bioinformatic

pipelines,  including  viral  motif  recognition262 and  protein-coding  gene-sharing

networks378,  to  identify  and classify  linear  and  circular  viral  contigs.  Bacteriophage

hosts  were also  predicted  using  CRISPR  spacer  matches  with  reference  bacterial

genomes93. 

In  summary,  a  catalogue  of  78,327  genetically  distinct  bacteriophage  genomes  was

created from 854 oral and gut metagenomes. Bacteriophages and their host profiles are

specific to GIT sites, with more differences found between the oral cavity and the gut

than between different oral sites. The dorsum of the tongue contains a greater diversity

of  bacteriophages  than paired stool  samples,  saliva and buccal  mucosa.  In addition,

bacteriophages can persist in some individuals for months at a time, including phage
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families that are common to both oral cavity and gut, or are specific to a GIT site, such

as the crAss-like family of the gut, Inoviridae of the oral cavity, and Microviridae of the

gut, dorsum of the tongue and saliva. Consistent with greater genotypic diversity, 37

unique circular jumbo phage genomes were found in oral cavities from China and the

USA, most on the dorsum of the tongue from the USA, while none were identified in

paired  stool  samples.  Only 72  distinct  prophages  (i.e.  integrated  into  the  host

chromosome)  were  found  to  contain  ARGs,  mainly  encoding  intrinsic  rather  than

acquired  resistance.  None  of  these  were  jumbo  phages.  The  oral  cavity  provides

conducive environments, such as robust biofilms, that can harbour genetically diverse

phages, but phages of the GIT rarely encode ARGs.

3.2 Methods

3.2.1  Metagenomic data for creating the phage catalogue

A total of 1,061 publicly available metagenomic samples covering the USA, China and

the  Philippines,  all  sequenced  using  Illumina  HiSeq  2000,  were  used  to  create  a

reference phage contig catalogue. Longitudinal USA samples were excluded from the

majority of the study after the first timepoint to ensure each sample was independent,

unless  specified  otherwise.  All  metagenomes  passed  over  half  the  quality  control

metrics in FastQC 0.11.3 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

with these pass rates calculated in MultiQC194. These samples include: 

1) Longitudinal  data  across  two years  with various timepoints  from the Human

Microbiome Project 1 (referred to as USA) containing buccal mucosa (n = 87:
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32 with one, 35 with two, 19 with three and 1 with six timepoints); dorsum of

tongue  (n  =  91:  22  with  one,  43  with  two,  24  with  three  and  2  with  four

timepoints); dental plaque (n = 90: 24 with one, 41 with two, 21 with three, 1

with four and 3 with six timepoints); stool (n = 70: 13 with one, 33 with two, 21

with three, 2 with four and 1 with six timepoints)336.

2) Healthy  controls  and  rheumatoid  arthritis  patients  from  a  Chinese  study

containing dental plaque (healthy: n = 32, rheumatoid arthritis: n = 76); saliva

(healthy: n = 33, rheumatoid arthritis: n = 24); stool (healthy: n = 72, rheumatoid

arthritis: n = 100)331. 

3) Saliva samples (n = 24) from healthy hunter-gatherers and traditional farmers

from the Philippines333.

Raw paired-end  metagenomic  reads  from  Chinese  and  Philippines  samples  were

downloaded  from  EMBL-EBI  (https://www.ebi.ac.uk/metagenomics/).  Paired-end

metagenomic samples  from USA were downloaded from https://portal.hmpdacc.org/.

All USA, China and Philippines samples were collected and sequenced as described in

the following cited studies331,333,336. 

3.2.2  Phage contig catalogue 

The metagenomic reads (processed from Chapter 2: 2.2.3.1 and 2.2.3.2) were assembled

into contigs using SPAdes v3.9.0205 with parameters -k21,33,55 --only-assembler --meta.

Small contigs with a length of less than 3,000 bp were removed. Linear and circular

phage contigs were identified by searching for viral signatures using VirSorter v1.0.5262. 
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The methods in this paragraph were carried out by collaborator, Dr Andrey Shkoporov.

The phage contigs were clustered with multi-alignment using BLASTn v2.6.0207 with

parameters  -evalue  1e-20  -word_size  100  -max_target_seqs  10000 and  redundant

contigs were removed where identity and breadth coverage were both greater than and

equal to 90%. Phage contigs were then clustered into viral clusters using vConTACT2

v0.9.10  with  all  default  parameters378. Taxonomic  classification  of  phage  contigs  to

Order and Family level was predicted using Demovir (build 20 th April 2018) on phage

proteins  with  an  e-value  cut-off  of  1e-5  (https://github.com/feargalr/Demovir).  Non-

phage  viral  families  were  labelled  as  “Other”:  Alloherpesviridae; Ascoviridae;

Baculoviridae; Flaviviridae; Herpesviridae; Iridoviridae;  Marseilleviridae;

Mimiviridae; Nudiviridae; Phycodnaviridae; Picornaviridae; Pithoviridae;  Poxviridae;

and  Retroviridae.  Although  some  phage  clusters  were  labelled  as  non-phage,  the

developers  of  Demovir  recommend against  using  their  classification  to  discriminate

between bacterial, archaeal and eukaryotic sequences from metagenomic samples. The

phage hosts were predicted by aligning phage contigs against a database of CRISPR

spacers as described by Shkoporov et al., 201993. Metadata for the phage catalogue were

compiled using the helper script create_catalogue_dataset.R.

3.2.3  Sequence and functional annotation of jumbo phages

The methods in this paragraph were carried out by collaborator, Dr Andrey Shkoporov.

Circular phage genomes of length > 200 kbp and linear phage genomes of length > 200

kbp that  were  connected  to  these  circular  phages  in  vConTACT2’s  gene-sharing

network  were  put  forward  as  candidate  jumbo  phages  using  the  helper  script
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get_candidate_jumbophages.R. The  scaffold  file  containing  their  genomes  was

generated using the helper script extract_jumbophage_contigs.py.

The candidate jumbo phage genomes were annotated for functional proteins and tRNA

genes.  Protein prediction was conducted using Prodigal v2.6.3210 with parameters  -p

meta. Protein  sequences  were  searched  against  databases  of  HMMs: pVOGs

(downloaded 1st November 2019)255, pFAMs379 (downloaded 2nd September 2019) and

TIGRFAMs380 (downloaded 3rd September 2019),  using hmmsearch v3.2.1209 with e-

value cut-off  of  1e-5.  tRNA genes  were identified from nucleotide  sequences  using

ARAGORN  v1.2.36381 with  parameters  -t  -i  -c  -d  -w and  with  helper  script

clean_aragorn_output.py.  The  hit  with  the  lowest  e-value  and  domain  e-value  was

selected for every query protein with candidate target protein hits for each database.

Next, the hit with the highest bit score and domain bit score was selected for every

query protein with candidate target protein hits from more than one database. The few

remaining  protein  query  sequences  with  the  same  e-values  and  hit  scores  were

deduplicated.  These  steps  were  run  using  the  helper  script

collate_functional_annotations.R. Circular candidate jumbo phages > 200 kbp that did

not contain a major capsid protein were also excluded, leaving a total of 545 putative

jumbo phages. 

3.2.4  Phage annotation in metagenomes

The methods in this paragraph were carried out by collaborator, Dr Andrey Shkoporov.

854 metagenomes from healthy  individuals  were mapped against  the non-redundant

phage  catalogue  using  Bowtie2  v2.3.4.1.  Phage  contigs  (excluding  spurious  jumbo
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phages)  and  phage  clusters  were  quantified  for  each  sample  where  contig  breadth

coverage was 75% or greater using helper script phage_quantification.R. Relative phage

abundance profiles were calculated by scaling the depth coverage of phage contigs that

were divided by total reads per sample. The metagenomes came from the  USA with

buccal  mucosa  (n  =  87:  32  with  one,  35  with  two,  19  with  three  and  1  with  six

timepoints); dorsum of tongue (n = 90: 22 with one, 43 with two, 24 with three and 2

with four timepoints); dental plaque (n = 90: 24 with one, 41 with two, 21 with three, 1

with four and 3 with six timepoints); and stool samples (n = 70: 13 with one, 33 with

two, 21 with three, 2 with four and 1 with six timepoints), China with dental plaque (n =

32); saliva (n = 33); and stool samples (n = 72), and the Philippines with saliva samples

(n = 24). Metadata for the samples is available here: https://tinyurl.com/y6tzb6gz. The

following analysis was conducted in script phage_analysis.R.

3.2.5  Phage diversity

The methods in this paragraph were carried out by collaborator, Dr Andrey Shkoporov. 

In ecology, the  β-diversity measures  the variation of taxonomic composition between

samples, i.e. the ratio between regional and local diversity.  To find differences in  β-

diversity  of  phage  cluster  profiles  between  groups  of  individuals,  the  Bray-Curtis

dissimilarities of phage cluster incidence (presence or absence) profiles were computed

between individuals and visualised using non-metric multidimensional scaling (NMDS).

Silhouette analysis of k-medoids using the cluster package v2.1.0 was applied to select

the number of distinct groups with the largest  average silhouette width  (eq. 2.1).  k-

medoids is a clustering algorithm where data points are grouped into k clusters with a

https://tinyurl.com/y6tzb6gz
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specified  k value.  Clusters  are  partitioned  to  minimise  the  distance  between  points

within a cluster and a designated data point as the centre of the cluster. 

The Bray-Curtis dissimilarity is defined as:

(eq. 3.1) BCij=1−
2 Cij

Si+S j

where  Cij is the number of phage clusters shared in both sites  i and  j.  Si is the total

number of phage clusters in site i, and Sj is the total number of phage clusters in site j.

In  contrast  to  the  β-diversity,  the  ɑ-diversity  measures  the  variation  of  taxonomic

composition  within  a  sample.  The  ɑ-diversity  was  calculated  as  the  phage  cluster

richness which is the number of unique phage clusters for each sample. Only samples

with greater than 100 phages were included. Individuals with samples containing less

than or equal to three clusters were excluded from the group comparison. The phage

cluster richness was compared between paired GIT sites from the same individuals in

each of the following groups:  China dental plaque vs. saliva (n = 30); China stool vs.

saliva (n = 30); China stool vs. dental plaque (n = 30); USA buccal mucosa vs. dental

plaque (n  = 45);  USA buccal  mucosa  vs.  dorsum of  tongue (n  =  45);  USA buccal

mucosa vs. stool (n = 36); USA dental plaque vs. dorsum of tongue (n = 86); USA

dental plaque vs. stool (n = 67); and USA dorsum of tongue vs. stool (n = 68). Since the

number of phage contigs in each sample is significantly linearly correlated with Phage

Cluster Richness (p < 2.2x10-16) (Appendix 3: Fig. 3A),  the number of phage clusters

for each sample were subsampled to the smallest number of phages found in a sample

for each paired comparison. The phage cluster richness between samples in each group

was tested for statistical significance with a Two-sided Wilcoxon Rank Sum Test.
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3.2.6  Microbial composition

MetaPhlAn2 v2.6.0349 was used to identify the composition of bacteria and archaea from

samples  apart  from longitudinal  USA samples  (as  described  in  Chapter  2,  Section

2.2.3.9). One  dorsum  of  tongue  USA sample  did  not  have  bacterial  nor  archaeal

microbial predictions. 

The methods in this paragraph were carried out by collaborator, Dr Andrey Shkoporov.

Procrustes analysis was applied to visualise the superposition of NMDS dimensions of

phage  incidence  profiles  on  microbial  genera  incidence  profiles  using  the  protest

function in the vegan package v2.5.6 in R. Procrustean randomisation test (PROTEST)

was performed with 999 permutations to a significance of p = 0.001.

3.2.7  Longitudinal analysis of phages

The  stability  of  the  phage  community  within  the  microbiome was  investigated  by

computing the number of timepoints each phage cluster is found from each individual

and GIT site in the longitudinal USA data. The proportion of phage clusters and reads

mapped against these clusters were calculated for each number of sampled timepoints

available for each individual and GIT site: buccal mucosa (n = 20), dental plaque (n =

24), dorsum of the tongue (n = 26) and stool (n = 24). Persistent phage clusters are

defined as being found in three or more timepoints, whereas transient phage clusters are

defined as being found in less than three timepoints. The Bray-Curtis dissimilarities

were computed between persistent and transient phage cluster incidence profiles from
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GIT sites of individuals containing both persistent and transient phage clusters: buccal

mucosa (n = 18), dental plaque (n = 23), dorsum of the tongue (n = 25) and stool (n =

24).  NMDS was applied to scale the dissimilarity into a two-dimensional ordination

using  the  metaMDS  function  in  the  vegan  package  v2.5.6  in  R.  Permutational

multivariate analysis  of variance  (PERMANOVA) analysis  was performed using the

adonis function in the vegan package.

3.2.8  ARG annotation of phages

Phage  contigs  were  annotated  for  ARGs  by  mapping  against  CARD  v3.0.0  using

BLASTn v2.10.0 with parameters -evalue 1e-5. Hits were filtered by 90% identity.

3.2.9 Code availability

The  code  for  all  analysis  (including  contributions  from  Dr  Andrey  Shkoporov)  is

available from https://github.com/APC-Microbiome-Ireland/phageome_analysis

3.3 Results

3.3.1  Phage composition and diversity differs between GIT sites

A  catalogue  of  139,929  phage  contigs  were  identified  from  854  oral  and  gut

metagenomes.  Phage  contigs  were  grouped  into  clusters  using  vConTACT2378,  a

software based on gene-sharing profiles that has been applied to stratify uncultured viral

populations  in  a  variety  of  environments,  including  human  gut  metagenomes93,368.

https://github.com/APC-Microbiome-Ireland/phageome_analysis
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75,680  phage contigs were clustered  into 14,078  phage clusters, while the  remaining

64,249 remain as singletons, making 78,327 distinct genotypes. It is more common to

find phage contigs that are unique to one sample than phage clusters found, meaning

phage contig profiles are more variable than phage cluster profiles (Appendix 3: Fig.

3B).  β-diversity was evaluated with the Bray-Curtis  dissimilarity  metric from phage

cluster abundance profiles to investigate differences between metagenomes. Samples

were  clustered  using  Silhouette  analysis  on  k-medoids  of  NMDS dimensions.  Four

groups were generated (Fig. 3.1a). Most phage clusters are exclusively found in either

Group 2, 3 or 4 or are shared between Group 2 and 3 (Fig. 3.1b). The composition of

these groups is dominated by samples from a particular GIT site (Fig. 3.1c). Groups 1 to

3 contain all oral sites: Group 1 consists of mostly buccal mucosa, Group 2 contains

mostly  dorsum  of  tongue  and  saliva,  and  Group  3  has  mostly  dental  samples.  In

contrast,  Group 4 contains exclusively stool samples. These results reveal that many

phage clusters are solely found in either dorsum of tongue (Group 2), dental (Group 3)

or  stool  samples  (Group 4),  but  most  phage  clusters  that  are  shared  occur  in  both

dorsum of tongue and dental sites. Hierarchical clustering of the relative abundance of

phage clusters  also  shows GIT sites  can be differentiated  by phage cluster  profiles,

especially between dental, dorsum of tongue and stool samples (Appendix 3: Fig. 3C).

GIT sites have distinct phage cluster profiles, and phage clusters that are shared are

mostly found in oral sites. Incomplete metadata on sex and age meant that individual

variation could not be considered (Appendix 3: Fig. 3D).

Additionally, the  α-diversity of the phage cluster composition was compared between

paired GIT sites from China and the USA. The Phage Cluster Richness, i.e. the number
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of unique phage clusters, was evaluated for every paired sample. Dental plaque from the

USA (p = 2.84x10-4) and from China (p = 0.0476), and dorsum of the tongue samples

from the USA (p = 1.89x10-7) have a significantly greater Phage Cluster Richness than

stool samples (Two-sided Wilcoxon Rank Sum Test)  (Fig.  3.1d). USA dorsum of the

tongue  samples  also  have  a  significantly  higher  richness  than  dental  plaque  (p  =

0.0469). Buccal mucosa from the USA and saliva from China have the lowest richness

compared  to  all  other  paired  GIT sites  (saliva  vs.  dental  plaque  from China:  p  =

2.94x10-6, saliva vs. stool from China: p = 1.93x10-4, buccal mucosa vs. dental plaque

from the USA: p = 3.91x10-7, buccal mucosa vs. dorsum of the tongue from the USA: p

= 1.26x10-8, and buccal mucosa vs. stool from the USA: p = 0.00175). 
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Figure 3.1. Phage incidence and abundance profiles. 

a) NMDS  of  Bray-Curtis  dissimilarities  between  phage  incidence  profiles  of  samples  (excluding

longitudinal  USA).  Ordination  coordinates  are  grouped  by  k-medoids  clustering,  where  number  of

groups,  k, has the largest Silhouette width. USA buccal mucosa (n = 87), dorsum of tongue (n = 90),

dental plaque (n = 90) and stool (n = 70); China dental plaque (n = 32), saliva (n = 33) and stool (n = 72);

and Philippines saliva (n = 24).  b) Number of viral clusters in each group. c) Percentage of samples in

each group from 1a, labelled by GIT site and country.  d)  Phage Cluster Richness between paired GIT

sites.  Phage  Cluster  Richness  is  defined  as  the  number  of  unique  viral  clusters  in  a  sample  that  is

subsampled to  the smallest  number  of  non-unique clusters.  Phage Cluster  Richness  is  calculated for

samples of individuals from China (dental plaque and saliva: n = 30, stool and saliva: n = 30, stool and

dental plaque: n = 30) and the USA (buccal mucosa and dental plaque: n = 45, buccal mucosa and dorsum

of tongue: n = 45, buccal mucosa and stool: n = 36, dental plaque and dorsum of tongue: n = 86, dental

plaque and stool: n = 67, dorsum of tongue and stool: n = 68) (excluding longitudinal USA) with Two-

sided Wilcoxon Rank Sum Test (p < 0.05 as *, < 0.01 as **, < 0.005 as ***). Centre line is median, box

limits are upper and lower quartiles, whiskers are 1,5x interquartile ranges and points beyond whiskers

are outliers.

a d

b

c
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Most  oral  sites  and  stool  metagenomes  contain  a  high  abundance  of  Siphoviridae,

Myoviridae and Podoviridae phage families but there are some distinctive differences in

the less abundant phage families between GIT sites  (Appendix 3: Fig. 3E). Bacterial

hosts for phages were predicted using Demovir  (https://github.com/feargalr/Demovir).

Although host bacteria could only be predicted for  11.8% (16,513/139,929)  of phage

contigs,  these  highly  abundant  phage families  infect  a  range  of  bacterial  genera

(Appendix 3: Fig. 3F). crAss-like phage clusters are only found in stool samples and in

Prevotella spp. as host, apart from two saliva and two dorsum of the tongue samples. In

contrast to the crAss-like family,  Inoviridae are found almost exclusively in oral sites

and predicted to infect  Neisseria species.  Microviridae are present in dorsum of the

tongue, saliva and stool samples but are far less prevalent in buccal mucosa and dental

plaque.  Prevotella in oral sites and Faecalibacterium are the only genera predicted to

contain  Microviridae.  Bicaudaviridae are  only  found  in  ten  dorsum  of  the  tongue

samples  and  are  represented  by  only  one  phage  cluster.  There  are  64  crAss-like

(Appendix  3:  Fig.  3Ga),  30  Inoviridae  (Appendix  3:  Fig.  3Gb), 56  Microviridae

(Appendix 3: Fig. 3Gc), 3,433 Myoviridae (Appendix 3: Fig. 3Gd), 728 Podoviridae

(Appendix  3:  Fig.  3Ge)  and 6,967  Siphoviridae  (Appendix  3:  Fig.  3Gf) phage

clusters.  Across  highly  abundant  families  (i.e.  Siphoviridae,  Myoviridae and

Podoviridae), GIT sites are clustered by the incidence of phage clusters suggesting that

phage  clusters  of  the  same family  are  also  specific  to  GIT site.  In  terms  of  lower

abundance families found across multiple GIT sites, there is a pronounced separation of

oral sites and stool in Microviridae phage clusters, with some separation of oral sites by

Inoviridae phage  clusters.  Notably,  the  Microviridae family  is  dominated  by  a  few
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phage  clusters  in  oral  sites  in  contrast  to  stool  that  contains  many  different  phage

clusters. 

3.3.2  Phage hosts match varied microbial composition across 

GIT sites

Bacteriophages have previously been shown to modulate the microbiota composition (in

particular the bacterial and archaeal composition) in the mouse gut via phage infection

and lysis of specific host bacteria219. To investigate whether microbial composition is

associated  with  distinctions  in  phageome  profiles  between  GIT sites,  bacterial  and

archaeal  taxonomies  were  profiled  using  MetaPhlAn2349.  Clustering  of  taxonomic

composition is associated with GIT site, with greater separation between oral sites and

gut (Fig. 3.2a). Procrustes analysis was applied to match corresponding points between

phageome and taxonomic profiles. PROTEST was then used to determine whether two

profiles showed significant association. Microbial composition and phageome profiles

correlate and co-locate by GIT site, especially between stool and dental samples (Fig.

3.2b) (0.70 to a significance of p = 0.001 in PROTEST). Predicted phage hosts group by

GIT site with very little overlap between gut and oral sites (Fig 3.2c, Appendix 3: Fig.

3H).  Actinomyces,  Atopobium, Campylobacter,  Fusobacterium, Neisseria  and Rothia

genera, that are mostly found in the oral cavity  (Appendix 3: Fig. 3I), are predicted

hosts of oral site phage (Fig 3.2c). Likewise, Bacteroides, Bifidobacterium, Clostridium,

Roseburia, Ruminococcus and Parabacteroides genera that are found more exclusively

in stool samples are also potential phage hosts in the gut. However,  Eubacterium,  a

bacterium  mostly  found  in  stool,  and  Haemophilus, Prevotella,  Streptococcus and

Veillonella,  bacteria mainly residing in the oral sites, are prevalent across all oral sites
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and the gut. Upon closer inspection of the abundance of these genera at a species level,

there are some species that are more prevalent in either the oral cavity or the gut. For

instance, E. brachy and E. saphenum are species of Eubacterium that are found almost

exclusively  in  the  oral  cavity  (Appendix  3:  Fig.  3J).  Likewise,  P.  copri mostly

represents Prevotella, and is found almost exclusively in the gut. Generally, phage host

predictions match microbial composition at a genus level.



160

Figure  3.2.  Relationship  between phage  profiles  and microbial  composition,  and abundance  of

predicted phage hosts. 

a) NMDS of Bray-Curtis dissimilarities between microbial taxa incidence profiles of samples (excluding

longitudinal USA) labelled by GIT site. b) Procrustes rotation of NMDS coordinates between microbial

genera profile from 2a (black) and phageome profile from 1a (red). Correlation in symmetric Procrustes

rotation = 0.70 (p = 0.001; 999 permutations; PROTEST). c) Log10 of the proportion of reads mapped to

phage contigs with predicted host for each sample, clustered by hierarchical clustering, x-axis coloured by

GIT site and y-axis labelled by genus of predicted host. USA buccal mucosa (n = 87), dorsum of tongue

(n = 90), dental plaque (n = 90) and stool (n = 70); China dental plaque (n = 32), saliva (n = 33) and stool

(n = 72); and Philippines saliva (n = 24).

a b

c
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3.3.3  Stability of phage clusters across longitudinal 

metagenomes

To clarify whether phages that are associated with a GIT site are also stable over time,

phage clusters were profiled in longitudinal samples from the USA taken over a two-

year period with a minimum of two and maximum of six sampling timepoints. The

proportions of total phage clusters  (Fig.  3.3a) and total reads mapped to these phage

clusters  (Fig.  3.3b) drops  over  time  across  all  GIT sites,  but  this  is  unclear  from

timepoints 4-6 in buccal mucosa, 4 in dorsum of tongue and 5-6 in stool due to a small

number of samples. 

To compare the association between stable and unstable phage clusters and GIT sites,

the longitudinal phageome was separated empirically into persistent and transient phage

cluster profiles. Persistent phage clusters are defined as being present in three or more

timepoints in a given GIT site, whereas transient phage clusters are found in less than

three timepoints. There are 194 (buccal mucosa), 1,377 (dental plaque), 1,423 (dorsum

of the tongue) and 1,899 (stool)  persistent phage clusters,  and 1,323 (buccal mucosa),

2,795 (dental plaque), 3,246 (dorsum of the tongue) and 2,773 (stool)  transient phage

clusters.  NMDS of persistent and transient phage cluster profiles in an ordination of

two-dimensions  appears  to  show  that  longitudinal  samples  are  more  clustered  by

individual  in  persistent  (Fig.  3.3c) compared  to  transient  profiles  (Fig.  3.3d).

PERMANOVA was applied to persistent and transient phage cluster profiles for each

GIT site to find which category has the highest individuality. A greater percentage of
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variance  of  persistent  than  transient  phage  clusters  can  be  explained  by  individual

variability  across  GIT sites.  78.1% (buccal  mucosa),  72.3% (dental  plaque),  78.4%

(dorsum of the tongue) and 85.5% (stool) variance of persistent phage cluster profiles

and 43.9% (buccal mucosa), 41.9% (dental plaque), 47.0% (dorsum of the tongue) and

48.6% (stool) variance of transient phage cluster profiles can be explained by individual

(p < 0.001, PERMANOVA). All viral families are represented in both persistent  (Fig.

3.3e) and  transient  phage clusters  (Fig.  3.3f).  Noticeably,  the  crAss-like  family  are

prominently represented in persistent phage clusters of stool samples. Both persistent

and transient  phage  clusters  are  found  at  various  levels  of  prevalence  in  these

individuals (Fig. 3.3g). The percentages of persistent phage clusters from one individual

also seen in another are 76.0 ± 21.7 (buccal mucosa), 80.8 ± 5.7 (dental plaque), 81.3 ±

11.1 (dorsum of the tongue) and 75.9 ± 13.4 (stool), and for transient clusters are 69.7 ±

11.0 (buccal mucosa), 83.4 ± 7.2 (dental plaque), 81.9 ± 5.3 (dorsum of the tongue) and

76.9 ± 7.1 (stool) (median ± interquartile range). There are no significant differences in

sharing of persistent or transient phage clusters between individuals for each GIT site (p

= 0.477, Wilcoxon Rank Sum Test).
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Figure 3.3. Phage cluster stability in longitudinal USA oral and gut samples. 

Proportion of  a) phage clusters and  b) reads mapped to phage clusters,  in one to  six  timepoints  for USA

individuals with at least three sampling timepoints (buccal mucosa: n = 20, dental plaque: n = 24, dorsum of

the tongue: n = 26,  stool:  n = 24). Non-metric multidimensional scaling of the Bray-Curtis  dissimilarities

between phage clusters incidence profiles of samples with c) persistent and d) transient phage clusters. Points

represent samples and lines joining points represent grouping samples from the same individual and GIT site

(buccal mucosa: n = 18, dental plaque: n = 23, dorsum of the tongue: n = 25, stool: n = 24). Proportion of reads

that were mapped to phage clusters, coloured by viral family, containing only. No convergent solutions were

found. Proportion of reads mapped to e) persistent and f) transient phage clusters for individuals in c) and d).

“Other”  represents  non-phage  viral  families,  Alloherpesviridae,  Ascoviridae,  Baculoviridae,  Flaviviridae,

Herpesviridae,  Iridoviridae,  Marseilleviridae,  Mimiviridae,  Nudiviridae,  Phycodnaviridae,  Picornaviridae,

Pithoviridae, Poxviridae and Retroviridae. Figure 3.3. continued on next page.
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Figure 3.3. continued: g)  Prevalence of transient and persistent phage clusters in the same individuals

ordered by decreasing prevalence of total and persistent phage clusters. 

3.3.4  Very few phage genomes contain ARGs

77 (0.055%) phages were found to associate with ARGs. Out of these, 24 were part of

phage clusters while 48 were left as singletons, leaving 72 distinct genotypes. These

phages carried one ARG each (an average of one ARG per phage cluster or singleton).

All of their genomes are linear and 77.9% (60/77) carry integrase genes, indicating most

of them are integrated as prophages in the host genome. This is in contrast to 25.8%

(35,221/136,489)  of  all  linear  phages  that  have  integrases.  The distribution  (i.e.  the

cumulative distribution function)  of the genome sizes of phages that  carry ARGs is

significantly  higher  than  that  of  phage  genomes  that  do  not  (p-value  <  2.2x10 -16,

Kolmogorov-Smirnov test). Many of these phages originate from stool samples, while

others are derived from buccal mucosa, dental plaque and dorsum of the tongue samples

(Fig.  3.4).  Phages  from  the  gut  stool  samples  contain  a  broad  range  of  ARGs,

particularly those conferring resistance to multiple antimicrobials by efflux pump and

non-efflux  pump mechanisms.  However,  RlmA(II),  mel,  hmrM,  ErmX and  the  CfxA

family  are  exclusively  found  in  oral  sites.  In  addition,  the  hmrM gene,  coding  for
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fluoroquinolone and acridine dye efflux,  is shared between oral sites from the same

individuals.

Figure 3.4. ARGs in 77 phages. 

Each circle represents a unique phage where circle size is scaled by log10 of the genome size in bp.

Circles are colour-coded by GIT site and country, and those with numbers represent phages originating

from the same individual. The number marks the particular individual. n = 32 from China and n = 20 from

the USA (including longitudinal USA samples). Predicted host genera where identifiable are stated in

labels below the circles. ARG classes are described on the right hand side. ARGs that are part of the

multidrug class confer resistance to three or more drug classes. Classes that include efflux are those ARGs

that code for efflux pumps that pump antimicrobials out of the cell.

Bacteroides

Prevotella

Haemophilus

Pasteurella
Megamonas

Streptococcus

Atopobium

Klebsiella
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3.3.5  Circular jumbo phages are commonly found in the oral 

cavity but not in the gut

Most phages have a genome size of less than 200 kbp, but  551 phage  contigs were

found with genome sizes greater than 200 kbp, known as jumbo phages (Fig. 3.5a). 368

of these jumbo phages belong to 108 unique phage clusters, while 183 jumbo phages do

not belong to any cluster  (Supplementary Data 3.1:  https://tinyurl.com/y4gnasxn).

96 genomes were circularised and are located in oral samples, in particular the dorsum

of tongue, but not in stool samples (Fig. 3.5b). This is despite the fact that stool samples

have  the  highest  proportion  of  contiguous  metagenomic  assemblies  above  200  kbp

compared to oral sites (Appendix 3: Fig. 3K). Circular jumbo phage genomes are not

present in saliva from the Philippines, but this could be due to fewer assemblies. Three

of the largest circular jumbo phage genomes that are above 300 kbp are all located in

dorsum of  tongue samples  from the  USA  (Fig.  3.5c).  Of  the  six  linear  megaphage

genomes above 500 kbp, one is found in a stool sample from China, and the others from

three dental plaque and two from dorsum of tongue samples from the USA. 

https://tinyurl.com/y4gnasxn
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Figure 3.5. Prevalence of jumbo phages. 

a) Histogram of phage genome sizes in bp. b) Percentage of samples (including USA longitudinal) that

contain a jumbo phage (size >= 200 kb) from USA (n = 87 buccal mucosa, n = 90 dorsum of tongue, n =

90 dental plaque and n = 70 stool), China (n = 32 dental plaque, n = 33 saliva and n = 72 stool), and the

Philippines (n = 24 saliva).  c) Sizes of unique jumbo phage contigs found in cohort. Red dashed line

represents 200 kb cut-off. 

81 circular jumbo phage genomes are found in 22 phage clusters and the remaining 15

are  singletons,  meaning  37 distinct  circular  jumbo  phage  groupings  were  identified

(Supplementary Data 3.1: https://tinyurl.com/y4gnasxn). In some cases, both linear

and circular jumbo phage genomes are members of the same phage clusters. 29 phage

clusters containing 141 jumbo phages are persistent, i.e. found in the same GIT site in

more than two timepoints. Ten phage clusters with 87 jumbo phages in the oral cavity

are found across more than one country, specifically, four from China, the Philippines

and the USA, five from China and the USA, and one from the Philippines and the USA.

b

c

d
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One phage  cluster  contains  circular  and linear  jumbo  phage genomes  that  are  both

persistent and found in all three countries. 

Most of the predicted protein-coding genes of these jumbo phages have hypothetical

functions,  while  others  mainly  encode  proteins  for  replication  and  nucleic  acid

metabolism (Fig.  3.6).  Although ARGs tend to be found in larger genomes of phages,

no ARGs were found in these jumbo phage genomes.  However,  auxiliary metabolic

genes  may provide an alternative pathway to modulating resistance to antimicrobial

chemicals. Glutaredoxin, being the third most prevalent auxiliary metabolic gene, is a

redox  enzyme  that  catalyses  the  reduction  of  disulphide  bonds  of  substrates  with

cofactor glutathione382. 
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Figure 3.6. Functions and associations of protein-coding gene in jumbo phages. 

Number of jumbo phages (50 or greater) containing proteins coloured by functional category. Complete

list of functional annotations for each jumbo phage is available here: https://tinyurl.com/yxmej8bu. 

3.4 Discussion

Bacteriophages are a major but largely neglected component of the oral microbiome.

With  their  ability  to  introduce  and  transport  genes  between  strains,  as  well  as

modulating composition through lytic activity,  they have a significant impact on the

population  and  function  of  the  microbiome  as  a  whole.  Recent  advances  in

bioinformatics  and  high-throughput  sequencing  now  allow  us  to  explore  this

community.  In  this  study,  we  defined  the  composition  of  the  oral  phageome  and

https://tinyurl.com/yxmej8bu
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compared it  with  the  gut  phageome.  Firstly,  we showed distinct  phageome profiles

between sites of the GI tract,  particularly between the gut and the oral  cavity,  with

sharing of phage clusters between proximal oral sites. Variations in phageome profiles

are likely to be associated with differences in bacterial compositions of these sites that

are characteristic of the gut and the oral cavity15.  It has been observed previously that

phages,  particularly crAss-like,  are both stable and individual-specific in  the gut16,29.

Although we did not find the same levels of crAss-like phages in the oral cavity, other

phage clusters can persist for months in different oral sites and are more individual-

specific  than  transient  phage  clusters.  However,  we  cannot  rule  out  that  other  less

persistent  phage clusters  in  some individuals  may be attributed  to  lower abundance

phage contigs not being picked up in our metagenomic pipeline. 

Very  few  phage  genomes  contain  putative  ARGs,  consistent  with  previous

investigations, suggesting phages may not be a major source of MGEs carrying ARGs96.

Given that all ARG-carrying phage genomes were linear and most of them included

integrases, they predominantly have lysogenic behaviour and are likely to be integrated

into host DNA as a prophage. Most ARGs associated with these potential prophages

mainly encode intrinsic resistance197. One of these genes encodes ACI-1, a β-lactamase,

found in one stool sample from China. Recently, it has been shown ACI-1 is prevalent

worldwide  in  human gut  microbiomes  and atypically  carried  by  transposons  within

propohages383. A few phages were associated with ARGs thought to be acquired within

the last two decades including  ANT(6)-Ib384,  lnu(C)385,  lsaE386,  mel,  mefA,  oqxB387 and

vgaC388. 



171

Jumbo phages with circularised genomes were identified in most oral sites, particularly

on the dorsum of the tongue from USA samples, but were not found in paired stool

samples. The lack of circularised jumbo phages in stool samples is interesting given that

stool contains large metagenomic assemblies and a higher diversity of phage clusters

than saliva and buccal mucosa. Circularised jumbo phages have already been discovered

in  adult  faecal  samples  from  the  Bangladesh,  Tanzania,  Peru  and  the  USA92,389.

However,  in  a  recent  study,  19  circularised  jumbo  phages  were  identified  in  saliva

compared to only one in stool samples from pregnant women in the USA, suggesting

the oral cavity may have a naturally higher prevalence of jumbo phages389. 

A jumbo phage’s large genome size makes it possible for it to carry a broad range of

genes373.  A rich set of both viral and bacterial proteins in jumbo phage genomes  are

found. No ARGs were found but instead there was a high prevalence of the auxiliary

metabolic  gene  coding  for  glutaredoxin.  It  has  been  shown  that  Pseudomonas

aeruginosa with mutated monothiol glutaredoxin was more susceptible to polymyxins, a

last-line antibiotic for multidrug-resistant bacteria, although the exact mechanism is not

known390.  Phages may contribute to AMR by more than just HGT of ARGs through

encoding  metabolic  processes  that  can  bypass  antimicrobial  targets.  Bacteriophage

genes that are homologous with bacterial genes are likely to have been acquired from

host sequences during a previous infection event391. Lysogenic phages are also required

to adapt their genetic machinery to integrate and cooperate with the host genome. This

may explain  why we found a relationship  between the  incidence  of  specific  jumbo

phage proteins and their predicted hosts. Since we could only predict bacterial hosts for

11.8% of phages (including jumbo phages), functional protein profiles may be able to
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aid host predictions, especially where CRISPR spacer reference information is lacking.

Phage  hosts  can  also  be  refined  more  accurately  at  a  metagenomic  level  using

techniques  such as  SMRT metagenomic  sequencing277,  single-cell  viral  tagging284 or

using de novo computational methods391.

The dorsum of the tongue and dental  plaque contain the highest  diversity  of phage

clusters compared to other sites, as well as the greatest prevalence of jumbo phages.

This could be because bacteria in these sites are largely located in biofilms, which serve

to  protect  microbial  communities  as  well  as  phages  in  hostile  environments,  and

bacteriophages themselves have been shown to promote biofilm formation392. Dense,

protective  layers  of  microbes  and  their  EPS  matrix  in  biofilms  could  provide  an

opportunistic  environment  for  the  evolution  of  disparate  phages,  including  jumbo

phages with extended genetic machinery and metabolic capacity373.

Although we only find circularised jumbo phages in oral sites and a higher diversity of

phage clusters on the dorsum of the tongue, we cannot rule out that the gut also may

contain  comparable  levels  of  diverse  phages.  It  is  possible  that  the  total  phage

composition in the gut could be misrepresented in stool metagenomes. Unlike sampling

oral sites of particular physical locations, such as dental plaque, surface of the tongue

and mucosa from the inner cheek, sampling faecal matter is unable to capture the spatial

microbial  community  structure  of  the  gut,  both  radially  and  longitudinally393.  The

microbial community structure of the human gut is of considerable importance to the

dynamics  of  bacteriophage  populations.  Studies  applying  transmission  electron

microscopy  of  human  gut  biopsies  have  shown  higher  levels  of  bacteriophage
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colonisation  in  the  colonic  mucosa  layer394 than  in  faeces  and  caecum395.  Several

existing models (piggyback-the-winner396 and kill-the-winner397) have been proposed to

explain  this  biogeographical  variation  in  bacteriophage  density  across  the  radial

direction in  the gut4.  Lysogeny dominates  in  low virus  to  microbe ratios  in  the gut

lumen by the piggyback-the-winner model,  but switches to the lytic cycle in higher

microbial densities of the mucin layer by the kill-the-winner model. 

Already,  significant  contributions have been made in the discovery of multitudes  of

novel  bacteriophage  genomes  in  humans,  animals,  outdoor  and  contained

environments92,372,374,389. However, further investigations into how genetic and functional

variations are manifested at more specific biogeographical sites are required. With better

structural resolution, it will be possible to capture the extent of genetic diversity and

profile  the  dynamics  of  distinct  phages  in  different  human  microbiomes,  such  as

biofilms on the surface of the tongue. Clinically, there has been renewed interest  in

using  phage therapy with other  antimicrobial  therapies  to  control  biofilms392.  Phage

therapy exploits the action of lytic phages that infect and lyse specific bacteria.  In the

future,  combinations  of  genotypic  attributes  that  influence  phage  persistence  and

interactions with their hosts could be used to select or design phages for eradicating

chronic infections, like periodontitis and dental caries caused by consortia of organisms

in biofilms398. Given there seems to be very little risk of acquiring ARGs from phages,

phage therapy should be seriously considered for eradicating AMR infections where last

resort antimicrobial treatments fail. 
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Chapter 4: Plasmids and

Resistance Plasmids
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4 Plasmids and Resistance Plasmids

4.1 Introduction

Plasmids are DNA molecules that range from less than a kilobase to a megabase in size

and replicate  independently  within  a  host  cell  (replicons).  They  are  separate  from

chromosomal DNA and most commonly found in a circular, double-stranded form in

bacteria. Some plasmids include genes that encode traits for resistance to antimicrobials

and heavy metals, also known as resistance plasmids.  Many studies focus on plasmids

from single or several strains isolated from microbial colonies. This has been useful for

determining whether particular opportunistic pathogens have a role in the propagation

of  known  resistance  plasmids  in  GIT  sites,  such  as  Salmonella in  the  gut220 and

Fusobacterium nucleatum in  the  oral  cavity399.  However,  targeted  non-metagenomic

approaches  like  this  cannot  be  applied  to  discovering  new plasmids  and  resistance

plasmids. Alternatively, high-throughput TRACA can capture plasmids by inserting a

transposon with an origin of replication that are then cloned into a host bacterium226 or

inverse-PCR230 can  be  applied  to  discover  small  plasmids  in  metagenomic  samples.

However, both these approaches are highly selective for smaller plasmids.  

In  contrast  to  isolation  and cultivation studies,  there has  previously  been very little

research into resistance plasmids from short-read whole metagenomics, including in the

GIT. Due to their large size, repetitive sequences and modular structure, it is especially

challenging to construct plasmid genomes from short-read sequences. Thus it becomes

harder to detect larger plasmids (> 50 kbp) than smaller plasmids (< 10 kbp) from short-
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read metagenomic data using currently available tools400. Multiple studies have applied

other  biological  approaches  to  profile  plasmids  (including plasmids  carrying  ARGs)

from short-read metagenomics, such as proximity ligation279–281.  However, even when

plasmid genomes are isolated, it is especially challenging to identify the bacterial host

of  origin  using  computational  approaches  alone.  Proximity  ligation  and  non-

computational binning approaches, such as DNA methylation motifs, can be used to

overcome some of these problems, thereby aiding host predictions277. 

Computational tools are being developed and adapted to support plasmid detection from

short-read metagenomic data,  such as plasmidSPAdes,  Recycler,  cBar  and PlasFlow.

The most recent and well-established tools, plasmidSPAdes and Recycler, use assembly

graphs that represent the final assemblies of metagenomes. An assembly graph consists

of nodes of sequences that are connected by edges representing overlaps. The assembly

tools resolve paths across the assembly graph to generate continuous contigs. However,

sometimes large assembly graphs contain a mixture of both chromosomal and plasmidic

edges where sequences are common to both types of DNA. Moreover, plasmids with

repeated sequences form loops that traverse the edges of these repeats more than once.

To overcome these challenges, both tools rely on finding a complete circular plasmid by

taking the path along the graph with the most uniform coverage of edges. Although this

approach can work well with single isolates where uniform covered cycles can be easily

distinguished,  this  can  be  problematic  for  complex  metagenomic  datasets  where

coverage gets confounded by the presence of multiple genomes. Both plasmidSPAdes

and Recycler were benchmarked against datasets containing short reads simulated from

individual bacterial genomes with 148 plasmids400. PlasmidSPAdes and Recycler were
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found to have low precisions (number of correct predictions divided by the total number

of predictions) of 0.78 and 0.30, respectively, meaning these tools are inapplicable to

metagenomic datasets with varying coverages. Recently, a plasmid assembly tool called

metaplasmidSPAdes,  was adapted from plasmidSPAdes,  which  was able  to  discover

novel plasmids from short-read metagenomic data,  including ones carrying ARGs269.

The tool iteratively traverses subgraphs while increasing coverage depth until  cyclic

contigs of candidate plasmids are found. The plasmids are verified by searching their

protein-coding regions against HMMs of putative plasmid proteins. The frequency of

matches is used to train a naïve Bayesian classifier to remove noise of false matches and

classify the contig as either plasmidic or chromosomal. 

Here, metaplasmidSPAdes was applied to create a catalogue of plasmids from short-

read metagenomes across the human GIT. Furthermore, the composition of plasmids

and ARG-carrying plasmids were examined across human oral sites and the gut from

China and the USA. 

4.2 Methods

4.2.1  Creating a plasmid catalogue

A catalogue of plasmids was created using 624 metagenomic samples from two cohorts:

1) Human Microbiome Project (referred to as USA)336 containing buccal mucosa (n

= 61: 17 with one, 27 with two, 16 with three and 1 with six timepoints), dorsum

of tongue (n = 61: 11 with one, 26 with two, 22 with three and 2 with four
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timepoints), dental plaque (n = 61: 11 with one, 30 with two, 17 with three, 1

with four and 2 with six timepoints), stool (n = 61: 10 with one, 31 with two, 17

with three, 2 with four and 1 with six timepoints). 

2) Healthy control samples from a Chinese rheumatoid arthritis study331 containing

dental plaque (n = 29), saliva (n = 29) and stool (n = 29). 

The sequences were trimmed and quality controlled (processed from Chapter 2: 2.2.3.1

and  2.2.3.2).  They  were  then  assembled  to  plasmid  contigs  using  the

metaplasmidSPAdes  v3.14.0  software  with  parameters  --plasmid  --meta269.  The

plasmidverify.py script from the metaplasmidSPAdes software was then applied to the

output  circular  scaffolds  to  distinguish  putative  plasmids

(https://github.com/ablab/plasmidVerify).  It  does  this  by  identifying  protein  coding

genes using Prodigal v2.6.3210, identifying plasmid proteins from an HMM search of the

Pfam  database251 (downloaded  2nd September  2019)  using  hmmsearch  3.2.1249,  and

applying  a  Naïve  Bayes  Classifier  to  classify  a  genome  as  either  plasmid  or

chromosomal.  The  custom  helper  script,  extract_plasmid_contigs.py in  the  Github

repository (https://github.com/blue-moon22/plasmidome), was applied to filter putative

plasmids from the  plasmidverify.py output.  The plasmid contigs were combined and

clustered  into  a  non-redundant  plasmid  catalogue  with  the  software  suite  CD-HIT

v4.8.1401 using psi-cd-hit.pl with parameters  -circle 1 -c 0.9 -prog blastn -exec local,

whereby circular genomes are aligned with a clustering threshold of 0.9 using BLASTn

v2.9.0. The plasmid taxonomy was determined by aligning the non-redundant plasmid

catalogue against the PlasmidFinder database103 (downloaded on 3rd June 2020) using

BLASTn v.2.9.0 with parameter -evalue 1e-5. 
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4.2.2 Plasmid annotation in metagenomes

Metagenomic  reads  were  mapped  against  the  plasmid  catalogue  with  Bowtie2

v2.3.5.1195 with parameter --very-sensitive-local. The output file was indexed, sorted and

converted into a BAM file using Samtools v1.9.0343. The depth coverage (number of

reads mapped) and the breadth coverage (proportion of plasmid contig that had been

mapped) was then evaluated using BEDTools v2.29.0344. 

4.2.3 ARG annotation of plasmids in metagenomes

The plasmid catalogue was queried against CARD v3.0.0197 for ARGs using BLASTn

v2.10.0 with an e-value threshold of 1e-5. Using the  get_reads_mapped_to_ARGs.py

helper script, ARGs of plasmids were identified for each sample if at least one read that

mapped to the plasmid also mapped to the ARG region within the plasmid genome.

4.2.4 Plasmid analysis

The code and data that this analysis refers to is available here: https://github.com/blue-

moon22/plasmidome.  The  analysis  was  run  using  the  script  thesis_analysis.R in  R

v3.6.1. Plasmid genomes with a breadth coverage of less than 75% were filtered for

each sample.  This left  615 metagenomes from China (n = 29 dental plaque, n = 29

saliva, n = 29 stool) and the USA (n = 61 buccal mucosa: 17 with one, 27 with two, 16

with three and 1 with six timepoints, n = 61 dental plaque: 11 with one, 30 with two, 17

with three, 1 with four and 2 with six timepoints, n = 61 dorsum of tongue: 11 with one,

26 with two, 22 with three and 2 with four timepoints, and n = 61 stool samples: 12 with

https://github.com/blue-moon22/plasmidome
https://github.com/blue-moon22/plasmidome
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one, 33 with two, 14 with three and 2 with four timepoints). As some of the plasmid

genomes may represent the same plasmid and may be redundant, plasmid genomes were

organised  into  plasmid  clusters  using  a  similar  strategy  to  vConTACT2  with  viral

sequences378.  Pairs  of plasmid genomes were connected in a network if  the smallest

genome length, L1, was greater than 99% of the other genome length, L2. The weight, w,

between each pair was calculated as:

w=
L1

L2

S

where  S is  the  proportion  of  unique  plasmid  protein-coding  genes  that  are  shared

between the two plasmid genomes. Pairs of plasmids connected by w greater than 0.8

were assigned the same plasmid cluster number # with prefix name PC_#. Others kept

their original contig name and remained as plasmid singletons. Plasmid clusters and

singletons that contained ARGs were then identified.

4.2.5 Plasmid diversity

To find differences in β-diversity of plasmid profiles between groups of individuals, the

Bray-Curtis  dissimilarities (eq.  3.1) of  plasmid  singleton  and  cluster incidence

(presence or absence) profiles were computed between individuals and visualised using

NMDS. Silhouette analysis (eq. 2.1) of k-medoids using the cluster package v2.1.0 was

used to select the number of distinct groups with the largest average silhouette width. 

The ɑ-diversity was calculated as the plasmid singleton and cluster richness which is the

number of unique plasmid singletons and clusters for each sample. Only samples with

greater than 20 plasmids were included. The plasmid richness was compared between
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paired GIT sites from the paired samples. Since the number of plasmid contigs in each

sample is  significantly linearly correlated with plasmid richness  (p < 2.2x10 -16),  the

number of plasmids for each sample were subsampled. Subsampling entailed removing

a  plasmid  from  a  sample  based  on  the  probability  of  finding  a  particular  plasmid

singleton/cluster.  This  was  repeated  until  the  number  plasmids  reached the  smallest

number of plasmids of an original sample within a paired comparison. Individuals with

samples containing less than or equal to three plasmids were excluded from the group

comparison to leave the following samples: China dental plaque vs. saliva (n = 28);

China stool vs. saliva (n = 28); China stool vs. dental plaque (n = 29); USA buccal

mucosa vs. dental plaque (n = 35); USA buccal mucosa vs. dorsum of tongue (n = 35);

USA buccal mucosa vs. stool (n = 35); USA dental plaque vs. dorsum of tongue (n =

59); USA dental plaque vs. stool (n = 59); and USA dorsum of tongue vs. stool (n = 61).

The  plasmid  richness  between  samples  in  each  group  was  tested  for  statistical

significance with a Two-sided Wilcoxon Rank Sum Test.

4.2.6 Microbial composition

MetaPhlAn2 v2.6.0349 was used to identify the composition of bacteria and archaea from

all  326  metagenomic  samples  with  plasmids  (as  described  in  Chapter  2,  Section

2.2.3.9).  Procrustes  analysis  was  applied  to  visualise  the  superposition  of  NMDS

dimensions between plasmid singleton/cluster incidence profiles and microbial genera

incidence  profiles  using  the  protest  function  in  the  vegan  package  v2.5.6  in  R.

PROTEST was performed with 999 permutations to a significance of p = 0.001.
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4.2.7 Longitudinal analysis of plasmids

The  stability  of  plasmids was  investigated  by  computing  the  number  of  timepoints

within two years for every plasmid cluster and singleton found in each GIT site of the

same individuals from longitudinal USA data. The proportion of plasmid clusters and

singletons was calculated for each number of sampled timepoints available for each

individual and GIT site: buccal mucosa (n = 17), dental plaque (n = 20), dorsum of the

tongue (n = 24) and stool (n = 16). Persistent plasmid clusters/singletons were defined

as being found in three or more timepoints, whereas transient phage clusters are defined

as  being  found  in  less  than  three  timepoints.  The  Bray-Curtis  dissimilarities  were

computed between persistent and transient  plasmid cluster/singleton incidence profiles

from  GIT  sites  of  individuals  containing  both  persistent  and  transient  plasmid

cluster/singletons. NMDS was applied to scale the dissimilarity into a two-dimensional

ordination  using  the  metaMDS  function  in  the  vegan  package  v2.5.6  in  R.

PERMANOVA analysis was performed using the adonis function in the vegan package.

4.3 Results

4.3.1 Plasmid composition across GIT sites

3,929 unique plasmid sequences were identified using metaplasmidSPAdes269 from 458

oral  sites  and  157  paired  gut  metagenomes.  2,536  plasmids  with  similar  sizes  and

plasmid gene profiles were clustered into 852 plasmid clusters,  while the remaining

1,393 plasmids were left as singletons. Most plasmids are shared in fewer than 50% of

samples  (excluding longitudinal  USA samples)  for  each  GIT site  and country  (Fig.
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4.1a). GIT sites and country cluster by the incidence of plasmid singletons/clusters that

are shared in more than half of samples  (Fig. 4.1b). In particular, samples from stool

and oral cavity have distinct profiles, while there are also differences in dental plaque

and stool samples between USA and China.
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Figure 4.1. Plasmid incidence. 

a) Frequency of plasmid singletons and clusters found in a percentage of samples for each GIT site and

country.  b) Incidence of plasmid singletons and clusters found in greater than 50% of samples for each

GIT site. USA buccal mucosa (n = 61), dorsum of tongue (n = 61), dental plaque (n = 61) and stool (n =

61); China dental plaque (n = 29), saliva (n = 29) and stool (n = 29). 

a

b
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Variation in plasmid profiles across GIT sites of individuals was evaluated using  β-

diversity.  Specifically,  the  Bray-Curtis  dissimilarity  metric  was  applied  to  plasmid

singleton/cluster abundance profiles. Sample plasmid profiles were clustered by NMDS

and the number of groups was found using Silhouette analysis on  k-medoids on two

dimensions. Four groups of plasmid profiles were found between GIT sites, with the

largest  separation  between  Groups  1/2/4  consisting  of  oral  samples  and  Group  3

containing mostly stool samples  (Fig. 4.2a). Most dental plaque from China and the

USA and saliva from the USA are located in Group 1, most buccal mucosa from the

USA reside in Group 2, and most dorsum of the tongue samples from the USA are

found in  Group 4  (Fig.  4.2b).  Shared plasmid singletons/clusters  are  predominantly

across dental plaque, buccal mucosa and dorsum of the tongue samples (Fig. 4.2c). 
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Figure 4.2. Plasmid composition across GIT sites. 

a) NMDS of Bray-Curtis dissimilarities between plasmid incidence profiles of samples. The points are

shown as numbers representing the groups from k-medoids clustering, where number of groups, k, has the

largest average silhouette width. USA buccal mucosa (n = 61), dorsum of tongue (n = 61), dental plaque

(n = 61) and stool (n = 61); China dental plaque (n = 29), saliva (n = 29) and stool (n = 29). b) Percentage

of  samples  in  each  group  from  1a,  labelled  by  GIT  site  and  country. c)  Number  of  plasmid

singletons/clusters in each group.

The  plasmid  richness  of  samples  was  compared  between  GIT  sites.  The  plasmid

richness was evaluated from subsampled plasmid profiles (Methods: Section 4.2.5) as

the  number  of  unique  plasmid clusters  and singletons  per  sample.  In  the  USA,  the

dorsum of the tongue has a higher richness than buccal mucosa (p = 3.12x10 -6; Two-

sided Wilcoxon Rank Sum Test), dental plaque (p = 6.38x10-4) and stool samples (p =

a

b c
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0.0223)  (Fig.  4.3).  Buccal  mucosa  also  had the  lowest  richness,  being  significantly

lower than dental plaque (p = 1.54x10-4) and stool samples (p = 2.85x10-4). In China,

stool samples are significantly richer in plasmid singletons/clusters than dental plaque

(p = 0.00128) and saliva (p = 0.0109), while dental plaque has a greater richness than

saliva (p = 0.0226).
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Figure 4.3. Plasmid Cluster Richness between paired GIT sites. 

Plasmid Cluster Richness is defined as the number of unique plasmid singletons/clusters in a sample that

is subsampled to the smallest number of non-unique clusters. Plasmid Cluster Richness is calculated for

paired samples of individuals from China (dental plaque and saliva: n = 28, stool and saliva: n = 28, stool

and dental plaque: n = 29) and the USA (buccal mucosa and dental plaque: n = 35, buccal mucosa and

dorsum of tongue: n = 35, buccal mucosa and stool: n = 35, dental plaque and dorsum of tongue: n = 59,

dental plaque and stool: n = 59, dorsum of tongue and stool: n = 61) with Two-sided Wilcoxon Rank Sum

Test (p < 0.05 as *, < 0.01 as **, < 0.005 as ***). Centre line is median, box limits are upper and lower

quartiles, whiskers are 1.5x interquartile ranges and points beyond whiskers are outliers.
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Procrustes analysis was applied to match NMDS dimensions of plasmid and microbial

profiles.   Microbial  profiles  were  processed  from samples  using  Metaphlan2349 and

NMDS was applied to reduce the profile to two dimensions. PROTEST was then used

to  determine  whether  two  profiles  showed  significant  association.  Microbial

composition  and  plasmid  profiles  correlate  and  co-locate  by  GIT  site,  especially

between stool and dental samples  (Fig. 4.4)  (0.783 to a significance of p = 0.001 in

PROTEST).

Figure 4.4. Overlay of microbiome composition and plasmid composition. 

Procrustes rotation of NMDS coordinates between microbial genera profile (black points) and plasmid

incidence profile  (red points).  Correlation in  symmetric  Procrustes  rotation = 0.783 (p  = 0.001;  999

permutations; PROTEST). 

4.3.2  Stability of plasmids across longitudinal metagenomes

To show whether plasmids are stable over time, plasmid singletons and clusters were

profiled in longitudinal samples from the USA taken over a two-year period with a

minimum of two and maximum of six sampling timepoints. The proportions of total
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plasmid singletons/clusters drop over time until the third timepoint across all GIT sites

(Fig. 4.5a). Due to the small number of samples available with four or more timepoints,

it is unclear whether the decrease continues.

To compare the stability profiles between individuals, the plasmid singletons/clusters

were  separated  empirically  into  persistent  and  transient  plasmid  singleton/cluster

profiles.  Persistent  plasmid profiles  were defined as  being  present  in  three or  more

timepoints in a given GIT site, whereas transient plasmid profiles are found in less than

three timepoints. There are 61 (buccal mucosa), 188 (dental plaque), 381 (dorsum of the

tongue) and 315 (stool) persistent plasmid singletons/clusters, and 345 (buccal mucosa),

488  (dental  plaque),  719  (dorsum of  the  tongue)  and  292  (stool)  transient  plasmid

singletons/clusters.  NMDS visualisations  of  persistent  and transient  plasmid profiles

from  longitudinal  samples  show  greater  clustering  from  the  same  individuals  of

persistent  (Fig.  4.5b) compared to transient profiles  (Fig.  4.5c).  PERMANOVA was

applied to  persistent  and transient  plasmid profiles  for  each GIT site  to  find which

profile has the highest individuality. A greater percentage of variance in persistent than

transient plasmid singletons/clusters can be explained by variability between individuals

for all GIT sites. 71.4% (buccal mucosa), 67.4% (dental plaque), 74.5% (dorsum of the

tongue) and 85.3% (stool) variance of persistent plasmid profiles and 43.8% (buccal

mucosa),  41.4% (dental  plaque),  44.3% (dorsum  of  the  tongue)  and  44.6% (stool)

variance of transient plasmid profiles can be explained by the individual (p < 0.001,

PERMANOVA).  Prevalences  of  persistent  and  transient  plasmid  singletons/clusters

vary across these individuals (Fig. 4.5d). The percentages of plasmid singletons/clusters

from one individual  also seen in  another  are  significantly higher  for persistent  than
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transient plasmids in stool (84.1± 7.8 persistent, 75.7 ± 10.7 transient; p = 0.0167). In

contrast, there is a significantly higher percentage of transient than persistent plasmids

shared in at least one other individual in dorsum of the tongue samples (71.0 ± 11.1

persistent, 83.9 ± 7.2 transient; p = 9.26x10-6). No significant difference was found for

buccal mucosa (66.7 ± 12.8 persistent, 69.2 ± 14.0 transient; p = 0.648).

Figure 4.5. Plasmid stability in longitudinal USA GIT sites. 

a

b c

d
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a) Proportion of plasmid clusters/singletons in one to six timepoints for USA individuals with at least

three sampling timepoints (buccal mucosa: n = 17, dental plaque: n = 20, dorsum of the tongue: n = 24,

stool: n = 16). Non-metric multidimensional scaling of the Bray-Curtis dissimilarities between plasmid

cluster/singleton  incidence  profiles  of  samples  with  b) persistent  and c)  transient  plasmid

clusters/singletons. Points represent samples and lines joining points represent grouping samples from the

same individual and GIT site. d) Prevalence of transient and persistent plasmid clusters/singletons in the

same individuals ordered by decreasing prevalence of total and persistent plasmid clusters/singletons. 

4.3.3  Resistance plasmids in both oral and gut metagenomes

Plasmid sequences were queried against CARD197 to identify ARG-carrying plasmids.

The ARG classes as well as the specific ARG types were also characterised. Out of the

2,245  (852  plasmid  clusters  and  1,393  singletons),  only  37  were  detected  to  carry

ARGs. Eight of those were known plasmids matching to the PlasmidFinder database103.

A total of 21 ARG homologues are found in plasmids of metagenomic assemblies across

all 321 human GIT samples (Fig. 4.6). 13 out of the 21 ARG homologues are located in

oral  samples:  aminoglycoside  resistant  APH(3’)-Ia,  cephamycin  resistant  CfxA2,

multidrug resistant ErmB and ErmX, lincosamide resistant lnuC and lsaC, sulfonamide

and sulfone resistant sul2, two ARG homologues from the multidrug resistant TEM β-

lactamase  family  ARGs,  tetracycline  resistant  tet(C) and  tet(G) by  the  efflux  pump

mechanism, and tetracycline resistant tetM and tetO. 11 out of the 21 ARG homologues

are  found  in  the  gut:  aminoglycoside  resistant  APH(3’)-IIIa;  Campylobacter  coli

chloramphenical  acetytransferase  ARG  resistant  to  phenicols;  cephamycin  resistant

CfxA6;  multidrug resistant ARGs  ErmB,  ErmF  and  ErmQ;  cephalosporin and penam

resistant OXA-85; and tetracycline resistant tetM, tetO, tetQ and tetW. 
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Most ARG-carrying plasmids and plasmid clusters are either shared between oral sites

or are exclusively in stool samples. Most plasmids in stool samples are found in both

China and USA cohorts, and carry ARGs conferring resistance to cephalosporin and

penams,  cephamycin,  glycylcycline  and  tetracycline  antimicrobials,  lincosamide,

multidrug, phenicol and tetracycline antimicrobial classes. Plasmids in oral sites from

China carry a diversity of ARGs conferring resistance to aminoglycoside, cephamycin,

lincosamide, multidrug (including penems), sulfonamide/sulfone and tetracycline efflux

pumps.  All  ARG-carrying  plasmid  singletons/clusters  carry  a  single  ARG  with  the

exception of PC_495 that includes two ARGs, aminoglycoside resistant APH(3’)-Ia and

tet(C) conferring resistance to tetracycline efflux pumps. The tetM ARG, being the most

prevalent plasmid-associated ARG in oral sites, is only located on one plasmid cluster

PC_620, whereas ErmB is located on nine plasmid clusters and singletons. The ARGs

from the TEM β-lactamase family are also broadly spread over four different plasmid

clusters and singletons, and are found only in oral sites from China. 



Figure 4.6. ARG-carrying plasmids of GIT sites from China and the USA. 

Each row represents an ARG carried by a plasmid cluster or singleton. The first grey column indicating the ARG and ARG class in brackets. Multiple ARG assignments suggest an

alternative ARG that is homologous to more than one ARG. The second grey column showing the plasmid cluster or singleton that carries it. Each circle represents a plasmid cluster

or singleton with the number of individuals it is found in. The x-axis shows the number of individuals that had GIT sites sampled. Each circle is labelled by body site and country and

scaled by log10 average size of plasmid in bp. Some plasmids that were aligned to known plasmid genomes from PlasmidFinder are labelled below the circles.  (Larger figure is

available to view here: https://tinyurl.com/y2kbvyx7).

https://tinyurl.com/y2kbvyx7
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Plasmid  clusters ErmB-carrying  NODE_11_length_1862_cov4.927171_cutoff_5,

ErmB-carrying PC_509, tetM-carrying PC_620 and tetO-carrying PC_532 are the only

resistance plasmids that are shared between oral sites and the gut. Plasmid cluster tetM-

carrying PC_620 is  found in all  oral  cavities from China and the USA, and is  also

shared most between buccal mucosa, dental and dorsum of tongue samples from 47 out

of 61 (77.0%) USA individuals. It is also highly prevalent between dental, saliva and

stool samples from 19 out of 29 (65.5%) individuals from China. The most prevalent

gut ARG-carrying plasmid from the USA is PC_532 with tetO in 48 out of 61 (78.7%)

USA stool samples, which was also identified as a Gram-positive plasmid from the rep1

family. From China, however, two  rep1 family plasmids carrying  ErmB are the most

prevalent (28/29, 96.6%) in the gut. Although oral sites tend to share plasmids, 24 out of

29 saliva  samples  from China  exclusively  contain  plasmid cluster  PC_495 carrying

APH(3’)-Ia and  tet(C),  a  small  (7076 bp) ColE1 plasmid of the  Enterobacteriaceae

family.  Although  saliva  is  in  contact  with  dental  plaque,  species  from  the

Enterobacteriaceae family  are  only  located  in  saliva  (and  stool  samples)  from

individuals carrying the ColE1 plasmid (Fig. 4.7). In particular, saliva contains a higher

relative  abundance  of  unclassified  species  of  Escherichia than  stool,  making  them

possible hosts for sequestering ColE1. 
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Figure 4.7. Relative abundance of species of the Enterobacteriaceae family. 

Relative abundance calculated as number of reads mapped to species divided by the total mapped reads to

the Enterobacteriaceae family derived from Metaphlan2.

To show whether ARG-carrying plasmids are stable, longitudinal USA samples were

profiled  for  plasmid  singletons/clusters  carrying  ARGs.  The  proportion  of  plasmid

singletons/clusters remaining after one timepoint decreases across GIT sites, particularly

in dental plaque, dorsum of the tongue and stool samples (Fig. 4.8a). Fewer resistance

plasmids are found in buccal mucosa than in dental plaque or the dorsum of the tongue,

but most of these plasmids remain stable for up to three timepoints. They may represent

abundant plasmids that are highly detectable in whole metagenomic samples, including

mucosa samples with less microbial DNA than other oral samples. For instance,  the

plasmid cluster PC_620 carrying tetM is highly prevalent in three or more timepoint in

all  oral  sites,  including  buccal  mucosa,  but  not  stool  samples  (Fig.  4.8b).  Instead,
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plasmids that carry APH(3’)-IIIa, ErmB, ErmF, tetO or tetW are stable in the gut rather

than in the oral cavity.
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Figure 4.8. Resistance plasmid stability in longitudinal USA GIT sites. 

a)  Proportion  of  plasmid  singletons/clusters  in  one  to  six  timepoints  and  b)  Number  of  individuals

carrying a resistance plasmid in one to three timepoints for USA individuals with at least three sampling

timepoints (buccal mucosa: n = 17, dental plaque: n = 20, dorsum of the tongue: n = 24, stool: n = 16).

a

b
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4.4 Discussion

Composition of plasmid profiles across the GIT reveals plasmid profiles are distinct

between GIT sites, particular between the oral cavity and the gut in both China and the

USA. Although most plasmids have low prevalence across GIT sites, there are some

highly prevalent plasmids associated with GIT site and country. These plasmid profiles

correlate  with  microbial  composition,  suggesting  that  the  presence  of  particular

plasmids is dependent on the existence of key species groups of bacteria or archaea that

may act  as carriers of specific plasmids.  The surface of the tongue has the greatest

plasmid richness compared to other GIT sites and stool samples from the USA, whereas

stool has a greater plasmid richness than dental and saliva in China. Generally, plasmids

that persist over several months are more unique to individual than transient plasmids

across  all  GIT  sites  in  individuals  in  the  USA.  These  differences  may  be

overestimations as it is likely some persistent plasmids in some samples may be labelled

as  transient  in  other  samples  given  plasmids  may  still  be  undetectable  from

metagenomic data217.  Nevertheless, persistent plasmids are more likely than transient

plasmids to be shared in at least two individuals for stool samples. In contrast, transient

plasmids are more likely than persistent plasmids to be shared in at least two individuals

on the dorsum of the tongue. It may be that bacterial communities hosting plasmids on

the surface of the tongue fluctuate more than those in the gut.

Oral sites from China have a greater number of plasmids that carry ARGs (resistance

plasmids)  than  from  the  USA.  As  the  China  cohort  was  taken  as  controls  from a

rheumatoid arthritis study and the USA cohort consists of mainly young adults, it is

quite possible that participants from China may have acquired a greater diversity of oral
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resistance  plasmids  in  their  lifetime  through  being  exposed  to  more  anthropogenic

antimicrobials that selected for resistance plasmids.

A type of plasmid carrying tetM is the most prevalent and highly persistent in USA oral

samples.  tetM has  been shown to be more  prevalent  across  oral  than stool  samples

(Chapter  2),  but  there have  been contradictory results307,313.  In  addition,  APH(3’)-Ia,

previously shown to be highly prevalent  in  saliva samples  from China in  particular

(Chapter  2)307,  and  tet(C) are  also  linked  to  a  highly  prevalent  plasmid  cluster  in

matching saliva samples.  This plasmid cluster was identified as a ColE1 plasmid of

Enterobacteriaceae family bacteria: a highly mobile vector for ARGs in animal, human

and environmental microbial samples402. Aminoglycoside resistant ColE1 plasmids have

been previously isolated and characterised from Salmonella strains clinically resistant to

kanamycin  (an  aminoglycoside)  from veterinary  diagnostic  labs  in  the  USA403,  and

APH(3’)-IIa-carrying  ColE1  plasmids  were  identified  using  PCR  in  human  faecal

samples402. However, this is the first time ColE1 plasmids containing APH(3’)-Ia have

been reported in human saliva. Likewise,  tet(C) has not been identified from isolated

ColE1 plasmids, but has been found previously with computational sequence alignment

of Salmonella enterica plasmids from the NCBI database404.

To summarise, most variation in plasmid profiles is found between the oral cavity and

the  gut  in  both China and the USA. As well  as  containing the  highest  diversity  of

bacteriophage  genotypes  (Chapter  3),  the  surface  of  the  tongue  contains  a  higher

plasmid richness than other GIT sites from the USA that may be more mobile than those

in other oral sites. Resistance plasmids tend to be specific to either the oral cavity or the
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gut in both cohorts, and more unique oral resistance plasmids were from China than the

USA. Cohorts that carry highly prevalent ARGs in metagenomes (Chapter 2)307, are also

highly prevalent on resistance plasmids, particularly  tetM and  APH(3’)-Ia.  However,

regardless  of  whether  these  ARGs are  prevalent  across  a  population  of  individuals,

highly abundant ARGs within an individual may be associated with a range of different

plasmids  that  can  propagate  ARGs  more  readily  in  different  microbes  within  a

community.  For instance,  ARGs carried by multiple  different  plasmids tended to be

highly abundant (Chapter 2)307, especially for ErmB and for certain TEM β-lactamases. 
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Chapter 5: De novo Identification of

Transposable Elements and their

Association with the Resistome
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5 De novo Identification of Transposable 

Elements and their Association with the 

Resistome

5.1 Introduction

Transposable elements are the most abundant type of MGE that transfer ARGs between

microbial genomes by HGT. As described in Section 1.4.3.1, an insertion sequence is

about 700-2,500 bp long and contains short inverted terminal repeat (ITR) sequences of

10-50 bp at both ends that are reverse complements of each other (Fig. 1.3)117. A typical

composite transposon is made up of two insertion sequences that can flank passenger

genes, such as ARGs405. Unit transposons are a similar type of transposable element to

insertion sequences containing a pair of ITRs but can also carry ARGs. For simplicity,

the  abbreviation  “IS”  will  be  used  hereafter  to  mean  insertion  sequence  or  unit

transposon that contains ITRs.

As transposable elements are the most ubiquitous and abundant MGE, it is challenging

to  catalogue  all  of  them.  Identifying  transposable  elements de  novo  from  whole

metagenomes without reliance on reference databases is a way to circumvent this issue.

One  study  in  2013  applied  existing  tools  to  identify  ISs  from  metagenomic

assemblies270. The authors used the EMBOSS software suite272 (tools for a variety of

sequence analysis) to locate gaps between palindromic motifs in these assemblies to

represent  insertion  sequences  flanked  by  ITRs.  They  also  applied  hmmsearch209 to
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amino acid sequences that were translated from these assemblies against a database of

HMMs of transposase proteins to identify ISs containing transposase genes. However,

current assembly algorithms struggle to resolve repeated elements (e.g. only including

one  of  the  repeats  or  omitted  them all  together).  ITRs  are  no  exception,  meaning

transposable elements that contain ITRs can be misassembled or incomplete406.  This

study is the only attempt of identifying transposable elements from whole metagenomic

data published to date. Therefore, very little is known about the profile of transposable

elements  in  microbiomes  and  their  role  in  ARG  transfer  in  complex  microbial

communities.

I  developed  a  software  tool,  called  PaliDIS  (Palindromic  Detection  of  Insertion

Sequences) that discovers ISs de novo from short-read, paired-end metagenomic data by

identifying ITRs from reads and transposase genes from contigs. ITRs were identified

from metagenomic reads using another tool I developed called pal-MEM (palindromic

Maximal  Exact  Matching) that was integrated as part of PaliDIS. ITRs are identified

from  reads  using  an  efficient  maximal  exact  matching  algorithm,  a  fast  algorithm

optimised  for  large  genomic  datasets,  such  as  metagenomes  of  complex

communities407,408.  A maximal exact match (MEM) between two sequences represents

the maximum length of residues (nucleotides or amino acids) that match exactly and

cannot  be  extended  in  either  direction  without  allowing  for  a  mismatch.  After

implementing  PaliDIS,  a catalogue  of  non-redundant  inverted  repeat  clusters  was

created to investigate the prevalence of ITRs across metagenomic samples. ARGs were

also queried to evaluate their association with ITRs. 



205

5.2 Developing the pal-MEM software

pal-MEM was developed in  C++ to identify inverted  repeats  in  metagenomic reads

(https://github.com/blue-moon22/pal-mem). It uses a similar MEM searching algorithm

to an existing tool, called E-MEM409, but was modified for specifically finding MEMs

between reverse complement sequences of inverted repeats. pal-MEM was optimised

for better computational efficiency, allowing it to be applied to large metagenomic data

files. 

5.2.1  The E-MEM algorithm

The E-MEM (efficient computation of MEMs) tool aims to identify MEMs from large

genomes with higher computational efficiency than other MEM algorithms409. The E-

MEM  algorithm  relies  on  making  smaller  exact  matches  of  k-mers  between  two

sequences. Then, these matching k-mers are extended in both directions to make larger

sequence matches until mismatches between two residues on both sequences on both

ends disrupt the extension, making a MEM. If the MEM has a length equal to or greater

than  a  length  L,  the  start  and  end  coordinates  of  the  MEM in  both  sequences  are

recorded. 

Firstly, the algorithm must search for k-mer matches between two files, specified by the

user, containing sequences. One file acts as a reference, while the other is a query.  k-

mers, with defined length  k, and their positions from the reference are recorded in a

hash table. A hash table is a data structure that is indexed in a way that entries can be

retrieved quickly, and is ideal for storing and retrieving large amounts of information,

https://github.com/blue-moon22/pal-mem
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such as  a  dictionary  of  all  k-mers  in  a  large  sequence file.  Other  MEM algorithms

developed before E-MEM relied on storing sequence information in suffix arrays or

compressed text  indexes,  which require  excessive amounts  of memory if  applied to

large genomes like whole metagenomic data409–411. The nucleotides of k-mers within the

hash table are encoded as unique combinations of two bits (0 and 1), where A is 00, C is

01, G is 10 and T is 11, which reduces memory requirements. In addition, not all k-mers

and their positions have to be stored in the hash table for all MEMs of length  L or

greater to be identified, reducing the demand on memory further. The k-mer only has to

have a position in the reference that is a multiple of (L – k) + 1 (where k is the length of

the k-mer), i.e.

(eq. 5.1) br ≤ j((L – k) + 1) ≤ er – k + 1

where br and er are the start and end positions of a MEM and j ≥ 1 (Fig. 5.1). 

Figure  5.1.  k-mer positions  that  are  saved into  the  hash  table  at  the  beginning of  a  reference

sequence. 

The positions are multiples of (L – k) + 1, where L is the minimum length of the MEM and k is the length

of the k-mer.

As with the k-mers, each nucleotide of the query sequences is encoded as two bits. For

query files containing disjointed sequences (such as reads from short-read sequencing),

the reads are stored as a continuous sequence in an array of unsignedxix 64-bit integers

xix Unsigned integers are integers that can only hold non-negative whole numbers in memory.
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representing blocks of 32 nucleotides (as each nucleotide is represented by two bits). A

mock sequence of random 20 bits is generated between reads to represent a continuous

sequence.  The start  and end positions of these mock bits  are  stored in another data

structure: blockofNs. The start and end positions for each sequence, and their IDs, are

also stored in another data structure: seqData. Each k-mer from the query is looked up

against the reference hash table to retrieve a matching k-mer.  The first  k-mer window

starts from the beginning of the query and continues to shift every two bits, apart from

skipping the positions within the blockofNs.

Once a k-mer match is found between the query and reference sequences, the program

attempts  to  extend  the  k-mers  to  make  larger  matches.  The  length  of  residues  is

extended by the same amount for both sequences at the left end of the matching k-mers.

If an exact match is found between the extensions, it is extended further. If there is no

match, the extension has to be updated and the process repeated until a match is found.

Once an exact match is found and cannot be extended further, these steps repeat for the

right end of the matching k-mers. The fastest way for the algorithm to perform this is to

use an interval halving approach. The sequence is extended to the left end position of

the shortest of the two sequences. If there is no match, the extension is halved until a

match is made. Once there is a match, the extension is elongated by one residue at a

time until no more exact matches can be made. This is repeated on the right side. Then

if  the  MEM is  of  length  L or  greater,  the  coordinates  of  the  MEM between  both

sequences are recorded. This continues for every k-mer query and match between two

sequences that are made.
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As the MEMs are identified, the positions of the MEMs are written in temporary files.

Once all MEMs are identified, the data from these temporary files are then reloaded into

the  program  to  be  sorted  numerically  by  position.  Finally,  a  file  is  written  which

provides  the  MEM positions  between  pairs  of  sequences  and  their  IDs  taken  from

seqData.  The  positions  are  relative  to  the  individual  sequences,  rather  than  to  the

continuous sequence encoded in E-MEM, and are calculated from the start  and end

positions of the sequences retrieved from seqData.

5.2.2 The pal-MEM algorithm

pal-MEM is a tool  based on E-MEM with significant  modifications  to  optimise for

processing large files of short-read metagenomic sequences with the aim of identifying

inverted repeats. The following sections describe these modifications in more detail.

5.2.2.1 Finding reverse complements only

E-MEM defines MEMs as including reverse complements as well as direct matches. By

default, E-MEM searches for direct matches between query and reference files, but it

also  includes  an  option  for  including  reverse  complements.  To  identify  reverse

complement sequences as MEMs, E-MEM transforms the sequences from the reference

file into reverse complements of each other, meaning any reverse complements in the

query file become direct matches of the transformed reference. As pal-MEM’s aim is to

identify inverted repeats that are reverse complement sequences, this transformation is

set as default.
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5.2.2.2 Identifying MEMs from one metagenomic library

E-MEM takes two sequence files (a reference and a query) as an input. These can be

different files,  but they can also be the same, meaning it  is  possible to find MEMs

within the same library of sequences. Since pal-MEM is only required to find MEMs

within one library, it was modified to accept a single library as an input. As short-read

sequence libraries can be sequenced by single-read sequencing to generate one file or by

paired-end sequencing to generate two files, pal-MEM can either take one single-read

file or two paired-end files as inputs.

5.2.2.3 Faster search for inverted repeats

As described, E-MEM queries a  k-mer match for every two-bit window. Even for an

efficient algorithm, this is very time consuming for large files, such as whole short-read

metagenomic files with potentially billions of nucleotides. As pal-MEM is designed for

identifying inverted repeats from short-read sequences, it is expected a read (~100 bp

long) that covers a potential ITR of an IS would only contain one MEM. To speed up

the  search,  instead  of  querying  k-mer  matches  at  every  two  bits,  pal-MEM  stops

querying in the same read if a MEM was already found. So if a MEM was found in a

read, the next k-mer query would continue at the beginning of the next read. 

5.2.2.4 Ignoring technical reverse complements

Read libraries consist of technical reverse complements as well as biological reverse

complements,  like  ITRs.  Technical  reverse  complement  reads  occur  when  two
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overlapping fragments from both strands (a strand and its reverse complement strand) of

a  double  stranded  DNA molecule  are  sequenced.  As  a  fragment  is  likely  to  have

originated  from  a  double  strand  of  DNA,  technical  reverse  complements  pervade

sequence files. In fact, most reads in a sequence file are technical reverse complements.

In E-MEM, MEMs of technical reverse complement reads are found at the prefix of one

read and the suffix of the other (Fig. 5.2).

Figure 5.2. A MEM between two technical reverse complement reads. 

A MEM of a reverse complement, labelled in red, located on the prefix of the purple read and suffix of

the green read that are technical reverse complements

To  ensure  technical  reverse  complements  are  not  falsely  identified  as  ITRs,  an

additional  algorithm  was  included  in  pal-MEM  to  ignore  technical  reverse

complements. Firstly, MEMs are excluded if their start or end positions are within two

nucleotides of either end of one of the reads. As sequencing is not completely accurate,

sometimes  MEMs  are  prevented  from  extending  further  by  mismatches  caused  by

sequencing errors. Therefore, sometimes MEMs of technical reverse complements with

errors may not extend fully to the end of the read, meaning the exclusion criteria would

miss them. As a result, the MEM would be falsely considered as an inverted repeat. To

mitigate this, a buffer of length B is applied to both ends of the reads in order to capture

k-mer matches near the end of the reads. Since reference k-mers have positions j((L – k)

+ 1) (eq. 5.1), it would mean B ≥ L – 1 to allow at least one k-mer match within the
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buffer (Fig. 5.3). Otherwise if B is not long enough, there is no guarantee a k-mer match

will be completely within the buffer region. Sometimes there can be sequence errors

within the  k-mers themselves,  meaning a  k-mer match may not be found within the

buffer region. Therefore, this method cannot completely avoid MEMs between technical

reverse  complements.  An  additional  sequence  clustering  step  before  pal-MEM  is

included in PalidIS to mitigate this further, which is described below in Section 5.3.2.

Figure 5.3. Buffer to capture k-mer matches at the end of the reads that indicate technical reverse

complements. 

Scenarios 1 to 3 show potential k-mer matches being captured by the buffer when B is  L – 1, whereas

Scenario 4 shows a k-mer match being missed if B is less than L – 1.
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5.2.2.5 Changing how the MEMs are recorded

In E-MEM, the positions of the MEMs are written in temporary files. Once all MEMs

are identified, the data from these temporary files are then reloaded into the program to

be sorted numerically by position. As E-MEM queries k-mers every two bits, the same

MEM is often discovered multiple times. Therefore, the positions of MEMs have to be

deduplicated before being written to a final output. For a short-read metagenomic file,

MEM positions in temporary files generated by E-MEM can be hundreds of Gigabytes

in size, which could be computationally intensive to sort and deduplicate with limited

memory  resources.  As  only  one  copy  of  MEM  positions  is  recorded  in  pal-MEM

(because only up to one MEM can be found in a read), pal-MEM does not need to rely

on sorting and deduplicating MEM positions, nor does it require any temporary files.

When a MEM is identified in pal-MEM, the read is flagged as containing a MEM and

the MEM positions are stored in seqData.

5.2.2.6 Changing the output

E-MEM outputs one file containing the MEM positions between pairs of sequences and

their sequence IDs. Similarly, pal-MEM writes the IDs of the sequence pairs with the

MEM separated by tabs, where the coordinates of the MEM are added to the ID. For

example,  the  ID  Seq1_ERR589353.7724658/1_Lcoord_23_Rcoord_56  represents  the

sequence with the ID ERR589353.7724658/1, and the numbers after Lcoord and Rcoord

specify the start and end positions of the MEM. Each new line is a different pair of

sequences.  In  addition,  pal-MEM  also  writes  the  decoded  sequences  of  the  reads
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containing MEMs in one text file, and the decoded sequences of reads not containing

MEMs in another.

5.3 Developing PaliDIS

I  created  a  software  tool,  called  PaliDIS  (Palindromic  Detection  of  Insertion

Sequences), to identify ISs from short-read, paired-end metagenomic reads. It consists

of a pipeline of five steps: 

1) Assembling metagenomic reads to contigs.

2) Clustering metagenomic reads to representative reads.

3) Using pal-MEM to identify inverted repeats. 

4) Identifying  contigs  associated  with  potential  ITRs  using  reads  with  inverted

repeats. 

5) Identifying ITRs from transposases. 

A schematic  of  the  pipeline  is  shown  in  Fig.  5.4.  The  pipeline  is  implemented  in

Nextflow412 for other researchers to use as a standalone program. The software can be

downloaded here: https://github.com/blue-moon22/PaliDIS.

https://github.com/blue-moon22/PaliDIS
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Figure 5.4. Schematic of PaliDIS pipeline for paired-end, short-read whole metagenomes. 

Before PaliDIS, reads must be quality controlled and contaminant DNA must be removed (Step 0). Step

1: Assemble reads to make contigs using metaSPAdes205.  Step 2: Cluster reads by sequence identity to

create representative reads using MMSeqs2413. Step 3: Identify reads carrying inverted repeats using pal-

MEM. Step 4: Find contigs associated with inverted repeats by mapping reads, that are paired to reads

carrying inverted repeats, to contigs using Bowtie2195. Step 5: Annotate contigs with transposase genes to

identify ITRs using HMMER3209.
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5.3.1 Assembling metagenomic reads to contigs

After reads have been quality controlled and filtered (as described in Chapter 2 Sections

2.2.3.1 and 2.2.3.2), they are assembled into contigs using metaSPAdes v3.14.0205, with

parameter -meta for metagenomic reads.

5.3.2 Clustering metagenomic reads to representative reads

Reads are clustered by sequence similarity into reference sequences with MMSeqs2

v21d798f09003d0375f0007462e7c4faa1d5eaff7413.  This  is  done  to  cluster  some

technical reverse complement reads that could be falsely identified as inverted repeats in

pal-MEM. The command and parameters mmseqs linclust using parameters --cov-mode

2 -c 0.5 are used to run the clustering. This means the reads are only clustered if their

overlap is greater than 50% for at least one of the pairs and the overlap has a sequence

identity greater than 90% (default value in mmseqs linclust). This coverage threshold is

large  enough  to  cluster  technical  reverse  complements,  but  small  enough  to  avoid

removing inverted repeats of up to 50% of the read length. Most short-read lengths are

at least 100 bp long, meaning this avoids removing larger ITRs of up to 50 bp long.

Reference sequences for each cluster are then generated using mmseqs createsubdb and

mmseqs convert2fasta programmes. 

5.3.3 Identifying inverted repeats using pal-MEM

pal-MEM can be run on the command line. It includes mandatory parameters -f1 and -f2

that specify the first and second paired-end files or -fu that specifies a single-read file.
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These read files are required to be in a FASTA sequence file format. Another mandatory

parameter is  -o that specifies the prefix name of the output files. Optional parameters

are -l, -k, -d and -t. -l specify the minimum length of the inverted repeat (default is 24). -

k is  the  length  of  the  k-mer  (default  is  15).  -d is  the  number  of  chunks  from the

sequences file(s) to encode in the reference sequentially, an optional parameter that was

repurposed  from  E-MEM  (default  is  1).  Firstly,  the first  chunk  is  encoded  in  the

reference. Once querying has finished on the reference, the second chunk replaces the

first chunk that is then encoded as the reference, and so on. It allows hash tables to be

built  with  smaller  memory requirements,  which is  especially  useful  when analysing

large  files  in  limited  memory  environments.  -t specifies  the  number  of  processing

threads for computing in parallel (default is 1).

To test PaliDIS, the pal-MEM parameters -l 24 -k 15 were used. The minimum length of

an  ITR has  been recorded to  be  10 bp117,  but  a  trade-off  minimum length of  24 is

specified. The smaller l is, the more k-mers have to be stored in the reference (eq. 5.1).

Instead of decreasing  l,  k could be decreased to reduce the number of  k-mers stored.

However, the smaller the  k-mer, the more matches are made. Smaller  k-mers are less

unique  and  there  is  a  greater  chance  of  matches  and  extensions,  increasing  the

computational  time further.  Therefore,  the priority is  to  have a  k value that is  large

enough to generate more unique k-mers, but small enough to reduce the number of k-

mers stored in the reference, with l being small enough to find as many potential ITRs

as possible. pal-MEM was run on a cluster, therefore -t 8 was used. 
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5.3.4 Identifying contigs associated with inverted repeats

Assembly tools struggle to resolve repeated regions, like ITRs, meaning that both ITRs

in an IS/transposon, or even one of them, can be missing or incomplete in a contig. Thus

it  may be difficult  to  locate  inverted repeats  within contigs  themselves.  This was a

problem for the method employed by Kamoun et al.,  where two palindromic motifs

representing both ITRs had to  be detected on a  contig  for  an IS to  be found270.  In

PaliDIS,  inverted  repeats  are  detected  from  reads  without  relying  on  contigs  (as

described in the previous section). However, contigs are still needed to find ITRs of ISs.

To detect whether a contig may contain a potential IS without locating ITRs within a

contig explicitly,  the following method was implemented.  Reads containing inverted

repeats  are  representative  sequences  of  clusters  that  also  contain  the  same inverted

repeats (Section 5.3.2). All reads from these clusters are retrieved using a custom script

called  get_all_seq_from_clusters.py  in  PaliDIS.  These  reads  have  paired  reads  from

paired-end sequence files that do not contain inverted repeats. These paired reads are

retrieved  using get_discordant_reads.py.  These  non-inverted  repeat  reads  are  then

mapped using Bowtie2195 against the contigs with parameters  --very-sensitve-local -f.

The parameter  --very-sensitive-local sets Bowtie2 to map reads using local alignment

with high accuracy and  -f specifies the reads are in a FASTA format. Reads that are

mapped to contigs indicate these contigs are associated with potential ITRs. 
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5.3.5 Identifying ITRs from transposases

As well as being ITRs of transposable elements, inverted repeat sequences are found in

promoters  and  operatorsxx on  DNA in  the  control  of  gene  expression414.  They  also

influence genomic instability as part of the microbial evolution and diversity415, causing

the formation of DNA hairpins or cruciform structures that disrupt DNA replication416.

They  have  even  been  shown  to  lead  to  the  formation  of  large  inverted  dimers  of

plasmids416. In order to identify contigs containing potential ISs, these ITRs must be

distinguished from other inverted repeats. In many ISs, the transposase gene is usually

next to one of the two ITRs117. Contigs associated with inverted repeats are searched for

transposase-coding genes. Prodigal v2.6.3210 is applied to identify and translate protein-

coding genes from the contigs. As transposases have varied sequence diversity, instead

of using sequence alignment the protein sequences are searched using hmmsearch209

against  transposase  HMMs  from  the  Pfam  database251 (downloaded  on  7th January

2020).  Multiple  hits  of different  transposases on the same protein-coding region are

filtered to select only the transposase with the lowest protein and domain e-values. Non-

inverted repeat reads paired to the inverted repeat reads (from Section 5.3.4) are up to

~250 bp apart depending on the insert sizexxi of a short-read Illumina sequencer. Given

the largest IS is ~2,500 bp long117 and one of the ITRs may be furthest away from a

transposase, if either the start or end positions of the transposase gene is within 2,750

nucleotides from the non-inverted repeat mapped read, then the contig is associated with

an ITR and contains an IS. This is run using the custom script get_contigs_with_sites.py

in PaliDIS.

xx An operator is a genetic sequence that transcriptional regulator proteins bind to, regulating an 
operon’s transcription.

xxi The insert size is the length of the DNA region between the ends of the paired reads in paired-end 
sequencing (excluding adaptor sequences) (See Fig. 5.4)
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5.4 Methods to test PaliDIS

To  test  whether  PaliDIS  can  identifying  ISs  from  short-read,  paired-end  whole

metagenomic  data,  the  following  methods  were  conducted.  A  catalogue  of  non-

redundant candidate inverted repeats was generated to categorise ITRs that are linked to

a transposase belonging to the same ITR family. Clustering ITRs into non-redundant

ITR  sequences  allows  distinct  ISs  shared  across  samples  to  be  identified.  The

prevalence  of  these  ISs  and the  differences  between IS profiles  (β-diversity)  across

metagenomic samples can then be evaluated. ARGs were also searched against contigs

containing ISs to investigate the association of ISs with ARGs that may indicate the

presence of ARG-carrying composite and unit transposons. The code of the analysis was

run in R v3.6.1 and can be found here: https://github.com/blue-moon22/IS_analysis.

5.4.1 Creating a catalogue of non-redundant inverted repeats

To  investigate  the  prevalence  of  specific  ISs  across  samples,  a  catalogue  of  non-

redundant  inverted  repeat  sequences  was  created  from 1,154  metagenomic  samples

from five cohorts: 

1) Human Microbiome Project (referred to as US)336 containing buccal mucosa (n

= 87:  33 with  one,  34 with  two,  19 with  three  and 1 with  six  timepoints);

dorsum of tongue (n = 90: 22 with one, 42 with two, 24 with three and 2 with

four timepoints); dental plaque (n = 89: 26 with one, 38 with two, 21 with three,

https://github.com/blue-moon22/IS_analysis
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1 with four and 3 with six timepoints); stool (n = 70: 14 with one, 32 with two,

21 with three, 2 with four and 1 with six timepoints).

2) Healthy control samples from a Chinese rheumatoid arthritis study331 containing

dental plaque (n = 26); saliva (n = 27); stool (n = 72).

3) Saliva (n = 136) and stool (n = 136) samples from Fiji332. 

4) Saliva samples (n = 23) from healthy hunter-gatherers and traditional farmers

from the Philippines333. 

5) Saliva (n = 21) and stool (n = 21) samples from Western Europe (5 saliva and 5

stool  samples  from Germany301,334,  and 16 saliva  and 16 stool  samples  from

France301,335). 

All reads from these samples containing inverted repeats were first trimmed to include

only the inverted repeat sequence and clustered using CD-HIT-EST401 with parameters -

G 0 -aL 0.5 -aS 1.0.  This means pairwise sequences were clustered together when the

smallest inverted repeat sequence had complete sequence identity against at least 50%

of the largest inverted repeat sequence using local alignment. An identity threshold of

50% was used for the largest sequence instead of a complete sequence identity because

inverted repeats in pal-MEM may have been truncated due to mismatches. CD-HIT-EST

assigned a cluster ID to each cluster of inverted repeats. Contigs associated with ITRs

were labelled with the corresponding ITR cluster IDs. 

5.4.2 Searching for ARGs

To identify ARGs, the contigs  with ISs were aligned against  CARD v3.0.0197 using

BLASTn v2.10.0+207 with an e-value cut-off of 1e-5 and an identity cut-off above 90%.
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Multiple hits of different ARGs that overlapped each other by greater than 20% on a

contig were filtered to leave the hit with the lowest e-value and highest identity values.

If the e-values and identity values are the same, the hit annotations were combined as

they could represent ARG variants from the same ARG family.

5.4.3 IS β-diversity

To find  differences  in  β-diversity  of  IS  profiles  between  groups  of  individuals,  the

Jaccard distance of ITR cluster incidence (presence or absence) profiles was computed

between individuals and visualised using NMDS. 

The Jaccard distance between incidence profiles is defined as: 

Jd=1−
M 11

M 01+M 10+M 11

where M11 is the number of IS clusters in both samples (A and B), M01 is the number of

IS clusters in sample B but not sample A, and M10 is the number of IS clusters in sample

A but not sample B. 

Silhouette analysis (eq. 2.1) of k-medoids using the cluster package v2.1.0 was used to

select the number of distinct groups with the largest average silhouette width. 
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5.5 Results

5.5.1 Detecting  ITRs  and  ISs  from  metagenomic  data  using

PaliDIS

1,154 metagenomic samples were profiled for ISs using PaliDIS based on finding ITRs

in paired-end, short metagenomic reads. A total of 49,104,515 inverted repeats of length

24 bp and greater were detected. Inverted repeats were grouped by sequence similarity

to generate a catalogue of 6,833,994 non-redundant inverted repeat clusters. 130,409

(1.91%) inverted repeat  clusters  were associated with transposases representing ITR

clusters. 179,672 contigs associated with ITRs also contained transposases, indicating

these contigs carry ISs. 

5.5.2 Profiles of ISs across GIT sites

Next, the prevalence of unique ISs was investigated across GIT sites. 160,796 unique

pairs of ITR clusters and transposases representing ISs were catalogued in all samples.

17.4% (22,172/127,301) pairs are shared between samples (excluding USA longitudinal

samples) across cohorts, where most are found in two samples, although several are

found in up to 219 samples (Fig. 5.5a). PDDEXK_2 and DDE_Tnp_ISL3 are the most

prevalent types of transposase families of these ISs (Fig. 5.5b). 

To find differences in β-diversity of plasmid profiles between groups of individuals, the

Jaccard distance between IS incidence profiles was computed between individuals and

visualised using NMDS. The profiles were clustered into distinct groups,  where the
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number  of  groups was selected as  having the  largest  average silhouette  width from

Silhouette analysis of k-medoids. The IS profiles were separated into two groups, where

one contained mostly  oral  samples  and other  mostly stool  samples  (Fig.  5.5c).  The

Kruskal-Wallis Rank Sum test with Bonferroni multiple test correction identified 298

ISs  with  incidence  profiles  significantly  conforming  to  this  grouping  (p  <  0.05)

(Supplementary Data 5.1:  https://tinyurl.com/y2rpl8rq). Out of these ISs, 234 are

only found in the gut, 34 are exclusively in the oral cavity, and 30 are located in both

sites (Fig. 5.5d).

https://tinyurl.com/y2rpl8rq
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Figure 5.5. IS profiles in metagenomic samples. 

a) Number of unique ITR cluster/transposase pairs representing ISs across number of samples. b) Number of

contigs with ISs carrying different transposase families.  c)  NMDS of Jaccard distance between IS incidence

profiles of samples. Ordination coordinates are grouped by k-medoids clustering, where number of groups, k,

has the largest average silhouette width. Missing two outliers.  d) Percentage of samples with unique ISs that

influence grouping in c) (Kruskal-Wallis Rank Test, p < 0.05). USA (not longitudinal) buccal mucosa (n = 87),

dorsum of tongue (n = 90), dental plaque (n = 89) and stool (n = 70); China dental plaque (n = 26), saliva (n =

27) and stool (n = 72); Fiji saliva (n = 136) and stool (n = 136); Philippines saliva (n = 23); and Western Europe

saliva (n = 21) and stool (n = 21).

a

c

d

b

d
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To verify whether the same ISs can be found across multiple timepoints in the same

individual, IS incidences were profiled from longitudinal USA samples. Less than 5%

of ISs could be found in two or more sampling timepoints across all GIT sites (Fig. 5.6).

Figure 5.6. IS profiles across longitudinal USA samples. 

Proportion of ISs in one to four timepoints for USA individuals with at least three sampling timepoints

(buccal mucosa: n = 17, dental plaque: n = 20, dorsum of the tongue: n = 24, stool: n = 16). 

5.5.3 ARGs are associated with ITRs

ARGs can be carried within a unit transposon or composite transposon by HGT. As it is

challenging for assemblers to resolve more repeat regions, it becomes more difficult to

identify complete composite transposons. Therefore, to investigate whether ARGs could

be mobilisable by transposition, ARGs are profiled from contigs that are associated with

ITRs.  These  contigs  do  not  have  to  contain  transposases  but  their  associated  ITR

clusters have been linked to a transposase, perhaps in another contig. 3,995 contigs were

found  to  contain  ARGs  with  ITR  clusters  across  925  (out  of  1,154)  metagenomic

samples. There were a total of 281 unique pairs of ITR clusters and ARGs. Contigs
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associated with ITRs are significantly more enriched for ARGs than those not associated

with ITRs (p=0.0332; Wilcoxon Paired Signed-Rank Test) (Fig. 5.7). 

Figure 5.7. Percentage of contigs with or without ITRs carrying ARGs. 

From 925 metagenomic samples (p-value < 0.05 as *)

A total of 215 ARG types across 52 ARG classes were associated with insertion sequences (Fig.

5.8). The gut has a higher diversity of resistance linked to ITRs, having 129 ARGs across 19

classes, than the oral cavity with 35 ARGs across 7 classes. 51 ARGs in 26 classes are found in

both the gut and the oral cavity. Interestingly, there is variation between these sites within ARG

classes.  For  example,  tetracycline  resistance  (including  by  efflux  pump  mechanism)  is

commonly linked with ISs in both the gut and oral cavity; however, ISs with  tet37, tetA(46),

tetA(60),  tetB(46),  tetB(60) and  tet(D) are only located in the oral  cavity,  whereas ISs with

emrK, emrY and tet(40) reside only in the gut.
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Figure 5.8. Number of samples with ARGs associated with ITRs. 

ARGs are shown on the y-axis and are grouped by ARG class. The number of samples are shown in the x-

axis  with  bars  coloured  by  GIT  site  and  geographical  region.  (Larger  image  is  available  from:

https://tinyurl.com/y4o8d9pl).

https://tinyurl.com/y4o8d9pl
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To  verify  whether  ARGs  and  their  ITR  clusters  are  persistent  in  the  microbiome,

longitudinal samples from the USA were profiled for ITR cluster-ARG pairs  across

sampling timepoints.  6.72% (73/1,087)  of  IS-ARG pairs  were found in at  least  two

timepoints for all  GIT sites samples from the USA cohort,  with  tet37 in  dorsum of

tongue and tetW in stool samples in three timepoints (Fig. 5.9). 

Figure 5.9. Number of individuals with ARGs from the same ITR cluster-ARG pairs found in at

least 1,2 or 3 timepoints. 

ITR cluster-ARGs are those found in more than one timepoint in longitudinal USA samples.
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5.6 Discussion

Here, I built a software package called PaliDIS that identifies ITRs and profiles ISs

from short-read,  paired-end whole  metagenomic  data,  based  on identifying  inverted

repeats from reads using pal-MEM, another tool I developed. 130,409 unique ITRs were

identified from 1,154 metagenomes  using PaliDIS.  A much earlier  study detected a

median of 499 ITRs from 63 chromosomes of single isolate genomes from GenBank

representing  58  bacterial  genomes,  ranging from none in  Chlamydia  trachomatis to

66,860  in  Neisseria  meningitidis415.  Given  that  4,644  different  culturable  and

unculturable  species  have  been  catalogued  from the  human  gut417 and  at  least  700

species reside in the oral cavity418, with multiple sub-species and strains, there could be

millions of ITRs in metagenomes. It is likely many ITRs may have been missed. Only

inverted repeats with lengths of 24 bp or greater were identified in pal-MEM, even

though  ITRs  can  be  as  short  as  10  bp117.  This  is  because  it  would  have  been

computationally time consuming to search for lower length (as described in 5.3.3). It

may be possible to  parallelise  pal-MEM processing further  with a larger  number of

computer threads to allow for smaller lengths to be found within a reasonable time.

Additionally, given transposase genes are genetically diverse, not all ITRs may have

been identified from a search of transposase HMMs. 

Nevertheless,  PaliDIS was able  to  identify  179,672 contigs  containing  ISs  and find

distinct IS profiles between human oral sites and gut samples, driven by a particular set

of 298 ISs. Less than 5% of ISs were also shown to persist across multiple timepoints in

longitudinal USA samples. This verifies that PaliDIS is able to detect stable ISs that are

integrated the microbiome. However, when compared to plasmids and bacteriophages,
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this  proportion is  lower than expected.  Since some inverted repeats may have been

truncated by disruptions to MEM extensions due to mismatches, it is possible the same

inverted repeats may not have had sequences similar enough to be clustered. This would

lead to a greater number of ITR clusters and a smaller overlap of ITR clusters between

longitudinal samples. In addition, a small minority of ISs lack ITRs, such as IS91-like

and ISCR elements122. As all transposable elements contain transposases, an alternative

method of identifying unique ISs could be to cluster contigs containing transposases by

sequence similarity into a non-redundant catalogue. ITR clusters associated with contigs

can be assigned to their contig clusters, whereas those clusters that are not assigned an

ITR  could  be  considered  potential  ISs  lacking  ITRs.  Clusters  of  contigs  could  be

merged together, along with ITRs, to create more complete ISs sequences. However,

this relies on identifying all possible transposases, which is difficult given transposase

genes are genetically diverse and can only be identified in genomic data by reference-

based approaches. Nevertheless, discoveries of novel ISs could be catalogued alongside

the IS reference database, ISFinder258, to monitor the prevalence of ISs across different

ecological samples.

Contigs associated with ITRs are significantly more enriched for ARGs than contigs not

associated with ITRs. This suggests that ARGs are more likely to be linked to ISs than

without, perhaps as part of composite or unit transposons. ARGs patB, RlmA(II)  and

tetA(60) that are highly abundant in the oral cavity compared to the gut (Chapter 2)307

are mostly associated with ITRs in oral sites. HGT involving ISs as part of composite or

unit transposons may be driving the increase in ARG abundances. However, the higher
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read depths of these ARGs could have led to better assemblies of contigs and highly

detection of ISs associated with these ARGs. 

In the future,  pal-MEM may be implemented to  include shorter  ITR sequences  and

PaliDIS may be developed further to construct and discover new ISs from metagenomic

data.  Applying  PaliDIS  to  whole  metagenomic  data  is  a  promising  avenue  for

discovering multiple ISs rapidly, especially from uncultivable strains and those without

an expressible phenotype on which functional metagenomics relies.

Once PaliDIS has been developed further, its specificity and sensitivity should be tested

on various datasets to inform other users what results they may expect from their data.

The sensitivity is the proportion of contigs containing ISs that are correctly identified,

and the specificity  is  the proportion of contigs not containing ISs that are correctly

identified. In other words, a high sensitivity would suggest PaliDIS performs well at

identifying  ISs  that  exist,  and a  high  specificity  would  indicate  PaliDIS is  good at

avoiding sequences that are not ISs. In order to make these measurements, PaliDIS must

be tested on data where ISs are known. Unfortunately, there are no whole metagenomic

datasets  of  real  samples  with  known ISs.  Although it  is  difficult  to  recapitulate  the

complexity  of  microbial  communities  in  the  human  GIT,  simulated  metagenomic

datasets  representing  simple  microbial  communities  can  be  created  by  combining

genomes from public datasets419. 
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Chapter 6: Discussion
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6 Discussion

The perennial problem of AMR has made it imperative to understand more about its

causes, especially how ARGs are acquired in microorganisms. The work in this study

has  highlighted  associations  between  ARGs  and  MGEs,  and  how  they  may  spread

through  the  microbiome  by  HGT.  In  particular,  ARGs  are  linked  to  plasmids  and

transposable  elements  in  the  human  GIT that  are  shared  across  populations,  unlike

phages  that  seldom  encode  ARGs.  However,  to  begin  exploring  the  differential

influence these types of MGEs have on HGT of ARGs, data of these multiple MGE-

ARG associations from this study must be combined. In this final chapter, associations

between antibiotic use data and the prevalence of ARG-carrying MGEs will be explored

to  indicate  whether  antibiotic  use  could  be  driving  acquired  resistance  involving

particular  types  of  MGEs.  Associations  between  the  MGE incidence  and  the  ARG

abundance  are  then  investigated  to  show  which  MGEs  are  most  influential  in

propagating ARGs throughout  a microbial  community.  Additionally,  ARG and MGE

prevalence data for each ARG are ranked for each antibiotic class, country and GIT site

to  highlight  ARGs  that  are  commonly  acquired  by  HGT and  may  be  important  to

monitor  for  AMR  surveillance.  The  code  for  this  analysis  is  available  here:

https://github.com/blue-moon22/thesis_summary.  Analysis  was  run using  R v3.6.1.  I

discuss  what  further  data  are  required  to  make  predictions  of  clinical  outcomes  of

infections  in  patients  with  specific  AMR based  on  HGT-acquired  ARGs.  Finally,  I

propose how these predictions can support interventions in preventing the spread of

AMR and facilitating alternative therapies to treat patients with AMR.

https://github.com/blue-moon22/thesis_summary
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Previously  in  Chapter  2,  the  abundance  and  diversity  of  ARGs were  profiled  from

openly available whole metagenomic data of human GIT microbiomes from China, Fiji,

the Philippines, the USA and Western Europe (France and Germany). In Chapter 3, a

computational pipeline based on existing viral identification software was applied to

profile bacteriophages in samples from China, the Philippines and the USA. (The Fiji

and Western Europe samples were not available at the time of this study.) Chapter 4

used  a  similar  computational  pipeline  based  on  an  existing,  but  relatively  new,

metagenomic plasmid assembly tool for identifying circular plasmids from China and

USA samples. Finally, a new tool called PaliDIS was developed to identify ISs from

short-read, paired-end metagenomic data, which was applied to the metagenomic data

from all cohorts and linked to ARGs. 

6.1 Antibiotic use and prevalence of ARG-associated 

MGEs

Anthropogenic use of antimicrobials is a major driver of acquired resistance. The use of

antimicrobials  can  lead  to  a  higher  incidence  of  ARGs  acquired  by  HGT through

selective pressures. To investigate this, the relationship between the prevalence of ARG-

carrying MGEs and antibiotic use in 2015 was evaluated. Prevalence data were used

from previous chapters of ARG-carrying phages from China and the USA (Chapter 3),

plasmids from China and the USA (Chapter 4) and ISs from China, the Philippines, the

USA and  Western  Europe  (Chapter  5).  Antibiotic  class  use  data  were  taken  from

Chapter  2  (Fig.  2.2c).  No  antibiotic  use  data  were  available  for  Fiji.  The  linear

relationship between the prevalence of ARG-carrying MGEs and the DDD Per 1,000
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individuals in 2015 for the different antibiotic classes was evaluated for each GIT site

and MGE type. There is no significant linear correlation between prevalence of ARG-

carrying MGEs and DDD for any case (Student’s t-test) (Fig. 6.1). Confounders that

could not be considered here (due to lack of data) is likely to influence this relationship.

For one, it is unclear how the antibiotics were administrated and what body sites were

exposed, e.g. orally, topically or intravenously. However, it could be predicted from the

antibiotic  class  used  to  some  extent,  e.g.  aminoglycosides  are  administered

intravenously  or  intramuscularly  as  they  cannot  be  absorbed from the  gut.  Another

reason that no correlation is present could be that these data were taken in just the year

2015 alone,  which do not  accurately reflect  the antibiotic  exposures  preceding this.

Therefore,  it  could be that ARGs were acquired earlier.  However ongoing antibiotic

exposure may be required for  ARGs to persist  in  the microbiota  given the possible

fitness costs of retaining an ARG in a microbial genome. Even once an ARG is retained

with  or  without  antibiotic  selection  pressures,  the  presence  of  an  ARG  does  not

necessarily  equate  to  it  being  expressed.  Since  expression  is  usually  triggered  by

antibiotic pressures, the expression of acquired ARGs is likely to be driven by antibiotic

use levels. 
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Figure 6.1. Prevalence of ARG-carrying ISs, phages and plasmids against DDD Per 1,000 in 2015

for each antibiotic class. 

Samples from China (dental: n = 32, saliva: n = 33, stool: n = 72), Philippines (saliva: n = 23), the USA

(buccal mucosa: n = 87, dental: n = 90, dorsum of tongue: n = 91, stool: n = 70), and Western Europe

(saliva: n = 21, stool: n = 21). Excluding longitudinal USA samples. 

ISs

Phages

Plasmids
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6.2 Comparing prevalence of ARG-associated MGEs

To investigate the relative contributions of different MGE types on the HGT of ARGs,

prevalence data for ISs, plasmids and phages were compared in China and the USA

samples (as plasmids were not profiled from other cohorts) at each GIT site. There is a

higher prevalence of ARG-carrying ISs and plasmids than ARG-carrying phages  (Fig.

6.2). Out of these types, ARG-carrying ISs carry the highest number of ARGs targeting

the  greatest  variety  of  antimicrobial  classes.  However,  for  certain  ARGs  linked  to

MGEs,  ISs  are  less  prevalent  than  plasmids.  For  instance,  plasmid-associated  tetM

ARGs are common across oral sites in China and the USA, but in fewer samples when

IS-associated. It is possible that an ARG, like tetM, found in both plasmids and ISs may

be within a composite/unit transposon that is part of a plasmid. This could mean tetM

may be acquired by multiple mechanisms of HGT, allowing it to propagate extensively

in  microbial  communities.  For  instance,  tetM could  transfer  between  plasmids  and

chromosomes by transposable elements, making it possible for tetM to spread across a

variety of species without being limited to a particular plasmid. This prediction can be

tested by searching for ISs within circular plasmid contigs. Similarly, ARGs that are

linked with phages and ISs (such as mdtC and mdtA) may be located in ISs within viral

DNA. To further explore the relative influence of MGE types on the ARG incidence

across cohorts, the relationship between the prevalence of all ARGs and their associated

phages, plasmids and ISs was evaluated for each GIT site from China and the USA

using multiple linear regression. ARG-associated ISs are likely to impact the spread of

ARGs across GIT sites in China  (dental plaque: p = 0.00798, saliva: p = 0.0391, stool:

p = 7.49x10-5; Student’s t-test on multiple linear regression) and the USA (dorsum of the
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tongue:  p  =  0.0158  and  stool:  p  =  2.17x10-5).  Likewise,  ARG-carrying  plasmids

influence ARG incidence in stool samples from the USA (p = 0.0123).

Figure 6.2. Percentage of samples containing ARGs associated with MGE types. 

ARGs are grouped by ARG classes  associated with a  phage only,  plasmid only,  IS  only,  phage and

plasmid,  phage  and  IS,  plasmid  and  IS,  or  phage,  plasmid  and  IS.  Samples  from  the  USA (not

longitudinal) (buccal mucosa: n = 61, dental: n = 60, dorsum of the tongue: n = 61, stool: n = 61) and

China  (saliva:  n  =  27,  dental:  n  =  26,  stool:  n  =  29).  (Larger  figure  can  be  downloaded  here:

https://tinyurl.com/y4aqkhxr).

https://tinyurl.com/y4aqkhxr
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6.3 The influence of MGE incidence on ARG 

abundance

Just because an ARG is associated with an MGE does not guarantee it is mobilisable

and able to transfer into other genomes. For example, an ARG that integrates into a

prophage may inactivate it, preventing the phage genome being excised from the host

genome during prophage induction. When an ARG is transferred by HGT across the

microbiome,  its  abundance  should  increase.  To identify  which  MGEs may  be  most

influential in this increase, the incidence of ARG-associated MGEs was modelled to

predict the ARG abundance using logistic regression. The presence of four ISs and four

plasmids are found to be significantly related to an increase in ARG abundance across

different cohorts (Fig. 6.3) (p < 0.05 from Student’s t-test of estimated MGE coefficient,

and p < 0.05 chi-square test between model and null model). No phages are associated

with ARG abundance. The presence of  IS 126965 (ITR cluster ID from Chapter 5) is

associated with an increase in the abundance of ARG  bacA (conferring resistance to

peptide antibiotics in stool samples from China [p = 5.02x10-4]) and Fiji [p = 4.08x10-

9]),  acrD (encoding  resistance  to  aminoglycosides  [p  =  9.71x10-11])  and  mdtM

(conferring multidrug resistance [p = 1.83x10-8] in stool samples from Fiji only). The

abundance of MLS resistant ARG ermB is also significantly related to the incidence of

three different plasmids: one in stool samples from China (p = 2.67x10-4) and two in

stool  samples  from the  USA (both  p  =  5.00x10-6).  In  addition,  the  abundances  of

fosfomycin resistant ARGs  mdtG, lsaC and  tetW are significantly associated with the

incidence of an IS in Fiji stool samples (p = 0.00103), a plasmid in USA dorsum of the

tongue (p = 6.02x10-4), and a plasmid in USA stool samples (p = 0.0179), respectively.
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These eight  MGEs are likely to  be involved in  the spread and propagation of their

associated ARGs within GIT microbiomes leading to their increased abundances. As

logistic regression was only performed when there were ten or more samples carrying

MGE-associated ARGs, other MGEs with a lower prevalence that were omitted in this

model are also likely to be involved in propagating ARGs. More samples would be

required to detect whether less prevalent MGEs also propagate ARGs.

Figure 6.3. MGE incidence versus ARG abundance for MGEs with statistical significance. 

ARG abundance is measured by RPKM, and incidence of MGEs describes presence (1) or absence (0).

Logistic regression is applied when 10 or more samples have ARGs with or without an associated MGE.

Statistical significance is found when p < 0.05 from Student’s t-test of estimated MGE coefficient and p <

0.05 from chi-square test between model and null model.
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6.4 Which ARGs that associate with MGEs may be 

important in AMR?

The prevalence  of  ARGs and ARG-associated  MGEs can be used  to  predict  which

ARGs and MGEs may be implicated in causing AMR for particular antibiotic classes

within populations and body sites. Highly prevalent ARG-associated MGEs are likely to

be more successful in spreading ARGs in human populations compared to less common

ARG-associated  MGEs.  The  following  methodology  was  applied  to  highlight  these

MGEs.  For  every  antibiotic  class,  cohort  and  GIT site,  each  ARG  was  ranked  in

descending order by their prevalence of being associated with ISs, phages and plasmids

in samples. For example, in dental plaque samples from China, the tetracycline resistant

ARGs tetM and tetO are located in a plasmid in all samples (100%). The ARG tetM is

associated with ISs in 60% of samples, whereas tetO is associated with ISs in 50% of

individuals. Neither ARGs are associated with phages (0% samples). The sum of the

proportions of individuals with ARGs associated with MGEs are 160% for  tetM and

150% for  tetO.  tetM has the highest sum and is assigned a rank of “1”, then  tetO is

given a rank of “2”. If no other tetracycline resistant ARG is linked to an MGE in that

cohort, then the rank is continued in descending order by the proportion of individuals

containing the ARG without being associated with an MGE. For example, tetQ is found

in 96% samples but are not associated with any MGEs, so is given a rank of “3”. The

next most prevalent ARG, tetB(60) in 60% of samples, is assigned the rank “4”. ARGs

with the same percentages are given a tied rank, e.g. if tet32 also has a prevalence of

60%, it  is  also given the rank “4”,  and the next  ARG has  the rank “6”.  Table 6.1

summarises the top ranking (i.e. rank “1”) of ARGs for each antibiotic class, country
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and  GIT site.  Highest  ranked  ARGs that  are  highly  prevalent  and linked  to  MGEs

usually confer resistance to multiple antibiotics. Rankings of all ARGs for all antibiotic

classes  can  be  found  in  Supplementary  Data  6.1  available  here:

https://tinyurl.com/y6amgn4n.  (Each antibiotic  is  separated by sheet  and follows the

same layout as Table 6.1.) 

Table 6.1. ARGs that have the highest prevalence of being associated with an MGE. 

ARGs are ranked by the sum of their prevalence of being associated with an IS, phage and plasmid for 

each antibiotic class, country and GIT site.

Antibiotic Class Country GIT Site ARG Prevalenc
e of ARGs 
(%)

Prevalence 
of ARG-
associated 
ISs (%)

Prevalence of 
ARG-
carrying 
plasmids (%)

Prevalence 
of ARG-
carrying 
phages (%)

acridine dye China stool mdtM 55.6 4.17 0 0

USA buccal 
mucosa

hmrM 37.9 0 0 2.3

USA dental hmrM 11.1 0 0 1.11

USA stool mdtM 7.14 1.43 0 1.43

aminoglycoside 
antibiotic

China saliva APH(3')-Ia 100 0 69.7 0

China stool APH(3')-IIIa 41.7 0 27.8 0

USA dorsum of
tongue

APH(3')-IIIa 6.59 2.2 0 0

USA stool APH(3')-IIIa 67.1 0 40 0

benzalkonium chloride China stool Escherichia coli mdfA 62.5 4.17 0 0

USA stool Escherichia coli mdfA 7.14 1.43 0 0

carbapenem China stool Klebsiella 
pneumoniae OmpK37

37.5 4.17 0 0

cephalosporin China dental TEM-1 6.25 0 6.25 0

China dental TEM-40 3.12 0 6.25 0

China saliva TEM-1 36.4 0 24.2 0

China saliva TEM-40 3.03 0 24.2 0

China stool Escherichia coli 
ampC beta-lactamase

68.1 8.33 0 0

USA stool CblA-1 87.1 12.9 0 0

cephamycin China dental CfxA2 87.5 25 0 0

China saliva CfxA2 69.7 18.2 0 0

China stool CfxA6 29.2 2.78 2.78 0

USA buccal 
mucosa

CfxA2 39.1 3.45 0 0

USA dental CfxA3 14.4 5.56 0 0

Continues next page

https://tinyurl.com/y6amgn4n
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USA dorsum of 
tongue

CfxA2 67 13.2 0 0

USA dorsum of 
tongue

CfxA3 33 13.2 0 0

USA stool CfxA2 60 10 0 0

diaminopyrimidine 
antibiotic

China stool dfrF 100 9.72 0 0

USA stool dfrF 82.9 15.7 0 0

fluoroquinolone 
antibiotic

China dental pmrA 46.9 3.12 0 0

China saliva pmrA 100 6.06 0 0

China stool Escherichia coli acrA 69.4 6.94 0 0

USA buccal 
mucosa

pmrA 100 6.9 0 0

USA dental hmrM 11.1 0 0 1.11

USA dorsum of 
tongue

pmrA 79.1 1.1 0 0

USA stool mdtM 7.14 1.43 0 1.43

fosfomycin China stool FosA6 40.3 6.94 0 0

China stool mdtG 59.7 6.94 0 0

USA stool mdtG 8.57 1.43 0 0

glycopeptide antibiotic USA stool vanTG 2.86 1.43 0 0

USA stool vanXYG 7.14 1.43 0 0

glycylcycline China dental tet(A) 71.9 3.12 0 0

China saliva tet(A) 84.8 3.03 0 0

China stool Escherichia coli acrA 69.4 6.94 0 0

USA stool tetX 68.6 2.86 0 0

lincosamide antibiotic China dental ErmB 100 0 28.1 0

China saliva ErmF 100 33.3 0 0

China saliva lsaC 97 33.3 0 0

China stool ErmB 100 0 40.3 0

USA buccal 
mucosa

RlmA(II) 98.9 23 0 0

USA dental lsaC 90 10 0 0

USA dorsum of 
tongue

lsaC 100 25.3 0 0

USA stool ErmB 82.9 0 52.9 0

macrolide antibiotic China dental ErmB 100 0 28.1 0

China saliva ErmF 100 33.3 0 0

China stool ErmB 100 0 40.3 0

USA buccal 
mucosa

RlmA(II) 98.9 23 0 0

USA dental ErmF 81.1 7.78 0 0

USA dorsum of 
tongue

ErmB 87.9 0 17.6 0

USA stool ErmB 82.9 0 52.9 0

monobactam China dental TEM-1 6.25 0 6.25 0

China dental TEM-40 3.12 0 6.25 0

China saliva TEM-1 36.4 0 24.2 0

China saliva TEM-40 3.03 0 24.2 0

China stool Klebsiella 
pneumoniae OmpK37

37.5 4.17 0 0

Continues next page
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nitroimidazole 
antibiotic

China stool msbA 72.2 4.17 0 0

USA stool msbA 14.3 1.43 0 0

nucleoside antibiotic China stool mdtM 55.6 4.17 0 0

USA dorsum of 
tongue

SAT-4 7.69 2.2 0 0

USA stool mdtM 7.14 1.43 0 1.43

USA stool SAT-4 51.4 2.86 0 0

penam China dental TEM-1 6.25 0 6.25 0

China dental TEM-40 3.12 0 6.25 0

China saliva TEM-1 36.4 0 24.2 0

China saliva TEM-40 3.03 0 24.2 0

China stool Escherichia coli ampC 
beta-lactamase

68.1 8.33 0 0

USA stool ACI-1 2.86 1.43 0 0

USA stool Escherichia coli acrA 8.57 1.43 0 0

USA stool Escherichia coli ampC 
beta-lactamase

12.9 1.43 0 0

USA stool OXA-347 17.1 1.43 0 0

penem China dental TEM-1 6.25 0 6.25 0

China dental TEM-40 3.12 0 6.25 0

China saliva TEM-1 36.4 0 24.2 0

China saliva TEM-40 3.03 0 24.2 0

China stool Klebsiella 
pneumoniae OmpK37

37.5 4.17 0 0

peptide antibiotic China saliva pgpB 51.5 3.03 0 0

China stool bacA 63.9 11.1 0 0

USA stool bacA 12.9 2.86 0 0

phenicol antibiotic China dental catS 3.12 3.12 0 0

China stool Campylobacter coli 
chloramphenicol 
acetyltransferase

47.2 0 11.1 0

USA stool Campylobacter coli 
chloramphenicol 
acetyltransferase

20 0 10 0

pleuromutilin antibiotic China dental lsaC 100 21.9 0 0

China saliva lsaC 97 33.3 0 0

China stool lsaC 1.39 4.17 0 0

USA buccal 
mucosa

lsaC 60.9 9.2 0 0

USA dental lsaC 90 10 0 0

USA dorsum of
tongue

lsaC 100 25.3 0 0

rhodamine China stool Escherichia coli mdfA 62.5 4.17 0 0

USA stool Escherichia coli mdfA 7.14 1.43 0 0

rifamycin antibiotic China stool Escherichia coli acrA 69.4 6.94 0 0

USA stool Escherichia coli acrA 8.57 1.43 0 0

streptogramin antibiotic China dental ErmB 100 0 28.1 0

China saliva ErmF 100 33.3 0 0

China saliva lsaC 97 33.3 0 0

China stool ErmB 100 0 40.3 0

Continues next page



245

USA buccal 
mucosa

lsaC 60.9 9.2 0 0

USA dental lsaC 90 10 0 0

USA dorsum of 
tongue

lsaC 100 25.3 0 0

USA stool ErmB 82.9 0 52.9 0

sulfonamide antibiotic China dental sul2 50 12.5 0 0

China saliva sul2 60.6 0 6.06 0

China stool sul2 73.6 1.39 0 0

USA dental sul2 16.7 4.44 0 0

sulfone antibiotic China dental sul2 50 12.5 0 0

China saliva sul2 60.6 0 6.06 0

China stool sul2 73.6 1.39 0 0

USA dental sul2 16.7 4.44 0 0

tetracycline antibiotic China dental tetM 100 0 81.2 0

China saliva tetM 100 0 81.8 0

China stool tetW 100 0 37.5 0

USA buccal 
mucosa

tetM 86.2 0 64.4 0

USA dental tetM 91.1 0 61.1 0

USA dorsum of 
tongue

tetM 100 0 64.8 0

USA stool tetO 94.3 0 65.7 0

triclosan China stool Escherichia coli acrA 69.4 6.94 0 0

USA stool Escherichia coli acrA 8.57 1.43 0 0

6.5 To what extent can short-read, whole 

metagenomic data be useful in predicting AMR?

Surveillance  of  the  spread  of  antimicrobial  resistant  pathogens  and  the  clinical

consequences of infections caused by resistant pathogens is important in understanding

both  the  spread  and  health  impacts  of  AMR  in  human  populations.  The  genetic

determinants of how a pathogen becomes resistant to antimicrobials are also crucial to

our understanding of how AMR emerges. An ARG acquired by an MGE or by mutation

that is retained in the genome is the first step towards a microbe being able to survive

against antimicrobial treatments. Even so, the likelihood of an acquired ARG to pose a

threat to  human and animal health relies on other  conditions,  including whether the

acquired ARG is in a  pathogen and whether the ARG can be expressed sufficiently
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enough  for  pathogen  to  survive  antimicrobial  treatment.  Although  profiling  the

prevalence of the mobile resistome gives an indication of which genetic determinants

may pose a threat, a combination of alternative modelling and experimental techniques

may  better  inform  us  as  to  whether  an  acquired  ARG  can  pass  these  necessary

conditions. Modelling allows us to represent a biological system based on empirical

evidence from experiments to make predictions. The purpose of the model would be to

predict  a  pathogen’s  AMR phenotype to  an  antimicrobial  drug,  such as  its  MIC of

ECOFF value, based on acquired ARGs from short-read metagenomic data. Hereafter, I

discuss to  what  extent  information about  acquired ARGs, microbial  hosts  and ARG

expression  can  be  drawn  from  short-read  metagenomics  and  other  technologies  to

predict the AMR phenotype of a pathogen in a microbial community. 

6.5.1 Profiling acquired ARGs

In this study, only a subset of MGEs, i.e. ISs, phages and plasmids, were considered as

vectors  for  ARG  transfer.  In  reality,  ARGs  are  also  transferred  by  other  MGEs,

including gene cassettes/integrons, ICEs and IMEs217, and also can be part of multiple

MGEs,  such  as  within  transposable  elements  on  plasmids106.  Integron_Finder133 and

ICEberg259 are  reference-based  tools  that  identify  integrons  and  ICEs/IMEs  from

assembled metagenomic data, respectively. However, as previously discussed, de novo

discovery tools are more desirable for identifying novel MGEs that may be missed by

reference-based tools. An approach to cataloguing mobile genes in species that do not

rely on profiling MGEs, e.g. ISs, phages or plasmids, is to identify identical or similar

genes  in  reference  genomes  and  in  distantly  related  sequences  of  assembled

metagenomes,  indicating  these  genes  must  have  moved  across  different  species  via
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HGT142. ARGs can also be acquired by mutation, including SNPs and indels.  A non-

reference-based  de  novo method  using  De  Bruijn  graph  structures  of  co-assembled

multiple genomes can identify SNPs and indels364,365. This has been previously applied

to whole metagenomic data of simple microbial communities366, and could be developed

further for more complex communities, such as within the GIT. 

6.5.2 Identifying pathogens carrying ARGs

The hosts of the acquired ARGs need to be found to determine whether they could cause

clinically  relevant  AMR.  For  example,  an  ermB-carrying  plasmid  that  is  in

Streptococcus oralis (a frequent commensal of the oral cavity) but not in the pathogen

Staphylococcus aureus, would not cause clinically relevant AMR unless this plasmid is

able  to  transfer  later  to  S.  aureus.  In  the  case  of  phages,  assemblies  of  short-read

metagenomics contain CRISPR spacers in a small proportion of phage genomes that are

recognisable  in  bacterial  reference  sequences,  which  have  enabled  bacterial  host

predictions  to  be  made  (Chapter  3).   Similarly,  in  this  study,  a  handful  of  plasmid

sequences showed similarities to plasmid DNA isolated from known strains (Chapter 4).

However, the hosts of ISs were not predicted in this study. PaliDIS, the tool created to

identify  ISs  from  short-read,  paired-end  metagenomes  (Chapter  5),  could  also

incorporate a host prediction function in the future. One method would be to create a

catalogue of metagenomic species from computational binning of metagenomic reads

by their differential abundance across samples that are then assembled per bin235. These

metagenomic species can be mapped against reference genomes to identify its species or

strain. This has already been done for both the human gut and oral cavity420,421, so the

reads  associated  with  ITRs of  ISs  can  be mapped to  these  metagenomic species  to
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predict the ISs’ hosts. As well as using short-read metagenomics, long-read sequencing

technologies,  such  as  Nanopore  or  PacBio,  can  generate  longer  lengths  of  unique

chromosomal DNA containing prophages and ISs, which can be resolved at the strain-

level. Since the majority of plasmids are separate from chromosomal DNA, proximity

ligation  technologies  or  clustering  by  methylation  motifs  can  be  applied  to

metagenomes to locate their hosts217. These techniques are currently the only ways to

retrieve reliable host predictions given plasmids are highly promiscuous, such that one

plasmid can be found in multiple species105. 

It is also important to taxonomically profile the microbial community to identify other

pathogens or  pathobionts  that  may acquire  ARGs from a commensal  species  in  the

future.  For  example,  ermB-carrying  plasmids  could  transfer  from  commensal

Streptococcus  oralis to  pathogen  Staphylococcus  aureus within  the  microbial

community.  If  a  pathobiont  was  part  of  a  microbial  community  that  colonised  a

particular niche some time ago and did not acquire a particular ARG, it could be argued

that,  given  the  microbial  community  continues  to  remain  stable  with  unchanging

exposures to metabolites and exogenous compounds, it is unlikely to acquire an ARG in

the  future.  However,  the  composition  of  external  environments  can  often  change,

especially in the oral cavity. HGT within microbial communities can be promoted by

exposure to sublethal levels of antimicrobials422 and other exogenous compounds423. For

example,  cefotaxime  exposure  significantly  raised  the  conjugation  frequency  of

blaCTX−M−1-carrying IncI1 resistance plasmid in an  Escherichia coli strain424.  The

rate  of  MGE transfer  of  ARGs  between  different  microorganisms  may  need  to  be

incorporated to model the likelihood of a pathogen or pathobiont acquiring an ARG.
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Published mathematical models have attempted to recreate the dynamics of HGT of

ARGs, but have often fallen short of representing a realistic scenario. Most of them are

simplified  deterministic  mathematical  modelsxxii of  one  ARG  transferred  only  by

conjugation between E. coli strains425. They are also constrained by parameters from in

vitro  experiments without antimicrobial exposure, but including some fitness costs to

the bacteria acquiring new ARGs. In reality, a representative mathematical model of

HGT should  include  stochasticity  as  HGT can  be  a  rare  event426,427.  It  should  also

include multiple  ARGs,  transferred  by different  HGT mechanisms between multiple

species  simulating  under  a  variety  of  in  vivo conditions,  including  antimicrobial

exposure.  These  transfer  rates  of  different  MGEs  and  HGT mechanisms  can  vary

between bacterial species. For example, transformation is more common in  Neisseria

gonorrhoea than in Staphylococcus aureus428,429. This is a very complex system. Without

accurate  measurements  of  these  conditions  to  confine  all  possible  solutions,  the

outcomes of complex mathematical models become less precise and thus meaningless.

Instead, predictions of whether a pathogen or pathobiont could acquire an ARG in a

microbial community could be aided by finding if they exist in metagenomic samples

and reference genomes from other environmental niches, and thus have the potential to

host ARGs in the human body87. If a pathogen or pathobiont outside the human body is

found with an acquired ARG, it has the potential to spread into the human body at sites

of infection.  For example,  the MLS resistant ARG  ermG was first  found in the soil

bacterium Bacillus sphaericus430 and much later in several human intestinal Bacteroides

species431 and in a conjugative transposon432. This indicates that there may have been

HGT of  ermG from  Bacillus  sphaericus and  proximal  enteric  Bacteroides species,

which then colonised the human gut. Therefore, metagenomic data needs to be collected

xxii No randomness is involved and will always produce the same result given initial conditions.
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from all other environments of human contact, such as households, transportation and

hospitals, to find ARG-carrying pathogens or pathobionts that could colonise the human

body.

6.5.3 ARG expression of a resistance phenotype

Finally,  once  ARGs are  newly  modelled  into  the  genomes,  it  has  to  be  established

whether  they  are  expressed  and  what  resistance  phenotype  is  presented  during

antimicrobial treatment of infections. It is impossible to determine directly whether an

ARG from metagenomic data is expressible or not. Metatranscriptomic sequencing of

mRNA can  determine  whether  acquired  ARGs  are  expressed  during  antimicrobial

treatment. However, this would only detect protein-coding ARGs that are expressed and

promoter regions that are increasing their expression at that time, and usually only while

there is antimicrobial exposure. Moreover, expression levels can only be profiled from

known  ARGs  using  metatranscriptomics.  Instead,  functional  metagenomics  can  be

applied  to  discover  novel  genetic  resistance  determinants  associated  with  MGEs359,

including promoters as well as ARGs. Only genetic determinants presenting a resistant

phenotype in the surrogate host (usually E. coli) that survive antimicrobial exposure are

sequenced, meaning that genetic determinants that are missed may be expressed in the

original host or genetic determinants that are discovered in the surrogate may not be

expressed in their original host. Even when an ARG is found to be expressible in one

genome under a particular condition of antimicrobial  exposure,  it  may be expressed

differently in other genetic backgrounds. Multiple ARGs may interact to potentiate each

other’s  expression  more  than  if  expressed  separated.  For  example,  the  efflux  pump

NorA in  Staphylococcus aureus that exports fluoroquinolone antibiotics can lead to a
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more  rapid  recruitment  of  other  mechanisms  of  ciprofloxacin  (a  fluoroquinolone)

resistance  during  exposure,  including  intrinsic  resistance  mediated  by  a  DNA

topoisomerase146. 

6.5.4 Future work with short-read whole metagenomes

It  is  possible  to  identify  the  hosts  of  acquired  ARGs  with  short-read,  whole

metagenomic data, yet it is impossible to directly ascertain whether acquired ARGs are

expressible via this approach. However, there is potential to predict AMR phenotype

without knowledge of an ARG’s expression from short-read metagenomic data. Long-

read  metagenomic  sequencing  of  sputum  samples  using  Nanopore  MinION  of

metagenomes and pre-existing susceptibility and genomic data for genomic neighbour

typingxxiii were  enough  to  accurately  predict  antibiotic  resistance  and  susceptibility

phenotypes  of  Streptococcus  pneumoniae  strains  in  these  samples215.  It  would  be

challenging to apply this particular genomic neighbouring typing method to short-read

metagenomes, mainly due to limitations in resolving near-complete genomes of strains.

However,  predicting  the  host  species  of  the  mobile  resistome  (without  resolving

genomes) from short-read metagenomes can provide information on the incidence of

acquired ARGs for different species within a metagenomic sample. Comparing these

incidences between metagenomic data and reference genomes with known susceptibility

data could aid predictions of whether a metagenomic species with an acquired ARG

may be more resistant than its susceptible reference counterpart.  Future work might

include calculating the distances (such as Euclidean distance) of acquired ARG profiles

between  metagenomic  species  and  reference  strains  of  the  same  species.  The

xxiii Predicting the phenotype of the pathogen by their closest relatives using k-mer content of reads.
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susceptibility of the metagenomic species to the antimicrobial would be most similar to

the  susceptibility  of  reference  strain  with  the  most  similar  acquired  ARG  profiles.

Currently, susceptibility to an antimicrobial can only be derived from phenotypic testing

of single isolates in culture. Nevertheless, continuing to characterise the susceptibility of

reference microbial genomes could improve AMR phenotype predictions from whole

metagenomic data.

6.6 Interventions against AMR

Pathogens that are predicted to be resistant to an antimicrobial from metagenomic data

are likely to lead to poor clinical outcomes (prolonged infections and fatalities) when

they survive and colonise at sites of infection under antimicrobial treatment. Once these

pathogens are identified, three strategies can be implemented to prevent these clinical

outcomes: 1) surveillance to monitor the spread and colonisation of these pathogens in

human populations; 2) diagnostics to choose appropriate antimicrobial treatments; and

3) alternative therapies to eradicate acquired ARGs and MGEs.

6.6.1 Surveillance

Surveillance of AMR has been highlighted as a major action point from public health

bodies, including the World Health Organisation. The spread of antimicrobial resistant

pathogens and acquired ARGs that pose a threat to human life can be monitored across

different environments,  such as hospitals,  transport,  farms and wastewater.  Acquired

ARGs and MGEs or marker sequences of the pathogen can be targeted and amplified
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with specific sequence probes to rapidly test the presence of the pathogen. These tests

can be done using PCR or loop-mediated isothermal amplification (LAMP) that does

not require alternating temperature cycles like PCR433. Antimicrobial resistant pathogens

found in environments where there is frequent human contact, such as hospitals, are

considered  to  be  a  higher  risk of  causing  clinical  AMR. This  can  inform decision-

making in implementing procedures to prevent further spreading in hospitals, such as

regular hand sanitisation for all staff and visitors. The genomes of resistant pathogens

can also be sequenced based on culture-based or long-read metagenomic techniques to

track  the  evolution  of  their  genetic  virulence  (such  as  how  they  colonise  niches,

interrupt  the  immune  response  and  disrupt  human  metabolism)  and  resistance

determinants, and whether these pose a greater danger to health.

6.6.2 Diagnostics

PCR, LAMP and metagenomic sequencing to identify antimicrobial resistant pathogens

used in surveillance can also be applied to diagnose whether a patient has a pathogen

that could colonise a site of infection under antimicrobial treatment. If an individual

tests positive, an alternative antimicrobial treatment can be administered to eradicate an

infection, reducing the risk of poor clinical outcomes.

6.6.3 Therapies to prevent resistant infections

Other prevention methods, like vaccines, can be developed and administered to prevent

infection of resistant  pathogens and other  related species434.  One possibility is  using

phage therapy that infect and lyse specific bacteria, which has been used especially to
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eradicate bacterial infections in Eastern Europe since WW295. Phage therapy can also be

applied to modulate the microbial community by removing microbes that transfer ARGs

into pathogen genomes by MGEs. Although phage therapy has been shown to work in

practice435,  approving  its  use  in  countries  with  strict  drug regulations  is  difficult  as

phage  therapy  is  administered  as  cocktail  of  several  different  types  of  phages436,

meaning clinical trials on their safety and efficacy have to be conducted on each phage.

In contrast to antimicrobials, phage therapy is also highly personalised and used against

very  specific  bacteria,  making  it  more  difficult  to  test  safety  and  efficacy.  Another

alternative  therapy is  faecal  microbiota  transplantation  where  faeces  from a  healthy

donor is transplanted into the gut of the recipient,  restoring the gut microbiota after

antimicrobial treatment to eradicate recurrent infections, like Clostridium difficile437, or

to  prevent  colonisation  of  resistant  pathogens,  such  as  multidrug  resistant

Enterobacteriaceae438. In both circumstances there are concerns that off-target effects

may remove keystone species that could alter the microbiota function and produce long-

term  side-effects.  CRISPR-Cas  based  technologies  are  promising  avenues  for  the

eradication  of  antimicrobial  resistant  pathogens  by  the  selective  knockdown  of

pathogens with undesirable genetic AMR determinants. This is achieved using RNA-

guide  nucleases  (RGNs)  that  target  specific  DNA sequences  and  have  a  modified

CRISPR-Cas system to affect cell death once these sequences are detected. These RGNs

can be delivered directly into a specific bacterium using phages or plasmids in other

bacteria that can be transferred via conjugation439.
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6.7 Concluding remarks

This study has provided computational methods and frameworks for profiling both the

resistome and the mobilome in whole, short-read metagenomes. These methods have

been applied to profile the resistome and mobilome in human GIT sites worldwide from

publicly available short-read metagenomic data. In doing so this thesis provides, for the

first time, a comparison of the resistome and mobilome between the oral cavity and the

gut, and the development of new pipelines and software for identifying bacteriophages,

plasmids and transposons from short-read metagenomic data. Additionally, this study

integrates the analysis of the resistome and mobilome to provoke ideas on how AMR

can be predicted using whole, short-read metagenomic data. These ideas are not just

limited to short-read metagenomic data,  but can be built  alongside advancements in

sequencing  technology,  such  as  SMRT  and  Nanopore  sequencing  that  are  being

developed for  effective  surveillance  and point-of-care  diagnostics.  Thus,  I  hope  the

methods, data, results and discussion of this thesis will prove useful and interesting for

researchers developing a better understanding of the spread of AMR. 



256

References

1. Sender, R., Fuchs, S. & Milo, R. Are We Really Vastly Outnumbered? Revisiting

the Ratio of Bacterial to Host Cells in Humans. Cell 164, 337–340 (2016).

2. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and

Bacteria Cells in the Body. PLOS Biol. 14, e1002533 (2016).

3. Qin, J.  et al. A human gut microbial gene catalogue established by metagenomic

sequencing. Nature 464, 59–65 (2010).

4. Shkoporov,  A.  N.  & Hill,  C.  Bacteriophages  of  the  Human Gut:  The “Known

Unknown” of the Microbiome. Cell Host Microbe 25, 195–209 (2019).

5. Sam,  Q.  H.,  Chang,  M. W.  & Chai,  L.  Y.  A.  The Fungal  Mycobiome and Its

Interaction with Gut Bacteria in the Host. Int. J. Mol. Sci. 18, 330 (2017).

6. Lurie-Weinberger,  M.  N.  & Gophna,  U.  Archaea  in  and on the  Human  Body:

Health Implications and Future Directions. PLOS Pathog. 11, e1004833 (2015).

7. Chabé, M., Lokmer, A. & Ségurel, L. Gut Protozoa: Friends or Foes of the Human

Gut Microbiota? Trends Parasitol. 33, 925–934 (2017).

8. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24,

392–400 (2018).

9. Turnbaugh,  P.  J.  et  al. The  Human  Microbiome Project.  Nature 449,  804–810

(2007).

10. Maynard,  C.  L.,  Elson,  C.  O.,  Hatton,  R.  D.  &  Weaver,  C.  T.  Reciprocal

interactions of the intestinal microbiota and immune system. Nature 489, 231–241

(2012).

11. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome.

Nature 505, 559–563 (2014).



257

12. Frank,  D.  N.  et  al. Molecular-phylogenetic  characterization  of  microbial

community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad.

Sci. U. S. A. 104, 13780–13785 (2007).

13. Kostic, A. D.  et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis

and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–

215 (2013).

14. Jiang,  H.  et  al. Altered  fecal  microbiota  composition  in  patients  with  major

depressive disorder. Brain. Behav. Immun. 48, 186–194 (2015).

15. Segata,  N.  et al. Composition of the adult  digestive tract bacterial  microbiome

based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 13,

R42 (2012).

16. Donaldson,  G.  P.,  Lee,  S.  M.  &  Mazmanian,  S.  K.  Gut  biogeography  of  the

bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

17. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun.

5, 3654 (2014).

18. Smits, S. A.  et al. Seasonal cycling in the gut microbiome of the Hadza hunter-

gatherers of Tanzania. Science 357, 802–806 (2017).

19. de  Goffau,  M.  C.  et  al. Human  placenta  has  no  microbiome  but  can  contain

potential pathogens. Nature 572, 329–334 (2019).

20. Vaishampayan, P. A. et al. Comparative metagenomics and population dynamics of

the gut microbiota in mother and infant. Genome Biol. Evol. 2, 53–66 (2010).

21. Gueimonde,  M.  et  al. Effect  of  maternal  consumption  of  lactobacillus  GG on

transfer  and  establishment  of  fecal  bifidobacterial  microbiota  in  neonates.  J.

Pediatr. Gastroenterol. Nutr. 42, 166–170 (2006).

22. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut

microbiome. Proc. Natl. Acad. Sci. U. S. A. 108, 4578–4585 (2011).



258

23. Lozupone,  C. A.,  Stombaugh,  J.  I.,  Gordon,  J.  I.,  Jansson, J.  K. & Knight,  R.

Diversity, stability and resilience of the human gut microbiota.  Nature 489, 220–

230 (2012).

24. Shao,  Y.  et  al. Stunted  microbiota  and  opportunistic  pathogen  colonization  in

caesarean-section birth. Nature 574, 117–121 (2019).

25. Goodrich, J. K. et al. Human Genetics Shape the Gut Microbiome. Cell 159, 789–

799 (2014).

26. Schirmer, M. et al. Linking the Human Gut Microbiome to Inflammatory Cytokine

Production Capacity. Cell 167, 1125-1136.e8 (2016).

27. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity

in health and disease. Cell Res. 30, 492–506 (2020).

28. Ivanov,  I.  I.  et  al. Specific  Microbiota  Direct  the  Differentiation  of  IL-17-

Producing T-Helper Cells in the Mucosa of the Small Intestine. Cell Host Microbe

4, 337–349 (2008).

29. Hamada, H.  et al. Identification of Multiple Isolated Lymphoid Follicles on the

Antimesenteric Wall of the Mouse Small Intestine. J. Immunol. 168, 57–64 (2002).

30. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1

regulates intestinal homeostasis. Nature 456, 507–510 (2008).

31. Freire, M. et al. Longitudinal Study of Oral Microbiome Variation in Twins.  Sci.

Rep. 10, 7954 (2020).

32. Kovatcheva-Datchary, P. et al. Simplified Intestinal Microbiota to Study Microbe-

Diet-Host Interactions in a Mouse Model. Cell Rep. 26, 3772-3783.e6 (2019).

33. Song, S. J.  et al. Cohabiting family members share microbiota with one another

and with their dogs. eLife 2, (2013).

34. Cook, M. D.  et al. Exercise and gut immune function: evidence of alterations in

colon  immune  cell  homeostasis  and  microbiome  characteristics  with  exercise

training. Immunol. Cell Biol. 94, 158–163 (2016).



259

35. Karl,  J.  P.  et  al. Changes  in  intestinal  microbiota  composition and metabolism

coincide with increased intestinal permeability in young adults under prolonged

physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G559–G571

(2017).

36. Ying, S.  et al. The Influence of Age and Gender on Skin-Associated Microbial

Communities in Urban and Rural Human Populations. PLoS ONE 10, (2015).

37. Huang,  C.  & Shi,  G.  Smoking and microbiome in  oral,  airway,  gut  and some

systemic diseases. J. Transl. Med. 17, 225 (2019).

38. Benedict, C.  et al. Gut microbiota and glucometabolic alterations in response to

recurrent  partial  sleep  deprivation  in  normal-weight  young  individuals.  Mol.

Metab. 5, 1175–1186 (2016).

39. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J.

Clin. Invest. 124, 4212–4218 (2014).

40. Jernberg,  C.,  Löfmark,  S.,  Edlund,  C.  &  Jansson,  J.  K.  Long-term  ecological

impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1,

56–66 (2007).

41. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses

of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl.

Acad. Sci. U. S. A. 108, 4554–4561 (2011).

42. Sturød, K., Dhariwal, A., Dahle, U. R., Vestrheim, D. F. & Petersen, F. C. Impact

of narrow-spectrum penicillin V on the oral and faecal resistome in a young child

treated for otitis media. J. Glob. Antimicrob. Resist. 20, 290–297 (2020).

43. Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic

exposure. Nat. Microbiol. 3, 1255 (2018).

44. Forslund, K., Sunagawa, S., Coelho, L. P. & Bork, P. Metagenomic insights into

the  human  gut  resistome and the  forces  that  shape  it.  BioEssays 36,  316–329

(2014).



260

45. Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–

748 (2016).

46. Rogers,  M.  A.  M.  &  Aronoff,  D.  M.  The  influence  of  non-steroidal  anti-

inflammatory drugs on the gut microbiome.  Clin. Microbiol. Infect. 22,  178.e1-

178.e9 (2016).

47. Flowers,  S.  A.,  Evans,  S.  J.,  Ward, K. M.,  McInnis,  M. G. & Ellingrod,  V. L.

Interaction Between Atypical Antipsychotics and the Gut Microbiome in a Bipolar

Disease  Cohort.  Pharmacother.  J.  Hum.  Pharmacol.  Drug  Ther. 37,  261–267

(2017).

48. Maier, L.  et al. Extensive impact of non-antibiotic drugs on human gut bacteria.

Nature 555, 623–628 (2018).

49. Bokulich,  N.  A.  et  al. Antibiotics,  birth  mode,  and  diet  shape  microbiome

maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).

50. Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C.

Fetal and early life antibiotics exposure and very early onset inflammatory bowel

disease: a population-based study. Gut 68, 218–225 (2019).

51. Arrieta, M.-C.  et al. Early infancy microbial and metabolic alterations affect risk

of childhood asthma. Sci. Transl. Med. 7, 307ra152-307ra152 (2015).

52. Antimicrobial  resistance:  global  report  on  surveillance.  (World  Health

Organization, 2014).

53. Kraker, M. E. A. de, Stewardson, A. J. & Harbarth, S. Will 10 Million People Die a

Year due to Antimicrobial Resistance by 2050? PLOS Med. 13, e1002184 (2016).

54. Klein,  E.  Y.  et  al. Global  increase  and  geographic  convergence  in  antibiotic

consumption between 2000 and 2015. Proc. Natl. Acad. Sci. U. S. A. 115, E3463–

E3470 (2018).

55. Llor,  C. & Bjerrum, L. Antimicrobial  resistance: risk associated with antibiotic

overuse  and  initiatives  to  reduce  the  problem:  Ther.  Adv.  Drug  Saf. (2014)

doi:10.1177/2042098614554919.



261

56. Wright,  G.  D.  The  antibiotic  resistome:  the  nexus  of  chemical  and  genetic

diversity. Nat. Rev. Microbiol. 5, 175–186 (2007).

57. Cheng, J. et al. Knowledge and behaviors in relation to antibiotic use among rural

residents in Anhui, China. Pharmacoepidemiol. Drug Saf. 27, 652–659 (2018).

58. Wang, X. et al. Massive misuse of antibiotics by university students in all regions

of China: implications for national policy. Int. J. Antimicrob. Agents 50, 441–446

(2017).

59. Barber,  D.  A.  et  al. Prevalence  and  correlates  of  antibiotic  sharing  in  the

Philippines: antibiotic misconceptions and community-level access to non-medical

sources of antibiotics. Trop. Med. Int. Health 22, 567–575 (2017).

60. López-Lozano, J.-M.  et al. A nonlinear time-series analysis approach to identify

thresholds in associations between population antibiotic use and rates of resistance.

Nat. Microbiol. 1 (2019) doi:10.1038/s41564-019-0410-0.

61. Cheng, G.  et al. Antibiotic alternatives: the substitution of antibiotics in animal

husbandry? Front. Microbiol. 5, (2014).

62. Smith, R. Regulation (EC) No 764/2008 of the European Parliament and of the

Council.  in  Core  EU  Legislation 183–186  (Macmillan  Education  UK,  2015).

doi:10.1007/978-1-137-54482-7_19.

63. Liu,  Y.-Y.  et  al. Emergence of  plasmid-mediated  colistin  resistance mechanism

MCR-1 in animals and human beings in China: a microbiological and molecular

biological study. Lancet Infect. Dis. 16, 161–168 (2016).

64. Brown,  N.  M.  et  al. An outbreak of  meticillin-resistant  Staphylococcus  aureus

colonization  in  a  neonatal  intensive  care  unit:  use  of  a  case–control  study  to

investigate and control it and lessons learnt. J. Hosp. Infect. 103, 35–43 (2019).

65. Alvarez-Uria,  G.,  Gandra,  S.  &  Laxminarayan,  R.  Poverty  and  prevalence  of

antimicrobial resistance in invasive isolates. Int. J. Infect. Dis. 52, 59–61 (2016).



262

66. Ayukekbong,  J.  A.,  Ntemgwa,  M.  & Atabe,  A.  N.  The  threat  of  antimicrobial

resistance  in  developing  countries:  causes  and  control  strategies.  Antimicrob.

Resist. Infect. Control 6, 47 (2017).

67. Unemo, M. & Shafer, W. M. Antimicrobial Resistance in Neisseria gonorrhoeae in

the 21st Century: Past, Evolution, and Future.  Clin. Microbiol. Rev. 27, 587–613

(2014).

68. Friedman,  N.  D.,  Temkin,  E.  & Carmeli,  Y.  The  negative  impact  of  antibiotic

resistance. Clin. Microbiol. Infect. 22, 416–422 (2016).

69. Årdal,  C.  et  al. Antibiotic  development  —  economic,  regulatory  and  societal

challenges. Nat. Rev. Microbiol. 18, 267–274 (2020).

70. Belkum,  A.  van  et  al. Innovative  and rapid  antimicrobial  susceptibility  testing

systems. Nat. Rev. Microbiol. 18, 299–311 (2020).

71. Nathan, C. Resisting antimicrobial resistance.  Nat. Rev. Microbiol. 18,  259–260

(2020).

72. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and

combating antibiotic resistance from One Health and Global Health perspectives.

Nat. Microbiol. 4, 1432–1442 (2019).

73. Wellcome. Reframing resistance. (2019).

74. Reygaert,  W.  C.  An  overview  of  the  antimicrobial  resistance  mechanisms  of

bacteria. AIMS Microbiol. 4, 482–501 (2018).

75. Bush, K., Jacoby, G. A. & Medeiros, A. A. A functional classification scheme for

beta-lactamases and its correlation with molecular structure.  Antimicrob. Agents

Chemother. 39, 1211–1233 (1995).

76. Giske, C. G. et al. Redefining extended-spectrum β-lactamases: balancing science

and clinical need. J. Antimicrob. Chemother. 63, 1–4 (2009).

77. Bush,  K.  & Jacoby,  G.  A.  Updated  Functional  Classification  of  β-Lactamases.

Antimicrob. Agents Chemother. 54, 969–976 (2010).



263

78. Iovleva, A. & Doi, Y. Carbapenem-Resistant Enterobacteriaceae. Clin. Lab. Med.

37, 303–315 (2017).

79. Marshall,  C.  G.,  Broadhead,  G.,  Leskiw,  B.  K.  & Wright,  G.  D.  D-Ala-D-Ala

ligases from glycopeptide antibiotic-producing organisms are highly homologous

to  the enterococcal  vancomycin-resistance  ligases  VanA and VanB.  Proc.  Natl.

Acad. Sci. U. S. A. 94, 6480–6483 (1997).

80. Hegde, S.  S.  et  al. A Fluoroquinolone Resistance Protein from  Mycobacterium

tuberculosis That Mimics DNA. Science 308, 1480–1483 (2005).

81. Utsui, Y. & Yokota, T. Role of an altered penicillin-binding protein in methicillin-

and cephem-resistant  Staphylococcus aureus.  Antimicrob. Agents Chemother. 28,

397–403 (1985).

82. Randall, L. P. & Woodward, M. J. The multiple antibiotic resistance (mar) locus

and its significance. Res. Vet. Sci. 72, 87–93 (2002).

83. Chevalier, S. et al. Structure, function and regulation of Pseudomonas aeruginosa

porins. FEMS Microbiol. Rev. 41, 698–722 (2017).

84. Thanassi,  D.  G.,  Cheng,  L.  W.  &  Nikaido,  H.  Active  efflux  of  bile  salts  by

Escherichia coli. J. Bacteriol. 179, 2512–2518 (1997).

85. Munk, P.  et al. Abundance and diversity of the faecal resistome in slaughter pigs

and broilers in nine European countries. Nat. Microbiol. 3, 898 (2018).

86. Brinkac, L., Voorhies, A., Gomez, A. & Nelson, K. E. The Threat of Antimicrobial

Resistance on the Human Microbiome. Microb. Ecol. 74, 1001–1008 (2017).

87. Forslund, K. et al. Country-specific antibiotic use practices impact the human gut

resistome. Genome Res. 23, 1163–1169 (2013).

88. Wu,  S.  W.,  Lencastre,  H.  de  &  Tomasz,  A.  Recruitment  of  the  mecA Gene

Homologue  of  Staphylococcus  sciuri into  a  Resistance  Determinant  and

Expression of the Resistant Phenotype in Staphylococcus aureus. J. Bacteriol. 183,

2417–2424 (2001).



264

89. Griffiths, A. J., Miller, J. H., Suzuki, D. T., Lewontin, R. C. & Gelbart, W. M.

Transduction. Introd. Genet. Anal. 7th Ed. (2000).

90. Chen, J.  et al. Genome hypermobility by lateral transduction.  Science 362, 207–

212 (2018).

91. Johnston,  C.,  Martin,  B.,  Fichant,  G.,  Polard,  P.  &  Claverys,  J.-P.  Bacterial

transformation: distribution, shared mechanisms and divergent control.  Nat. Rev.

Microbiol. 12, 181–196 (2014).

92. Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

93. Shkoporov, A. N.  et al. The Human Gut Virome Is Highly Diverse, Stable, and

Individual Specific. Cell Host Microbe 26, 527-541.e5 (2019).

94. Pehrsson, E. C.  et al. Interconnected microbiomes and resistomes in low-income

human habitats. Nature 533, 212–216 (2016).

95. Brives, C. & Pourraz, J. Phage therapy as a potential solution in the fight against

AMR: obstacles and possible futures. Palgrave Commun. 6, 1–11 (2020).

96. Enault, F. et al. Phages rarely encode antibiotic resistance genes: a cautionary tale

for virome analyses. ISME J. 11, 237–247 (2017).

97. Debroas, D. & Siguret, C. Viruses as key reservoirs of antibiotic resistance genes

in the environment. ISME J. 1 (2019) doi:10.1038/s41396-019-0478-9.

98. Kleinheinz, K. A., Joensen, K. G. & Larsen, M. V. Applying the ResFinder and

VirulenceFinder  web-services  for  easy  identification  of  acquired  antibiotic

resistance and E. coli virulence genes in bacteriophage and prophage nucleotide

sequences. Bacteriophage 4, (2014).

99. Enav, H., Mandel-Gutfreund, Y. & Béjà, O. Comparative metagenomic analyses

reveal  viral-induced shifts  of  host  metabolism towards  nucleotide  biosynthesis.

Microbiome 2, 9 (2014).

100. Hayes, F. The Function and Organization of Plasmids. in E. coli Plasmid Vectors:

Methods and Applications (eds. Casali, N. & Preston, A.) 1–17 (Humana Press,

2003). doi:10.1385/1-59259-409-3:1.



265

101. Solar, G. del, Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. & Díaz-Orejas, R.

Replication and Control of Circular Bacterial Plasmids. Microbiol. Mol. Biol. Rev.

62, 434–464 (1998).

102. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & Cruz, F. de

la. Mobility of Plasmids. Microbiol Mol Biol Rev 74, 434–452 (2010).

103. Carattoli, A. et al. In Silico Detection and Typing of Plasmids using PlasmidFinder

and  Plasmid  Multilocus  Sequence  Typing.  Antimicrob.  Agents  Chemother. 58,

3895–3903 (2014).

104. Jensen, L. B. et al. A classification system for plasmids from enterococci and other

Gram-positive bacteria. J. Microbiol. Methods 80, 25–43 (2010).

105. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of

mobile  antibiotic  resistance  genes  within  individual  gut  microbiomes  revealed

through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

106. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile Genetic Elements

Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 31, (2018).

107. Schultsz, C. & Geerlings, S. Plasmid-Mediated Resistance in Enterobacteriaceae.

Drugs 72, 1–16 (2012).

108. Bush,  K.  Alarming  β-lactamase-mediated  resistance  in  multidrug-resistant

Enterobacteriaceae. Curr. Opin. Microbiol. 13, 558–564 (2010).

109. Jensen, S. O. & Lyon, B. R. Genetics of antimicrobial resistance in Staphylococcus

aureus. Future Microbiol. 4, 565–582 (2009).

110. Malachowa,  N.  &  DeLeo,  F.  R.  Mobile  genetic  elements  of  Staphylococcus

aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).

111. Clewell,  D.  B.  et  al. Extrachromosomal  and  Mobile  Elements  in  Enterococci:

Transmission,  Maintenance,  and  Epidemiology.  in  Enterococci:  From

Commensals to Leading Causes of Drug Resistant Infection (eds. Gilmore, M. S.,

Clewell,  D.  B.,  Ike,  Y.  & Shankar,  N.)  (Massachusetts  Eye and Ear  Infirmary,

2014).



266

112. Laverde  Gomez,  J.  A.  et  al. A multiresistance  megaplasmid  pLG1  bearing  a

hylEfm genomic  island in  hospital  Enterococcus faecium isolates.  Int.  J.  Med.

Microbiol. 301, 165–175 (2011).

113. Francia,  M.  V.  & Clewell,  D.  B.  Amplification  of  the  Tetracycline  Resistance

Determinant  of  pAMα1  in  Enterococcus  faecalis Requires  a  Site-Specific

Recombination Event Involving Relaxase. J. Bacteriol. 184, 5187–5193 (2002).

114. Hallet, B. & Sherratt, D. J. Transposition and site-specific recombination: adapting

DNA cut-and-paste  mechanisms to a  variety of  genetic  rearrangements.  FEMS

Microbiol. Rev. 21, 157–178 (1997).

115. Chandler, M., Fayet, O., Rousseau, P., Hoang, B. T. & Duval-Valentin, G. Copy-

out–Paste-in Transposition of IS911: A Major Transposition Pathway.  Mob. DNA

III 591–607 (2015) doi:10.1128/microbiolspec.MDNA3-0031-2014.

116. Aziz, R. K., Breitbart, M. & Edwards, R. A. Transposases are the most abundant,

most ubiquitous genes in nature. Nucleic Acids Res. 38, 4207–4217 (2010).

117. Mahillon,  J.  & Chandler,  M. Insertion Sequences.  Microbiol  Mol  Biol  Rev 62,

725–774 (1998).

118. Harmer,  C.  J.,  Moran,  R.  A.  &  Hall,  R.  M.  Movement  of  IS26-Associated

Antibiotic  Resistance  Genes  Occurs  via  a  Translocatable  Unit  That  Includes  a

Single IS26 and Preferentially Inserts Adjacent to Another IS26. mBio 5, (2014).

119. Boyd,  D.  A.  et  al. Complete  Nucleotide  Sequence  of  a  92-Kilobase  Plasmid

Harboring  the  CTX-M-15  Extended-Spectrum  Beta-Lactamase  Involved  in  an

Outbreak in Long-Term-Care Facilities in  Toronto,  Canada.  Antimicrob. Agents

Chemother. 48, 3758–3764 (2004).

120. Poirel, L., Carrër, A., Pitout, J. D. & Nordmann, P. Integron Mobilization Unit as a

Source of Mobility of Antibiotic Resistance Genes. Antimicrob. Agents Chemother.

53, 2492–2498 (2009).

121. Snesrud, E. et al. A Model for Transposition of the Colistin Resistance Gene mcr-1

by ISApl1. Antimicrob. Agents Chemother. 60, 6973–6976 (2016).



267

122. Chandler,  M.  et  al. Breaking  and  joining  single-stranded  DNA:  the  HUH

endonuclease superfamily. Nat. Rev. Microbiol. 11, 525–538 (2013).

123. Partridge,  S.  R.  & Hall,  R.  M. In34,  a  Complex In5 Family  Class  1  Integron

Containing  orf513  and  dfrA10.  Antimicrob.  Agents  Chemother. 47,  342–349

(2003).

124. Toleman,  M. A.,  Bennett,  P.  M. & Walsh,  T.  R.  ISCR Elements:  Novel  Gene-

Capturing Systems of the 21st Century?  Microbiol. Mol. Biol. Rev. 70, 296–316

(2006).

125. Siguier, P., Gagnevin, L. & Chandler, M. The new IS1595 family, its relation to

IS1 and the frontier between insertion sequences and transposons. Res. Microbiol.

160, 232–241 (2009).

126. Nicolas, E. et al. The Tn3-family of Replicative Transposons. Mob. DNA III 693–

726 (2015) doi:10.1128/microbiolspec.MDNA3-0060-2014.

127. Siguier, P., Filée, J. & Chandler, M. Insertion sequences in prokaryotic genomes.

Curr. Opin. Microbiol. 9, 526–531 (2006).

128. Delihas, N. Impact of Small Repeat Sequences on Bacterial Genome Evolution.

Genome Biol. Evol. 3, 959–973 (2011).

129. Bardaji, L.  et al. Miniature Transposable Sequences Are Frequently Mobilized in

the Bacterial Plant Pathogen Pseudomonas syringae pv. phaseolicola.  PLoS ONE

6, (2011).

130. Salyers,  A.  A.,  Shoemaker,  N.  B.,  Stevens,  A.  M.  &  Li,  L.  Y.  Conjugative

transposons:  an  unusual  and  diverse  set  of  integrated  gene  transfer  elements.

Microbiol. Rev. 59, 579–590 (1995).

131. Botelho, J. & Schulenburg, H. The Role of Integrative and Conjugative Elements

in Antibiotic Resistance Evolution. Trends Microbiol. 0, (2020).

132. Gillings, M. R. Integrons: Past, Present, and Future.  Microbiol. Mol. Biol. Rev.

MMBR 78, 257–277 (2014).



268

133. Cury,  J.,  Jové,  T.,  Touchon,  M.,  Néron,  B.  &  Rocha,  E.  P.  Identification  and

analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res.

44, 4539–4550 (2016).

134. Boucher, Y.  et al. Recovery and evolutionary analysis of complete integron gene

cassette arrays from Vibrio. BMC Evol. Biol. 6, 3 (2006).

135. Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette

arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33, 757–784 (2009).

136. Guédon,  G.,  Libante,  V.,  Coluzzi,  C.,  Payot,  S.  &  Leblond-Bourget,  N.  The

Obscure  World  of  Integrative  and  Mobilizable  Elements,  Highly  Widespread

Elements that Pirate Bacterial Conjugative Systems. Genes 8, (2017).

137. Mark Osborn, A. & Böltner, D. When phage, plasmids, and transposons collide:

genomic  islands,  and  conjugative-  and  mobilizable-transposons  as  a  mosaic

continuum. Plasmid 48, 202–212 (2002).

138. O’Brien, F. G.  et al. Origin-of-transfer sequences facilitate mobilisation of non-

conjugative antimicrobial-resistance plasmids in  Staphylococcus aureus.  Nucleic

Acids Res. 43, 7971–7983 (2015).

139. Roberts, A. P. & Kreth, J. The impact of horizontal gene transfer on the adaptive

ability of the human oral microbiome. Front. Cell. Infect. Microbiol. 4, (2014).

140. Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-

conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).

141. Liu,  L.  et al. The human microbiome: A hot spot of microbial  horizontal  gene

transfer. Genomics 100, 265–270 (2012).

142. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting

the human microbiome. Nature 480, 241–244 (2011).

143. Martínez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking

risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).

144. Bengtsson-Palme,  J.  &  Larsson,  D.  G.  J.  Antibiotic  resistance  genes  in  the

environment: prioritizing risks. Nat. Rev. Microbiol. 13, 396–396 (2015).



269

145. Skippington, E. & Ragan, M. A. Lateral genetic transfer and the construction of

genetic exchange communities. FEMS Microbiol. Rev. 35, 707–735 (2011).

146. Papkou,  A.,  Hedge,  J.,  Kapel,  N.,  Young,  B.  & MacLean,  R.  C.  Efflux  pump

activity potentiates the evolution of antibiotic resistance across S. aureus isolates.

Nat. Commun. 11, 3970 (2020).

147. Martínez,  J.  L.  & Rojo,  F. Metabolic regulation of antibiotic resistance.  FEMS

Microbiol. Rev. 35, 768–789 (2011).

148. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to

reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

149. Baquero, F., Tedim, A. P. & Coque, T. M. Antibiotic resistance shaping multi-level

population biology of bacteria. Front. Microbiol. 4, (2013).

150. Ashbolt  Nicholas  J.  et  al. Human  Health  Risk  Assessment  (HHRA)  for

Environmental  Development  and  Transfer  of  Antibiotic  Resistance.  Environ.

Health Perspect. 121, 993–1001 (2013).

151. Baquero,  F.,  Alvarez-Ortega,  C.  &  Martinez,  J.  L.  Ecology  and  evolution  of

antibiotic resistance. Environ. Microbiol. Rep. 1, 469–476 (2009).

152. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to

determine the minimal inhibitory concentration (MIC) of antimicrobial substances.

Nat. Protoc. 3, 163–175 (2008).

153. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. Antibiotic Susceptibility

Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 45, 493–496

(1966).

154. Espinel-Ingroff,  A.  &  Turnidge,  J.  The  role  of  epidemiological  cutoff  values

(ECVs/ECOFFs)  in  antifungal  susceptibility  testing  and  interpretation  for

uncommon yeasts and moulds. Rev. Iberoam. Micol. 33, 63–75 (2016).

155. Morrissey, I.  et al. Evaluation of Epidemiological Cut-Off Values Indicates that

Biocide  Resistant  Subpopulations  Are  Uncommon  in  Natural  Isolates  of

Clinically-Relevant Microorganisms. PLOS ONE 9, e86669 (2014).



270

156. Sannes, M. R., Kuskowski, M. A. & Johnson, J. R. Geographical distribution of

antimicrobial  resistance  among  Escherichia  coli causing  acute  uncomplicated

pyelonephritis in the United States. FEMS Immunol. Med. Microbiol. 42, 213–218

(2004).

157. Lee,  J.  Y.  H.  et  al. Global  spread  of  three  multidrug-resistant  lineages  of

Staphylococcus epidermidis. Nat. Microbiol. 3, 1175–1185 (2018).

158. Walker, T. M. et al. Whole-genome sequencing for prediction of  Mycobacterium

tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet

Infect. Dis. 15, 1193–1202 (2015).

159. Kuehbacher, T. et al. Intestinal TM7 bacterial phylogenies in active inflammatory

bowel disease. J. Med. Microbiol. 57, 1569–1576 (2008).

160. Gijón, D., Curiao, T., Baquero, F., Coque, T. M. & Cantón, R. Fecal Carriage of

Carbapenemase-Producing  Enterobacteriaceae:  a  Hidden  Reservoir  in

Hospitalized  and  Nonhospitalized  Patients.  J.  Clin.  Microbiol. 50,  1558–1563

(2012).

161. Geser,  N.,  Stephan,  R.,  Korczak,  B.  M.,  Beutin,  L.  &  Hächler,  H.  Molecular

identification  of  extended-spectrum-β-lactamase  genes  from  Enterobacteriaceae

isolated  from  healthy  human  carriers  in  Switzerland.  Antimicrob.  Agents

Chemother. 56, 1609–1612 (2012).

162. Severin, J. A.  et al. Faecal carriage of extended-spectrum β-lactamase-producing

Enterobacteriaceae among humans in Java, Indonesia, in 2001–2002. Trop. Med.

Int. Health 17, 455–461 (2012).

163. Vo,  A.  T.  T.,  Duijkeren,  E.  van,  Gaastra,  W.  &  Fluit,  A.  C.  Antimicrobial

Resistance, Class 1 Integrons, and Genomic Island 1 in Salmonella Isolates from

Vietnam. PLOS ONE 5, e9440 (2010).

164. Cuthbertson,  L.  et  al. Time  between  Collection  and  Storage  Significantly

Influences  Bacterial  Sequence  Composition  in  Sputum  Samples  from  Cystic

Fibrosis Respiratory Infections. J. Clin. Microbiol. 52, 3011–3016 (2014).



271

165. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun

metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

166. Wesolowska-Andersen, A. et al. Choice of bacterial DNA extraction method from

fecal  material  influences  community  structure  as  evaluated  by  metagenomic

analysis. Microbiome 2, 19 (2014).

167. Bag,  S.  et  al. An  Improved  Method  for  High  Quality  Metagenomics  DNA

Extraction from Human and Environmental Samples. Sci. Rep. 6, 26775 (2016).

168. Vesty, A., Biswas, K., Taylor, M. W., Gear, K. & Douglas, R. G. Evaluating the

Impact of DNA Extraction Method on the Representation of Human Oral Bacterial

and Fungal Communities. PLOS ONE 12, e0169877 (2017).

169. Gray,  M.  W.,  Sankoff,  D.  & Cedergren,  R.  J.  On  the  evolutionary  descent  of

organisms  and  organelles:  a  global  phylogeny  based  on  a  highly  conserved

structural core in small subunit ribosomal RNA. Nucleic Acids Res. 12, 5837–5852

(1984).

170. Yang,  B.,  Wang,  Y.  & Qian,  P.-Y.  Sensitivity  and  correlation  of  hypervariable

regions  in  16S rRNA genes  in  phylogenetic  analysis.  BMC Bioinformatics 17,

(2016).

171. Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld,

J.  D.  Generation  of  Multimillion-Sequence  16S  rRNA  Gene  Libraries  from

Complex  Microbial  Communities  by  Assembling  Paired-End  Illumina  Reads.

Appl. Environ. Microbiol. 77, 3846–3852 (2011).

172. Burke, C. M. & Darling, A. E. A method for high precision sequencing of near

full-length 16S rRNA genes on an Illumina MiSeq. PeerJ 4, (2016).

173. Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a

universal DNA barcode marker for Fungi.  Proc. Natl.  Acad. Sci.  U. S.  A. 109,

6241–6246 (2012).

174. Nilsson,  R.  H.  et  al. Mycobiome  diversity:  high-throughput  sequencing  and

identification of fungi. Nat. Rev. Microbiol. 17, 95–109 (2019).



272

175. Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S

rRNA gene with single-nucleotide resolution.  Nucleic Acids Res. 47, e103–e103

(2019).

176. Langille, M. G. I.  et al. Predictive functional profiling of microbial communities

using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

177. Tessler,  M.  et  al. Large-scale  differences  in  microbial  biodiversity  discovery

between 16S amplicon and shotgun sequencing. Sci. Rep. 7, 6589 (2017).

178. Sunagawa, S.  et al. Metagenomic species profiling using universal phylogenetic

marker genes. Nat. Methods 10, 1196–1199 (2013).

179. Pehrsson, E. C., Forsberg, K. J., Gibson, M. K., Ahmadi, S. & Dantas, G. Novel

resistance  functions  uncovered  using  functional  metagenomic  investigations  of

resistance reservoirs. Front. Microbiol. 4, (2013).

180. Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota

and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).

181. Penders,  J.,  Stobberingh,  E.  E.,  Savelkoul,  P.  H.  M.  & Wolffs,  P.  The  human

microbiome as a reservoir of antimicrobial resistance. Front. Microbiol. 4, (2013).

182. Lam, K. N., Cheng, J.,  Engel, K., Neufeld, J.  D. & Charles, T. C. Current and

future resources for functional metagenomics. Front. Microbiol. 6, (2015).

183. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating

inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74, 5463 (1977).

184. Mardis, E. R. The impact of next-generation sequencing technology on genetics.

Trends Genet. 24, 133–141 (2008).

185. Check  Hayden,  E.  Genome  sequencing:  the  third  generation.  Nature (2009)

doi:10.1038/news.2009.86.

186. Quail,  M.  A.  et  al. A  tale  of  three  next  generation  sequencing  platforms:

comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.

BMC Genomics 13, 341 (2012).



273

187. Rhoads,  A.  &  Au,  K.  F.  PacBio  Sequencing  and  Its  Applications.  Genomics

Proteomics Bioinformatics 13, 278–289 (2015).

188. Eid,  J.  et  al. Real-Time DNA Sequencing  from Single  Polymerase  Molecules.

Science 323, 133–138 (2009).

189. Suzuki, Y. et al. Long-read metagenomic exploration of extrachromosomal mobile

genetic elements in the human gut. Microbiome 7, 119 (2019).

190. Tyler, A. D. et al. Evaluation of Oxford Nanopore’s MinION Sequencing Device

for Microbial Whole Genome Sequencing Applications. Sci. Rep. 8, 10931 (2018).

191. Taxt,  A.  M.,  Avershina,  E.,  Frye,  S.  A.,  Naseer,  U.  &  Ahmad,  R.  Rapid

identification  of  pathogens,  antibiotic  resistance  genes  and  plasmids  in  blood

cultures by nanopore sequencing. Sci. Rep. 10, 7622 (2020).

192. Quick,  J.  et  al. Real-time,  portable  genome sequencing for  Ebola  surveillance.

Nature 530, 228–232 (2016).

193. Charalampous, T.  et al. Nanopore metagenomics enables rapid clinical diagnosis

of bacterial lower respiratory infection. Nat. Biotechnol. 37, 783–792 (2019).

194. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis

results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32,

3047–3048 (2016).

195. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.

Methods 9, 357–359 (2012).

196. Ruppé,  E.  et  al. Prediction  of  the  intestinal  resistome  by  a  three-dimensional

structure-based method. Nat. Microbiol. 4, 112 (2019).

197. McArthur,  A.  G.  et  al. The  comprehensive  antibiotic  resistance  database.

Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

198. Zankari,  E.  et  al. Identification  of  acquired  antimicrobial  resistance  genes.  J.

Antimicrob. Chemother. 67, 2640–2644 (2012).



274

199. Gupta,  S.  K.  et  al. ARG-ANNOT,  a  New  Bioinformatic  Tool  To  Discover

Antibiotic  Resistance  Genes  in  Bacterial  Genomes.  Antimicrob.  Agents

Chemother. 58, 212–220 (2014).

200. Lakin,  S.  M.  et  al. MEGARes:  an  antimicrobial  resistance  database  for  high

throughput sequencing. Nucleic Acids Res. 45, D574–D580 (2017).

201. NCBI  Resource  Coordinators.  Database  resources  of  the  National  Center  for

Biotechnology Information. Nucleic Acids Res. 46, D8–D13 (2018).

202. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinforma. Oxf. Engl. 25, 1754–1760 (2009).

203. Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of

raw reads against redundant databases with KMA.  BMC Bioinformatics 19, 307

(2018).

204. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

205. Bankevich,  A.  et  al. SPAdes:  A New  Genome  Assembly  Algorithm  and  Its

Applications to Single-Cell Sequencing. J. Comput. Biol. 19, 455–477 (2012).

206. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast

single-node solution for large and complex metagenomics assembly via succinct

de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

207. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local

alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

208. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using

DIAMOND. Nat. Methods 12, 59 (2014).

209. Eddy, S. R. Accelerated Profile HMM Searches. PLOS Comput. Biol. 7, e1002195

(2011).

210. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site

identification. BMC Bioinformatics 11, 119 (2010).



275

211. Brown, G. D. et al. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 4,

165rv13-165rv13 (2012).

212. Mukherjee,  P.  K.  et  al. Oral  Mycobiome  Analysis  of  HIV-Infected  Patients:

Identification of Pichia as an Antagonist of Opportunistic Fungi. PLOS Pathog. 10,

e1003996 (2014).

213. Nash, A.  et al. MARDy: Mycology Antifungal Resistance Database.  Bioinforma.

Oxf. Engl. 34, 3233–3234 (2018).

214. Bromley, M. J.  et al. Occurrence of azole-resistant species of  Aspergillus in the

UK environment. J. Glob. Antimicrob. Resist. 2, 276–279 (2014).

215. Břinda,  K.  et  al. Rapid  inference  of  antibiotic  resistance  and susceptibility  by

genomic neighbour typing. Nat. Microbiol. 1–10 (2020) doi:10.1038/s41564-019-

0656-6.

216. Wang, Y.  et al. Integrated metagenomic and metatranscriptomic profiling reveals

differentially expressed resistomes in human, chicken, and pig gut microbiomes.

Environ. Int. 138, 105649 (2020).

217. Carr,  V.  R.,  Shkoporov,  A.,  Hill,  C.,  Mullany,  P.  & Moyes,  D.  L.  Probing the

Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol. 0, (2020).

218. Sitaraman, R. Prokaryotic horizontal  gene transfer within the human holobiont:

ecological-evolutionary inferences, implications and possibilities.  Microbiome 6,

163 (2018).

219. Hsu, B. B. et al. Dynamic Modulation of the Gut Microbiota and Metabolome by

Bacteriophages in a Mouse Model. Cell Host Microbe 25, 803-814.e5 (2019).

220. Bakkeren,  E.  et  al. Salmonella persisters  promote  the  spread  of  antibiotic

resistance plasmids in the gut. Nature 573, 276–280 (2019).

221. Kleiner,  M.,  Hooper,  L.  V. & Duerkop,  B. A. Evaluation of methods to purify

virus-like  particles  for  metagenomic  sequencing  of  intestinal  viromes.  BMC

Genomics 16, 7 (2015).



276

222. Conceição-Neto,  N.  et  al. Modular  approach  to  customise  sample  preparation

procedures for viral metagenomics: a reproducible protocol for virome analysis.

Sci. Rep. 5, 16532 (2015).

223. Shkoporov,  A.  N.  et  al. Reproducible  protocols  for  metagenomic  analysis  of

human faecal phageomes. Microbiome 6, 68 (2018).

224. Milani, C. et al. Tracing mother-infant transmission of bacteriophages by means of

a  novel  analytical  tool  for  shotgun  metagenomic  datasets:  METAnnotatorX.

Microbiome 6, 145 (2018).

225. Aggarwala, V., Liang, G. & Bushman, F. D. Viral communities of the human gut:

metagenomic analysis of composition and dynamics. Mob. DNA 8, 12 (2017).

226. Jones, B. V. & Marchesi, J. R. Transposon-aided capture (TRACA) of plasmids

resident in the human gut mobile metagenome. Nat. Methods 4, 55–61 (2007).

227. Smalla, K., Jechalke, S. & Top, E. M. Plasmid Detection, Characterization, and

Ecology. Microbiol. Spectr. 3, (2015).

228. Solden, L. M. et al. Interspecies cross-feeding orchestrates carbon degradation in

the rumen ecosystem. Nat. Microbiol. 3, 1274 (2018).

229. Dib,  J.  R.,  Wagenknecht,  M.,  Farías,  M.  E.  &  Meinhardt,  F.  Strategies  and

approaches in plasmidome studies—uncovering plasmid diversity disregarding of

linear elements? Front. Microbiol. 6, (2015).

230. Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Hundreds

of  Circular  Novel  Plasmids  and  DNA Elements  Identified  in  a  Rat  Cecum

Metamobilome. PLOS ONE 9, e87924 (2014).

231. Tansirichaiya, S., Mullany, P. & Roberts, A. P. PCR-based detection of composite

transposons  and  translocatable  units  from  oral  metagenomic  DNA.  FEMS

Microbiol. Lett. 363, (2016).

232. Ghai,  R.,  Mehrshad,  M.,  Mizuno,  C.  M. & Rodriguez-Valera,  F.  Metagenomic

recovery of phage genomes of uncultured freshwater actinobacteria.  ISME J. 11,

304–308 (2017).



277

233. Waller,  A.  S.  et  al. Classification  and  quantification  of  bacteriophage  taxa  in

human gut metagenomes. ISME J. 8, 1391–1402 (2014).

234. Ogilvie,  L.  A.  et  al. Genome  signature-based  dissection  of  human  gut

metagenomes to extract subliminal viral sequences. Nat. Commun. 4, 2420 (2013).

235. Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements

in  complex  metagenomic  samples  without  using  reference  genomes.  Nat.

Biotechnol. 32, 822–828 (2014).

236. Sutton, T. D. S., Clooney, A. G., Ryan, F. J., Ross, R. P. & Hill,  C. Choice of

assembly software has a critical impact on virome characterisation. Microbiome 7,

12 (2019).

237. Roux, S., Emerson, J. B., Eloe-Fadrosh, E. A. & Sullivan, M. B. Benchmarking

viromics:  an  in  silico  evaluation  of  metagenome-enabled  estimates  of  viral

community composition and diversity. PeerJ 5, e3817 (2017).

238. Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid

sequences in metagenomic data using genome signatures.  Nucleic Acids Res. 46,

e35 (2018).

239. Siguier,  P.,  Gourbeyre,  E.  & Chandler,  M.  Bacterial  insertion  sequences:  their

genomic impact and diversity. FEMS Microbiol. Rev. 38, 865–891 (2014).

240. Minot, S., Grunberg, S., Wu, G. D., Lewis, J. D. & Bushman, F. D. Hypervariable

loci in the human gut virome. Proc. Natl. Acad. Sci. 109, 3962–3966 (2012).

241. Manrique,  P.  et  al. Healthy  human gut  phageome.  Proc.  Natl.  Acad.  Sci. 113,

10400–10405 (2016).

242. Lima-Mendez, G., Toussaint, A. & Leplae, R. A modular view of the bacteriophage

genomic  space:  identification  of  host  and  lifestyle  marker  modules.  Res.

Microbiol. 162, 737–746 (2011).

243. Martinez-Hernandez, F. et al. Single-virus genomics reveals hidden cosmopolitan

and abundant viruses. Nat. Commun. 8, 15892 (2017).



278

244. Warwick-Dugdale, J.  et al. Long-read viral metagenomics captures abundant and

microdiverse viral populations and their niche-defining genomic islands. PeerJ 7,

e6800 (2019).

245. Beaulaurier, J. et al. Assembly-free single-molecule nanopore sequencing recovers

complete  virus  genomes  from natural  microbial  communities.  bioRxiv 619684

(2019) doi:10.1101/619684.

246. Somerville,  V.  et  al. Long  read-based  de  novo  assembly  of  low  complex

metagenome samples results in finished genomes and reveals insights into strain

diversity and an active phage system. bioRxiv 476747 (2018) doi:10.1101/476747.

247. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves

variant detection and assembly of a human genome.  Nat. Biotechnol. 1–8 (2019)

doi:10.1038/s41587-019-0217-9.

248. Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis

of  resistance  determinants  and  mobile  elements  in  human  microbiomes.  Nat.

Biotechnol. 1 (2019) doi:10.1038/s41587-019-0191-2.

249. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence

similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

250. O’Leary,  N.  A.  et  al. Reference  sequence  (RefSeq)  database  at  NCBI:  current

status,  taxonomic  expansion,  and functional  annotation.  Nucleic  Acids  Res. 44,

D733-745 (2016).

251. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res.

47, D427–D432 (2019).

252. UniProt: a worldwide hub of protein knowledge.  Nucleic Acids Res. 47, D506–

D515 (2019).

253. Li,  C.,  Jiang,  Y.  & Li,  S.  LEMON: a method to  construct  the  local  strains  at

horizontal gene transfer sites in gut metagenomics.  BMC Bioinformatics 20, 702

(2019).



279

254. Jiang,  X.,  Hall,  A.  B.,  Xavier,  R.  J.  & Alm,  E.  J.  Comprehensive  analysis  of

chromosomal mobile genetic elements in the gut microbiome reveals phylum-level

niche-adaptive gene pools. PLOS ONE 14, e0223680 (2019).

255. Grazziotin,  A.  L.,  Koonin,  E.  V.  &  Kristensen,  D.  M.  Prokaryotic  Virus

Orthologous Groups (pVOGs): a resource for comparative genomics and protein

family annotation. Nucleic Acids Res. 45, D491–D498 (2017).

256. Wattam, A. R.  et al. PATRIC, the bacterial bioinformatics database and analysis

resource. Nucleic Acids Res. 42, D581–D591 (2014).

257. Paez-Espino, D. et al. IMG/VR v.2.0: an integrated data management and analysis

system for cultivated and environmental  viral  genomes.  Nucleic  Acids  Res. 47,

D678–D686 (2019).

258. Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the

reference centre for bacterial insertion sequences.  Nucleic Acids Res. 34, D32-36

(2006).

259. Liu,  M.  et  al. ICEberg  2.0:  an  updated  database  of  bacterial  integrative  and

conjugative elements. Nucleic Acids Res. 47, D660–D665 (2019).

260. Filée,  J.,  Siguier,  P.  & Chandler,  M.  Insertion  Sequence  Diversity  in  Archaea.

Microbiol. Mol. Biol. Rev. 71, 121–157 (2007).

261. Mangul,  S.  et  al. Systematic  benchmarking of omics computational tools.  Nat.

Commun. 10, 1–11 (2019).

262. Roux, S.,  Enault,  F.,  Hurwitz,  B. L.  & Sullivan,  M. B. VirSorter:  mining viral

signal from microbial genomic data. PeerJ 3, e985 (2015).

263. Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a novel k-

mer based tool for identifying viral sequences from assembled metagenomic data.

Microbiome 5, 69 (2017).

264. Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a Tool

for Prediction of Bacteriophage Sequences in Metagenomic Bins. Front. Genet. 9,

(2018).



280

265. Zheng, T. et al. Mining, analyzing, and integrating viral signals from metagenomic

data. Microbiome 7, 42 (2019).

266. Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on

raw DNA sequences for identifying viral genomes in human samples. PLOS ONE

14, e0222271 (2019).

267. Zhou, F. & Xu, Y. cBar: a computer program to distinguish plasmid-derived from

chromosome-derived sequence  fragments  in  metagenomics  data.  Bioinformatics

26, 2051–2052 (2010).

268. Rozov,  R.  et  al. Recycler:  an  algorithm for  detecting  plasmids  from de  novo

assembly graphs. Bioinformatics 33, 475–482 (2017).

269. Antipov,  D.,  Raiko,  M.,  Lapidus,  A.  &  Pevzner,  P.  A.  Plasmid  detection  and

assembly  in  genomic  and  metagenomic  data  sets.  Genome  Res. 29,  961–968

(2019).

270. Kamoun,  C.,  Payen,  T.,  Hua-Van,  A.  &  Filée,  J.  Improving  prokaryotic

transposable elements identification using a combination of de novo and profile

HMM methods. BMC Genomics 14, 700 (2013).

271. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families

in large genomes. Bioinforma. Oxf. Engl. 21 Suppl 1, i351-358 (2005).

272. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology

Open Software Suite. Trends Genet. TIG 16, 276–277 (2000).

273. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

274. Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools

for  viral  metagenome  comparison  and  assembled  virome  analysis.  BMC

Bioinformatics 15, 76 (2014).

275. Noguchi,  H.,  Taniguchi,  T.  & Itoh,  T.  MetaGeneAnnotator:  Detecting  Species-

Specific  Patterns  of  Ribosomal  Binding  Site  for  Precise  Gene  Prediction  in

Anonymous Prokaryotic and Phage Genomes. DNA Res. 15, 387–396 (2008).



281

276. Brown Kav, A., Benhar, I. & Mizrahi, I. A method for purifying high quality and

high yield plasmid DNA for metagenomic and deep sequencing approaches.  J.

Microbiol. Methods 95, 272–279 (2013).

277. Beaulaurier,  J.  et  al. Metagenomic  binning  and  association  of  plasmids  with

bacterial  host  genomes  using  DNA methylation.  Nat.  Biotechnol. 36,  61–69

(2018).

278. Lieberman-Aiden, E.  et al. Comprehensive Mapping of Long-Range Interactions

Reveals Folding Principles of the Human Genome. Science 326, 289–293 (2009).

279. Beitel,  C.  W.  et  al. Strain-  and  plasmid-level  deconvolution  of  a  synthetic

metagenome by sequencing proximity ligation products. PeerJ 2, e415 (2014).

280. Stewart,  R.  D.  et  al. Assembly  of  913  microbial  genomes  from metagenomic

sequencing of the cow rumen. Nat. Commun. 9, 870 (2018).

281. Stalder,  T.,  Press,  M.  O.,  Sullivan,  S.,  Liachko,  I.  & Top,  E.  M.  Linking  the

resistome  and  plasmidome  to  the  microbiome.  ISME  J. 1  (2019)

doi:10.1038/s41396-019-0446-4.

282. Burton,  J.  N.,  Liachko,  I.,  Dunham,  M.  J.  &  Shendure,  J.  Species-Level

Deconvolution of Metagenome Assemblies with Hi-C–Based Contact Probability

Maps. G3 Genes Genomes Genet. 4, 1339–1346 (2014).

283. Bickhart,  D.  et  al. Assignment  of  virus  and  antimicrobial  resistance  genes  to

microbial  hosts  in  a  complex  microbial  community  by  combined  long-read

assembly and proximity ligation. bioRxiv 491175 (2018) doi:10.1101/491175.

284. Džunková, M. et al. Defining the human gut host–phage network through single-

cell viral tagging. Nat. Microbiol. 1–12 (2019) doi:10.1038/s41564-019-0526-2.

285. Albertsen, M.  et al. Genome sequences of rare, uncultured bacteria obtained by

differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–

538 (2013).



282

286. Herath, D., Tang, S.-L., Tandon, K., Ackland, D. & Halgamuge, S. K. CoMet: a

workflow  using  contig  coverage  and  composition  for  binning  a  metagenomic

sample with high precision. BMC Bioinformatics 18, 571 (2017).

287. Girotto, S., Pizzi, C. & Comin, M. MetaProb: accurate metagenomic reads binning

based on probabilistic sequence signatures. Bioinformatics 32, i567–i575 (2016).

288. Plaza Oñate, F. et al. MSPminer: abundance-based reconstitution of microbial pan-

genomes  from  shotgun  metagenomic  data.  Bioinformatics

doi:10.1093/bioinformatics/bty830.

289. Yu, G., Jiang, Y., Wang, J., Zhang, H. & Luo, H. BMC3C: binning metagenomic

contigs  using  codon  usage,  sequence  composition  and  read  coverage.

Bioinformatics 34, 4172–4179 (2018).

290. Wang, Z., Wang, Z., Lu, Y. Y., Sun, F. & Zhu, S. SolidBin: improving metagenome

binning  with  semi-supervised  normalized  cut.  Bioinformatics

doi:10.1093/bioinformatics/btz253.

291. Alneberg,  J.  et al. Binning metagenomic contigs by coverage and composition.

Nat. Methods 11, 1144–1146 (2014).

292. Stern, A., Mick, E., Tirosh, I., Sagy, O. & Sorek, R. CRISPR targeting reveals a

reservoir of common phages associated with the human gut microbiome. Genome

Res. 22, 1985–1994 (2012).

293. Wang, J., Gao, Y. & Zhao, F. Phage–bacteria interaction network in human oral

microbiome. Environ. Microbiol. 18, 2143–2158 (2016).

294. Zhang, Q., Rho, M., Tang, H., Doak, T. G. & Ye, Y. CRISPR-Cas systems target a

diverse  collection  of  invasive  mobile  genetic  elements  in  human microbiomes.

Genome Biol. 14, R40 (2013).

295. Gogleva,  A.  A.,  Gelfand,  M.  S.  & Artamonova,  I.  I.  Comparative  analysis  of

CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics 15,

202 (2014).



283

296. Arredondo-Alonso, S., Willems, R. J., van Schaik, W. & Schürch, A. C. On the

(im)possibility  of  reconstructing  plasmids  from  whole-genome  short-read

sequencing data. Microb. Genomics 3, (2017).

297. van Schaik Willem. The human gut resistome. Philos. Trans. R. Soc. B Biol. Sci.

370, 20140087 (2015).

298. Roberts, A. P. & Mullany, P. Oral biofilms: a reservoir of transferable, bacterial,

antimicrobial resistance. Expert Rev. Anti Infect. Ther. 8, 1441–1450 (2010).

299. Yang, I., Nell, S. & Suerbaum, S. Survival in hostile territory: the microbiota of the

stomach. FEMS Microbiol. Rev. 37, 736–761 (2013).

300. Mark  Welch,  J.  L.,  Ramírez-Puebla,  S.  T.  &  Borisy,  G.  G.  Oral  Microbiome

Geography:  Micron-Scale  Habitat  and  Niche.  Cell  Host  Microbe 28,  160–168

(2020).

301. Schmidt,  T.  S.  B.  et  al. Extensive  transmission  of  microbes  along  the

gastrointestinal tract. eLife 8, e42693 (2019).

302. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of

mobile  antibiotic  resistance  genes  within  individual  gut  microbiomes  revealed

through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

303. Feng, J.  et al. Antibiotic resistome in a large-scale healthy human gut microbiota

deciphered by metagenomic and network analyses.  Environ. Microbiol. 20, 355–

368 (2018).

304. Diaz-Torres,  M. L.  et  al. Determining the  antibiotic  resistance potential  of  the

indigenous  oral  microbiota  of  humans  using  a  metagenomic  approach.  FEMS

Microbiol. Lett. 258, 257–262 (2006).

305. Sommer, M. O. A., Dantas, G. & Church, G. M. Functional Characterization of the

Antibiotic Resistance Reservoir in the Human Microflora. Science 325, 1128–1131

(2009).

306. Warburton, P. et al. Characterization of tet(32) Genes from the Oral Metagenome.

Antimicrob. Agents Chemother. 53, 273–276 (2009).



284

307. Carr, V. R.  et al. Abundance and diversity of resistomes differ between healthy

human oral cavities and gut. Nat. Commun. 11, 693 (2020).

308. Rose,  G.  et al. Antibiotic  resistance potential  of the healthy preterm infant gut

microbiome. PeerJ 5, e2928 (2017).

309. Christoff, A. P. et al. One year cross-sectional study in adult and neonatal intensive

care  units  reveals  the  bacterial  and  antimicrobial  resistance  genes  profiles  in

patients and hospital surfaces. PLOS ONE 15, e0234127 (2020).

310. Pärnänen,  K.  et  al. Maternal  gut  and  breast  milk  microbiota  affect  infant  gut

antibiotic resistome and mobile genetic elements. Nat. Commun. 9, (2018).

311. Sun, J.  et al. Environmental remodeling of human gut microbiota and antibiotic

resistome in livestock farms. Nat. Commun. 11, 1–11 (2020).

312. Clemente, J. C.  et al. The microbiome of uncontacted Amerindians.  Sci. Adv. 1,

e1500183 (2015).

313. Seville,  L.  A.  et  al. Distribution  of  Tetracycline  and  Erythromycin  Resistance

Genes Among Human Oral and Fecal Metagenomic DNA.  Microb. Drug Resist.

15, 159–166 (2009).

314. Gasparrini,  A.  J.  et  al. Persistent  metagenomic  signatures  of  early-life

hospitalization and antibiotic treatment in the infant gut microbiota and resistome.

Nat. Microbiol. 1–13 (2019) doi:10.1038/s41564-019-0550-2.

315. Zaura,  E.  et  al. Same  Exposure  but  Two  Radically  Different  Responses  to

Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial

Shifts in Feces. mBio 6, e01693-15 (2015).

316. Mah, T.-F. C. & O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial

agents. Trends Microbiol. 9, 34–39 (2001).

317. Lee, K. et al. Mobile resistome of human gut and pathogen drives anthropogenic

bloom of antibiotic resistance. Microbiome 8, 2 (2020).

318. Che, Y. et al. Mobile antibiotic resistome in wastewater treatment plants revealed

by Nanopore metagenomic sequencing. Microbiome 7, 44 (2019).



285

319. Ravi, A.  et al. The commensal infant gut meta-mobilome as a potential reservoir

for persistent multidrug resistance integrons. Sci. Rep. 5, 15317 (2015).

320. Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. J.

Shotgun metagenomics  reveals  a  wide  array  of  antibiotic  resistance  genes  and

mobile elements in a polluted lake in India. Front. Microbiol. 5, (2014).

321. Bickhart, D. M.  et al. Assignment of virus and antimicrobial resistance genes to

microbial  hosts  in  a  complex  microbial  community  by  combined  long-read

assembly and proximity ligation. Genome Biol. 20, 153 (2019).

322. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands

the resistance reservoir and ecological network of the phage metagenome. Nature

499, 219–222 (2013).

323. Wang,  M.  et  al. Metagenomic  Insights  Into  the  Contribution  of  Phages  to

Antibiotic  Resistance  in  Water  Samples  Related  to  Swine  Feedlot  Wastewater

Treatment. Front. Microbiol. 9, (2018).

324. Vaga, S. et al. Compositional and functional differences of the mucosal microbiota

along the intestine of healthy individuals. Sci. Rep. 10, 14977 (2020).

325. Feng, J. et al. Antibiotic Resistome in a large-scale healthy human gut microbiota

deciphered  by metagenomic  and  network  analyses.  Environ.  Microbiol. n/a-n/a

doi:10.1111/1462-2920.14009.

326. Rahman, S. F., Olm, M. R., Morowitz, M. J. & Banfield, J. F. Machine Learning

Leveraging  Genomes  from  Metagenomes  Identifies  Influential  Antibiotic

Resistance Genes in the Infant Gut Microbiome. mSystems 3, e00123-17 (2018).

327. Hu, Y.  et al. Metagenome-wide analysis of antibiotic resistance genes in a large

cohort of human gut microbiota. Nat. Commun. 4, 2151 (2013).

328. Seville, L. A. et al. Distribution of tetracycline and erythromycin resistance genes

among human oral and fecal metagenomic DNA. Microb. Drug Resist. Larchmt. N

15, 159–166 (2009).



286

329. Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity.

Nat. Genet. 46, 336–344 (2014).

330. Knoll,  B., Tleyjeh,  I.  M., Steckelberg, J. M., Wilson, W. R. & Baddour,  L. M.

Infective  Endocarditis  Due to  Penicillin-Resistant  Viridans  Group Streptococci.

Clin. Infect. Dis. 44, 1585–1592 (2007).

331. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis

and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

332. Brito,  I.  L.  et  al. Mobile  genes  in  the  human microbiome are structured  from

global to individual scales. Nature 535, 435–439 (2016).

333. Lassalle, F. et al. Oral microbiomes from hunter-gatherers and traditional farmers

reveal shifts in commensal balance and pathogen load linked to diet. Mol. Ecol. 27,

182–195 (2018).

334. Voigt, A. Y. et al. Temporal and technical variability of human gut metagenomes.

Genome Biol. 16, 73 (2015).

335. Zeller, G. et al. Potential of fecal microbiota for early stage detection of colorectal‐

cancer. Mol. Syst. Biol. 10, 766 (2014).

336. Human  Microbiome Project  Consortium.  A framework  for  human  microbiome

research. Nature 486, 215–221 (2012).

337. Thomas, M. et al. Metagenomic characterization of the effect of feed additives on

the gut microbiome and antibiotic resistome of feedlot cattle.  Sci. Rep. 7, 12257

(2017).

338. Ma, L. et al. Catalogue of antibiotic resistome and host-tracking in drinking water

deciphered by a large scale survey. Microbiome 5, 154 (2017).

339. Noyes,  N.  R.  et  al. Characterization  of  the  resistome  in  manure,  soil  and

wastewater from dairy and beef production systems. Sci. Rep. 6, 24645 (2016).

340. Witherden, E. A., Bajanca-Lavado, M. P., Tristram, S. G. & Nunes, A. Role of

inter-species  recombination  of  the  ftsI  gene  in  the  dissemination  of  altered



287

penicillin-binding-protein-3-mediated  resistance  in  Haemophilus  influenzae and

Haemophilus haemolyticus. J. Antimicrob. Chemother. 69, 1501–1509 (2014).

341. Chaffanel, F., Charron-Bourgoin, F., Libante, V., Leblond-Bourget, N. & Payot, S.

Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in

Clinical  and  Commensal  Isolates  of  Streptococcus  salivarius.  Appl.  Environ.

Microbiol. 81, 4155–4163 (2015).

342. Criscuolo, A. & Brisse, S. AlienTrimmer: A tool to quickly and accurately trim off

multiple  short  contaminant  sequences  from  high-throughput  sequencing  reads.

Genomics 102, 500–506 (2013).

343. Li,  H.  et  al. The Sequence Alignment/Map format  and SAMtools.  Bioinforma.

Oxf. Engl. 25, 2078–2079 (2009).

344. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinforma. Oxf. Engl. 26, 841–842 (2010).

345. Jonsson, V., Österlund, T., Nerman, O. & Kristiansson, E. Statistical evaluation of

methods  for  identification  of  differentially  abundant  genes  in  comparative

metagenomics. BMC Genomics 17, 78 (2016).

346. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat.

Softw. 36, 1–48 (2010).

347. Bengtsson-Palme, J., Larsson, D. G. J. & Kristiansson, E. Using metagenomics to

investigate human and environmental resistomes.  J.  Antimicrob. Chemother. 72,

2690–2703 (2017).

348. Bengtsson-Palme, J. The diversity of uncharacterized antibiotic resistance genes

can be predicted from known gene variants—but not always.  Microbiome 6, 125

(2018).

349. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

Nat. Methods 12, 902–903 (2015).

350. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).



288

351. Chang, J. et al. Sale of antibiotics without a prescription at community pharmacies

in urban China: a multicentre cross-sectional survey. J. Antimicrob. Chemother. 72,

1235–1242 (2017).

352. Auta,  A.  et  al. Global  access  to  antibiotics  without  prescription  in  community

pharmacies:  A  systematic  review  and  meta-analysis.  J.  Infect. (2018)

doi:10.1016/j.jinf.2018.07.001.

353. Liu,  X., Steele,  J.  C. & Meng, X.-Z. Usage,  residue, and human health risk of

antibiotics in Chinese aquaculture: A review. Environ. Pollut. Barking Essex 1987

223, 161–169 (2017).

354. Stanton, T. B. A call for antibiotic alternatives research. Trends Microbiol. 21, 111–

113 (2013).

355. Hendriksen, R. S.  et al. Global monitoring of antimicrobial resistance based on

metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

356. Roldán,  S.,  Herrera,  D.  &  Sanz,  M.  Biofilms  and  the  tongue:  therapeutical

approaches for the control of halitosis. Clin. Oral Investig. 7, 189–197 (2003).

357. Piddock,  L.  J.  V.  Assess  drug-resistance  phenotypes,  not  just  genotypes.  Nat.

Microbiol. 1, 16120 (2016).

358. Greub, G. Culturomics: a new approach to study the human microbiome.  Clin.

Microbiol. Infect. 18, 1157–1159 (2012).

359. Mullany, P. Functional metagenomics for the investigation of antibiotic resistance.

Virulence 5, 443–447 (2014).

360. Lanza,  V.  F.  et  al. In-depth  resistome  analysis  by  targeted  metagenomics.

Microbiome 6, 11 (2018).

361. Tang, Q.  et al. Current Sampling Methods for Gut Microbiota: A Call for More

Precise Devices. Front. Cell. Infect. Microbiol. 10, (2020).

362. Bendall, M. L. et al. Genome-wide selective sweeps and gene-specific sweeps in

natural bacterial populations. ISME J. 10, 1589–1601 (2016).



289

363. Leggett,  R. M. & MacLean, D. Reference-free SNP detection: dealing with the

data deluge. BMC Genomics 15, S10 (2014).

364. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and

genotyping of variants using colored de Bruijn graphs.  Nat. Genet. 44, 226–232

(2012).

365. Leggett, R. M.  et al. Identifying and Classifying Trait Linked Polymorphisms in

Non-Reference Species  by Walking Coloured  de Bruijn  Graphs.  PLoS ONE 8,

(2013).

366. Nijkamp, J. F., Pop, M., Reinders, M. J. T. & de Ridder, D. Exploring variation-

aware  contig  graphs  for  (comparative)  metagenomics  using  MaryGold.

Bioinformatics 29, 2826–2834 (2013).

367. Fernández, L., Rodríguez, A. & García, P. Phage or foe: an insight into the impact

of  viral  predation  on  microbial  communities.  ISME  J. 1  (2018)

doi:10.1038/s41396-018-0049-5.

368. Clooney, A. G. et al. Whole-Virome Analysis Sheds Light on Viral Dark Matter in

Inflammatory Bowel Disease. Cell Host Microbe 26, 764-778.e5 (2019).

369. Roux,  S.  et  al. Minimum  Information  about  an  Uncultivated  Virus  Genome

(MIUViG). Nat. Biotechnol. (2018) doi:10.1038/nbt.4306.

370. Koonin,  E.  V.  &  Yutin,  N.  The  crAss-like  Phage  Group:  How  Metagenomics

Reshaped the Human Virome. Trends Microbiol. 28, 349–359 (2020).

371. Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the

most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

372. Edwards,  R.  A.  et  al. Global  phylogeography  and  ancient  evolution  of  the

widespread human gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).

373. Yuan, Y. & Gao, M. Jumbo Bacteriophages: An Overview.  Front. Microbiol. 8,

(2017).

374. Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in

gut microbiomes. Nat. Microbiol. 1 (2019) doi:10.1038/s41564-018-0338-9.



290

375. Pride, D. T. et al. Evidence of a robust resident bacteriophage population revealed

through analysis of the human salivary virome. ISME J. 6, 915–926 (2012).

376. Wang, J., Gao, Y. & Zhao, F. Phage–bacteria interaction network in human oral

microbiome. Environ. Microbiol. 18, 2143–2158 (2016).

377. Hayes, S., Mahony, J., Nauta, A. & van Sinderen, D. Metagenomic Approaches to

Assess Bacteriophages in Various Environmental Niches. Viruses 9, 127 (2017).

378. Jang,  H.  B.  et  al. Taxonomic  assignment  of  uncultivated  prokaryotic  virus

genomes  is  enabled  by  gene-sharing  networks.  Nat.  Biotechnol. 37,  632–639

(2019).

379. Finn,  R.  D.  et  al. The  Pfam protein  families  database.  Nucleic  Acids  Res. 36,

D281–D288 (2008).

380. Haft,  D.  H.,  Selengut,  J.  D.  & White,  O.  The TIGRFAMs database of  protein

families. Nucleic Acids Res. 31, 371–373 (2003).

381. Laslett,  D.  & Canback,  B.  ARAGORN, a  program to  detect  tRNA genes  and

tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).

382. Fernandes,  A. P. & Holmgren, A. Glutaredoxins: Glutathione-Dependent Redox

Enzymes  with  Functions  Far  Beyond  a  Simple  Thioredoxin  Backup  System.

Antioxid. Redox Signal. 6, 63–74 (2004).

383. Rands,  C.  M.  et  al. ACI-1  beta-lactamase  is  widespread  across  human  gut

microbiomes in  Negativicutes due to transposons harboured by tailed prophages.

Environ. Microbiol. 20, 2288–2300 (2018).

384. Abril, C., Brodard, I. & Perreten, V. Two novel antibiotic resistance genes, tet(44)

and  ant(6)-Ib,  are  located  within  a  transferable  pathogenicity  island  in

Campylobacter fetus subsp. fetus.  Antimicrob. Agents Chemother. 54, 3052–3055

(2010).

385. Achard, A., Villers, C., Pichereau, V. & Leclercq, R. New lnu(C) gene conferring

resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36.

Antimicrob. Agents Chemother. 49, 2716–2719 (2005).



291

386. Li,  B.  et  al. Detection  and  new  genetic  environment  of  the  pleuromutilin-

lincosamide-streptogramin  A  resistance  gene  lsa(E)  in  methicillin-resistant

Staphylococcus aureus of swine origin. J. Antimicrob. Chemother. 68, 1251–1255

(2013).

387. Kim, H. B.  et  al. oqxAB encoding a multidrug efflux pump in human clinical

isolates  of  Enterobacteriaceae.  Antimicrob.  Agents  Chemother. 53,  3582–3584

(2009).

388. Novotna,  G.  & Janata,  J.  A New Evolutionary Variant  of  the Streptogramin A

Resistance  Protein,  Vga(A)LC,  from  Staphylococcus  haemolyticus with  Shifted

Substrate  Specificity towards Lincosamides.  Antimicrob.  Agents Chemother. 50,

4070–4076 (2006).

389. Al-Shayeb,  B.  et  al. Clades  of  huge  phages  from  across  Earth’s  ecosystems.

Nature 1–7 (2020) doi:10.1038/s41586-020-2007-4.

390. Romsang, A., Leesukon, P., Duangnkern, J., Vattanaviboon, P. & Mongkolsuk, S.

Mutation of the gene encoding monothiol glutaredoxin (GrxD) in  Pseudomonas

aeruginosa increases its susceptibility to polymyxins.  Int. J. Antimicrob. Agents

45, 314–318 (2015).

391. Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational

approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40,

258–272 (2016).

392. Hansen, M. F., Svenningsen, S. L., Røder, H. L., Middelboe, M. & Burmølle, M.

Big Impact of the Tiny: Bacteriophage–Bacteria Interactions in Biofilms.  Trends

Microbiol. 0, (2019).

393. Allaband, C.  et al. Microbiome 101: Studying, Analyzing, and Interpreting Gut

Microbiome Data for Clinicians. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J.

Am. Gastroenterol. Assoc. 17, 218–230 (2019).

394. Lepage,  P.  et  al. Dysbiosis  in  inflammatory  bowel  disease:  a  role  for

bacteriophages? Gut 57, 424–425 (2008).



292

395. Hoyles, L. et al. Characterization of virus-like particles associated with the human

faecal and caecal microbiota. Res. Microbiol. 165, 803–812 (2014).

396. Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531,

466–470 (2016).

397. Thingstad, T. F. Elements of a theory for the mechanisms controlling abundance,

diversity,  and biogeochemical role  of lytic bacterial  viruses in aquatic  systems.

Limnol. Oceanogr. 45, 1320–1328 (2000).

398. Jenkinson, H. F. & Lamont, R. J. Oral microbial communities in sickness and in

health. Trends Microbiol. 13, 589–595 (2005).

399. Paula, M. O., Gaetti-Jardim Júnior, E. & Avila-Campos, M. J. Plasmid profile in

oral Fusobacterium nucleatum from humans and Cebus apella monkeys. Rev. Inst.

Med. Trop. Sao Paulo 45, 5–9 (2003).

400. Arredondo-Alonso, S., Willems, R. J., van Schaik, W. & Schürch, A. C. On the

(im)possibility  of  reconstructing  plasmids  from  whole-genome  short-read

sequencing data. Microb. Genomics 3, e000128 (2017).

401. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the

next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

402. Ares-Arroyo, M. et al. PCR-Based Analysis of ColE1 Plasmids in Clinical Isolates

and Metagenomic Samples Reveals Their Importance as Gene Capture Platforms.

Front. Microbiol. 9, (2018).

403. Chen, C.-Y., Lindsey, R. L., Strobaugh, T. P., Frye, J. G. & Meinersmann, R. J.

Prevalence  of  ColE1-Like  Plasmids  and  Kanamycin  Resistance  Genes  in

Salmonella enterica Serovars. Appl. Environ. Microbiol. 76, 6707–6714 (2010).

404. Alcock,  B.  P.  et  al. CARD  2020:  antibiotic  resistome  surveillance  with  the

comprehensive antibiotic resistance database.  Nucleic Acids Res. 48, D517–D525

(2020).

405. Clark, D. P. & Pazdernik, N. J. Molecular Biology. vol. Second Edition (Elsevier,

2013).



293

406. Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing:

computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).

407. Khan, Z., Bloom, J. S., Kruglyak, L. & Singh, M. A practical algorithm for finding

maximal  exact  matches  in  large  sequence  datasets  using  sparse  suffix  arrays.

Bioinformatics 25, 1609–1616 (2009).

408. Myers, E. W. et al. A Whole-Genome Assembly of Drosophila. Science 287, 2196–

2204 (2000).

409. Khiste, N. & Ilie, L. E-MEM: efficient computation of maximal exact matches for

very large genomes. Bioinformatics 31, 509–514 (2015).

410. Fernandes,  F.  &  Freitas,  A.  T.  slaMEM:  efficient  retrieval  of  maximal  exact

matches using a sampled LCP array. Bioinformatics 30, 464–471 (2014).

411. Vyverman, M., De Baets, B., Fack, V. & Dawyndt, P. essaMEM: finding maximal

exact matches using enhanced sparse suffix arrays.  Bioinformatics 29,  802–804

(2013).

412. Tommaso, P. D.  et al. Nextflow enables reproducible computational workflows.

Nat. Biotechnol. 35, 316 (2017).

413. Steinegger,  M.  &  Söding,  J.  MMseqs2  enables  sensitive  protein  sequence

searching for the analysis of massive data sets.  Nat. Biotechnol. 35, 1026–1028

(2017).

414. Liu,  Y.  et  al. Structural  Insights  Into the  Transcriptional  Regulation of  HigBA

Toxin–Antitoxin System by Antitoxin HigA in Pseudomonas aeruginosa.  Front.

Microbiol. 10, (2020).

415. Achaz, G., Coissac, E., Netter, P. & Rocha, E. P. C. Associations between inverted

repeats  and the structural  evolution of bacterial  genomes.  Genetics 164,  1279–

1289 (2003).

416. Lin, C.-T., Lin, W.-H., Lyu, Y. L. & Whang-Peng, J. Inverted repeats as genetic

elements  for  promoting  DNA  inverted  duplication:  implications  in  gene

amplification. Nucleic Acids Res. 29, 3529–3538 (2001).



294

417. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human

gut microbiome. Nat. Biotechnol. 1–10 (2020) doi:10.1038/s41587-020-0603-3.

418. Dewhirst, F. E. et al. The Human Oral Microbiome. J. Bacteriol. 192, 5002–5017

(2010).

419. Fritz, A.  et al. CAMISIM: simulating metagenomes and microbial communities.

Microbiome 7, 17 (2019).

420. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome.

Nat. Biotechnol. 32, 834–841 (2014).

421. Tierney, B. T. et al. The Landscape of Genetic Content in the Gut and Oral Human

Microbiome. Cell Host Microbe 26, 283-295.e8 (2019).

422. Andersson,  D.  I.  &  Hughes,  D.  Microbiological  effects  of  sublethal  levels  of

antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

423. Liu,  Y.  et  al. Correlation  between  Exogenous  Compounds  and  the  Horizontal

Transfer of Plasmid-Borne Antibiotic Resistance Genes.  Microorganisms 8, 1211

(2020).

424. Møller,  T.  S.  B.  et  al. Treatment  with  Cefotaxime  Affects  Expression  of

Conjugation Associated Proteins and Conjugation Transfer Frequency of an IncI1

Plasmid in Escherichia coli. Front. Microbiol. 8, (2017).

425. Leclerc, Q. J., Lindsay, J. A. & Knight, G. M. Mathematical modelling to study the

horizontal transfer of antimicrobial resistance genes in bacteria: current state of the

field and recommendations. J. R. Soc. Interface 16, 20190260 (2019).

426. Lopatkin, A. J.  et al. Antibiotics as a selective driver for conjugation dynamics.

Nat. Microbiol. 1, 1–8 (2016).

427. Johnsen, P. J., Dubnau, D. & Levin, B. R. Episodic Selection and the Maintenance

of  Competence  and  Natural  Transformation  in  Bacillus  subtilis.  Genetics 181,

1521–1533 (2009).

428. Lindsay, J. A. Staphylococcus aureus genomics and the impact of horizontal gene

transfer. Int. J. Med. Microbiol. IJMM 304, 103–109 (2014).



295

429. Hamilton, H. L. & Dillard, J. P. Natural transformation of Neisseria gonorrhoeae:

from DNA donation to homologous recombination.  Mol. Microbiol. 59, 376–385

(2006).

430. Monod,  M.,  Mohan,  S.  &  Dubnau,  D.  Cloning  and  analysis  of  ermG,  a  new

macrolide-lincosamide-streptogramin  B  resistance  element  from  Bacillus

sphaericus. J. Bacteriol. 169, 340–350 (1987).

431. Shoemaker,  N.  B.,  Vlamakis,  H.,  Hayes,  K.  &  Salyers,  A.  A.  Evidence  for

Extensive  Resistance  Gene  Transfer  among  Bacteroides  spp.  and  among

Bacteroides and Other Genera in the Human Colon. Appl. Environ. Microbiol. 67,

561–568 (2001).

432. Cooper,  A. J.,  Shoemaker,  N. B. & Salyers, A. A. The erythromycin resistance

gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to

ermG  from  Bacillus  sphaericus.  Antimicrob.  Agents  Chemother. 40,  506–508

(1996).

433. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids

Res. 28, e63 (2000).

434. Rosini, R., Nicchi, S., Pizza, M. & Rappuoli, R. Vaccines Against Antimicrobial

Resistance. Front. Immunol. 11, (2020).

435. Petrovic  Fabijan,  A.  et  al. Safety  of  bacteriophage  therapy  in  severe

Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).

436. Schooley, R. T. et al. Development and Use of Personalized Bacteriophage-Based

Therapeutic  Cocktails  To  Treat  a  Patient  with  a  Disseminated  Resistant

Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 61, (2017).

437. Digby-Bell,  J.,  Williams,  A.,  Irving,  P.  &  Goldenberg,  S.  Successful  faecal

microbiota  transplant  for  recurrent  Clostridium  difficile infection  delivered  by

colonoscopy through a diverted ileostomy in a patient with severe perianal Crohn’s

disease. Case Rep. 2018, bcr-2017-222958 (2018).



296

438. Mullish, B. H., Ghani, R., McDonald, J. a. K. & Marchesi, J. R. Faecal microbiota

transplant for eradication of multidrug-resistant  Enterobacteriaceae:  a lesson in

applying best  practice?  Re:  ‘A five-day course  of  oral  antibiotics  followed by

faecal  transplantation  to  eradicate  carriage  of  multidrug-resistant

Enterobacteriaceae:  A Randomized  Clinical  Trial’.  Clin.  Microbiol.  Infect. 25,

912–913 (2019).

439. Citorik,  R.  J.,  Mimee,  M.  & Lu,  T.  K.  Sequence-specific  antimicrobials  using

efficiently  delivered  RNA-guided  nucleases.  Nat.  Biotechnol. 32,  1141–1145

(2014).

440. Inouye,  M.  et  al. SRST2:  Rapid  genomic  surveillance  for  public  health  and

hospital microbiology labs. Genome Med. 6, 90 (2014).

441. Zaheer,  R.  et  al. Impact  of  sequencing  depth  on  the  characterization  of  the

microbiome and resistome. Sci. Rep. 8, 5890 (2018).

442. Clausen, P. T. L. C., Zankari, E., Aarestrup, F. M. & Lund, O. Benchmarking of

methods  for  identification  of  antimicrobial  resistance  genes  in  bacterial  whole

genome data. J. Antimicrob. Chemother. 71, 2484–2488 (2016).



297

Appendices

Appendix numbering represents the chapter number from which the Appendix is 

referenced. For example, Appendix 2A is from Chapter 2.

Appendix 2A: Choosing an ARG reference database

Before mapping the metagenomic data, an existing reference database of ARGs had to

be chosen that was well curated and could generate a high specificity and sensitivity of

ARG annotations in metagenomic data. Five known ARG databases were compared:

CARD197,  ARGs  from  NCBI201 and  MEGARes200,  and  databases  from  the  ARG-

ANNOT199 and ResFinder198 tools. A catalogue containing nucleotide sequences of oral

genes  (that  was  created  by  a  collaborating  research  group  at  the  Centre  for  Host-

Microbiome  Interactions,  King’s  College  London)  (with  filename  of  unique  prefix

ORAL_CATALOG_2017_09)  was aligned against each ARG database using ABRicate

v0.5 (downloaded on 23rd August 2017) (https://github.com/tseemann/abricate). Apart

from MEGARes, all other databases were downloaded as part of the ABRicate software.

The MEGARes database was downloaded separately on 8th September 2017. The ARGs

that were identified from the oral gene catalogue for each ARG database were aligned

again against every ARG database with the same method. This determines the overlap

of ARG annotations identified from pairs of databases.

MEGAres generated the highest number of ARG annotations, followed by CARD, with

fewest from ResFinder, NCBI and ARG-ANNOT  (Fig. 2A).  Most of the ResFinder,

NCBI and ARG-ANNOT hits were also annotated by MEGARes. Although many hits
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were generated by mapping to MEGARes, at the time of this study MEGARes had not

been  updated  since  December  2016,  whereas  CARD  is  a  curated  resource  that  is

updated almost monthly. In addition, the sequence ontologiesxxiv of MEGARes were not

well defined compared to those of CARD. For example, the CTX-M-1 ARG, has a more

comprehensive description in CARD (https://card.mcmaster.ca/ontology/38264) than in

the MEGARes database      

(https://megares.meglab.org/browse/betalactams/Class_A_betalactamases/CTX/).

Specifically, the CARD entry for CTX-M-1 labels it as being part of the CTX-M  β-

lactamase  gene  family,  the  cephalosporin  drug  class  and  the  resistance  mechanism,

antibiotic inactivation. In contrast, CTX-M_1 in the MEGARes database is labelled as

being part of the CTX group, of a less specific β-lactams class with no cephalosporin

sub-group  and  Class  A  β-lactamase  mechanism  with  no  explicitly  labelled  cell

mechanism. Therefore, CARD was chosen as the ARG reference database of this study

as it had a better sequence ontology and was regularly updated.

xxiv A sequence ontology is the system of naming features and characteristics of sequences that are 

consistent, machine-readable and searchable.
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Figure 2A. Pairwise overlap of annotations from five ARG databases.

ARG-ANNOT  (green:  3,729  annotations);  CARD  (red:  6,640  annotations);  NCBI  (yellow:  3,189

annotations); ResFinder (orange: 2,833 annotations); and MEGARes (blue: 13,869 annotations).
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Appendix 2B: Selecting a mapping tool

To ensure that results could be replicated using different mapping software, three types

of mapping software were compared: Bowtie2195, SRST2440 and KMA203. Bowtie2 is a

very common tool that has been used widely in metagenomic resistome studies310,355,441.

SRST2 is a Bowtie2-based mapping tool, not specifically built for metagenomics per se,

but has been applied in at least one metagenomic resistome study308. KMA is a k-mer-

based scoring algorithm that accounts for redundancy in the composition of sequences

and has been recently applied in a metagenomic resistome study to circumvent such

redundancy42.  CARD  contains  substantial  sequencing  redundancy,  i.e.  many  of  its

sequences  are  similar  to  each other,  especially  ARGs within  ARG families  that  are

variants  of  each  other.  Using  CD-HIT,  the  nucleotide  sequences  from CARD were

clustered in 938 clusters with greater than 90% identity (meaning at least 90% of the

sequence for each read in a cluster was identical to every other read in the same cluster).

One disadvantage with KMA is that it cannot calculate the raw read counts, which are

required for Reads Per Kilobase Million (RPKM) normalisation. Therefore, a pipeline

was  used  whereby  ARGs  were  identified  using  KMA and  then  read  counts  were

evaluated  from these  predicted  ARGs using  Bowtie2.  All  samples  were  mapped  to

CARD  v3.0.0  with  each  method,  Bowtie2,  SRST2,  KMA  and  KMA+Bowtie2,

including  a  90%  breadth  of  coveragexxv threshold  (See  Appendix  2C:  Selecting  a

coverage threshold).  All  methods produce similar  distributions in the abundances  of

ARG classes  (Fig. 2B). The main differences in the results are that the KMA method

generates a higher relative abundance of the lincosamide ARG class and lower relative

xxv The breadth of coverage is the percentage of bases of the reference sequence that are covered by 
reads (not to be confused with coverage depth). (Included in Glossary)
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abundance  of  lincosamide/streptogramin/pleuromutilin  ARG  classes  than  other

methods. These differences are likely a result  of how the read depth is evaluated in

KMA. Therefore, KMA+Bowtie2 was the chosen method in this study to account for

sequence redundancy in CARD using KMA and also preserving counting of raw reads

using Bowtie2.

Figure 2B. Relative abundance of ARG classes using four read mapping tools. 

Tools are Bowtie2, KMA, KMA+Bowtie2 and SRST2 used for all samples (n=1,174).
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Appendix 2C: Selecting a breadth of coverage 

threshold

In this study, ARGs were filtered if they did not have above 90% breadth of coverage,

which is a standard threshold used to map reads to ARG databases442. To verify this is an

appropriate breadth of coverage threshold, coverages of ARGs from the KMA-Bowtie2

pipeline  were  compared  against  ARGs  identified  from  assemblies  of  metagenomic

reads. All metagenomes were assembled using SPAdes v3.9.0 including parameter --

meta for metagenomic data. These assemblies were aligned against CARD v3.0.0 using

BLASTn v2.7.1. All hits were filtered by an e-valuexxvi ≤ 1e-50 and an identity ≥ 80.

Multiple hits of different ARGs that overlapped each other by greater than 20% on an

assembly are filtered to leave the hit with the lowest e-value and highest identity values.

The presence or absence of ARGs in a metagenomic assembly was used as a proxy for

ARG incidence in  the sample.  A breadth of coverage threshold of 90% was chosen

because most ARGs that are found in an assembly are also identified in reads mapped to

ARGs with a breadth of coverage greater than 90% (Fig. 2C).

xxvi The e-value is the number of expected hits of similar quality that could be found just by chance. The 
smaller the e-value, the more significant the match. (Included in Glossary)
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Figure 2C. Benchmarking of breadth of coverage threshold. 

Showing  the  distribution  of  the  percentage  breadth  of coverage  of  ARGs  using  the  KMA-Bowtie2

pipeline for all samples (n = 1,174). Distributions are labelled by whether the equivalent ARG is present

in (red) or absent (blue) from the metagenomic assemblies. Red dashed line at 90%. 
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Appendix 2D-M: Supplementary Materials from 

integrated paper

Figure 2Da. ARGs that are found ≥ 70% of saliva samples. 

China (n = 18), Fiji (n = 18), the Philippines (n = 18) and Western Europe (n = 18). The height of bars are

the means and the error bars are 95% CIs of percentages extracted from bootstrapping samples 20 times

shown by points.
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Figure 2Db. ARGs that are found ≥ 70% of dental plaque samples. 

China (n = 18) and the USA (n = 18). The height of bars are the means and the error bars are 95% CIs of

percentages extracted from bootstrapping samples 20 times shown by points.
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Figure 2Dc. ARGs that are found ≥ 70% of stool samples. 

China (n = 18), Fiji (n = 18), the USA (n = 18) and Western Europe (n = 18). The height of bars are the

means and the error bars are 95% CIs  of percentages extracted from bootstrapping samples 20 times

shown by points.
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Figure 2E. Longitudinal USA samples clustered by ARG abundance profiles. 

Hierarchical clustering of ARG abundance (log10[RPKM+1]) (complete method on  Euclidean distance

matrix) and labelled by  body site:  buccal mucosa: n =  55 (36 with two, 18 with three and 1 with six

timepoints), dorsum of tongue: n =  69 (43 with two, 24 with three and 2 with four timepoints), dental

plaque: n = 67 (43 with two, 20 with three, 1 with four and 3 with six timepoints) , stool n = 57 (33 with

two, 21 with three, 2 with four and 1 with six timepoints). These samples were collected within two years

with individuals having had no antimicrobial treatment in that time. 
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Figure 2F. Comparing ARG abundance between oral cavity sites. 

Absolute abundance in log10 of RPKM of ARGs for paired samples of individuals from the USA (buccal

mucosa and dorsum of tongue: n = 86, dental plaque and dorsum of tongue: n = 89, buccal mucosa and

dental plaque: n = 86). Centre line is median, box limits are upper and lower quartiles, whiskers are 1.5x

interquartile ranges and points beyond whiskers are outliers. 

Figure 2G. Comparing ARG abundance of different body sites between individuals.

Relative abundance of reads labelled by the top ten most abundant ARG classes across all geographical

locations or Other classes for each sample of individuals from China (saliva: n = 33, dental plaque: n =

32, stool: n = 72), Fiji (saliva: n = 136, stool: n = 137), the USA (buccal mucosa: n = 87, dental plaque: n

= 90, dorsum of tongue: n = 91, stool: n = 70) and Western Europe (saliva: n = 21, stool: n = 21).



Figure 2Ha. ARG abundance shown for each ARG from China. 

Heatmaps of abundance (log10[RPKM+1]) clustered by hierarchical clustering column-wise by sample (complete method on Euclidean distance matrix) and separated row-wise by

ARG class (saliva: n = 33, dental plaque: n = 32, stool: n = 72). 



Figure 2Hb. ARG abundance shown for each ARG from the USA. 

Heatmaps of abundance (log10[RPKM+1]) clustered by hierarchical clustering column-wise by sample (complete method on Euclidean distance matrix) and separated row-wise by

ARG class (including longitudinal samples, buccal mucosa: n = 164, dorsum of tongue: n = 188, dental plaque: n = 191, stool n = 156).



Figure 2Hc. ARG abundance shown for each ARG from Fiji. 

Heatmaps of abundance (log10[RPKM+1]) clustered by hierarchical clustering column-wise by sample (complete method on Euclidean distance matrix) and separated row-wise by

ARG class (saliva: n = 136, stool: n = 137). 



Figure 2Hd. ARG abundance shown for each ARG from Western Europe. 

Heatmaps of abundance (log10[RPKM+1]) clustered by hierarchical clustering column-wise by sample (complete method on Euclidean distance matrix) and separated row-wise by

ARG class (saliva: n = 21, stool: n = 21). 
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Figure 2Ia. Differential analysis of ARG abundance between stool and saliva samples from China. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from China (n = 31). 
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Figure 2Ib. Differential analysis of ARG abundance between saliva and dental samples from China.

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from China (n = 31). 
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Figure 2Ic. Differential analysis of ARG abundance between stool and dental samples from China. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from China (n = 30). 
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Figure 2Id. Differential analysis of ARG abundance between stool and buccal mucosa samples from

the USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 64). 
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Figure 2Ie. Differential analysis of ARG abundance between stool and dorsum of tongue samples

from the USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 69). 
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Figure 2If. Differential  analysis of ARG abundance between stool and dental samples  from the

USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 68). 
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Figure 2Ig. Differential  analysis  of  ARG abundance between dorsum of the  tongue and buccal

mucosa samples from the USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 86). 
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Figure 2Ih. Differential analysis of ARG abundance between dental and buccal mucosa samples

from the USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 86). 
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Figure 2Ii. Differential  analysis  of  ARG abundance  between dorsum of  the  tongue and dental

samples from the USA. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from the USA (n = 89). 
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Figure 2Ij. Differential analysis of ARG abundance between stool and saliva samples from Western

Europe. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from Western Europe (n = 21). 
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Figure 2Ik. Differential analysis of ARG abundance between stool and saliva samples from Fiji. 

Volcano plot  showing differential  analysis,  using  DESeq2 package in  R,  between paired  samples  of

adjusted p-value < 0.05 for individuals from Fiji (n = 132). 



Figure 2J. Log2 fold change of ARGs exclusively found in one geographical location between paired samples. 

ARGs selected where adjusted p-value < 0.05 from differential abundance analysis between paired samples of individuals from China (stool and saliva: n = 31, stool and dental

plaque: n = 30), the USA (stool and dental plaque: n = 68), Fiji (saliva and stool: n = 137) and Western Europe (saliva and stool: n = 21). 
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Figure 2K. Comparing ARG richness between paired body sites excluding ARGs that are part of or

regulate an efflux pump complex. 

ARG richness is defined as the number of unique ARGs that are not part of nor regulate an efflux pump

complex for paired samples of individuals from China (dental plaque and saliva: n = 31, stool and dental

plaque: n = 30, stool and saliva: n = 31), Fiji (saliva and stool: n = 128), the USA (buccal mucosa and

dental plaque: n = 78, buccal mucosa and dorsum of tongue: n = 86, dental plaque and dorsum of tongue:

n = 89, buccal mucosa and stool: n = 64, dental plaque and stool: n = 68, dorsum of tongue and stool: n =

67) and Western Europe (saliva and stool: n = 21) with Mann-Whitney, paired, two-sided t-test (p-value <

0.05 as *, < 0.01 as **, < 0.005 as ***). Centre line is median, box limits are upper and lower quartiles,

whiskers are 1.5x interquartile ranges and points beyond whiskers are outliers.
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Figure 2L. Spearman’s correlation of ARG and species abundance from China stool samples. 

Samples of individuals (n = 31). Rows and columns are clustered by hierarchical clustering of Euclidean

distance. Columns are coloured by phylum. P-values are adjusted by Benjamini-Hochberg multiple test

correction. Rho shown only where adjusted p-value < 0.05. 
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Table 2M. Coefficients  and p-values from linear regression between ARG class  abundance and

antibiotic prescriptions in 2015 for each country and body site. 

Antibiotic prescriptions measured in DDD Per 1000 Individuals. Coefficients are the r2 and intercept

values. Linear regression fits the data into a linear model by equation y = bx + a + e, where b is the slope

of the line and a is the intercept. e represents the residuals that are the difference between the data and the

fitted model. The r2 value is the proportion of variation in the y (ARG class abundance) due to variation

in the x (antibiotic prescriptions). The intercept value is the expected value of y when the value of x is 0.

p-values > 0.05 indicate there is no statistically significant relationship between the ARG class abundance

and antibiotic prescriptions in 2015.

r2 value Intercept p-value Country Body Site

0.0216 3.48E-07 0.728 China dental
0.0376 1.07E-06 0.645 China saliva
0.0253 2.54E-09 0.641 China stool
0.00572 3.00E-09 0.847 Philippines saliva
0.169 0.000244 0.418 USA buccal mucosa
0.111 1.01E-07 0.382 USA dental
0.0812 0.000117 0.536 USA dorsum of 

tongue
0.0710 2.67E-08 0.428 USA stool
0.124 1.56E-07 0.392 Western Europe saliva

0.00950 1.02E-09 0.776 Western Europe stool
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Appendix 3: Chapter 3 Supplementary Figures

Figure 3A. Linear regression of Phage Cluster Richness against number of phage contigs. 

For each sample from China and the USA (Adjusted r2 = 0.8618, p-value < 2.2x10-16)

Figure 3B. Frequency of samples containing a number of unique a) phages and b) phage clusters. 

Red line represents median number. 

a b
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Figure 3C. Log10 of the proportion of reads mapped to differentially abundant phage clusters for

each sample. 

Samples and phage clusters clustered by hierarchical clustering. Phage clusters that were differentially

abundant  between  groups  were  selected  where  Bonferroni-corrected  adjusted  p-values  <  0.001 from

Kruskal-Wallis Rank Sum test. USA buccal mucosa (n = 87), dorsum of tongue (n = 90), dental plaque (n

= 90) and stool (n = 70); China dental plaque (n = 32), saliva (n = 33) and stool (n = 72); and Philippines

saliva (n = 24).
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Figure 3D. Phage incidence and abundance profiles.  

NMDS of Bray-Curtis dissimilarities between phage cluster  incidence profiles  of samples  (excluding

longitudinal USA) labelled by GIT site and geographical location.

Figure 3E. Relative abundance of phage taxonomy across GIT sites. 

Proportion of total reads that are mapped to phage clusters, coloured by viral family, for each sample

(excluding  USA  longitudinal).  “Other”  represents  non-phage  viral  families,  Alloherpesviridae,

Ascoviridae,  Baculoviridae,  Flaviviridae,  Herpesviridae,  Iridoviridae,  Marseilleviridae,  Mimiviridae,

Nudiviridae,  Phycodnaviridae,  Picornaviridae,  Pithoviridae,  Poxviridae and  Retroviridae.  USA buccal

mucosa (n = 87), dorsum of tongue (n = 90), dental plaque (n = 90) and stool (n = 70); China dental

plaque (n = 32), saliva (n = 33) and stool (n = 72); and Philippines saliva (n = 24).
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Figure 3F. Percentage of phage contigs of phage families with predicted bacteria hosts. 

16,513 (out of 139,929) phage contigs were assigned to host genera. Bracketed number after genus name

represent the total number of phage contigs assigned to a particular genus. 
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Figure 3Ga. Heatmap of log10 relative abundance of phage clusters for the crAss-like phage family.

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure 3Gb. Heatmap of log10 relative abundance of phage clusters for the Inoviridae phage family.

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure 3Gc. Heatmap of log10 relative abundance of phage clusters for  the Microviridae phage

family. 

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure  3Gd. Heatmap of  log10 relative  abundance of  phage clusters  for  the Myoviridae phage

family. 

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure 3Ge. Heatmap of  log10 relative  abundance of  phage clusters  for  the Podoviridae phage

family. 

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure 3Gf. Heatmap of  log10 relative abundance of  phage clusters  for  the Siphoviridae phage

family. 

Dendrograms represent hierarchical clustering of samples (excluding USA longitudinal) colour coded by

GIT site and country in the x axis and phage clusters in the y axis.
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Figure 3H. Proportion of phage clusters with predicted phage hosts for each phage family and GIT

site.

Buccal mucosa (n = 87 from the USA), dorsum of tongue (n = 90 from the USA), dental plaque (n = 90

from the USA and n = 32 from China), saliva (n = 33 from China and n = 24 from the Philippines) and

stool (n = 70 from the USA and n = 72 from China) (Excluding longitudinal USA samples).
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Figure 3I. Heatmap of log10 relative abundance of bacterial genera. 

Dendrograms represent hierarchical clustering of genera in the y axis and samples in the x axis colour coded by GIT 

sites: buccal mucosa (n = 87 from the USA), dorsum of tongue (n = 90 from the USA), dental plaque (n = 90 from the

USA and n = 32 from China), saliva (n = 33 from China and n = 24 from the Philippines) and stool (n = 70 from the 

USA and n = 72 from China). (Excluding longitudinal USA samples).
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Figure  3J.  Heatmap  of log10  relative  abundance  of  Eubacterium,  Haemophilus, Prevotella,

Streptococcus and Veillonella species. 

Dendrograms represent hierarchical clustering of genera in the y axis and samples in the x axis colour coded by GIT 

sites: buccal mucosa (n = 87 from the USA), dorsum of tongue (n = 90 from the USA), dental plaque (n = 90 from the

USA and n = 32 from China), saliva (n = 33 from China and n = 24 from the Philippines) and stool (n = 70 from the 

USA and n = 72 from China). (Excluding longitudinal USA samples).
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Figure 3K. Percentage of contigs with contig size for each GIT site. 

Percentage of all contigs (phage and non-phage) that have genome sizes between 3 – 10, 10 – 50, 50 –

200 and over 200 kb for each GIT site.
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Glossary

ɑ-diversity: The ɑ-diversity measures the variation of taxonomic composition within a

sample.

β-diversity: The β-diversity measures the variation of taxonomic composition between

samples, i.e. the ratio between regional and local diversity.

breadth  of  coverage:  The  breadth  of  coverage  (also  known  as  coverage)  is  the

percentage  of  bases  of  the reference  sequence that  are  covered by reads  (not  to  be

confused with coverage depth). 

coverage depth: See read depth.

e-value: The e-value is the number of expected hits of similar quality that could be

found just by chance. The smaller the e-value, the more significant the match.

homologous sequence: Homologous sequences are similar sequences that are related

by evolutionary changes from a common ancestral sequence.

Gram-positive/Gram-negative:  Bacteria can be classified into two categories: either

Gram-positive  or  Gram-negative.  Gram-negative  bacteria  have  an  outer  membrane

outside  their  cell  wall,  whereas  Gram-positive  bacteria  do  not.  This  means  Gram-

positive bacteria are more susceptible to cell wall targeting by antibiotics that  Gram-

negative bacteria.

in  vitro: Experiments  conducted  on  parts  of  cells  after  they  are  disrupted  (in

microbiology).

in vivo:  Experiments conducted in live isolated cells (in microbiology).
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k-medoids: k-medoids is a clustering algorithm where data points are grouped into  k

clusters  with  a  specified  k value.  Clusters  are  partitioned  to  minimise  the  distance

between points within a cluster and a designated data point as the centre of the cluster. 

k-mer: A k-mer is a small sequence of length k.

lysogenic cycle: Viral genetic material is injected into the host cell and is replicated.

Bacteriophage  genetic  material  can  integrates  into  the  host  genome  to  become  a

prophage.

lytic cycle: A virus infections the cell, replicates and lyses the cell.

MEM:  A  MEM  (maximal  exact  match)  between  two  sequences  represents  the

maximum length of residues (nucleotides or amino acids) that match exactly, and cannot

be extended in either direction without allowing for a mismatch.

paired-end  sequencing:  Paired-end  sequencing  is  a  type  of  Illumina  sequencing

technology that sequences both ends of the fragments.

phylogeny:  Phylogeny  is  the  evolutionary  relationship  of  genetic  or  physical

characteristics between species.

prophage: Bacteriophage  DNA integrated  in  chromosomal  DNA or  existing  as  an

extra-chromosomal plasmid.

read depth: The read depth  (also known as coverage depth)  is the number of unique

reads that contain a particular nucleotide of the represented sequence.

reverse complement: The reverse complement of a DNA sequence is the reverse strand

that has complementary base pairs. The complementary base pair rule states DNA base

pairs are always paired A – T (adenine – thymine)  and C – G (cytosine – guanine). This

means the reverse complement of GCATGGA is TCCATGC, for example.
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rolling-circle  replication:  In  rolling  circle  replication,  the  double-stranded  DNA is

nicked. The 3’ end of the unnicked DNA is elongated and the 5’ end strand is displaced.

Once replication is complete, the displaced DNA circularises and the second strand is

synthesised. The 3’ end and 5’ end of both strands represent the configuration of bonds

between carbon atoms of the DNA pentose backbone.

single-nucleotide  polymorphism  (SNP): A  single-nucleotide  polymorphism  is  a

substitution of a single nucleotide at a specific position in a genome.

single-read sequencing: Single-read sequencing is a type of Illumina sequencing that

sequences fragments from only one end.

strain: A genetic variant or subtype of a species. 

taxonomic classification: Based on a hierarchical taxonomic rank of living organisms:

domain,  kingdom, phylum, class, order, family, genus, species. This excludes viruses

that do not belong to a domain, but following a similar ranking system.

temperate phage: A phage that can replicate using both lytic and lysogenic cycles.

virulent phage: A phage that can only replicate by the lytic cycle.
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