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Abstract

This thesis is devoted to algorithms and data structures for classical problems in stringol-

ogy in the internal and dynamic settings.

In the internal setting, the task is to preprocess a string S so that queries of interest

for substrings of S can be answered efficiently. Note that a substring of S can be specified

in constant time by the indices of an occurrence of it as a fragment of S. Efficient data

structures for problems in the internal setting have proved useful as building blocks in

the design of algorithms and data structures for problems on strings.

Here, we consider the Internal Dictionary Matching problem, where one is

given a text T of length n and a dictionary D consisting of substrings of T , each given as

a fragment of T . This way, D takes space proportional to the number d = |D| of patterns

rather than their total length, which could be Θ(n · d). We show how to construct in

(n + d) · logO(1) n time a data structure that answers the following types of queries in

logO(1) n+O(|output|) time: reporting/counting all occurrences of patterns from D in a

fragment T [i . . j] and reporting distinct patterns from D that occur in T [i . . j]. We also

present data structures for the problem of counting distinct patterns from D that occur

in T [i . . j]. Finally, we also address these problems for a dynamic dictionary, in which

case queries are interleaved with updates to D.

In the dynamic setting, the task is to maintain a collection of strings under updates,

such as insertions and deletions of letters, so that information of interest can be efficiently

retrieved. We consider the following problems in such a setting:

� Internal Pattern Matching: We show that the data structure of Gawrychowski

et al. [SODA 2018] for maintaining a persistent collection X of strings, of total

length at most N , under operations “split”, “concatenate” and “insert a string of

length 1 to X”, in O(logN) time each, can be augmented to return the occurrences

of any string P ∈ X in any string T ∈ X in O(|T |/|P | · log2N) time.

� Repetition Detection: We show how to maintain the longest square substring

of a dynamic string, of length at most n, in O(log3 n) time per update, using
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O(n) space. One of the main ingredients of our algorithm is our aforementioned

implementation of internal pattern matching queries in the dynamic setting.

� Longest Common Factor: We show that a longest common factor (equiv. sub-

string) of two dynamic strings, of total length at most n, can be maintained in

amortised O(log8 n) time per update, using Õ(n) space. An exponentially faster

algorithm with polynomial space requirements is ruled out due to a lower bound in

the cell-probe model of computation [Charalampopoulos et al., ICALP 2020]. We

also show more efficient solutions for the case where one of the two strings is static.

� String Alignment: We consider the problem of dynamically maintaining an

optimal alignment of two strings, each of length at most n, as they undergo

edit operations. The string alignment problem generalises the longest common

subsequence (LCS) problem and the edit distance problem (as long as insertions

and deletions cost the same). The conditional lower bound of Backurs and Indyk

[SICOMP 2018] for computing the LCS in the static case implies that strongly

sublinear update time for the problem in scope is unlikely. We essentially match this

lower bound when the alignment weights are constants, by showing how to process

each update in Õ(n) time. When the weights are integers, bounded in absolute value

by some w = nO(1), we can maintain the alignment in n ·min{√n,w} · logO(1) n

time per update.

Interestingly, we use a wide range of tools in order to obtain our results, such as:

string periodicity, locally consistent parsing of strings, orthogonal range queries, efficient

(min,+)-multiplication of simple unit-Monge matrices, and data structures for computing

distances in planar graphs.
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Chapter 1

Introduction

Throughout this thesis, we consider strings over an integer alphabet Σ of size σ, poly-

nomially bounded in the total size N of the input (i.e. each letter is in [1, N c] for some

constant c). We use Õ(·) notation to suppress logO(1)N factors.

1.1 Internal Queries in Strings

Internal queries in strings have received much attention in recent years. In the internal

setting, one is to preprocess a string S of length n := |S|, so that queries about substrings

of S can be answered efficiently. Note that a substring of S can be specified in O(1)

time by the indices i, j of an occurrence of it as a fragment S[i . . j] of S. Data structures

for answering internal queries are interesting in their own sake, but also have numerous

applications in the design of algorithms and (more sophisticated) data structures in

stringology.

The most basic and widely used internal query is that of computing the longest

common prefix of two suffixes S[i . . n] and S[j . . n] of S, denoted by LCP(i, j). It has

been known for decades, that one can construct the suffix tree of S and a lowest common

ancestor data structure for it in O(n) time [67, 94], thus obtaining an O(n)-space data

structure that answers queries in O(1) time. However, in the word RAM model of

computation, with word size Θ(log n) this is not necessarily optimal. A sequence of
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works [157, 133, 33] has culminated in the recent optimal data structure of Kempa and

Kociumaka, that can be built in O(n/ logσ n) time and answers queries in O(1) time [107].

The Internal Pattern Matching (IPM) problem consists in preprocessing a string S

of length n so that we can efficiently compute the occurrences of a substring of S in

another substring of S. For the decision version of the problem, a nearly-linear size data

structure that allows for sublogarithmic-time IPM queries was presented by Keller et

al. [106]. A linear-size data structure allowing for constant-time IPM queries in the case

where the ratio between the lengths of the two substrings is constant was presented by

Kociumaka et al. [115]. The O(n)-time construction algorithm of the latter data structure

was derandomised in [112]. The authors of [115], using their efficient IPM queries as

a subroutine, managed to show efficient solutions for other internal problems, such as

for computing the periods of a substring (period queries, introduced in [114]), and for

checking whether two substrings are rotations of one another (cyclic equivalence queries).

For a variant of the IPM problem called cross-document pattern matching, where the

input is a collection of texts see [120]. Other queries that have been studied include the

computation of the lexicographically minimal or maximal suffix, and the lexicographically

minimal rotation of a queried substring [23, 111]. We refer the interested reader to

the PhD dissertation of Tomasz Kociumaka [112], which contains an overview of the

literature.

As discussed in detail in Section 1.3, in Chapter 4, we show how to efficiently answer

IPM queries in the dynamic setting. This implies that other internal queries, such as

period queries and cyclic equivalence queries can be also answered efficiently in this

setting, due to the (implicit) reductions of [115].

1.2 Internal Dictionary Matching

The dictionary matching problem has been studied for more than 40 years [3]. In this

problem, we are to preprocess a dictionary D, consisting of d patterns, in order to be

able to efficiently compute the occurrences of the patterns from D in any given text T .
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The Aho-Corasick automaton preprocesses the dictionary in linear time with respect to

its total length and then processes each input text T in time O(|T |+ |output|) [3, 64].

Compressed indexes for dictionary matching were presented in [38]. Different variants of

the approximate dictionary matching problem [135, 25] have been studied, such as its

indexing version [53] and its streaming version [81]. Dynamic dictionary matching in its

more general version consists in the problem where a dynamic dictionary is maintained,

texts are presented as input, and for each such text all the occurrences of patterns from

the dictionary in the text have to be reported; see [11, 12, 85].

We introduce the Internal Dictionary Matching (IDM) problem that consists in

answering the following types of queries for an internal dictionary D consisting of

substrings of a text T of length n: given (i, j), report/count all occurrences of patterns

from D in T [i . . j], and report/count the distinct patterns from D that occur in T [i . . j].

The IDM problem in the special case of the dictionary D being the set of all palin-

dromes in T has already been studied in [146] by Rubinchik and Shur, who proposed a

data structure of size O(n log n) that returns the number of all distinct palindromes in

T [i . . j] in O(log n) time. Let us note that in this case the total length of patterns might

be quadratic in n, but the internal dictionary is of size O(n) and can be constructed

in O(n) time [90]. Our general solution can be applied, in particular, to this and other

dictionaries that satisfy these requirements, such as the dictionaries of all square or

non-primitive substrings of T [90, 59, 27].

Let us now formally define the problem and the types of queries that we consider.
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Internal Dictionary Matching

Input: A text T of length n and a dictionary D consisting of d patterns, each given

as a fragment T [a . . b] of T (represented only by integers a, b).

Queries:

Exists(i, j): Decide whether at least one pattern P ∈ D occurs in T [i . . j].

Report(i, j): Report all occurrences of all the patterns of D in T [i . . j].

ReportDistinct(i, j): Report all patterns P ∈ D that occur in T [i . . j].

Count(i, j): Count all occurrences of all the patterns of D in T [i . . j].

CountDistinct(i, j): Count all patterns P ∈ D that occur in T [i . . j].

Example 1.2.1. Let us consider the dictionary D = {aa, aaaa, abba, c} and the text

T = adaaaabaabbaac.

T a

1

d

2

a

3

a

4

a

5

a

6

b

7

a

8

a

9

b

10

b

11

a

12

a

13

c

14
a a a a a a

a b b a c

D

We then have:

Exists(2, 12) = true

Report(2, 12) = {(aa, 3), (aaaa, 3), (aa, 4), (aa, 5), (aa, 8), (abba, 9)}

Count(2, 12) = 6

ReportDistinct(2, 12) = {aa, aaaa, abba}

Exists(1, 3) = false

CountDistinct(2, 12) = 3

CountDistinct(5, 12) = 2.

In particular, the two distinct patterns from D that occur in T [5 . . 12] are aa and abba.

Let us briefly consider two straightforward approaches for answering Report(i, j)

queries. One could answer each such query in time O(j− i+ |output|) by running T [i . . j]

over the Aho-Corasick automaton of D [3] or in time Õ(d+|output|) by performing internal
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pattern matching [115] for each element of D individually. None of these approaches is

satisfactory as they can require Ω(n) time in the worst case.

We propose an Õ(n + d)-size data structure, which can be built in time Õ(n + d)

and answers all types of IDM queries, apart from CountDistinct(i, j) queries, in time

Õ(1 + |output|). The exact complexities are shown in Table 1.1.

Table 1.1: The complexities of the proposed data structures for queries Exists(i, j),

Report(i, j), ReportDistinct(i, j), and Count(i, j).

Query Preprocessing time Space Query time

Exists(i, j) O(n+ d) O(n) O(1)

Report(i, j) O(n+ d) O(n+ d) O(1 + |output|)

ReportDistinct(i, j) O(n log n+ d) O(n+ d) O(log n+ |output|)

Count(i, j) O( n logn
log logn + d log3/2 n) O(n+ d log n) O( log2 n

log logn)

Our solutions for Exists(i, j) and Report(i, j) are rather simple and make use

of the suffix tree of T . For ReportDistinct(i, j) queries, we mostly rely on the

periodic structure of strings. Our solution for Count(i, j) is more involved, and is based

on a combination of a locally consistent parsing [102, 103, 98] with orthogonal range

searching [30].

Our results for CountDistinct(i, j) queries are presented in Table 1.2. Note that

we also consider a special case of CountDistinct(i, j) queries, in which the dictionary

D is the set of all squares (i.e. strings of the form UU) in T .

The main ingredients of our data structures are, again, periodicity, orthogonal range

queries, as well as other auxiliary internal queries in strings. We leave the problem of

whether an Õ(n+ d)-space data structure that answers CountDistinct(i, j) queries in

Õ(1 + |output|) time exists open for further investigation.
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Table 1.2: Our results for CountDistinct(i, j) queries—m is an arbitrary parameter.

Variant Preprocessing time Space Query time

2-approximation Õ(n+ d) Õ(n+ d) Õ(1)

exact Õ(n2/m+ d) Õ(n2/m2 + d) Õ(m)

exact Õ(nd/m+ d) Õ(nd/m+ d) Õ(m)

D = squares, exact O(n log2 n) O(n log2 n) O(log n)

A natural problem would be to consider a dynamic dictionary, in the sense that

one would perform interleaved IDM queries and updates to D (insertions/deletions of

patterns). For some natural dynamic problems, the best known bounds on the query

and the update time are of the form O(mα), where m is the size of the input and α

is some constant. Henzinger et al. [95] introduced the Online Boolean Matrix-Vector

Multiplication product (OMv) conjecture that can be used to provide some justification

for the polynomial-time hardness of many such dynamic problems in a unified manner.

We reduce the OMv problem to the internal dictionary matching problem with a

dynamic dictionary. Interestingly, in our lower bound construction we only add single-

letter patterns to an initially empty dictionary.

Theorem 1.2.2. The OMv conjecture implies that there is no algorithm that preprocesses

T and D in time polynomial in n, performs insertions to D in time O(nα), answers

Exists(i, j) queries in time O(nβ), in an online manner, such that α + β = 1 − ε for

ε > 0, and has error probability at most 1/3.

Finally, by building upon our solutions for static dictionaries, we provide algorithms

for the case of a dynamic dictionary, where patterns can be added to or removed

from D. We show how to process updates in Õ(nα) time and answer each of the follow-

ing queries in Õ(n1−α + |output|) time for any 0 < α < 1: Exists(i, j), Report(i, j),
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ReportDistinct(i, j), Count(i, j), and 2-approximate CountDistinct(i, j). In par-

ticular, for all queries, apart from CountDistinct(i, j) ones, we match—up to subpoly-

nomial factors—our conditional lower bound.

1.3 Dynamic Strings

The main goal in the dynamic setting is to provide algorithms that are faster than

recomputing the answer from scratch after every update. Let us review some basic

problems on strings in the dynamic setting.

Finding all occurrences of a pattern of length m in a static text can be performed

in the optimal O(m + |output|) time using suffix trees, which can be constructed in

linear time [170, 67]. A very basic problem is that of maintaining a dynamic text while

enabling efficient pattern matching queries, with the pattern being given explicitly at

query time. This is clearly motivated by the possible application in a text editor, where

the text is dynamic and the user may issue pattern matching queries. A considerable

amount of work has been carried out on this problem [91, 68, 69]. The first data structure

achieving polylogarithmic update time and optimal query time was designed by Sahinalp

and Vishkin [150]. The update time was improved to O(log2 n log logn log∗ n) at the cost

of randomisation and polylogarithmic additional time per query by Alstrup et al. [4].

Recently, Gawrychowski et al. [82] presented a randomised data structure that requires

O(log2 n) time per update and allows for time-optimal queries. The setting of a dynamic

text and a static pattern has also been considered [14]. See [13] for another variant.

Another well-studied problem is that of maintaining a dynamic collection X of strings

in order to support O(1)-time string equality operations, under the following update

operations:

� makestring(U): Insert a non-empty string U to X .

� concat(U, V ): Insert UV to X , for U, V ∈ X .

� split(U, i): Insert U [1 . . i− 1] and U [i . . |U |] in X . for U ∈ X and i ∈ [2, |U |].
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This line of research was initiated by Sundar and Tarjan [156] who presented a data

structure with amortised polynomial update time. The first data structures supporting

updates in polylogarithmic time were presented by Mehlhorn et al. [129]; the authors

presented a deterministic data structure and a randomised one with better update time.

Alstrup et al. [4] presented a randomised data structure with faster update time, which

also allowed for efficiently computing the length LCP(U, V ) of the longest common prefix

of any two strings U, V in the collection. Finally, Gawrychowski et al. [82] managed to

prove the following result.

Theorem 1.3.1 ([82]). A collection X of non-empty strings of total length at most N can

be dynamically maintained with update operations makestring(U), concat(U, V ), split(U, i)

requiring time O(logN + |U |), O(logN), and O(logN), respectively, all w.h.p, so that

LCP(U, V ) queries for U, V ∈ X can be answered in time O(1).

The data structure underlying Theorem 1.3.1 is Las Vegas randomised: the answers

are correct, but the update times are guaranteed only with high probability (w.h.p.),

i.e. probability 1−1/nΩ(1), where n is the total size of the input, including updates. (This

is the only type of randomisation we allow throughout this thesis.) Note that the size of

a makestring(U) operation is |U |, while the size of concat(U, V ) and split(U, i) operations

is O(1). The data structure of Theorem 1.3.1 maintains a parse tree for each string in

the collection, and the time complexities depend on the height of each such parse tree,

which is O(logN) w.h.p.

We show that the data structure of Gawrychowski et al. [82] can also efficiently

return all exact occurrences of any string P ∈ X in any string T ∈ X , namely in

O(|T |/|P | · log2N) time. This is formalised in the following statement.

Theorem 1.3.2. A collection X of non-empty strings of total length at most N can be

dynamically maintained with update operations makestring(U), concat(U, V ), split(U, i)

requiring time O(logN + |U |), O(logN), and O(logN), respectively, so that the occur-

rences of a string P ∈ X in a string T ∈ X can be computed in time O(|T |/|P | · log2N).

All running times hold w.h.p.
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The above theorem actually constitutes in an implementation of internal pattern

matching queries in this dynamic setting: upon an IPM query, we can first perform

a constant number of split operations to add the relevant substrings in the collection

X , and then employ our pattern matching algorithm. This result, can be seen as an

analogue of the O(n)-space, O(|T |/|P |)-query-time data structure of Kociumaka et al. for

answering IPM queries for a static string of length n [115].

The implementation of IPM queries in this setting has already proved useful. The

recent meta-algorithm of [47] for approximate pattern matching (under the Hamming

and edit distances), which relies on certain primitive operations, including IPM queries,

can be applied to extend the data structure of Gawrychowski et al. [82] to report all

occurrences of a string P ∈ X in a string T ∈ X with up to k mismatches (resp. errors)

in time O(|T |/|P | · k2 log2N) (resp. O(|T |/|P | · k4 log2N)). We also utilise this result

on IPM queries in Chapter 5 for efficiently detecting repetitions in a dynamic string.

For all problems considered in this thesis in a dynamic setting, other than the IPM

queries discussed above, we consider the following more restricted dynamic setting. We

maintain a constant number of strings that undergo (a subset of) the following edit

operations: letter insertions, deletions, and substitutions. Note that, each edit operation

can be simulated with a constant number of concat, split, and makestring(a) (for a ∈ Σ)

operations, and hence, for instance, the data structure of [82] can be of use in this setting

as well. We formalise this in Section 2.8

Problems on strings that have been recently studied in the dynamic setting, apart

from the ones discussed in the remaining sections of this chapter, include maintaining:

� two dynamic strings T and P , in order to be able to efficiently compute the

Hamming distance or the inner product of P and any given fragment of T [51];

� (an approximation of) the length of a longest increasing subsequence of a dynamic

string [130, 77, 117];

� a longest palindromic substring of a dynamic string [10, 6];
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� the suffix array of a dynamic string T , with applications such as retrieving the

letters of the Burrows-Wheeler transform of T [7];

� the dynamic time warping distance of two dynamic strings [139];

� the Lyndon factorisation of a dynamic string [10];

� a dynamic 2D-string T , and a static 2D-string P , allowing for checking whether

P equals some 2D-substring of T , and (approximate-matching) variants of this

problem [50].

1.4 Dynamic Repetition Detection

A non-empty string UU is called a square or a tandem repeat. Squares are a fundamental

notion in word combinatorics, and algorithms for finding all squares have been sought as

early as the 1980’s [54, 20, 126].

A run (also known as a maximal repetition) is a periodic fragment of the text that

cannot be extended to either direction without increasing its period [126]. Kolpakov and

Kucherov, in their seminal paper [119], showed that there are O(n) runs in a text of

length n, and presented an algorithm to compute them in O(n) time. They also posed the

so-called runs conjecture, which stated that a string of length n cannot have more than n

runs. After a long line of research [56, 57, 58, 83, 144, 148, 149], the breakthrough result

of Bannai et al. [26] positively resolved the runs conjecture. Runs have been extensively

used as an algorithmic tool, for example, for extracting the k-powers in a string (note

that a square is a 2-power) and for answering period queries [59, 114, 115]. Here, we

extensively utilise runs in our solutions for some of the variants of the IDM problem

in Chapter 3.

Each position of a string of length n can be contained in as many as Ω(n) squares/runs.

(For squares, it suffices to simply consider string an; an analogous example for runs is

more cumbersome and is presented in Chapter 5.) Thus, in the dynamic setting, a single

update in a string may result in the destruction/creation of Ω(n) squares/runs.
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Fortunately, however, in such “bad” cases, the squares/runs have extra structure.

A square UU is primitively rooted if U is a primitive string. By the well-known three

squares lemma [61], it follows that only O(log n) primitively rooted squares can start

at any position. Roughly speaking, this implies that O(log n) runs that are not “very

periodic” can contain each position.

Here, we consider the problem of maintaining the longest square of a dynamic string,

and present the following result.

Theorem 1.4.1. The longest square of a dynamic string of length n that undergoes

substitution operations can be maintained in O(log3 n) time per each such operation,

using O(n) space, after an O(n log2 n)-time preprocessing. All running times hold w.h.p.

Our algorithm relies on a novel implicit neat characterisation of all squares of the

string in terms of “very periodic” runs, based on the discussed insights, and on being

able to efficiently answer LCE and IPM queries in a dynamic string (cf. Theorems 1.3.1

and 1.3.2).

The considered problem actually captures the essence of repetition detection in

dynamic strings. Only straightforward modifications to our algorithm are required for

the maintenance of all squares, while the developed combinatorial insights also extend for

runs [8]. See [8] for no(1)-time dynamic algorithms for the maintenance of all squares/runs.

Let us remark that the algorithm underlying Theorem 1.4.1 is faster than the one

presented in [8] for the same problem. This improvement comes from employing the

newly developed efficient IPM queries for a dynamic string, discussed in Section 1.3, in

the framework of [8].

An interesting future research direction is that of exploring whether more algorithms

and data structures can benefit from our novel characterisation of squares.

1.5 Dynamic Longest Common Factor

In the well-known longest common factor (LCF) or longest common substring problem,

we are given two strings S and T , each of length at most n, and are asked to compute
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a longest substring X of S that is a substring of T .1 This problem was conjectured by

Knuth to require Ω(n log n) time. However, in his seminal paper that introduced the suffix

tree, Weiner showed a linear-time solution (for constant-size alphabets) [170]. Knuth

declared Weiner’s algorithm the “Algorithm of the Year” [19]. Since then, many different

versions of this classical question were considered, such as obtaining a tradeoff between

the time and the working space [154, 118, 140], and computing an approximate LCF

under either the Hamming or the edit distance (see [158, 40, 116, 21, 88] and references

therein).

Here, we start by studying the LCF problem in the internal model. That is, we

consider the problem of preprocessing two strings S and T , with the aim of being able

to efficiently answer the following type of queries: compute an LCF of a substring of S

and a substring of T . We show a hardness result for the general case of this problem,

conditional on the hardness of the set disjointness problem [87, 122]. However, we manage

to show efficient data structures for useful restricted cases, based on ingredients such as

the suffix tree and orthogonal range queries.

Then, we turn to the dynamic model. As mentioned in [116], an answer to the LCF

problem “is not robust and can vary greatly when the input strings are changed even by

one character”. This implicitly poses the following question: “Can we compute an LCF

after editing S or T in o(n) time?”. Formally, we consider the problem of maintaining

two strings S and T that undergo edit operations (i.e. letter insertions, deletions, and

substitutions), returning, after each update, the length of an LCF and the starting

positions of one of its occurrences in each of the strings.

Example 1.5.1. The length of an LCF of S and T below is doubled when substitution

S[4] := a is performed. The next substitution, T [3] := b, halves the length of an LCF.

S = caabaaa

T = aaaaaab

S[4] := a S = caaaaaa

T = aaaaaab

T [3] := b S = caaaaaa

T = aabaaab

1We choose to call this problem longest common factor and to abbreviate it as LCF in order to avoid

confusion with the longest common subsequence problem that we abbreviate as LCS.
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In [9], we (Amir et al.) initiated the study of this question in the dynamic setting by

considering the problem of constructing a data structure over two strings that returns the

LCF after a single edit operation in one of the strings. However, in this solution, after

each edit operation, the string is immediately reverted to its original version. Abedin et

al. [2] improved the tradeoffs for this problem by designing a more efficient solution for

the so-called heaviest induced ancestors (HIA) problem. Amir and Boneh [5] investigated

some special cases of the partially dynamic LCF problem (in which one of the strings

is assumed to be static); namely, the case where the static string is periodic and the

case where the substitutions in the dynamic string are substitutions with some letter

# 6∈ Σ. Next, in [10], we (Amir et al.) presented the first algorithm for the fully dynamic

LCF problem (in which both strings are subject to updates) with sublinear update time,

namely Õ(n2/3) time. As a stepping stone towards this result, we designed an algorithm

for the partially dynamic LCF problem that processes each edit operation in Õ(
√
n) time.

This brought the question of determining if the bound on the update time in the dynamic

LCF problem should be polynomial or subpolynomial. Here, we settle this question. As

a warm-up, we present the following (relatively simple) deterministic solution for the

partially dynamic LCF problem.

Theorem 1.5.2. We can maintain an LCF of a dynamic string S and a static string T ,

each of length at most n,

(a) in O(log n log log n) time per substitution operation using O(n log2 n) space, after

an O(n log2 n)-time preprocessing, or

(b) in O(log log n) time per substitution operation using O(n1+ε) space, after an

O(n1+ε)-time preprocessing, for any constant ε > 0.

Then, we present a much more involved solution for the fully dynamic case. It relies

on exploiting the local consistency of the parsing that the data structure of Gawrychowski

et al. [82] underlying Theorem 1.3.1 maintains for the strings in the collection, and on

maintaining two dynamic trees with labelled bicoloured leaves, so that after each update

24



we can report a pair of nodes, one from each tree, of maximum combined weight, which

have at least one common leaf-descendant of each colour.

Theorem 1.5.3. We can maintain an LCF of two initially empty dynamic strings, each

of length at most n, in O(log8 n) amortised time w.h.p. per edit operation.

After having determined that the complexity of fully dynamic LCF is polylogarithmic,

the next natural question is whether we can further improve the bound to polyloglogarith-

mic. By now, we have techniques that can be used to not only distinguish between these

two situations but (in some cases) also provide tight bounds. As a prime example, static

predecessor for a set of n numbers from [n2] requires Ω(log log n) time for structures of

size Õ(n) [142], and dynamic connectivity for forests requires Ω(log n) time [141], with

both bounds being asymptotically tight. In some cases, seemingly similar problems might

have different complexities, as in the orthogonal range emptiness problem: Nekrich [138]

showed a data structure of size O(n log4 n) with O(log2 log n) query time for three di-

mensions, while for the same problem in four dimensions Pǎtraşcu showed that any

polynomial-size data structure requires Ω(log n/ log log n) query time [143].

In [42], the following lower bounds were shown.

� Any data structure of Õ(n) size for maintaining an LCF of a dynamic string S

and a static string T , each of length at most n, requires Ω(log n/ log logn) time per

update operation.

� Any polynomial-size data structure for maintaining an LCF of two dynamic strings,

each of length at most n, requires Ω(log n/ log log n) time per update operation.

These lower bounds hold even when both amortisation and Las Vegas randomisation

are allowed. The first step in both of these lower bounds is a reduction from the problem

of answering reachability queries in butterfly graphs that was considered in the seminal

paper of Pătraşcu [143] to the HIA problem. In particular, in order to show that these

lower bounds hold even when Las Vegas randomisation is allowed, a generalisation of

Pătraşcu’s reduction from the information-theoretic lopsided set disjointness problem to

the butterfly reachability problem was necessary; see [42].
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As can be seen by Theorem 1.5.2, the difference in the allowed space in the above

two lower bounds is indeed needed, as partially dynamic LCF admits an O(n1+ε)-space,

O(log log n)-update-time solution, for any constant ε > 0.

1.6 Dynamic String Alignment

The problems of computing an optimal string alignment, a longest common subsequence

(LCS), or the edit distance of two strings have been studied for more than 50 years [168,

137]. In the string alignment problem, we are given weights wmatch for aligning a pair of

matching letters, wmis for aligning a pair of mismatching letters, and wgap for letters that

are not aligned, and the goal is to compute an alignment with maximum weight. The

edit distance dE(S, T ) of two strings S and T is the minimum cost of transforming string

S to string T using insertions, deletions, and substitutions of letters, under specified

costs cins, cdel, and csub, respectively. When all costs are 1, this is also known as the

Levenshtein distance of S and T [124]. Note that if cins = cdel, the edit distance problem

is a special case of the string alignment problem, with wmatch = 0, wmis = −csub, and

wgap = −cins = −cdel. In turn, the LCS problem can be seen as a special case of the edit

distance problem: Let the length of an LCS of S and T be denoted by LCS(S, T ). Then,

for cins = cdel = 1 and csub = 2, we have dE(S, T ) = |S|+ |T | − 2 · LCS(S, T ).

The textbook dynamic programming (DP) O(n2)-time algorithm for the (static) LCS

and edit distance problems has been rediscovered several times, e.g. in [168, 137, 152,

153, 169]. When the desired output is just the edit distance or the length of an LCS,

the space required by the DP algorithm is trivially O(n) as one needs to store just

two rows or columns of the DP matrix. Hirschberg showed how to actually retrieve an

LCS within O(n2) time using only O(n) space [96]. A line of works has improved the

complexity of the classic DP algorithm by factors polylogarithmic with respect to n

(see [128, 173, 60, 32, 89]).

On the lower-bound side, Backurs and Indyk showed that an O(n2−ε)-time algorithm

for computing the edit distance of two strings of length at most n would refute the Strong
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Exponential Time Hypothesis (SETH) [24]. Bringmann and Künnemann generalised

this conditional lower bound by showing that it holds even for binary strings under any

non-trivial assignment of weights cins, cdel, and csub [36]—an assignment of weights is

trivial if it allows one to infer the edit distance in constant time. Further consequences

of subquadratic-time algorithms for the edit distance or LCS problems where shown

by Abboud et al. [1]; interestingly, they proved that even shaving arbitrarily large

polylogarithmic factors from n2 would have major consequences.

Note that the aforementioned DP algorithm is inherently “dynamic” in the sense that

it supports appending a letter and deleting the last letter in either of the strings in linear

time. A series of works examined variants of incremental and decremental LCS and edit

distance problems [123, 109, 99]. In particular, Tiskin presented a linear-time algorithm

for maintaining an LCS in the case where both strings are subject to the following

updates: prepending or appending a letter, and deleting the first or the last letter [161].

Tiskin’s solution not only maintains the LCS, but implicitly also the semi-local LCS

information: the LCS lengths between all prefixes of S (resp. T ) and all suffixes of T

(resp. S), as well as the LCS between S (resp. T ) and all fragments (substrings) of T

(resp. S). Semi-local LCS is a restricted variant of internal LCS [151], which we briefly

discuss in Section 7.1.

One of the main technical contributions of Tiskin in this area is an efficient algorithm

for computing the (min,+)-product (also known as distance product) of two simple

unit-Monge matrices [166].2 The algorithm itself and the ideas behind it have found

numerous applications to variants of the LCS and string alignment problems. We refer

the reader to Tiskin’s monograph [161] as well as to [162, 163, 164, 160, 165].

Here, we consider the dynamic version of the string alignment problem, in which the

strings S and T , each of length at most n, undergo insertions, deletions, and substitutions

of letters, and we are to report an optimal alignment after each such update. Hyyrö et

2A matrix M is a Monge matrix if M [i, j] +M [i′, j′] ≤ M [i′, j] +M [i, j′] for all i < i′ and j < j′ [131].

An n×n Monge matrix is a simple unit-Monge matrix if its leftmost column and bottommost row consist

of zeroes, while its rightmost column and topmost row consist of subsequent integers from 0 to n−1 [166].
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al. [97] presented a practical algorithm for maintaining the edit distance of two dynamic

strings; however the worst-case bound on the update time of their algorithm is O(n2),

which is not better than recomputing the edit distance from scratch. We are the first to

obtain non-trivial worst-case update time for the dynamic string alignment problem. Note

that, in light of the conditional lower bounds stated above, an O(n1−ε)-time algorithm

maintaining an optimal string alignment of two strings of length O(n) subject to edit

operations seems highly unlikely, as it would directly imply an O(n2−ε)-time algorithm

for the static version of the problem. We show the following result, in particular matching

this lower bound—up to subpolynomial factors—for the case where the alignment weights

are small positive integers.

Theorem 1.6.1. Given two strings S and T , of length at most n, and integer alignment

weights wmatch, wmis, and wgap, bounded by nO(1), the optimal alignment of S and T

as they undergo insertions, deletions, and substitutions of letters can be maintained in

n ·min{√n,w} · logO(1) n time per operation after an Õ(n2)-time preprocessing.

For the Õ(nw)-time algorithm, we heavily rely on Tiskin’s work on semi-local LCS,

and in particular, in an implicit way, on his algorithm for computing the (min,+)-product

of two simple unit-Monge matrices [161, 166]. For the Õ(n
√
n)-time algorithm, we employ

efficient data structures for computing distances in planar graphs. Let us note that the

data structure underlying Theorem 1.6.1 can also efficiently answer internal LCS queries.

There has been a recent series of breakthrough papers on approximating the edit

distance and length of the LCS; see e.g. [18, 16, 37, 93, 86, 34, 17]. It is natural to ask

about the maintenance of an approximation of the edit distance or LCS in the setting of

dynamic strings. We leave this problem open for further investigation.
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Chapter 2

Preliminaries

2.1 Model of Computation

We work in the standard word RAM model of computation with word-size Θ(log n), where

n is the total size of the input. We measure the space requirements of our algorithms

and data structures in words.

Some of our algorithms are Las Vegas randomised, that is, they always return

correct answers but their running times may only hold with high probability (w.h.p.),

i.e. probability 1− 1/nΩ(1), where n is the total size of the input (including updates).

2.2 Strings

Let S = S[1]S[2] · · ·S[n] be a string of length n := |S| over an alphabet Σ of size σ.

The elements of Σ are called letters. The set of all strings over Σ is denoted by Σ∗.

Throughout, we make the standard assumption that Σ consists of non-negative integers

polynomially bounded in the size of the input.

By ε we denote an empty string. For two positions i and j of S, we denote by S[i . . j]

the fragment of S that starts at position i and ends at position j (the fragment is empty

if i > j). A fragment of S is represented in O(1) space by specifying the indices i and j.

The fragment S[i . . j] is an occurrence of the underlying substring P = S[i] · · ·S[j]. We
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then say that P occurs at (starting) position i in S. A prefix of S is a fragment that

starts at position 1 (i.e. of the form S[1 . . j]) and a suffix is a fragment that ends at

position n (i.e. of the form S[i . . n]).

We denote the reverse string of S by SR, i.e. SR = S[n]S[n− 1] · · ·S[1]. By UV we

denote the concatenation of two strings U and V , and by Uk the concatenation of k

copies of U . A string of the form U2 is called a square. A string S is called primitive if it

cannot be expressed as Uk for a string U and an integer k > 1. A cyclic rotation of a

string U is any string V such that U = XY and V = Y X for some strings X and Y .

2.3 Periodicity

Periodicity is one of the main and most elegant notions in stringology. A positive integer

p is called a period of a string S of length n if S[i] = S[i+ p] for all i ∈ [1, n− p]. We

refer to the smallest period as the period of the string, and denote it by per(S). A string

is called periodic if its period is no more than half of its length and aperiodic otherwise.

Let us state the weak version of the periodicity lemma, a classic combinatorial result on

strings.

Lemma 2.3.1 (Periodicity Lemma (weak version), [70]). If p and q are periods of a

string S and satisfy p+ q ≤ |S|, then gcd(p, q) is also a period of S.

The following lemma, which characterises the occurrences of a pattern in a text in

terms of the pattern’s period, is a prime application of the periodicity lemma.

Lemma 2.3.2 ([35]). Let P be a pattern and T be a text with |T | ≤ 2|P |. The starting

positions of occurrences of P in T form an arithmetic progression with difference per(P ).

Runs. A run is a periodic fragment R = S[a . . b] which can be extended neither

to the left nor to the right without increasing its period p = per(R), i.e. S[a − 1] 6=
S[a+ p− 1] and S[b− p+ 1] 6= S[b+ 1], provided that the respective positions exist. The

exponent exp(R) of a run R with period p is |R|/p. A string of length n has at most n

runs [26] and they can be computed in O(n) time [119].
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The Lyndon root of a periodic string S is the lexicographically smallest rotation of

its per(S)-length prefix. If L is the Lyndon root of a periodic string S, then S may be

represented as (L, r, a, b); here S = L[|L| − a+ 1 . . |L|]LrL[1 . . b], and r is called the rank

of U . For a periodic fragment U , we write run(U) for the unique run with period per(U)

that contains U [26, 59]. We say that run(U) extends U .

2.4 Tries and Trees

We define the trie of a collection of strings X = {S1, S2, . . . , Sk} as follows. It is a rooted

tree with edges labeled by single letters. Every string S that is a prefix of some string in

X is represented by exactly one path from the root to some node u of the tree, such that

the concatenation of the labels of the edges of the path, the path-label of u, is equal to

S. The nodes with path-label equal to some Si ∈ X are called terminal. Moreover, the

path-label of each node of the trie is equal to a prefix of some Si ∈ X .

The compact trie of X is obtained by making all non-terminal nodes of the trie of

X that have exactly one child implicit. For a node u in a (compact) trie, we define its

depth as the number of edges on the path from the root to u. Analogously, we define

the string-depth of u as the total length of the labels along the path from the root to u.

We denote by L(u) the path-label of a node u, i.e. the path-ordered concatenation of the

edge labels along the path from the root to u. The label of each edge is stored in O(1)

space as a fragment of some Si. In order to access the child of an explicit node by the

first letter of its edge label in O(1) time, perfect hashing [73] can be used.

The suffix tree T (S) of a non-empty string S of length n is the compact trie of all

suffixes of S$, where $ 6∈ Σ is a sentinel letter smaller than all letters of the alphabet Σ.

This sentinel letter ensures that all terminal nodes are leaves. T (S) can be constructed

in O(n) time for polynomially bounded integer alphabets [67]. Each fragment of S is

uniquely represented by either an explicit or an implicit (along an edge) node of T (S),

called its locus.

We say that a rooted tree is weighted if there is an integer weight w(v) associated with
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each node v of the tree, such that the weight of the root is zero, and weights along each

root-to-leaf path are increasing, that is, for any node u with parent v, w(u) > w(v). We

say that a node v is a weighted ancestor at depth ` of a node u if v is the lowest ancestor

of u with weight at least `. This problem was introduced in [66] by Farach-Colton and

Muthukrishnan. Their data structure was derandomised by Amir et al. in [14].

Theorem 2.4.1 ([14]). Weighted ancestor queries for nodes of a weighted tree T of size

n, with weights of size nO(1), can be answered in O(log log n) time after an O(n)-time

preprocessing.

A suffix tree T (S) is a weighted tree with w(v) equal to the string-depth of v (which is

O(n)), for every node v. Hence, the locus of a fragment S[i . . j] in T (S) can be computed

via computing the weighted ancestor of the terminal node with path-label S[i . . n]$ at

string-depth j − i+ 1.

If the weight-function w has the property that the difference of the weights of a child

and its parent is always equal to 1, then the value w(v) is called the level of v, and the

respective queries are called level ancestor queries.

Theorem 2.4.2 ([29, 31]). Level ancestor queries for nodes of a tree T of size n can be

answered in O(1) time after an O(n)-time preprocessing.

Note that given a node v in the suffix tree of a string S, we can compute v’s child

that is on the path to a given leaf-descendant u of v using a single level ancestor query

in O(1) time after an O(|S|)-time preprocessing.

2.5 Data Structures for Range Queries

In the Range Minimum Query (RMQ) problem, we are given an array A of n numbers and

we are asked to answer queries of the following type: for indices i and j, return the index

of a minimum element in the subarray A[i . . j]. We denote such a query by RMQ(i, j).

The RMQ problem and the linearly equivalent lowest common ancestor (LCA) problem

on trees are very well-studied and several optimal solutions exist [94, 28, 71].
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Theorem 2.5.1 ([94, 28]). An array of size n can be preprocessed in O(n) time, so that

RMQ queries can then be answered in O(1) time.

The range maximum queries problem admits the same solution.

The predecessor problem, consists in maintaining a set Y of integers, over an ordered

universe U , so that, for any queried integer x ∈ U one can efficiently return the predecessor

max{y ∈ Y : y ≤ x} of x in Y . The successor problem is defined analogously: upon a

queried integer x ∈ U , the successor min{y ∈ Y : y ≥ x} of x in Y is to be returned. The

following theorem encapsulates the van Emde Boas tree data structure [167].

Theorem 2.5.2 ([167]). We can maintain a subset Y of [1, U ], supporting insertions

and deletions to Y , as well as predecessor and successor queries in O(log log |U |) time,

using O(|U |) space.

For a static set Y , by combining y-fast tries [171] and deterministic dictionaries [147]

using a two-level approach, we can get a deterministic O(|Y |)-space data structure with

the same query time complexity; see [159].

Orthogonal range searching. Let P be a collection of n points in 2D (rank space)

with integer weights. Throughout the thesis, we will ensure that the cost of mapping

the points to rank space (i.e. maintaining them sorted in both dimensions) is always

accounted for. Let the universe be [1,m]× [1,m], for m polynomially bounded in 2w. It

suffices to use a (deterministic) predecessor structure, with O(log logm) query time in

the static case and O(logm) time per update in the dynamic case; these complexities are

dominated by the ones of the data structures that we employ.

We consider the following queries for an axes-parallel rectangle R = [a, b]× [c, d].

� Orthogonal range maximum: report the maximum weight of a point from P in R.

� Orthogonal range reporting: report all points from P in R.

� Orthogonal range counting: count all points from P in R.
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The following statement formalises the 2D range tree data structure that was devised

by Bentley [30]. (For each of the problems encapsulated in the following theorem there

are several tradeoffs, but we choose to mostly use the standard 2D range trees in favour

of uniformity.)

Theorem 2.5.3 ([30]). An O(n log n)-size data structure over a collection at most n

integer points with integer weights in 2D (rank space) that answers orthogonal range

maximum/reporting/counting queries in time O(log2 n+ |output|) can be constructed in

time O(n log n) and maintained in time O(log2 n) upon each insertion/deletion of a point

to/from the collection.

In particular, for the range counting problem, which we will encounter several times,

we also use the following result by Chan and Pătraşcu [39].

Theorem 2.5.4 ([39]). Orthogonal range counting queries for n integer points in 2D

(rank space) can be answered in time O(log n/ log log n) with a data structure of size O(n)

that can be constructed in time O(n
√

log n).

2.6 Internal Queries in Strings

We write LCP(S, T ) to denote the length of the longest common prefix of two strings S

and T . When some reference string S of length n is clear from the context, we might

write LCP(i, j) instead of LCP(S[i . . n], S[j . . n]). The following result can be obtained

by constructing a lowest common ancestor data structure over the suffix tree of string S.

Theorem 2.6.1 ([67]). A string S of length n can be preprocessed in O(n) time, so that

LCP queries concerning the suffixes of S can be then answered in O(1) time.

A symmetric construction on SR (the reverse of S) can answer so-called longest common

suffix queries (denoted by LCPR) for prefixes of S in the same complexity. The LCP and

LCPR queries are also collectively known as longest common extension (LCE) queries.

In an internal pattern matching query for a string S, we are given two fragments P

and T of S, and are asked to return the occurrences of P in T . We denote such a query
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by IPM(P, T ). The decision (deciding whether P occurs in T ) and counting (counting the

occurrences of P in T ) versions of internal pattern matching queries are also of interest.

One can construct a data structure answering any of these three variants of internal

pattern matching using the following relation to orthogonal range queries, which (to the

best of our knowledge) first appeared in the conference version of [127]. Let us construct

the suffix tree T (S) and preprocess it so that each node stores the lexicographic range

of suffixes of which its path-label is a prefix. We also construct a 2D orthogonal range

counting data structure over an n × n grid G, in which, for each S[a . . n], we insert a

point (a, b), where b is the lexicographic rank of this suffix among all suffixes. We then

answer a query for P and T = S[i . . j] as follows. We first locate the locus of P in T (S)

using a weighted ancestor query in O(log logn) time using Theorem 2.4.1, and retrieve

the associated lexicographic range [l, r]. Next, we perform a range counting or reporting

query (Theorem 2.5.3) for the range [i, j − |P |+ 1]× [l, r] of G, depending on the variant

we are considering. This yields the following result. (See [127, 106] for more efficient

solutions for variants of the IPM problem.)

Proposition 2.6.2 (Based on [127]). Given a string of length n, we can construct in

O(n log n) time an O(n log n)-size data structure that answers the decision, counting,

and reporting versions of internal pattern matching queries in time O(log2 n+ |output|).

Remark 2.6.3. Actually, in [127] there is an extra |P | additive factor in the query time

complexity as the authors consider patterns given explicitly; i.e. this factor corresponds

to computing the locus of the pattern in T (S) using a forward search from the root.

A 2-period query decides whether a given fragment of the string in scope is periodic

and, if so, it also returns its period.

Theorem 2.6.4 ([115, 26, 112]). Given a string of length n, we can construct in O(n)

time an O(n)-size data structure that answers 2-period queries in O(1) time.

Finally, we make use of the following internal query for computing the run extending

a given periodic fragment.
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Theorem 2.6.5 ([112]). A string of length n can be preprocessed in O(n) time, so that,

given a periodic fragment U , run(U) and its Lyndon root can be computed in O(1) time.

2.7 Straight-Line Programs and Recompression

We denote the set of non-terminals of a context-free grammar G by NG and call the

elements of SG := NG ∪ Σ symbols. A straight-line program (SLP) G is a context-free

grammar that consists of a set NG = {A1, . . . , An} of non-terminals, such that each

Ai ∈ NG is associated with a unique production rule Ai → fG(A) ∈ (Σ ∪ {Aj : j < i})∗.
Every symbol A ∈ SG generates a unique string in Σ∗, which we denote by gen(A).

The string gen(A) can be obtained from A by repeatedly replacing each non-terminal

by its production. (We also use gen(·) for sequences of symbols, to denote the concate-

nation of the strings generated by those symbols.) In addition, A is associated with its

parse tree PT(A) (also denoted by PT[gen(A)]) consisting of a root labeled with A to

which zero or more subtrees are attached:

� If A is a terminal, there are no subtrees.

� If A is a non-terminal A→ B1 · · ·Bp, then PT(Bi) are attached in increasing order

of i.

Note that if we traverse the leaves of PT(A) from left to right, spelling out the corre-

sponding non-terminals, then we obtain gen(A).

The parse tree PT of G is the parse tree of the (distinguished) starting symbol

An ∈ NG , for which gen(An) = S, where S is the unique string generated by G. We write

gen(G) := S. Consult Figure 2.1 for an example of an SLP and its parse tree.
We define the value val(v) of a node v in PT to be the fragment S[a . . b] corresponding

to the leaves S[a], . . . , S[b] in the subtree of v. Note that val(v) is an occurrence of gen(A)

in gen(G), where A is the label of v. We define a layer to be any sequence v1, v2, . . . , vr

of nodes in PT whose values are consecutive fragments of S, i.e. val(vj) = S[rj−1 + 1 . . rj ]

for some increasing sequence of ri’s. The value of a layer C is the concatenation of the

values of its elements and is denoted by val(C).
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A5 → A4A4

A4 → A1A3

A3 → A1A2

A2 → b

A1 → a

(a)

a a b a a b

A1

A1 A2

A1

A1 A2

A3 A3

A4A4

A5

(b)

Figure 2.1: (a) An SLP G generating aabaab. (b) The corresponding parse tree PT.

A run-length straight-line program (RLSLP) is a straight-line program G that contains

two kinds of non-terminals:

� Concatenations: Non-terminals with production rules of the form A → BC (for

symbols B and C).

� Powers : Non-terminals with production rules of the form A→ Bp (for a symbol B

and an integer p ≥ 2).

The key idea of the recompression technique by Jeż [102, 103] is the construction of a

particular RLSLP H that generates the input string S. Let n be the length of S. Then,

the underlying parse tree PT is of depth O(log n) and it can be constructed in O(n)

time. In particular, the name of the technique stems from the fact that an SLP G can be

efficiently recompressed to the RLSLP in-place, that is, without first uncompressing G.

The run-length encoding (RLE) representation of a string V is a sequence V1, . . . , Vk of

substrings, such that V = V1 · · ·Vk, and, for all i: Vi = apii for some ai ∈ Σ, and ai 6= ai+1.

We call each fragment of S that corresponds to a block in the RLE representation of S

an RLE run. (This definition naturally extends to sequences.)

As observed by I [98], the parse tree PT of H is locally consistent in a certain

sense. To formalise this property, he introduced the popped sequence of every fragment

37



S[a . . b], which is a sequence of symbols labeling a certain layer of nodes whose values

constitute S[a . . b].

Theorem 2.7.1 ([98]). If two fragments of a string of length n are equal, then their

popped sequences are equal as well. Moreover, each popped sequence consists of O(log n)

RLE runs (maximal powers of a single symbol) and can be constructed in O(log n) time.

The nodes corresponding to symbols in a run share a single parent. Furthermore, the

popped sequence consists of a single symbol only for fragments of length 1.

Let F p11 · · ·F ptt be the run-length encoding of the popped sequence of a substring U

of S. We define

L(U) = {|gen(F1)|, |gen(F p11 · · ·F
pt−1

t−1 F
pt−1
t )|}

⋃
{|gen(F p11 · · ·F pii )| : i ∈ [1, t− 1]}.

By Theorem 2.7.1, the set L(U) can be constructed in O(log n) time given an occurrence

S[a . . b] = U .

Lemma 2.7.2. Let v denote a non-leaf node of a parse tree PT[S] stemming from

recompression and let S[a . . b] denote an occurrence of a string U contained in val(v),

but not contained in val(u) for any child u of v. If S[a . . c] is the longest prefix of

S[a . . b] contained in val(u) for a child u of v, then |S[a . . c]| ∈ L(U). Symmetrically, if

S[c′ + 1 . . b] is the longest suffix of S[a . . b] contained in val(u) for a child u of v, then

|S[a . . c′]| ∈ L(U).

Proof. Consider the popped sequence v1, . . . , vp of S[a . . b]. Each of these nodes is a

descendant of a child of v. Note that S[a . . c] = val(v1) · · · val(vq), where v1, . . . , vq is the

longest prefix of v1, . . . , vp consisting of descendants of the same child of v.

If the labels of vq and vq+1 are distinct, then they belong to distinct runs of symbols

and |S[a . . c]| ∈ L(U). (See Figure 2.2 for an illustration of this case.)

Otherwise, vq and vq+1 share the same parent. As they are descendants of different

children of v, their parent must be v. Due to this, and the fact that val(vq) is a prefix of

S[a . . b], we have q = 1. Hence, |S[a . . c]| = |val(v1)| ∈ L(U).

The proof of the second claim is symmetric.
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v

u z

v1 v2

v3

v4

v5

v6

a bc
S · · · · · ·

Figure 2.2: Node v has two children, u and z. We denote val(u) by a grey rectangle, and

val(z) by a green rectangle. S[a . . c] is the longest prefix of S[a . . b] that is contained in

val(u). We have q = 3. Note that the labels of v3 and v4 must be distinct as they do not

share a single parent. Hence, |S[a . . c]| ∈ L(U).

2.8 Dynamic Strings

Lastly, we consider the dynamic setting. In particular, we consider the dynamic main-

tenance of a collection of non-empty persistent strings X that is initially empty and

undergoes updates specified by the following operations:

� makestring(U): Insert a non-empty string U to X .

� concat(U, V ): Insert UV to X , for U, V ∈ X .

� split(U, i): Insert U [1 . . i− 1] and U [i . . |U |] in X , for U ∈ X and i ∈ [2, |U |].

The collection is persistent, in the sense that concat and split do not destroy their

arguments. Gawrychowski et al. [82] presented a data structure that efficiently maintains

such a collection and allows for efficiently answering longest common prefix queries.

Theorem 1.3.1 ([82]). A collection X of non-empty strings of total length at most N can

be dynamically maintained with update operations makestring(U), concat(U, V ), split(U, i)

requiring time O(logN + |U |), O(logN), and O(logN), respectively, all w.h.p, so that

LCP(U, V ) queries for U, V ∈ X can be answered in time O(1).
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LCPR queries can also be answered in the same time as LCP queries. LCE queries

for arbitrary fragments of elements of X can be answered in O(logN) time by first

performing a constant number of split operations to add the corresponding fragments to

the collection and then asking a query for them.

For each string of the collection X , the data structure of [82] implicitly maintains an

RLSLP stemming from recompression that is of depth O(logN) with high probability.

Further, although the parse trees are not maintained explicitly, we have access to the

following pointers. First of all, a pointer to the parse tree of each S ∈ X . Then, given a

pointer to some node v in the parse tree of some S ∈ X , we can retrieve in O(1) time the

endpoints a, b of the fragment val(v) = S[a . . b], the degree of v, a pointer to the parent

of v, and a pointer to the j-th child of v, provided that such a child exists.

Crucially, the RLSLPs of all S ∈ X maintained by the data structure underlying The-

orem 1.3.1 are locally consistent with each other, that is, Theorem 2.7.1 and Lemma 2.7.2

are also true for fragments of different strings S1, S2 ∈ X , with each log n factor in Theo-

rem 2.7.1 replaced by a logN factor (with high probability)—these factors stem from

the depth of the underlying parse trees.

We next discuss how to maintain a dynamic data structure answering LCE and IPM

queries for a single dynamic string S of length at most n that undergoes edit operations

(i.e. insertions, deletions, and substitutions of letters), employing Theorems 1.3.1 and 1.3.2.

First, note that each edit operation can be simulated with a constant number of concat,

split, and makestring(a) operations, for a ∈ Σ.

Let us now prove a general lemma, which we will use in order to keep the space

occupied by our data structure low.

Lemma 2.8.1. Suppose that we have a dynamic data structure A for a problem of size

(at all times) at most n, that can be built in p(n) time, can process each update, specified

in O(1) time, in u(n) time, and can answer each query in q(n) time (possibly with the

restriction that no more than r updates have been performed since the initialisation of

the data structure).

Then, for any m ≤ min{r, n}, we can design a dynamic data structure B for the same
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problem that can be built in p(n) time, occupies space O(p(n) +m · u(n)), can process

each update in O(u(n) + p(n)/m) time, and can answer each query in O(q(n)) time.

If either of p(n) or u(n) holds w.h.p., then the update time of B holds with probability

1−n−Ω(1). If q(n) holds w.h.p., then the query time of B holds with probability 1−n−Ω(1).

Proof. We rebuild A after every m updates. The space occupied by it is upper bounded

by the sum of the preprocessing time and the total time to process updates. (We can

revert any changes made to the data structure by a query just after answering the query

within O(q(n)) time.) Each query clearly then requires time q(n). Each update requires

u(n) time, and also gets charged O(p(n)/m) amortised time for the rebuilding of the

data structure. Let us now show how to deamortise the time required for reinitialising A
using the so-called time-slicing technique.

We keep two copies of A, switching their roles after (roughly) every m/2 updates.

One copy is for handling at most m/2 updates and answering queries, while the other one

is reinitialised in chunks (of either initialisation or updates replayed) in the background.

As for the last statement, it follows from the fact that we reinitialise A after every

m ≤ n updates and hence, the total size of the input and updates for any instance of A
is always O(n). The space is deterministic, as we can allow our data structure to fail if

the preprocessing or an update takes too long, and rebuild it from scratch.

Let us return to our problem. The initialisation of the data structure can be done

with a single makestring(S) operation in an empty collection in p(n) = O(n) time. We

will set m = n/ log n. Note that each update increases the total length of the strings in

the collection by an O(n) additive factor, and hence their total length will be polynomial

in n at any given point; hence, N = nO(1). We thus obtain the following statement.

Corollary 2.8.2. A dynamic string S of length at most n can be maintained in O(log n)

time per edit operation so that LCE queries concerning substrings of S can be answered in

time O(log n) and IPM(P, T ) queries can be answered in time O(|T |/|P | · log2 n), after

an O(n)-time preprocessing and using O(n) space. All running times hold w.h.p.
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Chapter 3

Internal Dictionary Matching

In this chapter we consider the Internal Dictionary Matching problem, in which we are

given a text T and an internal dictionary D and are to preprocess them in order to be

able to efficiently answer queries concerning occurrences of the elements of D in queried

substrings of T . The elements of the dictionary D are called patterns. Henceforth, we

assume that ε 6∈ D, i.e. that the length of each P ∈ D is at least 1. We also assume that

each pattern of D is given by the starting and ending positions of an occurrence of it in

T . Thus, the size of the dictionary d = |D| refers to the number of patterns in D and not

their total length.

First, in Section 3.1, we present straightforward solutions for queries Exists(i, j) and

Report(i, j). In Section 3.2, we describe an involved solution for ReportDistinct(i, j)

queries, that heavily relies on the periodic structure of the input text and on coloured

range reporting. In Section 3.3, we rely on locally consistent parsing and orthogonal range

queries to obtain an efficient solution for Count(i, j) queries. In Section 3.4 we present

solutions for answering CountDistinct(i, j) queries. These solutions exploit string

periodicity (captured by runs), and use data structures for variants of the (coloured)

orthogonal range counting problem, and for some auxiliary internal queries on strings.

Finally, in Section 3.5 we extend our solutions for the case of a dynamic dictionary and

provide a lower bound conditional on the OMv conjecture.
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3.1 Exists(i, j) and Report(i, j) Queries

We first present a convenient modification to the suffix tree with respect to a dictionary

D; see Figure 3.1.

Definition 3.1.1. A D-modified suffix tree of a string T is a compact trie with the

path-labels of the terminal nodes being in one-to-one correspondence with the non-empty

suffixes of T$, and the path-labels of the internal nodes being in one-to-one correspondence

with the elements of {ε} ∪ D. Each node v stores its depth and its string-depth w(v).
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Figure 3.1: Example of a D-modified suffix tree for dictionary D = {aa, aaaa, abba, c}
and text T = adaaaabaabbaac from Example 1.2.1. Top: The suffix tree T (T ) with the

nodes corresponding to elements of D annotated in red. Bottom: The D-modified suffix

tree of T .

Lemma 3.1.2. A D-modified suffix tree of T has size O(n+ d) and can be constructed

in O(n+ d) time.

Proof. The D-modified suffix tree is obtained from the suffix tree T (T ) in two steps.

In the first step, we mark all nodes of T (T ) with path-label equal to a pattern

P ∈ D: if any of them are implicit, we first make them explicit; see the annotated nodes
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in Figure 3.1 (top). We can find the loci of the patterns in T (T ) in O(n+ d) time by

answering the weighted ancestor queries as a batch [113], employing a data structure for

a special case of Union-Find [75]. (If many implicit nodes along an edge are to become

explicit, we can avoid the local sorting based on string-depth if we sort globally in time

O(n+ d) using bucket sort and then add the new explicit nodes in decreasing order with

respect to string-depth.)

In the second step, we recursively contract any edge (u, v), with u being the parent

of v if:

� both u and v are unmarked, or

� u is marked and v is an unmarked internal node.

The resulting tree is the D-modified suffix tree and has O(n) terminal nodes and

O(d) internal nodes; see Figure 3.1 (bottom).

We state the following simple lemma.

Lemma 3.1.3. With the D-modified suffix tree of T at hand, given positions a, j in T

with a ≤ j, we can compute all P ∈ D that occur at position a and are of length at most

j − a+ 1 in time O(1 + |output|).

Proof. We start from the root of the D-modified suffix tree and go down towards the

terminal node with path-label T [a . . n]. We report the path-labels of all encountered

nodes v as long as w(v) ≤ j − a + 1 is satisfied. We stop when this inequality is not

satisfied.

The D-modified suffix tree enables us to answer Exists(i, j) and Report(i, j) queries.

Theorem 3.1.4.

(a) Exists(i, j) queries can be answered in O(1) time with a data structure of size

O(n) that can be constructed in O(n+ d) time.

(b) Report(i, j) queries can be answered in O(1 + |output|) time with a data structure

of size O(n+ d) that can be constructed in O(n+ d) time.
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Proof. (a) Let us define an array B[a] = min{b : T [a . . b] ∈ D}. If there is no pattern

from D starting in T at position a, then B[a] =∞. It can be readily verified that the

answer to query Exists(i, j) is true if and only if the minimum element in the subarray

B[i . . j] is at most j. Thus, in order to answer Exists(i, j) queries, it suffices to construct

the array B and a data structure that answers range minimum queries (RMQ) on B.

Using the D-modified suffix tree of T , whose construction time is the bottleneck, array

B can be populated in O(n) time as follows. For each a ∈ [1, n], we first retrieve the

terminal node v with path-label T [a . . n]$. If v is at depth greater than 1, we set B[a] to

the string-depth of v’s ancestor at depth 1, which can be computed using a level ancestor

query in O(1) time. Else, we set B[a] = ∞. We then build the RMQ data structure

of Theorem 2.5.1 for B.

(b) We first identify all positions a ∈ [i, j] that are starting positions of occurrences

of some pattern P ∈ D in T [i . . j] using RMQs over array B, which has been defined in

the proof of part (a), as follows. The first RMQ, is over the range [i, j] and identifies a

position a (if any such position exists). The range is then split into two parts, namely

[i, a− 1] and [a+ 1, j]. We recursively use RMQs to identify the remaining positions in

each part. Once we have found all the positions where at least one pattern from D occurs,

we report all the patterns occurring at each of these positions and being contained in

T [i . . j]. The complexities follow from Lemmas 3.1.2 and 3.1.3.

3.2 ReportDistinct(i, j) Queries

Below, we present an algorithm that reports patterns from D occurring in T [i . . j],

allowing for O(1) copies of each pattern on the output. We can then sort these patterns,

remove duplicates, and report distinct ones using an additional global array of counters,

one for each pattern.

Let us first partition D into D0, . . . ,Dblognc such that Dk = {P ∈ D : blog |P |c = k}.
We call Dk a k-dictionary. We now show how to process a single k-dictionary Dk; the

query procedure may clearly assume k ≤ log |T [i . . j]|.
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We first build the Dk-modified suffix tree of T . Then, we compute an array Lk[1 . . n]

such that T [a . . Lk[a]] is the longest pattern in Dk that is a prefix of T [a . . n]. We can do

this in O(n) time by inspecting the terminal nodes in the Dk-modified suffix tree. Next,

we assign to all the patterns of Dk equal to some T [a . . Lk[a]] integer identifiers id (or

colours) in [1 . . n], and construct an array Ik[a] = id(P ), where P = T [a . . Lk[a]]. We then

construct the data structure specified in the following theorem for Ik; this data structure

allows for efficient coloured range reporting queries, and is due to Muthukrishnan [136].

Theorem 3.2.1 ([136]). Given an array A[1 . . N ] of elements from [1, U ], we can

construct a data structure of size O(N) in O(N + U) time, so that upon query [i, j] all

distinct elements in A[i . . j] can be reported in O(1 + |output|) time.

We now describe the query algorithm.

Let t = max{i, j−2k+1+1}. First, we perform a coloured range reporting query on the

range [i, t] of array Ik and obtain a set Ck of distinct patterns, employing Theorem 3.2.1.

(An illustration is provided in Figure 3.2.) We observe the following.

T

Ik g b . . . . . . . . r . . b . . . . r . . b . . . . . .

Coloured Range Reporting

i jt

2k+1

Figure 3.2: An illustration of array Ik and the coloured range reporting query that

we perform. The k-dictionary consists of the blue, green and red patterns, whereas Ck
consists of the blue and red patterns. Note that patterns that start in [i, t] cannot end in

a position to the right of j.

Observation 3.2.2. Any pattern of a k-dictionary Dk occurring in T at position p ∈ [i, t]

is a prefix of a pattern P ∈ Ck.

Based on this observation, we will report the remaining patterns that start in [i, t]
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using the Dk-modified suffix tree, in O(1 + |output|) time, following parent pointers and

temporarily marking the loci of reported patterns to avoid double-reporting. We thus

now only have to report the patterns from Dk that occur in T [t . . j].

We further partition Dk to a periodic k-dictionary and an aperiodic k-dictionary :

Dpk = {P ∈ Dk : per(P ) ≤ 2k/3} and Dak = {P ∈ Dk : per(P ) > 2k/3}.

Note that we can partition Dk in O(|Dk|) time using 2-period queries (cf. Theorem 2.6.4).

3.2.1 Processing an Aperiodic k-Dictionary

We make use of the following sparsity property, which is analogous to Lemma 2.3.2.

Fact 3.2.3 (Sparsity of occurrences). Two occurrences of a pattern P of an aperiodic

k-dictionary Dak in T start at least 1
6 |P | positions apart.

Proof. If two occurrences of P started d ≤ 2k

3 positions apart, then d would be a period

of P , contradicting P ∈ Dak. Then, since 2k ≤ |P | < 2k+1, we have that 2k/3 ≥ 1
6 |P |.

Lemma 3.2.4. ReportDistinct(t, j) queries for the aperiodic k-dictionary Dak and

j − t ≤ 2k+1 can be answered in O(1 + |output|) time with a data structure of size

O(n+ |Dak|), that can be constructed in O(n+ |Dak|) time.

Proof. Since the fragment T [t . . j] is of length at most 2k+1, it may only contain a

constant number of occurrences of each pattern in Dak by Fact 3.2.3. We can thus simply

use a Report(t, j) query for dictionary Dak and then remove duplicates. The complexities

follow from Theorem 3.1.4(b).

3.2.2 Processing a Periodic k-Dictionary

Our solution for periodic patterns relies on the well-studied theory of runs in strings.

Let R be the set of all runs in T . Following [112], we construct for all k ∈ [0, blog nc] the

sets of runs Rk = {R ∈ R : per(R) ≤ 2k

3 , |R| ≥ 2k} in O(n) time overall. Note that these

sets are not disjoint; however, |Rk| = O( n
2k

) (cf. Lemma 3.2.5 below) and thus their total
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size is O(n). We denote the overlap T [max{i1, i2} . .min{j1, j2}] of U and V by U ∩ V .

If U is a fragment of T , by Rk(U) ⊆ Rk we denote the set of all runs R ∈ Rk such that

|R ∩ U | ≥ 2k.

Lemma 3.2.5 ([112, Lemma 4.4.7]). |Rk(U)| = O
(

1
2k
|U |
)
.

Strategy. Given a fragment U = T [t . . j], we will first identify all runs Rk(U) of Rk
that have a sufficient overlap with U . There is a constant number of them by Lemma 3.2.5.

For an occurrence of a pattern P ∈ Dpk in U , the unique run R extending this occurrence

of P must be in Rk(U). We say that such an occurrence of P is induced by run R. We

will preprocess the runs in order to be able to compute a unique (the leftmost) occurrence

induced by run R for each such pattern P .

Lemma 3.2.6. Let U be a fragment of T of length at most 2k+1. Then Rk(U) can be

retrieved in O(1) time after an O(n)-time preprocessing.

Proof. Recall that, given a periodic fragment V of the text T , we can compute the run

extending V in O(1) time after O(n)-time preprocessing (cf. Theorem 2.6.5).

Let us cover all positions of U using O( 1
2k
|U |) fragments of length 2k+1

3 with overlaps of

at least 2k

3 . For each fragment in the cover, we first check if it is periodic using a 2-period

query (cf. Theorem 2.6.4), and, if so, compute the run extending it using Theorem 2.6.5.

For each run R ∈ Rk(U) with sufficient overlap, R ∩ U must contain a fragment V in

the cover and its periodic extension must be R since |V | ≥ 2 · per(R).

Preprocessing. We first build the Dkp -modified suffix tree of T in O(n+ |Dkp |) time.

Then, we construct an array `k[1 . . n] such that T [i . . `k[i]] is the shortest pattern P ∈ Dpk
that occurs at position i. Note that `k[i] can be retrieved in O(1) time using a level

ancestor query in the Dkp -modified suffix tree, as in the proof of Theorem 3.1.4(a). We

then preprocess the array `k for RMQ queries.

Processing a run at query. Let us begin with a consequence of the fact that any

|per(U)|-length fragment of a periodic string U is primitive, and the primitivity lemma,
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which states that a non-empty string V is primitive if and only if it occurs only twice in

V V : as a prefix and as a suffix [55].

Lemma 3.2.7. If a pattern P occurs in a text Q and satisfies |P | ≥ per(Q), then P has

exactly one occurrence starting within the first per(Q) positions of Q.

Proof. First, let us prove that P has at least one occurrence in the first q := per(Q)

positions of Q. Suppose, for the sake of contradiction, that the leftmost occurrence of P

in Q is at some position j > q. Then, by periodicity, we have that Q[j . . j + |P | − 1] =

Q[j − q . . j + |P | − 1− q] = P , a contradiction.

We now proceed to showing that P has exactly one occurrence in the first q positions of

Q. Let us assume, towards a contradiction, that this is not the case and that P occurs at

positions i, j ∈ [1, q], with i < j. Now, let us consider V := Q[i . . i+q−1] = Q[j . . j+q−1].

V = Q[j . . j + q − 1] occurs in V V = Q[i . . i + 2q − 1]. Hence, V is not primitive, a

contradiction.

We use RMQs repeatedly, as in the proof of Theorem 3.1.4(b), for the subarray of

`k corresponding to the first per(R) positions of R ∩ U . This way, due to Lemma 3.2.7,

we compute precisely the positions where a pattern P ∈ Dpk has its leftmost occurrence

in R ∩ U . The number of positions identified for a single run R ∈ Rk(U) is therefore

upper bounded by the number of distinct patterns occurring within R ∩ U . We then

report all distinct patterns occurring within R ∩ U by processing each such starting

position using Lemma 3.1.3. There is no double-reporting while processing a single run,

by Lemma 3.2.7 and hence the time required to process each run is O(1 + |output|)—
|output| here refers to the number of distinct patterns from Dpk occurring within U . Since

|Rk(U)| = O(1), we report each pattern a constant number of times and the overall time

required is O(1 + |output|).
We have thus proved the following lemma.

Lemma 3.2.8. ReportDistinct(t, j) queries for the periodic k-dictionary Dpk and

j − t ≤ 2k+1 can be answered in O(1 + |output|) time with a data structure of size

O(n+ |Dpk|), that can be constructed in O(n+ |Dpk|) time.
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Overall, by summing over all k ∈ [0, blog nc], we obtain a data structure of size

O(n log n+d), that can be built in timeO(n log n+d), and answersReportDistinct(i, j)

queries in O(log n+ |output|) time. In the next subsection, we reduce the space occupied

by our data structure.

3.2.3 Reducing the Space

The space occupied by our data structure can be reduced to O(n + d). We store the

D-modified suffix tree and mark all nodes from each Dik, for k ∈ [0, blog nc] and i ∈ {a, p},
with a different colour. For each dictionary D′ = Dik, we further store, using O(|D′|)
space, the D′-modified suffix tree without its leaves.

We will show below that the only additional operation we now need to support is

determining the parent of a given leaf in the original D′-modified suffix tree (before the

leaves were chopped). This can be done using the nearest coloured ancestor data structure

of [79] over the D-modified suffix tree. For a tree of size N , it achieves O(log logN) time

per query after O(N)-time preprocessing. We can, however, exploit the fact that we

only have palette = O(log n) colours to obtain constant-time queries within the same

construction time.

It is shown in [79] that, in order to answer nearest coloured ancestor queries in a

tree with N nodes, it is enough to store some arrays of total size O(N) and predecessor

data structures for O(palette) subsets of [1, 2N ] whose total size is O(N). The time

needed to compute the sets for the predecessor data structures and the arrays is O(N).

The time complexity of the query is proportional to the time required for answering a

constant number of predecessor queries over the aforementioned sets. We implement

a predecessor data structure for a set S ⊆ [1, 2N ] using O(N) bits of space as follows.

We store a bitmap that has the i-th bit set if and only if i ∈ S and augment it with

a data structure that answers rank and select queries in O(1) time and requires o(N)

additional bits of space [101, 49]. Such a component can be constructed in O(N/ logN)

time [22, 134]. Note that predS(i) = select(rank(i)). We thus use O((n+ d) log n) bits,

i.e. O(n+ d) machine words in total for the part of the data structure responsible for
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reporting occurrences starting at given positions.

For coloured range reporting, the main component of the data structure underly-

ing Theorem 3.2.1 from [136] is an RMQ data structure over array J [i] = max{j : j <

i, A[i] = A[j]}. It was shown in [71] that we can implement an O(1)-query-time RMQ

data structure for an array of size N using O(N) bits. This data structure only returns

the index of the minimum value in the given range. We build an O(|J |)-bits RMQ data

structure over J . The query procedure however, needs access to A, i.e. the colours. We

can retrieve the value of the i-th element in our array of colours using our representation of

the D′-modified suffix tree, since the its colour corresponds to the parent of the respective

leaf in the D′-modified suffix tree.

Then, filtering O(|output|) starting positions in the periodic case, is based on RMQ

queries over multiple arrays of total length O(n log n). To construct them, we build the

D′-modified suffix trees one by one and build the relevant RMQ data structures that

require O(n log n) bits in total before chopping the leaves. The actual value at the indices

returned by RMQ queries can, as above, be determined using our representation of the

D′-modified suffix tree.

We arrive at the main result of this section.

Theorem 3.2.9. Given a text T of length n and an internal dictionary D of size d, we

can construct, in O(n log n + d) time, a data structure of size O(n + d) that answers

ReportDistinct(i, j) queries in O(log n+ |output|) time.

3.3 Count(i, j) Queries

We first solve an auxiliary problem and show how it can be employed to give an unsatis-

factory solution for Count(i, j). We then refine our approach using recompression and

obtain the following result.

Theorem 3.3.1. Given a text T of length n and an internal dictionary D of size d, we can

construct, in O(n log n/ log log n+ d log3/2 n) time, a data structure of size O(n+ d log n)

that answers Count(i, j) queries in O(log2 n/ log logn) time.
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3.3.1 An Auxiliary Problem

By inter-position i+ 1/2 we refer to a location between positions i and i+ 1 in T . We

also refer to inter-positions 1/2 and n+ 1/2. We consider the following auxiliary problem,

in which we are given a set of inter-positions (breakpoints) B of P and upon query we

are to compute all fragments of T [i . . j] that match P and align a specific inter-position

(anchor) β of the text with some inter-position in B.

Breakpoints-Anchor IPM

Input: A text T of length n, a substring P of T of length m, and a set B of

inter-positions (breakpoints) of P .

Query: BA-Count(β, i, j): the number of fragments T [r . . r +m− 1] of T [i . . j]

that match P such that β − r + 1 ∈ B (β is an anchor).

Recall that in the 2D orthogonal range counting problem, one is to preprocess an

n× n grid with O(n) marked points so that upon query [x1, y1]× [x2, y2], the number

of points in this rectangle can be computed efficiently. In the (dual) 2D range stabbing

counting problem, one is to preprocess the grid with O(n) rectangles so that upon query

(x, y) the number of (stabbed) rectangles that contain (x, y) can be retrieved efficiently.

The counting version of range stabbing queries in 2D reduces to two-sided range counting

queries in 2D as follows (cf. [143]). For each rectangle [x1, y1]× [x2, y2] in grid G, we add

points (x1, y1) and (x2 + 1, y2 + 1) with weight 1 and points (x1, y2 + 1) and (x2, y1 + 1)

with weight −1 in a grid G′. Then the number of rectangles stabbed by point (a, b)

in G is equal to the sum of weights of points in the quarterplane (−∞, a] × (−∞, b]
in G′. We will use Theorem 2.5.4 (for orthogonal range counting) in our solution for

Breakpoints-Anchor IPM.

Data structure. Let W1 = {P [dbe . .m] : b ∈ B} and consider the set W2 obtained

by adding U$ and U# for each element U of W1 to an initially empty set, where $ is

a letter smaller (resp. # is larger) than all the letters in Σ. Let W be the compact

trie for the set of strings W2. For each internal node v of W that does not have an

outgoing edge with label $, we add such a (leftmost) edge with a leaf attached to its
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endpoint. W can be constructed in O(|B|) time after an O(n)-time preprocessing of T ,

allowing for constant-time longest common prefix queries; cf. [55]. We also build the

W1-modified suffix tree of T and preprocess it for weighted ancestor queries. We keep

two-sided pointers between nodes of W and of the W1-modified suffix tree of T that have

the same path-label.

Similarly, let WR be the compact trie for set Z2 consisting of elements U$ and U#

for each U ∈ Z1 = {(P [1 . . bbc])R : b ∈ B}. We preprocess the pair (WR, Z1) analogously

to how we preprocess the pair (W,W1)—explained in the previous paragraph.

Note that each of the tries has at most k = O(|B|) leaves. Let us now consider a 2D

grid of size k × k, whose x-coordinates (resp. y-coordinates) correspond to the leaves

of W (resp. WR). For each b ∈ B we do the following. Let x1 and x2 be the leaves

with path-label P [dbe . .m]$ and P [dbe . .m]# in W , respectively. Similarly, let y1 and

y2 be the leaves with path-label (P [1 . . bbc])R$ and (P [1 . . bbc])R# in WR, respectively.

We add the rectangle Rb = [x1, y1] × [x2, y2] to the grid. An illustration is provided

in Figure 3.3. We then preprocess the grid for the counting version of 2D range stabbing

queries, employing Theorem 2.5.4.

Query. Let the longest prefix of T [dβe . . j] that is a prefix of an element of W1 be U

and its locus in W be u. This can be computed in O(log log n) time using a weighted

ancestor query in the W1-modified suffix tree of T and following the pointer to W . If u is

an explicit node, we follow the edge with label $, while if it is implicit along edge (p, q),

we follow the edge with label $ from p. In either case, we reach a leaf u′. We do the

symmetric procedure with (T [i . . bβc])R in the Z1-modified suffix tree of T and obtain a

leaf v′ in WR.

Observation 3.3.2. The number of fragments T [r . . t] = P with r, t ∈ [i . . j] and

β − r+ 1 ∈ B is equal to the number of rectangles stabbed by the point of the grid defined

by u′ and v′.

The observation holds because this point is inside rectangle Rb for b ∈ B if and only if

P [dbe . .m] is a prefix of T [dβe . . j] and P [1 . . bbc] is a suffix of T [i . . bβc]. This concludes
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Figure 3.3: Example of the construction of rectangles in the proof of Lemma 3.3.3 for

P = abaabb and breakpoints i+ 1/2 for i = 0, 1, 2, 3, 4, 5, 6. Each rectangle is annotated

with its breakpoint.

the proof of the following result.

Lemma 3.3.3. Breakpoints-Anchor IPM queries can be answered in O( logn
log logn) time

with a data structure of size O(n+|B|) that can be constructed in time O(n+|B|
√

log |B|).

Let us now define problem Breakpoints-Anchor IDM, which is a generalisation

of the Breakpoints-Anchor IPM problem.
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Breakpoints-Anchor IDM

Input: A text T of length n, a dictionary D of substrings of T , and a set BP of

inter-positions (breakpoints) for each P ∈ D.

Query: BA-Count(β, i, j): the number of fragments T [r . . r +m− 1] of T [i . . j]

that match some P ∈ D such that β − r + 1 ∈ BP (β is an anchor).

We obtain the following lemma by a straightforward generalisation of the proof

of Lemma 3.3.3: we build trie W for the union of the sets W2 defined in the above proof

for each pattern (similarly for WR), and add all rectangles to a single grid; the query

procedure is identical.

Lemma 3.3.4. Breakpoints-Anchor IDM queries can be answered in O( logn
log logn) time

with a data structure of size O(n+
∑

P∈D |BP |). The data structure can be constructed

in time O(n+
√

log n
∑

P∈D |BP |).

A warm-up solution for Count(i, j). Lemma 3.3.4 can be applied naively to answer

Count(i, j) queries as follows. Let us set BP = {p + 1/2 : p ∈ [1, |P | − 1]} for each

pattern P ∈ D and construct the data structure of Lemma 3.3.4. We build a balanced

binary tree BT on top of the text and for each node v in BT define val(v) to be the

fragment consisting of the characters corresponding to the leaves in the subtree of v.

Note that if v is a leaf, then |val(v)| = 1; otherwise, val(v) = val(u`)val(ur), where u` and

ur are the children of v. For each node v in BT, we precompute and store the count for

val(v), defined as the number of occurrences of patterns from D in val(v). If v is a leaf,

this count can be determined easily. Otherwise, each occurrence is contained in val(u`),

is contained in val(ur), or spans both val(u`) and val(ur). Hence, we sum the answers for

the children u` and ur of v and add the result of a Breakpoints-Anchor IDM query

in val(v) with the anchor between val(u`) and val(ur).

To answer a query concerning T [i . . j], we recursively count the occurrences in

the intersection of val(v) with T [i . . j], starting from the root r of BT as it satisfies

val(r) = T [1 . . n]. If the intersection is empty, the result is 0, and if val(v) is contained in

T [i . . j], we can use the precomputed count. Otherwise, we recurse on the children u`
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and ur of v and sum the resulting counts. It remains to add the number of occurrences

spanning across both val(u`) and val(ur). This value is non-zero only if T [i . . j] spans both

these fragments, and it can be determined from a Breakpoints-Anchor IDM query

in the intersection of val(v) and T [i . . j] with the anchor between val(u`) and val(ur).

The query time is O(log2 n/ log logn) since non-trivial recursive calls are made only for

nodes on the paths from the root r to the leaves representing T [i] and T [j]. Nevertheless,

the space required for this solution can be Ω(nd), which is unacceptable. Below, we refine

this technique using a locally consistent parsing; our goal is to decrease the size of each

set BP from Θ(|P |) to O(log n).

3.3.2 Using Recompression

Data Structure. First, we build an RLSLP generating T using the recompression

technique [102, 103, 98]. Let us denote the parse tree of this RLSLP by PT. We then

construct the set L(P ) of size O(log n) for each pattern P ∈ D (see Section 2.7). These

sets have the following crucial property, restated here for convenience.

Lemma 2.7.2. Let v denote a non-leaf node of a parse tree PT[S] stemming from

recompression and let S[a . . b] denote an occurrence of a string U contained in val(v),

but not contained in val(u) for any child u of v. If S[a . . c] is the longest prefix of

S[a . . b] contained in val(u) for a child u of v, then |S[a . . c]| ∈ L(U). Symmetrically, if

S[c′ + 1 . . b] is the longest suffix of S[a . . b] contained in val(u) for a child u of v, then

|S[a . . c′]| ∈ L(U).

Then, we also construct the component of Lemma 3.3.4 with BP = {i+ 1
2 : i ∈ L(P )}

for each pattern P ∈ D. Moreover, for every symbol A we store the number of occurrences

of patterns from D in gen(A). Additionally, if A → Bk is a power, we also store the

number of occurrences in gen(Bi) for i ∈ [1, k]. The space consumption is O(n+ d log n)

since |BP | = O(log n) for each P ∈ D.

Efficient preprocessing. The RLSLP and the parse tree are built in O(n) time, and

the sets BP are computed in O(d log n) time using Theorem 2.7.1. The data structure
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of Lemma 3.3.4 is then constructed in O(n+d log3/2 n) time. Next, we process the RLSLP

in a bottom-up fashion. If A is a terminal, its count is easily determined. If A→ BC is a

concatenation, we sum the counts for B and C and the number of occurrences spanning

both gen(B) and gen(C). To determine the latter value, we fix an arbitrary node v with

label A and denote its children u`, ur. By Lemma 2.7.2, any occurrence of P intersecting

both val(u`) and val(ur) has a breakpoint aligned to the inter-position between the two

fragments. Hence, the third summand is the result of a Breakpoints-Anchor IDM

query in val(v) with the anchor between val(u`) and val(ur). Finally, if A→ Bk, then to

determine the count in gen(Bi), we add the count for B, the count in gen(Bi−1), and

the number of occurrences in Bi spanning both the prefix B and the suffix Bi−1. To find

the latter value, we fix an arbitrary node v with label A, denote its children u1, . . . , uk,

and make a Breakpoints-Anchor IDM query in val(u1) · · · val(ui) with the anchor

between val(u1) and val(u2). The correctness of this step follows from Lemma 2.7.2. The

running time of the last phase is O(n log n/ log logn), so the overall construction time is

O(n log n/ log log n+ d log3/2 n).

Query. Upon a query Count(i, j), we proceed essentially as in the warm-up solution:

we recursively count the occurrences contained in the intersection of T [i . . j] with val(v)

for nodes v in PT, starting from the root of PT. If the two fragments are disjoint, the

result is 0, and if val(v) is contained in T [i . . j], it is the count precomputed for the label

of v. Otherwise, the label of v is a non-terminal. If it is a concatenation symbol, we

recurse on both children u`, ur of v and sum the obtained counts. If T [i . . j] spans both

val(u`) and val(ur), we also add the result of a Breakpoints-Anchor IDM query in

the intersection of T [i . . j] with val(v) and the anchor between val(u`) and val(ur). If the

label is a power symbol A→ Bk, we determine which of the children u1, . . . , uk of v are

spanned by T [i . . j]. We denote these children by u`, . . . , ur and recurse on u` and on

ur. If r > `, we also make a Breakpoints-Anchor IDM query in the intersection of

T [i . . j] with val(u`) · · · val(ur) and anchor between val(u`) and val(u`+1). If r > ` + 1,

we further add the precomputed value for gen(Br−`−1) to account for the occurrences
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contained in val(u`+1) · · · val(ur−1) and make a Breakpoints-Anchor IDM query in

the intersection of T [i . . j] with val(u`+1) · · · val(ur) and anchor between ur−1 and ur.

By Lemma 2.7.2, the answer is the sum of the up to five values computed. The overall

query time is O(log2 n/ log logn), since we make O(log n) non-trivial recursive calls and

each of them is processed in O(log n/ log logn) time.

3.4 CountDistinct(i, j) Queries

We first show how to apply geometric methods to a special variant of the CountDistinct

problem, where we are interested in a small subset of occurrences of each pattern.

A quarterplane is a range of the form (−∞, x1]× (−∞, x2]. By reversing coordinates

we can also consider quarterplanes with some dimensions of the form [xi,∞). Let us

state the following result on orthant colour range counting due to Kaplan et al. [105] in

the special case of two dimensions.

Theorem 3.4.1 ([105, Theorem 2.3]). Given n coloured integer points in 2D, we can

construct in O(n log n) time an O(n log n)-size data structure that, given any quarterplane

Q, counts the number of distinct colours with at least one point in Q in O(log n) time.

Let D = {P1, P2, . . . , Pd} and S be a family of sets S1, . . . , Sd such that Sk ⊆ Occ(Pk),

where Occ(Pk) is the set of positions of T where Pk occurs. Let ‖S‖ =
∑

k |Sk|. For each

pattern Pk, we call the positions in the set Sk the special positions of Pk. Counting distinct

patterns occurring at their special positions in T [i . . j] is called CountDistinctS(i, j).

Lemma 3.4.2. CountDistinctS(i, j) queries can be answered in O(log n) time with a

data structure of size O(n+ ‖S‖ log n) that can be constructed in O(n+ ‖S‖ log n) time.

Proof. We assign a different integer colour ck to every pattern Pk ∈ D. Then, for each

fragment T [a . . b] = Pk such that a ∈ Sk, we add point (a, b) with colour ck to an initially

empty 2D grid G. A CountDistinctS(i, j) query reduces to counting different colours

in the range [i,∞)× (−∞, j] of G. The complexities follow from Theorem 3.4.1.
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3.4.1 2-Approximate Counting

CountDistinct for Extended or Contracted Fragments. For two positions ` and

r, we define PrefD(`, r) as the longest prefix of T [` . . r] that matches some pattern P ∈ D;

the length of such prefix is at most r − ` + 1. Let us show how to compute the locus

of PrefD(`, r) in the D-modified suffix tree TT,D. To this end, we preprocess TT,D for

weighted ancestor queries and store at every node v of TT,D a pointer p(v) to the nearest

ancestor u (including v) of v such that L(u) ∈ D. To return PrefD(`, r), we find the locus

u of T [` . . r] in the D-modified suffix tree. We return p(u) if |L(u)| = |T [` . . r]| and p(v),

where v is the parent of u, otherwise.

Lemma 3.4.4 applies the D-modified suffix tree and the following internal queries to

the problem of maintaining the count of distinct patterns occurring in a fragment subject

to extending or shrinking the fragment.

In a bounded LCP query, one is given two fragments U and V of T and needs to

return the longest prefix of U that occurs in V ; we denote such a query by BLCP(U, V ).

Kociumaka et al. [115] presented several tradeoffs for this problem, including the following.

Theorem 3.4.3 ([115],[112, Corollary 7.3.4]). Given a text T of length n, one can

construct in O(n
√

log n) time an O(n)-size data structure that answers BLCP queries in

O(logε n) time, for any constant ε > 0.

Lemma 3.4.4. For any constant ε > 0, given CountDistinct(i, j), one can compute

CountDistinct(i± 1, j) and CountDistinct(i, j ± 1) in O(logε n) time with a data

structure of size O(n+ d) that can be constructed in O(n
√

log n+ d) time.

Proof. We only present a data structure for CountDistinct(i± 1, j) queries. Queries

CountDistinct(i, j±1) can be handled analogously by building the same data structure

for the reverses of all the strings in scope.

We show how to compute the number of patterns P ∈ D whose only occurrence in

some fragment T [` . . r] starts at position `. The computation of CountDistinct(i±1, j)

follows directly by setting j = r and ` equal to i− 1 or i.
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Data structure. We preprocess T for BLCP queries (using Theorem 3.4.3) and construct

the D-modified suffix tree of T . In addition, we preprocess this tree for weighted ancestor

queries and store at every node v of the tree the number #(v) of the ancestors u (including

v) of v such that L(u) ∈ D.

Query. We want to count patterns longer than k = |BLCP(T [` . . r], T [`+ 1 . . r])|. Let

u = PrefD(`, `+ k − 1) and v = PrefD(`, r). The desired number of patterns is equal to

#(v)−#(u). See Figure 3.4 for a visualisation.

T

` r

P0

P1

P2

P3

k

k

root

`

u = PrefD(`, `+ k − 1)

v = PrefD(`, r)

Figure 3.4: The setting in Lemma 3.4.4. Left: Text T . Right: The path from the root of

the D-modified suffix tree of T to the leaf with path-label T [` . . n]$. The nodes of the

path whose path-labels match some patterns from D are drawn in red. Here, P0 is the

longest pattern that occurs at ` and also has an occurrence in T [`+ 1 . . r]; its locus in

the tree is u = PrefD(`, `+ k − 1). The patterns that occur in T [` . . r] only at position `

are P1, P2 and P3. The locus of P3 is v = PrefD(`, r). Then, #(v)−#(u) = 5− 2 = 3.

An Auxiliary Operation. Two fragments U = T [i1 . . j1] and V = T [i2 . . j2] are called

consecutive if i2 = j1 + 1.
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3-Fragments-Counting

Input: A text T of length n and a dictionary D consisting of d patterns

Query: Given three consecutive fragments F1, F2, F3 in T such that |F1| = |F3| and

|F2| ≥ 8 · |F1|, count distinct patterns P from D that have an occurrence starting in

F1 and ending in F3 and do not occur in either F1F2 or F2F3

Let us fix |F1| = |F3| = x and |F2| = y ≥ 8x. Additionally, let us call an occurrence

of P ∈ D that starts in fragment Fa and ends in fragment Fb an (Fa, Fb)-occurrence. We

will call an (F1, F3)-occurrence an essential occurrence.

We say that a string S is highly periodic if per(S) ≤ 1
4 |S|. We first consider the case

where all patterns in D are not highly periodic.

Lemma 3.4.5. If each P ∈ D is not highly periodic, then

3-Fragments-Counting(F1, F2, F3) =

Count(F1F2F3)−Count(F1F2)−Count(F2F3) +Count(F2).

Proof. Let us start with the following claim.

Claim 3.4.6. Any P ∈ D that has an essential occurrence occurs exactly once in F1F2F3.

Proof. We have |F1F2F3| = x+ y + x = 2x+ y. String P has an essential occurrence, so

|P | ≥ y. Therefore, if there are two occurrences of P in F1F2F3, then they overlap in

2|P | − (2x+ y) ≥ 2|P | − (1
4 |P |+ |P |) = 3

4 |P |

positions. This implies that P is highly periodic, which is a contradiction.

Claim 3.4.6 shows that 3-Fragments-Counting(F1, F2, F3) is equal to the number

of essential occurrences. Let us prove that the stated formula does not count any

(Fa, Fb)-occurrences other than (F1, F3)-occurrences.

� Each (F1, F2)-occurrence is registered when we add Count(F1F2F3) and unregis-

tered when we subtract Count(F1F2). Similarly for (F2, F3)-occurrences.
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� Each (F2, F2)-occurrence is registered when we add Count(F1F2F3), Count(F2)

and unregistered when we subtract Count(F1F2), Count(F2F3).

� Each (F1, F1)-occurrence is registered when we add Count(F1F2F3) and unregis-

tered when we subtract Count(F1F2). Similarly for (F3, F3)-occurrences.

We now proceed with answering 3-Fragments-Counting queries for the dictionary

of highly periodic patterns.

Lemma 3.4.7. If F2 is aperiodic, then there are no essential occurrences of highly

periodic patterns. Otherwise, all essential occurrences of highly periodic patterns are

generated by the same run, that is, run(F2).

Proof. The first claim follows from the fact that such an occurrence of a pattern P ∈ D
has an overlap of length at least 2per(P ) with F2 and hence per(P ) ≤ 1

2 |F2| is a period

of F2.

As for the second claim, it suffices to show that, for any pattern P ∈ D that has

an essential occurrence, we have per(P ) = per(F2). The inequalities |F2| ≥ 2per(F2)

and |F2| ≥ 2per(P ) imply |F2| ≥ per(F2) + per(P ). Hence, by the periodicity lemma

(Lemma 2.3.1), q = gcd(per(P ), per(F2)) is a period of F2. As q ≤ per(F2), we conclude

that q = per(F2). Thus, per(F2) divides per(P ), and therefore per(P ) = per(F2). This

concludes the proof.

For a periodic factor U of T , let Periodic(U) denote the set of distinct patterns

from D that occur in U and have the same shortest period. Let us make the following

observation.

Observation 3.4.8. If all P ∈ D are highly periodic, F2 is periodic, and R = run(F2),

then we have

3-Fragments-Counting(F1, F2, F3) =

|Periodic(F1F2F3 ∩R)| − |Periodic(F1F2 ∩R) ∪Periodic(F2F3 ∩R)|.
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Next, we show how to efficiently evaluate the right-hand side of the formula in

the above observation, using the orthogonal range counting data structure specified

in Theorem 2.5.4.

We group all highly periodic patterns by Lyndon root and rank; for a Lyndon root L

and a rank r, we denote by DpL,r the corresponding set of patterns. Then, we build the

data structure of Theorem 2.5.4 for the set of points obtained by adding the point (a, b)

for each (L, r, a, b) ∈ DpL,r. We refer to the 2D grid underlying this data structure as GL,r.
Note that the total number of points in the data structures over all Lyndon roots and

ranks is O(d).

Each occurrence of a pattern (L, r, a, b) lies within some run in R with Lyndon root

L. Let us state a simple fact.

Fact 3.4.9. A periodic string (L, r, a, b) occurs in a periodic string (L, r′, a′, b′) if and

only if at least one of the following conditions is met:

(a) r = r′, a ≤ a′, and b ≤ b′;

(b) r = r′ − 1 and a ≤ a′;

(c) r = r′ − 1 and b ≤ b′;

(d) r ≤ r′ − 2.

Lemma 3.4.10. One can compute |Periodic(U)| for any periodic fragment U in time

O(log n/ log log n) using a data structure of size O(n+ d) that can be constructed in time

O(n+ d
√

log n).

Proof. For U = (L, r, a, b), we count points contained in at least one of the rectangles

(a) (−∞, a]× (−∞, b] in GL,r,

(b) (−∞, a]× (−∞, |L|] in GL,r−1,

(c) (−∞, |L|]× (−∞, b] in GL,r−1,
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and we add to the count the number of patterns of the form (L, r′, a, b) with r′ < r − 1.

For the latter term, it suffices to store an array XL[1 . . t] such that XL[r] =
∑r

i=1 |D
p
L,i|,

where t is the maximum rank of a pattern with Lyndon root L. The total size of these

arrays is O(n) by the linearity of the sum of exponents of runs in a string [26, 119].

Remark 3.4.11. In particular, in the proof of the above lemma, we count points that

are contained within at least one out of a constant number of rectangles. Therefore,

not only we can easily compute |Periodic(U)|, but similarly we are able to compute

|Periodic(U1) ∪Periodic(U2)| for some periodic factors U1, U2 of T .

We are now ready to prove the main result of this subsection.

Lemma 3.4.12. The 3-Fragments-Counting(F1, F2, F3) queries can be answered in

time O(log2 n/ log logn) with a data structure of size O(n+d log n) that can be constructed

in O(n log n/ log log n+ d log3/2 n) time.

Proof. By Lemma 3.4.5, in order to count the patterns that are not highly periodic, it

suffices to perform three Count queries. To this end, we employ the data structure

of Theorem 3.3.1 which answers Count queries in O(log2 n/ log logn) time, occupies

space O(n+ d log n), and can be constructed in time O(n log n/ log logn+ d log3/2 n).

We now proceed to counting highly periodic patterns. First, we check whether F2

is periodic using Theorem 2.6.4. If F2 is not periodic, then by Lemma 3.4.7 no highly

periodic pattern has an essential occurrence, and we are thus done. If F2 is periodic,

three |Periodic(U)| queries suffice to obtain the answer due to Observation 3.4.8. They

can be efficiently answered due to Lemma 3.4.10 and Remark 3.4.11; the complexities

are dominated by those for building the data structure for Count queries.

2-Approximation Algorithm. Let us fix δ = 1
9 . A fragment of length b(1 + δ)pc

for any positive integer p will be called a p-basic fragment. Our data structure stores

CountDistinct(i, j) for every basic fragment T [i . . j]. Using Lemma 3.4.4, these values

can be computed in O(n log1+ε n+ d) time with a sliding window approach. The space

requirement is O(n log n+ d).
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i j′ i′ j

F1 F2 F3

Figure 3.5: A 2-approximation of CountDistinct(i, j) is achieved using precomputed

counts for basic factors T [i . . i′] and T [j′ . . j].

In order to answer an arbitrary CountDistinct(i, j) query, let T [i . . i′] and T [j′ . . j]

be the longest prefix and suffix of T [i . . j] being a basic factor; see Figure 3.5. We sum

up CountDistinct(i, i′) and CountDistinct(j′, j) and the result of a 3-Fragments-

Counting query for F1 = T [i . . j′ − 1], F2 = T [j′ . . i′], F3 = T [i′ + 1 . . j]. (Note that

(|F1|+ |F2|) · (1 + δ) > |F1|+ |F2|+ |F3| implies δ(|F1|+ |F2|) > |F3|, and since |F1| = |F3|,
we have that |F1| = |F3| ≤ 1

8 |F2|.) Now, a pattern P ∈ D is counted at least once if and

only if it occurs in T [i . . j]. Also, a pattern P ∈ D is counted at most twice (exactly twice

if and only if it occurs in both F1F2 and F2F3). The above discussion and Lemma 3.4.12

yield the following result.

Theorem 3.4.13. Given a text T of length n and an internal dictionary D of size d, we

can construct, in O(n log1+ε n+ d log3/2 n) time, for any constant ε > 0, a data structure

of size O((n+ d) log n) that answers CountDistinct(i, j) queries 2-approximately in

O(log2 n/ log log n) time.

3.4.2 Time-Space Tradeoffs for Exact Counting

Tradeoff for Large Dictionaries. The following result is yet another application

of Lemma 3.4.4.

Theorem 3.4.14. Given a text T of length n and an internal dictionary D of size d for

any m ∈ [1, n] and any constant ε > 0, we can construct, in O((n2 logε n)/m+n
√

log n+d)

time, a data structure of size O(n2/m2+n+d) that answers CountDistinct(i, j) queries

in O(m logε n) time.
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Proof. A fragment of the form T [c1m+ 1 . . c2m] for integers c1 and c2 will be called a

canonical fragment. Our data structure stores CountDistinct(i′, j′) for every canonical

fragment T [i′ . . j′] and the data structure of Lemma 3.4.4. Hence, the space complexity

is O(n2/m2 + n+ d).

We can compute in O(n logε n) time CountDistinct(i′, j) for a given i′ and all

j using Lemma 3.4.4. There are O(n/m) starting positions of canonical fragments

and hence the counts for all canonical fragments can be computed in O((n2 logε n)/m)

time. An additional additive O(n
√

log n+ d) factor in the preprocessing time originates

from Lemma 3.4.4.

We can answer a CountDistinct(i, j) query in O(m logε n) time as follows. Let

T [i′ . . j′] be the maximal canonical fragment contained in T [i . . j]. We first retrieve

CountDistinct(i′, j′) for T [i′ . . j′]. Then, we apply Lemma 3.4.4 O(m) times; each

time we extend the fragment for which we count, until we obtain CountDistinct(i, j).

See Figure 3.6 for an illustration.

i ji′ j′

canonical fragmentextend extend

Figure 3.6: An illustration of the setting in the query algorithm underlying Theo-

rem 3.4.14.

Tradeoff for Small Dictionaries. We call a set of strings Π a path-set if all elements

of Π are prefixes of its longest element. We now show how to efficiently handle dictionaries

that do not contain large path-sets.

Lemma 3.4.15. If D does not have any subset of size greater than k that is a path-set,

then we can construct in O(kn log n) time an O(kn log n)-size data structure that answers

CountDistinct(i, j) queries in O(log n) time.
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Proof. Let D = {P1, . . . , Pd} and S = {Occ(P1), . . . ,Occ(Pd)}. Every position of T

contains at most k occurrences of patterns from D. This implies that ‖S‖ ≤ kn. We can

obviously treat a CountDistinct(i, j) query as a CountDistinctS(i, j) query. The

complexities follow from Lemma 3.4.2.

Lemma 3.4.16. For any k ∈ [1, n], we can compute a maximal family F of pairwise-

disjoint path-sets in D, each consisting of at least k elements, in O(n+ d) time.

Proof. Let us consider the D-modified suffix tree of T and call every internal node

that has no descendant internal nodes a bottom node. As the considered path-sets are

maximal, the longest string in any path-set Π ∈ F is the path-label of a bottom node.

We preprocess the tree, so that for each bottom node u we store a counter C(u) equal to

the number of non-root nodes on the root-to-u path.

Then, we perform a preorder traversal of the tree. This way all bottom nodes are

considered in a left-to-right order. When adding a path-set to F , we mark all nodes of

that path-set. During our traversal we can easily maintain the number N of ancestors of

the node that we are visiting that have been marked. When we visit some bottom node u,

we check whether r = C(u)−N is at least k. If yes, we add the path-set consisting of u

and its unmarked ancestors to F . Note that, throughout the above process we maintain

that if a node is marked, then all its (non-root) ancestors are also marked. Hence, we

can efficiently find the r unmarked ancestors of u by following parent pointers.

We now combine Lemmas 3.4.15 and 3.4.16 and Theorem 3.4.3 to get the following result.

Theorem 3.4.17. Given a text T of length n and an internal dictionary D of size d for

any m ∈ [1, n] and any constant ε > 0, we can construct, in O((nd log n)/m+ d) time, a

data structure of size O((nd log n)/m+ d) that answers CountDistinct(i, j) queries in

O(m logε n+ log n) time.

Proof. We first apply Lemma 3.4.16 for k = dd/me. We then have a decomposition of D
to a family F of at most m path-sets and a set D′ with no path-set of size greater than

bd/mc. We directly apply Lemma 3.4.15 for D′. In order to handle path-sets, we build
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the data structure of Theorem 3.4.3. Then, upon a CountDistinct(i, j) query, for each

path-set Π ∈ F , we compute the longest pattern in Π that occurs in T [i . . j] using a

BLCP query followed by a predecessor query in a structure that stores the lengths of the

elements of Π, with the lexicographic rank in Π stored as satellite information.

Remark 3.4.18. Let us fix the query time to be O(m logε n) for m = Ω(log n). Then, The-

orem 3.4.17 outperforms Theorem 3.4.14 in terms of the required space in the case where

d = o(n/(m log n)). For example, for m = d = n1/4, the data structure of Theorem 3.4.17

requires space Õ(n) while the one of Theorem 3.4.14 requires space Õ(n
√
n).

We leave open the problem of whether an Õ(n + d)-size data structure answering

CountDistinct(i, j) queries exactly in time Õ(1) exists.

3.5 Dynamic Dictionaries

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as

input an n× n boolean matrix M . Then, we are given in an online fashion a sequence of

n vectors r1, . . . , rn, each of size n. For each such vector ri, we are required to output

Mri before receiving ri+1.

Conjecture 3.5.1 (OMv Conjecture [95]). For any constant ε > 0, there is no O(n3−ε)-

time algorithm that solves OMv correctly with probability at least 2/3.

We now state a restricted, but sufficient for our purposes, version of [95, Theorem 2.2].

Theorem 3.5.2 ([95]). The OMv conjecture implies that there is no algorithm, for a

fixed γ > 0, that given as input an r1 × r2 matrix M , with r1 = brγ2c, preprocesses M in

time polynomial in r1 + r2 and, then, presented with a vector v of size r2, computes Mv

in time O(r1+γ−ε
2 ) for ε > 0, and has error probability at most 1/3.

We proceed to obtain a conditional lower bound for IDM in the case of a dynamic

dictionary. This lower bound clearly carries over to the other considered problems.
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Theorem 1.2.2. The OMv conjecture implies that there is no algorithm that preprocesses

T and D in time polynomial in n, performs insertions to D in time O(nα), answers

Exists(i, j) queries in time O(nβ), in an online manner, such that α + β = 1 − ε for

ε > 0, and has error probability at most 1/3.

Proof. Let us suppose that there is such an algorithm and set γ = (α+ ε/2)/(β + ε/2),

where ε = 1 − α − β. Given an r1 × r2 matrix M satisfying r1 = brγ2c, we construct a

text T of length n = r1r2 + r2 as follows. Let T ′ be a text created by concatenating the

rows of M in increasing order. Then T is obtained by assigning to each non-zero element

of T ′ the column index of the matrix entry it originates from, and appending one by

one the integers in [1, r2] in increasing order. Formally, for i ∈ [1, r1r2], let a[i] = di/r2e
and b[i] = 1 + (i− 1) mod r2, and set T [i] = b[i] ·M [a[i], b[i]]; for i ∈ [r1r2 + 1, r1r2 + r2],

set T [i] = i − r1r2. (We append these letters in order to ensure that the dictionary

that we construct below is internal, and that we can specify in O(1) time each of the

inserted/deleted elements by an occurrence of them in T .)

We compute Mv as follows. We add the indices of v’s non-zero entries into an initially

empty dictionary. We then perform queries Exists(1 + (t− 1)r2, tr2) for t ∈ [1, r1]. The

answer to the query Exists(1 + (t− 1)r2, tr2) is equal to the boolean dot product of the

t-th row of M with v. We thus obtain Mv, with each entry correct with probability at

least 2/3. We can guarantee that the whole vector Mv is correct with probability at

least 1− n−Ω(1) ≥ 2/3 by maintaining Θ(log n) independent instances of the algorithm

and taking the dominant answer to each Exists query.

In total, we perform Õ(r2) insertions to D and Õ(r1) Exists queries. Thus, the total

time required is Õ(r2n
α + r1n

β) = Õ(nβ+ε/2nα + nα+ε/2nβ) = Õ(n1−ε/2) = O(r1+γ−ε′
2 )

for ε′ > 0. Conjecture 3.5.1 would be disproved due to Theorem 3.5.2.
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Example 3.5.3. For the matrix

M =


1 0 1 0

0 0 1 1

0 1 0 1

 ,

we construct the text T = 1 0 3 0 0 0 3 4 0 2 0 4 1 2 3 4. For the vector v =

[
1 1 0 0

]T
,

the dictionary is D = {1, 2}. The answers to Exists(1, 4), Exists(5, 8), Exists(9, 12)

queries are true, false, true, respectively, which corresponds to Mv =

[
1 0 1

]T
.

Remark 3.5.4. The proof of the above theorem requires a large alphabet. Let us describe

a straightforward modification to this proof that yields the same lower bound for ternary

alphabets. We add a $ between every pair of consecutive letters in T and then replace

each integer in T with its binary representation. Similarly, the patterns we add to or

remove from D are the same integers as above, but represented in binary. The obtained

text is now longer than the one in the above proof by a multiplicative O(log r2) factor.

This factor is hidden by the Õ(·) notation in the analysis.

In the remainder of this section we mainly focus on providing algorithms that

essentially match this lower bound. We extensively use the data structure underly-

ing Proposition 2.6.2, restated here for convenience.

Proposition 2.6.2 (Based on [127]). Given a string of length n, we can construct in

O(n log n) time an O(n log n)-size data structure that answers the decision, counting,

and reporting versions of internal pattern matching queries in time O(log2 n+ |output|).

Let us denote the dictionary we start with by D0. Further, let u1, u2, . . . be the

sequence of dictionary updates and Dr be the dictionary after update ur. Each up-

date is an insertion or a deletion of a pattern in D. We first discuss how to answer

ReportDistinct queries.

ReportDistinct(i, j). We maintain the invariant that after update ut we have access

to the static data structure of Section 3.2, encapsulated in Theorem 3.2.9, for answering
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ReportDistinct queries in T with respect to dictionary Dr, for some r = t − O(m);

note that m will depend on n+d. This can be achieved by rebuilding the data structure of

Section 3.2 every m updates in O((n+d) log n) time, which amortises to O((n+d) log n/m)

time per update. The time complexity can be made worst-case by applying the time-

slicing technique (cf. the proof of Lemma 2.8.1). We also store updates ur+1, . . . , ut (or

the differences between Dr and Dt).
To answer a ReportDistinct query, we:

1. use the static data structure to answer the ReportDistinct query for Dr;

2. filter out the O(m) reported patterns that are in Dr \ Dt;

3. search for the O(m) patterns in Dt \ Dr individually in O(log2 n) time per pattern

by performing internal pattern matching queries, employing Theorem 2.6.2.

Each query thus requires time O(log n+m log2 n+ |output|). We obtain the following

proposition.

Proposition 3.5.5. Given a text T of length n, an internal dictionary D of size d, and

a parameter m ∈ [1, n+ d], after an O((n+ d) log n)-time preprocessing, we can support

ReportDistinct(i, j) queries in O(m log2 n+ |output|) time and process updates to the

dictionary in O((n+ d) log n/m) time, using space O(n log n+ d), provided that the size

of the dictionary remains O(d).

We next show how to attain Õ(nα) update time and Õ(n1−α + |output|) query time

for any 0 < α < 1. In other words, we show how to avoid the direct dependency on the

size of the dictionary.

We store D in an array D of size n, which consists in collections of total size d.

D[p] stores the elements of D whose leftmost occurrence in T is at position p in a min

heap with respect to their lengths. In fact, as all elements stored in D[p] are prefixes of

T [p . . n], it suffices to store the length of each element. We can find the desired position

p for a pattern P in O(log logn) time by locating its locus on T (T ) using a weighted

ancestor query; we can have precomputed the leftmost occurrence of the path-label of

each explicit node of T (T ) in a DFS traversal. We can initialise D in O(n+ |D0|) time
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by answering all weighted ancestor queries as a batch [113].

The dictionary D′ = {minD[p] : 1 ≤ p ≤ n}, where minD[p] is the shortest element

stored in D[p], is of size O(n). An insertion in D corresponds to a possible insertion

followed by a possible deletion in D′, while a deletion in D corresponds to a possible

deletion in D′, followed by an insertion if the collection in D where the deletion occurs

is non-empty. We observe that if some P ∈ D \ D′ occurs in T [i . . j], then the shortest

element in the collection in which P belongs also occurs in T [i . . j].

We use the solution for ReportDistinct(i, j) from Proposition 3.5.5 for D′. We

then iterate over the elements of each collection from which an element has been reported

in the order of increasing length, while they occur in T [i . . j]; we check whether this is

the case using Theorem 2.6.2. The update time now becomes O(n log n/m), while the

query time becomes O((m+ |output|) · log2 n), for any m ∈ [1, n].

Report(i, j). We first perform a ReportDistinct(i, j) query and then find all occur-

rences of each returned pattern in T [i . . j] in time O(log2 n+|output|) using Theorem 2.6.2.

The complexities are identical with those for ReportDistinct(i, j) queries.

Theorem 3.5.6. Given a text T of length n, an internal dictionary D0, and a parameter

m ∈ [1, n], after an O(n log3/2 n+ |D0|)-time preprocessing, we can answer Report(i, j)

and ReportDistinct(i, j) queries in O((m+ |output|) · log2 n) time and process updates

to the dictionary in O(n log n/m) time, using space O(n log n+ d), where d is the size of

the dictionary.

Exists(i, j). We again use D′. We first use the static version of Count(i, j) for

D′, presented in Section 3.3, encapsulated in Theorem 3.3.1, and then the counting

version of internal pattern matching for removed/added patterns using Theorem 2.6.2,

incrementing/decrementing the counter appropriately. We rebuild the data structure

underlying Theorem 3.3.1 after every m updates. For any m ∈ [1, n], we can thus achieve

preprocessing time O(n log n/ log log n+ |D0| log3/2 n), space O(n+ d log n), query time

O(m log2 n), and update time O(n log3/2 n/m).
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Theorem 3.5.7. Given a text T of length n, an internal dictionary D0, and a param-

eter m ∈ [1, n], after an O(n log n/ log logn + |D0| log3/2 n)-time preprocessing, we can

answer Exists(i, j) queries in O(m log2 n) time and process updates to the dictionary in

O(n log3/2 n/m) time, using space O(n log n+ d), where d is the size of the dictionary.

Count(i, j). We first build the data structure of Section 3.3 for Count(i, j) queries

for dictionary D0, with each 2D range stabbing data structure implemented with a 2D

range tree (i.e. using Theorem 2.5.3), so that we can efficiently insert or delete rectangles.

This change affects the complexities of Lemma 3.3.4 in a straightforward manner. For

the Count(i, j) problem, the preprocessing time becomes O((n + |D0|) log2 n), the

space used is O(n + d log2 n), while the query time is O(log3 n). For the subsequent

m updates, we answer Count(i, j) queries, using this data structure and treating

individually the added/removed patterns using Theorem 2.6.2. Queries are thus answered

in O(m log2 n+ log3 n) time.

After every m updates, we update our data structure to refer to the current dictionary

as follows. (We focus on D0 and Dm for notational simplicity.) We update the counts

of occurrences for all nodes of PT by computing the counts for the set of added and

the set of removed patterns in O(n log n/ log log n+m log3/2 n) time and updating the

previously stored counts accordingly.

As for Breakpoints-Anchor IDM, we have to do something smarter than sim-

ply recomputing the whole data structure from scratch, as we do not want to spend

Ω(d) time. At preprocessing, we set our grid G to be of size K × K for K = O(n2)

and identify x-coordinate i with the i-th smallest element of the set W = {Ux :

U a substring of T and x ∈ {$,#}}. (Similarly for y-coordinates and TR.)

We can preprocess the suffix tree T (T ) in O(n) time so that the lexicographic rank of

a given T [a . . b]$ or T [a . . b]# in W can be computed in O(log logn) time. Let us assume

that T (T ) has been built for T , without $ appended to it. We make a DFS traversal

of T (T ), maintaining a global counter cr, which is initialised to zero at the root. The

DFS visits the children of a node in a left-to-right order. When traversing an edge, we
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increment cr by the size of the path-label of this edge. When an explicit node v is visited

for the first time we set the rank of L(v)$ equal to cr; if v is a leaf then cr is incremented

by one. The rank of L(v)# is set to cr when v is visited for the last time. Let q be the

locus of T [a . . b] in T (T ), which can be computed in O(log log n) time using a weighted

ancestor query. If q is an explicit node, the ranks of T [a . . b]$ and T [a . . b]# are already

stored at q. Otherwise, these ranks can be inferred from the ranks of L(v)$ and L(v)#

stored at the nearest explicit descendant v of q by, respectively, subtracting and adding

the distance between v and q.

Thus, instead of explicitly building trees W and WR as in the proof of Lemma 3.3.3,

we use T (T ) and T (TR) and maintain rectangles in G. After m updates, we remove

(resp. add) the O(m log n) rectangles corresponding to patterns in D0\Dm (resp. Dm\D0).

Since we are using 2D range trees, this can be done in O(m log3 n) time.

To wrap up, each query is answered in O(m log2 n + log3 n) time and each update

is processed in O(n log n/(m log log n) + log3 n) amortised time. We can deamortise

this time complexity using the time-slicing technique (cf. the proof of Lemma 2.8.1).

See Theorem 3.5.8 for a formal statement encapsulating the above discussion.

2-approximate CountDistinct(i, j). We build our static data structure for computing

a 2-approximation of CountDistinct(i, j), specified in Theorem 3.4.13, for dictionary

D0, using 2D range trees for all 2D range counting/stabbing data structures. The

preprocessing time becomes O((n+ |D0|) log2 n), the space used is O(n+ d log2 n), while

the query time is O(log3 n). For the subsequent m updates to the dictionary we answer

CountDistinct(i, j) queries 2-approximately in O(m log2 n + log3 n) time as follows.

We first ask a CountDistinct(i, j) for D0, and then rely on Proposition 2.6.2. We use

an internal pattern matching query for each pattern in Dm \D0. For each pattern in

D0 \Dm, we need to check whether it has been counted once or twice by the static data

structure for D0: for this, it suffices to query whether such a pattern occurs in T [i . . j]

and in the two relevant basic factors.

We update our data structure after every m updates to the dictionary as follows.
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� We adjust CountDistinct(i, j) for each basic factor in O(n log1+ε n+m) time,

for any ε > 0, by counting distinct patterns of Dm \D0 and D0 \Dm in each of

them, as in the preprocessing of Theorem 3.4.13.

� We update our collections of points on grids GL,r in O(m log2 n) time using 2D range

trees. As for the values
∑r

i=1 |D
p
L,i|, we use an augmented balanced binary search

tree, which can be updated and queried in O(log n) time; this time is dominated

by the other parts of the data structure.

� Finally, we update our static data structure for Count(i, j) as above.

Theorem 3.5.8. Given a text T of length n, an internal dictionary D0, and a parameter

m ∈ [1, n], after an O((n+ |D0|) log2 n)-time preprocessing, we can answer Count(i, j)

queries and 2-approximate CountDistinct(i, j) queries in O(m log2 n + log3 n) time

and process updates to the dictionary in O(n log n/(m log log n) + log3 n) time, using

space O(n+ d log2 n), where d is the size of the dictionary.

3.6 Internal Counting of Distinct Squares

We now consider the CountDistinct problem in the special case where the dictionary

D is the set of all squares in T . By the following theorem, d = O(n) and D can be

computed in O(n) time.

Theorem 3.6.1 ([59, 63, 72, 92]). A string T of length n contains O(n) distinct square

factors and they can all be computed in O(n) time.

Similarly to before, we say that an occurrence of a square U2 is induced by a run R if

it is contained in R and the shortest periods of U and R are the same. Every occurrence

of a square is induced by exactly one run.

The number of occurrences of squares can be quadratic in n, but we can construct a

much smaller O(n log n)-size subset of these occurrences (called boundary occurrences)

that, from the point of view of CountDistinct queries, gives almost the same answers.

This is the main trick in this section. Distinct squares with a boundary occurrence in
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a given fragment can be counted in O(log n) time due to Lemma 3.4.2. The remaining

squares can be counted based on their structure: we show that they are all generated by

the same run.

We need the following lemma (note that it is false for the set of all runs; see [84]).

Lemma 3.6.2. The sum of the lengths of all highly periodic runs is O(n log n).

Proof. We will prove that each position in T is contained in O(log n) highly periodic

runs. Let us consider all highly periodic runs R containing some position i, such that

m ≤ per(R) < 3
2m for some even integer m. Suppose for the sake of contradiction that

there are at least 5 such runs. Note that each such run fully contains one of the fragments

T [i − 3m + 1 + t . . i + t] for t ∈ {0,m, 2m, 3m}. By the pigeonhole principle, one of

these four fragments is contained in at least two runs, say R1 and R2. In particular, the

overlap of these runs is at least 3m ≥ per(R1) + per(R2), which is a contradiction by the

periodicity lemma (Lemma 2.3.1).

We define a family of occurrences B = {B1, . . . , Bd} such that, for each square U2
i ,

the set Bi contains the leftmost and the rightmost occurrence of U2
i in every run. We

call these boundary occurrences. Boundary occurrences of squares have the following

property.

Lemma 3.6.3. ‖B‖ = O(n log n) and B can be computed in O(n log n) time.

Proof. Let us define the root of a square U2 to be U . A square is primitively rooted if

its root is a primitive string. Let p-squares be primitively rooted squares, np-squares be

the remaining ones. The number of occurrences of p-squares in a string of length n is

O(n log n) and they can all be computed in O(n log n) time; see [54, 155].

We now proceed to np-squares. Note that for any highly periodic run R, the leftmost

occurrence of each np-square induced by R starts in one of the first per(R) positions

of R; a symmetric property holds for rightmost occurrences and last per(R) positions.

In addition, it can be readily verified that such a position is the starting (resp. ending)

position of at most exp(R) squares induced by R. It thus suffices to bound the sum
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of exp(R) · per(R) over all highly periodic runs R. The fact that exp(R) · per(R) = |R|
concludes the proof of the combinatorial part by Lemma 3.6.2.

For the algorithmic part, it suffices to iterate over the O(n) runs of T .

Lemma 3.6.4. If T [i . . j] is aperiodic, CountDistinct(i, j) = CountDistinctB(i, j).

Proof. Let us consider an occurrence of a square U2 inside T [i . . j]. Let R be the run that

induces this occurrence. By the assumption of the lemma, R does not contain T [i . . j].

Then at least one of the boundary occurrences of U2 in R is contained in T [i . . j].

For a periodic fragment F of T , by RunSquares(F ) we denote the number of distinct

squares that are induced by F (being a run if interpreted as a standalone string). The

value RunSquares(F ) can be computed in O(1) time, as it was shown in e.g. [59].

Let F1 be a prefix and F2 be a suffix of a periodic fragment F , such that each of

F1 and F2 is of length at most per(F ), and hence they are disjoint. By BSq(F, F1, F2)

(“bounded squares”) we denote the number of distinct squares induced by F which have

an occurrence starting in F1 or ending in F2.

Lemma 3.6.5. Given per(F ), the BSq(F, F1, F2) queries can be answered in O(1) time.

Proof. We are to count distinct squares induced by F that start in F1 or end in F2.

We introduce an easier version of BSq queries. Let BSq ′(F, F1) = BSq(F, F1, ε) be the

number of squares induced by F which start in its prefix F1 of length at most p := per(F ).

Reduction of BSq to BSq ′. First, observe that the set of squares induced by F

starting at some position q ∈ [1, p] and the set of squares induced by F ending at some

position q′ ∈ [|F | − p + 1, |F |] are equal if q ≡ q′ + 1 (mod p) and disjoint otherwise.

Also note that F2 = UV for some prefix V and some suffix U of F [p]F [1 . . p − 1]; we

consider this rotation of F [1 . . p] to offset the +1 factor in the above modular equation.

Let |U | = a and |V | = b.

Then, by the aforementioned observation, we are to count distinct squares that start

in some position in the set [1, |F1|] ∪ [1, b] ∪ [p− a+ 1, p]; see Figure 3.7.
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F

b a a b

|F2|

per(R)

Figure 3.7: Reduction of BSq to BSq ′; the case where |F1| ≤ b.

Hence the computation of BSq(F, F1, F2) is reduced to at most two instances of the

special case when F2 is the empty string.

Computation of BSq ′(F, F1). The number of squares induced by F starting at F [i] is

b(|F | − i+ 1)/(2p)c. Consequently, BSq ′(F, F1) =
∑|F1|

i=1b(|F | − i+ 1)/(2p)c = |F1| · t−
max{0, |F1| − k − 1}, where t = b|F |/(2p)c and k = |F | mod (2p).

Lemma 3.6.6. Assume that F = T [i . . j] is periodic and R = T [a . . b] = run(T [i . . j]).

Let F1 = T [i . . a+ p− 1] and F2 = T [b− p+ 1 . . j], where per(R) = p. Then:

CountDistinct(i, j) = CountDistinctB(i, j) + RunSquares(F )− BSq(F, F1, F2).

(3.1)

Proof. In the sum CountDistinctB(i, j)+RunSquares(F ), all squares are counted once

except for squares whose boundary occurrences are induced by R, which are counted

twice. They are exactly counted in the term BSq(F, F1, F2); see Figure 3.8.

T

i

F1

j

F2

F

R
a b

per(R) per(R)

Figure 3.8: The setting in Lemma 3.6.6. F1 is empty if i ≥ a+ per(R); similarly for F2.
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Theorem 3.6.7. If D is the set of all square factors of T , then CountDistinct(i, j)

queries can be answered in O(log n) time using a data structure of size O(n log2 n) that

can be constructed in O(n log2 n) time.

Proof. We precompute the set B in O(n log n) time using Lemma 3.6.3 and perform

an O(n log2 n)-time and space preprocessing for CountDistinctB(i, j) queries, us-

ing Lemma 3.4.2.

In order to answer a CountDistinct(i, j) query, first we ask a 2-period query, em-

ploying Theorem 2.6.4, to check if T [i . . j] is periodic, and, if so, we compute run(T [i . . j])

by employing Theorem 2.6.5; this requires O(1) time.

We compute CountDistinctB(i, j) which takes O(log n) time due to Lemma 3.4.2.

If T [i . . j] is aperiodic, then it is the final result due to Lemma 3.6.4.

Otherwise, T [i . . j] is periodic. Let F, F1, F2 be as in Lemma 3.6.6. We answer

RunSquares(F ) and BSq(F, F1, F2) queries in O(1) time using the algorithms from [59]

and Lemma 3.6.5, respectively. Finally, CountDistinct(i, j) is computed using Equa-

tion (3.1).
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Chapter 4

Internal Pattern Matching in a

Dynamic Collection of Strings

In this chapter, we show how to extend the data structure of Gawrychowski et al. [82] for

the maintenance of a dynamic collection of strings (cf. Theorem 1.3.1) to also support

internal pattern matching queries. Formally, we obtain the following result.

Theorem 1.3.2. A collection X of non-empty strings of total length at most N can be

dynamically maintained with update operations makestring(U), concat(U, V ), split(U, i)

requiring time O(logN + |U |), O(logN), and O(logN), respectively, so that the occur-

rences of a string P ∈ X in a string T ∈ X can be computed in time O(|T |/|P | · log2N).

All running times hold w.h.p.

Internal, here, is meant in the sense that both P and T must be elements of X .

Notice, however, that P and T can be arbitrary substrings of strings in the collection:

we can add these substrings to the collection using a constant number of split operations.

4.1 The Algorithm

Recall that the data structure underlying Theorem 1.3.1 for the maintenance of a

dynamic collection, maintains a parse tree PT[S] (stemming from recompression) for
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each string in the collection S, and that the popped sequence of a fragment U of S is the

sequence labeling a certain layer of nodes of PT[S], whose values constitute U . Let us

restate Theorem 2.7.1, with log n factors replaced by logN ones with high probability;

these factors stem from the heights of the respective parse trees.

Theorem 4.1.1 ([98]). If two fragments of strings in X are equal, then their popped

sequences are equal as well. Moreover, w.h.p., each popped sequence consists of O(logN)

RLE runs (maximal powers of a single symbol) and can be constructed in O(logN) time.

The nodes corresponding to symbols in an RLE run share a single parent. Furthermore,

the popped sequence consists of a single symbol only for fragments of length 1.

Let us also recall that if F p11 · · ·F ptt is the run-length encoding of the popped sequence

of a substring U of some string in X , and

L(U) = {|gen(F1)|, |gen(F p11 · · ·F
pt−1

t−1 F
pt−1
t )|}

⋃
{|gen(F p11 · · ·F pii )| : i ∈ [1, t− 1]},

then the following lemma holds for each S ∈ X , restated here for convenience.

Lemma 2.7.2. Let v denote a non-leaf node of a parse tree PT[S] stemming from

recompression and let S[a . . b] denote an occurrence of a string U contained in val(v),

but not contained in val(u) for any child u of v. If S[a . . c] is the longest prefix of

S[a . . b] contained in val(u) for a child u of v, then |S[a . . c]| ∈ L(U). Symmetrically, if

S[c′ + 1 . . b] is the longest suffix of S[a . . b] contained in val(u) for a child u of v, then

|S[a . . c′]| ∈ L(U).

We are now ready to prove the main technical lemma of this chapter. In this lemma,

we make the assumption that |T | < 2|P |, which we then lift.

Lemma 4.1.2. Given strings P and T from a collection X , maintained as in Theo-

rem 1.3.1, with |T | < 2|P |, we can compute IPM(P, T ) in time O(log2N) w.h.p. The

positions of T where P occurs are returned as a (possibly empty) arithmetic progression

with difference per(P ).

Proof. Let n := |T | and m := |P |. We can assume that n,m > 1; otherwise it suffices to

perform a constant number of letter comparisons, which can be done in O(1) time.
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We first compute the popped sequence of P and L(P ) in O(logN) time using The-

orem 4.1.1. In addition, we perform O(logN) split operations, in a total of O(log2N)

time in order to add P [1 . . q − 1] and P [q . .m] to X , for all q ∈ L(P ).

Let v denote the root of the parse tree PT[T ]. Our first aim is to compute all

occurrences of P in T that are not contained in val(u) for any child u of v; we then

appropriately recurse on the children of v that may contain sought occurrences.

Let us first analyse the case where the label of v is a concatenation symbol A→ BC.

Let us denote by v` the left child of v and by vr the right child of v. Further, let

T` = val(v`) and Tr = val(vr). Suppose that there is a fragment U = T [a . . b] of val(v)

that equals P and overlaps with both val(v`) and val(vr). The fragment U can then

be naturally decomposed into a non-empty suffix U` of T` and a non-empty prefix

Ur of Tr. Lemma 2.7.2 implies that |U`| ∈ L(P ). It thus suffices to check for each

q ∈ L(P ) whether P [1 . . q − 1] is a suffix of T` and P [q . .m] is a prefix of Tr. We

have |L(P )| = O(logN) choices for q. For each of them we can perform the check

using operations LCPR(P [1 . . q − 1], T`) and LCP(P [q . .m], Tr). These operations can be

performed in O(logN) total time, by first adding T` and Tr to X using a split operation,

and then answering each LCE query in O(1) time. If the value of each child of v is

of length less than m we terminate the algorithm—up to some postprocessing to be

discussed below. Otherwise, at most one of v’s children has value of length at least m.

In that case, we recurse on this child.

We now consider the case where the label of v is a power symbol A→ Bp and denote

the children of v in the left-to-right order by v1, . . . , vp. If p = 2, then we can process v

as in the previous case. We can thus assume that p ≥ 3. In that case, for all i, we have

val(vi) < m, and hence no occurrence of P in T can be completely contained in val(vi),

for any i. We set T` := val(v1) and Tr := val(v2) · · · val(vp). Using a single split operation,

|L(P )| many LCP operations and |L(P )| many LCPR operations, we can compute, in

O(logN) time, the set Y of occurrences of P in T which can be decomposed into a prefix

U` that is a suffix of T` and a suffix Ur that is a prefix of Tr. Then, by the periodicity
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of val(v) = gen(B)p, the desired set of occurrences is

Z := {i+ j · |gen(B)| : i ∈ Y, j ∈ [0, p− 1]} ∩ [1, |val(v)| −m+ 1].

We represent Z by O(logN) arithmetic progressions. As the value of each child of v has

length less than m, we then proceed to the postprocessing step.

The overall time required by the procedure described above is O(log2N), since the

depth of PT[T ] is O(logN) w.h.p., we process each node in O(logN) time, and all

processed nodes lie in single root-to-leaf path.

In the end, the occurrences of P in T are represented by O(logN) arithmetic progres-

sions and O(log2N) single occurrences. We postprocess this representation in O(log2N)

time, in order to represent all occurrences by a single arithmetic progression with dif-

ference per(P ). In particular, we compute the first, second, and last positions a, b, and

c of T , respectively, where P occurs. Then, we return {a+ i · d : i ∈ [0, (c− a)/d]} for

d = b− a = per(P ).

In order to generalise our result for the case that |T | ≥ 2|P |, it suffices to do the

following standard trick. Given arbitrary T and P of lengths n and m, respectively, we

apply Lemma 4.1.2 to find the occurrences of P in each of the following O(n/m) strings:

T [1 . . 2m− 1], T [m. . 3m− 1], . . . , T [(bn/mc − 1) ·m. . n− 1]. This concludes the proof

of Theorem 1.3.2.

We conclude this chapter by discussing some applications of IPM queries. The

following reductions to LCP and IPM queries were (implicitly) shown in [115, 112].

� A cyclic equivalence query takes as input two equal-length substrings U and V of a

text, and returns all rotations of U that are equal to V . Any cyclic equivalence query

reduces to O(1) LCP queries and O(1) IPM(P, T ) queries with |T |/|P | = O(1).

� A period query takes as input a substring U of a text, and returns all periods of U .

Such a period query reduces to O(log |U |) LCP queries and O(log |U |) IPM(P, T )

queries with |T |/|P | = O(1).
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� A 2-period query takes as input a substring U of a text, checks if U is periodic

and, if so, it also returns U ’s period. Such a query reduces to O(1) LCP queries

and O(1) IPM(P, T ) queries with |T |/|P | = O(1).

Thus, in the setting of Theorem 1.3.2, cyclic equivalence queries and 2-period queries

can be answered in time O(log2N) w.h.p., while period queries can be answered in time

O(log3N) w.h.p.

Remark 4.1.3. Recall that, as discussed in Section 2.7, a straight-line program can be

“recompressed” in-place to an RLSLP with the desired properties. An adaptation of the

algorithm underlying Lemma 4.1.2 can be employed for efficiently answering internal

pattern matching queries in straight-line programs; see [47, 108].
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Chapter 5

Dynamic Longest Square

Substring

In this chapter we present an algorithm that maintains the longest square of a dynamic

string S, of length n, that undergoes substitution operations in time O(log3 n) per update.

For simplicity, we assume—without loss of generality—that n is a power of 2.

5.1 Strategy

We first make the following simple, but crucial observation.

Observation 5.1.1. In a square-substring UU of S, with |UU | ≥ 4m for some positive

integer m, the first occurrence of U contains S[i . . i+m− 1] for some i = 1 (mod m).

For simplicity, we ignore squares of length smaller than 8; the created/destroyed such

squares can be trivially recomputed from scratch in O(1) time per update. This allows us

to rely on Observation 5.1.1. The idea is to use fragments of the form S[i·2j+1 . . (i+1)·2j ]
for all i, j as anchors. Then, Observation 5.1.1 guarantees that for every square UU , the

first implied occurrence of U contains an anchor whose length is in [|U |/4, |U |). In light

of this, we will do the following for each anchor:
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� We will maintain all of its occurrences in a fragment starting at the same position

as the anchor, but longer than the anchor by a multiplicative constant factor.

� For each such occurrence V we will check whether there is any square UU that

“aligns” the anchor and V in the two occurrences of U implied by UU . “Aligns”,

here, means that the starting position of the anchor is |U | positions to the left of

the starting position of V .

If an anchor has a super-constant number of such occurrences then it must be periodic;

we will exploit the periodic structure to treat them in batches.

5.2 Implementation

Let us focus at a level ` ∈ [1, log n). Let k = 2`. We consider all fragments S[i . . i+k− 1]

with i = 1 (mod k) as anchors. Now, each anchor’s goal is to capture squares that

contain it and are at most four times longer than it. To this end, for each such

anchor P = S[i . . i + k − 1], we maintain the set of its relevant occurrences A(P ) in

T = S[i . .min{i + 4k − 1, n}]; note that |T |/|P | = O(1). We call this problem anchor

pattern matching.

Now, each substitution operation, only affects a constant number of anchor pattern

matching per level. For each affected instance, we simply recompute the occurrences of

the anchor from scratch in O(log2 n) time by asking a constant number of IPM queries,

employing Corollary 2.8.2. We thus have the relevant occurrences represented by a

constant number of (possibly empty) arithmetic progressions. Hence, the total time

required by this step is O(log3 n).

We are left with showing how to compute the longest square implied by an anchor and

its relevant occurrences. This suffices, as it is then enough to maintain a representative

longest square-substring for each anchor, resolving ties arbitrarily in a global max heap

(with lengths as the keys).

86



Computing squares. Consider an anchor P = S[i . . i+ k − 1] and let j ∈ A(P ). We

want to check whether a square S[a . . b] = UU , such that a ≤ i < j ≤ b and j − i = |U |,
exists. We call each such a square an (i, j)-square. The following lemma shows how to

perform the described check efficiently.

Lemma 5.2.1. Given two positions i < j, we can check whether an (i, j)-square exists

and report all (i, j)-squares compactly in O(log n) time w.h.p.

Proof. The following observation reduces computing all (i, j)-squares to answering two

LCE queries, which can be answered in O(log n) time due to Corollary 2.8.2. Inspect Fig-

ure 5.1 for an illustration.

Observation 5.2.2. An (i, j)-square UU , where i is the t-th letter of the first occurrence

of U exists if and only if LCPR(i, j) ≥ t and LCP(i, j) ≥ |U | − t+ 1.

S
a i j b

LCPR(i, j) LCP(i, j)

Figure 5.1: The setting in the proof of Lemma 5.2.1. The two occurrences of U in an

(i, j)-square UU are denoted by dashed rectangles. The two equal k-length fragments

starting at positions i and j are denoted by grey rectangles.

Now 1 ≤ t ≤ |U | and t = i− a+ 1, where a is the starting position of such a square.

Hence a = i+1− t for 1 ≤ t ≤ |U | such that LCPR(i, j) ≥ t and LCP(i, j) ≥ |U |− t+1 are

the starting positions of all (i, j)-squares. Equivalently, the (i, j)-squares are the fragments

S[a . . a+2|U |−1], with a ∈ [i+1−min{LCPR(i, j), |U |}, i+min{LCP(i, j)−|U |, 0}].

If the anchor P = S[i . . i + k − 1] to be processed is aperiodic, then A(P ) is of

constant size (cf. Lemma 2.3.2), and we can thus afford to employ Lemma 5.2.1 for i

and each j ∈ A(P ). Note that, strictly speaking, we are interested in the subset of the

(i, j)-squares for which the anchor is fully contained in the first occurrence of U in UU .

These are exactly the (i, j)-squares S[a . . b] = UU satisfying i+ k ≤ a+ |U | . To avoid
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clutter, we do not impose this extra condition, as computing the longest square over a

superset of the squares in scope is fine for our purposes.

Moreover, for each anchor P , we have the set of relevant occurrences represented by

a constant number of (possibly empty) arithmetic progressions. In the case where P is

periodic, each non-empty arithmetic progression has difference per(P ). If there is only a

constant number of relevant occurrences of P , then we treat each of them individually.

Otherwise, there is at least one arithmetic progression with at least two elements and

difference per(P ).

Periodic Anchors. If the anchor is periodic, and has a super-constant number of

occurrences (there could be Ω(n) of them), then processing each pair individually would

be too costly. To overcome this, we exploit periodicity to process the pairs in batches.

We call a set of positions C = {j + t · p|t = 0, . . . , r} a p-cluster of a string P in S

if p = per(P ), S[a . . a + k − 1] = P for all a ∈ C and S[j − p . . j − p + k − 1] 6= P 6=
S[j + (r + 1)p . . j + (r + 1)p + k − 1]. The p-cluster containing an occurrence V of a

periodic string P is the set of the occurrences of P in the run run(V ) extending V .

Lemma 5.2.3. Given a periodic fragment V = S[i . . j] and p = per(V ), the run

R that extends V can be computed using a constant number of LCE queries. R =

S[i− a+ 1 . . i+ p+ b− 1], where a = LCPR(i, i+ p) and b = LCP(i, i+ p).

First, we extend each such arithmetic progression to a p-cluster, using Lemma 5.2.3.

Next, we process all pairs in {i} × C at once, relying on the following lemma.

Lemma 5.2.4. Given a position i in S, where a string P = S[i . . i+ k− 1] occurs, and a

p-cluster C of P in S, we can compute a longest (i, j)-square over all j ∈ C in O(log n)

time w.h.p. In particular, if i 6∈ C, we return a superset of all (i, j)-squares for j ∈ C
that are of length at least 2k in a compact form.

Proof. If it so happens that i ∈ C, then the longest (i, j)-square can be easily retrieved

as it must lie entirely within the run R = S[a . . b] corresponding to C. Let r = b − a
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(mod 2p). It can be readily verified that either S[a + r . . b] or S[a . . b − r] is a longest

(i, j)-square over all j ∈ C. (See also [59].)

In the other case, that is i 6∈ C, we first compute the unique run R1 = S[s1 . . e1]

that extends the occurrence of P at position i, and similarly the run R2 = S[s2 . . e2]

corresponding to the occurrences of P in C. This can be done in O(log n) time by

performing a constant number of LCE queries due to Lemma 5.2.3 and Corollary 2.8.2.

We assume without loss of generality that i < minC, which implies that s1 < s2.

First, we treat the pair (i,minC) individually using Lemma 5.2.1 in O(log n) time. Now,

let UU be an (i, j)-square with j ∈ C \ {minC}. The following fact implies that S[e1 + 1]

lies in UU , as j ≥ minC + p ≥ s2 + p > e1.

Fact 5.2.5 ([112]). Two runs with period p cannot overlap by more than p− 1 positions.

We have the following cases for the occurrence of U in which S[e1 + 1] lies.

1. The first occurrence, in which case the endpoints S[e1] and S[e2] of the two runs

must be aligned (i.e. be at distance |U |), since LCP(i, j) > e1 +2− i. In other words,

S[e1] and S[e2] must both occur as the t-th letter of an occurrence of U in the

square for some t; inspect Figure 5.2 for an illustration. In this case we compute the

longest (e1, e2)-square (or all (e1, e2)-squares) in O(log n) time using Lemma 5.2.1.

2. The second occurrence, in which case, the situation is more interesting. We have

the following two subcases.

S
i je1 e2

Figure 5.2: An illustration of the setting in Case 1 in the proof of Lemma 5.2.4. As

before, the two occurrences of U in an (i, j)-square UU are denoted by dashed rectangles

and the two equal k-length fragments starting at positions i and j are denoted by grey

rectangles.
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(a) If e1 + 1 < s2, by an argument symmetric to that for the first case, the

starting points S[s1] and S[s2] of the two runs must be aligned—one can

think of Figure 5.2 reversed. As in Case 1, we can compute the longest (all)

(s1, s2)-square(s) in O(log n) time using Lemma 5.2.1.

(b) Else, we have that the first and second occurrences of U are fragments of runs

R1 and R2, respectively.

We now look into the structure yielded by the condition in Case (b) and show how to

efficiently compute and represent all (possibly many) squares that satisfy it, and are hence

captured by runs R1 and R2. For two runs R1 and R2, with period per(R1) = per(R2) = p

that overlap, we define Sq(R1, R2) to be the set of squares UU of length at least 4p such

that the first and second occurrences of U lie entirely within R1 and R2, respectively.

In what follows, we show how to compute Sq(R1, R2), which is a superset of the

(i, j)-squares of length at least 2k for j ∈ C since 4p ≤ 4k/2 ≤ 2k. We obtain a constant

number of arithmetic progressions that represent all such squares. Let us start with an

example that captures the structure of Sq(R1, R2).

Example 5.2.6. Consider string (baa)4a(baa)3. There are two runs with period p = 3,

namely R1 = S[1 . . 12] and R2 = S[12 . . 22]. See Figure 5.3 for an illustration and for the

squares that satisfy the condition of Case (b). One can see that we can get Ω(n) such

squares for a string of length O(n), by extending this paradigm and considering string

(baa)na(baa)n. This example shows that a single substitution can create/destroy Ω(n)

squares; think of first setting S[n+ 1] := c and then S[n+ 1] := a.

Claim 5.2.7. Let us suppose that we are given two runs R1 = S[s1 . . e1] and R2 =

S2[s2 . . e2], with per(R1) = per(R2) = p, such that R1[f . . f + p − 1] = R2[1 . . p − 1]

for some given f ≤ s1 + p − 1 and such that s1 ≤ s2 ≤ e1 ≤ e2. We can compute a

representation of Sq(R1, R2) in O(1) time.

Proof. Fact 5.2.5 implies that Example 5.2.6 resembles the structure of the problem.

Due to the condition that the first and second occurrences of U must be fragments of

runs R1 and R2, respectively, we have that the second occurrence of U can only start

90



b a a b a a b a a b a a a b a a b a a b a a

Figure 5.3: The two runs with period 3 are represented by black. The squares UU of

length at least 4p, such that the two occurrences of U are fully contained in the two

runs are shown in red and blue, partitioned with respect to the first letter of the second

occurrence of U .

at one of the positions in M = {s2, . . . , e1 + 1}, where |M | ≤ p by Fact 5.2.5. Let us

consider some x ∈M and characterise all squares S[a . . b] = UU with x = a+ |U | and

|U | ≥ 2p.

S[x− p . . x− 1] is a rotation of S[x . . x+ p− 1], i.e. there exists some δ < p such that

S[x− p . . x− 1] = S[x+ δ . . x+ p− 1]S[x . . x+ δ− 1]. In particular, δ = s2− f (mod p).

|U | must equal t ·p+δ in order for the two occurrences of U to start at the same offset

mod p from f and s2; this is necessary, since otherwise we would have two different

rotations of R2[1 . . p−1] matching, which is impossible as it would imply that per(R2) < p.

In addition, all |U |’s of the form t · p + δ for t ≥ 2 and for which the two occurrences

of U lie entirely within runs R1 and R2, respectively, define valid squares. We can thus

compute all these squares in O(1) time and represent them as an arithmetic progression

with respect to |U |.

Example 5.2.8 (Continued). For position 12 of (baa)4a(baa)3, the blue a in Figure 5.3,

we have δ = 1 and hence the squares UU that we obtain with this as starting position of

the second occurrence of U are for |U | = 1 + 3t, for t = 2, 3.

Iterating over x ∈ M in increasing order, we only have to (a) shift all squares by

1 position each time, and (b) identify the—at most two—shifts that yield an incre-

ment/decrement in the length of the arithmetic progression due to one more/less square

being allowed after the shift. We can infer the values of x for which we must incre-

91



ment/decrement in O(1) time from the endpoints of the two runs and δ. These values, p,

and the arithmetic progression for x = s2 are our representation of Sq(R1, R2).

We can straightforwardly extract the longest (i, j)-square for j ∈ C if it is of length

at least 2k from this representation, and this concludes the proof of the theorem.

To summarise, each string update affects O(log n) anchor pattern matching instances;

the corresponding sets of relevant occurrences are recomputed in O(log3 n) time in total.

Then, for each anchor belonging to an affected instance, we invoke each of Lemma 5.2.1

and Theorem 5.2.4 at most a constant number of times. The overall time complexity

of our algorithm is thus O(log3 n). The space required throughout the execution of our

algorithm is O(n): apart from the space required for the data structure of Corollary 2.8.2,

for each ` ∈ [1, log n) for each of the O(n/2`) anchor pattern matching instances we

simply store at most one square in the global max heap. Similarly, in order to initialise

the data structure, we need O(n log2 n/2`) time for each level `.

Theorem 1.4.1. The longest square of a dynamic string of length n that undergoes

substitution operations can be maintained in O(log3 n) time per each such operation,

using O(n) space, after an O(n log2 n)-time preprocessing. All running times hold w.h.p.

In order to allow for arbitrary edit operations, i.e. also allow for insertions and

deletions of letters, it is enough to maintain, for each level `, anchors of length 2`, such

that every interval [i+ 1, i+ 2`] ⊆ [1, |S|] contains the starting position of at least one

of them. In order to make sure that an edit operation does not affect too many anchor

pattern matching instances, one has to also impose the condition that no two anchors are

closer than some constant fraction of 2`. This can be implemented, in each level, with

the aid of an augmented balanced binary search tree storing the starting positions of the

anchors, and allowing us to keep track of the offsets in indices due to the insertions and

deletions of letters. This incurs no extra cost asymptotically.

As for maintaining all squares of string S, it is enough to ensure that each one of

them is captured by a unique anchor; say the leftmost anchor of the topmost level for

which it is computed.
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Analogues of Lemmas 5.2.1 and 5.2.4 for computing runs can be found in [8], as well

as no(1)-time algorithms for maintaining all squares and runs of a dynamic string. Let us

note here, that Example 5.2.6 shows that there are positions contained in Ω(n) runs, as

each square denoted by red extends to a unique run. However, these can be compactly

represented by the two runs denoted by black.
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Chapter 6

Internal and Dynamic Longest

Common Factor

In this chapter, we first consider LCF queries in the internal setting. In the most general

version of the problem, we are given two strings S and T for preprocessing, and upon a

query we are to report an LCF between a substring of S and a substring of T . We first

show a conditional lower bound via reducing the Set Disjointness problem to the internal

LCF problem. We then explore restricted versions of internal LCF queries and design

efficient solutions for them.

Then, in Section 6.2, we consider the partially dynamic LCF problem, where updates

are only allowed in one of the strings. In this problem, we use the static string T

as a reference point. We maintain a partition of the dynamic string S into blocks

(i.e. substrings of S whose concatenation equals S), such that each block is a substring

of T , but the concatenation of any two consecutive blocks is not. This is similar to

the approach of [14] and other works that consider one dynamic and one static string.

The improvement upon the Õ(
√
n)-time algorithm presented in [10] comes exactly from

imposing the aforementioned maximality property, which guarantees that the sought

LCF is a substring of the concatenation of at most three consecutive blocks and contains

the first letter of one of these blocks. The latter property allows us to anchor the LCF in
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S. Upon an update, we can maintain the block decomposition, by updating a constant

number of blocks. It then suffices to show how to efficiently compute the longest substring

of T that contains the first letter of a given block.

Finally, in Section 6.3 we move to the fully dynamic LCF problem. We try to anchor

the LCF in both strings as follows. For each of the strings S and T we show how to

maintain, in Õ(1) time, a collection of pairs of consecutive fragments (e.g. (S[i . . j −
1], S[j . . k])), denoted by JS for S and JT for T , with the following property. For any

common substring X of S and T there exists a partition X = X`Xr for which there exists

a pair (U`, Ur) ∈ JS and a pair (V`, Vr) ∈ JT such that X` is a suffix of both U` and V`,

while Xr is a prefix of both Ur and Vr. We can maintain this collection by exploiting the

properties of the locally consistent parsing underlying Theorem 1.3.1 ([82]). We maintain

tries for fragments in the collections JS and JT , and reduce the dynamic LCF problem

to a problem on dynamic bicoloured trees, which we solve by using dynamic heavy-light

decompositions and 2D range trees.

6.1 Internal LCF queries

6.1.1 A Lower Bound Based on Set Disjointness

In the Set Disjointness problem, we are given a collection of m sets A1, A2, . . . , Am of total

size N from some universe U for preprocessing in order to answer queries on the emptiness

of the intersection of some two query sets from the collection. Set Disjointness has been

used to obtain lower bounds for problems such as distance oracles and reachability, see

e.g. [87, 52]. Goldstein et al. focused on the hardness of Set Disjointness with regard to

its space-query time tradeoff [87]. Specifically, they stated the following conjecture.

Conjecture 6.1.1 (Strong Set Disjointness Conjecture [87]). Any data structure for the

Set Disjointness problem that answers queries in time t must use space N2/(t2 · logO(1)N).

Conjecture 6.1.1 is a generalisation of the Set Disjointness conjecture stating that
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any data structure for the Set Disjointness problem with constant query time must use

N2−o(1) space [87, 145, 52].

Theorem 6.1.2. Any data structure answering internal LCF queries for two strings,

each of length at most n, in time t must use n2/(t2 · logO(1) n) space, unless the Strong

Set Disjointness Conjecture is false.

Proof. We reduce the Set Disjointness problem to that of answering internal LCF queries

as follows. Given sets A1, . . . , Am of total cardinality N , we construct a string T of

length n := N that consists of the concatenation of the elements of the sets, so that each

set Ai corresponds to the substring T [ai . . bi] of T and {T [ai], T [ai + 1], . . . , T [bi]} = Ai.

Further, consider a copy T ′ of T . Then, for any two sets Ai and Aj , Ai ∩Aj is empty if

and only if the length of an LCF of T [ai . . bi] and T ′[aj . . bj ] is 0.

Conditional lower bounds for the preprocessing time-query time tradeoff are also

known [121, 122], and these also carry over to our problem due to the reduction in the

above lemma. In particular, consider a data structure for the Set Disjointness problem,

and let the preprocessing time be Np and the query time be N q. Then, Kopelowitz et

al. [121] showed that p + 2q ≥ 2 conditional on the 3SUM hypothesis. Very recently,

Kopelowitz and Vassilevska Williams [122] showed that if 1/3 ≤ q < 1, then 2p+ q ≥ 3,

conditional on the so-called Unbalanced Triangle Detection hypothesis.

The proof of Theorem 6.1.2 mimics the proof of Amir et al. [15] for the hardness of

so-called two-range-LCP queries. In the two-range-LCP problem, one is to preprocess a

string so that queries of the following type can be answered: given two ranges I and J ,

return maxi∈I,j∈J LCP(i, j). Amir et al. [15] presented, for any t ∈ [1,
√
n] and constant

ε > 0, an O(n+ n2/(t2 · log n))-size data structure that answers two-range-LCP queries

in O(t · logε n) time.

Now, note that a general internal LCF query can be reduced via binary search to

O(log n) two-range-LCP queries as follows. The length of an LCF between S[a1 . . b1]

and T [a2 . . b2] is at least m if and only if the two-range-LCP on the concatenation of S

and T with intervals [a1 . . b1 −m+ 1] and [|S|+ a2 . . |S|+ b2 −m+ 1] is at least m. We
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summarise the above discussion in the following statement.

Proposition 6.1.3. Given two strings of total length n, a parameter t ∈ [1,
√
n] and a

constant ε > 0, there is an O(n+ n2/(t2 log n))-size data structure that answers internal

LCF queries in O(t · log1+ε n) time.

6.1.2 Internal Queries for Special Substrings

We now show efficient data structures for answering simpler types of internal LCF queries.

In particular, we show how to answer internal LCF queries for a prefix or suffix of S and

a prefix or suffix of T and for a substring of S and T .

Let us denote the length of an LCF of two strings U and V by LCF(U, V ). In our

solutions we use the formula:

LCF(S[a . . b], T [c . . d]) =

max
i=a,...,b,
j=c,...,d

{min{LCP(S[i . . |S|], T [j . . |T |]), b− i+ 1, d− j + 1} }. (6.1)

We also apply the following observation to create range maximum queries data

structures over points constructed from explicit nodes of the suffix tree of S#T , where

# 6∈ Σ ∪ {$}. (As before, we denote the string-depth of a node v by w(v).)

Observation 6.1.4. Let S and T be two strings of length n each. We have

{LCP(S[i . . n], T [j . . n] : i, j ∈ [1, n]} ⊆ {w(v) : v is explicit in T (S#T )}.

Lemma 6.1.5. Let S and T be two strings of length at most n. After O(n log n)-time

and O(n log n)-space preprocessing, an LCF between any prefix or suffix of S and any

prefix or suffix of T can be computed in O(log2 n) time.

Proof. For a node v of T (S#T ) and U ∈ {S, T} we define:

minPref (v, U) = min{i : L(v) is a prefix of U [i . . |U |]},

maxPref (v, U) = max{i : L(v) is a prefix of U [i . . |U |]}.
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We assume that min ∅ = ∞ and max ∅ = −∞. These values can be computed for all

explicit nodes of T (S#T ) in O(n) time in a bottom-up traversal of the tree.

We only consider computing LCF(S[a . . |S|], T [b . . |T |]) and LCF(S[1 . . a], T [b . . |T |])
as the remaining cases can be solved by considering the reversed strings.

In the first case, formula (6.1) has an especially simple form:

LCF(S[a . . |S|], T [b . . |T |]) = max
i≥a, j≥b

LCP(S[i . . |S|], T [j . . |T |])

which lets us use orthogonal range maximum queries to evaluate it. For each explicit

node v of T (S#T ) with descendants from both S and T we create a point (x, y) with

weight w(v), where x = maxPref (v, S) and y = maxPref (v, T ). By Observation 6.1.4,

the sought LCF length is the maximum weight of a point in the rectangle [a, n]× [b, n].

This lets us also recover the LCF itself. The complexity follows from Theorem 2.5.3.

In the second case, formula (6.1) becomes:

LCF(S[1 . . a], T [b . . |T |]) = max
i≤a, j≥b

min(LCP(S[i . . |S|], T [j . . |T |]), a− i+ 1).

The result is computed in one of two steps depending on which of the two terms produces

the minimum. First let us consider the case where LCP(S[i . . |S|], T [j . . |T |]) < a− i+ 1.

For each explicit node v of T (S#T ) with descendants from both S and T we create a

point (x, y) with weight w(v), where x = minPref (v, S)+w(v)−1 and y = maxPref (v, T ).

The answer r1 is the maximum weight of a point in the rectangle [1, a− 1]× [b, n].

In the opposite case we can assume that the resulting internal LCF is a suffix of

S[1 . . a] that does not occur earlier in S. For each explicit node v of T (S#T ) we

create a point (x, y) with weight x′, where x′ = minPref (v, S), x = x′ + w(v)− 1, and

y = maxPref (v, T ). Let i be the minimum weight of a point in the rectangle [a, n]× [b, n].

If i ≤ a, then we set r2 = a− i+ 1. Otherwise, we set r2 = −∞.

In both cases we use the 2D RMQ data structure of Theorem 2.5.3. In the end, we

return max(r1, r2) and the corresponding LCF.

The following lemma provides an efficient solution for the other special case of internal

LCF that we consider.
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Lemma 6.1.6. Let S and T be two strings of length at most n. After O(n)-time

preprocessing, one can compute an LCF between T and any substring of S in O(log n)

time.

Proof. We define B[i] = maxj=1,...,|T | {LCP(S[i . . |S|], T [j . . |T |])}. The following fact was

shown in [9]. Here we give a proof for completeness.

Claim 6.1.7 ([9]). The values B[i] for all i = 1, . . . , |S| can be computed in O(n) time.

Proof. For every explicit node v of T (S#T ) let us compute the length `(v) of the longest

common prefix of L(v) and any suffix of T . The values `(v) are computed in a top-down

manner. If v has as a descendant a leaf from T , then clearly `(v) = w(v). Otherwise, we

set `(v) to the value computed for v’s parent. Finally, the values B[i] can be read at the

leaves of T (S#T ).

The formula (6.1) can be written as:

LCF(S[a . . b], T ) = max
a≤k≤b

{min(B[k], b− k + 1)}.

The function f(k) = b− k + 1 is decreasing. We are thus interested in the smallest

k0 ∈ [a, b] such that B[k0] ≥ b− k0 + 1. If there is no such k0, we set k0 = b+ 1. This

lets us restate the previous formula as follows:

LCF(S[a . . b], T ) = max( max
a≤k<k0

{B[k]}, b− k0 + 1).

Indeed, for a ≤ k < k0 we know that min(B[k], b − k + 1) = B[k], for k = k0 we have

min(B[k], b − k + 1) = b − k0 + 1, and for k0 < k ≤ b we have min(B[k], b − k + 1) ≤
b− k + 1 ≤ b− k0 + 1.

The final formula for LCF length can be evaluated in O(1) time with a data structure

for range maximum queries over B, provided that k0 is known. This lets us also recover

the LCF itself.
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Computation of k0. The condition for k0 can be stated equivalently asB[k0]+k0 ≥ b+1.

We create an auxiliary array B′[i] = B[i] + i. To find k0, we need to find the smallest

index k ∈ [a, b] such that B′[k] ≥ b+ 1. We can do this in time O(log n) by performing a

binary search for k in the range [a, b] of B′ using O(n)-time preprocessing and O(1)-time

range maximum queries (cf. Theorem 2.5.1).

6.1.3 Concat LCF queries

In [9] we (Amir et al.) observed that the problem of computing an LCF after a single

edit operation at position i can be decomposed into two queries out of which we choose

the one with the maximal answer: an occurrence of an LCF either avoids i or it covers i.

The former case can be precomputed. The latter, reduces to answering Concat LCF

queries, formalised below.

Concat LCF

Input: A string T of length n.

Query: Given two substrings U and V of T , compute the longest substring XY of

T such that X is a suffix of U and Y is a prefix of V .

The Concat LCF can be reduced to the so-called Heaviest Induced Ancestors

(HIA) problem, which we now proceed to define.

We say that a tree is labelled if each of its leaves is given a distinct label. For rooted,

weighted, labelled trees T1 and T2, we say that two nodes u ∈ T1 and v ∈ T2 are induced

(by a label `) if and only if there are leaves x and y with the same label (`), such that x

is a descendant of u and y is a descendant of v.

Heaviest Induced Ancestors

Input: Two rooted, weighted, labelled trees T1 and T2 of total size n.

Query: Given a pair of nodes u ∈ T1 and v ∈ T2, return a pair of nodes u′, v′ such

that u′ is ancestor of u, v′ is ancestor of v, u′ and v′ are induced and they have the

largest total combined weight w(u′) + w(v′).

This problem was introduced in [76]; further advances were made in [2, 42]. In the
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following theorem, we use the variant of the data structure from Section 2.1 in [76].

Although the construction time is not stated explicitly in [76], the data structure can be

straightforwardly constructed in the time specified below.

Theorem 6.1.8 ([76]). There is an O(n log2 n)-size data structure for the Heaviest

Induced Ancestors problem, that can be built in O(n log2 n) time and answers queries

in O(log n log logn) time.

The following result was recently shown in [42].

Theorem 6.1.9 ([42]). For any constant ε > 0, there is an O(n1+ε)-size structure for

the Heaviest Induced Ancestors problem, that can be built in O(n1+ε) time and

answers queries in O(1) time.

The following lemma was (implicitly) shown in [9] and explicitly in [2]. We include

its proof, as we will need it in our solution for the partially dynamic LCF problem, and

it can help the reader build intuition for our solution for the fully dynamic LCF problem.

Lemma 6.1.10. Given a string T of length n, we can construct in O(n) time two trees

T1 and T2 of total size O(n), so that, each Concat LCF query for T can be reduced in

O(log log n) time to a constant number of Heaviest Induced Ancestors queries over

T1 and T2.

Proof. We first construct T1 = T (TR) and T2 = T (T ) and the weighted ancestor

data structure of Theorem 2.4.1 for efficiently computing loci of substrings. The leaf

corresponding to (T [1 . . i − 1])R in T1 and to suffix T [i . . |T |] in T2 are labelled with i.

For the sake of HIA queries, we treat T1 and T2 as weighted trees over the set of explicit

nodes. (Recall that each node has a string-depth and this is its weight.) We make the

following observation.

Observation 6.1.11. Explicit nodes u1 of T1 and u2 of T2 are induced if and only if

L(u1)RL(u2) is a substring of T .

Let u be the locus of UR in T1 and v be the locus of V in T2. We can compute these

loci in time O(log logn). By the claim, if both u and v are explicit nodes, then the
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problem reduces to a HIA query for u and v. If only one of u and v is implicit, say u,

then we do the following. Let u be an implicit node along the edge from u1 to u2. We

ask a HIA query for u1 and v, and a HIA query for u2 and v. If u2 is the node of T1

returned by the second query, we decrease the combined weight of this pair of nodes by

|L(u2)| − |U |. Then, we return the answer with maximum combined weight. The case

where both u and v are implicit nodes can be taken care of similarly; in particular, it

reduces to three HIA queries.

6.2 Partially Dynamic LCF

In this section, we describe an algorithm for solving the partially dynamic variant of the

LCF problem, where updates are only allowed in one of the strings, say S, while T is

given in advance and is not subject to change.

Let us assume for now that all the letters of S throughout the execution of the

algorithm occur at least once in T ; we will waive this assumption later. Also, for

simplicity, we assume that S is initially equal to $|S|, for $ 6∈ Σ. We can always obtain

any other initial S by performing an appropriate sequence of updates in the beginning.

Definition 6.2.1. A block decomposition of string S with respect to string T is a

sequence of strings (S1, S2, . . . , Sk) such that S = S1S2 · · ·Sk and every Si is a fragment

of T . An element of the sequence is called a block of the decomposition. A decomposition

is maximal if and only if SiSi+1 is not a substring of T for every i ∈ [1, k − 1].

Maximal block decompositions are not necessarily unique and may have different

lengths, but all admit the following useful property.

Lemma 6.2.2. For any maximal block decomposition of S with respect to T , any substring

of S that occurs in T is contained in at most three consecutive blocks. Furthermore, any

occurrence of an LCF of S and T in S must contain the first letter of some block.

Proof. We prove the first claim by contradiction. If (S1, S2, . . . , Sk) is a maximal block

decomposition of S with respect to T and a fragment of S that occurs in T spans at
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least four consecutive blocks Si, Si+1, Si+2, . . . , Sj , then Si+1Si+2 is a substring of T , a

contradiction.

As for the second claim, it is enough to observe that if an occurrence of an LCF in S

starts in some other than the first position of a block Si, then it must contain the first

letter of the next block, as otherwise its length would be smaller than |Si|, which is a

common substring of S and T .

We will show that an update in S can be processed by considering a constant

number of blocks in a maximal block decomposition of S with respect to T . We first

summarise the basic building block needed for efficiently maintaining such a maximal

block decomposition.

Lemma 6.2.3. Let T be a string of length at most n. After O(n log2 n)-time and

O(n)-space preprocessing, given two fragments U and V of T , one can compute a longest

fragment of T that is equal to a prefix of UV in O(log log n) time.

Proof. We build a weighted ancestor queries structure over the suffix tree of T . We also

build a data structure for answering unrooted LCP queries over the suffix tree of T . In

our setting, such queries can be defined as follows: given nodes u and v of the suffix

tree of T , we want to compute the (implicit or explicit) node where the search for the

path-label of v starting from node u ends. Cole et al. [53] showed how to construct in

O(n log2 n) time a data structure of size O(n log n) that answers unrooted LCP queries

in O(log log n) time. With these data structures at hand, the longest prefix of UV that

is a fragment of T can be computed as follows. First, we retrieve the nodes of the suffix

tree of T corresponding to U and V using weighted ancestor queries in O(log log n) time.

Second, we ask an unrooted LCP query to obtain the node corresponding to the sought

prefix of UV .

Lemma 6.2.4. A maximal block decomposition of a dynamic string S, with respect to a

static string T , can be maintained in O(log logn) time per substitution operation with a

data structure of size O(n log n) that can be constructed in O(n log2 n) time.
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Proof. We keep the blocks on a doubly-linked list and we store the starting positions

of blocks in an O(n)-size predecessor/successor data structure over [1, n] that supports

updates and queries in O(log log n) time using Theorem 2.5.2. This allows us to navigate

in the structure of blocks, and in particular to be able to compute the block in which the

edit occurred and its neighbours.

Suppose that we have a maximal block decomposition B = (S1, . . . , Sk) of S with

respect to T . Let us consider a substitution operation with letter b at position t of block Si,

and let Si = SliaS
r
i , with |Slia| = t. Consider the following block decomposition of string

S′ after the update: B′ = (S1, S2, . . . , Si−1, S
l
i, b, S

r
i , Si+1, . . . , Sk). Note that both Sli and

Sri may be empty. This block decomposition does not need to be maximal. However, since

B is a maximal block decomposition of S, none of the strings S1S2, S2S3, . . ., Si−2Si−1,

Si+1Si+2, Si+2Si+3, . . ., Sk−1Sk occurs in T . Thus, given B′, we repeatedly merge any

two consecutive blocks from (Si−1, S
l
i, b, S

r
i , Si+1) whose concatenation is a substring

of T into one, until this is no longer possible. We have at most four merges before

obtaining a maximal block decomposition B′ of string S′. Each merge is implemented

with Lemma 6.2.3 in O(log log n) time.

As for allowing substitutions of letters that do not occur in T , we simply allow blocks

of length 1 that are not substrings of T in block decompositions, corresponding to such

letters. It is readily verified that all the statements above still hold.

Due to Lemma 6.2.2, for a maximal block decomposition (S1, S2, . . . , Sk) of S with

respect to T , we know that any occurrence of an LCF of S and T in S must contain

the first letter of some block of the decomposition and cannot span more than three

blocks. In other words, it is the concatenation of a potentially empty suffix of Si−1Si and

a potentially empty prefix of Si+1Si+2 for some i ∈ [1, k] (for convenience we consider

the non-existent Sis to be equal to ε). We call an LCF that can be decomposed in such

way a candidate of Si. Our goal is to maintain the candidate proposed by each Si in a

max-heap with the length as the key. We also store a pointer to it from block Si. The

max-heap can be implemented with an O(n)-size data structure that supports updates

and queries in O(log logn) time using Theorem 2.5.2. We assume that each block Si
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stores a pointer to its candidate in the max-heap.

After an update, the candidate of each block Si that satisfies the following two

conditions remains unchanged: (a) Si did not change and (b) neither of Si’s neighbours

at distance at most 2 changed. For the O(1) blocks that changed, we proceed as follows.

First, we remove from the max-heap any candidates proposed by the deleted blocks or

blocks whose neighbours at distance at most 2 have changed. Then, for each new block

and for each block whose neighbours at distance at most 2 have changed, we compute

its candidate and insert it to the max-heap. To compute the candidate of a block Si,

we proceed as follows. We first compute the longest suffix U of Si−1Si and the longest

prefix V of Si+1Si+2 that occur in T in O(log log n) time using Lemma 6.2.3. Then, we

have to ask a Concat LCF query for U and V . This reduces to a constant number of

HIA queries as per Lemma 6.1.10. Finally, for HIA queries we employ either the data

structure of Theorem 6.1.8 or the data structure of Theorem 6.1.9. We thus obtain the

main result of this section.

Theorem 1.5.2. We can maintain an LCF of a dynamic string S and a static string T ,

each of length at most n,

(a) in O(log n log log n) time per substitution operation using O(n log2 n) space, after

an O(n log2 n)-time preprocessing, or

(b) in O(log log n) time per substitution operation using O(n1+ε) space, after an

O(n1+ε)-time preprocessing, for any constant ε > 0.

Let us note that our solution can be easily extended to allow for arbitrary edit

operations, i.e. insertions and deletions of letters as well, with an additive O(log n) factor

for processing each update. We just need to maintain an augmented balanced binary

search tree over the blocks, in order to be able to offset their start and end indices upon

insertions and deletions of letters.
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6.3 Fully Dynamic LCF

In this section, we prove the main result of this chapter.

Theorem 1.5.3. We can maintain an LCF of two initially empty dynamic strings, each

of length at most n, in O(log8 n) amortised time w.h.p. per edit operation.

We start with some intuition. Let us suppose that we can maintain a decomposition

of each string in level-k blocks of length roughly 2k for each level k = 0, 1, . . . , log n

with the following property: any two equal fragments U = S[i . . j] and V = T [i′ . . j′]

are “aligned” by a pair of equal blocks B1 in S and B2 in T at some level k such that

2k = Θ(|U |). In other words, the decomposition of U (resp. V ) at level k consists of

a constant number of blocks, where the first and last blocks are potentially trimmed,

including B1 (resp. B2), and the distance of the starting position of B1 from position i

in S equals the distance of the starting position of B2 from position i′ in T . The idea is

that we can use such blocks as anchors for the LCF. For each level, for each string B

appearing as a block in this level, we would like to design a data structure that:

(a) supports insertions and deletions of strings corresponding to sequences of a constant

number of level-k blocks, each containing a specified block equal to B and a boolean

variable indicating the string this sequence originates from (S or T ), and

(b) can return the LCF among pairs of elements originating from different strings that

is aligned by a pair of specified blocks (that are equal to B).

For each edit operation in either of the strings, we would only need to update O(log n)

entries in our data structures: a constant number of them per level.

Unfortunately, it is not clear how to maintain a decomposition with these properties.

We resort to the dynamic maintenance of a locally consistent parsing of the two strings,

due to Gawrychowski et al. [82]. We exploit the structure of this parsing in order to

apply the high-level idea outlined above in a much more technically demanding setting.
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6.3.1 Locally Consistent Parsing

As also discussed in earlier chapters, at the heart of Theorem 1.3.1 due to Gawrychowski

et al. for maintaining a dynamic collection of strings ([82]) lies a locally consistent parsing

of the strings in the collection that can be maintained efficiently while the strings undergo

updates. It can be interpreted as a dynamic version of the recompression technique of

Jeż [103, 102] (see also [98]) for a static string T . We now describe in more detail the

structure of this parsing for a static string T and then extend the description to the

dynamic variant for a collection of strings.

Recall that a run-length straight-line program (RLSLP) is a context-free grammar

which generates exactly one string and contains two kinds of non-terminals: concatenations

with production rule of the form A→ BC (for symbols B,C) and powers with production

rule of the form A→ Bk (for a symbol B and an integer k ≥ 2).

Let T = T0. We can compute strings T1, . . . , TH , where H = O(log n) and |TH | = 1

in O(n) time using interleaved calls to the following two auxiliary procedures:

RunCompress applied if h is even: for each Br, r > 1, replace all occurrences of Br as

an RLE run by a new letter A. There are no RLE runs of length greater than one

after an application of this procedure.

HalfCompress applied if h is odd: first partition Σ into Σ` and Σr; then, for each pair

of letters B ∈ Σ` and C ∈ Σr such that BC occurs in Th replace all occurrences of

BC by a new letter A.

We can interpret strings T = T0, T1, . . . , TH as an uncompressed parse tree UPT[T ],

by considering their letters as nodes, so that the parent of Th[i] is the letter of Th+1 that

either (a) corresponds to Th[i] or (b) replaced a fragment of Th containing Th[i].1 We say

that the node representing Th[i] is the node left (resp. right) of the node representing

Th[i+1] (resp. Th[i−1]). Every node v of UPT[T ] is labelled with the symbol it represents,

1Uncompressed here means that nodes are allowed to have a single child, as opposed to our definition

of parse trees used in earlier chapters. The actual parse tree can be obtained by contracting such edges.
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denoted by L(v). For a node v corresponding to a letter of Th, we say that the level of v,

denoted by lev(v), is h.

As before, the value val(v) of a node v is defined as the fragment of T corresponding

to the leaf descendants of v and it is an occurrence of gen(A) for A = L(v). A sequence

of nodes in UPT is a layer if the values of those nodes are consecutive fragments of T .

We call a layer v1v2 · · · vr an up-layer when lev(vi) ≤ lev(vi+1) for all i, and a down-layer

when lev(vi) ≥ lev(vi+1) for all i.

In [82], the authors show how to maintain an RLSLP UPT[T ] for each string T in the

collection X , that is consistent with the above constructive description [103, 102]. Each

such RLSLP is guaranteed to have at most c′ logN levels with high probability, where

N is the total length of the strings in X and c′ is a global constant. As also discussed

in Section 2.8, we can reinitialise our data structure after every O(n) operations, so

that N = nO(1), and hence c′ logN ≤ c log n for some global constant c, throughout the

execution of the algorithm.

Let T be a string in the collection X . We have defined the popped sequence of a

fragment T [a . . b] as a sequence labeling a certain layer of nodes of the parse tree of T ,

whose values constitute T [a . . b]. Naturally, this sequence also labels a layer of nodes of

UPT[T ]. We now look more closely at the internals of Theorem 4.1.1, restated here for

convenience.

Theorem 4.1.1 ([98]). If two fragments of strings in X are equal, then their popped

sequences are equal as well. Moreover, w.h.p., each popped sequence consists of O(logN)

RLE runs (maximal powers of a single symbol) and can be constructed in O(logN) time.

The nodes corresponding to symbols in an RLE run share a single parent. Furthermore,

the popped sequence consists of a single symbol only for fragments of length 1.

For each fragment U = T [a . . b] of T , one can compute in O(log n) time a layer

C(U) of nodes in UPT[T ] with value T [a . . b] and has the following property. It can be

decomposed into an up-layer Cup(U) and a down-layer Cdown(U) such that:

� The sequence of the labels of the nodes in Cup(U) can be expressed as a sequence of
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at most c log n symbols and powers of symbols dup(U) = Ar00 A
r1
1 · · ·Armm such that,

for all i, Arii corresponds to ri consecutive nodes at level i of UPT[T ]; ri can be 0

for i < m.

� Similarly, the sequence of the labels of the nodes in Cdown(U) can be expressed

as a sequence of at most c log n symbols and powers of symbols ddown(U) =

Btm
m B

tm−1

m−1 · · ·Bt0
0 such that, for all i, Bti

i corresponds to ti consecutive nodes

at level i of UPT[T ]; ti can be equal to 0.

The concatenation d(U) of dup(U) and ddown(U) is the popped sequence of U . Note that

U = gen(d(U)) = gen(A0)r0 · · · gen(Am)rmgen(Bm)tm · · · gen(B0)t0 . See Figure 6.1 for a

visualisation.

a b a b a b a a b b c d a b a b a b c d

RunCompress

RunCompress

HalfCompress

HalfCompress

RunCompress

RunCompress

HalfCompress

HalfCompress

e f

g g g g g gh h

kk

` m

p q

r

Figure 6.1: An example UPT[T ] for T = T0 = abababaabbcdabababcd. We omit the

label of each node v with a single child u; L(v) = L(u). T3 = kefhkh and T6 = pq. We

denote the nodes Cup(T ) by red (filled) squares and the nodes of Cdown(T ) with blue

(unfilled) squares. dup(T ) = abg2`, ddown(T ) = hg3cd and hence d(T ) = abg2`hg3cd.

Then, Theorem 4.1.1 states that d(U) = d(V ) for any fragment V of any string in the

collection such that U = V . We will use d(·) for substrings and not just for fragments.
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Let us consider any sequence of nodes corresponding, for some j < m, to Arjj with

rj > 1 or Btj
j with tj > 1. We note that Tj must have been obtained from Tj−1 by an

application of HalfCompress, since there are no RLE runs of length greater than one after

an application of procedure RunCompress. Thus, at level j + 1 in UPT[T ], i.e. the one

corresponding to Tj+1, all of these nodes collapse to a single one: their parent in UPT[T ].

Hence, we have the following lemma.

Lemma 6.3.1. Let us consider a fragment U of T with dup(U) = Ar00 A
r1
1 · · ·Armm and

ddown(U) = Btm
m B

tm−1

m−1 · · ·Bt0
0 . Then we have the following:

� The value of Cup(U) is a suffix of the value of a layer of (at most) c log n+ rm − 1

level-m nodes, such that the two layers have the same rightmost node. The last rm

nodes of both layers are consecutive siblings with label Am.

� The value of Cdown(U) is a prefix of the value of the layer consisting of the subsequent

(at most) c log n+ max(tm − 1, 0) level-m nodes. If tm 6= 0, then the first tm nodes

of both of these layers are consecutive siblings with label Bm 6= Am.

While the (uncompressed) parse trees of the strings in the collection are not maintained

explicitly, we have access to the following pointers and functions, among others, which

allow us to efficiently navigate through them. First, we can get a pointer to the root of

UPT[T ] for any string T in the collection. Given a pointer to some node v in UPT[T ] we

can get deg(v) and pointers to the parent of v, the k-th child of v and the nodes to the

left/right of v.

Let us now briefly explain how the dynamic data structure of [82] processes a

substitution in T at some position i, that yields a string T ′. First, the C(T [1 . . i − 1])

and C(T [i+ 1 . . |T |]) are retrieved. These, together with the new letter at position i form

a layer of UPT[T ′]. The sequence of the labels of the nodes of this layer can be expressed

as a sequence of O(log n) symbols and powers of symbols. Then, only the portion of

UPT[T ] that lies above this layer needs to be (implicitly) computed, and the authors

of [82] show how to do this in O(log n) time. In total, we get UPT[T ′] from UPT[T ]

through O(log2 n) insertions and deletions of nodes and layers that consist of consecutive
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siblings. Insertions and deletions of letters in T can be processed analogously in O(log n)

time, and also result in O(log2 n) insertions and deletions of nodes and layers that consist

of consecutive siblings.

6.3.2 Anchoring the LCF

We maintain S and T as they undergo edit operations using Theorem 1.3.1. We will

rely on Lemma 6.3.1 in order to identify an LCF S[i . . j] = T [i′ . . j′] at a pair of topmost

nodes of C(S[i . . j]) and C(T [i′ . . j′]) in UPT[S] and UPT[T ], respectively. In order to

develop some intuition, let us first sketch a solution for the case where UPT[S] and

UPT[T ] do not contain any power symbols throughout the execution of our algorithm.

For each node v in one of the parse trees, let Z`(v) be the value of the layer consisting

of the (at most) c log n level-lev(v) nodes, with v being the layer’s rightmost node, and

Zr(v) be the value of the layer consisting of the (at most) c log n subsequent level-lev(v)

nodes. Now, consider a common substring X of S and T and partition it into the prefix

X` = gen(dup(X)) and the suffix Xr = gen(ddown(X)). For any fragment U of S that

equals X, Cup(U) is an up-layer of the form v1 · · · vm. Hence, by Lemma 6.3.1, X` is a

suffix of Z`(vm). Similarly, Xr is a prefix of Zr(vm). Thus, it suffices to maintain pairs

(Z`(v),Zr(v)) for all nodes v in UPT[S] and UPT[T ], and, in particular, a pair of nodes

u ∈ UPT[S] and v ∈ UPT[T ] that maximises LCP(Z`(u)R,Z`(v)R) + LCP(Zr(u),Zr(v)).

The existence of power symbols poses some technical challenges which we overcome

below.

For each node of UPT[T ], we consider at most one pair consisting of an up-layer and

a down-layer. The treatment of nodes differs, based on their parent. We have two cases.

1. For each node z with deg(z) = 2 and L(z) being a concatenation symbol, for each

child v of z, we consider the following layers:

� The layer Jup(v) of the (at most) c log n level-lev(v) consecutive nodes of

UPT[T ] with v a rightmost node.
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� The layer Jdown(v) of the (at most) c log n + deg(w) subsequent level-lev(v)

nodes of UPT[T ], where w is the parent of the node to the right of v.

2. For each node z of UPT[T ] whose label is a power symbol and has more than one

child, we will consider O(log n) pairs of layers. In particular, for each v, being one

of the c log n + 1 leftmost or c log n + 1 rightmost children of z, we consider the

following layers:

� The layer Jup(v) consisting of (a) the (at most) c log n level-lev(v) consecutive

nodes of UPT[T ] preceding the leftmost child of z and (b) all the children of z

that lie weakly to the left of v, i.e. including v.

� The layer Jdown(v) consisting of the (at most) c log n subsequent level-lev(v)

nodes of UPT[T ]—with one exception. If v is the rightmost child of z and the

node to its right is a child of a node w with more than two children, then

Jdown(v) consists of the c log n+ deg(w) subsequent level-lev(v) nodes.

In particular, we create at most one pair (Jup(v), Jdown(v)) of layers for each node v

of UPT[T ]. Let Y`(v) = val(Jup(v)) and Yr(v) = val(Jdown(v)). Given a pointer to a node

z in UPT[T ], we can compute the indices of the fragments corresponding to those layers

with a straightforward use of the pointers at hand in O(log n) time. With a constant

number of split operations, we can then add the string Yr(v) to our collection within

O(log n) time. Similarly, if we also maintain TR in our collection of strings, we can add

the reverse of Y`(v) to the collection within O(log n) time. We maintain pointers between

v and these strings. Note that each node of UPT[T ] takes part in O(log n) pairs of layers

and these pairs can be retrieved in O(log n) time. Similarly, for each node whose label

is a power symbol, subsets of its children appear in O(log n) pairs of layers; these can

also be retrieved in O(log n) time. These pairs of layers (or rather the pairs of their

corresponding strings maintained in a dynamic collection) will be stored in an abstract

structure presented in the next subsection.

Recall that each update on T is processed in O(log n) time, while it deletes and inserts

O(log2 n) nodes and layers of consecutive siblings. Each of those inserted/deleted nodes
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and layers affects O(log n) pairs of layers as described above, for a total of O(log3 n). The

total time required to add/remove the affected layers is thus O(log4 n). We summarise

the above discussion in the following lemma.

Lemma 6.3.2. We can maintain pairs (Y`(v)R,Yr(v)) for all v in UPT[T ] and UPT[S],

with each string given as a handle from the dynamic collection, in O(log4 n) time w.h.p. per

edit operation. The number of deleted and inserted pairs per edit operation is O(log3 n)

w.h.p.

The following lemma gives us an anchoring property, which is crucial for our approach.

Lemma 6.3.3. For any common substring X of S and T , there exists a partition

X = X`Xr for which there exist nodes u ∈ UPT[S] and v ∈ UPT[T ] such that:

1. X` is a suffix of Y`(u) and Y`(v), and

2. Xr is a prefix of Yr(u) and Yr(v).

Proof. Let dup(X) = Ar00 A
r1
1 · · ·Armm and ddown(X) = Btm

m B
tm−1

m−1 · · ·Bt0
0 .

Claim 6.3.4. Either rm > 1, tm = 0, and gen(dup(X)) is not a suffix of Ac logn+rm
m , or

there exists a node v ∈ UPT[T ] such that:

1. gen(dup(X)) is a suffix of Y`(v), and

2. gen(ddown(X)) is a prefix of Yr(v).

Proof. We assume that rm = 1 or gen(dup(X)) is a suffix of Ac logn+rm
m or tm 6= 0 and

distinguish between the following cases.

Case 1. There exists an occurrence Y of X in T , where the label of the parent of

the rightmost node u of Cup(Y ) is not a power symbol. (In this case rm = 1.) Recall

here, that we did not construct any pairs of layers for nodes whose parent has a single

child. Let v be the lowest ancestor of u with label Am. If u 6= v then all nodes that are

descendants of v and strict ancestors of u have a single child, while the parent of v does

not. In addition, the label of the parent of v must be a concatenation symbol, since only
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new letters are introduced at each level and thus we cannot have new nodes with label

Am appearing to the left/right of any strict ancestor of u. Finally, note that a layer of k

level-lev(v) nodes with v a leftmost (resp. rightmost) node contains an ancestor of each

of the nodes in a layer of k level-lev(u) nodes with u a leftmost (resp. rightmost) node.

Thus, an application of Lemma 6.3.1 for u straightforwardly implies our claim for v.

Case 2. There exists an occurrence Y of X in T , where the label of the parent z of

the rightmost node u of Cup(Y ) is a power symbol. Let W be the rightmost occurrence of

X in T with the rightmost node w of Cup(W ) being a child of z. We have three subcases.

(a) We first consider the case rm = 1. Let us assume towards a contradiction that u is

not one of the c log n+ 1 leftmost or the c log n+ 1 rightmost children of z. Then,

by Lemma 6.3.1 we have that gen(dup(X)) is a suffix of Ac logn
m and gen(ddown(X))

is a prefix of Ac logn
m . Hence, there is another occurrence of X |gen(Am)| positions

to the right of Y , contradicting our assumption that Y is a rightmost occurrence.

(b) In the case where tm 6= 0, u must be the rightmost child of z since Am 6= Bm.

(c) In the remaining case where gen(dup(X)) is a suffix of Ac logn+rm
m , either tm > 0

and we are done, or gen(ddown(Y )) is a prefix of the value of the (at most) c log n

level-m nodes to the right of u. In the latter case, either u is already among the

rightmost c log n+ 1 children of z or there is another occurrence of X |gen(Am)|
positions to the right of Y , contradicting our assumptions on Y .

We have to treat a final case.

Claim 6.3.5. If rm > 1, tm = 0 and gen(dup(X)) is not a suffix of Ac logn+rm
m then there

exists a node v ∈ UPT[T ] such that:

1. gen(Ar00 A
r1
1 · · ·A

rm−1

m−1 Am) is a suffix of Y`(v), and

2. gen(Arm−1
m )gen(ddown(X)) is a prefix of Yr(v).

Proof. In any occurrence Y of X in T , the label of the parent z of the rightmost node

of Cup(Y ) is a power symbol. Let u be the rm-th rightmost node of Cup(Y ). By the
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assumption that gen(dup(X)) is not a suffix of Ac logn+rm
m and Lemma 6.3.1, u must be

one of the c log n leftmost children of z.

The combination of the two claims applied to both S and T yields the lemma.

6.3.3 A Problem on Dynamic Bicoloured Trees

Due to Lemmas 6.3.2 and 6.3.3, our task reduces to solving the problem defined below in

polylogarithmic time per update, as we can directly apply it to R = {(Y`(u)R,Yr(u)) :

u ∈ UPT[S]} and B = {(Y`(v)R,Yr(v)) : v ∈ UPT[T ]}. Note that |R| + |B| = Õ(n)

throughout the execution of our algorithm.

LCP for Two Families of Pairs of Strings

Input: Two families R and B, each consisting of pairs of strings, where each string

is given as a handle from a dynamic collection.

Update: Insertion or deletion of an element in R or B.

Query: Return (P,Q) ∈ R and (P ′, Q′) ∈ B that maximise LCP(P, P ′)+LCP(Q,Q′).

Each element of B and R is given a unique identifier. We maintain two compact tries

TP and TQ. By appending unique letters, we can assume that no string is a prefix of

another string. TP (resp. TQ) stores the string P (resp. Q) for every (P,Q) ∈ R, with

the corresponding leaf coloured red and labelled by the identifier of the pair and the

string P ′ (resp. Q′) for every (P ′, Q′) ∈ B, with the corresponding leaf coloured blue and

labelled by the identifier of the pair. Then, the sought result corresponds to a pair of

nodes u ∈ TP and v ∈ TQ returned by a query to a data structure for the Dynamic

Bicoloured Trees Problem defined below for T1 = TP and T2 = TQ, with node

weights being their string-depths.
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Dynamic Bicoloured Trees Problem

Input: Two weighted trees T1 and T2 of total size at most m, whose leaves are

bicoloured and labelled, so that each label is an integer in O(m) and corresponds to

exactly one leaf of each tree.

Update: Split an edge into two, attach a new leaf to a node, or delete a leaf.

Query: Return a pair of nodes u ∈ T1 and v ∈ T2 with the maximum combined

weight that have at least one red descendant with the same label, and at least one

blue descendant with the same label.

Remark 6.3.6. A static version of this problem has been used for approximate LCF under

the Hamming distance, e.g. in [40, 140].

To complete the reduction, we have to show how to translate an update in R or B into

updates in TP and TQ. Let us first explain how to represent TP and TQ. For each edge,

we store a handle to a string from the dynamic collection, and indices for a fragment

of this string which represents the edge’s label. For each explicit node, we store edges

leading to its children in a dictionary structure indexed by the first letters of the edges’

labels. For every leaf, we store its label and colour. An insert operation receives a string

(given as a handle from a dynamic collection), together with its label and colour, and

should create its corresponding leaf. A delete operation does not actually remove a leaf,

but simply removes its label. However, in order to not increase the space complexity, we

rebuild the whole data structure from scratch after every m updates. This rebuilding

does not incur any extra cost asymptotically; the time required for it can be deamortised

using the time-slicing technique (cf. the proof of Lemma 2.8.1).

Lemma 6.3.7. Each update in R or B implies O(1) updates in TP and TQ that can be

computed in O(log n) time.

Proof. Inserting a new leaf, corresponding to string U , to TP requires possibly splitting

an edge into two by creating a new explicit node, and then attaching a new leaf to an

explicit node. To implement this efficiently, we maintain the set C of path-labels of

explicit nodes of TP in a balanced search tree, sorted in lexicographic order. Using LCP
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queries (cf. Theorem 1.3.1), we binary search for the longest prefix U ′ of U that equals

the path-label of some implicit or explicit node of TP . If this node is explicit, then we

attach a leaf to it. Otherwise, let the successor of U ′ in C be the path-label of node v.

We split the edge (parent(v), v) appropriately and attach a leaf to the newly created node.

This allows us to maintain TP after each insert operation in O(log n) time.

For a delete operation, we can access the leaf corresponding to the deleted string in

O(log n) time using the balanced search tree.

It thus suffices to show a solution for the Dynamic Bicoloured Trees Problem

that processes each update in polylogarithmic time.

We will maintain a heavy-light decomposition of both T1 and T2. This can be done by

using a standard method of rebuilding as used by Gabow [74]. Let L(u) be the number

of leaves in the subtree of u, including the leaves without labels, when the subtree was

last rebuilt. Each internal node u of a tree selects at most one child v and the edge (u, v)

is heavy. All other edges are light. Maximal sequences of consecutive heavy edges are

called heavy paths. The node r(p) closest to the root of the tree is called the root of the

heavy path p and the node e(p) furthest from the root of the tree is called the end of

the heavy path. The following procedure receives a node u of the tree and recursively

rebuilds the heavy paths in its subtree.

1: function decompose(u, r) . r is the root of the heavy path containing u.

2: S ← children(u)

3: v ← argmaxv∈S L(v)

4: if L(v) ≥ 5
6 · L(u) then

5: edge (u, v) is heavy

6: decompose(v, r)

7: S ← S \ {v}

8: for v ∈ S do

9: decompose(v, v)

Every root u of a heavy path maintains the number of insertions I(u) in its subtree
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since it was last rebuilt. When I(u) ≥ 1
6 · L(u), we recalculate the values of L(v) for

nodes v in the subtree of u and call decompose(u, u). This maintains the property that

L(e(p)) ≥ 2
3L(r(p)) for each heavy path p and leads to the following.

Proposition 6.3.8. There are O(logm) heavy paths above any node.

As rebuilding a subtree of size s takes O(s) time, by a standard potential argument,

we get the following. (The bottleneck is in updating I(u)s.)

Lemma 6.3.9. The heavy-light decompositions of T1 and T2 can be maintained in

O(logm) amortised time per update.

The main ingredient of our data structure is a collection of additional data structures,

each storing a dynamic set of points. Each such point structure sends its current result

to a max-heap, and after each update we return the largest element stored in the heap.

The problem each of these point structures are designed for is the following.

Dynamic Best Bichromatic Point

Input: A multiset of at most m bicoloured points from [m]× [m].

Update: Insertions and deletions of points from [m]× [m].

Query: Return a pair of points R = (x, y) and B = (x′, y′) such that R is red, B is

blue, and min(x, x′) + min(y, y′) is as large as possible.

We call the pair of points sought in this problem the best bichromatic pair of points.

In Section 6.3.4, we show the following result by modifying 2D range trees.

Lemma 6.3.10. There is a data structure for Dynamic Best Bichromatic Point

that processes each update in O(log2m) amortised time.

Conceptually, we maintain a point structure for every pair of heavy paths from TP
and TQ. However, the total number of points stored in all point structures at any moment

is only O(m log2m) and the empty structures are not actually created. Consider heavy

paths p of T1 and q of T2. Let ` be a label such that there are leaves u in the subtree of

r(p) in T1 and v in the subtree of r(q) in T2 with the same colour and both labelled by `.
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Then, the point structure should contain a point (x, y) with this colour, where x and y

are the string-depths of the nodes of p and q containing u and v in their light subtrees,

respectively. It can be verified then that the answer extracted from the point structure is

equal to the sought result, assuming that the corresponding pair of nodes belongs to p

and q, respectively. It remains to explain how to maintain this invariant when both trees

undergo modifications.

Splitting an edge does not require any changes to the point structures. Each label

appears only once in T1 and T2, and hence by Proposition 6.3.8 contributes to only

O(log2 n) point structures. Furthermore, by navigating the heavy path decompositions

we can access these point structures efficiently. This allows us to implement each deletion

in O(log4 n) amortised time, employing Lemma 6.3.10. To implement the insertions, we

need to additionally explain what to do after rebuilding a subtree of u. In this case, we

first remove all points corresponding to leaves in the subtree of u, then rebuild the subtree,

and then proceed to insert points to existing and potentially new point structures. As

each insertion affects O(log n) heavy paths, it affects O(log n) rebuilding instances. By

the same standard potential argument as above, each insertion costs O(log4 n) amortised

time per such instance: we add a point, in O(log2 n) time, in O(log2 n) point structures.

Hence insertions require O(log5 n) amortised time.

Wrap-up. Lemma 6.3.3 reduces our problem to the LCP for Two Families of

Pairs of Strings problem for sets R and B of size Õ(n), so that each edit operation in

S or T yields O(log3 n) updates to R and B, which can be performed in O(log4 n) time

due to Lemma 6.3.2. The LCP for Two Families of Pairs of Strings problem

is then reduced to the Dynamic Bicoloured Trees Problem for trees T1 and T2

of size Õ(n), so that each update in R or B yields O(1) updates to the trees, which

can be computed in O(log n) time (Lemma 6.3.7). We solve the latter problem by

maintaining a heavy-light decomposition of each of the trees in O(log n) amortised time

per update (Lemma 6.3.9), and an instance of a data structure for the Dynamic Best

Bichromatic Point problem for each pair of heavy paths. For each update to the
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trees, we spend O(log5 n) amortised time to update the point structures. Thus, each

update in one of the strings costs a total of O(log8 n) amortised time. Finally, note that

we can employ Lemma 2.8.1 to keep the space usage of our data structure Õ(n). (Here,

the preprocessing step would be to employ O(n) edit operations on two empty strings in

order to obtain S and T .)

6.3.4 Dynamic Best Bichromatic Point

In this section we prove Lemma 6.3.10, i.e. we design an efficient data structure for the

Dynamic Best Bichromatic Point problem.

First, we show that we can assume that all x and y coordinates of points are distinct.

Let us replace identical points of the same colour with a single point, with which we

store its multiplicity as satellite information. Then, we perform the following standard

perturbation. Namely, we can (implicitly) replace each red (resp. blue) point (x, y) with

((x|y|0), (y|x|0)) (resp. ((x|y|1), (y|x|1))), and use the lexicographic order to perform

comparisons for each coordinate (cf [62, Section 5.5]). As the data structures that we use

are comparison based, the above transformation does not affect the complexities.

We maintain an augmented dynamic 2D range tree [172] over the multiset of points.

This is a balanced search tree T (called primary) over the x coordinates of all points in

the multiset in which every x coordinate corresponds to a leaf and, more generally, every

node u ∈ T corresponds to a range of x coordinates denoted by x(u). Additionally, every

u ∈ T stores another balanced search tree Tu (called secondary) over the y coordinates

of all points (x, y) ∈ S such that x ∈ x(u). Thus, the leaves of Tu correspond to y

coordinates of such points, and every v ∈ Tu corresponds to a range of y coordinates

denoted by y(v). We interpret every v ∈ Tu as the rectangular region of the plane

x(u) × y(v), and, in particular, each leaf v ∈ Tu corresponds to a single point in the

multiset. Each node v ∈ Tu will be augmented with some extra information that can be

computed in constant time from the extra information stored in its children. Similarly,

each node u ∈ T will be augmented with some extra information that can be computed

in constant time from the extra information stored in its children together with the extra
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information stored in the root of the secondary tree Tu. Irrespectively of what this extra

information is, as explained by Willard and Lueker [172], if we implement the primary

tree as a BB(α) tree and each secondary tree as a balanced search tree, each insertion

and deletion can be implemented in O(log2m) amortised time.

Before we explain what is the extra information, we need the following notion.

Consider a non-leaf node u ∈ T and let u`, ur ∈ T be its children. Let v ∈ Tu be a

non-leaf node with children v`, vr ∈ Tu. The regions A = x(u`)×y(v`), B = x(u`)×y(vr),

C = x(ur)× y(v`) and D = x(ur)× y(vr) partition x(u)× y(v) into four parts. We say

that two points p = (x, y) and q = (x′, y′) with x < x′ are shattered by v ∈ Tu if and

only if p ∈ A and q ∈ D or p ∈ B and q ∈ C (note that the former is only possible when

y < y′ while the latter can only hold when y > y′). See Figure 6.2 for an illustration.

Proposition 6.3.11. Any pair of points in the multiset is shattered by a unique v ∈ Tu
(for a unique u).

T

u

ul ur

Tu

vvl vr
A

B

C

D

A

B

C

D

Figure 6.2: Left: A 2D range tree. Right: The regions A, B, C, D; the best bichromatic

point for each case is denoted by a small square.

Now we are ready to describe the extra information. Each node u ∈ T stores the

best bichromatic pair with x coordinates from x(u). Each node v ∈ Tu stores the

best bichromatic pair shattered by one of its descendants v′ ∈ Tu (possibly v itself).

Additionally, each node v ∈ Tu stores the following information about points of each

colour in its region:

1. the point with the maximum x,

2. the point with the maximum y,
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3. a point with the maximum x+ y.

We need to verify that such extra information can be indeed computed in constant time

from the extra information stored in the children.

Lemma 6.3.12. Let v ∈ Tu be a non-leaf node, and v`, vr be its children. The extra

information of v can be computed in constant time given the extra information stored in

v` and vr.

Proof. This is clear for the maximum x, y and x+ y of each colour, as we can take the

maximum of the corresponding values stored in the children. For the best bichromatic

pair shattered by a descendant v′ of v, we start with considering the best bichromatic

pair shattered by a descendant v′` of v` and v′r of vr. The remaining case is that the

best bichromatic pair is shattered by v itself. Let A,B,C,D be as in the definition of

shattering. Without losing generality we assume that the sought pair is p = (x, y) and

q = (x′, y′) with x < x′, red p and blue q. We consider two cases:

1. p ∈ A and q ∈ D: the best such pair is obtained by taking p with the maximum

x+ y and any q,

2. p ∈ B and q ∈ C: the best such pair is obtained by taking p with the maximum x

and q with the maximum y.

In both cases, we are able to compute the best bichromatic pair shattered by v using the

extra information stored at the children of v. See Figure 6.2.

Lemma 6.3.13. Let u ∈ T be a non-leaf node, and u`, ur be its children. The extra

information of u can be computed in constant time given the extra information stored in

u`, ur and the root of Tu.

Proof. We seek the best bichromatic pair with x coordinates from x(u). If the x

coordinates are in fact from x(u`) or x(ur), we obtain the pair from the children of u.

Otherwise, the pair must be shattered by some v ∈ Tu that is a descendant of the root of

Tu, so we obtain the pair from the root of Tu.
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Chapter 7

Dynamic String Alignment

Our first algorithm heavily relies on Tiskin’s work on efficient distance multiplication

of simple unit-Monge matrices and its applications to the string alignment problem.

Specifically for the LCS problem, Tiskin showed that the semi-local LCS (a restricted

variant of internal LCS) information of two strings of length at most n can be efficiently

retrieved from an Õ(n)-size representation as a permutation matrix PS,T . Based on

his efficient algorithm for computing the (min,+)-product of two simple unit-Monge

matrices, he showed that given permutation matrices PS,T and PS,T ′ , one can efficiently

compute PS,TT ′ . We formalise this in Section 7.1.

In Section 7.2, we first describe our algorithm for maintaining an LCS of two strings

S and T in Õ(n) time per edit operation, and then we extend it to maintaining a string

alignment under integer weights. Our algorithm maintains a hierarchical partition of

strings S and T to fragments of length roughly 2s for each scale s ∈ [0, log n], and

permutation matrices PSi,Tj for all pairs of fragments (Si, Tj) at each scale. Then, upon

an update to S or T , we need to update Θ(n/2s) permutation matrices at each scale s.

This is in contrast with the sequential approach of combining the permutation matrices

in Tiskin’s work.

In Section 7.3, we show that efficient data structures for computing distances in planar

graphs outperform the approach outlined above when the alignment weights cannot be

expressed as small integers.
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7.1 The Alignment Graph and Internal LCS

A longest common subsequence (LCS) of two strings S and T is a longest string that is a

subsequence of both S and T . We denote the length of an LCS of S and T by LCS(S, T ).

Example 7.1.1. An LCS of S = acbcddaaea and T = abbbccdec is abcde; LCS(S, T ) = 5.

The Alignment Graph. For strings S and T , of length m and n respectively, the

alignment graph GS,T of S and T is a directed acyclic graph with vertex set {vi,j : 0 ≤
i ≤ m, 0 ≤ j ≤ n}. For every 0 ≤ i ≤ m and 0 ≤ j ≤ n, the graph GS,T has the following

edges (defined only if both endpoints exist):

� vi,jvi+1,j and vi,jvi,j+1 of length 0,

� vi,jvi+1,j+1 of length 1, present if and only if S[i+ 1] = T [j + 1].

Intuitively, GS,T is an (m + 1) × (n + 1) grid graph (with length-0 edges) augmented

with length-1 diagonal edges corresponding to matching letters of S and T . We think of

the vertex v0,0 as the top left vertex of the grid and the vertex vm,n as the bottom right

vertex of the grid. We shall refer to the rows and columns of GS,T in a natural way. It is

easy to see that LCS(S, T ) equals the length of the highest scoring path between v0,0 and

vm,n in GS,T . An illustration is presented in Figure 7.1.

Internal LCS. Let us now briefly discuss internal LCS queries. In our reduction

from the Set Disjointness problem to the internal LCF problem (Theorem 6.1.2), we

constructed two strings and reduced each Set Disjointness query to checking whether some

(internal) LCF is of length at least 1. This reduction can be straightforwardly adapted

to give a reduction from the Set Disjointness problem to the internal LCS problem,

since, for any two strings U and V , LCF(U, V ) ≥ 1 if and only if LCS(U, V ) ≥ 1. As we

did in Section 6.1.2 for the LCF problem, Tiskin considered an analogously restricted

variant of the internal LCS problem, called semi-local LCS, for which he obtained an

Õ(n)-size data structure, that can be constructed in Õ(n2) time, and answers queries in

O(log n/ log logn) time. We will discuss this data structure in detail below.

124



v0,0 v0,5

v4,5v4,0

a b c a b

c

a

b

a

Figure 7.1: The alignment graph for S = abac and T = abcab. We represent 0-length

edges by dashed black arrows, and 1-length edges by blue arrows. A highest scoring

v0,0-to-v4,5 path is highlighted in green, and corresponds to the LCS aba of length three.

As for the general internal LCS problem, Sakai, building on Tiskin’s work, showed

how to construct in O(n2) time a data structure answering queries in O(n) time [151].

Furthermore, observe that the alignment graph is planar, and that, by slightly modifying

the edge-weights, we can end up with the problem of computing lowest scoring paths

instead of highest scoring ones; see Section 7.3 for details. Thus, we can build a distance

oracle for planar graphs over the alignment graph, and answer each internal LCS query

by querying this oracle. For instance, by using the state-of-the-art distance oracle of Long

and Pettie [125], which was obtained by building upon [80, 41], we obtain an n2+o(1)-size

data structure that answers queries in log2+o(1) n time; this data structure can be built

in O(n3+ε), for any constant ε > 0. An interesting research direction is to investigate

the tradeoff between the construction time and the query time for the internal LCS

problem—as well as for distance oracles for planar graphs.1

1After the submission of this thesis, we have presented an almost optimal data structure for the

internal LCS problem [43].
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Simple unit-Monge Matrices and Semi-local LCS. We index matrices from 0.

Let us define some matrices of interest.

Definition 7.1.2. The distribution matrix σ(M) of an m×n matrix M is the (m+ 1)×
(n+ 1) matrix satisfying σ(M)[i, j] =

∑
r≥i,c<jM [r, c].

Definition 7.1.3. An n× n binary matrix is a permutation matrix if it has exactly one

1 entry in each row and each column. Such a matrix can be represented in O(n) space.

By constructing the 2D orthogonal range counting data structure of Chan and

Pătraşcu (Theorem 2.5.4) over the non-zero entries of a permutation matrix, one obtains

the following lemma.

Lemma 7.1.4 ([161, Theorem 2.15]). An n×n permutation matrix P can be preprocessed

O(n
√

log n) time so that any entry of σ(P ) can be retrieved in time O(log n/ log logn).

Let � be a wildcard letter, i.e. a letter that matches all letters. Tiskin [161] defines an

(m+ n+ 1)× (m+ n+ 1) distance matrix HS,T over GS,�mT�m so that HS,T [i, j] equals

the highest weight of a path from v0,i to vm,m+j in GS,�mT�m . Note that if j = i −m,

then HS,T [i, j] = 0. By convention, if j < i−m, then HS,T [i, j] = j − (i−m) < 0. The

matrix HS,T captures so-called semi-local LCS values as follows; see Figure 7.2 for an

illustration.

HS,T [i, j] =



LCS(S[m− i+ 1 . .m], T [1 . . j]) +m− i if i ≤ m and j ≤ n,

LCS(S[1 . .m+ n− j], T [i−m+ 1 . . n]) + j − n if i ≥ m and j ≥ n,

LCS(S[m− i+ 1 . .m+ n− j], T ) +m− i+ j − n if i ≤ m and j ∈ [n, n+ i],

m if n+ i ≤ j,

LCS(S, T [i−m+ 1 . . j]) if i ≥ m and j ∈ [i−m,n],

j +m− i if j ≤ i−m.

126
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vm,2m+n
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a v1,4
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Figure 7.2: The figure illustrates how HS,T captures semi-local LCS information for

S = abac and T = abcab. We have m = 4 and n = 5. The value HS,T (i, j) captures

the length of the highest scoring path from the i-th blue node to the j-th red node in

the above figure (in the left-to-right order). The underlying idea is that when there are

wildcards � involved, one may always choose to use the diagonal edges corresponding to

them and then fill in the rest of the path. Let us analyse one of the cases thoroughly, the

analysis of the other cases is analogous.

� The highest weight of a path from v0,3 to v4,4+6 is 4, which corresponds to

HS,T (3, 6) = 4 = LCS(S[4− 3 + 1 . . 9− 6], T ) + 4− 3 + 6− 5 = LCS(S[2 . . 3], T ) + 2

(case 3 of the equation above). The highest scoring path (in black), after trimming

diagonal edges corresponding to wildcards, yields a highest scoring path from v1,4

to v3,4+5. Its weight indeed corresponds to LCS(S[2 . . 3], T ) = 2.

� The v0,2-to-v4,4+3 highest scoring path (in green) illustrates case 1 of the

equation above: HS,T (2, 3) = 4 = LCS(S[4 − 2 + 1 . . 4], T [1 . . 3]) + 4 − 2 =

LCS(S[3 . . 4], T [1 . . 3]) + 2.

� The v0,8-to-v4,4+8 highest scoring path (in orange) illustrates case 2 of the equation

above: HS,T (8, 8) = 3 = LCS(S[1 . . 9−8], T [8−4+1 . . 5])+8−5 = LCS(S[1], T [5])+3.

� The v0,6-to-v4,4+4 highest scoring path (in magenta) illustrates case 5 of the equation

above: HS,T (6, 4) = 1 = LCS(S, T [6− 4 + 1 . . 4]) = LCS(S, T [3 . . 4]).
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Remark 7.1.5. Let us try to provide some extra intuition by considering the indel distance,

for which we get a more uniform formula. The indel distance of two strings, denoted

δ(S, T ), is the minimum number of insertions and deletions that are needed to transform

S to T . In other words, δ(S, T ) = |S|+ |T | − 2LCS(S, T ). Then 2m+ j − i− 2HS,T [i, j],

which can be interpreted as the number of length-0 edges on the highest scoring path

from v0,i to vm,m+j in GS,�mT�m , admits a more uniform formula:

2m+ j − i− 2HS,T [i, j] =



δ(S[m− i+ 1 . .m], T [1 . . j]) if i ≤ m and j ≤ n,

δ(S[1 . .m+ n− j], T [i−m+ 1 . . n]) if i ≥ m and j ≥ n,

δ(S[m− i+ 1 . .m+ n− j], T ) if i ≤ m and j ∈ [n, n+ i],

j − i if n+ i ≤ j,

δ(S, T [i−m+ 1 . . j]) if i ≥ m and j ∈ [i−m,n],

i− j if j ≤ i−m.

We now return to the LCS problem. Tiskin shows that the (n+m)× (n+m) matrix

PS,T defined as

PS,T [i, j] = HS,T [i, j] +HS,T [i+ 1, j + 1]−HS,T [i+ 1, j]−HS,T [i, j + 1], (7.1)

is a permutation matrix and satisfies HS,T [i, j] = j + m − i − σ(PS,T )[i, j]. Note that

for constant-length strings S and T , the matrix PS,T can be computed naively in

constant time from HS,T . Conversely, each entry of HS,T can be retrieved in time

O(log(n+m)/ log log(n+m)) after an O((n+m)
√

log(n+m))-time preprocessing of

PS,T by Lemma 7.1.4. Crucially for our approach, Tiskin shows the following result.

Theorem 7.1.6 ([161, Theorem 4.21]). (a) Given PS,T and PS,T ′ for three strings

S, T, T ′, each of length at most n, one can compute PS,TT ′ in O(n log n) time.

(b) Given PT,S and PT ′,S for three strings S, T, T ′, each of length at most n, one can

compute PTT ′,S in O(n log n) time.

Actually, only part (a) of the above theorem is stated explicitly in [161]. Part

(b) can be derived by symmetry as follows; see also [161, Lemma 4.14]. One can
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check using the characterisation of HS,T in terms of the semi-local LCS values that

HS,T [i, j] = HT,S [n+m− i, n+m− j] +m− i+ j − n. In particular, this means that

HS,T can be obtained from HT,S by first performing a 180-degree rotation and then

off-setting the values in every row i by m− i and the values in every column j by j − n.

This, in turn, means that PT,S can be obtained from PS,T just through a 180-degree

rotation, as the offsets are cancelled out in the computation of PS,T [i, j] from HT,S ; see

Equation (7.1). Thus, we can rotate PT,S and PT ′,S to obtain PS,T and PS,T ′ , compute

PS,TT ′ using Theorem 7.1.6(a), and then rotate PS,TT ′ to obtain PTT ′,S .

7.2 Main Algorithm

We show how to maintain the permutation matrix PS,T in O((m+ n) log(m+ n)) time

per update when the strings S and T undergo substitutions, insertions, and deletions of

single letters. Within the stated update time we can recompute the orthogonal range

counting data structure that allows us to report, in O(log(m+ n)/ log log(m+ n)) time,

any element of the matrix HS,T .

The high-level idea is to maintain the permutation matrices PA,B for fragments A

of S and B of T , at exponentially growing scales. Local changes to S and T , such as

substitutions, insertions, and deletions, only affect a single fragment at each scale. We can

therefore use Theorem 7.1.6 to recompute the affected matrices efficiently in a bottom-up

fashion.

We first describe the maintenance of a data structure that can only support substitu-

tions in order to demonstrate the general approach. We will then describe how to also

support insertions and deletions.

7.2.1 Supporting Only Substitutions

We can assume that both S and T are of length n and that n is a power of two; otherwise,

we pad S with $ characters and T with # characters such that $ 6= # and neither $ nor

# is in the alphabet. We define log n + 1 scales, where at scale s, each of S and T is
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partitioned into non-overlapping fragments of length 2s. At every scale, and for every

pair of fragments Si and Tj of S and T , respectively, we store the permutation matrix

PSi,Tj corresponding to HSi,Ti . At scale s, there are (n/2s)2 matrices, each stored in

O(2s) space. Thus, the overall space required by the data structure is O(n2). Building

the data structure in a bottom-up manner requires time
∑logn

s=0 (n/2s)2 · 2s · s = O(n2)

by Theorem 7.1.6.

Suppose, without loss of generality, that a letter of S is substituted (the other case

is symmetric). We work in order of increasing scales s = 0, 1, . . . , log n. Let Si be the

unique fragment of S in scale s that contains the substituted letter. We recompute the

matrices PSi,Tj for each one of the n/2s fragments Tj of T at scale s. At scale s = 0,

both Si and Tj consist of single letters, and we recompute the constant-size permutation

matrices PSi,Tj from scratch in total O(n) time. (In fact, there are only two types of

matrices, one corresponding to the case where the letter Si matches the letter Tj , and

the other corresponding to a mismatch.) To recompute a matrix PSi,Tj at scale s > 0,

let S′i, S
′′
i be the two fragments of S at scale s − 1 such that Si = S′iS

′′
i . Similarly, let

T ′j , T
′′
j be the two fragments of T at scale s − 1 such that Tj = T ′jT

′′
j . We repeatedly

apply Theorem 7.1.6 to PS′i,T ′j , PS′i,T ′′j , PS′′i ,T ′j , PS′′i ,T ′′j to obtain PSi,Tj in O(s · 2s) time.

Thus, the total time to update all affected permutation matrices at all scales (and, in

particular, to obtain the matrix PS,T ) is
∑logn

s=0
n
2s · s · 2s = O(n log2 n).

7.2.2 Supporting Insertions and Deletions

To support insertions and deletions we use the same approach. However, as each update

increases or decreases the length of the string it is applied to, we can no longer use

fixed-length fragments at each scale. At each scale s, we maintain a partition of each

string into consecutive fragments, each of length between 1
4 · 2s and 2 · 2s, such that

the partition at scale s is a refinement of the partition at scale s+ 1. Let us denote by

Rs (resp. Cs) the partition of S (resp. T ) at level s. We only describe the process for

S; the string T is handled analogously. The refinement property for Rs can be stated

formally as follows. For any s′ > s, for each fragment S[a . . b] ∈ Rs there exists a
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fragment S[a′ . . b′] ∈ Rs′ with a′ ≤ a ≤ b ≤ b′. We maintain each Rs as a linked list

of the fragments, which are represented by their start and end indices, sorted by the

start indices in increasing order. Upon an update in S, we update the partitions in a

bottom-up manner.

Let us first describe how to insert a letter in S after the letter at position k. We first

scan Rs for all s and increment by 1 all the start indices that are greater than k and

all the end indices that are at least k. This way, the newly inserted letter is assigned

to a unique fragment in each partition. Then, we process the scales in increasing order,

starting from scale 0. If the fragment U0 ∈ R0 that contains the newly inserted letter has

just become of length greater than 2 ·20 = 2, then we split U0 into two fragments of length

at most 2. Note that this potential split does not violate the refinement property. Then,

we proceed to the next scale. Generally, at scale s, if the length of the fragment Us ∈ Rs
that contains the newly inserted letter does not exceed 2 · 2s, we just proceed to the next

scale. Otherwise, we need to make adjustments, ensuring that the refinement property is

not violated. Note that, if |Us| = 2 · 2s + 1, then, since fragments at scale s− 1 have been

already processed and respect the length constraint, the refinement property implies that

Us is the concatenation of at least three (and at most nine) fragments V1, V2, . . . , Vt at

scale s− 1. Let the middle letter of Us belong to Vi. Then, either
∑

g<i |Vg| ≥ 2s/4 or∑
g>i |Vg| ≥ 2s/4; let us assume without loss of generality that we are in the first case.

We replace U at scale s by V1 · · ·Vi−1 and Vi · · ·Vt. If such a replacement happens at the

highest scale s (with Us = S), then we create a new level s+ 1 with Rs+1 = {Us} = {S}.
Note that the refinement property is maintained and the whole procedure requires O(m)

time.

We now treat the complementary case of deleting S[k]. Again, we first scan Rs for all

scales s and decrement by 1 all the start/end indices that are at least k—ensuring that

none of them becomes negative. If some fragment becomes of length 0, then we remove

it. We again process levels in increasing order. Suppose that the fragment Us ∈ Rs that

contained the deleted letter has just become shorter than 1
4 · 2s. If Rs is the top level of

the decomposition, then we simply remove this level. Otherwise, consider the fragment
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Us+1 ∈ Rs+1 that contains Us. Note that, 1 ≤ |Us| = 1
4 · 2s − 1 implies that the length

|Us|+ 1 of the fragment corresponding to Us prior to the deletion is smaller than 1
4 · 2s+1,

and hence |Us+1| > |Us|. Thus, there exists a fragment V at scale s that is adjacent to

Us and is also a subfragment of Us+1. Let us assume without loss of generality that V

lies to the right of Us—the other case is symmetric. If |V | < 7
4 · 2s, then we can just

replace Us and V in Rs by their concatenation, UsV . Otherwise, let the first element

of the decomposition of V at scale s − 1 be X. In this case, we can replace Us and V

in Rs by UsX and Y = V [|X| . . |V | − 1], since 1
4 · 2s ≤ |UsX| < 1

4 · 2s + 2 · 2s−1 < 2 · 2s

and 1
4 · 2s < 7

4 · 2s − 2 · 2s−1 ≤ |V | − |X| = |Y | < |V | ≤ 2 · 2s. The refinement property is

maintained and the whole procedure requires O(m) time.

We maintain PA,B for each pair of fragments (A,B) ∈ Rs ×Cs at scale s. In the case

where Rs simply consists of S at scale s, while T is still fragmented, we consider Rj for

any j > s to simply consist of S. (Symmetrically for the opposite case.) The number

of pairs of fragments that are affected at scale s is O((n+m)/2s). We compute PA,B,

for each such pair (A,B), using a constant number of applications of Theorem 7.1.6 in

O(s · 2s) time. Thus, the total time to handle scale s is O((n+m)s) and the total time

to handle all scales is O((m+ n) log2(m+ n)).

Remark 7.2.1. Deletions of fragments of either of the strings can also be processed within

the same time complexity with a straightforward generalisation of the above process.

Obtaining the longest common subsequence. We now describe how one can

obtain the longest common subsequence, and not just its length, within Õ(n+m) time.

Let us consider the following auxiliary problem: given some pair of fragments Si, Tj

at scale s > 0, compute the longest common subsequence of either some prefix of Si

(resp. Tj) and some suffix of Tj (resp. Si), or some fragment of Si (resp. Tj) and Tj

(resp. Si). Consider the refinement, at scale s − 1, of Si to U1, . . . , Uk and of Tj to

V1, . . . , V`. Let GS,T (S[i1 . . i2], T [j1 . . j2]) be the subgraph of GS,T induced by the set

of vertices {vi′,j′ : i1 − 1 ≤ i′ ≤ i2, j1 − 1 ≤ j′ ≤ j2}. Our aim is to decompose the

highest scoring path in scope (say va,b-to-vc,d) into subpaths, each lying entirely on some
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GS,T (Ur, Vt). We can then apply this procedure recursively.

PSi,Tj was obtained from the k × ` matrices PUt,Vr through some order of appli-

cations of Theorem 7.1.6. We can store such intermediate matrices, preprocessed as

in Lemma 7.1.4, without any extra asymptotic cost in the complexities. We refine the

path by considering the reverse order. For clarity of presentation, let us assume that

k = ` = 2 and the intermediate matrices were PU1U2,V1 and PU1U2,V2 . We can decompose

the path to at most two subpaths, one lying entirely on J1 = GS,T (U1U2, V1) and one

lying entirely on J2 = GS,T (U1U2, V2). The case where both va,b and vc,d lie on one of

J1 or J2 is trivial. In the other case, we wish to find a node that lies on both J1 and J2

and is on the path. To this end, we query PU1U2,V1 (resp. PU1U2,V2) for the length of the

highest scoring va,b-to-u (resp. u-to-vc,d) path for all nodes u that belong to both J1 and

J2. Using Lemma 7.1.4, this can be done in O(2s · s/ log s) time (for s > 0). Any u for

which the sum of these values equals the length of the highest scoring va,b-to-vc,d path is

a valid vertex to decompose the path. We then recurse, further refining the path. Note

that the va,b-to-vc,d path gets decomposed into O((n+m)/2s) pieces at scale s, for all s.

Hence, by summing over all scales, the total time required for applying this procedure is

O((n+m) log2(n+m)).

Internal LCS queries. Our data structure also enables us to answer queries of the

type LCS(S[i1 . . i2], T [j1 . . j2]) in time Õ(n+m) (in fact, in time Õ(1 + i2− i1 + j2− j1)).

Note that GS,T (S[i1 . . i2], T [j1 . . j2]) can be decomposed in O((n+m) log(n+m)) time

to multiple pieces GS,T (U, V ), overlapping at their boundaries, such that U and V are

of the same scale and there are O((n + m)/2s) pairs (U, V ) of scale s. This can be

done, intuitively, using a greedy approach, that each time uses a piece from the largest

possible scale. One can also think of this as extending a rectangle using a constant

number of layers consisting of pieces corresponding to pairs of strings at scale s, in order

of decreasing s. Finally, a repeated application of Theorem 7.1.6 yields that the total

time complexity is O((n+m) log2(n+m)).
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7.2.3 Extension to String Alignment Under Integer Weights

Let us now consider the problem of computing an alignment of two strings S and T under

integer weights wmatch, wmis and wgap. Recall that wmatch is the weight for aligning a

pair of matching letters, wmis is the weight for aligning a pair of mismatching letters,

and wgap is the weight for letters that are not aligned, and the goal is to compute an

alignment with maximum weight. We may assume that 2wmatch > 2wmis ≥ wgap [161].

In this problem, the goal is to compute a highest scoring path from v0,0 to vm,n in the

following modification ĜS,T of GS,T . Edges of the form vi,jvi+1,j and vi,jvi,j+1 have

weight wgap, while edges of the form vi,jvi+1,j+1 have weight wmatch if T [i+ 1] = S[i+ 1]

and wmis otherwise.

Tiskin shows in Section 6.1 of his monograph [161] that the alignment problem

between strings S and T , can be reduced to the LCS problem between strings S′ and

T ′, obtained as follows. First, replace every letter a in S or in T by the string $µaν−µ,

where $ 6∈ Σ and
µ

ν
=

wmis − 2wgap
wmatch − 2wgap

.

Then, if one defines matrix ĤS,T over ĜS,T analogously to the definition of HS,T over

GS,T , we have that ĤS,T (i, j) = 1
ν ·HS′,T ′(νi, νj).

We maintain the same information as in the previous subsections, making sure that

each fragment of each partition is a multiple of ν. At scale 0, we have only two options

about how PA,B can look like, despite it being a ν × ν matrix; its structure only depends

on whether A = B or not. We precompute all such possible PA,B’s. This way, upon an

update on S or T , updating scale 0 requires O(nν) time. Over all scales, the total update

time is

O
(

logn∑
s=0

nν

2sν
· 2sν · log(2sν)

)
= O

(
nν ·

logn∑
s=0

(s+ log ν)

)
= O(nν log n log(nν)).

The same reasoning shows that the preprocessing time is

O
(

logn∑
s=0

( nν
2sν

)2
· 2sν · log(2sν)

)
= O

(
n2ν ·

logn∑
s=0

(
s+ log ν

2s

))
= O(n2ν log ν).
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As for retrieving the actual alignment, we process O(nν/2sν) pieces at scale s, each

in time 2s log(2sν)/ log log(2sν), as we only try to decompose the path at nodes of the

form viν,jν . The total time over all scales is thus dominated by O(nν log n log(nν)).

The analysis of the time required to answer internal queries is identical to that of

handling an update.

We summarise the results of this section in the following theorem.

Theorem 7.2.2. For integer alignment weights wmatch, wmis and wgap, bounded by w,

the alignment score of two dynamic strings S and T , of total length at most n, as they

undergo edit operations, can be maintained in O(nw log n log(nw)) time per operation,

after an O(n2w logw)-time preprocessing. An optimal alignment of S and T after each

edit operation can be reported at no extra asymptotic cost. In addition, the following

queries are supported:

� Semi-local alignment scores can be computed in O(log(nw)/ log log(nw)) time.

� Fragment-to-fragment alignment scores can be computed in O(nw log n log(nw))

time.

7.3 Handling Large Weights

In this section, we describe an algorithm for string alignment that only relies on the

planarity of ĜS,T . This algorithm outperforms the one from Theorem 7.2.2 when the

alignment weights cannot be transformed to integers bounded by (roughly)
√
n.

Instead of computing a highest scoring path, we can reduce the problem to computing

a shortest path in the alignment DAG. Given wmatch, wmis and wgap, we define w′match = 0,

w′mis = wmatch − wmis and w′gap = 1
2wmatch − wgap. Then, a shortest path with respect

to the new weights (of length W ), corresponds to a highest scoring path with respect to

the original weights (of score 1
2(m+ n)wmatch −W ).

7.3.1 Data Structures for Planar Graphs

Let us first introduce some data structures for shortest paths in planar graphs.
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MSSP. The multiple-source shortest paths (MSSP) data structure of Klein [110] repre-

sents all shortest path trees rooted at the vertices of a single face f in a planar graph

G of size n using a persistent dynamic tree. It can be constructed in O(n log n) time,

requires O(n log n) space, and can report the distance between any vertex of f and any

other vertex in G in O(log n) time. The actual shortest path p can be retrieved in time

O(ρ log log n), where ρ is the number of edges of p.

FR-Dijkstra. Let us consider a subgraph P of a planar graph G, and a face f of

P . The dense distance graph (DDG) of P with respect to f , denoted DDGP,f is a

complete directed graph on the set of vertices F that lie on f . Each edge (u, v) has weight

dP (u, v), equal to the length of the shortest u-to-v path in P . DDGP,f can be computed

in time O((|F |2 + |P |) log |P |) using MSSP. In their seminal paper, Fakcharoenphol

and Rao [65] designed an efficient implementation of Dijkstra’s algorithm on any union

of DDGs—this algorithm is nicknamed FR-Dijkstra. The algorithm exploits the fact

that, due to planarity, certain submatrices of the adjacency matrix of DDGP,f satisfy

the Monge property. We next give a—convenient for our purposes—interface for FR-

Dijkstra, which was essentially proved in [65], with some additional components and

details from [104, 132].

Theorem 7.3.1 ([65, 104, 132]). Dijkstra’s algorithm can be run on the union of a set

of DDGs with O(N) vertices in total (with multiplicities) and an arbitrary set of O(N)

extra edges in time O(N log2N).

Remark 7.3.2. An improvement in the time complexity of Theorem 7.3.1 was shown

in [78].

7.3.2 Direct Application to String Alignment

Our approach is essentially the same as the one for dynamic distance oracles in planar

graphs due to Klein [110], with extensions in [100, 104, 48]. We want to maintain a

data structure that enables us to compute the length of the shortest v0,0-to-vm,n path.

However, instead of a single update to the graph, we have a batch of O(m+ n) updates
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for each update to one of the strings. We rely on the fact that the updates to the graphs

are clustered in a constant number of rows/columns of ĜS,T in order to process them

more efficiently compared to simply using dynamic distance oracles for planar graphs in

a black-box manner.

Let us consider a partition of ĜS,T into O((n/r)2) pieces of size Θ(r) ×Θ(r) each.

We consider the vertices that lie on the infinite face of each piece as its boundary nodes.

Then, as each piece has O(r) boundary vertices, the total number of boundary vertices is

O(n2/r). We compute the MSSP data structure and the DDG for each piece with respect

to its outer face in O(n
2

r2
· r2 log n) = O(n2 log n) time in total. Note that the shortest

path from v0,0 to vm,n can be decomposed to subpaths p1, . . . , pk such that each pi lies

entirely within some piece Pi and pi’s endpoints are boundary nodes of Pi. Thus, we can

compute the length of the shortest v0,0-to-vm,n path by running FR-Dijkstra from v0,0 in

the union of all DDGs in O(n
2

r · log2 n) time. In order to retrieve the actual shortest path,

we can refine the DDG edges of the shortest v0,0-to-vm,n path to the actual underlying

edges using the MSSP data structures for the respective pieces.

Each update to one of the strings affects a constant number of rows or of columns of

the original matrix and these are covered by O(n/r) pieces. The MSSP data structures

and DDGs for these pieces can be recomputed using MSSP in O(nr ·r2 log n) = O(nr log n)

time. The balance is at n2

r · log2 n = nr log n, which yields r =
√
n log n, so the time per

operation is O(n3/2 log3/2 n). If a piece grows (resp. shrinks) too much, we break it into

two pieces (resp. merge it with an adjacent piece and split in the middle) and recompute

the DDGs for the affected pieces.

An optimal alignment of two arbitrary substrings of S and T can be computed in

O(n3/2 log3/2 n) time as follows. First, if the source and the target are not boundary

vertices and belong to the same piece, we can simply compute the optimal alignment

in O(r2) time using the standard dynamic programming solution. Otherwise, we run

FR-Dijkstra on the collection of DDGs, and, possibly, the following extra edges. In the

case where the source (resp. target) is not a boundary vertex, we include O(
√
n log n)

additional edges: for each boundary vertex of the piece containing it, an edge with length
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equal to that of the shortest path from the source to (resp. to the target from) that

boundary vertex. The weights of such edges can be computed in O(
√
n log n · log n) time

using the MSSP data structures at hand.

We summarise the results of this section in the following theorem.

Theorem 7.3.3. Given two strings S and T and alignment weights wmatch, wmis, and

wgap, the optimal alignment of S and T as they undergo insertions, deletions, and

substitutions of letters can be maintained in O(n3/2 log3/2 n) time per operation after an

O(n2 log n)-time preprocessing. In addition, fragment-to-fragment alignment scores can

be computed in O(n3/2 log3/2 n) time.
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with O(1) worst case access time. Journal of the ACM, 31(3):538–544, 1984.

doi:10.1145/828.1884.

[74] Harold N. Gabow. Data structures for weighted matching and nearest common

ancestors with linking. In 1st Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 1990, pages 434–443, 1990. URL: http://dl.acm.org/citation.

cfm?id=320176.320229.

[75] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special

case of disjoint set union. Journal of Computer and System Sciences, 30(2):209–221,

1985. doi:10.1016/0022-0000(85)90014-5.

[76] Travis Gagie, Paweł Gawrychowski, and Yakov Nekrich. Heaviest induced ancestors

and longest common substrings. In Proceedings of the 25th Canadian Conference

on Computational Geometry, CCCG 2013, 2013.

148

https://doi.org/10.1137/S0097539795286119
https://doi.org/10.2307/2034009
https://doi.org/10.2307/2034009
https://doi.org/10.1137/090779759
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1145/828.1884
http://dl.acm.org/citation.cfm?id=320176.320229
http://dl.acm.org/citation.cfm?id=320176.320229
https://doi.org/10.1016/0022-0000(85)90014-5


[77] Paweł Gawrychowski and Wojciech Janczewski. Fully dynamic approximation of

LIS in polylogarithmic time. CoRR, 2020. arXiv:2011.09761.

[78] Paweł Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in

dense distance graphs. In 45th International Colloquium on Automata, Languages,

and Programming, ICALP 2018, pages 61:1–61:15, 2018. doi:10.4230/LIPIcs.

ICALP.2018.61.

[79] Paweł Gawrychowski, Gad M. Landau, Shay Mozes, and Oren Weimann. The

nearest colored node in a tree. Theoretical Computer Science, 710:66–73, 2018.

doi:10.1016/j.tcs.2017.08.021.

[80] Paweł Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen.

Better tradeoffs for exact distance oracles in planar graphs. In 29th Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 515–529, 2018.

doi:10.1137/1.9781611975031.34.

[81] Paweł Gawrychowski and Tatiana Starikovskaya. Streaming dictionary matching

with mismatches. In 30th Annual Symposium on Combinatorial Pattern Matching,

CPM 2019, pages 21:1–21:15, 2019. doi:10.4230/LIPIcs.CPM.2019.21.

[82] Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and

Piotr Sankowski. Optimal dynamic strings. In 29th ACM-SIAM Symposium

on Discrete Algorithms, SODA 2018, pages 1509–1528, 2018. doi:10.1137/1.

9781611975031.99.

[83] Mathieu Giraud. Not so many runs in strings. In 2nd International Conference

on Language and Automata Theory and Applications, LATA 2008, pages 232–239,

2008. doi:10.1007/978-3-540-88282-4_22.

[84] Amy Glen and Jamie Simpson. The total run length of a word. Theoretical

Computer Science, 501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

149

http://arxiv.org/abs/2011.09761
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1016/j.tcs.2017.08.021
https://doi.org/10.1137/1.9781611975031.34
https://doi.org/10.4230/LIPIcs.CPM.2019.21
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1007/978-3-540-88282-4_22
https://doi.org/10.1016/j.tcs.2013.06.004


[85] Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Dynamic

dictionary matching in the online model. In 16th International Symposium on

Algorithms and Data Structures, WADS 2019, pages 409–422, 2019. doi:10.1007/

978-3-030-24766-9\_30.

[86] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for

gap edit distance. In 60th IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2019, pages 1101–1120, 2019. doi:10.1109/FOCS.2019.00070.

[87] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Con-

ditional lower bounds for space/time tradeoffs. In 15th International Sym-

posium Algorithms and Data Structures, WADS 2017, pages 421–436, 2017.

doi:10.1007/978-3-319-62127-2\_36.

[88] Garance Gourdel, Tomasz Kociumaka, Jakub Radoszewski, and Tatiana

Starikovskaya. Approximating longest common substring with k mismatches: The-

ory and practice. In 31st Annual Symposium on Combinatorial Pattern Matching,

CPM 2020, pages 16:1–16:15, 2020. doi:10.4230/LIPIcs.CPM.2020.16.

[89] Szymon Grabowski. New tabulation and sparse dynamic programming based

techniques for sequence similarity problems. Discrete Applied Mathematics, 212:96–

103, 2016. doi:10.1016/j.dam.2015.10.040.
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