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Abstract

Cylindrical Lévy processes provide a unified framework for different kinds of infinite-
dimensional Lévy noise considered in the literature. In the recent papers by Jakubowski
and Riedle, the integral with respect to cylindrical Lévy processes was defined. The aim of the
thesis is to prove the existence and uniqueness of solutions to the stochastic differential equa-
tions driven by such processes. Equations with specific kinds of noises have been considered
for many years, motivating the study of this generalised equation.

To be precise, we are considering the equation dX(t) = F (X(t)) dt+G(X(t)) dL(t). Here
L is a cylindrical Lévy process from U to L0(Ω). Typically, F contains some differential
operator. We assume that F and G satisfy monotonicity and coercivity assumptions and
solve this equation in the so-called variational approach. We cover the case of non-square-
integrable noise of diagonal structure. We derive conditions when the behaviour of jumps of
the cylindrical Lévy process enables the use of the interlacing construction.

In another approach, we construct an integral with respect to cylindrical Lévy process
integrable with some power p, 1 ≤ p < 2, in the Banach space setting. We show existence of
solutions in the semigroup approach.

Thirdly, we consider a canonical stable cylindrical Lévy process. Assuming that the func-
tions appearing in the equation map between domains of certain powers of a generator of a
strongly continuous semigroup we prove existence and uniqueness of solutions using tightness
arguments and the Yamada–Watanabe theorem. In the proofs we make use of tail and moment
inequalities, which are new in the case of cylindrical noise.
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Chapter 1

Introduction

Stochastic PDEs

There are at least two ways to formulate stochastic partial differential equations (SPDEs) and
various concepts of solutions. The first approach is through the random fields considered by
Walsh, see e.g. [105]. He considered PDEs perturbed by a space-time Wiener process, for
instance the heat equation on some domain O ⊂ Rd

du(t, x) = ∆u(t, x) + dW (t, x), t ≥ 0, x ∈ O (1.1)

with a two-parameter real-valued Gaussian process W . A separate question that arises apart
from the existence and uniqueness of solutions is about the regularity of solutions, that is: in
what function space do the functions u(t, ·) live and in what sense one can get the continuity
of t 7→ u(t, ·)? Results of Walsh were generalised in many directions. The case of Lévy stable
noise was done by Balan [5] and Chong [22]. They proved the existence of solutions for various
equations e.g.

du(t, x) = ∆u(t, x) + σ(u(t, x))dL(t, x), t ≥ 0, x ∈ O (1.2)

where σ : R→ R.
The second approach is to consider the equation (1.1) in function spaces from the very

outset and to solve it using techniques from functional analysis. Instead of (1.1) one writes

dX(t) = ∆X(t) + dW (t), (1.3)

where X and W are Hilbert or Banach space-valued processes. More generally, one considers

6



the following non-linear evolution equation driven by Lévy noise

dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t)) dL(t), (1.4)

where X is an unknown process taking values in a Hilbert space H satisfying the initial
condition X(0) = X0, L is a Lévy process in a Hilbert space U , A is a generator of a strongly
continuous semigroup (S(t) : t ≥ 0) on the Hilbert space H, F : H → H and G : H → L(U,H)

maps into the space of linear operators from U to H.
Inside the functional setting, we can identify a semigroup and variational formulations of

the evolution equation which lead to various definitions of the concept of a solution. The
first one, the semigroup approach, was developed by Da Prato and Zabczyk, see e.g. [26].
Equations with Lévy-type noise were considered, for instance by Peszat and Zabczyk [74] who
proved the existence and uniqueness of solutions to (1.4) driven by a U -valued Lévy process.

There are many concepts of a solution to (1.4). When applied to a specific SPDE, it turns
out that one cannot hope for the solution X to be in the domain of the generator A. For this
reason one either considers a weak solution satisfying

〈X(t), h〉 = 〈X0, h〉+

∫ t

0
〈F (X(s)), A∗h〉 ds+

∫ t

0
G∗(X(s))hdL(s), h ∈ H,

or a mild solution satisfying

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dL(s).

Moreover, the solutions can be weak or strong in the classical probabilistic sense: X construc-
ted on an arbitrary probability space or X constructed together with a probability space and
the noise L. The standard argument to prove the existence and uniqueness of solutions to
such equations, assuming the operators F and G are Lipschitz as functions of X, uses a fixed
point argument in a suitably chosen function space.

Solutions to the evolution equation in the functional formulation (1.4) can also be con-
structed without an explicit reference to the semigroup. Another approach is the so-called
‘variational formulation’. Under some assumptions, equation (1.4) can be rewritten as follows.
Assume that there is a Banach space V densely and continuously embedded in H and consider

dX(t) = F̃ (X(t)) dt+G(X(t)) dL(t), (1.5)
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with F : V → V ∗ and G : V → L(U,H). Typically, F̃ equals to some differential operator e.g.
the Laplacian. The conditions imposed on F̃ and G and techniques of constructing solutions
are quite different than in the semigroup approach: it is assumed that F̃ and G satisfy the
so-called monotonicity and coercivity conditions. The solution is obtained as a weak limit
of solutions to the equation (1.5) projected onto n-dimensional subspaces. It requires careful
analysis of the norms of those solutions in each of the spaces on which F̃ and G are defined
and the use of a special version of the Itô formula.

In the thesis we pursue SPDEs both in the variational formulation (Chapter 4) and in the
semigroup approach (Chapters 5 and 6).

Models for the noise

The second modelling choice one needs to make apart from the precise mathematical formu-
lation of the evolution equation, which we described above, is to choose some model for the
noise. As already pointed out above the first two options are either Wiener or Lévy processes.

Perhaps the simplest process one can think of in the context of (1.3) is a Wiener pro-
cess taking values in a Hilbert space. This leads also to the concept of a cylindrical Wiener
process: given a separable Hilbert space U it seems natural to define a process evolving
like independent standard real-valued Brownian motions along the basis vectors and satisfy-
ing E [〈W (t), u〉〈W (s), v〉] = (t ∧ s)〈u, v〉. Such a process would need to be constructed as
∞∑
n=1

wn(t)en, where (en) is an orthonormal basis and (wn) is a sequence of independent stand-

ard Wiener processes. It turns out that such sum does not converge in U . However, one can
define a cylindrical process with similar properties, the term ‘cylindrical’ referring to the fact
that it does not take values in the Hilbert space U under consideration. Instead, W (t) maps
from the Hilbert space into the space of real-valued random variables W (t) : U → L2(Ω;R)

and is given by

W (t)u =

∞∑
n=1

wn(t)〈u, en〉, u ∈ U. (1.6)

In the thesis we consider the cylindrical counterpart of Hilbert-space valued Lévy processes.
Cylindrical Lévy processes were studied in a systematic manner by Applebaum and Riedle in
[2]. They are families of continuous linear mappings L(t) : U → L0(Ω,R) from a separable
Hilbert space into the space of real-valued random variables satisfying the following: for all
n ∈ N and u1, . . . , un ∈ U the finite-dimensional projections

(
L(t)u1, . . . , L(t)un : t ≥ 0

)
are

Lévy processes in Rn. In some cases we we will more generally, take L defined on a dual of a
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separable Banach space.
This definition builds on the well-established theory of cylindrical measures and cylindrical

random variables. The research in the field was carried out in the 70s in France by Schwartz,
Badrikian, Chevet, Maurey and others, see e.g. [3, 4, 64, 97]. In the following years some
research was carried out on cylindrical local martingales and stochastic integration with respect
to cylindrical processes, e.g. Métivier and Pellaumail [68], Kurtz and Protter [58], Brzeźniak
and Zabczyk [18].

The abstract definition of cylindrical Lévy processes stated above includes various classes
of processes. In particular it extends the notion of the cylindrical Brownian motion by allow-
ing non-Gaussian infinitely divisible distributions possibly with infinite moments and having
discontinuous paths. Moreover, one can show that cylindrical Wiener processes are necessarily
of the diagonal form (1.6) with independent terms (the Karhunen–Loève Theorem). On the
contrary, a general cylindrical Lévy processes cannot be written in the form (1.6), since that
would mean that its Lévy measure is concentrated only on the set of multiples of the basis
vectors (en), that is on {λen : λ ∈ R, n ∈ N}.

Nonetheless, processes of the form (1.6) with independent one-dimensional Lévy processes
`n instead of wn are cylindrical Lévy processes and have attracted considerable attention. For
instance as shown in Priola and Zabczyk [78], equation (1.4) with such diagonal noise, F = 0,
diagonal operator A and additive noise can be reduced to an infinite system of independent
equations in one dimension. This model was investigated in the last 10 years by many authors.
It was shown that as soon as the noise is a cylindrical process, the solution can be very irregular,
for instance it may have no càdlàg modification, see Brzeźniak et al. [12] and Liu and Zhai
[61].

Also as shown in Dalang and Quer-Sardanyons [27] for the Gaussian case and Griffiths
and Riedle [40] for the Lévy case, the noises used in the random field approach (see (1.2)) can
also be reformulated as a cylindrical Lévy process. In contrast to the Gaussian setting, the
correspondence holds only for a subclass of cylindrical Lévy processes. In another approach,
Balan [6] considered spatially correlated Lévy noise on nuclear spaces of test functions by
means of the Fourier transform.

Our objectives

In the thesis we show the existence and uniqueness of solutions to the evolution equations
(1.4) and (1.5) in the case when L is a cylindrical process without weak second moments i.e.
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E
[
|L(t)u|2

]
= ∞ for some u ∈ U . Distributions with infinite moments are important from

the point of view of applications due to their fat tails, see e.g. [80] for a discussion of data
networks modelling.

The usual approach to the construction of solution to a stochastic differential equation
driven by a Lévy process requires the use of the Lévy–Itô decomposition, that is separating
the small and the large jumps. For a classical Lévy process L one writes L = L1 +L2, with L1

having jumps bounded from above and L2 being of bounded variation and having only finitely
many jumps on any compact interval. It follows that L1 has all moments finite and therefore
the equation driven by L1 can usually be solved using a fixed point argument in some L2-space.
In this way, one solves the equation up to the stopping time τ of the first jump of L2. The
second step is to include the jumps of L2 by re-defining the solution after time τ . Cylindrical
processes do not take values in a vector space, in contrast, they are families indexed by time
and a vector space, so there is no natural way of defining the above decomposition nor the
notion of the first ‘large’ jump. Therefore the usual technique does not work for cylindrical
Lévy processes.

We propose two ways to address the problem of no semimartingale decomposition. For
the processes of the diagonal form (1.6) one can in fact derive a decomposition using the
decompositions of the one-dimensional components. However, as shown in Chapters 3 and
4, it turns out that one needs to choose a different cut-off level in each dimension to ensure
convergence. Secondly, for general cylindrical Lévy processes one cannot avoid the problem
and needs to deal with the process ‘in one piece’, that is, without separating the ‘small’ and
the ‘large’ jumps. Often the use of non-standard techniques is required, see for instance in
Jakubowski and Riedle [49], where the stochastic integral was constructed using tightness by
decoupling, or Chapter 6 in this thesis, where we derive existence of solutions to the evolution
equation driven by an α-stable noise using moment estimates for p < α.

In the thesis, we present existence and uniqueness results in three settings: a variational
solution for (1.5), a mild solution for (1.4) formulated in Banach spaces and thirdly, a mild
solution for (1.4) driven by a stable cylindrical Lévy process. We now describe the structure of
the thesis. The literature and details about our contribution will be presented at the beginning
of each chapter.
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Outline of the thesis

We start with the preliminary Chapter 2, where we give the precise definition of the cylindrical
Lévy processes. We review the attempts to define a stochastic integral with respect to cyl-
indrical Lévy processes and similar cylindrical processes. Some preliminary definitions and
formulas are recalled also at the beginning of each chapter.

In the following Chapter 3 we extend some auxiliary results from the papers of Applebaum
and Riedle. We improve the decomposition into a drift and a cylindrical martingale and,
more importantly, improve the definition of the integral from Riedle [83]. We define certain
stopping times describing the jump times of the cylindrical Lévy processes and show their
irregular behaviour. We prove that the formula for the angle bracket process of a stochastic
integral holds also in the cylindrical case. Those results, which in some cases are counterparts
of the results from the classical stochastic analysis, are needed later in the construction of
solutions to SPDEs.

The three main chapters which follow all lead to an existence and uniqueness results for
equations of the form (1.4) or (1.5).

In Chapter 4 we consider the equation in the variational setting assuming the standard
monotonicity and coercivity conditions. We start with the case of the noise with finite second
moment. The existence of a solution in the non-square-integrable case is established for the
subclass of diagonal cylindrical Lévy processes using a Lévy–Itô decomposition and stopping
time arguments. We derive conditions on the Lévy characteristics, which guarantee that
there is a Lévy–Itô decomposition. We show that in the case of the most common non-
integrable processes, that is stable processes, one can construct stopping times suitable for the
construction of a solution.

Chapter 5 is devoted to the construction of a Banach space-valued integral and existence of
a mild solution to (1.4). Dealing with Banach space-valued processes poses some difficulties and
requires geometric assumptions about the spaces. In earlier chapters a special role was played
by the Hilbert-Schmidt operators acting between Hilbert spaces, because they map cylindrical
random variables into classical vector-valued random variables. In the Banach space setting,
we propose to consider integrands taking values in the space of p-summing operators, p ∈ [1, 2],
which generalise to Banach spaces the notion of Hilbert-Schmidt operators. By a famous result
of Kwapień and Schwartz they have the same crucial property of mapping cylindrical random
variables into classical vector-valued random variables. In order to prove the continuity of
the integral operator, we need to assume certain geometric properties for the Banach spaces,
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p-integrability of the cylindrical Lévy process and that it has paths of bounded p-variation.
The crucial part of the proof is an application of an inequality by Schwartz on moments of the
cylindrical measures. Existence and uniqueness follow in a standard manner by the Banach
fixed point theorem assuming that the coefficient of the equation are Lipschitz.

Chapter 6 is devoted to the existence of a mild solution to the equation with an α-stable
cylindrical Lévy process, α ∈ (1, 2) i.e. a cylindrical process with the characteristic function
E
[
eiL(t)u

]
= e−t‖u‖

α

for u ∈ U . We start by proving tail and moment estimates for the
stochastic integrals with respect to a stable cylindrical Lévy process. We construct a càdlàg
solution as a limit of the Picard iterations using tightness arguments in the Skorokhod space.
Since we use the Skorokhod representation theorem, we obtain a weak solution defined on a
different probability space. The most intricate part of the proof is the identification of limits,
which requires estimates of p-th moments of approximations, p < α. We get the existence of
the strong solution from the pathwise uniqueness and the Yamada–Watanabe theorem.
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Chapter 2

Notation and preliminaries

Throughout the thesis, E and F denote separable Banach spaces with duals E∗ and F ∗, U and
H denote separable Hilbert spaces, (Ω,F , P ) is a probability space with a filtration (Ft)t≥0

satisfying the usual conditions, and L0(Ω,F , P ;E) denotes the space of equivalence classes of
E-valued random variables, which will be always equipped with the topology of convergence
in probability. Finally, Lp(Ω,F , P ;E) is the space of equivalence classes of random variables,
which are Bochner integrable with power p, for p ≥ 1. If x∗ is a functional on E, we often
denote its value on x by 〈x∗, x〉 = 〈x, x∗〉 = x∗(x). The closed unit ball of E is denoted by BE
and the ball of radius r by BE(0, r). SE is the sphere of radius 1 in E. We write P for the
predictable σ-algebra on [0, T ] × Ω and B(S) for the σ-algebra of Borel sets of a topological
space S. The Lebesgue measure is denoted by Leb.

If ψ is an operator from E into F , we denote its operator norm by ‖ψ‖, or if we want to
make it clear what the domain and codomain of ψ are, by ‖ψ‖L(E,F ). The space of Hilbert-
Schmidt operators from U to H is denoted by LHS(U,H) and the norm in this space by
‖·‖LHS(U,H). The symbol L1(H) denotes the space of nuclear operators on H. `p(R) is the
space of p-summable real-valued sequences, `p(R+) is the subset consisting of non-negative
sequences.

Let T > 0. The space of E-valued càdlàg functions on [0, T ] is called the Skorokhod space
and is denoted by D([0, T ];E). We equip it with the Skorokhod topology as specified in [8, 48].
Similarly, D−([0, T ];E) is the space of càglàd functions.

We say that a sequence of E-valued processes Ψn converges to Ψ on [0, T ] uniformly in
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probability (ucp) if for any ε > 0

P

(
sup
t∈[0,T ]

‖Ψn(t)−Ψ(t)‖ ≥ ε

)
→ 0 as n→∞.

2.1 Cylindrical Lévy processes

For x∗1, . . . , x∗n ∈ E∗ and a Borel set B ∈ B(Rn) a cylindrical set is defined by

C(x∗1, . . . x
∗
n;B) = {x ∈ E : (〈x∗1, x〉, . . . , 〈x∗n, x〉) ∈ B}.

The algebra of all cylindrical sets such that x∗1, . . . x∗n ∈ Γ ⊂ E∗ is denoted by Z(E,Γ). The
algebra of all cylindrical sets is denoted by Z(E) = Z(E,E∗). If Γ is a finite set, then Z(E,Γ)

is a σ-algebra. A function µ : Z(E) → [0,∞] is a cylindrical measure if its restriction the
σ-algebra Z(E,Γ) is a measure for every finite Γ ⊂ E∗. If µ(E) < ∞ we call it finite and if
µ(E) = 1 we call it a cylindrical probability measure.

Let p ≥ 0. A measure µ on B(E) is said to be of order p if∫
E
‖x‖p µ(dx) <∞.

Similarly, a cylindrical measure µ is said to be of weak order p if∫
E
|〈x∗, x〉|p µ(dx) <∞, x∗ ∈ E∗.

For any operator ψ : E → F the pushforward cylindrical measure is denoted with ψ(µ) =

µ◦ψ−1, i.e. (ψ(µ))(C) = µ(ψ−1(C)) for any C ∈ Z(F ). An operator ψ is called p-Radonifying
if for every cylindrical probability µ on E of weak order p, ψ(µ) extends to a measure on F
of order p. It is well known that for any p > 0 an operator acting between Hilbert spaces
ψ : U → H is 0-Radonifying if and only if it is p-Radonifying and if and only if it is Hilbert-
Schmidt, see [101, Th. VI.5.2].

A cylindrical random variable is a linear and continuous mapping

X : E∗ → L0(Ω,F , P ;R).
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Many classical notions from probability theory have their cylindrical counterparts. Cylindrical
distribution of X is defined by

µ : Z(E)→ [0, 1], µ(C(x∗1, . . . , x
∗
n;B)) = P ((Xx∗1, . . . , Xx

∗
n) ∈ B) .

The characteristic function of a cylindrical random variable X (resp. cylindrical probability
measure µ) is defined as a function ϕ : E∗ → C

ϕX(x∗) = E
[
eiXx

∗
]
,

(
resp. ϕµ(x∗) =

∫
E
ei〈x

∗,x〉 µ(dx)

)
.

A cylindrical random variable is said to be induced by a classical random variable if there
exists a random variable Y : Ω→ E such that

Xx∗ = 〈x∗, Y 〉, x∗ ∈ E∗.

An operator ψ : E → F is p-Radonifying if for every weakly p-integrable cylindrical random
variable X : E∗ → Lp(Ω,F , P ) the variable Xψ∗ : F ∗ → Lp(Ω,F , P ) is induced by a classical
p-integrable random variable.

The following definition was given in [2], but we make two changes: we allow an arbitrary
filtration satisfying the usual conditions and we required above the cylindrical random vari-
ables to be continuous as the mappings to L0(Ω,F , P ;R) equipped with the convergence in
probability.

Definition 2.1. A cylindrical Lévy process is a family of cylindrical random variables (L(t) :

t ≥ 0), where L(t) : E∗ → L0(Ω,F , P ;R) such that for any n ∈ N and x∗1, . . . , x
∗
n ∈ E∗ the

n-dimensional process
((L(t)x∗1, . . . L(t)x∗n) : t ≥ 0) (2.1)

is a Lévy process in Rn with respect to the filtration (Ft)t≥0.

The characteristic function of a cylindrical Lévy process is characterised by a triplet
(p, q, ν), where b : E∗ → R is a continuous function, q : E∗ → R is a quadratic form and
ν is a cylindrical measure on Z(E) such that∫

E

(
〈x∗, x〉2 ∧ 1

)
ν(dx) <∞, x∗ ∈ E∗

15



see [2, Th. 2.7] and [82, Th. 3.4]. We have

ϕL(t)(x
∗) = exp (tΨ(x∗)) (2.2)

Ψ(x∗) = ib(x∗)− 1

2
q(x∗) +

∫
E

(
ei〈x

∗,x〉 − 1− 1BR(〈x∗, x〉)〈x∗, x〉
)
ν(dx).

Cylindrical Lévy process L is said to be weakly p-integrable (p ≥ 0) if E [|L(t)x∗|p] < ∞
for all x∗ ∈ E∗ and all (or equivalently some) t > 0. We will frequently make use of the
fact that if L is weakly p-integrable then by the closed graph theorem for each t ≥ 0 the
mapping L(t) : E∗ → Lp(Ω,F , P ) is continuous. We say that a weakly integrable (i.e. weakly
1-integrable) cylindrical Lévy process L is weakly mean-zero if E [L(t)x∗] = 0 for all t > 0 and
x∗ ∈ E∗. In that case we also say that it is a cylindrical Lévy martingale because then all
projections (2.1) are martingales. If L is weakly square-integrable (i.e. E

[
|L(t)x∗|2

]
<∞ for

all x∗ ∈ E∗), the covariance operator Q : E∗ → E∗∗ of L is defined by

〈Qx∗, y∗〉 = E [(L(1)x∗ − E [L(1)x∗]) (L(1)y∗ − E [L(1)y∗])] , x∗, y∗ ∈ E∗.

If L is defined on a Hilbert space U , then the operator Q : U → U is non-negative and
symmetric and therefore has a unique non-negative square root, which we denote by Q1/2, see
[88, Th. 12.33].

2.2 Examples of cylindrical Lévy processes

The following examples of cylindrical Lévy process were studied in [84, 85]

Example 2.2. Every classical E-valued Lévy process L in E induces a cylindrical process by
the formula

L̃(t) : E∗ → L0(Ω,F , P ;R), L̃(t)x∗ = 〈x∗, L(t)〉.

Example 2.3. Let (ek) be an orthonormal basis of a Hilbert space U . A cylindrical Lévy
process is called diagonal if

L(t)u =
∞∑
k=1

`k(t)〈u, ek〉, t ≥ 0, u ∈ U, (2.3)

where (`k) is a sequence of independent, real-valued Lévy processes. Conditions for the a.s.
convergence of the series and continuity of L(t) are given in [84, Lem. 4.2]. Denote the
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characteristics (with respect to the standard truncation function 1BR) of `k by (bk, sk, ρk) for
each k ∈ N. The sum converges and defines a cylindrical Lévy process if and only if the
characteristic functions of `k are equicontinuous at 0 and the following three conditions are
satisfied for every (αk) ∈ `2(R):

(i)
∞∑
k=1

1BR(αk)|αk|

∣∣∣∣∣bk +

∫
1<|x|≤|αk|−1

x ρk(dx)

∣∣∣∣∣ <∞, (2.4)

(ii) (sk) ∈ `∞(R), (2.5)

(iii)
∞∑
k=1

∫
R

(
|αkx|2 ∧ 1

)
ρk(dx) <∞. (2.6)

SPDEs with additive noise of this type have been studied by various authors, see e.g. [12, 78,
77, 61, 75, 62].

Example 2.4. Let N be a Poisson process and let (Xk) be a sequence of independent identic-
ally distributed cylindrical random variables on E∗. The process

L(t) =

N(t)∑
k=1

Xk

is called a cylindrical compound Poisson process.

Example 2.5. A cylindrical Lévy processW on a Hilbert space U with characteristic function

ϕW (t)(u) = e−t‖u‖
2

, t ≥ 0, u ∈ U,

is called a standard cylindrical Wiener process.

Example 2.6. If the characteristic function of a cylindrical Lévy process L is ϕL(t)(x
∗) =

e−t‖x
∗‖α for x∗ ∈ E∗, then L is called a canonical α-stable cylindrical Lévy process. If E = U

is a Hilbert space with an orthonormal basis (ek), then the Lévy measure ν according to [85,
Lem. 2.4] satisfies

ν ◦ π−1
e1,...,en(B) =

α

cα

∫
SRn

∫ ∞
0

1B(rξ)
1

r1+α
dr λn(dξ), B ∈ B(Rn), (2.7)

17



where πe1,...,en : U → Rn is given by πe1,...,en(u) = (〈u, e1〉, . . . , 〈u, en〉), the constant cα is
defined as

cα :=

{
−α cos(απ2 )Γ(−α), for α 6= 1,
π
2 , for α = 1,

(2.8)

and the measure λn on SRn is uniform with the total mass

λn(SRn) =
Γ(1

2)Γ(n+α
2 )

Γ(n2 )Γ(1+α
2 )

. (2.9)

Example 2.7. Let O ⊂ Rd and let N be a Poisson random measure on B(R+ × O) ⊗ B(R)

with intensity Leb⊗ν and

ν(dx) =
1

2Γ(α) cos
(
πα
2

) 1

|x|1+αdx.

A canonical stable Lévy space-time white noise on R+×O is a function Y : B(R+×O)×Ω→ R

Y (B) =

∫
B×R

yN(dx,dy).

A cylindrical Lévy process on L(t) : Lα(O)→ L0(Ω,F , P ) is defined by extending the following

L(t)1A = Y ([0, t]×A)

for all bounded A ∈ B(O).

2.3 Stochastic integration with respect to cylindrical Lévy pro-
cesses

There have been several attempts to define stochastic integration with respect to cylindrical
Lévy processes. Métivier and Pellaumail [68], following an earlier article [37], present an
integral with respect to weakly square-integrable cylindrical martingales in Banach spaces
using the Doléans measures. Their integral is also a cylindrical process. They obtain a
vector-valued integral in the setting of Hilbert spaces. In [67] the authors include also the
case of cylindrical square-integrable local martingales. Since every Lévy local martingale is a
martingale, this extension does not cover non-integrable cylindrical Lévy processes, see [79,
Ex. 29, p. 49].
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The integral constructed by Kurtz and Protter in [58] introduce the integration with
respect to the cylindrical semimartingales (called H#-semimartingales in that publication).
They impose a certain boundedness condition on the integrator (calling them special H#-
semimartingales), which guarantee continuity of the integral mapping. The integrands are
predictable, H-valued and attain values in a compact set with high probability. Since the
integrands are vector-valued rather than operator-valued, the integral is a real-valued process.

In [18] Brzeźniak and Zabczyk considered processes of the form Y (t) = W (`(t)), where ` is
a subordinator andW is a cylindrical Brownian motion on a separable Hilbert space H, taking
values in a Banach space U , such that H is embedded in U with a γ-Radonifying embedding.
If ` is α

2 -stable, then Y is a canonical stable cylindrical Lévy process on H, see [18, Rem.
2.5(4)]. In order to define the integral the authors use the fact that Y is U -valued and rewrite
the integral with respect to Y as an integral with respect to a Poisson random measure.

In [84] Riedle defined the integral for general L as in Definition 2.1 and deterministic
integrands by mimicking Pettis’ idea. The integrability criteria are expressed in terms of the
characteristics of the cylindrical Lévy process, similarly to Chojnowska-Michalik [20]. This
theory was sufficient to consider equations with additive noise, see [54, 55].

A novel approach to stochastic integration is presented in [49] by Jakubowski and Riedle.
In that paper the integrator is a general cylindrical Lévy process as defined in Definition 2.1.
The integrands are càglàd adapted processes. The proofs are based on tightness arguments
and decoupled tangent sequences. The following is a direct consequence of [49, Th. 5.1]

Theorem 2.8 (Jakubowski-Riedle). If Ψn converge to Ψ in probability in the Skorokhod space
D−([0, T ];LHS(U,H)), then for every t ∈ [0, T ]∫ t

0
Ψn(s) dL(s)→

∫ t

0
Ψ(s) dL(s),

in probability.

Often it is not known a priori if the solution of an SPDE has a càglàd modification. For
that reason we will present ways to define the integral for predictable (not necessarily càglàd)
integrands and in this way extend [49]. However, our result will require some additional
structural assumptions on the cylindrical Lévy process.
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Chapter 3

Extensions of the existing theory of
cylindrical Lévy processes

3.1 Lévy–Itô decomposition

In this section we improve the Lévy–Itô decomposition of [2, Cor. 3.12] by relaxing the moments
assumption and showing that the continuity of L(t) implies the continuity of the components
in the decomposition.

Proposition 3.1. Suppose that L is weakly integrable. There exists a linear functional
B : E∗ → R, a cylindrical Wiener process and a cylindrical Lévy martingale M such that

L(t)x∗ = B(x∗)t+W (t)x∗ +M(t)x∗, t ≥ 0, x∗ ∈ E∗,

where M is given by

M(t)x∗ :=

∫
R\{0}

β Ñx∗(t,dβ) (3.1)

and Ñx∗ is the compensated Poisson random measure associated with (L(t)x∗ : t ≥ 0).

Proof. The characteristics of the Lévy process (L(t)x∗ : t ≥ 0) are (b(x∗), q(x∗), x∗(ν)), cf.
(2.2) and its Lévy–Itô decomposition is

L(t)x∗ = b(x∗)t+ q(x∗)Wx∗(t) +

∫
BR

β Ñx∗(t,dβ) +

∫
BcR

β Nx∗(t,dβ), (3.2)
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where Wx∗ is a one-dimensional standard Wiener process. Let Bx∗ := E [L(1)x∗]. Then

Bx∗ = p(x∗) +

∫
BcR

β ν ◦ (x∗)−1(dβ)

and (3.2) can be rewritten as

L(t)x∗ = tBx∗ + q(x∗)Wx∗(t) +

∫
R
β Ñx∗(t,dβ).

Let M be given by (3.1) and W be defined as W (t)x∗ = q(x∗)Wx∗(t) for t ≥ 0 and x∗ ∈ E∗.
We show that each component of the decomposition is continuous. Continuity of B follows

from the continuity of L(1) as a mapping into L1(Ω,F , P ;R):

|Bx∗| ≤ E [|L(1)x∗|] ≤ ‖L(1)‖L(E∗,L1)‖x
∗‖.

Thus L̃(t) := L(t)−tB = W (t)+M(t) is also continuous. According to [101, Prop. IV.3.4] the
continuity of a cylindrical random variable is equivalent to the continuity of its characteristic
function. A close inspection of the proof reveals that in fact the continuity of the characteristic
function at 0 guarantees continuity of the cylindrical random variable. We show that if x∗n → 0,
then ϕW (t)(x

∗
n)→ 1 and ϕM(t)(x

∗
n)→ 1. Suppose for contradiction that for some ε > 0 there

is a subsequence (nk) such that ϕW (t)(x
∗
nk

) ≤ 1− ε. We have

ϕW (t)(x
∗) = exp

(
−t1

2
q(x∗)

)
> 0.

Hence ϕW (t)(x
∗) =

∣∣ϕW (t)(x
∗)
∣∣. Then

1←
∣∣∣ϕL̃(t)(x

∗
nk

)
∣∣∣ = ϕW (t)(x

∗
nk

)
∣∣ϕM(t)(u

∗
nk

)
∣∣ ≤ 1− ε,

which is a contradiction. This finishes the proof of the fact that ϕW (t)(x
∗
n)→ 1. Secondly,

ϕM(t)(x
∗
n) =

ϕL̃(t)(x
∗
n)

ϕW (t)(x∗n)
→ 1

as n→∞, which finishes the proof of the continuity of M(t).

Remark 3.2. The decomposition (3.2) is obviously still valid for general (not necessarily
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integrable) cylindrical Lévy processes. As pointed out in [2] the components are not linear in
x∗, so the only decomposition into cylindrical Lévy processes one can have in general is into

W (t) and b(x∗)t+ q(x∗)Wx∗(t) +

∫
BR

β Ñx∗(tdβ) +

∫
BcR

β Nx∗(t,dβ).

By the same method as above one can show that both components are continuous.

Remark 3.3. The same reasoning gives the following more general result. Let Z,X, Y : E∗ →
L0(Ω,F , P ;R) be linear mappings. Assume that ϕX ≥ 0 in some neighbourhood of 0.
Moreover, assume that X and Y are independent and that Z = X + Y . If Z is continu-
ous, then X and Y are. Note that the assumption that ϕX is real in a neighbourhood of 0

cannot be dropped as the following deterministic example from [101, Ex. 2(c), p. 403] shows:
let f be a discontinuous linear function on E∗ and

Xx∗ := f(x∗), Y x∗ := −f(x∗), for x∗ ∈ E∗.

In this way X + Y = 0 is clearly a continuous cylindrical random variable but neither X nor
Y are.

3.2 Stochastic integration with respect to weakly square-inte-
grable processes

In this Section we improve the results of Riedle [83]. The construction of the integral in
that paper is correct but far from optimal as the space of admissible integrands is small and
unnatural. The construction consists of two steps and we only alter the second step. This
integral will be used in Chapters 3 and 4.

Suppose that L is a weakly square-integrable cylindrical Lévy process with the covariance
operator denoted by Q. We now define a reproducing kernel Hilbert space associated to L;
see e.g. [74, Def. 7.2] or [101, Sec. 111.1.2 and 111.1.3], where a more general case of variables
in Banach spaces is considered. In our setting, we define the reproducing kernel Hilbert space
associated to L as H = Q1/2U . Let Q−1/2 be the inverse of Q1/2 : (KerQ1/2)⊥ → H, see [76,
App. C]. The space H is equipped with the scalar product

〈u, v〉H = 〈Q−1/2u,Q−1/2v〉U , u, v ∈ H.

22



Since for u ∈ H

‖u‖U =
∥∥Q1/2Q−1/2u

∥∥
U
≤
∥∥Q1/2

∥∥∥∥Q−1/2u
∥∥
U

=
∥∥Q1/2

∥∥‖u‖H,
the embedding H ⊂ U is continuous. Thus L restricted to H is still a cylindrical Lévy process.

Let (ek) be an orthonormal basis of (KerQ1/2)⊥. Then (Q1/2ek) is an orthonormal basis
of H, see [76, Prop. C.0.3]. Thus for a linear operator ψ : H → H we have

‖ψ‖2LHS(H,H) =

∞∑
k=1

∥∥ψQ1/2ek
∥∥2

=
∥∥ψQ1/2

∥∥2

LHS(U,H)
.

In particular ψ ∈ LHS(H, H) if and only if ψQ1/2 ∈ LHS(U,H).
In the first step we define ∫ T

0
Ψ(s) dL(s)

for simple integrands Ψ of the form

Ψ(t) = Ψ01{0}(t) +
N−1∑
k=1

Ψk1(tk,tk+1](t), t ∈ [0, T ], (3.3)

where each Ψk : Ω → LHS(H, H) is Ftk -measurable and 0 = t1 < t2 < · · · < tN = T is a
partition of [0, T ] and each Ψk takes only finitely many values. The space of such processes
is denoted by ΛS0 . Let ψ : H → H be a Hilbert-Schmidt operator. Then (L(t)− L(s))ψ∗ is
induced by an H-valued random variable, which we denote Js,t(ψ) or simply (L(t)− L(s))ψ∗.
In this way 〈Js,t(ψ), h〉H = (L(t)− L(s)) (ψ∗h) for all h ∈ H. Let

Ψk =

mk∑
j=1

ψk,j1Ak,j , (3.4)

where for each k the sets Ak,1, . . . , Ak,mk ∈ Ftk form a partition of Ω. Then we define

Js,t(Ψk) =

mk∑
j=1

1Ak,jJs,t(ψk,j)
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and finally ∫ T

0
Ψ(t) dL(t) :=

N−1∑
k=0

Jtk,tk+1
(Ψk).

Lemma 3.4. Suppose that L is weakly mean-zero weakly square-integrable cylindrical Lévy
process. Then for Ψ ∈ ΛS0 we have

E

[∥∥∥∥∫ T

0
Ψ(s) dL(s)

∥∥∥∥2
]

= E
[∫ T

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds

]
. (3.5)

Proof. The result follows from [83, Cor. 4.3] by observing that, if QW denotes the covariance
operator of the Gaussian part of L, then

〈Qu, v〉 = 〈QWu, v〉+

∫
U
〈u, x〉〈v, x〉 ν(dx), u, v ∈ U.

Let Λ2(0, T ;LHS(H, H)) be the space of equivalence classes of processes taking values in
the space of the Hilbert-Schmidt operators from H to H, which are predictable and satisfy

E
[∫ T

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds

]
<∞.

It is naturally equipped with the norm

‖Ψ‖Λ =

(∫ T

0
E
[∥∥∥Ψ(s)Q1/2

∥∥∥2

LHS(U,H)

]
ds

)1/2

.

By Proposition 4.22 in [26], ΛS0 is a dense subspace of Λ2(0, T ;LHS(H, H)). The Itô isometry
in Lemma 3.4 shows that the mapping

ΛS0 3 Ψ 7→
∫ T

0
Ψ(s) dL(s) ∈ L2(Ω,F , P ;H) (3.6)

is continuous, if ΛS0 is equipped with the norm ‖·‖Λ. We extend the mapping (3.6) to
Λ2(0, T ;LHS(H, H)) by continuity. One obtains by repeating the proof of [83, Cor. 4.4] the
following:

Theorem 3.5. For any weakly square-integrable cylindrical Lévy process L and for any Ψ ∈
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Λ2(0, T ;LHS(H, H)) the process(
I(t) :=

∫ t

0
Ψ(s) dL(s) : t ∈ [0, T ]

)
has a càdlàg modification and if L is a cylindrical martingale, then the process I is càdlàg,
mean-zero, square-integrable martingale and (3.5) holds.

The above construction is straightforward and natural. It was however pointed to us by
the referee of [52] that in the case when Q is diagonal one can reduce the problem of defining
the integral with respect to weakly square-integrable cylindrical Lévy process to the case of
integration with respect to a classical process. Let (en) be an orthonormal basis consisting of
eigenvectors of Q with the corresponding sequence of eigenvalues (γn) i.e. Qen = γnen. Let

L̃(t) =

∞∑
n=1

1√
2n

(L(t)en)en.

Note that the series converges in L2(Ω;U) since

E

∥∥∥∥∥
m∑
k=n

1√
2k

(L(t)ek)ek

∥∥∥∥∥
2
 = E

[
m∑
k=n

1

2k
(L(t)ek)

2

]
=

m∑
k=n

1

2k
∥∥Q1/2ek

∥∥2 ≤
∥∥Q1/2

∥∥2
m∑
k=n

1

2k
,

which converges to 0 as n,m→∞.
Let Q̃ be the covariance operator of L̃ and let H̃ be the reproducing kernel Hilbert space

associated to L̃. We have

〈Q̃ek, en〉 = E
[
〈L̃(1), ek〉〈L̃(1), en〉

]
=

1√
2k2n

E [L(t)ekL(t)en] =
1√

2k2n
〈Qek, en〉.

It follows that Q̃en = 1
2nγnen. For ψ ∈ LHS(H, H) define

ψ̃(u) =
∞∑
n=1

〈u, en〉
√

2nψ(en) (3.7)

for u ∈ H̃. We have

∥∥ψ̃Q̃1/2
∥∥2

LHS(U,H)
=

∞∑
n=1

∥∥ψ̃Q̃1/2en
∥∥2

=

∞∑
n=1

1

2n
γn
∥∥ψ̃(en)

∥∥2
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=

∞∑
n=1

1

2n
γn
∥∥√2nψ(en)

∥∥2
=

∞∑
n=1

γn‖ψ(en)‖2 =

∞∑
n=1

∥∥ψQ1/2(en)
∥∥2

=
∥∥ψQ1/2

∥∥2

LHS(U,H)
,

which shows that the series in (3.7) indeed converges for u ∈ H̃ and that ψ̃ ∈ LHS(H̃, H) if
and only if ψ ∈ LHS(H, H) with equal norms.

We have for h ∈ H

〈ψ̃(L̃(t)), h〉 =
∞∑
n=1

〈L̃(t), en〉
√

2n〈ψ(en), h〉 =
∞∑
n=1

L(t)en〈ψ(en), h〉.

On the other hand

〈Jt(ψ), h〉 = L(t)(ψ∗h) =

∞∑
n=1

L(t)en〈ψ∗h, en〉.

Thus ψ̃(L̃(t)) = Jt(ψ) and it follows that∫ T

0
Ψ(s) dL(s) =

∫ T

0
Ψ̃(s) dL̃(s).

for simple processes Ψ ∈ ΛS0 . By continuity, both integrals coincide for any process Ψ ∈
Λ2(0, T ;LHS(H, H)).

3.3 Jumps of cylindrical Lévy processes

Usually, constructing a solution to a stochastic differential equation with a non-integrable
noise requires one to carry out an analysis of jumps of the noise, see e.g. [74, Sec. 9.7] or [47,
Th. IV.9.1]. In what follows we show that the behaviour of the jumps of a cylindrical process
is much more irregular than those of a classical process. This is due to the fact that their
jumps accumulate at zero, or more precisely that the stopping times used in the interlacing
technique are equal to 0 a.s. A similar phenomenon was observed by Balan [5, Rem. 6.7] in
the random field setting, which arose due to the unboundedness of the domain.

For a bounded sequence of positive real numbers c = (cj) we define the sequence of stopping
times by

τc,n(k) := inf

{
t ≥ 0 :

n∑
j=1

(∆L(t)ej)
2 c2

j > k2

}
for each k > 0, n ∈ N.
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The stopping time τc,n(k) is the first time that the n-dimensional Lévy process

(
(L(t)(c1e1), . . . , L(t)(cnen)) : t ≥ 0

)
has a jump of size larger than k. Since τc,n(k) is non-increasing in n, we can define another
sequence of stopping times by

τc(k) := lim
n→∞

τc,n(k) for k > 0. (3.8)

In what follows we show that the distribution of the stopping time τc(k) depends on

mc(k) := sup
n∈N

ν

({
u ∈ U :

n∑
j=1

〈u, ej〉2c2
j > k2

})
for k > 0, (3.9)

where ν is the cylindrical Lévy measure of L.

Proposition 3.6. Fix a cylindrical Lévy process L and c ∈ `∞(R+).

(1) We have for each k > 0:

(i) mc(k) = 0 ⇔ τc(k) =∞ P -a.s;

(ii) mc(k) ∈ (0,∞) ⇔ τc(k) is exponentially distributed with parameter mc(k);

(iii) mc(k) =∞ ⇔ τc(k) = 0 P -a.s.

(2) We have: lim
k→∞

mc(k) = 0 ⇔ lim
k→∞

τc(k) =∞ P -a.s.

Proof. (1) Define the mapping

πc,n : U → U, πc,n(u) =
n∑
j=1

cj〈u, ej〉ej .

Then τc,n(k) is the time of the first jump of size larger than k of the genuine Lévy process Lc,n
defined by

Lc,n(t) =
n∑
j=1

cjL(t)(ej)ej , t ≥ 0.

As the Lévy measure νc,n of Lc,n is given by νc,n :=
(
ν ◦ (πc,n)−1

)
|U\{0}, the stopping time
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τc,n(k) is exponentially distributed with parameter

λc,n(k) := νc,n
(
{u ∈ U : ‖u‖ > k}

)
= ν

({
u ∈ U :

n∑
j=1

c2
j 〈u, ej〉2 > k2

})
.

We see that λc,n(k)↗ mc(k) as n→∞.
(i): Clearly, mc(k) = 0 if and only if λn(k) = 0 for all n ∈ N. Equivalently, Lc,n has no

jumps larger than k for all n ∈ N. This means precisely that τc,n(k) = ∞ a.s. for all n and
consequently that τc(k) =∞ a.s.

(ii), (iii): the characteristic function ϕτc,n(k) of τc,n(k) is given by

ϕτc,n(k) : R→ C, ϕτc,n(k)(x) =
λn(k)

λn(k)− ix
.

The characteristic function ϕτc,n(k) converges to the characteristic function either of the expo-
nential distribution with parameter mc(k) (in the case (ii)) or of the Dirac measure in 0 (in
the case (iii)).

For establishing (2), note that monotonicity of k 7→ τc(k) yields

P
(

lim
k→∞

τc(k) =∞
)

= P

(⋂
t∈N

⋃
k∈N

⋂
l≥k
{τc(l) > t}

)
= lim

t→∞
lim
k→∞

P (τc(k) > t) .

Since P (τc(k) > t) = exp(−tmc(k)), the proof of (2) is completed.

Note that if ν is a Lévy measure of a Hilbert space-valued Lévy process, then

mc(k) = ν

({
u ∈ U :

∞∑
j=1

〈u, ej〉2c2
j > k

})
. (3.10)

For cj = 1, j ∈ N, we get an even simpler representation: mc(k) = ν(U \ BU (0, k)). In this
case it is well known that the time of the first jump of size larger than k

σ(k) := inf {t ≥ 0 : ‖∆L(t)‖ > k}

has exponential distribution with parameter mc(k), see [92, Th. 21.3]. Moreover, since the
Lévy measure is finite outside any neighbourhood of 0 one obtains that mc(k)→ 0 as k →∞.
This shows that σ(k)→∞ a.s.
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On the other hand, if the noise is cylindrical the stopping times τc,n(k) may accumulate
at zero, i.e. τc(k) = 0 P -a.s. Also, when ν is a cylindrical measure we must use the formula

(3.9) rather than (3.10) as the set
{
u ∈ U :

∞∑
j=1
〈u, ej〉2c2

j > k
}

is not cylindrical.

Example 3.7. The most natural, that is constant, truncation level is not suitable for most
non-integrable processes. For instance let L be the canonical stable cylindrical Lévy process
on U from Example 2.6. Then as stated in [85] (see the proof of Th. 5.1)

lim
n→∞

ν

({
u ∈ U :

n∑
j=1

〈u, ej〉2 > k2

})
= lim

n→∞

1

cαk

Γ
(

1
2

)
Γ
(
n+α

2

)
Γ
(
n
2

)
Γ
(

1+α
2

) =∞.

An example where cj can be taken constant will be presented in the Example 4.17.

Remark 3.8. A similar technique was used in [22] in the random field formulation to deal
with the unboundedness of the domain O on which an SPDE is considered. Let N be a random
measure on R+ ×O×R. The author adjusts the threshold for the size of the jump according
to its location:

τ(k) := inf

{
t ≥ 0 :

∫ t

0

∫
O

∫
R
1{|z|>kh(x)}Ñ(ds, dx,dz) 6= 0

}
,

for h(x) = 1 + |x|η, This enables the author to obtain a sequence τ(k), which converges to
+∞ as k →∞.

3.4 Diagonal cylindrical Lévy processes

A typical case of a diagonal Lévy process of Example 2.3 is when the components `k have same
distribution up to constants i.e. when `k = σkhk for (σk) ⊂ R and a sequence of independent
identically distributed Lévy processes (hk).

Lemma 3.9. Let

L(t)u =
∞∑
k=1

〈u, ek〉σkhk(t), u ∈ U,

where hk are independent identically distributed symmetric square-integrable non-trivial Lévy
martingales in R with characteristics (0, sk, ρ).

(i) L is a weakly square-integrable cylindrical Lévy process if and only if the sequences (σk)

and (sk) are bounded.
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(ii) L is induced by a U -valued Lévy process if and only if (σk) and (sk) belong to `2(R).

Proof. The Gaussian case has been considered in [84, Ex. 4.3]. Therefore we consider only the
case when hk are purely discontinuous non-trivial Lévy processes.

(i): Suppose that (σk) is bounded. In order to show that L is a cylindrical Lévy process
we verify conditions (2.4)–(2.6). Condition (2.4) is satisfied due to symmetry. We only need
to verify condition (2.6). Note that the Lévy measure of σkhk is given by ρj = ρ ◦m−1

σj , where
mσj : R→ R is defined by mσj (x) = σjx. Then

∞∑
k=1

∫
R

(
|αkx|2 ∧ 1

)
ρk(dx) =

∞∑
k=1

∫
R

(
|αkσkx|2 ∧ 1

)
ρ(dx) ≤

∫
R
x2 ρ(dx)

∞∑
k=1

α2
kσ

2
k <∞.

The characteristic functions of σkhk(1) satisfy

ϕσkhk(1)(x) = E
[
eixσkhk(1)

]
= ϕh1(1)(σkx), for i ∈ N and x ∈ R.

Since ϕh1(1) is continuous at 0, for any ε > 0 we can find δ > 0 such that
∣∣1− ϕh1(1)(x)

∣∣ < ε

for |x| < δ. Then for |x| < δ′ := δ/‖σ‖`∞ we have
∣∣1− ϕσihi(1)(x)

∣∣ =
∣∣1− ϕh1(1)(σix)

∣∣ < ε

for |x| < δ′. This proves the equicontinuity of ϕσihi(1) at 0. Thus L(t) is well defined and
continuous by [84, Lem. 4.2]

Secondly we check that it is weakly square-integrable. Fix u ∈ U and let

Sn =
n∑
k=1

`k(t)〈u, ek〉, S =
∞∑
k=1

`k(t)〈u, ek〉.

Then

E
[
S2
n

]
=

n∑
k=1

E
[
`2k(t)

]
〈u, ek〉2 = E

[
h2

1(t)
] n∑
k=1

〈u, ek〉2σ2
k ≤ E

[
h2

1(t)
] ∞∑
k=1

〈u, ek〉2σ2
k <∞.

Therefore the sequence (Sn) is uniformly integrable and by the Vitali theorem S is square-
integrable and E

[
|Sn − S|2

]
→ 0.

Conversely, if (σk) is unbounded then there exists a subsequence (σnk) such that (1/σnk)

belongs to `2(R). For a sequence defined by

αi :=

{
1
σnk

, if i = nk for some k,

0, otherwise,
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we have

∞∑
k=1

∫
R

(
|αkx|2 ∧ 1

)
ρk(dx) =

∞∑
k=1

∫
R

(
|αnkσnkx|

2 ∧ 1
)
ρ(dx) =

∞∑
k=1

∫
R

(
x2 ∧ 1

)
ρ(dx) =∞.

(ii): Applying Priola and Zabczyk [77, Lem. 2.3], L is is induced by a U -valued process if
and only if

∞∑
k=1

∫
R

(
x2 ∧ 1

)
ρk(dx) < +∞.

Now, if σ ∈ `2(R), then we estimate

∞∑
k=1

∫
R

(
x2 ∧ 1

)
ρk(dx) =

∞∑
k=1

∫
R

(
(σkx)2 ∧ 1

)
ρ(dx) ≤

∞∑
k=1

σ2
k

∫
R
x2 ρ(dx) <∞,

which proves that L is induced by a U -valued process. Conversely, suppose that (σn) /∈ `2(R)

and let a > 0 be such that ρ(BR(0, a)c) > 0. We have

∞∑
n=1

∫
R

(
(σnx)2 ∧ 1

)
ρ(dx) ≥

∞∑
n=1

(
(σna)2 ∧ 1

)
ρ(BR(0, a)c).

Now observe that either there is a subsequence (σnk) with |σnk | ≥ 1
a , in which case

∞∑
n=1

∫
R

(
(σnx)2 ∧ 1

)
ρ(dx) ≥

∞∑
k=1

(
(σnka)2 ∧ 1

)
ρ(BR(0, a)c) ≥

∞∑
k=1

ρ(BR(0, a)c) =∞,

or there exists N ∈ N such that for all n ≥ N we have |σn| < 1
a , in which case

∞∑
n=1

∫
R

(
(σnx)2 ∧ 1

)
ρ(dx) ≥

∞∑
n=N

(σna)2ρ(BR(0, a)c) =∞

because σ /∈ `2(R).

Lemma 3.10. If L is a diagonal cylindrical Lévy process on a Hilbert space U , then its
cylindrical Lévy measure ν uniquely extends to a σ-finite measure on B(U) and is of the form

ν(A) =
∞∑
k=1

ρk ◦m−1
ek

(A) for all A ∈ B(U), (3.11)
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where mek : R→ U is given by mek(x) = xek.

Proof. It is shown in [84, Lem. 4.2] that the cylindrical Lévy measure ν of L is given by
(3.11) but as a finitely additive set function restricted to the cylindrical algebra Z(E). In
order to show that ν is σ-additive, let A1, A2, · · · ∈ Z(E) be pairwise disjoint sets with

A :=
∞⋃
k=1

Ak ∈ Z(U). The Tonelli theorem implies

ν (A) =

∞∑
k=1

ρk ◦m−1
ek

( ∞⋃
i=1

Ai

)
=

∞∑
k=1

∞∑
i=1

ρk ◦m−1
ek

(Ai)

=

∞∑
i=1

∞∑
k=1

ρk ◦m−1
ek

(Ai) =

∞∑
i=1

ν(Ai).

By the Carathéodory extension theorem (see [94, Th. 6.1]) ν extends to a measure on the
σ-algebra generated by Z(U), which is equal to B(U) by [101, Th. I.2.1].

3.5 Angle bracket process

Recall that for a square-integrable càdlàg martingale M in H, the angle bracket process
(〈M,M〉(t) : t ≥ 0) is defined as the unique increasing, predictable process such that (‖M(t)‖2−
〈M,M〉(t) : t ≥ 0) is a martingale; see e.g. [66, Sec. 20]. The operator-valued angle bracket
〈〈M,M〉〉 is defined as the unique increasing, predictable process taking values in the space of
non-negative, nuclear operators such that

(
M(t)⊗M(t)−〈〈M,M〉〉(t) : t ≥ 0

)
is a martingale.

The formula for the angle brackets of an integral with respect to a genuine Lévy martingale is
well known, see e.g. [74, Cor. 8.17] or [66]. Now we establish the same result for the integral
with respect to the cylindrical Lévy martingales.

Proposition 3.11. Let L be a weakly mean-zero, weakly square-integrable cylindrical Lévy
process. Take Ψ ∈ Λ2(0, T ;LHS(H, H)) and let

I(t) :=

∫ t

0
Ψ(s) dL(s), for t ∈ [0, T ].

Then

(i) 〈I, I〉(t) =

∫ t

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds for all t ∈ [0, T ] P -a.s.
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(ii)
〈〈
I(Ψ), I(Ψ)

〉〉
(t) =

∫ t

0
Ψ(s)QΨ(s)∗ ds for all t ∈ [0, T ] P -a.s.

Proof. Note that I is a càdlàg, mean-zero, square-integrable martingale by Theorem 3.5 and
thus the angle brackets exist. We now prove part (i).

Let Ψ ∈ ΛS0 be given by (3.3) and (3.4). Our aim is to verify that the process X defined
by

X(t) :=

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥2

H

−
∫ t

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds, t ∈ [0, T ],

is a martingale. We first show that for any h ∈ H,(〈∫ t

0
Ψ(s) dL(s), h

〉2

H

−
∫ t

0

∥∥∥Q1/2Ψ(s)∗h
∥∥∥2

U
ds : t ∈ [0, T ]

)
(3.12)

is a martingale. Fix 0 ≤ s < t ≤ T and assume without loss of generality that s = tk0 for
some k0 and t = tN0 for some N0. We have〈∫ t

0
Ψ(s) dL(s), h

〉2

H

=

(
N0−1∑
k=1

mk∑
i=1

1Ak,i(L(tk+1)− L(tk))(ψ
∗
k,ih)

)2

=

N0−1∑
k,l=1

mk∑
i=1

ml∑
j=1

1Ak,i1Al,j (L(tk+1)− L(tk))(ψ
∗
k,ih)(L(tl+1)− L(tl))(ψ

∗
l,jh).

We have

E
[
1Ai,k1Aj,l(L(tk+1)− L(tk))(ψ

∗
k,ih)(L(tl+1)− L(tl))(ψ

∗
l,jh)|Fs

]
=


1Ak,i1Al,j (L(tk+1)− L(tk)(ψ

∗
k,ih)(L(tl+1)− L(tl))(ψ

∗
l,jh), k, l < k0,

1Ak,i(tk+1 − tk)〈Qψ∗k,ih, ψ∗k,ih〉U , k = l ≥ k0 and i = j,

0, otherwise.

Thus

E

[〈∫ t

0
Ψ(s) dL(s), h

〉2

H

∣∣∣Fs]
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=
∑
k,l<k0

mk∑
i=1

ml∑
j=1

1Ak,i1Al,j (L(tk+1)− L(tk)(ψ
∗
k,ih)(L(tl+1)− L(tl))(ψ

∗
l,jh)

+

N0−1∑
k=k0

mk∑
i=1

1Ak,i(tk+1 − tk)〈Qψ∗k,ih, ψ∗k,ih〉U

=

〈∫ s

0
Ψ(r) dL(r), h

〉2

H

+

∫ t

s
〈QΨ(r)∗,Ψ(r)∗〉U dr,

which can be rewritten as

E

[〈∫ t

0
Ψ(r) dL(r), h

〉2

H

−
∫ t

0

∥∥∥Q1/2Ψ(r)∗h
∥∥∥2

U
dr
∣∣∣Fs]

=

〈∫ s

0
Ψ(u) dL(r), h

〉2

H

−
∫ s

0

∥∥∥Q1/2Ψ(r)∗h
∥∥∥2

U
dr

i.e. (3.12) is a martingale.
Let (fj) be an orthonormal basis of H. Substituting h = fj in (3.12) we obtain that

Xn(t) :=
n∑
j=1

(〈∫ t

0
Ψ(s) dL(s), fj

〉2

H

−
∫ t

0

∥∥Q1/2Ψ(s)∗fj
∥∥2

U
ds

)

defines a martingale. Moreover, by the Parseval identity for each t ∈ [0, T ], almost surely
Xn(t) converges to X(t). Note that Xn is dominated by∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥2

H

+

∫ t

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds,

which is integrable. By the Lebesgue dominated convergence theorem X is a martingale.
Take Ψ ∈ Λ2(0, T ;LHS(H, H)). There exists a sequence (Ψn) ⊂ ΛS0 such that ‖Ψ−Ψn‖Λ →

0 and
∫ T

0 Ψn(s) dL(s) →
∫ T

0 Ψ(s) dL(s) in L2(Ω,F , P ;H). Fix 0 ≤ s ≤ t. We know that for
Ψn the integral process is a martingale i.e.

E

[∥∥∥∥∫ t

0
Ψn(r) dL(r)

∥∥∥∥2

H

−
∫ t

0

∥∥∥Ψn(r)Q1/2
∥∥∥2

LHS(U,H)
dr

∣∣∣∣∣Fs
]

=

∥∥∥∥∫ s

0
Ψn(r) dL(r)

∥∥∥∥2

H

−
∫ s

0

∥∥∥Ψn(r)Q1/2
∥∥∥2

LHS(U,H)
dr. (3.13)
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Taking n→∞ gives that (3.13) holds with Ψn replaced by Ψ.
We now show (ii). Taking h = fi + fj and h = fi − fj in (3.12), gives that

R(fi, fj)(t)

:=
1

4

(〈∫ t

0
Ψ(s) dL(s), fi + fj

〉2
−
∫ t

0

∥∥∥Q1/2Ψ∗(s)(fi + fj)
∥∥∥2

U
ds

)
− 1

4

(〈∫ t

0
Ψ(s) dL(s), fi − fj

〉2
−
∫ t

0

∥∥∥Q1/2Ψ∗(s)(fi − fj)
∥∥∥2

U
ds

)
=

〈∫ t

0
Ψ(s) dL(s), fi

〉
H

〈∫ t

0
Ψ(s) dL(s), fj

〉
H

−
∫ t

0
〈Q1/2Ψ(s)∗fi, Q

1/2Ψ∗(s)fj〉U ds

defines a martingale. Define for each n ∈ N a martingale Mn by

Mn(t) :=
n∑

i,j=1

R(fi, fj)(t)fi ⊗ fj for all t ∈ [0, T ].

We show that Mn(t) converges to M(t) in L1(Ω;L1(H)) for each t ∈ [0, T ], where

M(t) := I(Ψ)(t)⊗ I(Ψ)(t)−
∫ t

0
Ψ(s)QΨ∗(s) ds.

Observe that the following operators are non-negative

A := h⊗ h−
n∑

i,j=1

〈h, fi〉H〈h, fj〉Hfi ⊗ fj =
∞∑

i,j=n+1

〈h, fi〉H〈h, fj〉Hfi ⊗ fj ,

B := Ψ(s)QΨ∗(s)−
n∑

i,j=1

〈Q1/2Ψ∗(s)fi, Q
1/2Ψ∗(s)fj〉Ufi ⊗ fj

=

∞∑
i,j=n+1

〈Q1/2Ψ∗(s)fi, Q
1/2Ψ∗(s)fj〉Ufi ⊗ fj .

Indeed for x ∈ H

〈Ax, x〉H =
∞∑

i,j=n+1

〈h, fi〉H〈h, fj〉H〈fi, x〉H〈fj , x〉H = 〈π̃⊥n h, π̃⊥n x〉2 ≥ 0,
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where π̃⊥n is the projection onto Span(e1 . . . , en)⊥. For the second operator we have

〈Bx, x〉H =
∞∑

i,j=n+1

〈Ψ(s)QΨ∗(s)fi, fj〉H〈fi, x〉〈fj , x〉

=

〈
Q1/2Ψ∗(s)

∞∑
i=n+1

〈fi, x〉Hfi, Q1/2Ψ∗(s)
∞∑

j=n+1

〈fj , x〉Hfj

〉

=
∥∥∥Q1/2Ψ∗(s)π̃⊥n x

∥∥∥2

U

≥ 0.

Thus the operators in the definition of Mn(t) and M(t) are non-negative and we have by [25,
Th. 18.11(d)]

‖M(t)−Mn(t)‖L1(H)

≤
∥∥∥∥I(Ψ)(t)⊗ I(Ψ)(t)−

n∑
i,j=1

〈I(t), fi〉H 〈I(t), fj〉H fi ⊗ fj
∥∥∥∥
L1(H)

+

∥∥∥∥∫ t

0
Ψ(s)QΨ∗(s) ds−

∫ t

0
〈Q1/2Ψ(s)∗fi, Q

1/2Ψ∗(s)fj〉U dsfi ⊗ fj
∥∥∥∥
L1(H)

= Tr

(
I(Ψ)(t)⊗ I(Ψ)(t)−

n∑
i,j=1

〈I(Ψ)(t), fi〉H〈I(Ψ)(t), fj〉Hfi ⊗ fj
)

+ Tr

(∫ t

0
Ψ(s)QΨ∗(s) ds−

n∑
i,j=1

∫ t

0
〈Q1/2Ψ∗(s)fi, Q

1/2Ψ∗(s)fj〉U dsfi ⊗ fj
)

=
∞∑

k=n+1

(
〈I(Ψ)(t), fk〉2H +

∫ t

0

∥∥∥Q1/2Ψ∗(s)fk

∥∥∥2

U
ds

)
.

The Lebesgue theorem shows that E
[
‖M(t)−Mn(t)‖L1(H)

]
converges to 0, which establishes

that (M(t) : t ∈ [0, T ]) is a martingale.

Recall for the following result that I(Ψ) defines a square-integrable martingale in H for
each Ψ ∈ Λ2(0, T ;LHS(H, H)). Stochastic integration with respect to such martingales is
introduced for example in [66] or [74].

Lemma 3.12. Let L be a weakly mean-zero, weakly square-integrable cylindrical Lévy process
with covariance operator Q and let Ψ ∈ Λ2(0, T ;LHS(H, H)). If V is another separable Hilbert
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space and Θ is an L(H,V )-valued stochastic process for which the stochastic integral

N(t) :=

∫ t

0
Θ(s) dI(Ψ)(s) for t ∈ [0, T ],

exists in the sense of [74, Sec. 8.2], then we have

〈N,N〉(t) =

∫ t

0

∥∥Θ(s)
(
Ψ(s)QΨ∗(s)

)1/2∥∥2

LHS(H,V )
ds.

Proof. Since I(Ψ) is an H-valued martingale, Theorem 8.2 in [74] guarantees that there exists
the so-called martingale covariance of I(Ψ), that is a predictable stochastic process (C(t) : t ≥
0) in the space of symmetric, non-negative, nuclear operators on U , such that

〈〈
I(Ψ), I(Ψ)

〉〉
(t) =

∫ t

0
C(s) d

〈
I(Ψ), I(Ψ)

〉
(s) for all t ∈ [0, T ] P -a.s.

By Part (i) of Proposition 3.11 we conclude that

〈〈
I(Ψ), I(Ψ)

〉〉
(t) =

∫ t

0
C(s)

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds.

By comparing with the formula in Part (ii) of Proposition 3.11 we obtain

C(s) =
Ψ(s)QΨ∗(s)∥∥Ψ(s)Q1/2

∥∥2

LHS(U,H)

, if Ψ(s)Q1/2 6= 0

and C(s) = 0 otherwise. Applying [74, Th. 8.7(iv)] and Part (i) of Proposition 3.11 results in

〈N,N〉 (t) =

∫ t

0

∥∥∥∥∥Θ(s)

(
Ψ(s)QΨ∗(s)∥∥Ψ(s)Q1/2

∥∥2

LHS(U,H)

)1/2∥∥∥∥∥
2

LHS(H,V )

d
〈
I(Ψ), I(Ψ)

〉
(s)

=

∫ t

0

∥∥∥∥∥Θ(s)

(
Ψ(s)QΨ∗(s)∥∥Ψ(s)Q1/2

∥∥2

LHS(U,H)

)1/2∥∥∥∥∥
2

LHS(H,V )

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds

=

∫ t

0

∥∥Θ(s)
(
Ψ(s)QΨ∗(s)

)1/2∥∥2

LHS(H,V )
ds,

which completes the proof.
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3.6 Stopping times

In the proof of existence of solution we will need the following lemma concerning the stochastic
integral with respect to cylindrical Lévy processes and stopping times.

Lemma 3.13. Let L be a weakly square-integrable cylindrical Lévy process and let Ψ ∈ Ψ ∈
Λ2(0, T ;LHS(H, H)). Let τ be a stopping time with P (τ ≤ T ) = 1. Then∫ t∧τ

0
Ψ(s) dL(s) =

∫ t

0
Ψ(s)1{s≤τ} dL(s) for all t ∈ [0, T ] P -a.s.. (3.14)

Proof. The proof follows closely [76, Lem. 2.3.9], where the case of Hilbert space-valued Wiener
process is considered.

Step 1. Suppose that Ψ is simple given by (3.3) and that the stopping time is simple i.e.
takes only finitely many values:

τ =

m∑
j=1

aj1Aj ,

with Aj = {τ = aj} ∈ Faj . Then

∫ t∧τ

0
Ψ(s) dL(s) =

m∑
j=1

1Aj

∫ t∧aj

0
Ψ(s) dL(s) =

m∑
j=1

1Aj

N−1∑
k=1

Jtk∧t∧aj ,tk+1∧t∧aj (Ψk). (3.15)

Proving first for simple and then passing to the limit we get that for any process Ψ ∈
Λ2(0, T ;LHS(H, H)) and any bounded, real-valued, Fs-measurable random variable Φ we have
almost surely ∫ t

s
ΦΨ(r)Φ dL(r) = Φ

∫ t

s
Ψ(r) dL(r). (3.16)

Using this we obtain∫ t

0
Ψ(s)1{s≤τ} dL(s) =

∫ t

0
Ψ(s)(1− 1{τ<s}) dL(s)

=

∫ t

0
Ψ(s) dL(s)−

∫ t

0
Ψ(s)1{τ<s} dL(s)

=

N−1∑
k=1

Jtk∧t,tk+1∧t(Ψk)−
∫ t

0
Ψ(s)

∑
j:aj<t

1Aj1{aj<s} dL(s)
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=

N−1∑
k=1

Jtk∧t,tk+1∧t(Ψk)−
∑
j:aj<t

∫ t

aj

Ψ(s)1Aj dL(s)

=

N−1∑
k=1

Jtk∧t,tk+1∧t(Ψk)−
∑
j:aj<t

1Aj

∫ t

aj

Ψ(s) dL(s)

=

N−1∑
k=1

Jtk∧t,tk+1∧t(Ψk)−
m∑
j=1

1Aj

N−1∑
k=1

J(tk∧t)∨aj ,(tk+1∧t)∨aj (Ψk)

=
N−1∑
k=1

m∑
j=1

1Aj

(
Jtk∧t,tk+1∧t(Ψk)− J(tk∧t)∨aj ,(tk+1∧t)∨aj (Ψk)

)
.

Comparing with (3.15), must prove that

Jtk∧t,tk+1∧t(Ψk)− J(tk∧t)∨aj ,(tk+1∧t)∨aj (Ψk) = Jtk∧t∧aj ,tk+1∧t∧aj (Ψk).

For aj ≤ tk ∧ t it simplifies to

Jtk∧t,tk+1∧t(Ψk)− Jtk∧t,tk+1∧t(Ψk) = Jaj ,aj (Ψk).

For tk ∧ t < aj < tk+1 ∧ t it simplifies to

Jtk∧t,tk+1∧t(Ψk)− Jaj ,tk+1∧t(Ψk) = Jtk∧t,aj (Ψk).

For aj ≥ tk+1 ∧ t it simplifies to

Jtk∧t,tk+1∧t(Ψk)− Jaj ,aj (Ψk) = Jtk∧t,tk+1∧t(Ψk).

Step 2. Take simple Ψ and a general stopping time. Then there exists a sequence of simple
stopping times (τn) decreasing to τ ; see [26, Sec. 3.5]. By Step 1∫ τn∧t

0
Ψ(s) dL(s) =

∫ t

0
Ψ(s)1{s≤τn} dL(s). (3.17)

Since the stochastic integral is càdlàg, it follows that∫ τn∧t

0
Ψ(s) dL(s)→

∫ τ∧t

0
Ψ(s) dL(s) P -a.s.
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i.e. the left-hand side of (3.17) converges. Since 1[0,τn]Ψ converges to 1[0,τ ]Ψ in the space
Λ2(0, T ;LHS(H, H)), it follows that the right-hand side of (3.17) converges.

Step 3. Now suppose that Ψ ∈ Ψ ∈ Λ2(0, T ;LHS(H, H)) is general.
Take a sequence of simple integrands Ψn converging to Ψ. Application of Proposition 3.1

gives that the process L can be decomposed as

L(t)u = tB(u) +M(t)u, t ≥ 0, u ∈ U, t ≥ 0.

Recall from Section 2.3 that for stochastic integration we consider L restricted to H. It follows
from the continuity of the embedding H ⊂ U that the operator B is continuous on H. By the
Riesz theorem, there exists h0 ∈ H such that B(u) = 〈u, h0〉H for all u ∈ H. Then∫ t

0
Ψ(s) dL(s) =

∫ t

0
Ψ(s)h0 ds+

∫ t

0
Ψ(s) dM(s)

and the stochastic integral on the right-hand side is a martingale by Theorem 3.5. By the
Doob inequality

E

[
sup

0≤t≤T

∥∥∥∥∫ t

0
Ψn(s) dM(s)−

∫ t

0
Ψ(s) dM(s)

∥∥∥∥2

H

]

≤ 4E

[∥∥∥∥∫ T

0
Ψn(s)−Ψ(s) dM(s)

∥∥∥∥2

H

]

= 4E
[∫ T

0

∥∥(Ψn(s)−Ψ(s))Q1/2
∥∥2

LHS(U,H)
ds

]
,

which converges to 0 as n→∞. For the Bochner integral we estimate using that ‖·‖L(H,H) ≤
‖·‖LHS(H,H)

E

[
sup

0≤t≤T

∥∥∥∥∫ t

0
Ψn(s)h0 ds−

∫ t

0
Ψ(s)h0 ds

∥∥∥∥2

H

]
≤ TE

[
sup

0≤t≤T

∫ t

0
‖(Ψn(s)−Ψ(s))h0‖2H ds

]

= TE
[∫ T

0
‖(Ψn(s)−Ψ(s))h0‖2H ds

]
≤ T‖h0‖2HE

[∫ T

0
‖Ψn(s)−Ψ(s)‖2LHS(H,H) ds

]
,

which converges to 0 as n → ∞. Therefore there is a subsequence (nk) such that outside a
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null set: ∫ t

0
Ψnk(s) dL(s)→

∫ t

0
Ψ(s) dL(s) for all t ∈ [0, T ]

and finally that almost surely∫ t∧τ

0
Ψnk(s) dL(s)→

∫ t∧τ

0
Ψ(s) dL(s)

Since 1[0,τ ]Ψn → 1[0,τ ]Ψ in Ψ ∈ Λ2(0, T ;LHS(H, H)) it follows that∫ t

0
Ψn(s)1{s≤τ} dL(s)→

∫ t

0
Ψ(s)1{s≤τ} dL(s),

which finishes the proof.
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Chapter 4

Variational solutions

In this chapter we deal with existence and uniqueness of solutions for an SPDE in the vari-
ational setting assuming the monotonicity and coercivity conditions. We start by discussing
the literature related to our work and then describe the difficulties coming from the cylindrical
noise and our techniques.

The variational approach to stochastic equations was developed by Krylov and Rozovskii
[53] who considered an equation with a U -valued Wiener process. This was later generalised
in various directions. Equations in Banach spaces driven by semimartingales were studied
in a series of papers by Gyöngy and Krylov [41, 42, 43]. Equations with locally monotone
coefficients were considered by Liu and Röckner [60] in the Gaussian setting. Brzeźniak, Liu
and Zhu [16] proved existence and uniqueness of solution to an equation driven by a cylindrical
Brownian motion and Poisson random measure also under the local monotonicity assumption.
These more general conditions imposed on the operators in the equation allow the authors to
extend the class of SPDEs covered by this approach and include for instance the 2D Navier–
Stokes equation.

The precise formulation is as follows. Let V be a Banach space embedded in H and
consider

dX(t) = F (X(t)) dt+G(X(t)) dL(t), (4.1)

where F : V → V ∗ and G : V → L(U,H). In this thesis we assume the simplest version of
monotonicity on F and G but consider cylindrical noise L. We start with presenting the
equation driven by a cylindrical Lévy process with weak second moments. The solution is the
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limit of the standard Galerkin approximation

Xn(t) = P̃nX0 +

∫ t

0
P̃nF (Xn(s)) ds+

∫ t

0
P̃nG(Xn(s−))Pn dL(s),

where P̃n and Pn are projections onto n-dimensional subspaces. We obtain the a priori estim-
ates of the L2-norm of Xn. The Banach–Alaoglu theorem implies the weak convergence of a
subsequence of (Xn). Identifying the limit as the solution requires the formula for the angle
bracket process of the stochastic integral with respect to a cylindrical process from Section
3.5 and a special version of the Itô formula for ‖X(t)‖2H from Gyöngy and Krylov [43], which
takes into account that the drift F in equation (4.1) is V ∗-valued.

The situation is rather different without finite weak second moments. We obtain the result
for the diagonal cylindrical Lévy processes of Example 2.3. For L with this structure it is
possible to derive a cylindrical decomposition from the one-dimensional decompositions. We
identify the conditions on the Lévy characteristics, which make the processes resulting from this
decomposition well-defined. However, the standard stopping times used in the construction of
solutions driven by a genuine U -valued process L defined by τ(k) = inf {t ≥ 0 : ‖∆L(t)‖ > k}
make no sense for cylindrical process. Instead we use the stopping times already introduced
in Section 3.6, which are a limit of the corresponding stopping times for the n-dimensional
projections scaled down in higher dimensions:

τ(k) := lim
n→∞

inf

{
t ≥ 0 :

n∑
j=1

(∆`j(t)ej)
2 c2

j > k2

}
.

Intuitively, the weights (cj) compensate for a too slow decay of the mass of the Lévy measures in
higher dimensions. Choosing the right convergence rate for (cj) as the dimension n increases to
infinity is crucial and enables us to consider for example the α-stable noise as well as processes
with regularly varying tails.

4.1 Square-integrable case

Let (V, ‖·‖V ) be a separable reflexive Banach space with the dual V ∗. Assume that V is
densely and continuously embedded into H. That is we have a Gelfand triple

V ⊆ H = H∗ ⊆ V ∗.
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Further, denote with V ∗〈·, ·〉V the duality pairing of V ∗ and V . We have

V ∗〈h, v〉V = 〈h, v〉H , for all h ∈ H, v ∈ V

and without loss of generality we may assume that ‖v‖H ≤ ‖v‖V for v ∈ V and ‖h‖V ∗ ≤ ‖h‖H
for h ∈ H.

We consider the equation (4.1) with the initial conditionX(0) = X0 for a square-integrable,
F0–measurable random variable X0. The driving noise is a cylindrical Lévy process on a
separable Hilbert space U . We assume that L is a weakly mean-zero and weakly square-
integrable. The coefficients in equation (4.1) are given by functions F : V → V ∗ and G : V →
LHS(U,H). We assume (and do not repeat it later on in this section) that: there are constants
α, λ, β, c > 0 such that:

(A1) (Coercivity) for all v ∈ V we have

2V ∗〈F (v), v〉V +
∥∥G(v)Q1/2

∥∥2

LHS(U,H)
+ α‖v‖2V ≤ λ‖v‖

2
H + β;

(A2) (Monotonicity) for all v1, v2 ∈ V, we have

2V ∗〈F (v1)− F (v2), v1 − v2〉V +
∥∥(G(v1)−G(v2))Q1/2

∥∥2

LHS(U,H)
≤ λ‖v1 − v2‖H ;

(A3) (Linear growth) ‖F (v)‖V ∗ ≤ c(1 + ‖v‖V ) for all v ∈ V ;

(A4) (Hemicontinuity) the mapping R 3 s 7→ V ∗〈F (v1 + sv2), v3〉V is continuous for all
v1, v2, v3 ∈ V .

(A5) The cylindrical Lévy process L is weakly mean-zero and weakly square-integrable. Its
covariance operator Q has eigenvectors (ej) forming an orthonormal basis of U .

Conditions of this form appear in most of the papers mentioned in the introduction. We now
give the definition of a solution to (4.1), similarly as in Prévôt and Röckner [76, Def. 4.2.1] or
Brzeźniak, Liu and Zhu [16, Def. 1.1].

Definition 4.1. A variational solution of (4.1) is a pair (X, X̄) of anH-valued, càdlàg adapted
process X and a V -valued, predicable process X̄ such that

(i) X equals X̄ almost everywhere-Leb⊗P ;
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(ii) P -a.s.
∫ T

0

∥∥X̄(t)
∥∥
V

dt <∞;

(iii) X(t) = X0 +

∫ t

0
F (X̄(s)) ds+

∫ t

0
G(X̄(s)) dL(s) for all t ∈ [0, T ] P -a.s. (4.2)

We say that the solution is pathwise unique if any two variational solutions (X, X̄) and (Y, Ȳ )

satisfy
P
(
X(t) = Y (t) for all t ∈ [0, T ]

)
= 1.

Since we later consider the case of a driving noise without finite moments and thus the
solution cannot be expected to have finite moments, we do not require finite expectation of
the solution in Definition 4.1 in contrast to most literature.

The main result of this section is the following theorem.

Theorem 4.2. Under Assumptions (A1)–(A5), equation (4.1), with an F0-measurable initial
value X0 such that E

[
‖X0‖2H

]
<∞, has a unique variational solution (X, X̄). Moreover, the

solution satisfies ∫ T

0
E
[∥∥X̄(s)

∥∥2

V

]
ds <∞.

The proof of 4.2 is given in a series of lemmas. Before proceeding to the proof we first give
some preparatory results on the Itô formula for the square of the norm.

The Itô formula in infinite-dimensional spaces is discussed for example in Métivier [66, Th.
27.2]. The Itô formula for the square of the norm is of particular interest. It is discussed for
instance in Peszat and Zabczyk [74, Lem. D.3]. We need however a more general result taking
into account the Gelfand triple. The problem is that the integrand of the Lebesgue integral in
(4.2) is V ∗-valued. This version of the Itô formula was given in Krylov and Rozovskii [53, Th.
I.3.1] and can be seen as a stochastic version of an earlier result by Lions, see e.g. [100, Lem.
III.1.2]. See Prévôt and Röckner [76, Th. 4.2.5 and Rem. 4.2.8] for a more modern treatment.
These formulas work for the Wiener integrals, because of the path continuity assumption.
More general theorem can be found in Gyöngy and Krylov [43]. We present here without
proof, Theorem 2 of [43].

Theorem 4.3. Let M be an H-valued, càdlàg, square-integrable martingale, Φ be a progress-
ively measurable V ∗-valued process, X0 be an F0-measurable H-valued random variable and
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define

X(t) := X0 +

∫ t

0
Φ(s) ds+M(t) for all t ∈ [0, T ].

If there exists a V -valued process X̄ such that X and X̄ are equal Leb⊗P -almost everywhere,
then X has P -a.s. H-valued càdlàg trajectories and satisfies

‖X(t)‖2H = ‖X0‖2H + 2

∫ t

0
V ∗〈Φ(s), X̄(s)〉V ds+ 2

∫ t

0
X(s−) dM(s) + [M,M ](t).

Note that in this result, the integral
∫ t

0 X(s−) dM(s) is real-value since we identify H =

LHS(H,R); see e.g. [66] or [74].
We now apply this important result in the case when M is an integral with respect to a

cylindrical Lévy process. We obtain a formula for the expectation of the square of the norm
multiplied by an exponential function. This will allow us to complete certain estimates of the
second moments using the monotonicity (A2) below.

Corollary 4.4. Let Φ be a V ∗-valued predictable process and Ψ ∈ Ψ ∈ Λ2(0, T ;LHS(H, H))

E
[∫ T

0
‖Φ(s)‖V ∗ ds

]
<∞. (4.3)

If the stochastic process X defined by

X(t) = X0 +

∫ t

0
Φ(s) ds+

∫ t

0
Ψ(s) dL(s) for t ∈ [0, T ]

has a Leb⊗P -version X̄, which belongs to L2([0, T ]× Ω;V ), then

E

[
sup
t∈[0,T ]

‖X(t)‖2H

]
<∞, (4.4)

and for each λ ≥ 0 we have

E
[
e−λt‖X(t)‖2H

]
(4.5)

= E
[
‖X0‖2H

]
+ E

[∫ t

0
e−λs

(
2V ∗〈Φ(s), X̄(s)〉V +

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
ds

]
.

Proof. Define a martingale I by I(t) :=
∫ t

0 Ψ(s) dL(s) for t ∈ [0, T ]. The Itô formula for
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real-valued processes together with Theorem 4.3 imply

d
(
e−λt‖X(t)‖2H

)
= e−λtd‖X(t)‖2H − λe

−λt‖X(t)‖2H dt

= e−λt
(
2V ∗〈Φ(t), X̄(t)〉V dt+ 2X(t−) dI(t)

)
+ e−λtd[I, I](t)− λe−λt‖X(t)‖2H dt. (4.6)

For establishing (4.4), define the stopping time τR := inf{t ≥ 0 : ‖X(t)‖H > R} ∧ T for some
R > 0. Taking λ = 0 in (4.6) we obtain

E

[
sup
t<τR
‖X(t)‖2H

]
≤ E

[
‖X0‖2H

]
+ 2E

[
sup
t<τR

∫ t

0
V ∗〈Φ(s), X̄(s)〉V ds

]

+ 2E

[
sup
t<τR

∫ t

0
X(s−) dI(s)

]
+ E

[
sup
t<τR

[I, I](t)

]
.

(4.7)

We have

2E

[
sup
t<τR

∫ t

0
V ∗〈Φ(s), X̄(s)〉V ds

]
≤ E

[∫ T

0

(
‖Φ(s)‖2V ∗ +

∥∥X̄(s)
∥∥2

V

)
ds

]
. (4.8)

By inequality (14) in [46] for p = 1 we derive

E

[
sup
t<τR

∫ t

0
X(s−) dI(s)

]
≤ 3E

[(〈∫
X(s−) dI(s),

∫
X(s−) dI(s)

〉
(τR)

)1/2
]
.

Applying Lemma 3.12 and identifying H = LHS(H,R) yields〈∫
X(s−) dI(s),

∫
X(s−) dI(s)

〉
(τR) =

∫ τR

0

∥∥X(s−)(Ψ(s)QΨ∗(s))1/2
∥∥2

H
ds.

Taking into account that pathwise X(s−) = X(s) for almost all s ∈ [0, T ] we conclude

E

[
sup
t<τR

∫ t

0
X(s−) dI(s)

]
≤ 3E

(∫ τR

0
‖X(s)‖2H

∥∥(Ψ(s)QΨ∗(s))1/2
∥∥2

LHS(H,H)
ds

)1/2
 .

Since we have

∥∥(Ψ(s)QΨ∗(s))1/2
∥∥2

LHS(H,H)
=
∥∥Q1/2Ψ∗(s)

∥∥2

LHS(H,U)
=
∥∥Ψ(s)Q1/2

∥∥2

LHS(U,H)
,
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we obtain by the inequality
√
ab ≤ 1

6a+ 3
2b for a, b ≥ 0, that

E

[
sup
t<τR

∫ t

0
X(s−) dI(s)

]

≤ 3E

(( sup
s<τR
‖X(s)‖2H

)∫ τR

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds

)1/2


≤ 1

2
E

[
sup
s<τR
‖X(s)‖2H

]
+

9

2
E
[∫ T

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds

]
. (4.9)

Proposition 3.11 yields

E
[
[I, I](τR)

]
≤ E

[
[I, I](T )

]
= E

[
〈I, I〉(T )

]
= E

[∫ T

0

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds

]
. (4.10)

Applying (4.8), (4.9) and (4.10) to (4.7) and rearranging, we obtain

E

[
sup
t<τR
‖X(t)‖2H

]
≤ 2E

[
‖X0‖2H

]
+ 2E

[∫ T

0
‖Φ(s)‖2V ∗ +

∥∥X̄(s)
∥∥2

V
ds

]
+ 11E

[∫ T

0

∥∥∥Ψ(s)Q1/2
∥∥∥2

LHS(U,H)
ds

]
.

Taking R→∞ gives (4.4).
For establishing (4.5) we use some ideas from [76, Rem. 4.2.8]. Let (τk) be a sequence

of increasing stopping times such that the process
(∫ t∧τk

0 e−λsX(s−) dI(s) : t ∈ [0, T ]
)

is a
martingale for each k ∈ N. Taking expectation in (4.6) for the stopped process results in

E
[
e−λt∧τk‖X(t ∧ τk)‖2H

]
(4.11)

= E
[
‖X0‖2H +

∫ t∧τk

0
e−λs

(
2V ∗〈Φ(s), X̄(s)〉V − λ‖X(s)‖2H

)
ds+

∫ t∧τk

0
e−λs d[I, I](s)

]
.

Note that we could have changed X̄ into X, because they are equal Leb⊗P -a.e.
We now consider the integral with respect to the quadratic variation of I. Firstly, we show

that for all deterministic, Lebesgue–Stieltjes-integrable functions Φ: [0, T ] → R and for all
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stopping times τ we have

E
[∫ T∧τ

0
Φ(s) d[I, I](s)

]
= E

[∫ T∧τ

0
Φ(s) d〈I, I〉(s)

]
. (4.12)

Note firstly that by [66, Th. 18.6(2)] we know that ‖I‖2H − [I, I] is a martingale. Secondly,
‖I‖2H − 〈I, I〉 is a martingale by definition. Combining it with the Optional stopping theorem
[81, Cor. II.3.6] we have also

(‖I(s ∧ τ)‖2H − [I, I](s ∧ τ) : s ∈ [0, T ]) and (‖I(s ∧ τ)‖2H − 〈I, I〉(s ∧ τ) : s ∈ [0, T ])

are martingales. Thus for any s ∈ [0, T ]

E
[
[I, I](s ∧ τ)

]
= E

[
‖I(s ∧ τ)‖2H

]
= E

[
〈I, I〉(s ∧ τ)

]
.

Equation (4.12) follows for simple Φ given by (3.3) for which we obtain

E
[∫ T∧τ

0
Φ(s) d[I, I](s)

]
=

N−1∑
k=1

E
[
Φk ([I, I](tk+1 ∧ τ)− [I, I](tk ∧ τ))

]
=

N−1∑
k=1

E
[
E
[
Φk ([I, I](tk+1 ∧ τ)− [I, I](tk ∧ τ)) |Ftk∧τ

]]
=

N−1∑
k=1

E
[
ΦkE

[
[I, I](tk+1 ∧ τ)− [I, I](tk ∧ τ)|Ftk∧τ

]]
=

N−1∑
k=1

E[Φk]E
[
[I, I](tk+1 ∧ τ)− [I, I](tk ∧ τ)

]
=

N−1∑
k=1

E[Φk]E
[
〈I, I〉(tk+1 ∧ τ)− 〈I, I〉(tk ∧ τ)

]
=

N−1∑
k=1

E[Φk]E
[
〈I, I〉(tk+1 ∧ τ)− 〈I, I〉(tk ∧ τ)|Ftk∧τ

]
=

N−1∑
k=1

E
[
E
[
Φk(〈I, I〉(tk+1 ∧ τ)− 〈I, I〉(tk ∧ τ))|Ftk∧τ

]]
=

N−1∑
k=1

E
[
Φk(〈I, I〉(tk+1 ∧ τ)− 〈I, I〉(tk ∧ τ))

]
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= E
[∫ T∧τ

0
Φ(s) d〈I, I〉(s)

]
.

Note that both integrals in (4.12) are defined pathwise. Therefore (4.12) follows by approx-
imation for integrable function.

From Proposition 3.11 we conclude for (4.11) that

E
[
e−λt∧τk‖X(t ∧ τk)‖2H

]
= E

[
‖X0‖2H +

∫ t∧τk

0
e−λs

(
2V ∗〈Φ(s), X̄(s)〉V +

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
ds

]
.

An application of the Lebesgue theorem completes the proof.

Let (ej) be an orthonormal basis of U consisting of eigenvectors of Q and denote with Pn
the projection onto Span(e1, . . . , en). Let also (fj) ⊂ V be an orthonormal basis of H and
denote with P̃n, the projection onto Span(f1, . . . , fn). The operator P̃n extends to a mapping
P̃n : V ∗ → V by defining

P̃nv
∗ =

n∑
j=1

V ∗〈v∗, fj〉V fj , v∗ ∈ V ∗.

Lemma 4.5. Let Ln(t) : Ω→ U be given by

Ln(t) :=

n∑
j=1

L(t)(ej)ej .

Then

(i) Ln is a classical Lévy process satisfying∫ t

0
Ψ(s)Pn dL(s) =

∫ t

0
Ψ(s) dLn(s). (4.13)

(ii) The covariance operator Qn of Ln is given by Qn = PnQPn = PnQ = QPn.

Proof. (i) The integral on the LHS is understood in the sense of Subsection 2.3 whereas the
integral on the RHS is the standard stochastic integral (as defined for example in Peszat and
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Zabczyk [74]). For t ≥ 0 and u ∈ U

L(t)(Pnu) =

n∑
j=1

L(t)(ej)〈u, ej〉U = 〈Ln(t), u〉U .

Thus for h ∈ H and Ψ of the form Ψ(u) = 1A1(t1,t2](s)ψ with 0 ≤ t1 ≤ t2 ≤ t and A ∈ Ft1〈∫ t

0
Ψ(r)Pn dL(r), h

〉
H

= (L(t2)− L(t1))(Pnψ
∗h)1A

= 〈Ln(t2)− Ln(t1), ψ∗h〉U1A
= 〈ψ(Ln(t2)− Ln(t1)), h〉U1A

=

〈∫ t

0
Ψ(s) dLn(s), h

〉
H

.

We then get (4.13) for simple functions of the form (3.3)–(3.4) by the linearity of the integrals
and finally for general Ψ ∈ Ψ ∈ Λ2(0, T ;LHS(H, H)) by the continuity of both integrals.

(ii) The result follows from the calculation

〈Qnx, y〉 = E[〈Ln(1), x〉〈Ln(1), y〉] = E[L(1)(Pnx)L(1)(Pny)]

= 〈Q(Pnx), Pny〉 = 〈PnQPnx, y〉

and the assumption that Q is diagonal.

Lemma 4.6. The solutions of

Xn(t) = P̃nX0 +

∫ t

0
P̃nF (Xn(s)) ds+

∫ t

0
P̃nG(Xn(s−))Pn dL(s) (4.14)

obey sup
n

E
[∫ T

0
‖Xn(t)‖2V dt

]
<∞.

Proof. It follows from standard results, see e.g. [42, Th. 1] that for each n ∈ N equation (4.14)
has a unique càdlàg strong solution in V . For the stopping times τRn := inf{t ≥ 0 : ‖Xn(t)‖V ≥
R}, for n ∈ N and R > 0 denote the stopped process by XR

n . The coercivity assumption (A1)
and growth assumption (A3) imply that

∥∥G(v)Q1/2
∥∥2

LHS(U,H)
≤ −2V ∗〈F (v), v〉V−α‖v‖2V +λ‖v‖2H+β ≤ (4c−α+λ)‖v‖2V +β+2c, (4.15)
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for all v ∈ V . Therefore, condition (4.3) is satisfied and Corollary 4.4 implies

E
[∥∥XR

n (t)
∥∥2

H

]
= E

[∥∥∥P̃nX0

∥∥∥2

H

]
+ E

[∫ t

0

(
2V ∗〈P̃nF (XR

n (s)), XR
n (s)〉V +

∥∥P̃nG(XR
n (s))Q1/2

n

∥∥2

LHS(U,H)

)
ds

]
.

Since Xn(s) belongs to the space spanned by f1, . . . fn we have

V ∗〈P̃nF (XR
n (s)), XR

n (s)〉V = V ∗〈F (XR
n (s)), P̃nX

R
n (s)〉V = V ∗〈F (XR

n (s)), XR
n (s)〉V . (4.16)

Moreover, ∥∥P̃nG(XR
n (s))Q1/2

n

∥∥
LHS(U,H)

=
∥∥P̃nG(XR

n (s))Q1/2Pn
∥∥
LHS(U,H)

≤
∥∥G(XR

n (s))Q1/2
∥∥
LHS(U,H)

(4.17)

and
∥∥P̃nX0

∥∥2

H
≤ ‖X0‖2H . Thus

E
[∥∥XR

n (t)
∥∥2

H

]
≤ E

[
‖X0‖2H

]
+ E

[∫ t

0

(
2V ∗〈F (XR

n (s)), XR
n (s)〉V +

∥∥G(XR
n (s))Q1/2

∥∥2

LHS(U,H)

)
ds

]
.

Adding the expression E
[∫ t

0 α
∥∥XR

n (s)
∥∥2

V
ds
]
to both sides and using the coercivity assumption

(A1), we obtain

E
[∥∥XR

n (t)
∥∥2

H

]
+ E

[∫ t

0
α
∥∥XR

n (s)
∥∥2

V
ds

]
≤ E

[
‖X0‖2H

]
+ βt+ λE

[∫ t

0

∥∥XR
n (s)

∥∥2

H
ds

]
(4.18)

and consequently skipping the second term on the left-hand side and taking supremum yields

E
[∥∥XR

n (t)
∥∥2

H

]
≤ E‖X0‖2H + βt+ λ

∫ t

0
sup
r≤s

E
∥∥XR

n (r)
∥∥2

H
ds.

It follows that

sup
r≤t

E
[∥∥XR

n (r)
∥∥2

H

]
≤ E

[
‖X0‖2H

]
+ βt+ λ

∫ t

0
sup
r≤s

E
[∥∥XR

n (r)
∥∥2

H

]
ds. (4.19)
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The Gronwall inequality implies

sup
r≤t

E
[∥∥XR

n (r)
∥∥2

H

]
≤ E

[
‖X0‖2H

]
+ βt+

∫ t

0

(
E
[
‖X0‖2H

]
+ βs

)
eλ(t−s)λ ds.

As the RHS does not depend on R, we can take R → ∞ to obtain the bound for processes
which are not stopped at τRn

sup
n

sup
t∈[0,T ]

E
[
‖Xn(t)‖2H

]
<∞.

We conclude that the right-hand side of (4.18) is bounded, from which the claim follows.

Lemma 4.7. For the solution Xn of (4.14) define X−n (t) := Xn(t−). Then there exists a
subsequence (nk) ⊆ N such that:

(i) X−nk converges weakly to a predictable process X̄ in L2([0, T ]× Ω;V );

(ii) P̃nkF (X−nk) converges weakly to some predictable process ξ in L2([0, T ]× Ω;V ∗);

(iii) P̃nkG(X−nk)PnkQ
1/2 converges weakly to ηQ1/2 in L2([0, T ] × Ω;LHS(U,H)) for some

predictable process η ∈ L2([0, T ]× Ω;LHS(H, H));

(iv)
∫ ·

0 P̃nkF (X−nk(s)) ds converges weakly to
∫ ·

0 ξ(s) ds in L2([0, T ]× Ω;V ∗);

(v)
∫ ·

0 P̃nkG(Ynk(s))Pnk dL(s) converges weakly to
∫ ·

0 η(s) dL(s) in L2([0, T ]× Ω;H).

Proof. By combining Corollary III.2.13 and Theorem IV.1.1 in [30] we conclude that all the
spaces in the Lemma are reflexive.

(i) A càdlàg function has at most countable number of discontinuity points, hence Xn

and X−n are equal for Lebesque-almost all t ∈ [0, T ]. It follows from Lemma 4.6 that (X−n ) is
bounded in L2([0, T ]×Ω;V ) and thus by the Banach–Alaoglu theorem has a weakly convergent
subsequence.

(ii) Note that each F (X−n ) is predictable, becauseX−n is and F is measurable. By the linear
growth assumption (A3),

∥∥P̃nF (X−n (t))
∥∥
V ∗
≤ ‖F (X−n (t))‖V ∗ ≤ c(1 + ‖X−n (t)‖V ). Hence, we

get (ii) from part (i).
(iii) We have since Pn and Q commute:

∥∥P̃nG(X−n (t))PnQ
1/2
∥∥2

LHS(U,H)
=
∥∥P̃nG(X−n (t))Q1/2Pn

∥∥2

LHS(U,H)
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=

∞∑
k=1

∥∥P̃nG(X−n (t))Q1/2Pnek
∥∥2

H

≤
∞∑
k=1

∥∥G(X−n (t))Q1/2Pnek
∥∥2

H

=
∥∥G(X−n (t))Q1/2Pn

∥∥2

LHS(H,U)
(4.20)

=
∥∥PnQ1/2G(X−n (t))∗

∥∥2

LHS(H,U)

≤
∥∥Q1/2G(X−n (t))∗

∥∥2

LHS(H,U)

=
∥∥G(X−n (t))Q1/2

∥∥2

LHS(H,U)
.

It follows from (4.20), (4.15) and part (i) that the sequence P̃nG(X−n )Pn is bounded in
L2([0, T ] × Ω;LHS(H, H)). Again by the Banach–Alaoglu theorem it converges weakly to
some η, which is our claim.

(iv) We will use the fact that a bounded operator maps weakly convergent sequences to
weakly convergent sequences. Thus it is enough to show that the mapping

K : L2([0, T ]× Ω;V ∗)→ L2([0, T ]× Ω;V ∗), K(Ψ) =

(∫ t

0
Ψ(s) ds : t ∈ [0, T ]

)
is continuous. By the Cauchy-Schwarz inequality

E

[∫ T

0

∥∥∥∥∫ t

0
Ψ(s) ds

∥∥∥∥2

V ∗
dt

]
≤ E

[∫ T

0
t

∫ t

0
‖Ψ(s)‖2V ∗ ds dt

]
≤ TE

[∫ T

0

∫ T

0
‖Ψ(s)‖2V ∗ ds dt

]
= T 2E

[∫ T

0
‖Ψ(s)‖2V ∗ ds

]
.

(v) Similarly, for part (v) define the mapping

K : Ψ ∈ Λ2(0, T ;LHS(H, H))→ L2([0, T ]× Ω;H), K(Ψ) =

(∫ t

0
Ψ(s) dL(s) : t ∈ [0, T ]

)
.
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By the Itô isometry in Theorem 3.5

E

[∫ T

0

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥2

H

dt

]
=

∫ T

0
E
[∫ t

0

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds

]
dt

≤ TE
[∫ T

0

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds

]
.

Proof of Theorem 4.2 (existence). Using the notation for the limits in Lemma 4.7 we define

X(t) := X0 +

∫ t

0
ξ(s) ds+

∫ t

0
η(s) dL(s), for t ∈ [0, T ]. (4.21)

Since both V and H are embedded in V ∗, the expressions in Lemma 4.7(i), (iv) and (v)
also converge weakly in L2([0, T ] × Ω;V ∗). The process X is V ∗-valued as the limit of the
right-hand side of (4.14). On the other hand, the left-hand side of (4.14) is Leb⊗P -almost
everywhere equal to X−n . By Lemma 4.7(i) it converges weakly to the V -valued process X̄.
Hence, we obtain that X = X̄ almost everywhere-Leb⊗P and Theorem 4.3 guarantees that
P -almost surely X is H-valued and càdlàg.

It is left to show that ξ = F (X̄) and ηQ1/2 = G(X̄)Q1/2, Leb⊗P -almost surely, which
will be accomplished in two steps.

Step 1. We conclude from Corollary 4.4 using estimates similar to (4.16) and (4.17) that

E
[
e−λt‖Xn(t)‖2H − ‖X0‖2H

]
≤ E

[∫ t

0
e−λs

(
2V ∗〈F (Xn(s)), Xn(s)〉V +

∥∥G(Xn(s))Q1/2
∥∥2

LHS(U,H)
− λ‖Xn(s)‖2H

)
ds

]
.

By adding and subtracting an arbitrary process Φ ∈ L2([0, T ]× Ω;V ) we obtain

E
[
e−λt‖Xn(t)‖2H

]
≤ E

[
‖X0‖2H

]
+ E

[ ∫ t

0
e−λs

(
2V ∗〈F (Xn(s))− F (Φ(s)), Xn(s)− Φ(s)〉V

+
∥∥(G(Xn(s))−G(Φ(s)))Q1/2

∥∥2

LHS(U,H)
− λ‖Xn(s)− Φ(s)‖2H

)
ds

]
+ E

[ ∫ t

0
e−λs

(
2V ∗〈F (Xn(s)),Φ(s)〉V + 2V ∗〈F (Φ(s)), Xn(s)− Φ(s)〉V + λ‖Φ(s)‖2H

+ 2〈G(Xn(s))Q1/2, G(Φ(s))Q1/2〉LHS(U,H) −
∥∥G(Φ(s))Q1/2

∥∥2

LHS(U,H)
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− 2λ〈Xn(s),Φ(s)〉H
)

ds

]
.

Using the monotonicity condition (A2) the first integral is non-positive and thus we obtain

E
[
e−λt‖Xn(t)‖2H − ‖X0‖2H

]
(4.22)

≤ E
[ ∫ t

0
e−λs

(
2V ∗〈F (Xn(s)),Φ(s)〉V + 2V ∗〈F (Φ(s)), Xn(s)− Φ(s)〉V + λ‖Φ(s)‖2H

+ 2〈G(Xn(s))Q1/2, G(Φ(s))Q1/2〉LHS(U,H) −
∥∥G(Φ(s))Q1/2

∥∥2

LHS(U,H)

− 2λ〈Xn(s),Φ(s)〉H
)

ds

]
.

On the other hand, since ξ ∈ L2([0, T ] × Ω;V ∗) and ηQ1/2 ∈ L2([0, T ] × Ω;LHS(U,H)), we
obtain from Corollary 4.4 that

E
[∫ t

0
e−λs

(
2V ∗〈ξ(s), X̄(s)〉V +

∥∥η(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
ds

]
= E

[
e−λt‖X(t)‖2H

]
− E

[
‖X0‖2H

]
. (4.23)

Now we multiply (4.23) by a non-negative ψ ∈ L∞([0, T ];R+) and integrate from 0 to T . We
get

E
[ ∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈ξ(s), X̄(s)〉V +

∥∥η(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
dsdt

]
= E

[∫ T

0
ψ(t)

(
e−λt‖X(t)‖2H − ‖X0‖2H

)
dt

]
.

By the Fatou lemma and the fact that X = X̄ and Xn = X−n a.e.-Leb⊗P

E
[∫ T

0
ψ(t)e−λt‖X(t)‖2H dt

]
= E

[∫ T

0
ψ(t)e−λt

∥∥X̄(t)
∥∥
H

dt

]
=
∞∑
k=1

E
[∫ T

0
ψ(t)e−λt〈X̄(t), ek〉2H dt

]

=

∞∑
k=1

lim
n→∞

E
[∫ T

0
ψ(t)e−λt〈X−n (t), ek〉2H dt

]
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≤ lim inf
n→∞

∞∑
k=1

E
[∫ T

0
ψ(t)e−λt〈X−n (t), ek〉2H dt

]

= lim inf
n→∞

E
[∫ T

0
ψ(t)e−λt

∥∥X−n (t)
∥∥2

H
dt

]
= lim inf

n→∞
E
[∫ T

0
ψ(t)e−λt‖Xn(t)‖2H dt

]
.

Hence by (4.22)

E
[∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈ξ(s), X̄(s)〉V +

∥∥η(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
ds dt

]
≤ lim inf

n→∞
E
[∫ T

0
ψ(t)

(
e−λt‖Xn(t)‖2H − ‖X0‖2H

)
dt

]
≤ lim inf

n→∞
E
[ ∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈F (Xn(s)),Φ(s)〉V + 2V ∗〈F (Φ(s)), Xn(s)− Φ(s)〉V

+ 2〈G(Xn(s))Q1/2, G(Φ(s))Q1/2〉LHS(U,H) −
∥∥G(Φ(s))Q1/2

∥∥2

LHS(U,H)

− 2λ〈Xn(s),Φ(s)〉H + λ‖Φ(s)‖2H
)

dsdt

]
.

Using the weak convergence of Xn, F (Xn) and G(Xn) we get

E
[∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈ξ(s), X̄(s)〉V +

∥∥η(s)Q1/2
∥∥2

LHS(U,H)
− λ‖X(s)‖2H

)
ds dt

]
≤ E

[ ∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈ξ(s),Φ(s)〉V + 2V ∗〈F (Φ(s)), X̄(s)− Φ(s)〉V + λ‖Φ(s)‖2H

+ 2〈η(s)Q1/2, G(Φ(s))Q1/2〉LHS(U,H) −
∥∥G(Φ(s))Q1/2

∥∥2

LHS(U,H)

− 2λ〈X̄(s),Φ(s)〉H
)

ds dt

]
.

Moving the terms from the right-hand to the left-hand side we arrive at

E
[ ∫ T

0
ψ(t)

∫ t

0
e−λs

(
2V ∗〈ξ(s)− F (Φ(s)), X̄(s)− Φ(s)〉V

+
∥∥(η(s)−G(Φ(s)))Q1/2

∥∥2

LHS(U,H)
− λ
∥∥X̄(s)− Φ(s)

∥∥2

H

)
ds dt

]
≤ 0. (4.24)
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Step 2. Taking Φ = X̄ in (4.24), we get

E
[∫ T

0
ψ(t)

∫ t

0
e−λs

∥∥(η(s)−G(X̄(s)))Q1/2
∥∥2

LHS(U,H)
ds dt

]
≤ 0,

which shows that ηQ1/2 = G(X̄)Q1/2 almost everywhere-Leb⊗P . Moreover, taking Φ =

X̄ − εΦ̃v for some Φ̃ ∈ L∞([0, T ] × Ω;R), v ∈ V and ε > 0 in (4.24) and neglecting the only
non-negative term, we obtain

E
[ ∫ T

0
ψ(t)

∫ t

0
e−λs

(
2εΦ̃(s)V ∗〈ξ(s)− F (X̄(s)− εΦ̃(s)v), v〉V − λε2

∣∣Φ̃(s)
∣∣2‖v‖2H)ds dt

]
≤ 0.

Dividing by ε, taking the limit ε → 0, applying the hemicontinuity assumption (A4) and the
Lebesgue theorem we get that

E
[∫ T

0
ψ(t)

∫ t

0
e−λs2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)), v〉V ds dt

]
≤ 0. (4.25)

Indeed, if we recall that V ∗〈F (u), v〉V ≤ ‖F (u)‖V ∗‖v‖V ≤ c(1 + ‖u‖V )‖v‖V we can estimate
for ε ∈ (0, 1),∣∣∣e−λs (2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)− εΦ̃(s)v), v〉V − λε

∣∣Φ̃(s)
∣∣2‖v‖2H)∣∣∣

≤ ‖ξ(s)‖V ∗‖v‖V + c
(

1 +
∥∥∥X̄(s)− εΦ̃(s)v

∥∥∥
V

)
‖v‖V + λ

(
ess sup

∣∣Φ̃∣∣)2
‖v‖2H ,

which is integrable.
Now we claim that ξ = F (X̄) almost everywhere-Leb⊗P . Changing the order of integrals

in (4.25) we get ∫ T

0
ψ(t)E

[∫ t

0
e−λs2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)), v〉V ds

]
dt ≤ 0 (4.26)

for all ψ ∈ L∞([0, T ];R+) and Φ̃ ∈ L∞([0, T ] × Ω;R). Let A denote the set of all t ∈ [0, T ]

such that

E
[∫ t

0
e−λs2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)), v〉V ds

]
= 0.
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We prove that A has full Lebesgue measure. Let

A+ :=

{
t ∈ [0, T ] : E

[∫ t

0
e−λs2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)), v〉V ds

]
> 0

}
,

A− :=

{
t ∈ [0, T ] : E

[∫ t

0
e−λs2Φ̃(s)V ∗〈ξ(s)− F (X̄(s)), v〉V ds

]
< 0

}
.

Assume for contradiction that either A+ or A− has positive measure. If Leb(A+) > 0 we can
take ψ = 1A+ and get a contradiction with (4.26). If Leb(A−) > 0 we take ψ = 1A− and −Φ̃

instead of Φ̃. This again gives a contradiction with (4.26). Thus A has full Lebesgue measure.
Similarly taking Φ̃ : [0, T ]×Ω→ R+ given by Φ̃(s) := sgn

(
V ∗〈ξ(s)− F (X̄(s)), v〉V

)
1[0,t](s)

for s ∈ [0, T ] and t ∈ A, we obtain that V ∗〈ξ(s)− F (X̄(s)), v〉V = 0 a.e. in [0, t] × Ω. If we
consider tn ↑ T, tn ∈ A we get that V ∗〈ξ(s)− F (X̄(s)), v〉V = 0 a.e. in [0, T ] × Ω. This gives
ξ = F (X̄) almost everywhere-Leb⊗P .

Uniqueness of the variational solution can be derived exactly as in [16] and is given for the
sake of completeness. We first show the following lemma.

Lemma 4.8. Let X and Y be variational solutions of (4.1) with initial conditions X0 and Y0,
respectively. Suppose that X0 and Y0 are square-integrable. Then for t ≥ 0,

E
[
‖X(t)− Y (t)‖2H

]
≤ eλtE

[
‖X0 − Y0‖2H

]
.

Proof. We have

X(t)− Y (t) = X0 − Y0 +

∫ t

0

(
F (X̄(s))− F (Ȳ (s))

)
ds+

∫ t

0

(
G(X̄(s))−G(Ȳ (s))

)
dL(s).

Let

τR := inf

{
t ≥ 0 :

∫ t

0

∥∥X̄(s)
∥∥2

V
ds ∨

∫ t

0

∥∥Ȳ (s)
∥∥2

V
ds ≥ R

}
.

We have by Lemma 3.13

X(t ∧ τR)− Y (t ∧ τR) = X0 − Y0 +

∫ t

0
(F (X̄(s))− F (Ȳ (s)))1{s≤τR} ds

+

∫ t

0
(G(X̄(s))−G(Ȳ (s)))1{s≤τR} dL(s).
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The assumptions of Corollary 4.4 are satisfied by (4.15) and (A3). By Corollary 4.4 we get

E
[∥∥X(t ∧ τR)− Y (t ∧ τR)

∥∥2

H

]
= E

[
‖X0 − Y0‖2H

]
+ E

[ ∫ t

0

(
2V ∗〈F (X̄(s))− F (Ȳ (s)), X̄(s)− Ȳ (s)〉V

+
∥∥(G(X̄(s))−G(Ȳ (s)))Q1/2

∥∥2

LHS(U,H)

)
1{s≤τR} ds

]
.

By monotonicity (A2)

E
[∥∥X(t ∧ τR)− Y (t ∧ τR)

∥∥2

H

]
≤ E

[
‖X0 − Y0‖2H

]
+ λE

[∫ t

0
‖X(s)− Y (s)‖2H1{s≤τR} ds

]
.

It follows that

E
[∥∥X(t ∧ τR)− Y (t ∧ τR)

∥∥2

H

]
≤ E

[
‖X0 − Y0‖2H

]
+ λE

[∫ t

0

∥∥X(s ∧ τR)− Y (s ∧ τR)
∥∥2

H
ds

]
.

Similarly to (4.19) we get

sup
r≤t

E
[∥∥X(r ∧ τR)− Y (r ∧ τR)

∥∥2

H

]
≤ E

[
‖X0 − Y0‖2H

]
+ λ

∫ t

0
sup
r≤s

E
[∥∥X(r ∧ τR)− Y (r ∧ τR)

∥∥2

H

]
ds.

By the Gronwall inequality

sup
r≤t

E
[∥∥X(r ∧ τR)− Y (r ∧ τR)

∥∥2

H

]
≤ eλtE

[
‖X0 − Y0‖2H

]
.

Taking R→∞ we get the assertion by the monotone convergence theorem.

Proof of Theorem 4.2 (uniqueness). From Lemma 4.8 we get that ifX and Y are two solutions
to (4.1) with the same initial condition, then X and Y are modifications of each other. Since
both of them are càdlàg it follows that they are indistinguishable.
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4.2 Non-square-integrable case

4.2.1 Assumptions and a special Lévy–Itô decomposition

For the remainder of this chapter we assume that the cylindrical Lévy process is diagonal i.e.
it is given by (2.3). The function mc, defined in (3.9), reduces to

mc(k) =

∞∑
j=1

ρj

({
x ∈ R : |x| > k

cj

})
for all k > 0, (4.27)

see Lemma 3.10.
We showed a Lévy–Itô decomposition for weakly integrable cylindrical Lévy processes in

Section 3.1. For general, non-integrable cylindrical Lévy processes, one can decompose the
one-dimensional processes (L(t)u : t ≥ 0) but this does not lead to a Lévy–Itô decomposition
into a sum of cylindrical processes. However, the specific form of the diagonal cylindrical Lévy
processes allows to derive a proper Lévy–Itô decomposition using the decomposition of `j . For
c = (cj) ∈ `∞(R+) and k > 0 we obtain `j(t) = p

(j)
c,k(t) +m

(j)
c,k(t) + r

(j)
c,k(t) for all t ≥ 0 where

p
(j)
c,k(t) :=

(
bj +

∫
1<|x|≤k/cj

x ρj(dx)

)
t, (4.28)

m
(j)
c,k(t) :=

√
sjWj(t) +

∫
|x|≤k/cj

x Ñj(t,dx), (4.29)

r
(j)
c,k(t) :=

∫
|x|>k/cj

xNj(t,dx). (4.30)

Here, the process Wj is a real-valued standard Brownian motion, Nj is a Poisson random
measure on [0,∞) × R with intensity measure Leb⊗ρj associated to `j and Ñj denotes the
compensated Poisson random measure.

In the next Lemma we show that under the following assumption the stopping times τc(k)

defined in (3.8) do not accumulate at zero and the decomposition of `j leads to a decomposition
of the cylindrical Lévy process:

(A6) there exists a sequence c = (cj) ∈ `∞(R+) such that

(i)
(
p

(j)
c,k(1)

)
j∈N
∈ `2(R) for each k > 0; (4.31)

(ii) sup
j∈N

∫
|x|≤k/cj

x2 ρj(dx) <∞ for each k > 0; (4.32)
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(iii) lim
k→∞

mc(k) = 0. (4.33)

Lemma 4.9. Assume that L is a diagonal cylindrical Lévy process satisfying (A6). Then L
can be decomposed into L(t) = Pc,k(t) + Mc,k(t) + Rc,k(t) for each t ≥ 0 and k > 0, where
Pc,k, Mc,k and Rc,k are cylindrical Lévy processes defined by

Pc,k(t)u :=
∞∑
j=1

p
(j)
c,k(t)〈u, ej〉, Mc,k(t)u :=

∞∑
j=1

m
(j)
c,k(t)〈u, ej〉, Rc,k(t)u :=

∞∑
j=1

r
(j)
c,k(t)〈u, ej〉.

The process Mc,k is a weakly square-integrable cylindrical Lévy martingale and the stopping
times τc(k), defined in (3.8), satisfy τc(k)→∞ P -a.s. as k →∞.

Proof. We write Mc,k(t) = X(t) + Yc,k(t) for each k > 0 with

X(t)u :=
∞∑
j=1

√
sjWj(t)〈u, ej〉, Yc,k(t)u :=

∞∑
j=1

∫
|x|≤k/cj

x Ñj(t,dx)〈u, ej〉,

for all u ∈ U . Since condition (2.5) implies

E
[
|X(t)u|2

]
=
∞∑
j=1

|sj |〈u, ej〉2 ≤ ‖s‖`∞‖u‖
2,

we obtain that X(t) : U → L0(Ω;R) is well defined, continuous and weakly square-integrable.
We have

E
[
|Yc,k(t)u|2

]
= t

∞∑
j=1

〈u, ej〉2
∫
|x|≤k/cj

x2 ρj(dx) ≤ t‖u‖2 sup
j∈N

∫
|x|≤k/cj

x2 ρj(dx) <∞

by (4.32). Consequently, Yc,k(t) and thus Mc,k(t) are well defined, continuous and weakly
square-integrable. By (4.31), the deterministic process Pc,k is well defined. Since Rc,k =

L−Mc,k−Pc,k it follows that the series in the definition of Rc,k converges and that Rc,k(t) : U →
L0(Ω;R) is continuous for all t ≥ 0.

Remark 4.10.

(i) All the terms in the series (4.27) converge monotonically to 0 as k → ∞. Therefore
assumption (4.33) holds by the Lebesgue dominated convergence theorem provided that
the series in (4.27) converges for some k > 0.
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(ii) For a square summable sequence (cj), condition (4.33) is automatically satisfied. Indeed,
we get by (2.6) that for k = 1 the series in (4.27) converges.

(iii) If cj is constantly equal to 1, then condition (4.32) holds. Indeed, we observe that
(2.6) must hold with ∧k2 instead of ∧1. Suppose for contradiction that the sequence( ∫
|x|≤k x

2 ρj(dx) : j ∈ N
)
is unbounded. Then there exists a sequence (αj) ∈ `2(R) such

that
∞∑
j=1

α2
j

∫
|x|≤k

x2 ρj(dx) =∞,

which contradicts (2.6) because then for (αj) ∈ `2((0, 1))

∞∑
j=1

∫
R

(αjx)2 ∧ k2 ρj(dx) ≥
∞∑
j=1

α2
j

∫
|x|≤ k

|αj|
x2 ρj(dx) ≥

∞∑
j=1

α2
j

∫
|x|≤k

x2 ρj(dx) =∞.

The integration theory developed in Section 3.2 relies on finite weak moments of the cyl-
indrical Lévy process. In the following, we extend this stochastic integral to the class of diag-
onal cylindrical Lévy processes under Assumption (A6) without requiring finite weak moments.
For this purpose, by fixing a sequence c ∈ `∞(R+) such that Assumption (A6) is satisfied and
by using the notation (4.28)–(4.30) we define Lc,k := Pc,k + Mc,k for each k > 0. Lemma 4.9
yields that it is a square-integrable cylindrical Lévy process. Denote by Qk the covariance
operator of Mc,k (for simplicity we omit the dependence on c). Let Λloc denote the space of
predictable processes Ψ: [0, T ] × Ω → L(U,H) such that

∫ T
0

∥∥Ψ(s)Q
1/2
k

∥∥2

LHS(U,H)
ds < ∞ for

all k ∈ N.

Theorem 4.11. Assume that L is a diagonal cylindrical Lévy process satisfying (A6) and let
Ψ be in Λloc. Then there exists an increasing sequence of stopping times (%(k)) with %(k)→∞
P -a.s. as k →∞ such that Ψ(·)1[0,%(k)](·) ∈ Ψ ∈ Λ2(0, T ;LHS(Hk, H)) for each k ∈ N and(∫ t

0
Ψ(s)1{s≤%(k)} dLc,k(s) : t ∈ [0, T ]

)
k∈N

is a Cauchy sequence in the topology of uniform convergence in probability and its limit is
independent of the sequence c satisfying Assumption (A6).
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This Theorem enables us to define for each Ψ ∈ Λloc the stochastic integrals∫ ·
0

Ψ(s) dL(s) := lim
k→∞

∫ ·
0

Ψ(s)1[0,%(k)](s) dLc,k(s),

where the limit is taken in the topology of uniform convergence in probability.

Proof. Since Ψ ∈ Λloc, the stopping times

τ̃(k, n) := inf

{
t ≥ 0 :

∫ t

0

∥∥Ψ(s)Q
1/2
k

∥∥2

LHS(U,H)
ds > n

}
,

increase to infinity as n → ∞ (we take inf ∅ = +∞). For every k there is nk such that
P (τ̃(k, nk) <∞) ≤ 1

2k
. By the Borel–Cantelli Lemma

P

(
lim sup
k→∞

{τ̃(k, nk) <∞}
)

= 0.

Consequently, the stopping times %c(k) := τc(k)∧ τ̃(k, nk) converge to +∞ a.s. by Lemma 4.9.
Note that if T ≤ %c(k), then Lc,k = Lc,n on [0, T ] and∫ t

0
Ψ(s)1{s≤%c(k)} dLc,k(s) =

∫ t

0
Ψ(s)1{s≤%c(n)} dLc,n(s)

for all t ∈ [0, T ]. Consequently, we obtain for each k ≤ n and ε > 0 that

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s)1{s≤%c(k)} dLc,k(s)−

∫ t

0
Ψ(s)1{s≤%c(n)} dLc,n(s)

∥∥∥∥
H

≥ ε

)

≤ P
(∫ t

0
Ψ(s)1{s≤%c(k)} dLc,k(s) 6=

∫ t

0
Ψ(s)1{s≤%c(n)} dLc,n(s) for some t ∈ [0, T ]

)
≤ P

(
T > %c(k)

)
→ 0 as n, k →∞,

which establishes the claimed convergence.
The limit of the Cauchy sequence does not depend on the choice of the sequence c satisfying

(A6) because if d is another sequence satisfying (A6), then Lc,k = Ld,n for all t ∈ [0, T ] on
{T ≤ τc(k) ∧ τd(n)} and∫ t

0
Ψ(s)1{s≤τc(k)} dLc,k(s) =

∫ t

0
Ψ(s)1{s≤τd(n)} dLd,n(s),
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which completes the proof.

4.2.2 Existence of a solution for the diagonal noise

Convergence of the sum (2.3) in the definition of the diagonal cylindrical Lévy process depends
on the interplay between the drift part bj and the Lévy measure ρj of the real-valued Lévy
process, see condition (2.4). For this reason, we consider the general case of a cylindrical
Lévy process with a possibly non-zero drift part. This part can be moved to the drift part
of the equation under consideration. Furthermore, instead of the standard coercivity and
monotonicity requirements, we introduce assumptions for each truncation level k ∈ N. They
involve the operators Qk, which are the covariance operators ofMc,k. Assumptions of this form
were introduced in Peszat and Zabczyk [74, Sec. 9.7] in the semigroup approach. Assume that
there are constants αk, λk, βk, ck > 0 such that

(A1′) (coercivity) For every k ∈ N and v ∈ V we have

2V ∗〈F (v) + Pc,k(1)G∗(v), v〉V +
∥∥G(v)Q

1/2
k

∥∥2

LHS(U,H)
+ αk‖v‖2V ≤ λk‖v‖

2
H + βk;

(A2′) (monotonicity) For every k ∈ N and v1, v2 ∈ V we have

2V ∗〈F (v1)− F (v2) + Pc,k(1)
(
G∗(v1)−G∗(v2)

)
, v1 − v2〉V

+
∥∥(G(v1)−G(v2))Q

1/2
k

∥∥2

LHS(U,H)
≤ λk‖v1 − v2‖H ;

(A3′) (linear growth) ‖F (v) + Pc,k(1)G∗(v)‖V ∗ ≤ ck(1 + ‖v‖V ) for all v ∈ V ;

(A4′) (hemicontinuity) the mapping R 3 s 7→ V ∗〈F (v1 + sv2) + Pc,k(1)G∗(v1 + sv2), v3〉V is
continuous for all v1, v2, v3 ∈ V .

Theorem 4.12. Assume that L is a diagonal cylindrical Lévy process satisfying (A6). If the
coefficients F and G satisfy (A1′)–(A4′), then equation (4.1) with an F0–measurable initial
condition X(0) = X0 has a pathwise unique variational solution (X, X̄).

Proof. We reduce the case of the general initial condition to the square-integrable one as in
[1, Th. 6.2.3]. For k ∈ N let Ωk = {‖X0‖ ≤ k}. Using the decomposition L(t) = Pc,k(t) +

Mc,k(t) + Rc,k(t), Lemma 4.9 guarantees that Mc,k is a weakly square-integrable cylindrical
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Lévy martingale with a diagonal covariance operator Qk, and thus condition (A5) holds for
Mc,k. According to Theorem 4.2 there exists a unique variational solution (Xc,k, X̄c,k) of

dX(t) =
(
F (X(t)) + Pc,k(1)G∗(X(t))

)
dt+G(X(t)) dMc,k(t),

with the initial condition X(0) = X01Ωk .
Step 1. We first show that for each k ≤ n we have Xc,k = Xc,n P -a.s. on {T < τc(k)}∩Ωk.
For each t ∈ [0, T ] we have

Xc,k(t)−Xc,n(t) = −X01Ωn\Ωk +

∫ t

0

(
F
(
X̄c,k(s)

)
− F

(
X̄c,n(s)

))
ds

+

∫ t

0

(
Pc,k(1)G∗

(
X̄c,k(s)

)
− Pc,n(1)G∗

(
X̄c,n(s)

))
ds

+

∫ t

0
G
(
X̄c,k(s)

)
dMc,k(s)−

∫ t

0
G
(
X̄c,n(s)

)
dMc,n(s).

Define a cylindrical Lévy process Yc,k,n by

Yc,k,n(t)u := Rc,k(t)u−Rc,n(t)u =
∞∑
j=1

(∫
k/cj<|x|≤n/cj

xNj(t,dx)

)
〈u, ej〉

for all t ≥ 0 and u ∈ U . The cylindrical martingale Mc,n can be rewritten as

Mc,n(t)u =
∞∑
j=1

(
m

(j)
c,k(t) +

∫
k/cj<|x|≤n/cj

x Ñj(t,dx)

)
〈u, ej〉

=
∞∑
j=1

(
m

(j)
c,k(t) +

∫
k/cj<|x|≤n/cj

xNj(t,dx)−
∫
k/cj<|x|≤n/cj

x ρj(t,dx)

)
〈u, ej〉

= Mc,k(t)u+ Yc,k,n(t)u− (Pc,n(1)u− Pc,k(1)u)t. (4.34)

Applying this we get

Xc,k(t)−Xc,n(t) = −X01Ωn\Ωk +

∫ t

0
F
(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
ds

+

∫ t

0
Pc,k(1)G∗

(
X̄c,k(s)

)
− Pc,n(1)G∗

(
X̄c,n(s)

)
ds

66



+

∫ t

0

(
G
(
X̄c,k(s)

)
−G

(
X̄c,n(s)

))
dMc,k(s)

−
∫ t

0
G
(
X̄c,n(s)

)
dYc,k,n(s) +

∫ t

0
(Pc,n(1)− Pc,k(1))G∗

(
X̄c,n(s)

)
ds

= −X01Ωn\Ωk +

∫ t

0
F
(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
ds

+

∫ t

0
Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
ds

+

∫ t

0

(
G
(
X̄c,k(s)

)
−G

(
X̄c,n(s)

))
dMc,k(s)−

∫ t

0
G
(
X̄c,n(s)

)
dYc,k,n(s).

We introduce new notation

A(t) := Xc,k(t)−Xc,n(t) +

∫ t

0
G
(
X̄c,n(s)

)
dYc,k,n(s),

I(t) :=

∫ t

0

(
G
(
X̄c,k(s)

)
−G

(
X̄c,n(s)

))
dMc,k(s),

J(t) :=

∫ t

0
(Xc,k(s−)−Xc,n(s−)) dI(s).

We have

A(t) = −X01Ωn\Ωk +

∫ t

0

(
F
(
X̄c,k(s)

)
− F

(
X̄c,n(s)

))
ds (4.35)

+

∫ t

0
Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
ds+ I(t).

On {t < τc(k)} we have A(t) = Xc,k(t) − Xc,n(t). Theorem 1 in [43] applied with v(t) =

X̄c,k(t)− X̄c,n(t) and h(t) = I(t) implies existence of an H-valued, càdlàg process h̃, which is
equal to Xc,k −Xc,n almost everywhere-Leb⊗P on {(t, ω) ∈ [0, T ]× Ω : t < τ(ω)}. We show
that Xc,k −Xc,n and h̃ are indistinguishable. We have that

∫
Ω

∫ τc(k)(ω)

0
1h̃(t,ω)6=(Xc,k−Xc,n)(t,ω) dt P (dω) = 0.

This implies that there exists Ω1 ⊂ Ω with P (Ω1) = 1 such that for all ω ∈ Ω1∫ τc(k)(ω)

0
1h̃(t,ω)6=(Xc,k−Xc,n)(t,ω) dt = 0.
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We obtain that for every ω ∈ Ω1 there is a subset Aω,t ⊂ [0, τc(k)(ω)) with Leb(Aω,t) =

τc(k)(ω) and such that h̃(t, ω) = (Xc,k − Xc,n)(t, ω) for all t ∈ Aω,t. Note that Xc,k − Xc,n

is a càdlàg process in V ∗. Fix ω ∈ Ω1 and t ∈ [0, τc(k)(ω)). Let (tn) ⊂ Aω,t be a sequence
decreasing to t. It follows from h̃(tn, ω) = (Xc,k−Xc,n)(tn, ω) that h̃(t, ω) = (Xc,k−Xc,n)(t, ω).
Thus h̃(t, ω) = (Xc,k −Xc,n)(t, ω) for all t ∈ [0, τ(ω)) and for all ω ∈ Ω1.

Thus, in what follows, we assume that for t < τc(k) the process Xc,k −Xc,n is H-valued,
càdlàg and, and by [43, Th. 1] the Itô formula for the square of the norm holds on {t < τc(k)}:

‖Xc,k(t)−Xc,n(t)‖2H

= ‖X0‖2H1Ωn\Ωk + 2

∫ t

0
V ∗〈F

(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
, X̄c,k(s)− X̄c,n(s)〉V ds

+ 2

∫ t

0
V ∗〈Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
, X̄c,k(s)− X̄c,n(s)〉V ds (4.36)

+

∫ t

0
Xc,k(s−)−Xc,n(s−) dI(s) + [I, I](t).

We show that

‖A(t ∧ τc(k))‖2H

= ‖X0‖2H1Ωn\Ωk + 2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
, X̄c,k(s)− X̄c,n(s)〉V ds

+ 2

∫ t∧τc(k)

0
V ∗〈Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
, X̄c,k(s)− X̄c,n(s)〉V ds

+ J(t ∧ τc(k)) + [I, I](t ∧ τc(k)).

(4.37)

It follows from (4.36) by taking the left limit at t ∧ τc(k) that

‖Xc,k((t ∧ τc(k))−)−Xc,n((t ∧ τc(k))−)‖2H

= ‖X0‖2H1Ωn\Ωk + 2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
, X̄c,k(s)− X̄c,n(s)〉V ds

+ 2

∫ t∧τc(k)

0
V ∗〈Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
, X̄c,k(s)− X̄c,n(s)〉V ds

+ J((t ∧ τc(k))−) + [I, I]((t ∧ τc(k))−).

(4.38)

By definition of A, A(s) = Xc,k(s)−Xc,n(s) for s < τc(k). Taking the limits as s↗ t∧τc(k) we
get that A((t∧τc(k))−) = Xc,k((t∧τc(k))−)−Xc,n((t∧τc(k))−). Since the only discontinuous
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processes in (4.35) are A and I, it follows that ∆A(t ∧ τc(k)) = ∆I(t ∧ τc(k)). Thus

‖A(t ∧ τc(k))‖2H = ‖A((t ∧ τc(k))−) + ∆A(t ∧ τc(k))‖2H
= ‖Xc,k((t ∧ τc(k))−)−Xc,n((t ∧ τc(k))−) + ∆I(t ∧ τc(k))‖2H
= ‖Xc,k((t ∧ τc(k))−) +Xc,n((t ∧ τc(k))−)‖2H

+ 〈∆I(t ∧ τc(k)), Xc,k((t ∧ τc(k))−)−Xc,n((t ∧ τc(k))−)〉H
+ ‖∆I(t ∧ τc(k)‖2H .

Applying (4.38) we obtain

‖A(t ∧ τc(k))‖2H

= ‖X0‖2H1Ωn\Ωk + 2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
, X̄c,k(s)− X̄c,n(s)〉V ds

+ 2

∫ t∧τc(k)

0
V ∗〈Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
, X̄c,k(s)− X̄c,n(s)〉V ds (4.39)

+ J((t ∧ τc(k))−) + [I, I]((t ∧ τc(k))−)

+ 〈∆I(t ∧ τc(k)), Xc,k((t ∧ τc(k))−)−Xc,n((t ∧ τc(k))−)〉H + ‖∆I(t ∧ τc(k))‖2H

The jump of the stochastic integral J at t ∧ τc(k) equals to

∆J((t ∧ τc(k))) = 〈∆I(t ∧ τc(k)), Xc,k((t ∧ τc(k))−)−Xc,n((t ∧ τc(k))−)〉H , (4.40)

see [66, Prop. 24.3 and Sec. 26.4]. Similarly, the jump of the quadratic variation of I at t∧τc(k)

equals
∆[I, I](t ∧ τc(k)) = ‖∆I(t ∧ τc(k))‖2H , (4.41)

see [66, Th. 20.5(4)]. Applying (4.40) and (4.41) in (4.39) finishes the proof of (4.37).
We multiply both sides of (4.37) by 1Ωk and take expectation. For the term involving the

quadratic variation, we use the fact that E [[I, I](t ∧ τc(k)] = E [〈I, I〉(t ∧ τc(k)] and Proposi-
tion 3.11. Recall for the following that the martingale property is invariant under multiplica-
tion by 1Ωk , since Ωk is F0-measurable. Thus E [J(t ∧ τc(k))1Ωk ] = 0. We obtain

E
[
‖A(t ∧ τc(k))‖2H1Ωk

]
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= E

[
2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c,k(s)

)
− F

(
X̄c,n(s)

)
, X̄c,k(s)− X̄c,n(s)〉V ds1Ωk

]

+ E

[
2

∫ t∧τc(k)

0
V ∗〈Pc,k(1)

(
G∗
(
X̄c,k(s)

)
−G∗

(
X̄c,n(s)

))
, X̄c,k(s)− X̄c,n(s)〉V ds1Ωk

]

+ E

[∫ t∧τc(k)

0

∥∥(G (X̄c,k(s)
)
−G

(
X̄c,n(s)

))
Q

1/2
k

∥∥2

LHS(U,H)
ds1Ωk

]
.

This implies by the monotonicity (A1′) and the fact that Xc,k and X̄c,k are equal Leb⊗P -
almost everywhere

E
[
‖A(t ∧ τc(k))‖2H1Ωk

]
≤ λkE

[∫ t∧τc(k)

0

∥∥X̄c,k(s)− X̄c,n(s)
∥∥2

H
ds1Ωk

]

= λkE

[∫ t∧τc(k)

0
‖Xc,k(s)−Xc,n(s)‖2H ds1Ωk

]

≤ λkE
[∫ t

0
‖A(s ∧ τc(k))‖2H ds1Ωk

]
.

It follows by the Gronwall inequality that

E

∥∥∥∥∥Xc,k(t ∧ τc(k))−Xc,n(t ∧ τc(k)) +

∫ t∧τc(k)

0
G
(
X̄c,n(s)

)
dYc,k,n(s)

∥∥∥∥∥
2

H

1Ωk

 = 0.

Thus(
Xc,k(t ∧ τc(k))−Xc,n(t ∧ τc(k)) +

∫ t∧τc(k)

0
G
(
X̄c,n(s)

)
dYc,k,n(s)

)
1Ωk = 0 a.s.

In particular we obtain that

Xc,k(t)−Xc,n(t) = 0 a.s. on {t < τc(k)} ∩ Ωk.

Step 2. The first part enables us to define

X := Xc,k and X̄ := X̄c,k on {t < τc(k)}. (4.42)

This definition does not depend on the choice of the sequence c: for, if d is another sequence
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satisfying (A6), then one can show similarly as in Step 1, that Xc,k = Xd,n on {t < τc(k) ∧
τd(n)}.

Since for each k ∈ N we have Leb⊗P -almost everywhere

X1{t<τc(k)}∩Ωk = Xc,k1{t<τc(k)}∩Ωk = X̄c,k1{t<τc(k)}∩Ωk = X̄1{t<τc(k)}∩Ωk ,

we obtain X = X̄ almost everywhere-Leb⊗P by taking k →∞.
Step 3. We show that (X, X̄) defined in (4.42) satisfies (4.2). Note that

X(t)1{t<τc(k)}∩Ωk = Xc,k(t)1{t<τc(k)}∩Ωk (4.43)

= X01{t<τc(k)}∩Ωk + 1{t<τc(k)}∩Ωk

∫ t

0
F (X̄c,k(s)) ds+ 1{t<τc(k)}∩Ωk

∫ t

0
G(X̄c,k(s)) dLc,k(s).

From the very definition (4.42) it follows

lim
k→∞

1{t<τc(k)}∩Ωk

∫ t

0
F (X̄c,k(s)) ds = lim

k→∞
1{t<τc(k)}∩Ωk

∫ t

0
F (X̄(s)) ds

=

∫ t

0
F (X̄(s)) ds. (4.44)

The last term in (4.43) can be rewritten as

1{t<τc(k)}∩Ωk

∫ t

0
G(X̄c,k(s)) dLc,k(s) = 1{t<τc(k)}∩Ωk

∫ t∧τc(k)

0
G(X̄c,k(s)) dLc,k(s). (4.45)

From Lemma 3.13 and the definition of the stochastic integral with respect to L after Theorem
4.11, it follows that

lim
k→∞

∫ t∧τc(k)

0
G(X̄c,k(s)) dLc,k(s) = lim

k→∞

∫ t

0
G(X̄c,k(s))1{s≤τc(k)} dLc,k(s)

= lim
k→∞

∫ t

0
G(X̄(s))1{s≤τc(k)} dLc,k(s)

=

∫ t

0
G(X̄(s)) dL(s). (4.46)

By taking the limit k →∞ in (4.43), equalities (4.44) and (4.46) show

X(t) = X0 +

∫ t

0
F (X̄(s)) ds+

∫ t

0
G(X̄(s)) dL(s),
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which finishes the proof of the theorem.

4.3 Examples

Example 4.13. [Two-sided stable process] Suppose `j = σjhj , where hj are identically dis-
tributed, symmetric α-stable Lévy processes with the characteristic function

ϕhj(1)(x) = e−|x|
α

, x ∈ R, (4.47)

and σj ∈ R; see [77, 78]. In this case, `j has Lévy measure ρj = ρ ◦m−1
σj , where mσj : R→ R

is given by mσj (x) = σjx, the measure ρ is defined as ρ(dx) = α
2cα
|x|−1−α dx and cα is defined

in (2.8). By [84, Ex. 4.5], formula (2.3) defines a cylindrical Lévy process on U if and only if
σ = (σj) ∈ `

2α
2−α (R). Moreover, L is induced by a classical process if and only if σ ∈ `α(R).

Corollary 4.14. Suppose that L is a diagonal process of Example 2.3 with `j = σjhj , where hj
are identically distributed, symmetric α-stable Lévy processes with the characteristic function
(4.47) and (σj) ∈ `

2α
2−α (R). If the coefficients F and G satisfy (A1′)–(A4′), then equation (4.1)

with an F0–measurable initial condition X(0) = X0 has a pathwise unique variational solution
(X, X̄).

Proof. The result follows by Theorem 4.12 once we show that Assumption (A6) is satisfied
for the sequence (cj) ∈ `2(R+) defined by cj := |σj |

α
2−α . Condition (4.31) is trivially satisfied

because each hj has no drift and the Lévy measure is symmetric. Since∫
|x|≤ k

cj

x2 ρj(dx) = σ2
j

∫
|x|≤ k

|cjσj|
x2 ρ(dx) = σ2

j

αk2−α

cα(2− α)
|cjσj |α−2 =

αk2−α

cα(2− α)
,

condition (4.32) is satisfied. We have

∞∑
j=1

c2
j =

∞∑
j=1

|σj |
2α
2−α <∞

i.e. (cj) ∈ `2(R+). Application of Remark 4.10(ii) establishes condition (4.33).

Note that choosing cj = 1 is not possible unless the process is U -valued. Indeed when
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σ ∈ `
2α
2−α (R) \ `α(R) we have

ρj(BR(0, k)c) = ρ
(
BR

(
0, k
|σj |

)c)
=

α

cα

∫ ∞
k/|σj |

x−1−α dx =
1

cαkα
|σj |α

and we get

mc(k) =
1

αkα

∞∑
j=1

|σj |α =∞.

In such case τc(k) = 0 a.s. for all k by Proposition 3.6. By introducing the weights (cj) we
compensate the fact that the mass of the span of the higher nodes decays too slowly.

Example 4.15. [One-sided stable process] We choose `j = σjhj with σj ∈ R and hj a strictly
α-stable Lévy process with α ∈ (0, 1) ∪ (1, 2) and with no negative jumps. Note, that we
exclude α = 1, since a 1-stable Lévy process is strictly stable if and only if its Lévy measure
is symmetric. The characteristic function of hj(1) is given by

ϕhj(1)(x) = exp
(
−|x|α

(
1− i tan πα

2 sgnx
))
,

see [92, Th. 14.15]. According to [92, Th. 14.7(iv),(vi)] the drift (corresponding to the trun-
cation function constantly equal to 0) of hj equals to 0 in the case α < 1 and the center of hj
equals to 0 in the case α > 1. Thus the characteristic function of hj(1) equals

ϕhj(1)(x) =

{
exp

(∫
R
(
eixy − 1

)
ρ(dy)

)
, α ∈ (0, 1),

exp
(∫

R
(
eixy − 1− ixy

)
ρ(dy)

)
, α ∈ (1, 2),

where ρ is given by

ρ(dx) =
1

cα

1

x1+α
1(0,∞)(x) dx.

Transferring back to our usual truncation function 1BR we get

ϕhj(1)(x) =

{
exp

((∫
R
(
eixy − 1− ixy1BR(y)

)
ρ(dy) + ix

∫
R y1BR(y) ρ(dy)

))
, α ∈ (0, 1),

exp
((∫∞

0

(
eixy − 1− ixy1BR(y)

)
ρ(dy)− ix

∫
R y1BcR(y) ρ(dy)

))
, α ∈ (1, 2).

We calculate bj , which is the drift of σjhj corresponding to the truncation function 1BR . When
α ∈ (0, 1) it is equal to

bj =

∫
R
y1BR(y) ρ ◦m−1

σj (dy) =
1

cα
σj

∫ 1

|σj|
0

y−α dy =
1

cα

1

1− α
σj |σj |α−1
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and when α ∈ (1, 2)

bj = −
∫
R
y1BcR(y) ρ ◦m−1

σj (dy) = − 1

cα
σj

∫ ∞
1

|σj|
y−α dx =

1

cα

1

1− α
σj |σj |α−1.

It follows that the Lévy process σjhj has characteristics (bj , 0, ρj) given by

bj =
1

cα(1− α)
σj |σj |α−1, ρj(dx) =

(
ρ ◦m−1

σj

)
(dx).

We claim that L is a cylindrical Lévy process if and only if σ ∈ `
2α
2−α (R). Indeed, condition

(2.4) reduces to

∞∑
j=1

|αj |

∣∣∣∣∣bj +

∫
1<|x|≤1/|αj |

x
(
ρ ◦m−1

σj

)
(dx)

∣∣∣∣∣ =
1

cα|1− α|

∞∑
j=1

|αjσj |α <∞,

whereas condition (2.6) reads as

∞∑
j=1

∫
R

(
|αjx|2 ∧ 1

)
ρj(dx) =

2

cα(2− α)α

∞∑
j=1

|αjσj |α <∞.

Both are equivalent to σ ∈ `
2α
2−α (R).

Corollary 4.16. Suppose that L is a diagonal process of Example 2.3 with `j = σjhj , where
(σj) ∈ `

2α
2−α (R) and hj is strictly α-stable Lévy process with α ∈ (0, 1) ∪ (1, 2) and with no

negative jumps. If the coefficients F and G satisfy (A1′)–(A4′), then equation (4.1) with an
F0–measurable initial condition X(0) = X0 has a pathwise unique variational solution (X, X̄).

Proof. As explained in Example 4.15 under the assumptions of the corollary the sum (2.3)
converges and defines a cylindrical Lévy process. We show that Assumption (A6) is satisfied
with cj = |σj |

α
2−α , since condition (4.31) can be calculated as

∞∑
j=1

(
bj +

∫
1<|x|≤ k

cj

x ρj(dx)

)2

=

(
k1−α

cα(1− α)

)2 ∞∑
j=1

|σj |
2α
2−α .

Conditions (4.32) and (4.33) follow by the same arguments as in Example 4.13. Thus the
result follows by Theorem 4.12.
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Example 4.17. Choosing a constant truncation level i.e. cj = 1 is possible only in some very
special cases. It is easy to construct an example of a non-integrable diagonal cylindrical process
whose jumps do not accumulate at 0 if we take the process `j , which are not identically dis-
tributed. Assume that L has finitely many non-square-integrable components, say `1, . . . , `N .
For instance `j could be a standard symmetric α-stable process for j = 1, . . . , N . Assume that
`j = σjhj for j = N + 1, . . .. Take hj as in Lemma 3.9 i.e. symmetric square-integrable Lévy
martingales and assume additionally that the Lévy measure ρ of hj has bounded support.

We verify (A6) with cj = 1 for j ∈ N. Observe that (4.31) holds due to the symmetry.
Condition (2.5) implies that for any (αj) ∈ `2(R) with |αj | ≤ 1 we have

∞ >
∞∑

j=N+1

∫
R

(αjx)2 ∧ k2 ρj(dx) ≥
∞∑

j=N+1

α2
j

∫
|x|< k

|αj|
x2 ρj(dx) ≥

∞∑
j=N+1

α2
j

∫
|x|<k

x2 ρj(dx).

Therefore (4.32) holds. Finally for (4.33), we have

mc(k) =
N∑
j=1

ρj (BR(0, k)c) +
∞∑

j=N+1

ρ (BR(0, k/|σj |)c) <∞

because the second sum equals to 0 for k sufficiently large so that BR(0, k/|σj |)c is outside the
support of ρ.

4.3.1 Processes with regularly varying tails

Recall that a measure µ concentrated on (0,∞) is said to have a regularly varying tail with
index α if

lim
x→∞

µ((λx,∞))

µ((x,∞))
= λ−α for all λ > 0;

see [9, 35].

Proposition 4.18. Let

L(t)u =
∞∑
j=1

σjhj(t)〈u, ej〉, t ≥ 0, u ∈ U, (4.48)

with a sequence of independent and identically distributed Lévy processes hj with no negative
jumps and having tails of regular variation of index α ∈ (0, 1) ∪ (1, 2). Suppose that
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(i) if α ∈ (0, 1) that the characteristic function of hj(1) is given by

ϕhj(1)(x) = exp

(∫ ∞
0

(
eixy − 1− ixy1BR(y)

)
ρ(dy) + ixb

)
(4.49)

(ii) if α ∈ (1, 2) that the characteristic function of hj(1) is given by

ϕhj(1)(x) = exp

(∫ ∞
0

(
eixy − 1− ixy

)
ρ(dy)

)
. (4.50)

If either (i) or (ii) holds and if (σj) ∈ `
2δ
2−δ (R) for some δ < α, then (4.48) defines a cylindrical

Lévy process.
Secondly, if the coefficients F and G satisfy (A1′)–(A4′), then equation (4.1) with an F0–

measurable initial condition X(0) = X0 has a pathwise unique variational solution (X, X̄).

Proof. Step 1. Proof of convergence of (4.48).
Measure ρ restricted to the complement of the unit ball is finite and we can write ρ|BcR =

λρ(1) for a probability measure ρ(1) concentrated on Bc
R. According to [32, Prop. 0] the Lévy

measure of an infinitely divisible distribution with regularly varying tails has regularly varying
tails as well. We obtain that ρ(1) has regularly varying tails of index α. For x ≥ 0 define

Vδ(x) :=

∫ ∞
x

yδ1(1,∞)(y) ρ(dy) = λ

∫ ∞
x

yδ1(1,∞)(y) ρ(1)(dy),

Uζ(x) :=

∫ x

1
yζ ρ(dy) = λ

∫ x

1
yζ ρ(1)(dy).

In order to show that the sum in (4.48) verifies the conditions (2.4) and (2.6), we prove that
for any (αj) ∈ `2(R)

S1 :=

∞∑
j=1

|αj |
∣∣∣∣bj + σj

∫
1

|σj|<|x|<
1

|αjσj|
x ρ(dx)

∣∣∣∣ <∞, (4.51)

S2 :=
∞∑
j=1

α2
jσ

2
j

∫
|x|< 1

|αjσj|
x2 ρ(dx) <∞, (4.52)

S3 :=

∞∑
j=1

ρ
([

1
|αjσj | ,∞

))
<∞. (4.53)
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We verify condition (4.51) in two cases separately
Case 1: α < 1. Recall that in (4.51) bj is the drift corresponding to the truncation function

1BR . The characteristic function of σjhj(1) can be written as

ϕσjhj(1)(x)

= exp

(∫
R

(
eixσjy − 1− ixσjy1BR(y)

)
ρ(dy) + iσjbx

)
= exp

(∫
R

(eixy−1−ixy1BR(y)) ρj ◦m−1
σj (dy)+ixσj

∫
R
y(1BR(yσj)−1BR(y)) ρ(dy)+iσjbx

)
.

The drift is thus given by

bj = σj

(
b+

∫
R
y(1BR(yσj)− 1BR(y)) ρ(dy)

)
.

Assume without loss of generality that |σj | < 1. Then

bj = σj

(
b+

∫
1<y≤ 1

|σj|
y ρ(dy)

)
. (4.54)

Thus

S1 =

∞∑
j=1

|αjσj |
∣∣∣∣b+

∫
1<x< 1

|αjσj|
x ρ(dx)

∣∣∣∣,
which implies that

S1 ≤ |b|
∞∑
j=1

|αjσj |+
∞∑
j=1

|αjσj |U1

(
1

|αjσj |

)
. (4.55)

We show that Vδ is regularly varying with index −(δ−α). Let X be distributed according
to PX = ρ(1) and let x > 1. We obtain

δ

∫ ∞
x

yδ−1ρ(1)(y,∞) dy = δ

∫ ∞
x

yδ−1 P (X ≥ y) dy

= δ

∫ ∞
x

yδ−1

∫ ∞
y

PX(dz) dy

= δ

∫ ∞
x

∫ z

x
yδ−1 dy PX(dz)

=

∫ ∞
x

zδ − xδ PX(dz)
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= E
[
Xδ

1X≥x

]
− xδP (X ≥ x)

= Vδ(x)− xδρ(1)(x,∞).

Thus
Vδ(x) = δ

∫ ∞
x

yδ−1ρ(1)(y,∞) dy + xδρ(1)(x,∞).

Theorem 1.5.11 in [9] implies that the function x 7→
∫∞
x yδ−1ρ(1)(y,∞) dy is regularly varying

with index −(δ − α). Combining [98, point 30, p. 18] with [9, Th. 1.4.1(iii)] one sees that
the sum of two regularly varying functions is regularly varying. It follows that for δ < α the
function Vδ is regularly varying with index −(δ − α).

It is easy to see that U1(∞) =∞. Applying [35, Th. II.9.2] with ζ = 1, η = δ gives that

lim
x→∞

x1−δVδ(x)

U1(x)
= c.

Moreover, from the proof it follows that if Vδ is regularly varying with index −(δ − α), then
c = 1−α

α−δ ∈ (0,∞). There exists M > 0 such that for all x > M

c

2
≤ x1−δVδ(x)

U1(x)
. (4.56)

This enables us to estimate (assuming 1
|αjσj | > M for j ∈ N)

∞∑
j=1

|αjσj |U1

(
1

|αjσj |

)
≤ 2

c

∞∑
j=1

|αjσj |
1

|αjσj |1−δ
Vδ

(
1

|αjσj |

)
=

2

c

∞∑
j=1

|αjσj |δVδ
(

1

|αjσj |

)

Applying this in (4.55) we get

S1 ≤ |b|
∞∑
j=1

|αjσj |+
2

c

∞∑
j=1

|αjσj |δVδ
(

1

|αjσj |

)
. (4.57)

The first sum is finite since for δ < α < 1 we have (σj) ∈ `
2δ
2−δ (R) ⊂ `2(R). The second sum

in (4.57) is finite since Vδ
(

1
|αjσj |

)
→ 0 as j →∞ and

∞∑
j=1

|αjσj |δ ≤

( ∞∑
j=1

|σj |2δ/(2−δ)
)(2−δ)/2( ∞∑

j=1

α2
j

)δ/2
<∞. (4.58)
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This finishes the proof of (4.51) in the case α ∈ (0, 1).
Case 2: α > 1. The characteristic function of σjhj(1) can be written as

ϕσjhj(1)(x) = exp

(∫ ∞
0

(
eixy − 1− ixy1BR(y)

)
ρj ◦m−1

σj (dy)− ix
∫
R
y1BcR(y) ρ ◦m−1

σj (dx)

)
.

Thus we have
bj = −

∫
R
y1BcR(x) ρ ◦m−1

σj (dy) = −σj
∫
y> 1

|σj|
y ρ(dy).

Therefore

S1 =

∞∑
j=1

|αjσj |
∣∣∣∣ ∫

y≥ 1

|αjσj|
y ρ(dy)

∣∣∣∣ =

∞∑
j=1

|αjσj |V1

(
1

|αjσj |

)
.

By [9, Th. 1.4.1] we can write ρ(x) = x−αl(x) with a slowly varying function l. By [35, Lem.
2, p. 277] with ε = α− δ there exists M > 0 such that

ρ(x,∞) ≤ x−α+ε = x−δ (4.59)

for x > M . We have
V1(x) =

∫ ∞
x

ρ(1)(y,∞) dy + xρ(1)(x,∞).

For x > M we estimate

V1(x) ≤
∫ ∞
x

y−δ dy + xx−δ =
δ

δ − 1
x1−δ.

Assuming 1
|αjσj | > M for j ∈ N we get V1

(
1

|αjσj |

)
≤ δ

δ−1 |αjσj |
δ−1 and finally,

S1 ≤
2δ

δ − 1

∞∑
j=1

|αjσj |δ <∞.

We prove (4.52). Suppose without loss of generality that |αjσj | < 1. We have

S2 =
∞∑
j=1

α2
jσ

2
j

∫
|x|≤1

x2 ρ(dx) + α2
jσ

2
j

∫
1<|x|< 1

|αjσj|
x2 ρ(dx)


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=

∞∑
j=1

α2
jσ

2
j

∫
|x|≤1

x2 ρ(dx) +

∞∑
j=1

α2
jσ

2
jU2

(
1

|αjσj |

)
.

By the same arguments as above we get the counterpart of (4.56):

c

2
≤ x2−δVδ(x)

U2(x)
, for x > M. (4.60)

Since both (αj) and (σj) tend to 0 we can assume without loss of generality that 1
|αjσj | > M

for all j ∈ N. We obtain

S2 ≤
∞∑
j=1

α2
jσ

2
j

∫
|x|≤1

x2 ρ(dx) +
2

c

∞∑
j=1

|αjσj |δVδ
(

1

|αjσj |

)
.

The first sum is finite because (σj) is bounded. Since Vδ
(

1
|αjσj |

)
→ 0 as j →∞ we get using

(4.58) that if (σj) ∈ `
2δ
2−δ (R), then S2 <∞.

We now show (4.53). Applying (4.59)

S3 ≤
∞∑
j=1

|αjσj |δ,

which is finite by (4.58).
Step 2. Equicontinuity of the characteristic functions follows exactly as in the proof of

Lemma 3.9, where we only used the boundedness of (σj).
Step 3. Verification of (A6) with the sequence c defined by cj = |σj |

δ
2−δ .

We prove (4.31). Suppose that α < 1. Recall that bj is given in (4.54). Then

∞∑
j=1

(
p

(j)
c,k(1)

)2
=
∞∑
j=1

(
σj

(
b+

∫
1<x≤ k

|cjσj|
x ρ(dx)

))2

≤ 2b2
∞∑
j=1

σ2
j + 2

∞∑
j=1

σ2
jU1

(
k

|cjσj |

)2

.

(4.61)
Again, we have that (4.56) holds for x > M. If N is chosen so that k

|cjσj | > M for j > N , we
have

∞∑
j=N+1

σ2
jU1

(
k

|cjσj |

)2

≤ 2k2−2δ

c2

∞∑
j=N+1

σ2δ
j cj

2δ−2Vδ

(
k

|cjσj |

)2
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=
2k2−2δ

c2

∞∑
j=N+1

|σj |
2δ
2−δVδ

(
k

|cjσj |

)2

.

It follows that the sums in (4.61) converge. We get the result for α ∈ (1, 2) similarly. For
(4.32) we estimate using (4.60)

σ2
j

∫
0<x< k

|σjcj|
x2 ρ(dx) = σ2

j

∫
0<x≤1

x2 ρ(dx) + σ2
jU2

(
k

cjσj

)

≤ σ2
j

∫
0<x≤1

x2 ρ(dx) +
2k2−δ

c
|σjcj |δ−2Vδ

(
k

|σjcj |

)
= σ2

j

∫
0<x≤1

x2 ρ(dx) +
2k2−δ

c
Vδ

(
k|σj |−

2
2−δ
)
.

Both terms are clearly bounded in j. Since (cj) ∈ `2(R) condition (4.33) follows by Remark
4.10(ii).

Remark 4.19. The assumptions (4.49) and (4.50) involving the characteristic function can
be alternatively formulated as follows: the processes hj have no Gaussian part and in the case
α ∈ (1, 2) the centre is 0. This is corresponds to the requirement of strict stability in the stable
case. In the case α ∈ (0, 1) we allow the processes to have a common drift b. The fact that
the truncation function needs to be chosen differently for the cases α ∈ (0, 1) and α ∈ (1, 2)

can be clearly seen in the case of the one sided stable noise. If hj has characteristics (0, 0, ρ)

corresponding to the truncation function 1BR , then

• if α ∈ (0, 1), then L is a cylindrical Lévy process if and only if (σj) ∈ `
2α
2−α (R).

• if α ∈ (1, 2), then L is a cylindrical Lévy process if and only if (σj) ∈ `2α(R).

This means that for α ∈ (1, 2) the summability condition on σ changes if we do not require
the center to be 0.

Remark 4.20. Note that the conclusion in Proposition 4.48 is not optimal if applied to α-
stable noise. For, in Example 4.15 we can choose σ ∈ `

2α
2−α (R) whereas here we have to choose

σ ∈ `
2δ
2−δ (R) for δ < α.
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Chapter 5

Stochastic integration in Banach
spaces and Stochastic Evolution
Equation

In this chapter we consider the stochastic evolution equation (1.4) with coefficients acting on
Banach spaces; the most complex issue is however the construction of a stochastic integral.
Stochastic integration in Banach spaces is only possible in some subclasses of Banach spaces.

Dettweiler [28] defined an integral in p-uniformly smoothable Banach spaces using estim-
ates of moments of the Lévy process, the p-variation and moments of the Lévy measure. Van
Neerven, Veraar and Weis developed a stochastic integral in a different class of Banach spaces,
that is UMD spaces, see [103]. They integrate with respect to a cylindrical Brownian motion
and the integrands consist of γ-Radonifying operators, that is operators which Radonify the
standard Gaussian cylindrical measure into a genuine measure. Outside the Gaussian setting,
in Veraar and Yaroslavtsev [104] the integral is defined for cylindrical continuous local mar-
tingales. The integrands take values in the space of linear operators from a Hilbert space into
a UMD Banach space. The authors use the notion of γ-Radonifying norm, which is possible
because according to the Dambis–Dubins–Schwarz theorem every continuous local martingale
is a time changed Brownian motion. Another approach to integration with jumps is through
Poisson Random measures. An integral in another class of spaces called martingale type p
spaces, was considered by various authors see e.g. Rüdiger [87] or a survey article by Van
Neerven, Veraar and Weis [102].
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As shown in the aforementioned works, already the definition of the integral requires
assuming some geometric properties of the Banach spaces involved. Let E and F be separable
Banach spaces and suppose that F is of martingale type p for some p ∈ [1, 2]. Our space
of admissible integrands consists of predictable p-integrable processes taking values in the
space Πp(E,F ) of p-summing operators equipped with the p-summing norm πp; see page 85
below for the precise definition. These operators are a generalisation of the Hilbert-Schmidt
operators to Banach spaces (recall from the preliminaries that for Hilbert spaces U and H one
has Πp(U,H) = LHS(U,H) for all p with equivalent norms). They seem to be a natural choice
also because according to the results of Kwapień and Schwartz the p-summing operators are
p-Radonifying, which means that ψ ∈ Πp(E,F ) map weakly p-integrable cylindrical random
variable (L(t)−L(s)) into (L(t)−L(s))ψ∗ and the latter is induced by a genuine vector-valued
random variable with finite p-th moment.

We show that if the cylindrical Lévy measure ν of L satisfies∫
R
|x|p (ν ◦ (x∗)−1)(dx) <∞ (5.1)

for all x∗ ∈ E∗, then the stochastic integral is continuous as a mapping between the spaces
Lp(Ω× [0, T ]; Πp(E,F )) and Lp(Ω;F ) or in other words that

E

[∥∥∥∥∫ T

0
Ψ(s) dL(s)

∥∥∥∥p
]
≤ cE

[∫ T

0
πp(Ψ(s))p ds

]
(5.2)

for any predictable Πp(E,F )-valued integrand Ψ. The idea of utilising the continuity between
certain Lp-spaces to construct the integral and solve SPDEs goes back to Saint Loubert Bié
[90] who considered equations driven by the Poisson random measures. This construction was
further generalised to integrals taking values in martingale type p spaces by Brzeźniak and
Hausenblas [13, App. C]. We present a similar result for integrals with respect to cylindrical
Lévy processes, where the difficulty is to obtain the integral as a genuine Banach space-valued
random variable.

The main ingredient in the proof of the continuity is a result by Schwartz [97], which
gives a bound of the p-th moment of a Radonified measure by the weak p-th moments of the
cylindrical measure: if µ is a cylindrical measure on E and u : E → F , then(∫

F
‖x‖p

(
µ ◦ u−1

)
(dx)

)1/p

≤ πp(u) sup
x∗∈BE∗

(∫
R
|x|p

(
µ ◦ (x∗)−1

)
(dx)

)1/p

. (5.3)
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This Schwartz inequality can be viewed as a generalisation of the Pietsch factorisation theorem,
which asserts that for any p-summing operator u there exists a measure ρ on B(BE∗) such
that

‖ux‖ ≤ πp(u)

(∫
BE∗
|x∗(x)|p ρ(dx∗)

)1/p

, x ∈ E.

Note that the right-hand side of (5.2) does not depend on the integrator, which does not
match the weakly square-integrable case in Hilbert spaces, where the optimal bound is by

E
[∫ T

0

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds

]
,

with Q the covariance operator of L. In the future work we plan to generalise the construction
so that it depends on the cylindrical characteristics of the cylindrical Lévy process.

We prove existence and uniqueness of mild solutions for the equation (1.4) with F : E → F

and G : F → Πp(E,F ) under the standard Lipschitz and linear growth assumptions on F and
G, this time requiring that G is Lipschitz as a mapping to Πp(E,F ). The result follows in
the same manner as in Peszat and Zabczyk [74, Th. 9.29], however the proof of the stochastic
continuity of the stochastic convolution requires certain auxiliary result about the convergence
of operators in the p-summing norm.

Preliminaries

We recall some notions on the Banach spaces theory from [89, 103], which we need in this
chapter. Let p ≥ 1. A Banach space is of martingale type p if for some constant C and for
any discrete E-valued martingale (Mk)

n
k=1 one has

sup
k=1,...,n

E [‖Mk‖p] ≤ Cp
n∑
k=1

E [‖Mk −Mk−1‖p] ,

with the convention that M0 = 0.
A Banach space E has the approximation property if for every ε > 0 and for every compact

set K ⊂ E there exists a finite rank operator ψ : E → E such that ‖ψx− x‖ ≤ ε for all x ∈ K.
The space E has a metric approximation property if one can find operators ψ as above with
‖ψ‖ ≤ 1. E has the Radon–Nikodym property if for every probability space (Ω,F , P ) and an
absolutely continuous E-valued measure µ on F , there exists a measurable function f : Ω→ E
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such that
µ(A) =

∫
A
f(ω)µ(dω), A ∈ F .

It is well known that every reflexive Banach space has the Radon–Nikodym property; see [101,
Cor. 2, p. 219].

An operator ψ : E → F is p-summing if there exists a constant C such that for all n ∈ N
and all finite sequences x1, . . . , xn ∈ E

n∑
k=1

‖ψxk‖p ≤ Cp sup
x∗∈BE∗

n∑
k=1

|〈x∗, xk〉|p,

see [29]. The p-summing norm of ψ denoted as πp(ψ) is the smallest constant C such that the
above condition holds. If E and F are Hilbert spaces, the space Πp(E,F ) of p-summing oper-
ators coincides with the space of Hilbert-Schmidt operators; see [29, Th. 4.10 and Cor. 4.13].
Moreover, the p-summing norms and the Hilbert-Schmidt norm in LHS(E,F ) are equivalent.

The p-Radonifying operators were defined in Section 2.1. We recall the following well-
known characterisation from [101, Th. VI.5.4 and Th. VI.5.5].

Theorem 5.1. Assume that either

(i) p > 1 or

(ii) p = 1 and F has the Radon–Nikodym property.

Then the classes of p-Radonifying and p-summing operators from E to F coincide.

5.1 Some results on p-summing operators

Our approach to stochastic integration with respect to a cylindrical Lévy process is based on
a generalisation of Pietsch’s factorisation theorem, which is due to Schwartz; see [97, p. 23-28]
and [95]. For a measure µ on B(E) and p ∈ [1, 2] we define

‖µ‖p :=

(∫
E
‖x‖pµ(dx)

)1/p

,

and say that µ is of order p if ‖µ‖p <∞. For a cylindrical measure µ on Z(E) we define

‖µ‖∗p = sup
x∗∈BE∗

‖x∗(µ)‖p,
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and we say that µ is of weak order p if ‖µ‖∗p <∞.

Theorem 5.2. For p ∈ [1, 2], assume either that p > 1 or that F has the Radon–Nikodym
property, and let µ be a cylindrical probability measure on Z(E). If u : E → F is p-summing
then

‖u(µ)‖p ≤ πp(u)‖µ‖∗p. (5.4)

Proof. See [97] or [95, 96] or Appendix A.

For establishing continuity of the integral operator in the next section, we need a result
on the convergence of p-summing operators between Banach spaces. In the case of Hilbert
spaces, this convergence result can easily be seen:

Lemma 5.3. Suppose that U and H are separable Hilbert spaces and let ψ : U → H be a
Hilbert-Schmidt operator. If (ϕn) is a sequence of operators ϕn : H → H converging strongly
to 0 as n→∞, then the composition ϕnψ converges to 0 in the Hilbert-Schmidt norm.

Proof. Let (en) be an orthonormal basis of U and write

‖ϕnψ‖2LHS(U,H) =

∞∑
k=1

‖ϕnψek‖2.

Every term in the above sum converges to 0 as n → ∞ due to the strong convergence of ϕn.
Let M := sup

n∈N
‖ϕn‖, which is finite because every strongly convergent sequence is bounded.

Since
∞∑
k=1

‖ϕnψek‖2 ≤M
∞∑
k=1

‖ψek‖2 = M‖ψ‖2LHS(U,H),

it follows by the Lebesgue dominated convergence theorem that ‖ϕnψ‖2LHS(U,H) → 0.

The following result extends this conclusion in Hilbert spaces to the Banach space setting
by approximating p-summing operators with finite rank operators.

Theorem 5.4. Suppose that E is a reflexive Banach space or a Banach space with separable
dual and that E∗∗ has the approximation property. If ψ : E → F is a p-summing operator and
(ϕn) is a sequence of operators ϕn : F → F converging strongly to 0 then we have πp(ϕnψ)→ 0

as n→∞.
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Proof. We first prove the assertion for finite rank operators ψ : E → F , in which case we can

assume that ψ =
N∑
k=1

x∗k ⊗ yk for some x∗k ∈ E∗ and yk ∈ F . Then ϕnψ =
N∑
k=1

x∗k ⊗ (ϕnyk) and

since πp(x∗ ⊗ y) = ‖x∗‖‖y‖ (see [29, p. 37]), we estimate

πp(ϕnψ) ≤
N∑
k=1

πp(x
∗
k ⊗ (ϕnyk)) =

N∑
k=1

‖x∗k‖‖ϕnyk‖ → 0,

because ‖ϕnyk‖ → 0 for every k ∈ {1, . . . , N}.
Consider now the case of a general p-summing operator ψ. Under the assumptions on E

and F , by Corollary 1 in [91], the finite rank operators are dense in the space of p-summing
operators. That is, there exists a sequence of finite rank operators (ψk) such that πp(ψk−ψ)→
0 as k →∞. It follows that

πp(ϕnψ) ≤ πp(ϕnψk) + πp(ϕn(ψ − ψk)) for all k, n ∈ N. (5.5)

Fix ε > 0 and let c := sup{‖ϕn‖ : n ∈ N}. Choose k ∈ N such that πp(ψ−ψk) ≤ ε
2c . Since ψk

is a finite rank operator, the argument above guarantees that there exists n0 ∈ N such that
for all n ≥ n0 we have πp(ϕnψk) ≤ ε

2 . Inequality (5.5) implies for all n ≥ n0 that

πp(ϕnψ) ≤ ε

2
+
ε

2
= ε.

Remark 5.5. The proof of Theorem 5.4 relies on the density of finite rank operators in the
space of p-summing operators. This holds under more general assumptions than assumed in
Theorem 5.4; see [91, p. 384 and 388].

However, the result of Theorem 5.4 does not hold in the case of arbitrary Banach spaces
as the following example adapted from [29, p. 38-39] shows. Choose E = `1(R) and F = `2(R)

and equip both spaces with the canonical basis (en), where en = (0, . . . , 0, 1, 0, . . .). We take
ψ = Id: E → F , which is 1-Radonifying by the Grothendieck theorem; see [29, p. 38-39].
Furthermore, we define ϕn = en ⊗ en, i.e. ϕn(x) = x(n)en = (0, . . . , 0, x(n), 0, . . .) for a
sequence x = (x(n)) ∈ `1(R). Then ϕn converges to 0 strongly as n → ∞, but since ϕnψ is
finite rank we have π1(ϕnψ) = ‖en‖‖en‖ = 1 for all n ∈ N. This counterexample shows that
the assumptions on the space E in Theorem 5.4 cannot be dropped.
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5.2 Radonification of increments and stochastic integral

In this section we fix p ∈ [1, 2]. Fix 0 ≤ s < t ≤ T . An Fs-measurable random variable
Ψ: Ω→ Πp(E,F ) is called simple if it is of the form

Ψ =

m∑
k=1

1Akψk, (5.6)

for some disjoint sets A1, . . . , Am ∈ Fs and ψ1, . . . , ψm ∈ Πp(E,F ). Assuming that p > 1 or
for p = 1 with F having the Radon–Nikodym property, each p-summing operator ψk : E → F

is p-Radonifying, it follows that the cylindrical random variable (L(t)−L(s))ψ∗k is induced by
a classical, F -valued random variable, which we denote by Js,t(ψk) : Ω→ F , that is

(
L(t)− L(s)

)
(ψ∗kx

∗) = x∗(Js,t(ψk)) for all x∗ ∈ F ∗.

This enables us to define the F -valued random variables

Js,t(Ψ) :=
m∑
k=1

1AkJs,t(ψk). (5.7)

Lemma 5.6. (Radonification of the increments)
Assume that the cylindrical Lévy process L has finite p-th weak moments. We also assume
that if p = 1, then F has the Radon–Nikodym property. For fixed 0 ≤ s < t ≤ T , the random
variable Js,t(Ψ) defined in (5.7) is satisfies

(E [‖Js,t(Ψ)‖p])1/p ≤ ‖L(t− s)‖L(E∗,Lp(Ω;R)) (E [πp(Ψ)p])1/p . (5.8)

Proof. Let Ψ be of the form (5.6). Since the sets Ak are disjoint it follows that

E [‖Js,t(Ψ)‖p] = E

[∥∥∥∥∥
m∑
k=1

1AkJs,t(ψk)

∥∥∥∥∥
p]

= E

[
m∑
k=1

1Ak‖Js,t(ψk)‖
p

]
.

Using the fact that each Ak is Fs-measurable and that Js,t(ψk) is independent of Fs we can
calculate further

E
[
‖Js,t(Ψ)‖p

]
=

m∑
k=1

E
[
E
[
1Ak‖Js,t(ψk)‖

p|Fs
]]

=

m∑
k=1

P (Ak)E
[
‖Js,t(ψk)‖p

]
. (5.9)
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In order to estimate E [‖Js,t(ψk)‖p] we apply Theorem 5.2 to obtain that

(E [‖Js,t(ψk)‖p])1/p ≤ πp(ψk)‖L(t)− L(s)‖∗p. (5.10)

Since stationary increments of the real-value Lévy processes yield

(E [|(L(t)− L(s))x∗|p])1/p = (E [|L(t− s)x∗|p])1/p for all x∗ ∈ E∗,

it follows that

‖L(t)− L(s)‖∗p = sup
x∗∈BE∗

(E [|L(t− s)x∗|p])1/p = ‖L(t− s)‖L(E∗,Lp(Ω;R)). (5.11)

Note, that by the closed graph theorem and the continuity of L(t− s) : E∗ → L0(Ω,F , P ;R),
the mapping L(t−s) : E∗ → Lp(Ω,F , P ;R) is continuous. This shows that the last expression
in (5.11) is finite. Applying estimates (5.10) and (5.11) to (5.9) results in

(E [‖Js,t(Ψ)‖p])1/p ≤

(
m∑
k=1

P (Ak)πp(ψk)
p‖L(t− s)‖pL(E∗,Lp(Ω;R))

)1/p

= ‖L(t− s)‖L(E∗,Lp(Ω;R))

(
E
[
πp(Ψ)p

])1/p
,

which proves (5.8).

For defining the stochastic integral, let Λp(0, T ; Πp(E,F )) denote the space of equivalence
classes of predictable processes Ψ: [0, T ]× Ω→ Πp(E,F ) such that

‖Ψ‖Λ :=

(
E
[∫ T

0
πp(Ψ(s))p ds

])1/p

<∞,

that is Λp(0, T ; Πp(E,F )) = Lp
(
[0, T ]×Ω,P,Leb⊗P ; Πp(E,F )

)
. A simple stochastic process

is of the form

Ψ(t) = Ψ01{0}(t) +

N−1∑
k=0

Ψk1(tk,tk+1](t), (5.12)

where 0 = t0 < t1 < · · · < tN = T , and each Ψk is an Ftk -measurable, Πp(E,F )-valued
random variable with E[πp(Ψk)

p] < ∞. We denote with ΛS0 (0, T ; Πp(E,F )) the space of
simple processes of the form (5.12) where each Ψk is a simple random variable of the form
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(5.6), i.e. taking only a finite number of values.
Since for stochastic processes in ΛS0 (0, T ; Πp(E,F )) the Radonification of the increments

is defined by the operator Js,t according to Lemma 5.6 , we can define the integral operator
by

I : ΛS0 (0, T ; Πp(E,F ))→ Lp(Ω,FT , P ;F ), I(Ψ) :=
N−1∑
k=0

Jtk,tk+1
(Ψk). (5.13)

Lemma 5.7. The space ΛS0 (0, T ; Πp(E,F )) is dense in Λp(0, T ; Πp(E,F )) with respect to
‖·‖Λ.

Proof. The result follows from the construction in the proof of [26, Prop. 4.22(ii)].

Theorem 5.8. (stochastic integration)
Assume that the cylindrical Lévy process L has the characteristics (b, 0, ν) and satisfies∫

E
|x∗(x)|p ν(dx) <∞, for all x∗ ∈ E∗ (5.14)

Suppose also that F is of martingale type p and that if p = 1, then F has the Radon–Nikodym
property. Then the integral operator I defined in (5.13) is continuous and extends to the
operator

I : Λp(0, T ; Πp(E,F ))→ Lp(Ω,FT , P ;F ).

Proof. Let Ψ in ΛS0 (0, T ; Πp(E,F )) be given by (5.12) where Ψk is of the form

Ψk =

mk∑
i=1

1Ak,iψk,i,

for some disjoint sets Ak,1, . . . , Ak,mk ∈ Ftk and ψk,1, . . . , ψk,mk ∈ Πp(E,F ) for all k ∈
{0, . . . , N}.

By Proposition 3.1, the cylindrical Lévy process L can be decomposed into a sum of a
deterministic drift and cylindrical Lévy martingale L = B+M . Both B andM are cylindrical
Lévy processes, and we can integrate separately with respect to B and M :

I(Ψ) = IB(Ψ) + IM (Ψ). (5.15)
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For the first integral in (5.15) we calculate

‖IB(Ψ)‖p = sup
y∗∈BF∗

∣∣∣∣y∗(∫ T

0
Ψ(s) dB(s)

)∣∣∣∣p = sup
y∗∈BF∗

∣∣∣∣∫ T

0
B(1)(Ψ∗(s)y∗) ds

∣∣∣∣p.
By Hölder’s inequality with q = p

p−1 and q =∞ if p = 1 we obtain

‖IB(Ψ)‖p ≤ sup
y∗∈BF∗

T p/q
∫ T

0
|B(1)(Ψ∗(s)y∗)|p ds

≤ T p/q‖B(1)‖pL(E∗,R)

∫ T

0
‖Ψ∗(s)‖pL(F ∗,E∗) ds.

Since ‖Ψ∗(s)‖L(F ∗,E∗) = ‖Ψ(s)‖L(E,F ) ≤ πp(Ψ(s)) according to [29, p. 31], it follows that

‖IB(Ψ)‖p ≤ T p/q‖B(1)‖pL(E∗,R)

∫ T

0
πp(Ψ(s))p ds. (5.16)

For estimating the second term in (5.15), define the Banach space

Rp =

{
X : (0, T ]× Ω→ H : measurable and sup

t∈(0,T ]

1

t1/p
(
E [‖X(t)‖p]

)1/p
<∞

}

with the norm ‖X‖Rp = supt∈(0,T ]
1
t1/p

(E [‖X(t)‖p])1/p. Note that the the Lévy measure of
M(1)x∗ is given by ν ◦ (x∗)−1. By standard properties of real-valued Lévy martingales, e.g.
[74, Th. 8.23(i)], it follows that there exists a constant c > 0 such that

E
[
|M(t)x∗|p

]
≤ ct

∫
R
|β|p (ν ◦ (x∗)−1)(dβ) for all x∗ ∈ E∗.

It follows that we can consider the map M : E∗ → Rp defined by Mx∗ = (M(t)x∗ : t ∈ (0, T ]).
To show that M is continuous we use the closed graph theorem: let x∗n converge to x∗ in E∗

and Mx∗n to some Y in Rp. It follows that M(t)x∗n → Y (t) in Lp(Ω;H) for every t ∈ (0, T ].
On the other hand, continuity of M(t) : E∗ → L1(Ω,F , P ;R) implies M(t)x∗n → M(t)x∗ in
L0(Ω;H). Thus, Y (t) = M(t)x∗ for all t ∈ (0, T ] a.s., and the closed graph theorem gives that
M : E∗ → Rp is continuous. It follows that

‖M(tk+1 − tk)‖pL(E∗;Lp(Ω;R)) ≤ (tk+1 − tk)‖M‖L(E∗,Rp). (5.17)
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Let Jtk,tk+1
denote the operators defined in (5.7) with L replaced byM . Since F is of martingale

type p here exists a constant Cp > 0 such that Lemma 5.6 and inequality (5.17) imply

E [‖IM (Ψ)‖p] = E

[∥∥∥∥∥
N−1∑
k=0

Jtk,tk+1
(Ψk)

∥∥∥∥∥
p]

≤ CpE

[
N−1∑
k=0

∥∥Jtk,tk+1
(Ψk)

∥∥p]

≤ Cp
N−1∑
k=0

‖M(tk+1 − tk)‖pL(E∗;Lp(Ω;R))E [πp(Ψk)
p]

≤ Cp‖M‖L(E∗,Rp)E
[∫ T

0
πp(Ψ(s))p ds

]
.

Together with (5.16), this completes the proof.

By rewriting condition (5.14) as∫
BcR

|β|p (ν ◦ (x∗)−1)(dβ) <∞ and
∫
BR

|β|p (ν ◦ (x∗)−1)(dβ) <∞ for all x∗ ∈ E∗,

it follows that condition (5.14) is equivalent to

(L(t)x∗ : t ≥ 0) is p-integrable and has finite p-variation for each x∗ ∈ E∗,

see [10]. This is a natural requirement if we want to control the moments, see [90, 63] and
Remark 5.10 below. The interplay between the integrability of the Lévy process and its
Blumenthal–Getoor index was observed also in [21, 22].

Example 5.9 (Gaussian case). Note that if p < 2, then L cannot have the Gaussian part for
the assertion to hold. Indeed, let W be a one-dimensional Wiener process and suppose for
contradiction that

E

[∣∣∣∣∫ T

0
Ψ(t) dW (t)

∣∣∣∣p
]
≤ CE

[∫ T

0
|Ψ(t)|p dt

]
(5.18)

for some constant C and every real-valued predictable process Ψ with E
[∫ T

0 |Ψ(t)|2 dt
]
<∞.

Choose for each n ∈ N the stochastic process Ψn(t) = 1[0,1/n](t) for t ∈ [0, T ]. By [39, Sec.
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3.478] we calculate

E

[∣∣∣∣∫ T

0
Ψn(t) dW (t)

∣∣∣∣p
]

= E
[∣∣∣∣W (

1

n

)∣∣∣∣p] =

(
1

n

) p
2 2

p
2 Γ
(
p+1

2

)
√
π

.

But on the other side, since E
[∫ T

0 |Ψn(t)|p dt
]

= 1
n , solving (5.18) for n yields

n1− p
2 ≤ C

√
π

2
p
2 Γ
(
p+1

2

) ,
which results in a contradiction by taking the limit as n→∞.

Example 5.10 (Stable case). The canonical α-stable cylindrical Lévy process has the char-
acteristic function ϕL(1)(x

∗) = exp(−‖x∗‖α) for each x∗ ∈ E∗; see [85]. It follows that
the real-valued Lévy process (L(t)x∗ : t ≥ 0) is symmetric α-stable with Lévy measure(
ν ◦ (x∗)−1

)
(dβ) = c 1

|β|1+αdβ for a constant c > 0. Condition (5.14) fails to hold since

∫
BR

|β|p
(
ν ◦ (x∗)−1

)
(dβ) =∞ for p ≤ α,

∫
BcR

|β|p
(
ν ◦ (x∗)−1

)
(dβ) =∞ for p ≥ α.

One can observe in a similar way as in the Gaussian case that the stochastic integral operator
with respect to the α-stable cylindrical Lévy process L is not continuous. For simplicity, let
L be a one-dimensional stable Lévy process. If Ψn(t) = 1[0,1/n](t), then in the inequality

E

[∣∣∣∣∫ T

0
Ψn(t) dL(t)

∣∣∣∣p
]
≤ CE

[∫ T

0
|Ψn(t)|p dt

]
, (5.19)

the left-hand side is infinite for p ≥ α so we assume that p < α. Using the self-similarity of
stable processes we calculate

E

[∣∣∣∣∫ T

0
Ψn(t) dL(t)

∣∣∣∣p
]

= E
[∣∣∣∣L( 1

n

)∣∣∣∣p] = E
[

1

np/α
|L(1)|p

]
.

Solving (5.19) for n yields

n(α−p)/α ≤ C

E [|L(1)|p]
,

which results in a contradiction by taking the limit as n → ∞. Therefore, the stochastic
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integral mapping with respect to the α-stable process cannot be continuous as a mapping
from Lp([0, T ] × Ω,P,Leb⊗P ;R) to Lp(Ω,FT , P ;R) for any p > 0. A moment inequality
with different powers on the left and right-hand sides was proven in the case of real-valued
integrands and vector-valued integrators in [86]. They prove for any α-stable Lévy process L
and p < α that

E

[(
sup
t≤T

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥)p
]
≤ CE

[(∫ T

0
|Ψ(s)|α dt

)p/α]
. (5.20)

We devolop this topic further in Chapter 6.

Example 5.11. In the case of a diagonal cylindrical Lévy process, we claim that condition
(5.14) is satisfied if and only if

∞∑
k=1

(∫
R
|β|p ρk(dβ)

) 2
2−p

<∞,

where ρk is the Lévy measure of `k. Indeed, by Lemma 3.10 condition (5.14) simplifies to∫
E
|〈y, x〉|p ν(dx) =

∞∑
k=1

∫
R
|〈y, βek〉|p (ρk ◦m−1

ek
)(dβ) =

∞∑
k=1

|〈y, ek〉|p
∫
R
|β|p ρk(dβ) <∞

for any y ∈ E. This is equivalent to

∞∑
k=1

αk

∫
R
|β|p ρk(dβ) <∞ for any (αk) ∈ `2/p(R+),

which results in
(∫

R|β|
p ρk(dβ)

)
k∈N ∈ `

2/p(R)∗ = `2/(2−p)(R).

Example 5.12. Another example are cylindrical compound Poisson processes

L(t)x∗ =

N(t)∑
k=1

Xkx
∗ x∗ ∈ E∗, t ≥ 0,

see Example 2.4. Let λ be the intensity of the Poisson processN and let ρ denote the cylindrical
distribution of Xk. Since the Lévy measure of (L(t)x∗ : t ≥ 0) is given by λ

(
ρ ◦ (x∗)−1

)
, it
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follows that condition (5.14) is satisfied if and only if∫
E
|x∗(x)|p ρ(dx) <∞ x∗ ∈ E∗

i.e. if and only if ρ is of weak order p.

5.3 Existence and uniqueness of solution

In this section we apply the developed integration theory to derive the existence of an evolution
equation in a Banach space under standard assumptions. For this purpose, we consider

dX(t) =
(
AX(t) +B(X(t))

)
dt+G

(
X(t)

)
dL(t),

X(0) = X0,
(5.21)

where X0 is an F0-measurable random variable in a Banach space F and the driving noise L is
a cylindrical Lévy process, L(t) : E∗ → L0(Ω,F , P ;R), t ≥ 0, with finite weak p-th moments.
The operator A is the generator of a C0-semigroup (S(t) : t ≥ 0) on F and B : F → F and
G : F → Πp(E,F ) are some functions.

Definition 5.13. A mild solution of (5.21) is a predictable process X such that

sup
t∈[0,T ]

E [‖X(t)‖p] <∞

for some p ≥ 1, and such that, for all t ∈ [0, T ], we have P -a.s.

X(t) = S(t)X0 +

∫ t

0
S(t− s)B(X(s)) ds+

∫ t

0
S(t− s)G(X(s)) dL(s).

We assume Lipschitz and linear growth condition on the coefficients F and G and an
integrability assumption on the initial condition:

Assumption 5.14. For fixed p ∈ [1, 2] we assume:

(A1) there exists a function b ∈ L1([0, T ];R) such that for any x, x1, x2 ∈ F

‖S(t)B(x)‖ ≤ b(t)(1 + ‖x‖),

‖S(t)(B(x1)−B(x2))‖ ≤ b(t)‖x1 − x2‖.
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(A2) there exists a function g ∈ Lp([0, T ];R) such that for any x, x1, x2 ∈ F

πp(S(t)G(x)) ≤ g(t)(1 + ‖x‖),

πp(S(t)(G(x1)−G(x2))) ≤ g(t)‖x1 − x2‖.

(A3) X0 ∈ Lp(Ω,F0, P ;F ).

Theorem 5.15. Let p ∈ [1, 2]. Suppose that the Banach spaces E and F satisfy that

(a) E is reflexive or has separable dual,

(b) F is of martingale type p and E∗∗ has the approximation property,

(c) if p = 1, then F has the Radon–Nikodym property.

If L is a cylindrical Lévy process such that (5.14) holds, then conditions (A1)–(A3) imply that
there exists a unique mild solution of (5.21).

Proof. The proof follows closely the proof of [74, Th. 9.29]. We define the space

HT :=

{
X : [0, T ]× Ω→ F is predictable and sup

t∈[0,T ]
E [‖X(t)‖p] <∞

}
,

and a family of norms for β ≥ 0:

‖X‖T,β :=

(
sup
t∈[0,T ]

e−βtE [‖X(t)‖p]

)1/p

.

Define an operator K : HT → HT by K(X) := K0(X) +K1(X) +K2(X), where

K0(X)(t) := S(t)X0,

K1(X)(t) :=

∫ t

0
S(t− s)B(X(s)) ds,

K2(X)(t) :=

∫ t

0
S(t− s)G(X(s)) dL(s).

For applying the Banach fixed point theorem, we first show that K indeed maps to HT . The
Bochner integral and the stochastic integral above are well defined because X is predictable
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and for every t ∈ [0, T ] the mappings

[0, t]× F 3 (s, x) 7→ S(t− s)B(x), [0, t]× F 3 (s, h) 7→ S(t− s)G(x)

are continuous. The appropriate integrability condition follows from (5.22) and (5.23) below.
There exist constants m ≥ 1 and ω ∈ R such that ‖S(t)‖ ≤ meωt for each t ≥ 0; see [74,

Th. 9.2]. It follows that

sup
t∈[0,T ]

E [‖S(t)X0‖p] ≤ mpep|ω|TE [‖X0‖p] <∞.

By Assumption (A1) and Hölder inequality, we obtain with q = p
p−1 that

sup
t∈[0,T ]

E
[∥∥∥∥∫ t

0
S(t− s)B(X(s)) ds

∥∥∥∥p]
≤ sup

t∈[0,T ]
E
[(∫ t

0
b(t− s)(1 + ‖X(s)‖) ds

)p]

≤ sup
t∈[0,T ]

E

[(∫ t

0
b(t− s) ds

)p/q ∫ t

0
b(t− s)(1 + ‖X(s)‖)p ds

]

≤
(∫ T

0
b(s) ds

)p/q
2p−1(1 + ‖X‖pT,0) sup

t∈[0,T ]

∫ t

0
b(t− s) ds

=

(∫ T

0
b(s) ds

)1+p/q

2p−1(1 + ‖X‖pT,0)

<∞.

(5.22)

Similarly, we conclude from Assumption (A2) and Theorem 5.8 that there exists a constant
c > 0 such that

sup
t∈[0,T ]

E
[∥∥∥∥∫ t

0
S(t− s)G(X(s)) dL(s)

∥∥∥∥p] ≤ c sup
t∈[0,T ]

E
[∫ t

0
πp(S(t− s)G(X(s)))p ds

]
≤ c sup

t∈[0,T ]
E
[∫ t

0
g(t− s)p(1 + ‖X(s)‖)p ds

]
≤ c2p−1(1 + ‖X‖pT,0)

∫ T

0
g(s)p ds

<∞.

(5.23)

97



Next, we establish that the process K(X) is stochastically continuous. For this purpose, let
ε > 0. For each t ≥ 0 we obtain

E [‖K1(X)(t+ ε)−K1(X)(t)‖]

= E
[∥∥∥∥∫ t+ε

0
S(t+ ε− s)B(X(s)) ds−

∫ t

0
S(t− s)B(X(s)) ds

∥∥∥∥]
= E

[∥∥∥∥∫ t+ε

t
S(t+ ε− s)B(X(s)) ds+

∫ t

0
(S(ε)− Id)S(t− s)B(X(s)) ds

∥∥∥∥]
≤ E

[∫ t+ε

t
‖S(t+ ε− s)B(X(s))‖ ds

]
+ E

[∫ t

0
‖(S(ε)− Id)S(t− s)B(X(s))‖ ds

]
=: I1 + I2.

Since ‖X(s)‖ ≤ 1 + ‖X(s)‖p for all s ≥ 0, it follows, for ε→ 0, that

I1 ≤ E
[∫ t+ε

t
b(t+ ε− s)(1 + ‖X(s)‖) ds

]
≤
(

2 + ‖X‖pT,0
)∫ ε

0
b(s) ds→ 0.

Similarly we obtain

‖(S(ε)− Id)S(t− s)B(X(s))‖ ≤
(

1 +me|ω|
)
b(t− s)(1 + ‖X(s)‖)

≤ (2 + ‖X(s)‖p)
(

1 +me|ω|
)
b(t− s),

(5.24)

which is Leb⊗P -integrable on [0, t]× Ω because

E
[∫ t

0
(2 + ‖X(s)‖p) b(t− s) ds

]
≤
(

2 + ‖X‖pT,0
)∫ t

0
b(s) ds <∞. (5.25)

Since the integrand in I2 tends to 0 as ε → 0 by the strong continuity of the semigroup, the
Lebesgue dominated convergence theorem shows that I2 tends to 0 as ε → 0. For K2 we
obtain by Theorem 5.8 that there exists a constant c > 0 such that

E [‖K2(X)(t+ ε)−K2(X)(t)‖p]

= E
[∥∥∥∥∫ t+ε

0
S(t+ ε− s)G(X(s)) dL(s)−

∫ t

0
S(t− s)G(X(s)) dL(s)

∥∥∥∥p]
= E

[∥∥∥∥∫ t+ε

t
S(t+ ε− s)G(X(s)) dL(s) +

∫ t

0
(S(ε)− Id)S(t− s)G(X(s)) dL(s)

∥∥∥∥p]
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≤ 2p−1E
[∥∥∥∥∫ t+ε

t
S(t+ ε− s)G(X(s)) dL(s)

∥∥∥∥p +

∥∥∥∥∫ t

0
(S(ε)− Id)S(t− s)G(X(s)) dL(s)

∥∥∥∥p]
≤ c2p−1E

[∫ t+ε

t
πp(S(t+ ε− s)G(X(s)))p ds+

∫ t

0
πp((S(ε)− Id)S(t− s)G(X(s)))p ds

]
≤ c2p−1E

[∫ t+ε

t
2p−1g(t+ ε− s)p(1 + ‖X(s)‖p) ds+

∫ t

0
πp((S(ε)− Id)S(t− s)G(X(s)))p ds

]
=: c2p−1(2p−1J1 + J2),

where

J1 = E
[∫ t+ε

t
g(t+ ε− s)p(1 + ‖X(s)‖p) ds

]
≤
(

1 + ‖X‖pT,0
)∫ t+ε

t
g(t+ ε− s)p ds→ 0

as ε→ 0, and

J2 = E
[∫ t

0
πp((Id−S(ε))S(t− s)G(X(s)))p ds

]
.

By Theorem 5.4 the integrand πp((Id−S(ε))S(t − s)G(X(s)))p converges to 0 pointwise on
[0, t] × Ω. Moreover, it is bounded by (1 + me|ω|)pg(t − s)p(2 + ‖X(s)‖p), which is Leb⊗P -
integrable. Thus, the Lebesgue theorem on dominated convergence implies that J2 → 0 as
ε → 0. This completes the proof of stochastic continuity of K(X) from the right. Similarly,
we have for 0 < ε ≤ t

E [‖K1(X)(t− ε)−K1(X)(t)‖]

= E
[∥∥∥∥∫ t−ε

0
S(t− ε− s)B(X(s)) ds−

∫ t

0
S(t− s)B(X(s)) ds

∥∥∥∥]
= E

[∥∥∥∥∫ t−ε

0
S(t− ε− s) (Id−S(ε))B(X(s)) ds+

∫ t

t−ε
S(t− s)B(X(s)) ds

∥∥∥∥]
≤ E

[∫ t

t−ε
‖S(t− s)B(X(s))‖ ds

]
+ E

[∫ t−ε

0
‖S(t− ε− s) (Id−S(ε))B(X(s))‖ ds

]
=: I1 + I2.

The first integral converges to 0 by the same argument as above. For the second one we
estimate

‖S(t− ε− s) (Id−S(ε))B(X(s))‖ ≤ me|ω|T ‖(Id−S(ε))B(X(s))‖ → 0
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as ε→ 0 almost surely thanks to the strong continuity of S. Arguing as in (5.24) and (5.25) we
see that we can apply the Lebesgue dominated convergence theorem to get that I2 converges
to 0 as ε→ 0. One similarly obtains stochastic continuity of K2(X). Thus the process K(X)

is stochastically continuous.
In particular, stochastic continuity guarantees the existence of a predicable modification of

K(X) by [74, Prop. 3.12]. In summary, we obtain that K maps from HT to HT . For applying
Banach’s fixed point theorem it is enough to show that K is a contraction for some β. We
have

‖K(X1)−K(X2)‖pT,β ≤ 2p−1
(
‖K1(X1)−K1(X2)‖pT,β + ‖K2(X1)−K2(X2)‖pT,β

)
.

We estimate each term on the right-hand side separately.
For the part corresponding to the drift we calculate

‖K1(X1)−K1(X2)‖pT,β

≤ sup
t∈[0,T ]

e−βtE
[(∫ t

0
b(t− s)‖X1(s)−X2(s)‖ ds

)p]
= sup

t∈[0,T ]
e−βtE

[(∫ t

0
b(t− s)1/qb(t− s)1/p‖X1(s))−X2(s)‖ ds

)p]

≤
(∫ T

0
b(t− s) ds

)p/q
sup
t∈[0,T ]

e−βt
∫ t

0
b(t− s)E [‖X1(s))−X2(s)‖p] ds

=

(∫ T

0
b(s) ds

)p/q
sup
t∈[0,T ]

e−βt
∫ t

0
b(t− s)eβse−βsE [‖X1(s)−X2(s)‖p] ds

≤
(∫ T

0
b(s) ds

)p/q
‖X1 −X2‖pT,β sup

t∈[0,T ]

∫ t

0
b(t− s)e−β(t−s) ds

= C(β)‖X1 −X2‖pT,β.

with C(β) =
(∫ T

0 b(s) ds
)p/q ∫ T

0 b(s)e−βs ds → 0 as β → ∞. In the following calculation for
the part corresponding to the diffusion we use in the first inequality the continuity of the
stochastic integral formulated in Theorem 5.8

‖K2(X1)−K2(X2)‖pT,β ≤ c sup
t∈[0,T ]

e−βtE
[∫ t

0
πp(S(t− s)(G(X1(s))−G(X2(s))))p ds

]
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≤ c sup
t∈[0,T ]

e−βtE
[∫ t

0
g(t− s)p‖X1(s)−X2(s)‖p ds

]
= c sup

t∈[0,T ]
e−βtE

[∫ t

0
g(t− s)peβse−βs‖X1(s)−X2(s)‖p ds

]
≤ c‖X1 −X2‖pT,β sup

t∈[0,T ]

∫ t

0
e−β(t−s)g(t− s)p ds

= C ′(β)‖X1 −X2‖pT,β,

where C ′(β) = c
∫ T

0 e−βsg(s)p ds → 0 as β → ∞. Consequently, the Banach fixed point
theorem implies that there exists a unique X ∈ HT such that K(X) = X which completes the
proof.

Remark 5.16. Note that if E and F are Hilbert spaces, then they satisfy assumption (ii) in
Theorem 5.8, see e.g. [93, Cor. 1, p. 109]. Thus if p = 2 and if L has covariance equal to the
identity we recover [74, Th. 9.29].

The following example shows that the p-summing norm of certain operators coming from
specific SPDEs can be explicitly estimated.

Example 5.17. Let (Oi,Ai, µi), i = 1, 2, be measure spaces and take E = Lr(O1,A1µ1) and
F = Lp(O2,A2, µ2). Define the operator K : E → F

K(ψ)(y) =

∫
O1

k(x, y)ψ(x)µ1(dx), y ∈ O2,

where k : O1 × O2 → R is measurable. It follows from the proofs of Proposition 4.4 and
Corollary 4.5 in [17] that the p-summing norm of K satisfies

πp(K) ≤

∫
O2

(∫
O1

|k(x, y)|
r
r−1 µ1(dx)

) p(r−1)
r

µ2(dy)

 1
p

.

Even more specifically it is shown in [17, Prop. 4.8] that, under some assumptions on the
weights, the heat semigroup S(t) on Rd is p-summing as a mapping between the weighted
spaces Lp(Rd, %̂(x)dx) and Lp(Ed, %̂(x)dx) provided∫

Rd

%(x)

%̂(x)
dx <∞.
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5.4 The case of diagonal noise

For diagonal processes (see Example 2.3) the integrability assumption (5.14) can be relaxed
to include for instance stable processes in the same way as in Subsection 4.2.2, where the
existence of variational solutions was demonstrated. We show the details of the proof for
completeness. In fact, here we assume that the coefficients are Lipschitz, which allows us to
follow [74, Th. 9.34]. Recall that Pc,k, Mc,k and Lc,k were defined in Lemma 4.9 and that Qk
denotes the covariance operator of Mc,k. We have

Theorem 5.18. Suppose that for a diagonal cylindrical Lévy process L there exists a se-
quence (cj) satisfying (4.31)–(4.33). Assume that for every k ∈ N there exist functions
a, ak, bk : [0, T ]→ R+ such that for every h, g ∈ H and 0 ≤ s ≤ t ≤ T we have

‖S(t− s)(B(h)−B(g))‖ ≤ a(s)‖h− g‖,

‖S(t− s)B(h)‖ ≤ a(s)(1 + ‖h‖),∫ T

0
a(t) dt <∞,

‖Pc,k(1)(G∗(h)−G∗(g))S∗(t− s)‖ ≤ ak(s)‖h− g‖,

‖Pc,k(1)G∗(h)S∗(t− s)‖ ≤ ak(s)(1 + ‖h‖),∫ T

0
ak(t) dt <∞,∥∥∥S(t− s)(G(h)−G(g))Q

1/2
k

∥∥∥
LHS(U,H)

≤ bk(s)‖h− g‖,∥∥∥G(h)Q
1/2
k

∥∥∥
LHS(U,H)

≤ bk(s)(1 + ‖h‖),∫ T

0
b2k(t) dt <∞.

Then (5.21) has a mild solution, which is unique up to modification.

Proof. The equation driven by Lc,k(t) = Pc,k(t) +Mc,k(t) has unique mild solution by a slight
generalisation of [83, Th. 5.1] (one needs to replace the constants in the Lipschitz conditions
by functions a and b depending on t and also use the Itô isometry from Theorem 3.5 in the
estimates). We denote this solution with Xc,k,
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Xc,k(t) = S(t)X0 +

∫ t

0
S(t− s)B(Xc,k(s)) + Pc,k(1)G∗(Xc,k(s))S

∗(t− s) ds

+

∫ t

0
S(t− s)G(Xc,k(s)) dMc,k(s).

(5.26)

Similarly, for another sequence d = (dj) satisfying (4.31)–(4.32) and n ∈ N let Xd,n be the
solution of an equation driven by Ld,n. We claim that

Xc,k(t) = Xd,n(t) P -a.s. on {t < τc(k) ∧ τd(n)} (5.27)

for k, n ∈ N. We have

Xc,k(t)−Xd,n(t) =

∫ t

0
S(t− s)(B(Xc,k(s))−B(Xd,n(s))) ds

+

∫ t

0
Pc,k(1)G∗(Xc,k(s))S

∗(t− s)− Pd,n(1)G∗(Xd,n(s))S∗(t− s) ds

+

∫ t

0
S(t− s)G(Xc,k(s)) dMc,k(s)−

∫ t

0
S(t− s)G(Xd,n(s)) dMd,n(s).

Note that on {t < τc(k) ∧ τd(n)} we have calculating as in (4.34) Md,n(t)u = Mc,k(t)u +

(Pc,k(t)− Pd,n(t))u. We have

(Xc,k(t)−Xd,n(t))1{t<τc(k)∧τd(n)}

=

∫ t

0
S(t− s)(B(Xc,k(s))−B(Xd,n(s))) ds1{t<τc(k)∧τd(n)}

+

∫ t

0
Pc,k(1)(G∗(Xc,k(s))S

∗(t− s)−G∗(Xd,n(s))S∗(t− s)) ds1{t<τc(k)∧τd(n)}

+

∫ t

0
S(t− s)(G(Xc,k(s))−G(Xd,n(s))) dMc,k(s)1{t<τc(k)∧τd(n)}.

It follows that

E
[
‖Xc,k(t)−Xd,n(t)‖21{t<τc(k)∧τd(n)}

]
≤ 3E

[∥∥∥∥∫ t

0
S(t− s)(B(Xc,k(s))−B(Xd,n(s))) ds

∥∥∥∥2

1{t<τc(k)∧τd(n)}

]

+ 3E

[∥∥∥∥∫ t

0
Pc,k(1)(G∗(Xc,k(s))S

∗(t− s)−G∗(Xd,n(s))S∗(t− s)) ds

∥∥∥∥2

1{t<τc(k)∧τd(n)}

]
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+ 3E

[∥∥∥∥∫ t

0
S(t− s)(G(Xc,k(s))−G(Xd,n(s))) dMc,k(s)

∥∥∥∥2

1{t<τc(k)∧τd(n)}

]
= 3(I1 + I2 + I3). (5.28)

Note that

I1 = E

[∥∥∥∥∫ t

0
S(t− s)(B(Xc,k(s))−B(Xd,n(s))) ds

∥∥∥∥2

1{t<τc(k)∧τd(n)}

]

≤ E

[(∫ t

0
‖S(t− s)(B(Xc,k(s))−B(Xd,n(s)))‖1{s<τc(k)∧τd(n)} ds

)2
]

≤ E

[(∫ t

0
ak(s)‖Xc,k(s)−Xd,n(s)‖1{s<τc(k)∧τd(n)} ds

)2
]

(5.29)

≤
∫ t

0
a(s) dsE

[∫ t

0
a(s)‖Xc,k(s)−Xd,n(s)‖21{s<τc(k)∧τd(n)} ds

]
,

where we have used Hölder’s inequality for
√
a and

√
a‖Xc,k −Xd,n‖1[0,τc(k)∧τd(n)). Similarly,

I2 ≤
∫ t

0
ak(s) dsE

[∫ t

0
ak(s)‖Xc,k(s))−Xd,n(s)‖21{s<τc(k)∧τd(n)} ds

]
. (5.30)

Note that∥∥∥∥∫ t

0
S(t− s)(G(Xc,k(s))−G(Xd,n(s))) dMc,k(s)

∥∥∥∥2

1{t<τc(k)∧τd(n)}

≤
∥∥∥∥∫ t

0
S(t− s)(G(Xc,k(s))−G(Xd,n(s)))1{s≤τc(k)∧τd(n)} dMc,k(s)

∥∥∥∥2

,

since the left-hand side is 0 on {t ≥ τc(k)} and both sides are equal on {t < τc(k)}. Thus by
the Itô isometry in Theorem 3.5

I3 ≤ E

[∥∥∥∥∫ t

0
S(t− s)(G(Xc,k(s))−G(Xd,n(s)))1{s≤τc(k)∧τd(n)} dMc,k(s)

∥∥∥∥2
]

= E
[∫ t

0

∥∥∥S(t− s)(G(Xc,k(s))−G(Xd,n(s)))Q
1/2
k

∥∥∥2

LHS(U,H)
1{s≤τc(k)∧τd(n)} ds

]
≤
∫ t

0
b2k(s)E

[
‖Xd,n(s)−Xc,k(s)‖21{s≤τc(k)∧τd(n)}

]
ds.

(5.31)
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Combining (5.28), (5.29), (5.30), (5.31) we obtain

E
[
‖Xc,k(t)−Xd,n(t)‖21{t<τc(k)∧τd(n)}

]
= 3

∫ t

0
a(s) dsE

[∫ t

0
a(s)‖Xc,k(s)−Xd,n(s)‖21{s<τc(k)∧τd(n)} ds

]
+ 3

∫ t

0
ak(s) dsE

[∫ t

0
ak(s)‖Xc,k(s)−Xd,n(s)‖21{s<τc(k)∧τd(n)} ds

]
+ 3

∫ t

0
b2k(s)E

[
‖Xc,k(s)−Xd,n(s)‖21{s<τc(k)∧τd(n)}

]
ds,

which implies

E
[∥∥Xc,k(t)−Xd,n(t)

∥∥2
1{t≤τc(k)∧τd(n)}

]
≤ 3

(∫ T

0
a(s) + ak(s) ds+ 1

)
×
∫ t

0
(a(s) + ak(s) + b2k(s))E

[
‖Xc,k(s)−Xd,n(s)‖21{s<τc(k)∧τd(n)}

]
ds

It follows from the Gronwall inequality that E
[
‖Xc,k(t)−Xd,n(t)‖21{t<τc(k)∧τd(n)}

]
= 0, which

proves the claim. Property (5.27) enables us to define X(t) := Xc,k(t) on {t < τc(k)}. This
definition makes sense because for fixed t and ω, if we used another sequence d and another
constant n to define X(t)(ω) we would obtain the same value for almost every ω.

In order to show that X is a solution we prove that for every k ∈ N

X(t)1{t<τc(k)} = 1{t<τc(k)}S(t)X0 + 1{t<τc(k)}

∫ t

0
S(t− s)B(X(s)) ds

+ 1{t<τc(k)}

∫ t

0
S(t− s)G(X(s)) dL(s).

(5.32)

It is clear from (5.26) that

Xc,k(t) = S(t)X0 +

∫ t

0
S(t− s)B(Xc,k(s)) ds+

∫ t

0
S(t− s)G(Xc,k(s)) dLc,k(s).

The result follows by repeating the calculations (4.44)–(4.46).
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Chapter 6

Equation with the canonical stable
cylindrical Lévy process

The approach taken in the previous chapter is restricted by the requirement that the integral
map is continuous as a mapping between Lp spaces. This does not hold if the noise is the
canonical stable cylindrical Lévy process whose characteristic function is given by ϕL(t)(u) =

e−t‖u‖
α

for u ∈ U , see Example 2.6. Note in particular that the integral in (5.1) is infinite for
every p > 0.

SPDEs with stable noise have attracted a lot of attention in recent years. Having tails
fatter than the normal distribution, stable processes are a good candidate for modelling various
phenomena. Infinite variance of those distributions makes many techniques that apply to
the Brownian motion or square-integrable martingales unavailable. Notwithstanding, due to
explicit formulas e.g. for the Lévy measure, they are quite tractable and allow for direct
calculations.

So far equations with stable noise have been mostly considered in the random field ap-
proach, see Balan [5]. Her results were improved by Chong [22]. In a subsequent work Chong,
Dalang and Humeau [23] characterised negative Sobolev spaces in which the solutions live.
Equations with non-Lipschitz coefficients were considered by Mueller [71] for α ≤ 1, Mytnik
[72] for 1 < α < 2 and Xiong, Yang and Zhou [107, 108]. Brzeźniak and Zabczyk [18] proved
existence and regularity of solutions with a cylindrical noise as ours but of additive type by us-
ing the construction of stable cylindrical Lévy process as a subordinated cylindrical Brownian
motion i.e. L(t) = W (`(t)), where W is a cylindrical Brownian motion and ` is an α

2 -stable
subordinator.
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In the preparatory Sections 6.1 and 6.2 we generalise the tail inequality for stochastic
integrals from Giné and Marcus [38] to the case of the integral with respect to the canonical
stable cylindrical Lévy process on Hilbert spaces, that is we prove that

sup
r>0

rαP

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥
H

> r

)
≤ CαE

∫ T

0
‖Ψ(s)‖αLHS(U,H) ds. (6.1)

This immediately implies an inequality for the p-th moment of the integral. For p < α one
has

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥p
]
≤ Cα,p

(
E
[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

])p/α
. (6.2)

We note that Rosiński andWoyczyński [86] use time change technique to get a sharper bound in
the case of real-valued integrands and non-cylindrical noise whereas Brzeźniak and Hausenblas
[13, Cor. C.2] obtain a similar inequality for integrals with respect to Poisson random measures.

We construct a càdlàg solution to the SPDE (1.4) with a canonical α-stable cylindrical
Lévy process L, α ∈ (1, 2) as a limit of the Picard iterations

Xn(t) = S(t)X0 +

∫ t

0
S(t− s)F (Xn−1(s)) ds+

∫ t

0
S(t− s)G(Xn−1(s−)) dL(s).

Firstly, we show tightness of the approximating sequence by verifying the Aldous condition
and a version of the compact containment condition. For this to work we must assume that
the functions F and G in (1.4) map between the domains of the fractional powers of (−A).
We employ similar estimates of the norms in the domains of fractional powers of (−A) as
Hausenblas [44], where she considered equations driven by Poisson randommeasures. Secondly,
the almost sure convergence of the sequence (on a different probability space) follows by the
Skorokhod theorem. In order to apply this result we must rewrite the cylindrical Lévy process
as a metric space-valued random variable. Thirdly, we identify the limit as the solution of the
SPDE. Since we do not have the decomposition into large and small jumps at hand, we need to
use careful estimates of the p-moments for p < α using the moment estimate (6.2). Pathwise
uniqueness follows from a version of the Gronwall inequality due to Willet and Wong [106].
Finally, by Kurtz’s generalisation of the Yamada–Watanabe theorem, see [56], this gives also
existence of a solution on any given probability space i.e. existence of the strong solution.

In future research we are planning to investigate if some assumptions taken in this chapter
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can be relaxed, in particular the boundedness of F and G and the assumption that they map
into the domains of the fractional powers of (−A). Also our Hölder condition for S(t)G, see
(A3), holds also for t = 0. This is less general than the condition in Peszat and Zabczyk
[74, Ch. 9], where the authors assume a Lipschitz condition for S(t)G and allow the Lipschitz
constant to depend on t possibly exploding at t = 0.

Preliminaries

In this chapter we work solely in the setting of Hilbert spaces (denoted by U and H). We
end this short introduction by recalling some facts about stable measures from Linde [59]. A
probability measure µ on a Hilbert space H is called stable if for every n ∈ N there exists
γn > 0 and xn ∈ H such that

ϕµ(h)n = ϕµ(γnh)ei〈xn,h〉, h ∈ H. (6.3)

For every stable measure there exists a unique number α ∈ (0, 2] such that γn in the above
formula can be chosen as γn = n1/α. For α = 2 the measure µ is Gaussian. In what follows
we consider α ∈ (0, 2).

Each stable measure is infinitely divisible and its Lévy measure ν can be written as

ν(B) = c−1
α

∫ ∞
0

∫
SH

1B(tx)σ(dx)t−1−p dt, B ∈ B(H),

where σ is a finite measure on SH and cα is defined in (2.8). The measure σ is called the
spectral measure of µ and is given by the formula

σ(A) = αcαν

({
x ∈ H : ‖x‖ > 1,

x

‖x‖
∈ A

})
, A ∈ B(SH). (6.4)

By [59, Prop. 7.5.4(iv)] for every Hilbert space there exists a constant c > 0 such that for
every stable measure µ on H

sup
r>0

rαµ(‖x‖ > r) ≤ c lim
r→∞

rαµ(‖x‖ > r). (6.5)

6.1 Tail estimate

We start with the following lemma:
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Lemma 6.1. For any real-valued non-negative random variable X and r > 0 we have

E
[
X2

1{X≤r}
]

= 2

∫ r

0
tP (t < X ≤ r) dt.

Proof. Similarly to [26, Lem. 4.38] we obtain

E
[
X2

1{X≤r}
]

= E
[∫ X1{X≤r}

0
2t dt

]
= 2E

[∫ ∞
0

t1t<X1{X≤r} dt

]
= 2

∫ ∞
0

tE
[
1t<X1{X≤r}

]
dt = 2

∫ r

0
tP (t < X ≤ r) dt.

Let ψ ∈ LHS(U,H). Then the cylindrical Lévy process (L(t)ψ∗ : t ≥ 0) on H is induced
by a classical process denoted by (Jt(ψ) : t ≥ 0). In that case the cylindrical Lévy measure
ν ◦ ψ−1 of Jt(ψ) extends to a classical Lévy measure, see [101, Th. VI.5.2.].

Lemma 6.2. For any canonical α-stable cylindrical Lévy process L on U and ψ ∈ LHS(U,H)

we have
sup
r>0

rαP (‖Jt(ψ)‖ > r) ≤ ct
(
ν ◦ ψ−1

)
(Bc

H) ≤ c1,αt‖ψ‖αLHS(U,H), (6.6)

where

c1,α =
cΓ(1

2)

cαΓ(1+α
2 )

and c is the constant (depending on α) appearing in (6.5).

Proof. In the proof we use ideas from [85, Sec. 4]. Note that the characteristic function of
Jt(ψ) is given by ϕJt(ψ)(h) = e−t‖ψ

∗h‖α for h ∈ H and thus it is a stable random variable, cf.
(6.3). It follows by (6.5) that

sup
r>0

rαP (‖Jt(ψ)‖ > r) ≤ c lim
r→∞

rαP (‖Jt(ψ)‖ > r). (6.7)

The Lévy measure of the infinitely divisible random variable Jt(ψ∗) is t
(
ν ◦ ψ−1

)
. Let σ

denote the spectral measure of ν ◦ ψ−1. Combining [59, Cor. 6.7.3] and formula (6.4) we get

lim
r→∞

rαP (‖Jt(ψ)‖ > r) = t
σ(SH)

αcα
= t
(
ν ◦ ψ−1

)
(Bc

H). (6.8)

Now the first inequality in (6.6) follows from (6.7) and (6.8).
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We now prove the second inequality in (6.6). The operator ψ has the decomposition

ψ =

∞∑
n=1

γnen ⊗ fn,

where (en) is an orthonormal system in U , (fn) is an orthonormal system in H and (γn) ⊂ R,
see [29, Th. 4.1]. Note that

‖ψ‖2LHS(U,H) =

∞∑
n=1

‖ψen‖2 =

∞∑
n=1

γ2
n. (6.9)

Let Pn : H → H be a projection onto Span(f1, . . . , fn).

‖Jt(Pnψ)− Jt(ψ)‖2 =

∥∥∥∥∥
∞∑

j=n+1

L(t)(ψ∗fj)fj

∥∥∥∥∥
2

→ 0

almost surely because the series ‖Jt(ψ)‖2 =
∞∑
j=1

L(t)(ψ∗fj)fj converges a.s. It follows from

[59, Prop. 6.6.5] that the spectral measure of J1(Pnψ) (denoted by σn) converges weakly
to the spectral measure of J1(ψ) (denoted by σ). By the Portmanteau theorem σn(SH) →
σ(SH) as n → ∞. It follows from (6.4) that σ(SH) = αcα

(
ν ◦ ψ−1

)
(Bc

H) and σn(SH) =

αcα
(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H) and thus

(
ν ◦ ψ−1

)
(Bc

H) = lim
n→∞

(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H). (6.10)

We calculate

(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H) = ν ({u ∈ U : ψPnu ∈ Bc
H})

= ν

({
u ∈ U :

n∑
j=1

γ2
j 〈u, ej〉2 > 1

})

= ν ◦ π−1
e1,...,en

({
x ∈ Rn :

n∑
j=1

γ2
j x

2
j > 1

})
.
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By (2.7)

(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H) =
α

cα

∫
SRn

∫ ∞
0

1

(
r2

n∑
j=1

x2
jγ

2
j > 1

)
1

r1+α
dr λn(dx)

=
α

cα

∫
SRn

∫
r>

(
n∑
j=1

x2jγ
2
j

)−1/2

1

r1+α
dr λn(dx)

=
1

cα

∫
SRn

( n∑
j=1

x2
jγ

2
j

)α/2
λn(dx).

Denote λ(1)
n := 1

λn(SRn )λn. By the Jensen inequality

(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H) ≤ λn(SRn)

cα

(∫
SRn

n∑
j=1

x2
jγ

2
j λ

(1)
n (dx)

)α/2

=
λn(SRn)

cα

( n∑
j=1

γ2
j

∫
SRn

x2
j λ

(1)
n (dx)

)α/2
.

(6.11)

Note that
n∑
j=1

∫
SRn

x2
j λ

(1)
n (dx) = 1 (6.12)

because
n∑
j=1

x2
j = 1 on SRn . Since all the terms in the sum in (6.12) are equal it follows that

∫
SRn

x2
j λ

(1)
n (dx) =

1

n

for all j = 1, . . . , n. Applying this in (6.11) we obtain

(
ν ◦ ψ−1 ◦ P−1

n

)
(Bc

H) ≤ λn(SRn)

cαnα/2

 n∑
j=1

γ2
j

α/2

. (6.13)

Recall that Γ(x+β)
Γ(x)xβ

→ 1 as x→∞. It follows from (2.9) that as n→∞

λn(SRn)

nα/2
=

Γ(1
2)Γ(n+α

2 )

Γ(n2 )Γ(1+α
2 )nα/2

→
Γ(1

2)

Γ(1+α
2 )

,
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and finally taking the limit in (6.13) and using (6.9) and (6.10) we obtain the second inequality
in (6.6).

Lemma 6.3. Suppose that Ψ is a simple LHS(U,H)-valued process taking only finitely many
values. Then

sup
r>0

rαP

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥ > r

)
≤ c2,αE

[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
(6.14)

with c2,α = c1,α

(
1 + 8

2−α

)
.

Proof. In the proof we follow [38, Lem. 3.3] and [5, Th. 4.3]. Denote for t ∈ [0, T ]

I(t) :=

∫ t

0
Ψ(s) dL(s).

Suppose that the simple process Ψ is based on the partition {s1, . . . , sK}. Let {t1, . . . , tN} be
a partition of [0, T ] containing {s1, . . . , sK}. We first show that

P

(
max

i=1,...,N
‖I(ti)‖ > r

)
≤ c2,αr

−αE
[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
. (6.15)

Fix n ∈ N and write Ψ as

Ψ = Ψ01{0} +

N−1∑
i=1

Ψi1(ti,ti+1], Ψi =

mi∑
j=1

1Ai,jψi,j ,

where for each i = 1, . . . , N the sets Ai,1, . . . , Ai,mi form a partition of Ω. We have

P

(
max

i=1,...,N
‖I(ti)‖ > r

)
≤

N−1∑
i=1

P
(∥∥Jti,ti+1(Ψi)

∥∥ > r
)

+ P

(
max

k=1,...,N−1

∥∥∥∥∥
k∑
i=1

Jti,ti+1(Ψi)1{‖Jti,ti+1 (Ψi)‖≤r}

∥∥∥∥∥ > r

)
=: e1 + e2.

(6.16)
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We estimate each term on the right-hand side separately. We have

P
(∥∥Jti,ti+1(Ψi)

∥∥ > r
)

= P

(∥∥∥∥∥
mi∑
j=1

1Ai,jJti,ti+1(ψi,j)

∥∥∥∥ > r

)

=

mi∑
j=1

P (Ai,j ∩
{∥∥Jti,ti+1(ψi,j)

∥∥ > r
}

)

=

mi∑
j=1

P (Ai,j)P
(∥∥Jti,ti+1(ψi,j)

∥∥ > r
)
,

where the last step follows from the fact that each Ai,j is Fti-measurable and Jti,ti+1(ψi,j) is
independent of Fti . From Lemma 6.2 we obtain

P
(∥∥Jti,ti+1(Ψi)

∥∥ > r
)
≤ c1,αr

−α(ti+1 − ti)
mi∑
j=1

P (Ai,j)‖ψi,j‖αLHS(U,H)

= c1,αr
−α(ti+1 − ti)E

[
‖Ψi‖αLHS(U,H)

]
.

This proves that

e1 ≤ c1,αr
−αE

[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
.

We estimate the second term on the right-hand side of (6.16). By the Doob inequality

e2 ≤ 4r−2 max
k=1,...,N−1

E

∥∥∥∥∥
k∑
i=1

Jti,ti+1(Ψi)

∥∥∥∥∥
2

1{‖Jti,ti+1 (Ψi)‖≤r}

 .
Note that for any s < t and ψ ∈ LHS(U,H) we have

ϕJs,t(ψ)(h) = e−(t−s)‖ψ∗h‖α = e−(t−s)‖−ψ∗(h)‖α = ϕJs,t(−ψ)(h), h ∈ H.

Thus L(Js,t(ψ)) = L(Js,t(−ψ)) = L(−Js,t(ψ)) and consequently L
(
Js,t(ψ)1{‖Js,t(ψ)‖≤r}

)
=

L
(
−Js,t(ψ)1{‖Js,t(ψ)‖≤r}

)
. It follows that E

[
Js,t(ψ)1{‖Js,t(ψ)‖≤r}

]
= 0. It follows by condi-

tioning on Ftl that for i < l

E
[〈
Jti,ti+1(Ψi)1{‖Jti,ti+1 (Ψi)‖≤r}, Jtl,tl+1

(Ψl)1{‖Jtl,tl+1
(Ψl)‖≤r}

〉]
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=

mi∑
j=1

ml∑
k=1

E
[〈
Jtl,tl+1

(ψl,j)1{‖Jti,ti+1 (ψi,j)‖≤r},E
[
Jtl,tl+1

(ψl,k)1{‖Jtl,tl+1
(Ψl,k)‖≤r}

]〉
1Al,j1Al,k

]
= 0.

Thus

e2 ≤ 4r−2
N−1∑
i=1

E
[∥∥Jti,ti+1(Ψi)

∥∥2
1{‖Jti,ti+1 (Ψi)‖≤r}

]
. (6.17)

We write using the independence of Jti,ti+1(ψi,j) from Fti

E
[∥∥Jti,ti+1(Ψi)

∥∥2
1{‖Jti,ti+1 (Ψi)‖≤r}

]
=

mi∑
j=1

E
[∥∥Jti,ti+1(ψi,j)

∥∥2
1{‖Jti,ti+1 (ψi,j)‖≤r}1Ai,j

]
=

mi∑
j=1

P (Ai,j)E
[∥∥Jti,ti+1(ψi,j)

∥∥2
1{‖Jti,ti+1 (ψi,j)‖≤r}

]
.

(6.18)

By Lemma 6.1

E
[∥∥Jti,ti+1(ψi,j)

∥∥2
1{‖Jti,ti+1 (ψi,j)‖≤r}

]
= 2

∫ r

0
tP
(
t <

∥∥Jti,ti+1(ψi,j)
∥∥ ≤ r) dt

≤ 2

∫ r

0
tP
(
t <

∥∥Jti,ti+1(ψi,j)
∥∥) dt.

Thus by Lemma 6.2 we estimate further

E
[∥∥Jti,ti+1(ψi,j)

∥∥2
1{‖Jti,ti+1 (ψi,j)‖≤u}

]
≤ 2c1,α(ti+1 − ti)‖ψi,j‖αLHS(U,H)

∫ r

0
t1−α dt

=
2c1,α

2− α
(ti+1 − ti)‖ψi,j‖αLHS(U,H)r

2−α.

(6.19)

Combining (6.17), (6.18) and (6.19) we get

e2 ≤
8c1,α

2− α

N−1∑
i=1

mi∑
j=1

(ti+1− ti)P (Ai,j)‖ψi,j‖LHS(U,H)r
−α =

8c1,α

2− α
r−αE

[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
.

This finishes the proof of (6.15).
The process (I(t) : t ∈ [0, T ]) is càdlàg and thus separable. It follows that there exists a
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sequence of partitions 0 = tn1 < . . . < tnkn = T such that

P

(
sup
t∈[0,T ]

‖I(t)‖ > r

)
= lim

n→∞
P

(
max

i=1,...,kn
‖I(tni )‖ > r

)
.

Combining this with (6.15) gives the result.

We now proceed to defining the integral. The class of integrands will be called Λ(α).

Definition 6.4. We define the space Λα(0, T ;LHS(U,H)) as{
Ψ: [0, T ]× Ω→ LHS(U,H) : Ψ is predictable, E

[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
<∞

}
with the metric defined by

dα(Ψ,Φ) :=

E
[∫ T

0 ‖Ψ(s)− Φ(s)‖αLHS(U,H) ds
]
, if α ≤ 1,(

E
[∫ T

0 ‖Ψ(s)− Φ(s)‖αLHS(U,H) ds
])1/α

, if α > 1.

Furthermore, let Λ0(0, T ;LHS(U,H)) denote the subspace of Λα(0, T ;LHS(U,H))) consisting
of simple processes of the form (3.3) and let ΛS0 (0, T ;LHS(U,H))) be the subspace of simple
integrands for which additionally each Ψi takes only finitely many values like in (3.4).

Note that for α ≥ 1 the space Λα(0, T ;LHS(U,H)) is in fact a Banach space.

Lemma 6.5. The space ΛS0 (0, T ;LHS(U,H)) is dense in Λα(0, T ;LHS(U,H)).

Proof. For a given Ψ ∈ Λα(0, T ;LHS(U,H)) we construct an approximating sequence (Ψn) ⊂
Λ0(0, T ;LHS(U,H)) like in [26, Prop. 4.22(ii)]. By construction, the range of each Ψn is finite
and thus we conclude that Ψn ∈ ΛS0 (0, T ;LHS(U,H)).

We are now ready to construct the integral. For Ψ ∈ Λα(0, T ;LHS(U,H)) take Ψn ∈
ΛS0 (0, T ;LHS(U,H)) converging to Ψ. By Lemma 6.3

sup
r>0

rαP

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
(Ψn(s)−Ψm(s)) dL(s)

∥∥∥∥ > r

)
≤ CE

[∫ T

0
‖Ψn(s)−Ψm(s)‖αLHS(U,H) ds

]
,

which converges to 0 as n,m→∞. Thus∫ t

0
Ψn(s) dL(s), n ∈ N
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is a Cauchy sequence in the uniform convergence in probability. There exists a unique limit
and it is denoted by

∫ t
0 Ψ(s) dL(s). The integral also satisfies (6.14):

Theorem 6.6. The inequality (6.14) holds for any predictable process Ψ ∈ Λα(0, T ;LHS(U,H)).

Proof. We have by the Portmanteau theorem

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥ > r

)
≤ lim inf

n→∞
P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψn(s) dL(s)

∥∥∥∥ > r

)

≤ lim inf
n→∞

cr−αE
[∫ T

0
‖Ψn(s)‖αLHS(U,H) ds

]
= cr−αE

[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

]
.

Moving r−α to the left-hand side and taking supremum over r > 0 we get the claim.

6.2 Moments of the stochastic integral

A moment inequality with different powers on the left and right-hand sides was proven in the
case of real-valued integrands and vector-valued integrators in [86], see (5.20) above. By the
Jensen inequality (5.20) gives also

E

[(
sup
t≤T

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥
)p]

≤ C
(
E
[∫ T

0
|Ψ(s)|α dt

])p/α
. (6.20)

In the following proposition we provide (6.20) in the more general case when L is cylindrical
and Ψ is operator-valued. Unlike [86] we are not using the time change technique. A counter-
part with analogous proof for the integrals with respect to square-integrable martingales can
be found in [74, Th. 3.41, Th. 9.24].

Proposition 6.7. For p < α

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥p
]
≤ Cα,p

(
E
[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

])p/α
,

where

Cα,p :=
c
p/α
2,α α

α− p
. (6.21)
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Proof. Let X := sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥ and also let ξ := c2,αE
[∫ T

0 ‖Ψ(s)‖αLHS(U,H) ds
]
. Note

that Theorem 6.6 implies that

P (X > r) ≤ 1 ∧ (r−αξ).

Therefore we obtain

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s) dL(s)

∥∥∥∥p
]

= E [Xp]

= p

∫ ∞
0

rp−1P (X > r) dr

≤ p
∫ ∞

0
rp−1

(
1 ∧ (r−αξ)

)
dr

= p

∫ ξ1/α

0
rp−1 dr + pξ

∫ ∞
ξ1/α

rp−1−α dr

=

(
1 +

p

α− p

)
ξp/α

=
c
p/α
2,α α

α− p

(
E
[∫ T

0
‖Ψ(s)‖αLHS(U,H) ds

])p/α
,

where in the second equality we use [51, Lem. 3.4].

6.3 Tigthness criteria in the Skorokhod space

Recall that a sequence of random variables (Xn) with values in a Polish space S is called
tight if for every ε > 0 there exists a compact set K ⊂ S such that for all n ∈ N one has
P (Xn ∈ K) ≥ 1 − ε. We say that a sequence of càdlàg processes (Xn) satisfies the Aldous
condition if for any ε, η > 0 there exists δ > 0 such that for all sequences of stopping times
(τn) such that τn + δ ≤ T one has

sup
n∈N

sup
0<θ≤δ

P (‖Xn(τn + θ)−Xn(τn)‖ ≥ η) ≤ ε.

The classical Prokhorov theorem asserts that a sequence of random variables is tight if
and only if their laws L(Xn) are relatively compact in the weak topology in the space of
Radon measures on S, see [101, Th. I.3.6]. We formulate and prove yet another version of the
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well-known result, which says that if a sequence of càdlàg processes (Xn) satisfies the Aldous
condition and for every fixed t it attains values in compact sets with high probability then it is
tight in the Skorokhod space D([0, T ];H). Detailed exposition of this method is presented in
[34, Sec. 3.7 and 3.8]. Criteria specifically useful in the context of SPDEs are given in [69, 70],
which we build upon here. These references include also some more straightforward tightness
criteria based solely on various moment estimates. The reason for formulating another version
is that the following one is especially easy to verify in our setting due to the tail estimate in
Theorem 6.6.

Theorem 6.8. Let Xn be a sequence of H-valued càdlàg adapted processes. Assume that there
exists a subspace Γ with a norm ‖·‖Γ compactly embedded in H such that

∀ε > 0∃R > 0∀t ∈ [0, T ] ∩Q, n ∈ N : P (Xn(t) ∈ Γ and ‖Xn(t)‖Γ ≤ R) ≥ 1− ε (6.22)

and such that the Aldous condition holds. Then (Xn) is tight in D([0, T ];H).

Proof. Fix ε > 0. We arrange [0, T ]∩Q in a sequence (tk). For every k ∈ N we choose Rk > 0

such that for all n ∈ N

P (Xn(tk) ∈ Γ and ‖Xn(tk)‖Γ ≤ Rk) ≥ 1− ε

2k+1
.

Let
B = {x ∈ D([0, T ];H) : x(tk) ∈ Γ and ‖x(tk)‖Γ ≤ Rk for all k ∈ N}.

Then

P (Xn /∈ B) = P

( ∞⋃
k=1

{Xn(tk) ∈ Γ and ‖Xn(tk)‖Γ ≤ Rk}
c

)

≤
∞∑
k=1

P ({Xn(tk) ∈ Γ and ‖Xn(tk)‖Γ ≤ Rk}
c) (6.23)

≤
∞∑
k=1

ε

2k+1

=
ε

2
.

By [69, Lem. 7 and 8] the Aldous condition implies that there exists a measurable set A ⊂
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D([0, T ];H) such that
P (Xn ∈ A) ≥ 1− ε

2

and
lim
δ→0

sup
x∈A

ω(x, δ) = 0, (6.24)

where ω is the usual modulus of continuity in D([0, T ];H), see e.g. [8, Ch. 3]. We show that
the assumptions of Theorem 1 in [69] are satisfied for the set A ∩B:

(i) there exists a dense subset J ⊂ [0, T ] such that for all t ∈ J the set {x(t) : x ∈ A ∩ B}
is relatively compact,

(ii) lim
δ→0

sup
x∈A∩B

ω(x, δ) = 0.

Note that condition (i) holds because of the choice of B and the fact that each closed ball
BΓ(0, Rk) = {h ∈ Γ : ‖h‖Γ ≤ Rk} is relatively compact in H. Condition (ii) is satisfied by
(6.24). Thus we get that A ∩ B is relatively compact and thus A ∩B is compact. By (6.23)
we have that

P (Xn ∈ A ∩B) ≥ P (Xn ∈ A ∩B) ≥ P (Xn ∈ A)− P (Xn ∈ Bc) ≥ 1− ε

2
− ε

2
= 1− ε.

This proves that (Xn) is tight.

6.4 Stochastic evolution equation

We consider the problem of existence of a mild solution for

dX(t) = (AX(t) + F (X(t))) dt+G(X(t−)) dL(t) (6.25)

with an F0-measurable initial condition X(0) = X0. Suppose that A is a generator of a
strongly continuous semigroup S on H, F : H → H and G : H → LHS(U,H). Assume that L
is a canonical α-stable cylindrical process on U with α ∈ (1, 2). We prove existence of a mild
solution.

Definition 6.9. A filtered probability space (Ω,F , P, (Ft)), a cylindrical Lévy process L and
a càdlàg process X is a weak mild solution to (6.25) if

X(t) = S(t)X0 +

∫ t

0
S(t− s)F (X(s)) ds+

∫ t

0
S(t− s)G(X(s−)) dL(s). (6.26)
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holds P -a.s. for all t ∈ [0, T ]. The solution is said to be strong if it can be constructed for
arbitrary probability basis and canonical stable cylindrical Lévy process. We say that pathwise
uniqueness holds if for any two càdlàg processes X1 and X2 defined on the same probability
space and satisfying (6.26) we have

P (X1(t) = X2(t) for all t ∈ [0, T ]) = 1.

We list all the assumptions that we need to prove existence of solutions:

(A1) The semigroup S satisfies the following additional conditions:

(i) S is a semigroup of contractions i.e. ‖S(t)‖ ≤ 1 for t ≥ 0,

(ii) 0 belongs to the resolvent set ρ(A),

(iii) {λ ∈ C : 0 < ω < |arg λ| ≤ π} ⊂ ρ(−A) with ω < π
2 .

(iv) The embedding D(A) ⊂ H is compact.

(A2) There is a constant M0 such that for all t ∈ (0, T ] and x ∈ H

‖S(t)F (x)‖D((−A)δ) ≤M0,

‖S(t)G(x)‖LHS(U,D((−A)δ)) ≤M0,

for some δ > 0.

(A3) Assume the following Hölder condition holds for any q ∈ (1− δ, 1) for some δ > 0

‖S(t)(F (x)− F (y))‖LHS(U,H) ≤ cF ‖x− y‖
q, for all x, y ∈ H, t ∈ [0, T ].

and

‖S(t)(G(x)−G(y))‖LHS(U,H) ≤ cG‖x− y‖
q, for all x, y ∈ H, [0, T ].

(A4) The functions G : H → LHS(U,H) and F : H → H are continuous.

By [73, Th. 2.5.2] bounedness and {λ ∈ C : 0 < ω < |arg λ| ≤ π} ⊂ ρ(−A) with ω < π
2

implies that the semigroup is analytic.
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Remark 6.10. For any ϕ ∈ LHS(U,D((−A)δ)) we have

‖ϕ‖2LHS(U,H) =
∞∑
n=1

‖ϕen‖2 ≤
∥∥(−A)−δ

∥∥2
∞∑
n=1

‖ϕen‖2D((−A)δ) =
∥∥(−A)−δ

∥∥2‖ϕ‖2LHS(U,D((−A)δ)).

Thus (A2) implies

(A2′) There is a constant M0 such that for all t ∈ (0, T ] and x ∈ H

‖S(t)F (x)‖ ≤M0,

‖S(t)G(x)‖LHS(U,H) ≤M0.

Proposition 6.11. The boundedness condition (A2′) implies that the Hölder condition is
equivalent to the following Lipschitz condition:

(A3′) There exist constants CF and CG such that

‖S(t)(F (x)− F (y))‖ ≤ CF ‖x− y‖,

‖S(t)(G(x)−G(y))‖LHS(U,H) ≤ CG‖x− y‖.

Proof. See [36, p. 3]. We deal with F only, the proof for G being completely analogous. The
implication (A3) =⇒ (A3′) follows simply by taking q ↗ 1. We prove (A3′) =⇒ (A3). If
‖x− y‖ ≤ 1, then ‖x− y‖ ≤ ‖x− y‖q. If ‖x− y‖ > 1, then we estimate using (A2′)

‖S(t)(F (x)− F (y))‖ ≤M0 ≤M0‖x− y‖.

Thus we may take cF = CF ∨M0.

Remark 6.12. In [50] it is assumed that

(i) G : D((−A)δ)→ LHS(U,D((−A)δ)) satisfies the linear growth condition and

(ii) G : H → LHS(U,H) is Lipschitz.

Condition (i) is weaker than our assumption (A2) because we require that a bigger space (H
rather than D((−A)δ) is mapped into LHS(U,D((−A)δ)). The verification of condition (i) is
delicate and requires using a characterisation of D((−A)δ) as a fractional Sobolev space.
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6.4.1 Pathwise uniqueness

We prove pathwise uniqueness using a special version of the Gronwall inequality from Theorem
2 in [106], which we recall without proof. We also need a generalisation of Lemma 3.13 for the
stopped stochastic integral with respect to the stable cylindrical Lévy process.

Theorem 6.13 (Willet, Wong, 1964). Suppose that the functions v, w, vu and wup defined
on [0, T ] are integrable and non-negative. If

u(t) ≤
∫ t

0
v(s)u(s) ds+

∫ t

0
w(s)up(s) ds, t ∈ [0, T ],

with some p ∈ [0, 1) ∪ (1,∞), then

u(t) exp

(
−
∫ t

0
v(s) ds

)
≤
(
q

∫ t

0
w(s) exp

(
−q
∫ s

0
v(r) dr

)
ds

)1/q

, t ∈ [0, T ]

with q = 1− p.

Lemma 6.14. Let Ψ ∈ Λα(0, T ;LHS(U,H)). For any stopping time τ∫ t∧τ

0
Ψ(s) dL(s) =

∫ t

0
Ψ(s)1{s≤τ} dL(s).

Proof. Note that the random variable on the left-hand side is understood as the càdlàg process(∫ t
0 Ψ(s) dL(s) : t ∈ [0, T ]

)
evaluated at t ∧ τ . For the integral introduced in Section 6.1 the

proof can be done exactly as in Lemma 3.13 changing the convergence of the integrands in L2

into the convergence in Lα and convergence of the integrals in L2 into the ucp convergence.

Proposition 6.15. Suppose that

T <
1

αc2,α2αcαG
. (6.27)

Condition (A3) implies that the pathwise uniqueness holds for equation (6.26). More generally,
if X and Y are two solutions with initial conditions X0 and Y0, then X and Y are a.s. equal
on {X0 = Y0}.

Proof. Suppose that X and Y are two solutions of (6.26). Then

X(t)− Y (t) = S(t)(X0 − Y0) +

∫ t

0
S(t− s) (F (X(s))− F (Y (s))) ds
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+

∫ t

0
S(t− s) (G(X(s−))−G(Y (s−))) dL(s).

Let
τn = inf {t ≥ 0 : ‖X(t)‖ ∨ ‖Y (t)‖ ≥ n} ∧ T.

By Lemma 6.14

(X(t ∧ τn)− Y (t ∧ τn))1{X0=Y0}

=

∫ t

0
S(t− s) (F (X(s)))− F (Y (s)))1{s≤τn}∩{X0=Y0} ds

+

∫ t

0
S(t− s) (G(X(s−))−G(Y (s−)))1{s≤τn}∩{X0=Y0} dL(s).

By the Hölder and Jensen inequalities we have for a measurable function f : Ω × [0, t] → H

and α > p ≥ 1

E

[∥∥∥∥∫ t

0
f(s) ds

∥∥∥∥p] ≤ tp− p
αE

[(∫ t

0
‖f(s)‖α ds

)p/α]
≤ tp−

p
α

(
E
[∫ t

0
‖f(s)‖α ds

])p/α
. (6.28)

We estimate by (A3) with q = p
α

E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

]
≤ E

[
‖X(t ∧ τn)− Y (t ∧ τn)‖p1{X0=Y0}

]
≤ 2p−1E

[∥∥∥∥∫ t

0
S(t− s) (F (X(s))− F (Y (s)))1{s≤τn}∩{X0=Y0} ds

∥∥∥∥p]
+ 2p−1E

[∥∥∥∥∫ t

0
S(t− s) (G(X(s−))−G(Y (s−)))1{s≤τn}∩{X0=Y0} dL(s)

∥∥∥∥p]
≤ 2p−1T p−

p
α

(
E
[∫ t

0
‖S(t− s) (F (X(s))− F (Y (s)))‖α1{s≤τn}∩{X0=Y0} ds

])p/α
+ 2p−1Cα,p

(
E
[∫ t

0
‖S(t− s) (G(X(s−))−G(Y (s−)))‖αLHS(U,H)1{s≤τn}∩{X0=Y0} ds

])p/α
≤ 2p−1

(
T p−

p
α cpF + Cα,pc

p
G

)(
E
[∫ t

0
‖X(s)− Y (s)‖p1{s<τn}∩{X0=Y0} ds

])p/α
,

where the last equality follows from the fact that both X and Y are càdlàg and therefore for
each ω ∈ Ω the integrands X and X(·−) differ only for countably many s. Since the constant
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Cα,p defined in (6.21) converges to +∞ as p↗ α, there exists p0 such that if p ∈ [p0, α), then
T p−

p
α cpF ≤ Cα,pc

p
G. For such p, the previous inequality implies that

E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

]
≤ 2pCα,pc

p
G

(
E
[∫ t

0
‖X(s)− Y (s)‖p1{s<τn}∩{X0=Y0} ds

])p/α
.

Raising this inequality to the power α
p we obtain

(
E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

])α/p
≤ 2αCα/pα,p c

α
G

∫ t

0
E
[
‖X(s−)− Y (s−)‖p1{s<τn}∩{X0=Y0}

]
ds.

Let
up(t) :=

(
E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

])α/p
.

We apply Theorem 6.13 with v ≡ 0, w ≡ 2αC
α/p
α,p cαG and p

α instead of p. Then q = 1− p
α = α−p

α .
We obtain

up(t) ≤
(
α− p
α

∫ t

0
2αCα/pα,p c

α
G ds

) α
α−p

.

Inserting the formula for Cα,p from (6.21) we get

up(t) ≤

(
α− p
α

(
c2,αα

α− p

)α/p
2αcαGt

) α
α−p

= (α− p)−
α
p

(
α
−1+α

p c2,α2αcαGt
) α
α−p

.

Since (α− p)−
α
p ≤ (α− p)−2 and α−1+α

p ≤ α we get

up(t) ≤ (α− p)−2 (αc2,α2αcαGt)
α
α−p .

Take p↗ α. We have substituting x = α
α−p , c3 = αc2,α2αcαGT < 1 and applying the L’Hôspital

rule twice

lim
p↗α

(α− p)−2 (αc2,α2αcαGt)
α
α−p =

1

α2
lim
x→∞

x2cx3 =
1

α2
lim
x→∞

2x

−c−x3 log(c3)

=
2

− log(c3)α2
lim

x→+∞

1

− log(c3)c−x3

= 0. (6.29)
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Thus lim
p↗α

up(t) = 0. Fix ε ∈ (0, 1). There exists p < α such that up(t) ≤ εα(1+α), which

implies that
E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

]
≤ εp(1+α) ≤ ε1+α.

By the Markov inequality

P (‖X(t)− Y (t)‖ ≥ ε, t < τn, X0 = Y0) ≤ 1

εp
E
[
‖X(t)− Y (t)‖p1{t<τn}∩{X0=Y0}

]
≤ ε.

Since ε was arbitrary it follows that X(t) and Y (t) coincide on {t < τn} ∩ {X0 = Y0}. Taking
n → ∞ proves that X and Y are modifications of each other on {X0 = Y0}. Since they are
both càdlàg, it follows that X and Y are indistinguishable on {X0 = Y0}.

6.4.2 Analytical lemmas

We prove some results concerning the composition of a strongly continuous semigroup and
Hilbert-Schmidt operators. We consider continuity of the semigroup considered as a mapping
on the Skorokhod space.

Lemma 6.16. If K ⊂ LHS(U,H) is compact, then sup
ψ∈K
‖(S(t)− I)ψ‖LHS(U,H) → 0 as t→ 0.

Proof. In the proof we use a method similar to the proof of [73, Th. 3.2]. LetM = sup
t∈[0,T ]

‖S(t)‖.

Take ε1 = ε
2(1+M) and choose covering of K consisting of the balls B(ψi, ε1) for i = 1, . . . , N .

By Lemma 5.3 it follows that ‖(I − S(s))ψi‖LHS(U,H) → 0 as s→ 0 for every i. There exists δ
such that for s ≤ δ and i = 1, . . . , N we have ‖(I − S(s))ψi‖LHS(U,H) ≤

ε
2 . For any s ≤ δ and

ψ ∈ K we find the closest center ψi and estimate

‖(I − S(s))ψ‖LHS(U,H) ≤ ‖(I − S(s))ψi‖LHS(U,H) + ‖(I − S(s))(ψ − ψi)‖LHS(U,H)

≤ ε

2
+ (1 +M)ε1

= ε.

Lemma 6.17. Assume that G : H → LHS(U,H) is Lipschitz, that is there exists a constant
cL such that

‖S(t) (G(x)−G(y))‖LHS(U,H) ≤ cL‖x− y‖, x, y ∈ H.
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Then the mapping

Θ: D([0, T ];H)→ D([0, T ];LHS(U,H)), Θ(x)(s) = S(T − s)G(x(s)).

is continuous.

Proof. We use the notation ‖x‖∞ = sup
s∈[0,T ]

‖x(s)‖ when x ∈ D([0, T ];H) and similarly ‖j‖∞ =

sup
s∈[0,T ]

|j(s)| when j : [0, T ] → [0, T ]. Recall that the Skorokhod topology on D([0, T ];H) is

induced by the metric

d(x, y) = inf
j∈Π

(‖x− y ◦ j‖∞ ∨ ‖Id−j‖∞) , x, y ∈ D([0, T ];H),

where Π is the set of all increasing bijections of [0, T ] and Id : [0, T ] → [0, T ] is the identity
mapping, see [8, p. 124]. By the elementary inequality

a ∨ b ≤ a+ b ≤ 2(a ∨ b), a, b ≥ 0,

we see that the metric d is equivalent to the following one:

d+(x, y) := inf
j∈Π

(‖x− y ◦ j‖∞ + ‖Id−j‖∞) , x, y ∈ D([0, T ];H).

Let M := supt∈[0,T ]‖S(t)‖.
Fix xn, x ∈ D([0, T ];H) such that xn converge to x and fix ε > 0. By [31, Prob. 1, p.

146], the image of [0, T ] by x is relatively compact in H. By the continuity of G the set
K := {G(x(s)) : s ∈ [0, T ]} is relatively compact in LHS(U,H). By Lemma 6.16 we obtain
that for some δ > 0

sup
s≤δ

sup
ψ∈K
‖(I − S(s))ψ‖LHS(U,H) ≤

ε

2M
. (6.30)

Without loss of generality we assume that δ ≤ ε
cG+1 .

There exists n0 such that for all n ≥ n0 we have d+(xn, x) ≤ δ
2 . By definition of the metric,

for each n ≥ n0 there exists jn ∈ Π such that

‖xn − x ◦ jn‖∞ + ‖Id−jn‖∞ ≤ d
+(xn, x) +

δ

2
.
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Thus for each n ≥ n0 there exists jn ∈ Π such that

‖xn − x ◦ jn‖∞ + ‖Id−jn‖ ≤ δ. (6.31)

Since G composed with the semigroup is Lipschitz

d+(Θ(xn),Θ(x))

= inf
j∈Π

(
sup
s∈[0,T ]

‖S(T − s)G(xn(s))− S(T − j(s))G(x(j(s)))‖+ ‖Id−j‖∞

)
≤ sup

s∈[0,T ]
‖S(T − s)G(xn(s))− S(T − jn(s))G(x(jn(s)))‖+ ‖Id−jn‖∞

≤ sup
s∈[0,T ]

‖S(T − s) (G(xn(s))−G(x(jn(s))))‖LHS(U,H)

+ sup
s∈[0,T ]

‖(S(T − s)− S(T − jn(s)))G(x(jn(s)))‖LHS(U,H) + ‖Id−jn‖∞

≤ cG sup
s∈[0,T ]

‖xn(s)− x(jn(s))‖

+ sup
s∈[0,T ]

∥∥S(T − (jn(s) ∨ s))
(
S(jn(s) ∨ s− s)− S(jn(s) ∨ s− jn(s))

)
G(x(jn(s))

∥∥
LHS(U,H)

+ ‖Id−jn‖∞. (6.32)

By (6.31) we have |s− (jn(s) ∨ s)| ≤ δ for all n ≥ n0 and s ∈ [0, T ]. Note that

S((jn(s) ∨ s)− s)− S((jn(s) ∨ s)− jn(s)) =

{
Id−S(s− jn(s)), if jn(s) ≤ s,
S(jn(s)− s)− Id, if jn(s) > s.

Then by (6.30)

sup
s∈[0,T ]

∥∥S(T − (jn(s) ∨ s))
(
S((jn(s) ∨ s)− s)− S((jn(s) ∨ s)− jn(s))

)
G(x(jn(s))

∥∥
LHS(U,H)

≤M sup
s∈[0,T ]

∥∥(S((jn(s) ∨ s)− s)− S((jn(s) ∨ s)− jn(s))
)
G(x(jn(s))

∥∥
LHS(U,H)

≤M sup
s≤δ

sup
ψ∈K
‖(Id−S(s))ψ‖LHS(U,H)

≤ ε

2
.
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Now (6.32) gives for n ≥ n0

d+(Θ(xn),Θ(x)) ≤ cGδ +
ε

2
+ δ = (cG + 1)δ +

ε

2
≤ ε

2
+
ε

2
= ε.

6.4.3 Proof of tightness

Lemma 6.18. Consider the Picard approximating sequence defined by

X0(t) = S(t)X0,

Xn(t) = S(t)X0 +

∫ t

0
S(t− s)F (Xn−1(s)) ds+

∫ t

0
S(t− s)G(Xn−1(s−)) dL(s) (6.33)

for n ≥ 1, where the stochastic integral is understood as in Jakubowski and Riedle [49], see
also Theorem 2.8. If the assumptions (A1), (A2), (A4) hold, then the sequence (Xn) is tight
in D([0, T ];H).

Proof. We prove tightness in 3 steps. Firstly we show that the definition ofXn makes sense and
that they are càdlàg, secondly we verify the Aldous condition and finally we verify condition
(6.22).

Step 1. The Dilation Theorem was for the first time used to show existence of a càdlàg
modification of a mild solution by Hausenblas and Seidler [45]. By the Dilation theorem [99,
Th. I.8.1], since we assumed (A1), there exist a Hilbert space Ĥ ⊃ H, a projection P : Ĥ → H

and a group of unitary operators Ŝ such that S(t) = PŜ(t) for t ≥ 0. We now prove by
induction that Xn is well defined and has a càdlàg modification. Suppose that Xn−1 is càdlàg.
Write

Xn(t) = S(t)X0 + PŜ(t)

∫ t

0
Ŝ(−s)F (Xn−1(s)) ds+ PŜ(t)

∫ t

0
Ŝ(−s)G(Xn−1(s−)) dL(s).

The Lebesgue integral is clearly well defined by the continuity of F assumed in (A4). Thus the
second term on the right-hand side is a continuous process. We prove that that the integrand

s 7→ Ŝ(−s)G(Xn−1(s−)) (6.34)

is càglàd. Fix s0 < s ≤ t. We show that the right limit exists. We have∥∥∥Ŝ(−s)G(Xn−1(s−))− Ŝ(−s0)G(Xn−1(s0))
∥∥∥
LHS(U,Ĥ)
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≤
∥∥∥(Ŝ(−s)− Ŝ(−s0)

)
G(Xn−1(s−))

∥∥∥
LHS(U,Ĥ)

+
∥∥∥Ŝ(−s0) (G(Xn−1(s−))−G(Xn−1(s0)))

∥∥∥
LHS(U,Ĥ)

.
(6.35)

The second term on the right-hand side tends to 0 as s↘ s0 by (A4) and the right-continuity
of Xn−1 and the continuity of the embedding H ⊂ Ĥ. For fixed ω ∈ Ω it follows from (A4)
and [31, Prob. 1, p. 146] that the set {G(Xn−1(s−)(ω)) : s ∈ [0, t]} is relatively compact in
LHS(U, Ĥ). Therefore, by Lemma 6.16 applied for Ĥ instead of H the first term on the right-
hand side of (6.35) tends to 0 as well. Similarly, one shows that the limit of Ŝ(−s)G(Xn−1(s−))

from the left equals Ŝ(−s0)G(Xn−1(s0−)). This proves that the mapping (6.34) is càglàd.
Thus, the integral in (6.33) is well defined according to [49] and Xn has a càdlàg modification.

Step 2. Fix ε, η > 0. We have for any θ > 0 and a sequence of stopping times (τn) such
that τn + θ ≤ T

Xn(τn + θ)−Xn(τn)

= S(τn + θ)X0 +

∫ τn+θ

0
S(τn + θ − s)F (Xn−1(s−)) ds

+

∫ τn+θ

0
S(τn + θ − s)G(Xn−1(s−)) dL(s)

− S(τn)X0 −
∫ τn

0
S(τn − s)F (Xn−1(s−)) ds−

∫ τn

0
S(τn − s)G(Xn−1(s−)) dL(s)

= S(τn) (S(θ)− I)X0 +

∫ τn

0
S(τn − s)S(θ)F (Xn−1(s−)) ds

+

∫ τn+θ

τn

S(τn + θ − s)F (Xn−1(s−)) ds

+

∫ τn

0
S(τn − s)S(θ)G(Xn−1(s−)) dL(s) +

∫ τn+θ

τn

S(τn + θ − s)G(Xn−1(s−)) dL(s)

−
∫ τn

0
S(τn − s)F (Xn−1(s−)) ds−

∫ τn

0
S(τn − s)G(Xn−1(s−)) dL(s)

= S(τn) (S(θ)− I)X0 +

∫ τn

0
S(τn − s) (S(θ)− I)F (Xn−1(s−)) ds

+

∫ τn

0
S(τn − s) (S(θ)− I)G(Xn−1(s−)) dL(s) +

∫ τn+θ

τn

S(τn + θ − s)F (Xn−1(s−)) ds

+

∫ τn+θ

τn

S(τn + θ − s)G(Xn−1(s−)) dL(s).
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Thus

P (‖Xn(τn + θ)−Xn(τn)‖ ≥ η)

≤ P
(
‖S(τn) (S(θ)− I)X0‖ ≥

η

5

)
+ P

(∥∥∥∥∫ τn

0
(S(θ)− I)S(τn − s)F (Xn−1(s)) ds

∥∥∥∥ ≥ η

5

)
+ P

(∥∥∥∥∫ τn

0
(S(θ)− I)S(τn − s)G(Xn−1(s−)) dL(s)

∥∥∥∥ ≥ η

5

)
+ P

(∥∥∥∥∫ τn+θ

τn

S(τn + θ − s)F (Xn−1(s)) ds

∥∥∥∥ ≥ η

5

)
+ P

(∥∥∥∥∫ τn+θ

τn

S(τn + θ − s)G(Xn−1(s−)) dL(s)

∥∥∥∥ ≥ η

5

)
=: e1 + e2 + e3 + e4 + e5.

Let M := sup
t∈[0,T ]

‖S(t)‖. For e1 we have

e1 = P
(
‖S(τn) (S(θ)− I)X0‖ ≥

η

5

)
≤ P

(
‖(S(θ)− I)X0‖ ≥

η

5M

)
.

By the strong continuity, e1 tends to 0 as θ tends to 0. By the Markov inequality we have

e2 = P

(∥∥∥∥∫ τn

0
(S(θ)− I)S(τn − s)F (Xn−1(s)) ds

∥∥∥∥ ≥ η

5

)
≤ 5

η
E
[∥∥∥∥∫ T

0
1[0,τn](s) (S(θ)− I)S(τn − s)F (Xn−1(s)) ds

∥∥∥∥]
≤ 5

η
E
[∫ T

0
1[0,τn](s)‖(S(θ)− I)S(τn − s)F (Xn−1(s))‖ ds

]
.

We estimate

‖(S(θ)− I)S(τn − s)F (Xn−1(s))‖H
≤ ‖S(θ)− I‖L(D((−A)δ),H)‖S(τn − s)F (Xn−1(s))‖D((−A)δ). (6.36)

Theorem 2.6.13(d) in [73] states that for all δ ∈ (0, 1] one has for some C > 0

‖S(t)− I‖L(D((−A)δ),H) ≤ Ct
δ. (6.37)
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By (6.36) and (A2) we get e2 ≤ CθδM0. For the third term we get

e3 ≤
5αc2,α

ηα
E
[∫ T

0
1[0,τn](s)‖(S(θ)− I)S(τn − s)G(Xn−1(s−))‖αLHS(U,H) ds

]
.

We estimate as in (6.36)

‖(S(θ)− I)S(τn − s)G(Xn−1(s−))‖LHS(U,H)

≤ ‖S(θ)− I‖L(D((−A)δ),H)‖S(τn − s)G(Xn−1(s−))‖LHS(U,D((−A)δ)).

Using (6.37) and the boundedness (A2) we get e3 ≤ 5αc2,α
ηα CMα

0 Tθ
δ. By (A2′) and the Markov

inequality

e4 = P

(∥∥∥∥∫ τn+θ

τn

S(τn + θ − s)F (Xn−1(s)) ds

∥∥∥∥ ≥ η

5

)
≤ 5

η
E
[∥∥∥∥∫ T

0
1[τn,τn+θ](s)S(τn + θ − s)F (Xn−1(s)) ds

∥∥∥∥]
≤ 5

η
E
[∫ T

0
1[τn,τn+θ](s)‖S(τn + θ − s)F (Xn−1(s))‖ ds

]
≤ 5

η
θM0.

Note that by (A2′) and tail estimate from Theorem 6.6

e5 = P

(∥∥∥∥∫ T

0
1(τn,τn+θ](s)S(τn + θ − s)G(Xn−1(s−)) dL(s)

∥∥∥∥ ≥ η

5

)
≤ 5αc2,α

ηα
E
[∫ τn+θ

τn

‖S(τn + θ − s)G(Xn−1(s−))‖αLHS(U,H) ds

]
≤Mα

0 c2,α
5α

ηα
θ.

Thus the Aldous condition holds.
Step 3. According to [7, Cor. 3.8.2, Th. 6.7.3] it follows from (A1)(iv) that the embedding

of D((−A)δ) ⊂ H is compact as well. Thus the closed ball BD((−A)δ)(0, R) is compact in H.
Note that

P
(
Xn(t) /∈ BD((−A)δ)(0, R)

)
≤ P

(
‖S(t)X0‖D((−A)δ) >

R

3

)
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+ P

(∥∥∥∥∫ t

0
S(t− s)F (Xn−1(s)) ds

∥∥∥∥
D((−A)δ)

>
R

3

)

+ P

(∥∥∥∥∫ t

0
S(t− s)G(Xn−1(s−)) dL(s)

∥∥∥∥
D((−A)δ)

>
R

3

)

We have P
(
‖S(t)X0‖D((−A)δ) >

R
3

)
→ 0 as R → ∞ because S(t)X0 is D((−A)δ)-valued by

[73, Th. 6.13(c)]. Secondly, by (A2)

P

(∥∥∥∥∫ t

0
S(t− s)F (Xn−1(s)) ds

∥∥∥∥
D((−A)δ)

>
R

3

)

≤ 3

R
E
[∫ T

0
‖S(t− s)F (Xn−1(s))‖D((−A)δ) ds

]
≤ 3

R
M0T

and

P

(∥∥∥∥∫ t

0
S(t− s)G(Xn−1(s−)) dL(s)

∥∥∥∥
D((−A)δ)

>
R

3

)

≤ c2,α3α

Rα
E
[∫ t

0
‖S(t− s)G(Xn−1(s−))‖αLHS(U,D((−A)δ)) ds

]
≤ c2,α3α

Rα
Mα

0 T.

It follows from Theorem 6.8 that the sequence (Xn) is tight.

In the following result the Hilbert space H ×H is equipped with the norm

‖(x, y)‖ =

√
‖x‖2 + ‖y‖2, x, y ∈ H.

Corollary 6.19. The sequence (Xn, Xn−1) is tight in D([0, T ];H ×H).

Proof. Firstly, we verify the Aldous condition for the joint sequence (Xn, Xn−1) ∈ H×H. Fix
ε, η > 0. Since we already know that the sequence (Xn) satisfies the Alous condition, there
exists δ such that for all stopping times τn with τn + δ ≤ T

sup
n∈N

sup
0<θ≤δ

P

(
‖Xn(τn + θ)−Xn(τn)‖ ≥ η√

2

)
≤ ε

2
.
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We have

P (‖(Xn, Xn−1)(τn + θ)− (Xn, Xn−1)(τn)‖ ≥ η)

≤ P
(
‖Xn(τn + θ)−Xn(τn)‖ ≥ η√

2

)
+ P

(
‖Xn−1(τn + θ)−Xn−1(τn)‖ ≥ η√

2

)
≤ ε

for n ∈ N and θ ≤ δ.
Secondly, we prove that (6.22) holds with the subspace Γ = D((−A)δ)×D((−A)δ). Choose

R such that P
(
‖Xn(t)‖D((−A)δ) ≤

R√
2

)
≥ 1− ε

2 for all n ∈ N. We have with

P (‖(Xn, Xn−1)(t)‖Γ > R) ≤ P
(
‖Xn(t)‖Γ >

R√
2

)
+ P

(
‖Xn−1(t)‖Γ >

R√
2

)
≤ ε

2
+
ε

2
= ε.

6.4.4 Estimates of the norm of the difference between Xn and Xn−1

Lemma 6.20. Let cH be a constant such that for all p ∈ (1, α)

2p−1

 α− 1(
c

1/α
2,α ∧ c2,α

)
α
cpF + cpG

 ≤ cH .
Assume (A1)–(A4) and also suppose that

T ∨
(

(c2,α ∨ c1/α
2,α )cH(T ∨ T 1/α)

)
< 1. (6.38)

and additionally that∫ T

0
E
[
‖S(t)G(X0)‖αLHS(U,H)

]
dt+

∫ T

0
E [‖S(t)F (X0)‖α] dt <∞. (6.39)

For each t ∈ [0, T ] the sequence (Xn(t)−Xn−1(t))n converges to 0 in probability.

Proof. Step 1. We prove that for every t ∈ [0, T ]

lim
p↗α

lim
n→∞

E [‖Xn(t)−Xn−1(t)‖p] = 0. (6.40)
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We start with the following estimate

E [‖X1(t)−X0(t)‖p]

= E
[∥∥∥∥∫ t

0
S(t− s)F (X0) ds+

∫ t

0
S(t− s)G(X0) dL(s)

∥∥∥∥p]
≤ 2p−1

(
E
[∥∥∥∥∫ t

0
S(t− s)F (X0) ds

∥∥∥∥p]+ E
[∥∥∥∥∫ t

0
S(t− s)G(X0) dL(s)

∥∥∥∥p]) .
Applying (6.28) together with Proposition 6.7 results in

E [‖X1(t)−X0(t)‖p] = 2p−1T p−
p
α

(
E
[∫ T

0
‖S(t− s)F (X0)‖α ds

])p/α
+ 2p−1Cα,p

(
E
[∫ t

0
‖S(s)G(X0)‖αLHS(U,H) ds

])p/α
≤ 2α−1Cα,p

(
α− 1

(c
1/α
2,α ∧ c2,α)α

(
E
[∫ T

0
‖S(t− s)F (X0)‖α ds

])p/α

+

(
E
[∫ t

0
‖S(s)G(X0)‖αLHS(U,H) ds

])p/α)
,

where the last step follows from the fact that T < 1. The right-hand side is finite by (6.39).
Thus for some constant cI for every p ∈ (1, α) we have

sup
t∈[0,T ]

E [‖X1(t)−X0(t)‖p] ≤ Cα,pcI . (6.41)

We estimate again by (6.28) and Proposition 6.7

E [‖Xn(t)−Xn−1(t)‖p]

= E
[∥∥∥∥ ∫ t

0
S(t− s) (F (Xn−1(s))− F (Xn−2(s))) ds

+

∫ t

0
S(t− s) (G(Xn−1(s−))−G(Xn−2(s−))) dL(s)

∥∥∥∥p]
≤ 2p−1E

[∥∥∥∥∫ t

0
S(t− s) (F (Xn−1(s−))− F (Xn−2(s−))) ds

∥∥∥∥p]
+ 2p−1E

[∥∥∥∥∫ t

0
S(t− s) (G(Xn−1(s−))−G(Xn−2(s−))) dL(s)

∥∥∥∥p]

134



≤ 2p−1tp−
p
α

(
E
[∫ t

0
‖S(t− s) (F (Xn−1(s−))− F (Xn−2(s−)))‖α ds

])p/α
+ 2p−1Cα,p

(
E
[∫ t

0
‖S(t− s) (G(Xn−1(s−))−G(Xn−2(s−)))‖αLHS(U,H) ds

])p/α
.

From (A3) with q = p
α < 1 we have

E [‖Xn(t)−Xn−1(t)‖p]

≤ 2p−1tp−
p
α

(
E
[∫ t

0
cαF ‖Xn−1(s−)−Xn−2(s−)‖p ds

])p/α
+ 2p−1Cα,p

(∫ t

0
cαGE [‖Xn−1(s−)−Xn−2(s−)‖p] ds

)p/α
≤ 2p−1Cα,p

 α− 1(
c

1/α
2,α ∧ c2,α

)
α
cpF + cpG

(E [∫ t

0
‖Xn−1(s−)−Xn−2(s−)‖p ds

])p/α

≤ Cα,pcH
(∫ t

0
E [‖Xn−1(t1)−Xn−2(t1)‖p] dt1

)p/α
.

Iterating:

E [‖Xn(t)−Xn−1(t)‖p]

≤ Cα,pcH

(∫ t

0
Cα,pcH

(∫ t1

0
E [‖Xn−2(t2)−Xn−3(t2)‖p] dt2

)p/α
dt1

)p/α

= C
1+ p

α
α,p c

1+ p
α

H

(∫ t

0

(∫ t1

0
E [‖Xn−2(t2)−Xn−3(t2)‖p] dt2

)p/α
dt1

)p/α
≤ . . .

≤ C1+ p
α

+( pα)
2
+...+( pα)

n−2

α,p c
1+ p

α
+ p2

α2
+...+( pα)

n−2

H

×

∫ t

0

(∫ t1

0
. . .

(∫ tn−2

0
E [‖X1(tn−1)−X0(tn−1)‖p] dtn−1

)p/α
. . .

)p/α
dt1

p/α

≤ C1+ p
α

+( pα)
2
+...+( pα)

n−1

α,p c
1+ p

α
+ p2

α2
+...+( pα)

n−2

H c
( pα)

n−1

I
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×

∫ t

0

(∫ t1

0
. . .

(∫ tn−2

0
dtn−1

)p/α
. . .

)p/α
dt1

p/α

,

where the last inequality follows from (6.41). Since

I =

∫ t

0

(∫ t1

0
. . .

(∫ tn−2

0
dtn−1

)p/α
. . .

)p/α
dt1

p/α

=

∫ t

0

(∫ t1

0
. . .

(∫ tn−3

0
t
p
α
n−2 dtn−2

)p/α
. . .

)p/α
dt1

p/α

=

∫ t

0

∫ t1

0
. . .

(∫ tn−4

0

(
1

1 + p
α

t
1+ p

α
n−3

) p
α

dtn−3

)p/α
. . .

p/α

dt1


p/α

=

(
1

1 + p
α

)( pα)
n−2
∫ t

0

(∫ t1

0
. . .

(∫ tn−4

0
t
p
α

+( pα)
2

n−3 dtn−3

)p/α
. . .

)p/α
dt1

p/α

= · · ·

= t
p
α

+···+( pα)
n−1

n−1∏
k=2

(
1− p

α

1−
( p
α

)k
)( pα)

n−k

= t
p
α

1−( pα )n−2

1− pα
(α− p)

∑n−1
k=2( pα)

n−k

α
∑n−1
k=2( pα)

n−k

n−1∏
k=2

(
1

1−
( p
α

)k
)( pα)

n−k

we have inserting also the formula for the constant Cα,p

E [‖Xn(t)−Xn−1(t)‖p]

≤ (c
p/α
2,α α)

1−( pα )n

1− pα c

1−( pα )n

1− pα
H c

( pα)
n−1

I

(
1

α− p

)∑n−1
k=0( pα)

k

t
p
α

1−( pα )n−2

1− pα
(α− p)

∑n−1
k=2( pα)

n−k

α
∑n−1
k=2( pα)

n−k

×
n−1∏
k=2

(
1

1−
( p
α

)k
)( pα)

n−k

≤ (c
p/α
2,α α)

1−( pα )n

1− pα c

1−( pα )n

1− pα
H c

( pα)
n−1

I

(
1

α− p

)1+( pα)
n−1

t
p
α

1−( pα )n−2

1− pα
1

α
p
α

1−( pα )n−2

1− pα
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×
n−1∏
k=2

(
1

1−
( p
α

)k
)( pα)

n−k

=: ξ(n, p).

We now prove that

lim
n→∞

n−1∏
k=2

(
1

1−
( p
α

)k
)( pα)

n−k

= 1. (6.42)

Observe that
n−1∏
k=2

(
1

1−
( p
α

)k
)( pα)

n−k

≥ 1.

Therefore, taking the logarithms in (6.42) it is enough to prove prove that

lim sup
n→∞

n−1∑
k=2

( p
α

)n−k
log

(
1

1−
( p
α

)k
)
≤ 0. (6.43)

We split the sum according to k ≤
⌊
n
2

⌋
and k >

⌊
n
2

⌋
. Since log

(
1

1−( pα)
k

)
≤ log

(
1

1−( pα)
2

)
we

have

bn2 c∑
k=2

( p
α

)n−k
log

(
1

1−
( p
α

)k
)
≤ log

(
1

1−
( p
α

)2
) bn2 c∑

k=2

( p
α

)n−k
= log

(
1

1−
( p
α

)2
)( p

α

)n−bn2 c 1−
( p
α

)bn2 c−1

1− p
α

(6.44)

which converges to 0 as n→∞. Secondly, we use the inequality

log

(
1

1− x

)
= − log(1− x) ≤ log(4)x, x ∈

(
0,

1

2

)
,
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to estimate for n such that
( p
α

)bn2 c+1
< 1

2

n−1∑
k=bn2 c+1

( p
α

)n−k
log

(
1

1−
( p
α

)k
)
≤ log(4)

n−1∑
k=bn2 c+1

( p
α

)n−k ( p
α

)k

= log(4)
n−1∑

k=bn2 c+1

( p
α

)n
= log(4)

(
n− 1−

⌊n
2

⌋)( p
α

)n
(6.45)

whcich converges to 0 as n→∞. Combining (6.44) and (6.45) finishes the proof of (6.43) and
(6.42).

Therefore
lim
n→∞

ξ(n, p) = (c
p/α
2,α αcHt

p/α)
1

1− pα
1

α− p
1

α
p
α

1
1− pα

= (c
p/α
2,α cHα

1− p
α tp/α)

1
1− pα

1

α− p

≤
(

(c2,α ∨ c1/α
2,α )cH(t ∨ t1/α)

) α
α−p 1

α− p
.

(6.46)

Let c3 = (c2,α ∨ c1/α
2,α )cH(t ∨ t1/α). Note that c3 < 1 according to condition (6.38). One can

show similarly as in (6.29) that the right-hand side of (6.46) converges to 0 as p↗ α. Thus,

lim
p↗α

lim
n→∞

ξ(n, p) = 0

This finishes the proof of (6.40).
Step 2. Fix ε ∈ (0, 1). Equation (6.40) implies that for any ε1 > 0 we can find p0 such

that if p ∈ [p0, α), then lim
n→∞

E [‖Xn(t)−Xn−1(t)‖p] ≤ ε1
2 . Then there exists n0(p) such that

for n ≥ n0(p) we have E [‖Xn(t)−Xn−1(t)‖p] ≤ ε1.
Take ε1 = ε1+α. There exist p < α and n0(p) such that for all n ≥ n0(p)

E [‖Xn(t)−Xn−1(t)‖p] ≤ ε1+α.

we estimate by the Markov inequality

P (‖Xn(t)−Xn−1(t)‖ ≥ ε) ≤ 1

εp
E [‖Xn(t)−Xn−1(t)‖p] ≤ 1

εα
ε1+α = ε,
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for n ≥ n0(p).

6.4.5 Cylindrical Lévy processes as metric space-valued random variables

We now give some preparatory lemmas, which lead to a conclusion that every cylindrical Lévy
process can be viewed as a random variable taking values in a Polish space.

We recall some facts about continuity of evaluations with respect to the Skorokhod topo-
logy, see [48, Lem. VI.3.12, Lem. VI.3.14]. For a a càdlàg process X let J (X) := {t ≥ 0 :

P (∆X(t) 6= 0) > 0}. The set J (X) is at most countable.
Let (S, d) be a metric space. Recall that for each t ∈ [0, T ] the function πt : D([0, T ];S)→ S

defined by πt(x) = x(t) is measurable, see [8, Th. 12.5(ii)]. Recall from [8, p. 133-134] that
for t ∈ (0, T ) the function πt is continuous at x if and only if x is continuous at t, whereas
π0 and πT are continuous everywhere. Thus if X and Y are two S-valued processes with the
same distribution, then for any B ∈ B(S) we have P (X(t) ∈ B) = P (X ∈ π−1

t (B)) = P (Y ∈
π−1
t (B)) = P (Y (t) ∈ B), which proves that X(t) and Y (t) have the same distribution.

Lemma 6.21. Each cylindrical Lévy process L is continuous as a mapping

L : U → L0(Ω,F , P ;D([0, T ];R)).

Proof. The result follows from the closed graph theorem for F-spaces, see [88, Th. 2.15]. Take
xn → x such that L(·)xn → X in probability in D([0, T ];R). By the continuous mapping
theorem [51, Lem. 4.3] we have that L(t)xn → X(t) for t ∈ J (X). Since for each t ∈ [0, T ]

the mapping L(t) : U → L0(Ω;R) is continuous, it follows that L(t)xn → L(t)x. Thus X(t) =

L(t)x a.s. for t ∈ J (X). Since both processes are càdlàg, we obtain that X(t) = L(t)x for all
t ∈ [0, T ] a.s.

Let (un) be countable dense sequence in U . With each cylindrical Lévy process L we
associate a mapping

AL : Ω→
∞∏
n=1

D([0, T ];R), AL(ω) := ((L(·)un)(ω))n∈N . (6.47)

Lemma 6.22.
∞∏
n=1

D([0, T ];R) is a separable and complete metric space. The function AL is

measurable.
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Proof. For the first statement see [33, Cor. 2.3.16, Th. 4.22, Th. 4.3.12]. We prove that AL
is measurable. Recall that the base of the product topology consists of the sets of the form∏∞
n=1Gn, where all Gn are open and all except for finitely many are equal to the whole space

D([0, T ];R). Since the space is separable, every open set is a countable union of the sets of
this form, see [33, Cor. 4.1.16]. Thus, to prove that A is measurable it is enough to check that
for any N ∈ N and any open sets G1, . . . , GN the set

A−1
L

(
N∏
n=1

Gn ×
∞∏

n=N+1

D([0, T ];R)

)
(6.48)

belongs to F . The set (6.48) is equal to
N⋂
n=1
{ω ∈ Ω : L(·)u ∈ Gn} and each set in the

intersection is measurable since every Lévy process is measurable as a mapping from Ω to
D([0, T ];R), see [8, p. 135].

Note that AL uniquely determines L as for u ∈ U \ {un : n ∈ N} we find a subsequence
(unk) converging to u and then by the continuity of L(t) we have that L(t)u = lim

k→∞
(AL(t))nk ,

where the limit is taken in probability.

6.4.6 Distribution of the stochastic integral

We show that the stochastic integral has unique distribution. The same result for integrals
with respect to Poisson random measures was shown by Brzeźniak and Hausenblas [14]. Our
presentation is much simpler, at the expense of being less detailed: we neglect without making
further comments sets of measure 0. In some aspects our lemma is less general than the result
in [14]: we consider integrals at fixed time t ∈ [0, T ] rather than integrals viewed as processes
in the Skorokhod space.

Lemma 6.23. Let Ψ1 and Ψ2 be two càglàd, adapted, LHS(U,H)-valued processes defined
on (Ω1,F1, P1, (F1

t )) and (Ω2,F2, P2, (F2
t )) respectively and such that L(Ψ1) = L(Ψ2). Let

L1 : U → L0
(
Ω1,F1, P1, (F1

t )
)
, L2 : U → L0

(
Ω2,F2, P2, (F2

t )
)

be two cylindrical Lévy process on U with the same distribution. Then for every t ∈ [0, T ]

L

(∫ t

0
Ψ1(s) dL1(s)

)
= L

(∫ t

0
Ψ2(s) dL2(s)

)
.
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Proof. We first consider the case when Ψ1 and Ψ2 are simple. Without loss of generality we
may assume that the partitions of [0, T ] for Ψ1 and Ψ2 are same. That is we have for t ∈ [0, T ]

Ψ1(t) = Ψ1
01{0}(t) +

N−1∑
i=1

Ψ1
i1(ti,ti+1](t), Ψ2(t) = Ψ2

01{0}(t) +
N−1∑
i=1

Ψ2
i1(ti,ti+1](t) (6.49)

and

Ψ1
i =

m1
i∑

j=1

1A1
i,j
ψ1
i,j , Ψ2

i =

m2
i∑

j=1

1A2
i,j
ψ2
i,j , (6.50)

and ψ1
i,j , ψ

2
i,j ∈ LHS(U,H). We may assume that for each i there are no repetitions in the

sequence ψ1
i,1, . . . , ψ

1
i,m1

i
(and similarly for ψ2

i,1, . . . , ψ
2
i,m1

i
). Since Ψ1 and Ψ2 have the same

distribution it follows that m1
i = m2

i =: mi and that

{ψ1
i,1, . . . , ψ

1
i,mi} = {ψ2

i,1, . . . , ψ
2
i,mi}.

We may assume that ψ1
i,1 = ψ2

i,1, . . . , ψ
1
i,mi

= ψ2
i,mi

and P1(A1
i,j) = P2(A2

i,j). Then

I1(t) =

∫ t

0
Ψ1(s) dL1(s) =

N−1∑
i=0

mi∑
j=1

1A1
i,j
J1
ti,ti+1

(ψ1
i,j),

I2(t) =

∫ t

0
Ψ2(s) dL2(s) =

N−1∑
i=0

mi∑
j=1

1A2
i,j
J2
ti,ti+1

(ψ2
i,j).

Using the independent increments of L1 and L2 and the adaptedness of Ψ1 and Ψ2 we calculate
the characteristic function

ϕI1(t)(h) = E
[
ei〈I1(t),h〉

]
= E

[
E
[N−1∏
i=0

( mi∑
j=1

ei(L1(ti+1)−L1(ti))((ψ
1
i,j)
∗h)
1A1

i,j

)∣∣∣∣F1
tN−1

]]

= E
[N−2∏
i=0

( mi∑
j=1

ei(L1(ti+1)−L1(ti))((ψ
1
i,j)
∗h)
1A1

i,j

)]

×
mN−1∑
j=1

P (AN−1,j)E
[
ei(L1(tN )−L1(tN−1))((ψ1

N−1,j)
∗h)
]
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= . . .

=

N−1∏
i=0

mi∑
j=1

P1(A1
i,j)E

[
ei(L1(ti+1−L1(ti))((ψ

1
i,j)
∗h)
]

=
N−1∏
i=0

mi∑
j=1

P2(A2
i,j)E

[
ei(L2(ti+1)−L2(ti))((ψ

2
i,j)
∗h)
]

= . . .

= ϕI2(t)(h).

Now take Ψ1 and Ψ2 arbitrary càglàd adapted LHS(U,H)-valued processes. Note that it
is enough to prove that we can find a sequences simple processes (Φ1

n) and (Φ2
n) of the form

(6.49)–(6.50) approximating Ψ1 and Ψ2 and such that L (Φ1
n) = L (Φ2

n). Indeed, for such
sequences it follows that

ϕI1(t)(h) = lim
n→∞

ϕ∫ t
0 Φ1

n(s) dL1(s)(h) = lim
n→∞

ϕ∫ t
0 Φ2

n(s) dL2(s)(h) = ϕI1(t)(h).

Let πn = (tn0 , . . . , t
n
kn

) be a sequence of partitions of [0, T ] with mesh converging to 0. Let
Φ1
n(t) = Ψ1(t) and Φ2

n(t) = Ψ2(t) for t ∈ [tnk , t
n
k+1). By Proposition VI.6.37 of [48] the processes

Φ1
n and Φ2

n converge a.s. to Ψ1 and Ψ2 in the Skorokhod topology.

6.4.7 Main result and proof

Theorem 6.24. Under assumptions (A1)–(A4) equation (6.26) has unique mild solution.

Proof. We prove the theorem in several steps. We first prove existence of a weak solution with
additional assumptions on the initial condition and the time horizon T . Then we obtain a
strong solution and finally remove those extra conditions.

Step 1. Existence of weak mild solution assuming (6.27), (6.38) and (6.39).
By Corollary 6.19 we have the joint tightness of the sequence (Xn, Xn−1)n=1,2,.... Then also

the sequence (AL, Xn, Xn−1) is tight and we select a convergent subsequence (AL, Xnk , Xnk−1).
By a version of the Skorokhod theorem in [15, Th. C.11] applied in the metric space( ∞∏

n=1

D([0, T ];R)

)
×D([0, T ];H ×H),

there exists a probability space (Ω̄, F̄ , P̄ ) and a sequence (B̄, X̄k, Ȳk) of random variables
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defined on Ω̄ with the same law:

L (AL, Xnk , Xnk−1) = L (B̄, X̄k, Ȳk), k ∈ N,

and such that X̄k → X̄ and Ȳk → Ȳ a.s. when k → ∞. Note that in particular L(X̄n(0)) =

L(X0) and L(X̄k(t), Ȳk(t)) = L(Xnk(t), Xnk−1(t)) for every t ∈ [0, T ].
We construct a cylindrical Lévy process L̄ on Ω̄. Take u ∈ U and a subsequence (unk)

of the sequence (un) used in the construction of AL in Subsection 6.4.5 such that unk → u.
The distribution of the whole sequence

(
B̄(t)

)
nk

is same as the distribution of (AL(t))nk =

L(t)(unk). Thus,
(
B̄(t)

)
nk

converges in probability and we denote its limit as L̄(t)u.
We show that X̄ and Ȳ are indistinguishable. By Lemma 6.20 for any t ∈ [0, T ] and ε > 0

P̄
(∥∥X̄k(t)− Ȳk(t)

∥∥ ≥ ε) = P (‖Xnk(t)−Xnk−1(t)‖ ≥ ε)→ 0.

It follows that X̄k(t)− Ȳk(t) converges to 0 in probability. By the continuous mapping theorem
X̄k(t) → X̄(t) a.s. and Ȳk(t) → Ȳ (t) a.s. for t ∈ [0, T ] \ (J (X̄) ∪ J (Ȳ )). We apply [80, Th.
3.4] and obtain that

X̄(t) = Ȳ (t) a.s. for t ∈ [0, T ] \ (J (X̄) ∪ J (Ȳ )).

For t ∈ J (X̄) ∪ J (Ȳ ), since [0, T ] \ (J (X̄) ∪ J (Ȳ )) is dense in [0, T ] we can find a sequence
(tn) ⊂ [0, T ] \ (J (X̄) ∪ J (Ȳ )) which decreases to t. Since X̄(tn) = Ȳ (tn) a.s. for each n we
get that also X̄(t) = Ȳ (t) a.s. This proves that X̄ and Ȳ are modifications of each other and
since both processes are càdlàg, they are indistinguishable.

We show that the new sequence satisfies the same equation:

X̄k(t) = S(t)X̄k(0) +

∫ t

0
S(t− s)F (Ȳk(s)) ds+

∫ t

0
S(t− s)G(Ȳk(s−)) dL̄(s). (6.51)

We know that

E
[∥∥∥∥Xnk(t)− S(t)X0 −

∫ t

0
S(t− s)F (Xnk−1(s)) ds

−
∫ t

0
S(t− s)G(Xnk−1(s−)) dL(s)

∥∥∥∥ ∧ 1

]
= 0
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and L(Xnk , Xnk−1, L) = L (X̄k, Ȳk, L̄). It follows by Lemma 6.23 that

E
[∥∥∥∥X̄k(t)− S(t)X̄k(0)−

∫ t

0
S(t− s)F (Ȳk(s)) ds−

∫ t

0
S(t− s)G(Ȳk(s−)) dL̄(s)

∥∥∥∥ ∧ 1

]
= 0

and thus (6.51) holds a.s.
By Theorem 2.8∫ t

0
S(t− s)G(Ȳk(s−)) dL̄(s)→

∫ t

0
S(t− s)G(X̄(s−)) dL̄(s), (6.52)

in probability, for every t ∈ [0, T ]. Since it is assumed in (A4) that F is continuous, it follows
that for s ∈ [0, t] \ J (X̄) almost surely

S(t− s)F (Ȳk(s))→ S(t− s)F (X̄(s)).

The boundedness of F in Remark 6.10 implies that we can apply the Lebesgue dominated
convergence theorem to get that∫ t

0
S(t− s)F (Ȳk(s−)) ds→

∫ t

0
S(t− s)F (X̄(s−)) ds, (6.53)

in L1(Ω;H). Passing to a subsequence if necessary, we get that the above convergence holds
in probability.

We take k →∞ in (6.51). By (6.52) and (6.53) the right-hand side converges in probability
for every t ∈ [0, T ]. The left-hand side converges a.s. for t /∈ J (X̄) and we get

X̄(t) = S(t)X̄(0) +

∫ t

0
S(t− s)F (X̄(s)) ds+

∫ t

0
S(t− s)G(X̄(s−)) dL̄(s)

almost surely for t /∈ J (X̄). The right-hand side is càdlàg by the Dilation theorem and the
left-hand side is by definition. Thus the conclusion holds for any t ∈ [0, T ].

Step 2. Existence of a strong solution with the additional assumptions (6.27), (6.38) and
(6.39).

A very general version of Yamada-Watanabe theorem is presented in [56], see also [57]. We
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take the Polish spaces

S1 = D([0, T ];H), S2 = H ×
∞∏
n=1

D([0, T ];R),

an S2-valued random variable Y given by Y = (X0, AL), see (6.47), and filtrations defined by

FXt = σ(X(s) : s ≤ t), FYt = σ(X0)⊗ σ(L(s)u : u ∈ U, s ≤ t)

for t ∈ [0, T ]. By [48, Prop. VI.6.37], if we take a sequence of partitions πn = (tn0 , . . . , t
n
kn

),
tnk = kT

n , k = 0, . . . , n with mesh converging to 0, then the discretised processes defined by

Xn(t) := X(tnk), for t ∈ [tnk , t
n
k+1),

converge a.s. to X in the Skorokhod topology. We discretise both integrals appearing in the
equation:

I1(t) := −
n−1∑
k=0

S

(
t−
(
k

n
∧ t
))

F

(
X

(
t ∧ k

n

))
T

n
,

I2(t) :=
n−1∑
k=0

(
L

(
t ∧ (k + 1)T

n

)
− L

(
t ∧ kT

n

))(
S

(
t−

(
k

n
∧ t
))

G

(
X

(
t ∧ k

n
−
)))∗

.

Equation (6.25) can be written in the form of a constraint Γ appearing in [56] given by

lim
n→∞

E [1 ∧ ‖X(t)− S(t)X0 − I1(t)− I2(t)‖] = 0, t ≥ 0.

We show that uniqueness in the sense of [56] holds but first we recall some notions from
that paper. Two solutions X1 and X2 are jointly compatible with Y if for any t ∈ [0, T ] and
for any bounded measurable function h : S2 → R

E
[
h(Y )|FX1

t ∨ FX2
t ∨ FYt

]
= E

[
h(Y )|FYt

]
a.s.

It follows by taking h which depends only on ((x0, a(t+ s)− a(t)) : (x0, a) ∈ S2, s ≥ 0) that
for any two compatible solutions X1 and X2, L is a cylindrical Lévy process with respect to the
filtration (FX1

t ∨F
X2
t ∨FYt )t∈[0,T ]. Therefore pathwise uniqueness in Proposition 6.15 implies

uniqueness of jointly compatible solutions. Lemma 2.10 in [56] implies that uniqueness in the
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sense of [56] holds. By Theorem 1.5 from [56] there exists a strong compatible solution and
by Proposition 2.13 therein it is adapted.

Step 3. The case of the general initial condition.
We proceed as in the proof of [1, Th. 6.2.3]. Let Ωn = {‖X0‖ ≤ n} and let Xn be the

solution of the equation with the initial condition X01Ωn . By Proposition 6.15 for n > k the
solutions Xn and Xk coincide on Ωk. Let X = Xk on Ωk. Since Ωn ↗ Ω, it follows that X
is a solution. If Y is another solution, then Y = Xn = X on Ωn again by Proposition 6.15
and thus pathwise uniqueness holds. This finishes the proof of the Theorem in the case when
(6.27) and (6.38) hold.

Step 4. Arbitrary T > 0.
We find time T0 such that [0, T0]∪ [T0, 2T0]∪ . . .∪ [(n− 1)T0, nT0] = [0, T ] and (6.27) and

(6.38) hold with T replaced by T0. The previous considerations show that there is a unique
mild solution on [0, T0], say X1. Similarly there exists a unique mild solution, which we call
X2 on [T0, 2T0] with the initial condition X1(T0). We continue this procedure and define
X(t) := Xk(t) for t ∈ [(k − 1)T0, kT0].
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Appendix: Proof of the Schwarz
inequality

We present the proof of Theorem 5.2 since it is not easily available in the literature.

A.1 Special case

We first prove the theorem in the special case when

E∗ has the metric approximation property and F is reflexive. (A.1)

Proof of Theorem 5.2 under assumption (A.1). In the space of cylindrical probability meas-
ures on E we say that (µj) converges to µ in the cylindrical sense if for any finite-dimensional
Banach space G and any bounded operator v : E → G we have that v(µj) → v(µ) weakly.
Denote by M(F ) the set of Radon probability measures on F . We observe that the cyl-
indrical convergence is weaker than the weak convergence. Indeed, take µj → µ weakly on
F equipped with the weak topology. Take a finite-dimensional Banach space G, a continuous
linear operator v : F → G and a bounded continuous function f : G → R. Then v is weak-
weak-continuous. However, G is finite-dimensional, so in fact v is weak-strong continuous. It
follows that

∫
F f ◦ v dµj →

∫
F f ◦ v dµ. Thus µj → µ cylindrically. The proof of the theorem

is divided into four steps.
Step 1. Inequality (5.4) holds for convex combinations of Dirac deltas.
We take

µ =
n∑
k=1

ckδyk
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with
n∑
k=1

ck = 1 and (yk) ⊆ E. For simplicity we write µ as

µ =

n∑
k=1

ckδc−1/p
k xk

with xk = c
1/p
k yk. Note that u(µ) =

n∑
k=1

ckδc−1/p
k u(xk)

. We calculate

‖u(µ)‖p =

(
n∑
k=1

ck
∥∥c1/p
k u(xk)

∥∥p)1/p

=

(
n∑
k=1

‖u(xk)‖p
)1/p

≤ πp(u) sup
x∗∈BE∗

(
n∑
k=1

|x∗(xk)|p
)1/p

,

(A.2)
where the last inequality follows from the definition of the p-summing norm. Secondly,

‖µ‖∗p = sup
x∗∈BE∗

‖x∗(µ)‖p = sup
x∗∈BE∗

(
n∑
k=1

ck

∣∣∣c−1/p
k x∗(xk)

∣∣∣p)1/p

= sup
x∗∈BE∗

(
n∑
k=1

|x∗(xk)|p
)1/p

.

(A.3)
Now, (5.4) follows from (A.2) and (A.3).

Step 2. For any cylindrical probability measure µ there exists a sequence of convex com-
binations of Dirac deltas (µj) such that µj → µ cylindrically and ‖µj‖∗p ≤ ‖µ‖

∗
p for all j.

In the proof we follow Maurey [64, Prop. 6]. Since E∗ has the metric approximation
property, by [19, Cor. 3.4] there exists a sequence of finite rank operators πj : E∗ → E∗

converging to the identity strongly and such that ‖πj‖ ≤ 1.
For each j let x∗j,1, . . . , x

∗
j,nj

be a basis of πj(E∗). By the Auerbach lemma [29, Lem.
6.26], there exists a corresponding basis aj,1, . . . , aj,nj of πj(E∗)∗ such that aj,i(xj,k) = δi,k.
We extend aj,i to functionals on E∗ and show that they are weak∗-continuous. By [24, Cor.
V.12.8] it is enough to verify sequential continuity. Let y∗n ∈ E∗ converge to 0 in the weak∗-
topology. By the compactness of πj , πj(y∗n)→ 0 in norm. The equality

πj(y
∗
n) =

nj∑
k=1

aj,k(y
∗
n)x∗j,k

together with the uniqueness of the representation as a linear combination of the basis vectors
imply that aj,k(y∗n)→ 0 as n→∞.
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Weak∗-continuity of aj,k proves that aj,k ∈ E, see [88, p. 95]. Thus

πj(x
∗) =

nj∑
k=1

x∗(aj,k)x
∗
j,k, x∗ ∈ E∗

and π∗j is given by

π∗j (x
∗∗) =

nj∑
k=1

x∗∗(x∗j,k)aj,k, x∗∗ ∈ E∗∗.

From this representation we see that π∗j : E∗∗ → E. We can therefore define a measure on E
by µj := (π∗j )|E(µ). We have

‖µj‖∗p = sup
y∗∈BE∗

(∫
E
|y∗(x)|p µj(dx)

)1/p

= sup
y∗∈BE∗

(∫
E

∣∣y∗(π∗j (x))
∣∣p µ(dx)

)1/p

= sup
y∗∈BE∗

(∫
E
|πj(y∗)(x)|p µ(dx)

)1/p

≤ ‖πj‖

(
sup

y∗∈BE∗

∫
E
|y∗(x)|p µ(dx)

)1/p

≤ ‖µ‖∗p.

We show that µj converge to µ in the cylindrical sense. Let G be a finite-dimensional
Banach space and v : E → G be linear and continuous. Note that

∥∥(v ◦ π∗j − v)∗
∥∥ =

‖πj(v∗)− v∗‖ converges to 0, because πj converges to Id strongly and v∗ maps from G∗,
which is a finite-dimensional space. Then [64, Prop. 3] guarantees that v(µj)→ v(µ) weakly.
Finally, every Radon probability measure can be approximated by convex combinations of
Dirac deltas, see [11, Ex. 8.1.6].

Step 3. Let S ⊂M(F ) be the set of Radon probability measures µ on F with ‖µ‖p ≤M .
Then S is compact in the topology of weak convergence and closed in the topology of cylindrical
convergence.

We firstly show that S is closed and secondly that it is relatively compact. By definition
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of the weak topology in the set of probability measures, the map fromM(F ) to R defined by

µ 7→ µ(f) :=

∫
F
f(x)µ(dx) (A.4)

is continuous for f ∈ Cb(F ;R). If f ∈ C(F ;R+), then the map (A.4) is lower semi-continuous.
This follows from the fact that it is a supremum of continuous mappings µ → µ(f1|f |≤n +

n1|f |>n). Taking f(x) = ‖x‖p we get that µ 7→ ‖µ‖p is lower semi-continuous. Now, S is
closed as the preimage of (−∞,M ].

We show that the set S is relatively compact. Let K = BF (0, R). Then by the Chebyshev
inequality

µ(F \K) ≤
‖µ‖pp
Rp

≤ Mp

Rp
.

Since F is reflexive, we get by the Banach–Alaoglu theorem that K is compact in the weak
topology. By the Prokhorov theorem, see [101, Th. I.3.6], we get that S is relatively com-
pact. Note that the use of the Prokhorov theorem is justified, because the weak∗-topology is
completely regular Hausdorff, see [65, p. 223].

It follows that S is compact in the topology of weak convergence. Since the topology of
cylindrical convergence is weaker, it follows that S is also compact relative to the topology of
cylindrical convergence. From here, S is closed.

Step 4. Let µj be a sequence of discrete measures obtained in Step 2. By Step 1 we have

‖u(µj)‖p ≤ πp(u)‖µj‖∗p ≤ πp(u)‖µ‖∗p. (A.5)

Since µj → µ cylindrically it follows that for any finite-dimensional Banach space G, any linear
and continuous v : F → G and any f ∈ Cb(G,R) we have by the very definition of cylindrical
convergence applied to v ◦ u that∫

G
f(x) v(u(µj))(dx) =

∫
E
f(v(u(x)))µj(dx)→

∫
E
f(v(u(x)))µ(dx) =

∫
G
f(x) v(u(µ))(dx)

as j → ∞. This gives that u(µj) → u(µ) cylindrically. Each u(µj) lies in the set S from
the previous step with M := πp(u)‖u‖∗p. By Theorem 5.1 u(µ) is a Radon measure i.e.
u(µ) ∈M(F ). By the closedness of S in the cylindrical convergence, the limit u(µ) must also
lie in S, which means that it satisfies ‖u(µ)‖p ≤ πp(u)‖µ‖∗p.
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A.2 General case

Proof of Theorem 5.2 in the general case. We assume first that p > 1.
Let K = BE∗ , which is a weak∗-compact. We define a mapping

iE : E → C(K), iE(x)(x∗) = 〈x∗, x〉.

One can show that iE is an isometry. By the Pietsch Factorisation Theorem [29, Th. 2.13] there
exists a Borel probability ν on K, a closed subspace Xp of Lp(ν) and an operator û : Xp → F

such that jpiE(E) ⊆ Xp and ûjEp iE(x) = x for x ∈ E, where jp the embedding of C(K) into
Lp(K) and jEp is the restriction of jp to iE(E). That is, the following diagram commutes:

E F

iE(E) Xp

C(K) Lp(K, ν)

u

iE

jEp

û
⊆ ⊆

jp

The measure ν and the operator û can be chosen so that ‖û‖ = πp(u).
We have

‖u(µ)‖p =
∥∥ûjEp iE(µ)

∥∥
p
≤ ‖û‖L(Xp,F )

∥∥jEp iE(µ)
∥∥
p

= πp(u)‖jpiE(µ)‖p (A.6)

where the last equality follows from the fact that Xp is isometrically embedded into Lp(K, ν).
Note that the dual of C(K) has the metric approximation property, see [89, p. 80] and that
Lp(K, ν) is reflexive i.e. assumption (A.1) holds. It is well known that the inclusion jp of C(K)

into Lp(K, ν) is p-summing and πp(jp) = 1, see [29, Ex. 2.9(b)]. Thus, applying Theorem 5.2
for the cylindrical measure iE(µ) on C(K) and the mapping jp : C(K)→ Lp(K, ν), we get

‖jpiE(µ)‖p ≤ πp(jp)‖iE(µ)‖∗p. (A.7)

We observe that

‖iE(µ)‖∗p = sup
x∗∈BC(K)∗

‖x∗iE(µ)‖p ≤ sup
x∗∈BE∗

‖x∗(µ)‖p = ‖µ‖∗p, (A.8)
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where the last inequality follows from the fact that for each x∗ ∈ BC(K)∗ the functional
x∗iE : E → R belongs to BE∗ . Thus, (A.7) implies

‖jpiE(µ)‖p ≤ ‖µ‖
∗
p. (A.9)

Combining this with (A.6) establishes claim in the case p > 1.
In the case when p = 1, we assume that F has the Radon–Nikodym property. By Theorem

Theorem 5.1 u(µ) is a Radon measure on F . Now we repeat estimate (A.6). We cannot
directly apply the previous case for the cylindrical measure iE(µ) and the mapping j1 : C(K)→
L1(K, ν) as the space L1(K,µ) is not reflexive. However, we observe that Steps 1 and 2 of
Section A.1 do not require reflexivity. In Step 3. we obtain that j1i(µ) is a measure on
L1(K, ν)∗∗. We can apply Step 4 with the space L1(K, ν)∗∗ instead of F and in this way
obtain inequality (A.7). Inequalities (A.8) and (A.9) follow and thus the claim is proven also
in the case p = 1.
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