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Abstract  

 

Consistent evidence from the quantitative genetic literature points towards a substantial 

genetic component underlying variation and covariation across complex traits. Novel genomic 

methods coupled with large population-based samples, afford the possibility to leverage this 

information to tackle important developmental questions. This thesis focuses on multivariate 

genetic and genomic approaches as applied to polygenic prediction and inference of trait 

associations across development, with a focus on cognitive- and psychopathology-related 

traits. The thesis follows two main themes: 

 

Polygenic prediction  

Methods that leverage the covariance structure of genetically correlated traits to increase 

power for variant discovery can in turn be used to boost predictive power of polygenic scores. 

In a first study I compare several multi-trait genomic approaches in the context of polygenic 

prediction of cognitive-related traits (general intelligence and educational achievement) in 

childhood and adolescence (Chapter 2). As genetic predictors become more powerful, they 

can be employed to further our understanding of the gene-environment interplay underlying 

variation in common complex traits. In a second study (Chapter 3), I focus on the longitudinal 

prediction of educational achievement by constructing penalized multivariable prediction 

models integrating multiple polygenic scores and environmental predictors, gaining insights 

into their multivariate interplay (gene-environment correlation and interaction).  

 

Developmental co-occurrence of psychopathology  

Akin to the concept of general intelligence, the co-occurrence of traits related to mental health 

during development suggests a general dimension of psychopathology underlying the 

emergence and co-morbidity of problem behaviours in childhood (the p-factor). In a third 

study (Chapter 4) I systematically investigate the manifestation of the p-factor across 

childhood and adolescence by means of multivariate genetic methods, showing that this co-

occurrence is partly explained by a common genetic aetiology. There are at least two plausible 

processes that can account for the co-occurrence of psychopathology traits in childhood. First, 

as investigated in Chapter 4 the correlation between psychopathologies could be the product 

of individual differences between people on stable traits attributable to a heritable p-factor. 

Second, the developmental co-occurence of psychopathology could emerge from a causal 

process within people where the temporal state on one variable causally influences the state of 

another variable, inducing correlation between them. To this end, in a fourth study I 

investigate longitudinal reciprocal effects between problem behaviours (Chapter 5), 
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separating between vs within person effects in two longitudinal population-based cohorts. 

Extending this model to family-level data, I further investigate reciprocal directional 

influences between siblings over time, separating them from similarities between siblings that 

arise through shared (genetic or environmental) influences that exist in a family. 

The thesis concludes (Chapter 6) with a discussion of future prospects for multivariate 

genomic research, opportunities for integrating emerging methods, challenges and limitations. 
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Chapter 1 - General introduction 

After decades of quantitative genetic research, the question of whether it is genetic or 

environmental influences that makes us who we are, the nature–nurture debate, has shifted to 

the question of how these forces jointly shape human existence (Knopik, Neiderhiser, 

DeFries, & Plomin, 2016; Plomin, 2019). Developmental traits are extremely complex 

phenotypes, determined by a multitude of genetic and environmental influences, as well as 

their interplay. In addition, any given trait does not exist in a vacuum, but is embedded in a 

multi-dimensional (multivariate) space, partly defined by its relationship with other traits. 

This multivariate space arises from both genetic and environmental underpinnings, common 

causes underlying covariation between traits, as well as complex interdependencies between 

phenotypic dimensions leading to developmental differences. The present thesis focuses on 

the application of multivariate genetic and genomic approaches to study the developmental 

(co)occurrence of cognitive- and psychopathology-related traits. This first chapter serves as a 

general introduction to the concepts and methods discussed in depth in the chapters that 

follow. I first lay out some basic concepts in quantitative genetic research, such as heritability 

and estimation of genetic and environmental effects using twin data, particularly as they relate 

to multivariate analyses of behavioural (psychopathology related) traits in childhood. I then 

expand to multivariate genomic approaches in the context of prediction with a focus on 

educationally relevant traits and gene-environment interplay. I finally conclude with an 

overview of the topics discussed in the other thesis chapters.  

 

Quantitative genetics & heritability  

Since Sir Ronald Fisher reconciled the views of Mendelians (from Gregor Mendel) and 

biometricians (from Sir Francis Galton) starting the field of quantitative genetics, it was clear 

that genetic and environmental influences were two sides of the same quantitative coin. In a 

seminal paper Fisher showed that continuous traits follow the modes of inheritance of discrete 

traits such as those investigated by Mendel in pea plants. The key to this understanding was 

something that in statistics is known as the central limit theorem. Continuous trait variation 

could be reconciled with Mendelian inheritance if multiple genetic variants, each contributing 

small effects, were involved in quantitative traits variation yielding a bell-shaped frequency 

distribution. Quantitative traits were therefore complex traits, determined by a multitude of 

genetic factors, as well as environmental effects (Neale, Ferreira, Medland, & Posthuma, 

2007). Fisher partitioned the variance for a single genetic locus into additive and dominance 

variance, examined how this related to resemblance between relatives, and extended the 

model to multiple loci and the environment. Quantitative genetic theory thus separates 
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phenotypic variation into genetic and environmental components of variance. The total 

variation underlying an observed trait (the phenotype) attributable to genetic variation is 

called heritability. We can distinguish different types of genetic variation (see below), but in 

its broadest sense heritability is the proportion of variation in a trait that is accounted for by 

genetic variation in a population (i.e. broad-sense heritability; H2). 

 

Developmental heritability 

Importantly, estimates of heritability are specific to populations and times, such that they will 

change as circumstances change. For example, the heritability of intelligence increases across 

development (Plomin & Deary, 2015), such that heritability is higher in early adulthood than 

in childhood, as the developmental context changes. This is also true for many other 

developmental phenotypes investigated in the following chapters (Bergen, Gardner, & 

Kendler, 2007). A compelling explanation for this finding is that as individuals grow up they 

start selecting environments that are consistent with their genetic propensities (Plomin & 

Deary, 2015), a type of gene-environment correlation discussed in chapter 3 and in the ‘gene-

environment interplay’ section below. This, in turn, might partly be the reason why genomic 

prediction of cognitive related traits increases from childhood to adolescence as shown in 

chapter 2. From the definition given in the paragraph above it should be clear that heritability 

refers to genetic contributions to individual differences, but not to the extent to which a 

phenotype for one particular person is genetically influenced (Knopik, Neiderhiser, DeFries, 

& Plomin, 2016; Moore & Shenk, 2017). With this in mind, perhaps the most important 

consideration about heritability is as follows: heritability does not imply genetic determinism, 

since by changing the context you can change the estimated heritability.  

 

Genetic and Environmental variance components  

Broad-sense heritability includes different types of genetic variation, additive, dominance and 

epistatic effects. We can estimate heritability by employing measured genetics methods 

(genomic methods such as those employed in chapter 2 and 3 of this thesis) or inferring it 

from resemblance between relatives (chapters 4 and 5). The workhorse of the quantitative 

genetic literature, the twin design offers a powerful approach to infer genetic and 

environmental influences on trait variation. Since monozygotic (MZ) and dizygotic (DZ) twin 

pairs share 100% and 50% (on average) of their DNA respectively and the same environment 

(equal environment assumption), we can compare their resemblance to infer the relative 

shared genetics (additive or dominance variation), shared environmental, and unique 

environmental influences underlying variation in a particular trait. For example, a rough 
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estimate of additive genetic variation can be obtained by doubling the difference between MZ 

and DZ correlations. This is one of the formulae derived by Falconer (Falconer, Mackay, & 

Frankham, 1996; see chapter 5 for other Falconer’s derivations), which can be used to 

quantify the relative contributions of genes and environments. 

 

Two types of genetic contributions can be distinguished: additive and dominance genetic 

effects (chapter 5). Additive effects on a trait occur when alternate forms of genetic variants 

(alleles) within and across loci on the genome add up, while dominance effects refer to 

interactions of two alleles at the same locus. This additive component of variance is also 

called narrow-sense heritability in that excludes dominance and epistatic effects, this is by far 

the largest proportion of genetic variability and is the focus of all genomic methods employed 

in this thesis (chapter 2 and 3). A more formal way to model MZ and DZ twin covariance is 

by using structural equation modelling approaches, model fitting techniques to partition 

genetic and environmental variance components and this is described more in detail in 

chapter 4.  

 

Multivariate genetic analyses  

We can extend model-fitting techniques to a multivariate framework by jointly analysing 

multiple traits and estimate genetic and environmental contributions that are shared among 

them. Furthermore, we can formally test hypotheses regarding the underlying structure 

explaining the relationship between traits of interest. This is the focus of much of chapters 4 

and 5. By employing multivariate genetic analyses of psychopathology-related traits 

throughout childhood, it is possible to gain a better understanding of the developmental co-

(co)occurrence of psychopathology. Multivariate genetic analyses of twin data can be used to 

investigate the extent to which traits are genetically correlated, and the relative contributions 

of genes and environment in their co-occurrence. In this regard, the abundant twin-design 

literature on the multivariate co-occurrence of disorders suggest that the same genetic 

influences broadly underlie multiple disorders (Knopik et al., 2016; Plomin, DeFries, 

Knopik, & Neiderhiser, 2016). This is also known as pleiotropy (see below), the idea that the 

same genetic variants are associated with multiple traits concurrently.  

 

In chapter 4, I analyse the genetic and environmental factors shared by multiple problem 

behaviours in childhood, with a systematic look at the manifestation of a common factor of 

psychopathology called the p-factor. Psychopathology-related traits in childhood tend to co-

occur, and there is evidence that their intercorrelation is due to a common predisposition 
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accounting for individual differences between children (Martel et al., 2017). We can employ 

multivariate twin modelling techniques to explore the manifestation of this common factor 

and whether the relative genetic and environmental influences underlying this common 

component are stable across time.  

 

From a different angle, leveraging multivariate twin data can also be a powerful approach 

to control for those genetic and environmental influences that make individuals more 

similar within families. We can interrogate multivariate data to dig deeper into the reasons 

why psychopathology traits are correlated. For example, are there direct relationships between 

psychopathology traits that are not explained by shared genetic and environmental aetiology? 

In this regard, are there reciprocal influences between siblings not accounted for by genetic or 

environmental similarities between them? Chapter 5 investigates these questions by means of 

a multivariate longitudinal within-family design.  

 

Modern-day quantitative genetics  

The DNA code of individuals is 99.9% identical but differs at roughly 0.1% of the genome 

between people. Variation in this 0.1% of the DNA code partly accounts for similarities and 

differences in the manifestation of traits and characteristics across the population. We can 

look at these DNA differences across the genome to estimate the total genetic contributions to 

trait variation, or for associations of specific variants to particular traits. Importantly in 

contrast to the twin design, where we test for relative contributions of additive and dominance 

components of variance, typically genomic approaches are concerned with additive variation 

(although not exclusively). This additive genetic variation is the focus of all the genomic 

methods employed in the current thesis (chapters 2, 3 and 4). 

 

GWAS 

For example, one of the most commonly employed observational approaches of modern-day 

quantitative genetics are genome-wide association studies (GWAS; chapter 2), which model 

the average genetic component part of Fisher’s equation for a single locus (Visscher & 

Goddard, 2019). In GWAS we separately test millions of genetic variants (single nucleotide 

polymorphisms; SNPs), with coding of 0, 1 or 2 (depending on the number of alleles an 

individual carries at a particular locus), for association with a phenotype. GWAS in a sense 

offers the possibility to test Fisher quantitative genetic model with the use of genomic data 

(Plomin, Haworth, & Davis, 2009; Visscher & Goddard, 2019). In fact, the most important 

take-home message from the GWAS literature is that virtually all human phenotypes, 
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particularly behavioural traits, are extremely polygenic, with thousands of SNPs of small 

effect underlying their variation (Visscher et al., 2017). This has been codified as the 4th law 

of behavioural genetics (Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). Two prominent 

examples are the most recent GWAS of educational attainment (Lee et al., 2018) and height 

(Yengo et al., 2018), which both discovered more than 1000 genetic variants implicated 

independently in the variation of these traits.   

 

SNP heritability  

By using these observed genetic effects we can come up with an estimate of the additive 

contributions of measured genetics to trait variation. This type of heritability is called SNP 

heritability (SNP h2) and falls short of the narrow sense heritability previously described 

(Plomin & von Stumm, 2018). Narrow sense heritability is an upper bound to SNP h2 because 

this is limited to observed genetic variants, and does not capture variation due to rare variants 

(single nucleotide variants with low minor allele frequency), non-SNP variation, such as 

indels (insertions and deletions less than 50 base pairs in length), and structural variation, 

(such as copy number variations). The gap between SNP heritability and narrow sense 

heritability derived from twin studies is known as the missing heritability problem (Manolio 

et al., 2009) and has practical and theorical implications for much of the work currently done 

in genomic research (Young, 2019).  

 

Discovering single variants associated with trait variation can help illuminate the underlying 

biology of traits, and improve our understanding of disease (Stranger, Stahl, & Raj, 2011). 

However, taken singularly these variants have little value in themselves to predict whether a 

person will develop a common disorder or manifest a particular trait, especially for 

behavioural traits, because their effect sizes are typically very small (with some notable 

exceptions, such as the causal role of the FTO variant rs1421085 on Body Mass Index via 

increased expression of IRX3 and IRX5 genes; see Claussnitzer et al., 2015).  

 

Polygenic scores  

We can aggregate these tiny effects sizes from GWAS summary statistics in scores reflecting 

the genetic based predisposition carried by individuals, called polygenic scores. We can in 

turn employ polygenic scores to predict phenotypic traits and infer genetic roots shared 

among them. This was demonstrated in a landmark study in the field of psychiatric genetics 

(The International Schizophrenia et al., 2009) whereby a polygenic score for schizophrenia 

was shown to be associated with bipolar disorder, and thus, also indicating a shared genetic 
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component. This approach can also be extended to the multivariate framework by considering 

several polygenic scores in the same model (Krapohl et al., 2018). In chapter 4 I discuss how 

an aggregate of adult polygenic risk scores for major psychiatric disorders associates with 

childhood problem behaviours indicating a multivariate link between childhood 

psychopathology dimensions and adult genetic liability to mental health disorders.  

 

Uses of polygenic scores 

Polygenic scores are becoming potent predictors of trait variation within populations (with 

some caveats; see Duncan et al., 2019; and chapter 6), with far-reaching implications for 

research. For example, polygenic scores can be integrated in multivariable models 

including environmental factors to improve prediction (chapter 3). We can use polygenic 

scores to infer relationships between traits where one of the traits of interests is not directly 

measured in the sample of interest, for example assessing relationships between adult 

psychiatric disorders and child problem behaviours (chapter 4). Finally, identifying groups of 

individuals with increased (or decreased) polygenic based predisposition can help 

understanding how specific traits or disorders (concurrently) vary in the population (e.g. 

Abdellaoui et al., 2019). More generally, polygenic scores can also help us think 

quantitatively in terms of psychiatric disorders, shifting the paradigm from discrete disorders 

to quantitative dimensions while considering the full spectrum of polygenic predisposition 

(Plomin et al., 2009). In chapter 2 I discuss several ways of constructing polygenic scores 

testing their performance with respect to their predictive ability of cognitive-related traits in 

childhood and adolescence.    

 

Polygenic score heritability   

The fraction of the phenotypic variance that can be predicted by polygenic scores is also 

called polygenic score heritability (PGS h2), the ceiling of which is SNP heritability. That is, 

predictive power of polygenic scores is limited by the additive variation captured by observed 

genotypes. Typically, polygenic h2 is less than half the SNP h2 of a trait (Plomin & von 

Stumm, 2018). This is in part attributable to noise attached to the estimates that we aggregate. 

Predictive power of polygenic scores can be improved by increasing sample size of GWAS 

from which SNP effects are estimated or reducing heterogeneity (de Vlaming et al., 2017; 

Dudbridge, 2013; Mostafavi et al., 2020). We can thus reduce the gap between SNP h2 and 

PRS h2 by improving the accuracy of GWAS estimates. One powerful method to achieve this 

improvement in accuracy is provided by a multivariate framework (see below and chapter 2). 
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Multi-trait methods  

As already mentioned, shared genetic influences (or genetic correlations) across traits support 

the conclusion that many genetic effects are general across traits and disorders (Plomin et al., 

2016). In fact, recent findings in the fields of psychiatric and medical genetics point to 

widespread pleiotropy – the extent to which the same genetic variants affect two or more traits 

– across many complex traits (psychiatric, metabolic or anthropometric; Pickrell et al., 2016). 

Emerging multivariate (multi-trait) genome-wide approaches (Grotzinger et al., 2019; Turley 

et al., 2018) leverage the covariance structure between (genetically) correlated traits to 

increase power to discover trait-related variants, as well as variants concurrently affecting 

multiple traits (pleiotropic variants). Many genetic variants involved in different complex 

traits are highly interconnected (Boyle, Li, & Pritchard, 2017), and this property can be 

leveraged to enhance the predictive power of polygenic scores. For example, as a byproduct 

of the enhanced power at the level of variant discovery in multi-trait GWAS, we can obtain 

more accurate SNP estimates, which in turn yield more powerful polygenic scores when 

aggregated. Chapter 2 discusses several multi-trait genomic methods and leverages this 

approach to boost predictive power of cognitive-related polygenic scores.  

 

Potent polygenic score predictors are emerging, such as the score derived from the recent 

GWAS of educational attainment (Lee et al., 2018). As these genetic predictors become 

stronger, they are also becoming instrumental in gaining important insights at the level of 

environmental exposures, and to better understand the gene-environment interplay underlying 

variation in common complex traits (Barcellos, Carvalho, & Turley, 2018; Belsky et al., 

2018). 

 

Gene-environment interplay   

Quantitative genetic theory distinguishes two types of gene-environment interplay: interaction 

and correlation (Knopik et al., 2016). Gene-environment (GE) interactions refer to genetic 

influences that depend on levels of the environment, that is, whether the environment 

moderates genetic influence or vice versa. Conversely, when the environment exerts 

differential effects depending on a person’s genetic makeup we talk about genetic moderation. 

Gene-environment correlation is a related, but different, concept and refers to the covariance 

between genes and environments. Three types of GE correlation are typically distinguished: 

passive, active and evocative (Plomin, 2014; Plomin, DeFries, & Loehlin, 1977). We have 

passive GE when a person’s genotype is associated with their rearing environment, active GE 

when a person actively seeks environments according to their genetic makeup, and evocative 
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GE when the environment responds to a person’s genetic predisposition (Chapter 3 describes 

these types of GE correlation with respect to current genomic research).  

 

Polygenic scores by environment interplay  

While historically GE interplay has been addressed by quantitative genetic designs (Knopik et 

al., 2016), more recently genomic methods afford the possibility to investigate GE interplay 

with measured genetics. In particular, polygenic scores offered a step forward in GxE research 

compared to so called candidate gene studies, where putative biologically plausible variants 

were used as a proxy for genetic liability for a particular trait. This approach garnered 

momentum before GWAS were commonly used, partly due to wrong expectations about 

effect sizes that could be found. This led to a failure to replicate many such candidate genes 

studies (Border et al., 2019), mainly due to issues of power and poor study design. Polygenic 

scores on the other hand offer a powerful alternative to candidate genes in that they are 

agnostic to underlying assumptions about biological plausibility by relying on the aggregate 

effects on many genetic variants across the genome, and are inherently more powerful 

instruments indexing a person genetic-based predisposition (Colodro-Conde et al., 2018; 

Peyrot et al., 2014; Peyrot et al., 2018).  

 

Importantly the correlation between genes and environments can confound GxE interactions 

(Purcell, 2002). Relatedly, and consistent with long standing evidence from the quantitative 

genetics literature, recent work using genomic data suggests that polygenic score prediction 

includes passive GE correlation. As such polygenic scores are not pure measures of genetic 

predisposition partly capturing environmental effects. Similarly, it is well known from twin 

studies that measures of the environment are heritable (Plomin et al., 2016). The extent and 

implications of GE correlation with regard to multivariable prediction models is explored in 

chapter 3 of the thesis. Gene-environment interactions can be extended as well to a 

multivariate framework by considering several measured environmental factors and polygenic 

scores in multivariable models. This can be potentially very useful because on one hand the 

effect of multiple interactions is modelled concurrently, controlling for their reciprocal 

effects. Furthermore, we would expect total prediction to be improved over main effects of 

genes and environments separately. While the literature on polygenic scores by environment 

is accumulating this remains an active area of investigation. Chapter 3 addresses the issues 

discussed with respect to longitudinal prediction of educational achievement.  

  

Summary and overview of chapters  
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I have outlined a brief general introduction to quantitative genetic and genomic approaches 

touching upon multivariate methods and themes discussed at length in the thesis’ chapters. A 

multivariate framework can help illuminate important questions, from prediction of complex 

developmental traits, to interrogating the underlying structure of traits and their covariance. 

Under an overarching multivariate theme, this thesis focuses on genetic and genomic 

approaches as applied to childhood psychological development following two main threads:  

 

The first part of the thesis is concerned with polygenic prediction modelling of cognitive 

related phenotypes. In chapter 2 I employ state-of-the-art multi-trait genomic methods to 

improve prediction of intelligence and educational achievement throughout childhood and 

adolescence. Here, intercorrelations between traits at the genomic level are leveraged to boost 

predictive power of polygenic scores. I present evidence that exploiting multivariate 

relationships between traits consistently increases predictive power of polygenic scores by 

improving accuracy of estimates at the genome-wide level. I also show that different multi-

trait methods are comparable in terms of this boost in prediction. While polygenic scores 

methods differ in their predictive capacity based on how they handle information across the 

genome.  

 

In chapter 3, I approach polygenic prediction from a different angle, by combining polygenic 

scores and environmental measures in multivariable longitudinal prediction models of 

educational achievement in adolescence, while investigating their multivariate interplay, 

including gene-environment interaction and correlation. As evidence is gathering suggesting 

that polygenic scores are not pure measures of a person’s genetic predisposition, as they partly 

capture environmental effects, it is important to assess the implications that this have for 

prediction when jointly considering environmental predictors, which partly capture individual 

genetic predisposition. Furthermore, a question this chapter addresses is the role of gene-

environment interactions in the prediction setting, when considered within a multidimensional 

space where several G-E interactions are modelled jointly. By the same token the role of 

gene-environment correlation in the context of multivariable prediction is investigated from 

two different angles. First, to what extent do polygenic scores and environmental prediction 

models of EA overlap, sharing the same information? Second, to what extent are 

environmental and polygenic score effects reciprocally mediated? This chapter investigates 

these questions within a multivariable G-E interplay framework.  
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The second part of the thesis is concerned with the co-occurrence of problem behaviours in 

childhood, investigating the reason for the positive intercorrelations observed at the level of 

psychopathology measures throughout development. In chapter 4, I systematically 

investigate the manifestation of a general psychopathology factor (p-factor) throughout 

development, as a common cause for the intercorrelation between psychopathology traits. 

Here I quantify the genetic and environmental contributions to this general 

psychopathology dimension by employing quantitative genetic approaches across several 

measures of child psychopathology from age 7 to 16. I further discuss findings on the 

longitudinal stability of the p-factor and associations with a polygenic index of adult 

psychopathology.  

 

In chapter 5, I investigate the co-occurrence of child psychopathology from a different angle 

by asking whether the positive intercorrelation between psychopathology dimensions can be 

partly attributed to a temporal network of directed influences of one trait on the other. I do 

this by investigating child problem behaviours over time, separating between-person trait-like 

stable effects from within-person state-like temporal effects of one psychopathology 

dimension on the other. In this study I further extend this network model to include an 

important source of variation of complex behavioural traits in childhood: sibling effects. 

Here, I develop an extension of the network model to family level data by estimating 

reciprocal directional influences between siblings over time separating them from similarities 

between siblings that arise through shared (genetic or environmental) influences that exist in a 

family. Within this approach I parse out genetic and environmental components of variance at 

the level of time-invariant overarching stable traits, as well as age-specific effects, controlling 

for the fact that family members are related to each other while extending the network model 

from an individual to a family level.  
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Abstract

Recent advances in genomics are producing powerful DNA predictors of complex traits, especially 

cognitive abilities. Here, we leveraged summary statistics from the most recent genome-wide 

association studies of intelligence and educational attainment, with highly genetically correlated 

traits, to build prediction models of general cognitive ability and educational achievement. To this 

end, we compared the performances of multi-trait genomic and polygenic scoring methods. In a 

representative UK sample of 7,026 children at ages 12 and 16, we show that we can now predict 

up to 11 percent of the variance in intelligence and 16 percent in educational achievement. We also 

show that predictive power increases from age 12 to age 16 and that genomic predictions do not 

differ for girls and boys. We found that multi-trait genomic methods were effective in boosting 

predictive power. Prediction accuracy varied across polygenic score approaches, however results 

were similar for different multi-trait and polygenic score methods. We discuss general caveats of 

multi-trait methods and polygenic score prediction, and conclude that polygenic scores for 

educational attainment and intelligence are currently the most powerful predictors in the 

behavioural sciences.

Introduction

Ever increasing sample sizes and methodological advances in polygenic methods have made 

it possible to powerfully predict complex traits such as cognitive abilities without knowing 

anything about the causal chain between genes and behaviour. Progress in predicting 

cognitive traits from inherited DNA variants has been rapid in the past five years and 
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especially in the past year1. Three methodological advances have mainly been responsible 

for this progress: increasingly large genome-wide association (GWA) studies, genome-wide 

polygenic scores (GPS) and multivariate analytic tools. The key has been the recognition 

that the largest associations are extremely small, accounting for less than 0.05% of the 

variance2. To achieve sufficient power to detect such small effect sizes, samples in the 

hundreds of thousands are needed before GWA studies can begin to detect these tiny effects. 

Because the largest associations are so small, useful predictions of individual differences can 

only be made by aggregating the effects of thousands of DNA variants in GPS3. The third 

advance is the development of genomic methods that leverage genetic correlations between 

traits to boost power for variant discovery4 and polygenic risk prediction5.

Together, these three advances have greatly increased the ability to predict intelligence, 

educational attainment (years of schooling), and educational achievement (tested 

performance). For example, for intelligence, until 2017, no replicable associations were 

found in seven GWA studies6–12, which we refer to collectively as ‘IQ1’. These studies had 

sample sizes from 18,000 to 54,000, which seemed large at the time but were not sufficiently 

powered to detect effect sizes of 0.05%. GPS derived from these IQ1 GWA studies at most 

accounted for 1% of the variance in independent samples. Increasing GWA sample sizes to 

78,000 (IQ213) and then to 280,000 (IQ314) paid off in increasing predictive power of GPS 

from 1% to 3% to 4%. Here we present results for IQ3.

Educational attainment has led the way in terms of increasing GWA sample size, from 

125,000 in 2013 (EA115) to 294,000 in 2016 (EA216) to 1.1 million in 2018 (EA317). The 

growing sample sizes increased the predictive power of GPS from 2% to 3% to 12% of the 

variance in educational attainment1. Similarly, in previous work we showed that EA GPS 

predicted an increasingly substantial amount of variance in tested educational achievement 

as sample size from replications of the EA GWAS increased over the years. EA1 predicted 

3% of the variance in educational achievement at age 16 18 and EA2 predicted 9% of the 

variance for overall educational achievement at age 16 19.

Because ‘years of education’ is obtained as a demographic marker in most GWA studies, it 

was possible to accumulate samples sizes with the necessary power to detect very small 

effect sizes. It is more difficult to obtain very large sample sizes for intelligence, which 

needs to be assessed with a psychometric test administered to each individual, whereas years 

of education can be captured with a single self-reported item. Because of the large sample 

size available for EA GWA studies and the substantial genetic correlation between EA and 

intelligence, EA GPS predicted as much or more variance in intelligence than did GPS 

derived from GWAS of the target trait of intelligence itself. EA1 predicted 1% of the 

variance in intelligence 18, 20 and EA2 predicted 4% of the variance 16. Here we present 

results for EA3.

Finding that EA GPS predict educational achievement and intelligence better than do GWA 

of the target traits themselves suggests the usefulness of multivariate approaches. In a 

previous study, a multivariate GPS approach involving regularized regression was applied to 

show that with EA2 and 80 other GPS 11% of the variance in educational achievement at 

age 16 and 5% of the variance in intelligence at age 12 could be predicted21. Although 
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adding 1–2% to the predictive power of GPS might not seem like much, it should be noted 

that five years ago the total variance that could be predicted in either trait was statistically 

indistinguishable from zero.

The aim of the present study is to estimate how much variance in intelligence and 

educational achievement can be predicted by applying several state-of-the-art multi-trait 

genomic approaches and leveraging highly powered GWA summary statistics. First we 

compare three polygenic score methods (PRSice22, LDpred23, and Lassosum24) and test 

how much variance the new IQ3 and EA3 GPS maximally predict. We then jointly analyse 

IQ3 and EA3 with three highly (genetically) correlated traits (Income25, Age when 

completed full time education26, Time spent using computer26) to boost predictive power 

and compare performance of three multi-trait methods (Genomic SEM27, MTAG4 and 

SMTpred5) using predictive power as our criterion.

We conducted these analyses in a sample of 7,026 unrelated individuals from the Twins 

Early Development study, which is representative of the UK population28. We analysed 

intelligence and educational achievement at the end of compulsory schooling in the UK at 

age 16; we also investigated developmental trends in genomic prediction from age 12 to 16. 

Based on previous research19, we expected genomic predictions to increase from 12 to 16.

Materials and Methods

Sample

The sample was drawn from the Twins Early Development Study (TEDS29), an ongoing 

population-based longitudinal study. It consists of twins born in England and Wales between 

1994 and 1996, who have been assessed on a variety of psychological domains. More than 

10,000 twin pairs representative of the general UK population 28 remain actively involved in 

the study to date. Ethical approval for TEDS has been provided by the King’s College 

London Ethics Committee (reference: PNM/09/10–104). Parental consent was obtained 

before data collection. Genotypes for 10,346 individuals (including 3,320 DZ twin pairs) 

were processed with stringent quality control procedures followed by SNP imputation using 

the Haplotype Reference Consortium (release 1.1) reference panels. Current analyses were 

limited to the genotyped and imputed sample of 7,026 unrelated individuals. Following 

imputation, we excluded variants with minor allele frequency < 0.5%, Hardy-Weinberg 

equilibrium p-values of < 1×10−5. To ease computational demands, we selected variants with 

an info score of 1, resulting in 515,000 SNPs used for analysis (see Supplementary Methods 

S1 for a full description of quality control and imputation procedures).

Outcome variables

The outcome variables were intelligence and educational achievement at ages 12 and 16. 

Intelligence was assessed as a composite of verbal and nonverbal web-based tests. 

Educational achievement was indexed by a mean of scores on the compulsory subjects of 

English, mathematics and science obtained from the UK National Pupil Database. A more 

detailed description of outcome variables is provided in the Supplementary Methods S2. 

Supplementary Table S1 includes descriptive statistics for the outcomes variables and 
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Supplementary Figure S1 shows phenotypic correlations. Phenotypes and polygenic scores 

were corrected for age, sex and 10 genetic principal components. The obtained standardised 

residuals were used in all subsequent analyses.

Discovery GWA summary statistics

We based our prediction models on beta weights derived from large, publicly available, 

GWA summary statistics. Of central importance for our analyses were the most recent GWA 

studies of educational attainment (EA317) and intelligence (IQ314). Because the original IQ 

GWA meta-analysis included TEDS as one of its samples, to avoid bias due to sample 

overlap with our target sample we used summary statistics from new GWA analyses that 

excluded TEDS. The EA3 summary statistics employed here do not include 23andMe data 

(~300k individuals) due to their data availability policy.

Polygenic score approaches

We used IQ3 and EA3 summary statistics to construct genome-wide polygenic scores (GPS) 

comparing three distinct approaches: PRSice222, a clumping/pruning + P-value thresholding 

(P+T) approach, with an in-built high-resolution option that returns the best-fit GPS for the 

trait of interest; LDpred23, a Bayesian approach that uses a prior on the expected 

polygenicity of a trait (assumed fraction of non-zero effect markers) and adjusts for linkage 

disequilibrium based on a reference panel to compute SNPs weights; and Lassosum24, a 

machine-learning approach which uses penalized regression on GWA summary statistics to 

produce more accurate beta weights.

A detailed description of the construction of these polygenic scores is included in 

Supplementary Methods S3.

Multi-trait approaches

In order to boost power of IQ3 (N = 266,453) and EA3 (N = 766,345) GWA results and thus 

precision of beta weights to construct more predictive IQ3 and EA3 polygenic scores, we 

jointly analysed these summary statistics with three cognitive and educationally relevant 

traits: “Income”25 (N = 96,900), “Age when completed full time education26 (N = 226,899) 

and “Time spent using computer”29 (N = 261,987). The choice of these traits is consistent 

with a multi-trait framework, as these traits show the highest genetic correlations with IQ 

and educational attainment among publicly available GWA summary statistics, with 

pairwise-genetic correlations ranging from ~.5 to ~.9 (see Supplementary Figure S2). 

Summary statistics from these GWA studies are reported in Supplementary Table S2.

We used three recently developed multi-trait methods, one of which is specifically designed 

to boost polygenic score prediction: SMTpred5, and two of which are strictly speaking 

multivariate GWA approaches, designed to boost power for discovery, but which have been 

shown to increase predictive power of polygenic scores created from multi-trait reweighted 

summary statistics: MTAG4 and Genomic SEM27. Details about these methods are provided 

in Supplementary Methods S4. Briefly, SMTpred5 is a multi-trait extension of the random 

effects model approach, which can be used to create multivariate best linear unbiased 

predictors based on summary statistics (wMT-SBLUP). MTAG is a generalization of 
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inverse-variance weighted meta-analysis, which jointly analyses univariate GWA summary 

statistics. It boosts power for discovery for each trait conditional on the effect size estimates 

of other traits and outputs trait-specific summary statistics. Genomic SEM is a two-stage 

structural equation modelling approach that can be applied in the context of multivariate 

GWA. In the form employed here (common factor GWAS), it directly tests effect of SNPs on 

a latent genetic factor defined by several indicators (i.e. traits) and outputs summary 

statistics for the common factor. We also compared these new multivariate approaches to a 

simple multiple regression on intelligence and on educational achievement using five GPS, 

each derived from the univariate GWA summary statistics used in multi-trait analyses.

Analyses

Univariate analyses

We first calculated polygenic scores for the IQ3 and EA3 GWA summary statistics using 

PRSice, LDpred and Lassosum. This was done to compare current state-of-the-art polygenic 

scores approaches and in order to obtain a benchmark against which to compare 

improvements in prediction accuracy due to multivariate GWA analyses. For each phenotype 

(i.e. intelligence and educational achievement at ages 12 and 16), we randomly split the 

sample into training and test sets (~50% training, ~50% test). Supplementary Table S1 

shows descriptive statistics for each set. In the training sets, parameter optimization of GPS 

was performed, in which each GPS instrument (or p-value threshold in the case of PRSice, 

fraction of markers with nonzero effect in the case of LDpred, and tuning parameters in the 

case of Lassosum) was tested on each of the four phenotypes and the best instrument was 

selected with respect to prediction accuracy (as indexed by R2). Performance of the 

optimized GPS instrument retained from the validation was then assessed in the test sample 

in order to evaluate how well the chosen predictors would perform in independent samples. 

We then proceeded to perform the multi-trait analyses.

Multi-trait analyses

We performed a multi-trait reweighting in SMTpred after transforming the ordinary least 

square betas from GWA studies of ‘IQ’, ‘EA’, ‘Income’, ‘Age completed full time 

education’ and ‘Time spent using computer’ in approximate Best Linear Unbiased 

Predictors (BLUP) using GCTA-Cojo 30. We then used LDSC to calculate SNP h2 and 

genetic correlations between traits and proceeded to the multivariate weighting of traits as 

described in (Meier et al., 2018) to obtain multi-trait summary statistics BLUP (wMT-

SBLUP; see also Supplementary Methods S4).

MTAG was run on the five GWA summary statistics (IQ, EA, Income, Age completed full 

time Education, Income) using standard settings. Because MTAG combines differently 

powered summary statistics (as indexed by the GWAS mean χ2; see Supplementary 

Methods S4), as well as differing degrees of genetic overlap between traits, it can lead to an 

increased rate of false positives Type I error4. However, this is not an issue in the present 

study, which focuses on prediction accuracy rather than variant discovery. It has been 

shown4 that MTAG estimates consistently have a lower genome-wide mean-squared error 

compared to single-trait GWA estimates, and, therefore, polygenic scores created from 
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MTAG perform better than those created at the univariate level. However, in order to control 

for type I error inflation, we used the recommended4 false discovery rate (FDR) calculations 

(see Supplementary Methods S4).

The same five summary statistics were analysed using Genomic SEM. First a common 

factor model with the five summary statistics as indicators was fitted using a weighted least-

square (WLS) estimator (default setting in Genomic SEM). Then a common factor GWA 

analysis with a WLS estimator was run, testing effects of single SNPs on the common factor. 

The WLS estimator was expected to yield lower standard errors and possibly increased 

prediction accuracy of GPS30.

We then created polygenic scores from the MTAG EA, MTAG IQ and common factor GWA 

summary statistics across the three polygenic scores approaches, after splitting the sample 

into a training set to tune parameters and a testing set to assess model performance. In the 

case of SMTpred, polygenic scores for IQ3 and EA3 converted and reweighted indices 

(wMT-SBLUP) were calculated using PLINK31. These multi-trait predictors were then 

directly tested for model performance in the test set, as with the other GPS approaches. 

Based on previous power analyses for polygenic score prediction in the TEDS sample19, 32 

we did not expect any power issues for the current analysis plan.

For prediction estimates derived from both univariate and multi-trait models, we calculated 

bootstrapped confidence intervals with 1000 replications. Furthermore, we performed a 

comparison of R2 estimates between models, by calculating bootstrapped confidence 

intervals for the R2 pairwise mean differences. As such, for each model, bootstrap samples 

were generated by sampling with replacement from the data 1000 times. Each row of data 

for resampling consisted of all polygenic scores and phenotypes examined herein. This 

procedure yielded an R2 distribution for each method tested. The R2 difference between 

methods was then calculated for each bootstrap iteration. This generated a distribution of R2 

differences, from which we calculated 95% confidence intervals.

Results

Polygenic score prediction of IQ and EA across GPS methods

Figure 1 shows variance in intelligence and educational achievement predicted by IQ3 GPS 

and EA3 GPS calculated following three polygenic score methods (PRSice, LDpred and 

Lassosum). Supplementary Table S3 presents associations in the training and test sets across 

all models.

For intelligence, IQ3 GPS predicted a maximum of 5.3% (β = 0.221, se = 0.023, p < .0001) 

of the variance at age 12 and 6.7% (β = 0.266, se = 0.032, p < .0001) at age 16. For 

educational achievement, EA3 GPS predicted a maximum of 6.6% (β = 0.259, se = 0.020, p 

< .0001) of the variance at age 12 and 14.8% (β =0.389, se = 0.019, p < .0001) at age 16. 

EA3 GPS was also a powerful predictor of intelligence, predicting 7.2% (β = 0.265, se = 

0.024, p < .0001) of the variance in intelligence at age 12 and 9.9% (β = 0.321, se = 0.031, p 

< .0001) at age 16.
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Generally, Lassosum was the most powerful approach, predicting up to 1% more of the 

variance compared to LDpred and up to 2% more compared to PRSice. Supplementary 

Figure S4 shows a comparison of prediction estimates for each pair of approaches tested. 

Bootstrapped confidence levels calculated for pairwise comparisons indicated significant 

differences in prediction accuracy of IQ3 GPS within-trait between LDpred and PRSice at 

age 12 (MeanDiff = −0.014, 95% CIs [−0.024; −0.005]), and cross-trait at age 12 and 16. 

However, no significant differences were found for PRSice- vs LDpred-based EA3 GPS. 

Similarly, significant differences were also found for IQ3 GPS between Lassosum and 

PRSice at age 12 within trait (MeanDiff = −0.010, 95% CIs −0.021; −0.001]), and at age 12 

and 16 cross-trait. Lassosum-based EA3 GPS performed better within trait at age 16 

(MeanDiff = −0.020, 95% CIs −0.031; −0.009]).

No differences were found in prediction accuracy between LDpred- vs Lassosum-based IQ3 

GPS or EA3 GPS, within or cross-trait. Supplementary Table S3a reports mean differences 

and CIs for these comparisons.

Multi-trait polygenic score prediction

Results of multivariate GWA analyses are reported in Supplementary Methods S4 and 

Supplementary Tables S5 and S6. Here we report results of polygenic score associations for 

our best predictive polygenic models after multi-trait approaches were applied to GWA 

summary statistics (Figure 3 and Figure S5). Figure S6 shows a comparison of variance 

predicted in intelligence and educational achievement at ages 12 and 16 in the test samples 

across polygenic score methods after multi-trait analyses. Supplementary Table S4 reports 

details of these results.

Figure 2 presents variance predicted in intelligence and educational achievement at age 16 

by polygenic scores derived from multi-trait methods. For intelligence, variance predicted by 

IQ3 GPS increased from 6.7% (Figure 1) to a maximum of 10.0% (β = 0.327, se = 0.032, p 

< .0001) at age 16. For educational achievement, variance predicted by EA3 GPS increased 

from 14.8% to a maximum of 15.9% (β = 0.403, se = 0.018, p < .0001) at age 16. Again, 

EA3 GPS was generally the best performing predictor across phenotypes, predicting a 

maximum of 10.6% (β = 0.332, se = 0.031, p < .0001) in intelligence. Similar improvements 

in prediction were observed at age 12 (see Supplementary Table S4 and supplementary 

figure S4).

Supplementary Figure S6 shows a test of the differences in predictive performance of 

Lassosum-based scores between multi-traits methods tested at age 12 and 16. There were no 

significant differences between multi-trait methods for both IQ3 and EA3 GPS across all 

phenotypes. The only exceptions were the SMTpred IQ3 score, which tended to perform 

better than MTAG at age 16 cross-trait (MeanDiff = −0.011, 95% CIs [−0.022; −0.001]), and 

the MTAG EA3 score which tended to perform better than Genomic SEM at age 16 within 

trait (MeanDiff = −0.0077, 95% CIs [−0.0143; −0.002]). Supplementary Table S4 a reports 

mean differences and CIs for these comparisons.

Polygenic scores quantile differences—Figure 3 shows the results for the best 

predictive models at age 16 by GPS deciles. For both intelligence (panel a) and educational 
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achievement (panel b), the relationship with GPS deciles is linear and the lowest and highest 

deciles differ substantially. For intelligence, the mean difference (~1 SD) is comparable to 

15 IQ points. For educational achievement, the mean difference corresponds to an average 

‘C’ grade for the lowest decile and an average ‘A’ grade for the highest decile. However, the 

range of distributions in the lowest and highest deciles overlap considerably, as would be 

expected from GPS correlations of ~0.32 with intelligence and ~0.40 with educational 

achievement.

Sex differences—We tested associations for the best prediction model (i.e. MTAG EA3 

GPS calculated in Lassosum) separately for males and females in the test set. For 

intelligence at age 16, the GPS predicted 10.7% of the variance (95% CIs [6.33;16.74]) in 

males (N= 369, β = 0.334, se = 0.049) and 10.5% (95% CIs [6.49;15.41]) in females (N = 

558, β = 0.329, se = 0.040). For educational achievement in males (N = 1,105) the GPS 

predicted 14.2% (95% CIs [10.96;17.86]) of the variance (β = 0.375, se = 0.027); in females 

(N = 1,300) estimates were 17.2% (95% CIs [13.51;21.43]; β = 0.420, se = 0.025). To test 

the significance of these sex differences, we performed a Fisher’s r to z transformation of 

corresponding correlation coefficients. Sex differences were not significant for intelligence 

(observed z = −0.066, p = 0.472) nor educational achievement (Observed z = −1.419, p= 

0.077).

Multiple regression model—We compared the results from our multi-trait GPS analyses 

to a simple multiple regression using the five GPS from summary statistics of our multi-trait 

analyses (IQ, EA, income, age when completed full time education, time spent using 

computer) to predict intelligence and educational achievement. The multiple regression 

model predicted similar amounts of variance as the best single multi-trait GPS predictors. 

For intelligence, the adjusted R2 was 8.6% at age 12 and 9.9% at age 16. For educational 

achievement, the adjusted R2 was 9.6% at age 12 and 16.7% at age 16. Results are shown in 

Supplementary Table S7.

Discussion

Using summary statistics from the latest GWA studies of intelligence (IQ314) and 

educational attainment (EA317), we report the strongest polygenic prediction estimates for 

cognitive-related traits to date. Comparing standard polygenic score approaches, we showed 

that IQ3 GPS predicts a maximum of 6.73% of the variance in intelligence at age 16, while 

EA3 GPS predicts 14.78% of the variance in educational achievement at age 16.

In an attempt to boost predictive power, we compared results using state-of-the-art genomics 

methods that leverage the multivariate nature of traits in order to increase power of GWA 

summary statistics. We then tested boosted summary statistics across a number of polygenic 

score approaches, showing that we can predict 10.6% of the variance in intelligence and 

15.9% of the variance in educational achievement, both at age 16. These results compare 

favourably with polygenic prediction estimates from the recent EA3 GWA analysis, whereby 

a polygenic score constructed from multi-trait summary statistics of educational attainment 

and three cognitive-related phenotypes predicted up to 13% of the variance in educational 

attainment and up to 10% in cognitive performance17, this is especially notable given the 
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larger discovery sample size employed in that study (N ~ 1.1 million including 23andMe). 

We note that differences between these studies may be attributable to systematic differences 

at the level of trait measurement (e.g. accuracy of measurement) and sample characteristics 

(e.g. differences in ancestry; differences in heritability). Nevertheless, this is a good 

indication that a multi-trait approach to polygenic prediction replicates well across 

independent samples yielding robust prediction estimates.

We found that trait prediction increased from age 12 to age 16. Polygenic scores become 

more predictive with age, probably because as the sample approaches adulthood it is closer 

in age to the samples in which beta weights were estimated in the original GWA studies for 

IQ3 and EA3. Another possible reason for this finding is that given that heritability of 

intelligence increases with age33, the variance that can be predicted by cognitive-related 

polygenic scores also increases. Lastly, we did not find significant differences in the 

predictive power of IQ3 and EA3 for males and females.

These results indicate the usefulness of taking into account the multivariate nature of 

complex traits in polygenic prediction, and add to the possibility of practical use of 

polygenic scores at the level of individuals34. It is important to note that we randomly split 

our sample (~50%) to validate our models and assessed performance of prediction models in 

the test sample in order to avoid overfitting. Because TEDS is a representative sample of the 

UK population, these prediction estimates are expected to be a close representation of how 

these models would perform in similar samples. Overall, multi-trait methods were successful 

in increasing variance predicted; compared to our ‘baseline’ predictions, estimates increased 

from 1% to 3%. Multi-trait methods were especially useful in increasing predictive power of 

the IQ3 GPS, which was constructed using less powerful summary statistics than the EA3 

GPS. However, differences in prediction accuracy across the tested combinations of genomic 

methods seemed to reflect differences in polygenic score approaches rather than in multi-

traits approaches. An indication of this intuition was also provided by a formal comparison 

of R2 estimates, which showed no consistent differences across multi-trait methods. Yet, 

reassuringly, there were no dramatic differences in prediction accuracy across polygenic 

score approaches either, especially when considering approaches that do not perform 

clumping (thereby losing information across the genome).

One limitation that could affect the interpretability of our findings is that by jointly 

analysing traits with differing levels of power and genetic overlap, the multi-trait methods 

considered here might confound the genetic architecture of boosted traits with that of other 

traits. In this regard, genetic correlations between traits before and after multi-trait analyses 

and with a control trait, as those reported in Supplementary Methods S4, may indicate the 

degree to which the genetic architecture of one trait has ‘shifted’ towards that of others in 

the multi-trait analysis. This is an important post-hoc test to be considered by future studies 

employing multi-trait approaches in the context of polygenic prediction.

An ongoing debate concerns the causal mechanisms by which polygenic scores predict 

phenotypes such as educational achievement and intelligence. Passive gene-environment 

correlation may be a mechanism underlying the association between polygenic scores and 

educational attainment. Given parent-child shared genetics (~50%), if EA trait-increasing 
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variants are correlated with rearing environments which in turn are contributing to 

attainment, GWAS estimates obtained for EA would be partly picking up genetic effects 

mediated via the environment. That is, GWAS effect estimates may be due to indirect 

genetic effects via rearing environments that could reflect both inherited and non-inherited 

parental DNA. Therefore, the association between an individual’s EA polygenic score and 

cognitive traits could partly reflect an environmentally transmitted parental genetic 

effect17, 35, 36. Analyses relying on family-based designs have put forward evidence in this 

regard17, 37, 38. These studies confirmed what have long been acknowledged by twin and 

adoption studies on the nature of nurture39,40. Separating the different mechanisms of gene-

environment interplay by which polygenic scores influence complex traits is an important 

area of research. However, prediction of individual differences in behavioural phenotypes 

from polygenic scores can be achieved without an underlying explanatory model.

Finally, a general limitation of all genomic analyses is that they only assess additive effects 

of common SNPs used on currently SNP arrays. SNP heritability is the ceiling for polygenic 

score prediction, which is about 20%14 of the total variance for intelligence and 30% 41 for 

educational achievement. Viewed in this light, our best polygenic scores predict about half 

of the SNP heritability. With bigger and better GWA studies and other methodological 

advances like multivariate approaches, the missing SNP heritability gap will be narrowed. 

Polygenic scores will only reach their full potential when we are able to close the gap 

between SNP heritability (about 25%) and family study estimates of heritability (about 

50%).

Nonetheless, these polygenic scores predictions are already among the strongest predictors 

in the behavioural sciences. Because inherited DNA variants do not change during 

development, polygenic scores are unique predictors in two ways. First, unlike other 

characteristics of the individual, DNA variants can predict individual differences in adult 

behaviour from birth. Second, unlike other correlations, associations between DNA variants 

and behaviour are causal from DNA to behaviour in the sense that there can be no backward 

causation from behaviour to DNA. These unique features will put genomic prediction of 

cognitive traits in the front line of the DNA revolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Polygenic score prediction of intelligence (IQ) and educational achievement (EA) at age 12 

and 16. Figure shows polygenic prediction accuracy across polygenic score methods. Error 

bars are bootstrapped 95% confidence intervals based on 1,000 replications.
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Figure 2. 

Within-trait and cross-trait polygenic score prediction of intelligence and educational 

achievement at age 16 across multi-trait methods.

Note. MTAG = MTAG IQ3 (panel a)/ MTAG EA3 (panel b) polygenic scores constructed in 

Lassosum; SMTpred = IQ3 (panel a)/EA3 (panel b) wMT-SBLUP predictors; Genomic 

SEM = Common Factor polygenic score constructed in Lassosum (panel a and b). Error bars 

are bootstrapped 95% confidence intervals based on 1,000 replications.
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Figure 3. 

Mean intelligence scores (panel a) and mean educational achievement (panel b; GCSE 

grades) at age 16 by GPS deciles for the best polygenic predictors in the test set. Bars 

represent bootstrapped 95% confidence intervals. Coloured dots represent individual data 

points.
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Abstract 

Polygenic scores are increasingly powerful predictors of educational achievement. It is 

unclear, however, how sets of polygenic scores, which partly capture environmental effects, 

perform jointly with sets of environmental measures, which are themselves heritable, in 

prediction models of educational achievement. 

Here, for the first time, we systematically investigate gene-environment correlation (rGE) and 

interaction (GxE) in the joint analysis of multiple genome-wide polygenic scores (GPS) and 

multiple environmental measures as they predict tested educational achievement (EA). We 

predict EA in a representative sample of 7,026 16-year-olds, with 20 GPS for psychiatric, 

cognitive and anthropometric traits, and 13 environments (including life events, home 

environment, and SES) measured earlier in life. Environmental and GPS predictors were 

modelled, separately and jointly, in penalized regression models with out-of-sample 

comparisons of prediction accuracy, considering the implications that their interplay had on 

model performance. 

Jointly modelling multiple GPS and environmental factors significantly improved prediction 

of EA, with cognitive-related GPS adding unique independent information beyond SES, home 

environment and life events. We found evidence for rGE underlying variation in EA (rGE = 

.38; 95% CIs = .30, .45). We estimated that 40% (95% CIs = 31%, 49%) of the polygenic 

scores effects on EA were mediated by environmental effects, and in turn that 18% (95% CIs 

=12%, 25%) of environmental effects were accounted for by the polygenic model, indicating 

genetic confounding. Lastly, we did not find evidence that GxE effects significantly 

contributed to multivariable prediction. Our multivariable polygenic and environmental 

prediction model suggests widespread rGE and unsystematic GxE contributions to EA in 

adolescence.   
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Introduction 

Education is compulsory in nearly all countries because it provides children with the skills, 

such as literacy and numeracy, that are essential for successfully participating in society. How 

well children perform at school, indicated by their educational achievement (EA; not to be 

confused with educational attainment, which is a measure of years spent in education), 

predicts many important life outcomes, especially further education and occupational status 

(1). Quantitative genetic research based on twin studies showed that EA is 60% heritable 

throughout the school years (2, 3). These studies also suggested that about 20% of the 

variance of EA and other learning-related traits can be ascribed to shared environmental 

factors, for example growing up in the same family and going to the same school. However, 

the picture became more complicated with the discovery that ostensible measures of the 

environment associated with educational achievement showed genetic influence – most 

notably, parents’ educational attainment, socio-economic status (SES) and aspects of the 

home environment (4).  

Quantitative genetic theory distinguishes two types of interplay between genetic and 

environmental effects, genotype-environment correlation (rGE) and genotype-environment 

interaction (GxE) (5). rGE occurs when an individual’s genotype covaries with environmental 

exposures. There are three types of rGE: passive, active and evocative. Passive rGE results 

from the inheritance of both genetic propensities and environments linked to parental 

genotypes. That is, individuals inherit from parents a genetic predisposition to a particular 

trait, but parental genotypes are also associated with rearing environments that, in turn, 

increase the likelihood of developing a particular trait. For example, individuals with stronger 

genetic predispositions to educational attainment tend to grow up in higher socioeconomic 

status families (6). Evocative rGE happens when individuals’ genetic propensities evoke a 

response from the surrounding environment; for example children’s predisposition to higher 

food intake might elicit restrictive food behaviours from their parents (7). Or, in the context of 
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education, children’s learning difficulties might yield parents to provide more support for 

learning. Active rGE results from individuals actively selecting environments that are linked 

to their genetic propensity; for example, individuals with a higher genetic predisposition to 

educational attainment tend to migrate to economically prosperous regions that offer greater 

educational opportunities (8). 

GxE, on the other hand, refers to genetic moderation of environmental effects. That is, when 

the effects of environmental exposures on phenotypes depend on individuals’ genotypes. 

Equivalently, environmentally moderated genetic effects occur when genetic effects on a 

phenotype depend on environmental exposures. Importantly, however, rGE may confound 

GxE effects (9). For example, if a genetic predisposition for a particular trait is found in a 

particular environment, it is difficult to know whether this represents rGE between the trait 

and the environment or true GxE. This picture becomes even more complicated when we 

consider that environments are themselves heritable (4). 

 

Research on GxE was rejuvenated when it became possible to include measured genetic and 

environmental factors in statistical models. Hundreds of studies were published purporting to 

show interactions between candidate genes and environmental measures as they predict 

behavioural traits. For example, a seminal GxE study in the field (10) showed that carriers of 

two copies of the short serotonine allele on the 5HTT gene exposed to adversity had an 

increased the risk for depression compared to their genetic counterpart. However, GxE effects 

such as these have a poor replication history (11, 12). The main problem with this approach is 

that it ignores the high polygenicity of complex traits, with a reductionist focus on single 

‘candidate’ variants. This combined with typically small sample sizes, underpowered to detect 

the very small effects that can be expected for GxE, lead to a replication failure (13).  

In complex traits, very few individual variants capture more than a tiny fraction of trait 

variance (14). Genome-wide polygenic scores (GPS) are the missing piece for investigating 
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the interplay between genes and environment because they can theoretically capture genetic 

influences up to the limit of SNP-based heritability, which is usually 25-50% of the total 

heritability for behavioural traits. GPS are indices of an individual’s genetic propensity for a 

trait and are typically derived as the sum of the total number of trait-associated alleles across 

the genome, weighted by their respective association effect size estimated through genome-

wide association analysis (15). A GPS derived from a genome-wide association study of 

educational attainment (years of schooling) (16) predicts up to 15% of the variance of EA 

(17). As more powerful GPS become available, they have begun to be used widely in research 

on GxE (18-23) and rGE (7, 24-27).  

Recently it has been possible to dissect the role of parental genetics on child achievement by 

splitting the parental genome into transmitted alleles (indexing passive rGE) and non-

transmitted alleles (indexing environmentally transmitted parental genetic effects). The latter 

demonstrated that parental genotypes are associated with the environment they provide for the 

child (28, 29). In fact, a growing body of evidence is showing the importance of considering 

gene-environment correlation when assessing polygenic effects on trait variation (30, 31), 

especially for educationally relevant traits. Paralleling previous findings from the quantitative 

genetics literature, a key point is that environmental measures are themselves heritable and 

GPS effects can be mediated by the environment, while environmental effects can be 

accounted for by genetics (genetic confounding). In this sense, polygenic scores for cognitive 

traits are not pure measures of genetic predisposition: their predictive power also captures 

environmental effects. For the same reason, environmental measures are not pure measures of 

the environment.  

Rather than examining rGE and GxE for single polygenic scores and environmental measures, 

here we look at sets of GPS (32) and environmental measures. A multivariable approach is 

especially warranted for EA because twin analyses show that the high heritability (60%) of 

EA reflects many genetically influenced traits, including personality and behaviour problems 
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in addition to cognitive traits (33, 34). Correspondingly, EA GPS is associated with a wide 

range of  traits, including psychiatric, anthropometric and behavioural traits (35). Similarly, 

environmental predictors of EA are also intercorrelated (e.g. SES and home environment). 

However, it is not yet clear how sets of polygenic scores, partly capturing environmental 

effects, perform jointly with sets of environmental measures, which are themselves heritable, 

and the effect that their interplay (rGE and GxE) might have on prediction.        

Here for the first time we systematically investigate the interplay of GPS and environmental 

measures in the multivariable prediction of tested educational achievement. We jointly 

analyse multiple GPS and multiple environmental measures, considering the effect of their 

interplay in out-of-sample prediction. Specifically, we test the joint prediction of 20 well-

powered GPS for psychiatric, cognitive and anthropometric traits and 13 proximal and distal 

measured environments including life events, home environment and SES (see methods for 

descriptions of all measures). First, we model polygenic scores (henceforth G model) and 

environmental measures (henceforth E model), separately and jointly (full model), to predict 

educational achievement in penalized regression models (36) with out-of-sample tests of 

prediction accuracy. Penalized methods are especially warranted when dealing with multiple 

correlated predictors as they can overcome problems of multicollinearity and overfitting. To 

investigate the relative contributions of the employed predictors to the full model, we carry 

out post-selection estimation (37) of partial regression coefficients, testing independent effects 

of single GPS and environmental measures.  Secondly, we separate direct from mediated 

effects of the multivariable G and E models on EA and assess rGE defined in terms of the 

GPS and environmental measures employed. Finally, we assess GxE using a hierarchical 

group-lasso technique (38) to systematically discover two-way interactions between all GPS 

and environmental measures, and test their improvement in prediction of EA. 
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Results 

Joint modelling of GPS and environmental effects  

In a first step we tested three models for association with EA: all genetic factors (polygenic 

scores; G model), all environmental factors (measured environments; E model), and a joint 

model of all factors (full model; G+E). The G+E model achieved the best hold-out sample 

prediction compared to the G or E models considered separately. The full model predicted 

36% of the variance (95% CI = 30.5, 41.6) in EA (Figure 1 panel B, Table S2), 6% more than 

the E model (30.1%; 95% CI = 24.3, 35.6; Figure S1) and up to 18% more compared to the G 

model alone (18.3%; 95% CI = 12.7, 23.6; Figure S2). Nested comparisons of the G+E model 

vs the G and E models separately indicated that the difference in hold-out set prediction 

accuracy between models (Figure 1 panel D, Table S2b) was significant for both the G+E 

model vs E the model (median R2 diff = 5.9%; 95% CI = 2.8, 9.1) and the G+E model vs the 

G model (median R2 diff = 17.7%; 95% CI = 13.2, 22.3). This suggested the presence of 

genetic effects on EA not mediated via environmental effects, and vice versa of 

environmental effects not accounted for by the genetic effects. Next, we untangled the 

specific independent contributions of GPS and measured environments to variation in EA. 
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Figure 1. Out of sample prediction of educational achievement. Panel A = repeated 10-fold cross validation in 

training set, for the environmental (E), multi-polygenic score (G), joint (G+E), and interaction (G*E) prediction 

models. Panel B = Hold-out set prediction of EA for best models obtained via repeated cross validation in 

training set. Error bars are 95% bootstrapped confidence intervals. Panel C = G+E model used in hold-out set 

prediction. Figure shows variables selected via repeated cross-validation in the training set, and relative 

importance.  Panel D = Comparison of prediction accuracy for models tested as bootstrapped R2 difference 

between nested models in the hold-out set. Distributions represent independent (non-mediated) genetic effects 

(G+E - E), environmental effects (G+E - G), and G*E effects (G*E – G+E). Note. PGS = polygenic scores, ENV 

= Environmental measures. ASD = Autism Spectrum Disorder, BIP = Bipolar Disorder, BMI = Body Mass 

Index, EA3 = educational attainment, IQ3 = intelligence, OCD = Obsessive Compulsive Disorder, PTSD = Post-

Traumatic Stress Disorder, SCZ = Schizophrenia. 
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Best-model and coefficient estimation 

The best G+E model selected via 10-fold repeated (100 repeats; Figure 1 panel A) cross-

validation in the training set included 24 predictors, 14 of which were GPS (blue) while 10 

were environments (orange) (Figure 1, panel C). Of these top EA-increasing variables were 

SES in early life, followed by the GPS for educational attainment (EA3 GPS) and the GPS for 

intelligence (IQ3 GPS), while the top trait decreasing variable was chaos at home at age 12. In 

terms of coefficient estimation, partial regression coefficients in post-selection inference 

analyses (Figure 2 and Table S3) showed that EA3 GPS (β = 0.13; 95% CI = 0.09, 0.17; p = 

8.45E-7) and IQ3 GPS (β = 0.12; 95% CI =0.08, 0.15; p = 1.33E-7) remained significant in 

the model after adjusting for the other predictors. SES was by far the most powerful predictor 

in the conditional model (β = 0.37; 95% CI =0.35, 0.41; p = 2.30E-60). Other environmental 

exposures that remained significant were ‘chaos at home’ at age 12 (β = -0.14; 95% CI =-

0.17, -0.12; p = 3.93E-15) and two life events experienced in the past year (all trait 

decreasing), including ‘moving to a new school’ (β = -0.07; 95% CI -0.10, -0.04; p = 2E-5) 

and ‘involved with drugs’ (β = -0.06; 95% CI -0.09, -0.03; p = 2E-3). SES, EA3 GPS, IQ3 

GPS and ‘chaos at home’ were significant in all three models (i.e. naive, hold-out and 

conditional).  
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Figure 2. Relative contributions of model selected variables for the G+E model in the prediction of educational 

achievement. Figure shows partial regression coefficients, and 95% CIs around estimates. Naive = partial 

regression coefficients from multiple regression of selected variables in Training set; Hold-out = partial 

regression coefficients of selected variables in the hold-out set; Conditional = partial regression coefficients of 

training set for selected variables estimated with a conditional probability from a truncated distribution (see 

method section). Note. ASD = Autism Spectrum Disorder, ADHD = Attention-Deficit Hyperactivity Disorder, 

BIP = Bipolar Disorder, EA3 = educational attainment, IQ3 = intelligence, MDD = Major Depressive Disorder, 

SWB = Subjective Well-Being, OCD = Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress 

Disorder, Risk PC1 = first principal component of risky behaviours, SCZ = Schizophrenia.  

 

rGE and mediated environmental vs GPS effects 

Table S2a shows prediction model estimates for all models considered, and Table S2b reports 

nested comparisons of hold-out set prediction accuracy (R2) for the full model vs. E and the 

full model vs. G. We tested the correlation between the EA predicted values from the G 

model (Gea) and the E model (Eea) in the hold-out-set. This was r = 0.38 (95% CIs = 0.30, 
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0.45), indicating the extent of overlapping information between the G and E models in hold-

out set prediction or, in other words, of rGE (as defined by the variables employed) 

underlying variation in EA. Then we proceeded to test the extent to which G and E effects on 

EA were reciprocally mediated (see methods). Table S4 shows results of mediation analyses. 

We found evidence for environmentally mediated genetic effects (indirect path: β = 0.17; 

bootstrapped 95% CI 0.13, 0.21) and genetically mediated environmental effects (indirect 

path: β = 0.10; bootstrapped 95% CI 0.07, 0.13). The effects of Gea on EA (β = 0.43; 

bootstrapped 95% CIs = 0.36, 0.50) were reduced by 40% after introduction of the Eea 

mediator in the model (β = 0.45; bootstrapped 95% CIs = 0.38, 0.51); these effects can be 

interpreted as the direct G model contributions to EA not accounted for by the E model. In 

other words, 40% of G effects on EA were explained by environmental mediation. Similarly, 

the direct Eea effects on EA (β = 0.55; bootstrapped 95% CIs = 0.50, 0.60) were subject to a 

reduction of 18% (β = 0.45; bootstrapped 95% CIs = 0.39, 0.51) after introduction of Gea as a 

mediator in the model, indicating partial genetic mediation of environmental effects (i.e. 

genetic confounding). 

 

GxE effects and multivariable prediction 

We finally tested all possible two-way interactions jointly modelled by means of a 

hierarchical group lasso procedure using glinternet. Out of the possible 528 two-way 

interactions between all study variables (i.e. interactions between and within sets of GPS and 

environmental measures), 32 two-way interactions were detected by the hierarchical group-

lasso technique (glinternet, Table S5), 15 of which were GxE interactions. Figure S4 depicts 

an interaction network from the trained glinternet model (10-fold cross validation). Hold-out 

set prediction accuracy was only slightly improved (R2 = 36.4%; 95% CI = 29, 41) over the 

joint G and E model (R2 = 36%). We then introduced the 15 GxE interactions found in the full 

elastic net model (Figure S3) to test whether they improved the prediction of EA over the full 
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model that had only considered additive effects of GPS and environmental measures. There 

was no improvement in hold-out set prediction accuracy (R2 = 36.1%; 95% CI = 30.5, 41.8), 

and the difference in prediction with the G+E model was not significant (median R2 diff = 

0.1%; 95% CI = -1.2, 1.3). Table S2 shows fit statistics for the glinternet and elastic net 

models. Table S5 reports GxE interactions detected by the hierarchical lasso model.  
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Discussion 

We tested the joint prediction accuracy of sets of multiple environmental measures and 

polygenic scores in prediction models of educational achievement and considered the effect of 

their interplay on model performance. Three main findings emerged from our analyses. First, 

the joint modelling of multiple GPS and related environmental exposures improved the 

prediction of EA, consistent with theory (39). Second, paralleling previous quantitative 

genetic findings, we found consistent evidence of rGE effects underlying variation in EA 

(rGE = 0.38; 95% CIs = 0.30, 0.48), with a substantial proportion of polygenic score effects 

mediated by the environmental effects (40%), and evidence for genetic confounding (18%). 

Lastly, we did not find evidence that GxE effects jointly contributed to the prediction of EA. 

Our multivariable GPS model alone predicted 18.3% of the variance in EA. Integration of 

multiple polygenic scores in the same model can be expected to increase as sample size in 

genome-wide association studies (GWAS) increases (40). Here we constructed GPS in 

lassosum (41) based on previous observations that lassosum tends to perform better than more 

conventional approaches (17, 41) for educationally relevant traits. However, other methods 

for GPS construction can be expected to yield similar results when considering multivariable 

GPS penalized approaches, with performance of the relative approaches likely to converge as 

accuracy of GWAS estimates increases.  

Of interest were the relative contributions of the single GPS to the best model selected via 

repeated cross-validation in the training set. In post-selection inference analyses, IQ3 and 

EA3 were the only GPS independently associated with variation in EA after adjusting for 

measured environments and polygenic scores. This indicated that both these GPS contributed 

unique predictive information beyond other related, proxy environmental predictors (e.g. SES, 

parental educational attainment), and polygenic scores (e.g. household income). Similarly, we 

found that several environments were independently predictive of EA. The best predictor was 

early life SES, a composite of parental educational attainment, employment status and 
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maternal age at first birth. Life events and chaos at home were also significant contributors to 

the model, with negative independent effects on EA. Polygenic scores, however, improved the 

prediction of EA on top of the environment with a 20% increase in accuracy (from 30% to 

36%). It is noteworthy that EA3 and IQ3 GPS were both significant in post-selection 

inference models after adjusting for SES, home environment and proximal environmental 

effects, all of which also tag genetic variance partly overlapping with that captured by the 

GPS. This suggested that cognitive-relevant GPS independently captured variation beyond 

environmental variables and variance due to rGE in our model. While this was important to 

understand the model composition, it should be highlighted that these estimates are dependent 

on variables included in analyses, and can be expected to change as other variables are 

considered in the model (see below). 

A central finding of the current study emerged when we separated direct and indirect effects 

of the GPS and environmental models by statistically testing for rGE. We found significant G 

mediation of the prediction of EA by the E model. This is in line with several quantitative 

genetics findings (42-44). However, since it would be unreasonable to assume a causal effect 

of E on G (i.e. E does not change DNA sequence), in the sense employed here G acts as a 

‘confounder’ – in causal modelling parlance, ‘third variable confounding’ – of E effects on 

EA (E ←	G → EA). That is, because our G model is associated with both the E model and EA, 

it partly induces an association between the E model and EA in addition to the independent 

effects of E on EA. This rGE effect explained 18% of the E effects on EA. By extension, this 

type of effect could arise because E is predicted by parental genotypes, and as parents share 

their genotypes with their offspring, this creates a link between E and (child) G. Different 

types of genetic confounding have been described in detail elsewhere (45). It should also be 

noted that here G does not represent directly genotypes, but a combination of estimated effect 

sizes from GWAS summary statistics. Since E could affect estimation of G (betas), in this 

general sense E could affect G.  
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We also found evidence of environmental mediation of the G model effects on EA. The E 

model explained 40% of the GPS model effects on EA. This result is also in line with 

previous research in quantitative genetics (27-29, 46). A growing body of evidence points to 

the rGE conclusion that genetic effects on cognitive trait variation are partly environmentally 

mediated (25), which is likely to be due to passive rGE. Passive rGE emerges because parents 

create a family environment that corresponds to their genotypes and, by extension, also 

correlates with the genotypes of their offspring. As previously described, alternative 

mechanisms include evocative and active rGE effects, which, as noted elsewhere (26), 

represent not mutually exclusive possibilities. Another related, but different, type of effect 

that could explain this finding is genetic nurture, whereby the parent genome exert an effect 

on the child phenotype via the environment, over and above shared parent-offspring genetics. 

However, in order to disentangle these effects, different study designs are needed, for 

example, looking within families at the effects of maternal and paternal non-transmitted 

genotypes on child outcomes. Disentangling the different underlying mechanisms to the 

predicted variance in this regard is an issue for future studies, but out of the scope of the 

present investigation. Here for the first time we show that reciprocal indirect effects between 

multivariable E and G prediction models explain a substantial proportion of variation of their 

direct effects on EA. These results provide converging evidence with recent research looking 

at rGE underlying parenting and children educational attainment (27, 47). Both genetic 

confounding and environmental mediation are important factors to take into account in the 

prediction of EA. 

Lastly, we applied a hierarchical group-lasso model (glinternet) to automatically detect two-

way interactions. This model helped us to identify GxE effects that show strong hierarchy, 

which would have otherwise been difficult to detect due to the great multiple-testing burden 

relative to the sample size of the present study. Furthermore, since glinternet performs 

shrinkage and grouping before testing for interaction effects, this enabled discovery of 
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interactions that would have been confounded by strong main effects of correlated predictors. 

In other words, because the coefficients of main effects have been regularized (that is shrunk, 

see Methods), their fit is reduced, which facilitates the discovery of interaction effects (38). 

However, neither the glinternet model including all discovered pairwise interactions, nor the 

elastic net model including two-way GxE effects, significantly improved hold-out set 

prediction over the G+E model. One possible explanation for this finding is that GxE effects 

are typically very small, and that the trade-off between true effect and variance introduced in 

the model, signal to noise ratio, was too small. It might be that even if two-way GxE effects 

were relevant the noise incurred in fitting their coefficients may outweigh the improvement in 

accuracy that they bring to the model. In this regard we note that in repeated cross-validation 

in the training set the model performance of both the elastic net based GxE model, and the 

glinternet model was substantially increased compared to the G+E model. Application of this 

method in larger datasets, or using different phenotypes with different genetic architectures, 

might be fruitful for hypothesis-free GxE discovery as well as for prediction.  

This study must be considered in light of a few limitations. First, our results are subject to the 

constraint that we performed an apriori selection on variables to be employed in our analyses. 

For example, we modelled exposures that are typically defined as environmental; however, 

many other variables can be argued to capture environmental influences. In this regard 

estimates for non-mediated genetic effects for the model presently tested are likely upper-

bounds, in the sense that if we were to include more E variables predictive of the outcome 

EA, the polygenic score contributions independent of E would either stay the same or 

decrease. Likewise, we included a broad range of polygenic scores that are currently available 

as the most predictive for cognitive, psychiatric and anthropometric traits. However, 

polygenic scores predictive power is in part a function of GWAS sample size (40), therefore 

as more powerful GWAS become available these prediction estimates are expected to 
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increase. This in turn suggests that the contributions of the G model are likely to be on the 

lower bound compared to future polygenic score work in this area.  

Finally, we focused here on EA but predictive models of other complex traits are likely to 

yield different results, because EA shows comparatively great shared environmental 

influences (30). This suggests that rGE is likely to be stronger for EA than for other 

behavioural traits, such as personality traits and social-emotional competencies. Regarding 

our analytical approach, we focused on GxE interactions that obeyed strong hierarchy as 

identified by the group lasso technique. Future studies could relax this assumption and include 

interactions where one of the main effect sizes is not significant, as well as higher order 

interactions. Finally, although it is a strength of our study that we used measured 

environmental exposures, we note that methods for inferring GxE without measured 

environmental data are emerging that have reported GxE for some complex traits (48). The 

extent to which these effects are systematic, stable, and generalizable to EA remains to be 

determined. 

As large multidimensional biobank datasets become increasingly available, the integration of 

multi-omics data with multiple environmental measures will become more common in 

prediction modelling. Here, we provide an indication of the effects of integrating multiple 

GPS and environmental measures in prediction models of EA and the effect that their 

interplay has on prediction accuracy in a population cohort of adolescents. In conclusion, we 

found consistent evidence for rGE in prediction models of EA that systematically tested the 

interplay between polygenic scores and measured environments within a hypothesis-free 

multivariable prediction framework. When integrating multiple GPS and environmental 

measures, their interplay must be taken into account. Separate effects of environmental and 

polygenic scores cannot just be assumed to add up because pervasive rGE affects prediction.  
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Material and Methods 

Sample  

We test our models using data from 16 year olds from the UK Twin Early Development Study 

(TEDS; 49), a large longitudinal study involving 16,810 pairs of twins born in England and 

Wales between 1994-1996, with DNA data available for 10,346 individuals (including 3,320 

dizygotic twin pairs and 7,026 unrelated individuals). Ethical approval for TEDS has been 

provided by the King’s College London Ethics Committee (reference: PNM/09/10–104). 

Parental consent was obtained before data collection. Genotypes for the 10,346 individuals 

were processed with stringent quality control procedures followed by SNP imputation using 

the Haplotype Reference Consortium (release 1.1) reference panels. Current analyses were 

limited to the genotyped and imputed sample of 7,026 unrelated individuals. Following 

imputation, we excluded variants with minor allele frequency <0.5%, Hardy-Weinberg 

equilibrium p-values of <1 × 10−5. To ease computational demands, we selected variants with 

an info score of 1, resulting in 515,000 SNPs used for analysis (see the supplementary 

information for a full description of quality control and imputation procedures).  

 

Measures 

Dependent measure: Educational Achievement 

Educational achievement was measured as the self-reported mean grade of three core subjects 

(English, math and science) scored by the individuals at age 16 in their standardized UK 

General Certificate of Secondary Education (GCSE) exams. 

EA was operationalized as the mean grade of the three compulsory subjects, with results 

coded from 4 (G, or lowest grade) to 11 (A+, or highest grade). These self-report measures 

are highly replicable and show high genetic and phenotypic correlations with teacher 

scores(50). The variable distribution was slightly negatively skewed (similar to the national 
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average) and subject to a rank based inverse normal transformation to approximate a normal 

distribution.   

 

Environmental measures 

Socio economic status: SES at recruitment (mean age = 18 months) was calculated as a 

composite of mother and father qualification levels ranging from 1 = ‘no qualifications’ to 8 = 

‘postgraduate qualification’, mother and father employment status (51), and mother’s   

age at birth of first child.  

 

Chaos at home: as a measure of home environment a shortened version of the Confusion, 

Hubbub and Order Scale (52) was used to measure children’s perception of chaos in the 

family environment at age 12. Children rated the extent to which they agree (range: ‘not true’, 

‘quite true’ or ‘very true’) to six items:  ‘I have a regular bedtime routine’ (reversed coded), 

‘You can’t hear yourself think in our home’, ‘It’s a real zoo in our home’, ‘We are usually 

able to stay on top of things’ (reversed coded), ‘There is usually a television turned on 

somewhere in our home’ and ‘The atmosphere in our house is calm’ (reverse coded). The 

Chaos score was computed as the mean of the rated items.  

 

Life events: Self-reported life events experienced in the past year were measured (at age 16) 

using a shortened version of the Coddington life events (53). Individuals had to report on 20 

items that might have happened in the past year, by responding yes (coded as 1) if the event 

had happened or no (coded as 0) if it didn’t happen. Items included stochastic, proximal 

events such as “death of a close friend or relative”, “being hospitalized”, as well as family-

wide events e.g. “loss of a parent job”, “decrease in parental income”. When considering 

prediction of educational achievement, educationally relevant items were removed from the 

models (i.e. “failing exam” and “outstanding achievement”). Items being endorsed by fewer 
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than 100 people were discarded from analyses. A total of 11 life events were retained in 

analyses. All items were considered separately in prediction models (i.e. they were not 

aggregated in a scale). Table S1 reports descriptive statistics for variables employed in this 

study, separately by training and hold-out sets.  

 

Genome-wide polygenic scores (GPS) 

GPS for 20 cognitive, anthropometric and psychopathological traits were constructed using 

Lassosum (41). Lassosum is a penalized regression approach applied to GWAS summary 

statistics. In lassosum we try to minimize the following loss function:  

 

yTy + (1 – s) % T Xr
T Xrβ - 2β Tr + sβTβ + 2λ||β||1   (1) 

 

Where y is a vector of the phenotype, X is the matrix of genotypes, such that Xr
T Xr is a 

matrix of correlations between SNPs, the LD matrix. r denotes the correlation between SNPs 

and the phenotype, r = XTy. The subscript r in Xr
T Xr indicates that SNPs employed to obtain 

the LD matrix (based on a reference panel, see below) will generally not correspond to SNPs 

used to infer the correlation with the phenotype.  

 

In the equation λ controls the L1 penalty (L1 norm, (54)). The notation ||β||1 describes the L1 

norm of a coefficient vector β, defined as  

 

||β||1 = ∑|β|.   (2) 

 

While s is another tuning parameter controlling the L2 penalty (|β|2, the sum of the squared 

betas). Here s has the additional constraint of being between 0 and 1. When & = 0 and s = 1 

the problem becomes unconstrained. 
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Tuning parameters, & and s, are chosen in the validation step (this is akin to optimization that 

can be performed in p-value thresholding methods). We used our training set to perform 

parameter tuning optimizing (with respect to R2) polygenic scores against EA. LD was 

accounted for via a reference panel, here the same as the training set sample, and estimation 

of LD blocks was performed using LD regions defined in (55). 

We created cognitive and educationally relevant polygenic scores for educational attainment 

(16), intelligence (56), and income (57). We also created polygenic scores for mental health-

related traits: autism spectrum disorder (58), major depressive disorder (MDD; 59), bipolar 

disorder (BIP; 60), schizophrenia (SCZ; 61), attention deficit hyperactivity disorder (ADHD; 

62), obsessive compulsive disorder (OCD; 63), anorexia nervosa (AN; 64), post-traumatic 

stress disorder (PTSD; 65), broad depression (66), mood swings (67), subjective well-being 

(68), neuroticism (69), irritability (67), insomnia (70), and risk taking (71). Finally, we 

created polygenic scores for height and BMI (72). Table S6 reports information on these 

summary statistics, while Table S7 reports parameter tunings for the lassosum GPS.  

 

Analyses  

All variables were first regressed on age, sex, 10 genetic principal components and 

genotyping chip. The obtained standardized residuals were used in all subsequent analyses.  

 

Penalised regression  

We fit elastic net regularization (73) models for EA. Elastic Net minimizes the residual sum 

of squares (RSS) subject to the L1 penalty, consisting of the sum of the absolute coefficients, 

which introduce sparsity allowing for parameters selection, and the L2 penalty, consisting of 

the sum of the squared coefficients, which allows for parameters shrinkage (73). 

Elastic net tries to minimise the following loss function: 
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||y − X%||2 + λ(α*|β|1 + (1−α)*|β|2)   (3) 

where  

||y − X%||2 is the residual sum of squares 

|β|2 is the sum of the squared betas (the L2 penalty)  

|β|1 is the sum of the absolute betas (the L1 penalty)  

 

Here X is an nxp (‘n’ observations and ‘p’ predictors) matrix of polygenic scores, 

environmental predictors or a combination of both (see below). α determines the mixing of 

penalties, where the first parameter introduces sparsity while the second shrinks correlated 

predictors towards each other. & is a tuning parameter that control the effect of the penalty 

terms over the regression coefficients. When α = 1 the solution is equivalent to a LASSO 

regression, while when α = 0 the solutions is equivalent to a Ridge regression. For every α 

multiple λ exists, and the optimal combination of tuning parameters is determined by cross-

validation, here a 10-fold cross-validation repeated 100 times. For every model tested we split 

the sample into an independent training set (80%) and a hold-out set (20%). In the training set 

we perform 10-fold repeated cross-validation to select the model that minimises the Root 

Mean Square Error (RMSE) – that is the tuning parameter for which the cross-validation error 

is the smallest. The model performance is then assessed by the variance explained (R2) in the 

hold-out test set. The hold-out set R2 was calculated as 1- 
!!"

!!#
  (SSE = sum of squared errors, 

SST = sum of square total).  

 

Bootstrapping: For every model tested we sampled with replacement from the data (1000 

times) to calculate bootstrapped confidence intervals for the hold-out set prediction accuracy 

(R2). Rows of data for resampling included the phenotype under study and the predictors 

according to the model tested: either polygenic scores, environmental predictors or a 

combination of both. For each bootstrap sample drawn we calculated the hold-out set R2, and 
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we took the difference in R2 between nested models. This procedure yielded a distribution of 

R2 for each model tested and a distribution of R2 differences (ΔR2) for each pairwise 

comparison. We then calculated 95% confidence levels as the 2.5th and 97.5th percentiles of 

these distributions. For nested comparisons, if the interval didn’t contain 0 we concluded that 

the pairwise model ΔR2 was significantly different from 0 with a α level of .05. 

 

Post selection inference: For every model tested we conducted statistical inference of models 

coefficients after selection of most informative predictors performed by Elastic Net, that is 

effect sizes, p-values and confidence levels around the prediction estimates. 

Post-selection inference (37) refers to the practice of attempting to accurately estimate 

prediction coefficients after a model selection has been performed. If we fit the optimal 

model’s selected predictors in a multiple regression model in the training set (that is where the 

selection has been performed) our confidence in the estimates will tend to be over-optimistic. 

On the other hand, estimation of these parameters in a hold-out set would not be subject to 

this problem. The hold-out set, however, will typically be smaller than the training set, 

leading to wider confidence intervals. In addition, the results will be dependent on the random 

split (80-20) performed. A third way is to calculate P-values conditional to the selection that 

has been made in the training set. Briefly, after selection is performed, accurate estimation of 

a given partial regression coefficient can be approximated by a truncated normal distribution: 

 

 	β) ∼ TNa,b(β, *2)   (4) 

 

With mean β, variance *2 and boundaries of the truncated normal distribution (TN) ‘a’ and ‘b’ 

given by the data and the selection procedure, in this case the predictors, the active set (the 

variables with non 0 coefficients selected by our model) and λ (37). We refer elsewhere to a 

thorough discussion of the topic (74), with a focus on lasso like approaches. Here we compare 
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results from the three procedures: the ‘naive’ estimation of partial regression coefficients in 

the training set, estimation of coefficients in the hold-out set, and the conditional estimation of 

p-values performed using the R package ‘SelecitveInference’ (75). 

 

rGE 

We quantified rGE in two ways. First, the hold-out set predicted EA values from the GPS 

(henceforth Gea) and environmental (henceforth Eea) models can be tested for correlation. In 

this sense the covariance between these variables would be an indication of overlapping 

information between E and G underlying EA, i.e.  

 

rG,E = cor(Gea,Eea).    (5) 

 

Second, another way to quantify rGE is by modelling E and G effects in a mediation model 

(Figure 3), considering the indirect effects of G on EA via E, and vice versa the indirect 

effects of E on EA via G. We used the predicted EA values from the GPS and environmental 

models (i.e. Gea and Eea) to test mediation models in the hold-out set. We fit a structural 

equation model (SEM) in ‘lavaan’ (76) to test whether and to what extent E and G effects on 

EA were reciprocally mediated. Panel A (Figure 3) is a schematic representation of a 

mediation model, where βC is the effect of a predictor X on an outcome Y, βa the effect of X 

on the mediator (M), and βb the effect of M on Y after adjusting for X. βC’ corresponds to the 

effects of the predictor on the outcome when controlling for the mediator (i.e. when the full 

equation is estimated). If the effects are reduced (partial mediation) or are not different from 0 

(full mediation) then there is evidence for mediation. We quantify the proportion of the 

mediated effects as (βC- βC’) / βC and test for significance of the indirect path using 

bootstrapping (with 1000 repetitions). 
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Figure 3 represent direct and indirect effects of the G model effects on EA mediated by E 

(panel B), and of the E model effects on EA mediated by G (panel C). While panel B 

represents a causal model where we estimate the environmentally mediated G effects on EA, 

panel C is a statistical abstraction since it would be unreasonable to assume a causal 

relationship of E on G. Here we model G as mediator to estimate the third variable 

confounding effects underlying the relationship between E and EA, as mediating and 

confounding effects have been shown to be equivalent in a linear context (77). 

 

 

Figure 3. Panel A = schematic representation of mediation analysis; βC = effect of a predictor X on an outcome 

Y; βa = effect of X on a mediator (M); βb = effect of M on Y after adjusting for X; βC’ = effect of X on Y after 

adjusting for M. Panel B = Directed acyclic graph (DAG) showing Eea mediated effects of Gea on EA in the hold 

out-set; βge = causal path between Gea and Eea equivalent to rG,E ; βeEA = direct independent Eea effects on EA; 

βgEA = total Gea effects on EA. Panel C = DAG showing Gea mediated effects on EA (genetic confounding, see 

methods and discussion); βeg = causal path between Eea and Gea equivalent to rG,E; βgEA = direct independent Gea 

effects on EA; βeEA = total Eea effects on EA. Note. Blue paths represent G model effects, yellow paths represent 

E model effects. 

 

GxE 

After fitting the joint GPS and environmental models, we apply a hierarchical lasso procedure 

to automatically search the feature space for interactions, and retrain our models introducing 

GxE interactions. With 33 predictors there is a total of 33(33-1)/2 = 528 possible 2-ways 

interactions. Testing all models separately would imply a multiple testing burden (e.g. 
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bonferroni correction .05/820 = 9E-5), in addition to the expected low signal to noise ratio for 

GxE effects. Here we employ a hierarchical group lasso approach to automatically search for 

two-way interactions, implemented in the R package ‘glinternet’ (38) (group-lasso interaction 

network). Glinternet leverages group lasso, an extension of LASSO, to perform variable 

selection on groups of variables, dropping or retaining them in the model at the same time, to 

select interactions. As noted above, the L1 regularization produces sparsity. Glinternet uses a 

group lasso for the variables and variable interactions, which introduces a strong hierarchy: an 

interaction between two variables can only be picked by the model if both variables are also 

selected as main effects. That is, interactions between two predictors are not considered unless 

both predictors have non-zero coefficients in the model. Once two-way interactions obeying 

strong hierarchy were identified, we selected GxE interactions (i.e. GPS that interact with 

environmental variables) and reintroduced them in our best elastic net models to test whether 

the hold-out set prediction accuracy improved beyond the full (E+G) prediction model.  
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The p factor: genetic analyses support a general
dimension of psychopathology in childhood and

adolescence
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Background: Diverse behaviour problems in childhood correlate phenotypically, suggesting a general dimension of

psychopathology that has been called the p factor. The shared genetic architecture between childhood psychopathol-

ogy traits also supports a genetic p. This study systematically investigates the manifestation of this common

dimension across self-, parent- and teacher-rated measures in childhood and adolescence. Methods: The sample

included 7,026 twin pairs from the Twins Early Development Study (TEDS). First, we employed multivariate twin

models to estimate common genetic and environmental influences on p based on diverse measures of behaviour

problems rated by children, parents and teachers at ages 7, 9, 12 and 16 (depressive traits, emotional problems, peer

problems, autism traits, hyperactivity, antisocial behaviour, conduct problems and psychopathic tendencies).

Second, to assess the stability of genetic and environmental influences on p across time, we conducted longitudinal

twin modelling of the first phenotypic principal components of childhood psychopathological measures across each of

the four ages. Third, we created a genetic p factor in 7,026 unrelated genotyped individuals based on eight polygenic

scores for psychiatric disorders to estimate how a general polygenic predisposition to mostly adult psychiatric

disorders relates to childhood p. Results: Behaviour problems were consistently correlated phenotypically and

genetically across ages and raters. The p factor is substantially heritable (50%–60%) and manifests consistently

across diverse ages and raters. However, residual variation in the common factor models indicates unique

contributions as well. Genetic correlations of p components across childhood and adolescence suggest stability over

time (49%–78%). A polygenic general psychopathology factor derived from studies of psychiatric disorders

consistently predicted a general phenotypic p factor across development (0.3%–0.9%). Conclusions: Diverse forms

of psychopathology generally load on a common p factor, which is highly heritable. There are substantial genetic

influences on the stability of p across childhood. Our analyses indicate genetic overlap between general risk for

psychiatric disorders in adulthood and p in childhood, even as young as age 7. The p factor has far-reaching

implications for genomic research and, eventually, for diagnosis and treatment of behaviour problems. Keywords:

Childhood psychopathology; behavioural genetics; genomics.

Introduction
The p factor, analogous to the concept of general

intelligence (‘g’), reflects the observation that indi-

viduals who score highly on certain psychopatholog-

ical traits also score highly on others (Caspi et al.,

2014). Recent research suggests that this single

continuous dimension can, in part, summarise and

explain liability to a wide range of psychopathologies

in childhood.

Interest in the p factor stemmed initially from high

levels of psychopathological comorbidity in adults.

The co-occurrence of psychiatric disorders is strik-

ingly high, with up to 50% of individuals diagnosed

with a mental illness going on to develop two or more

comorbidities in a 12-month period (Kessler et al.,

2005). Already during childhood and adolescence,

forms of psychopathology are often comorbid. A

recent report found that 1 in 20 British young people

under 20 years of age met criteria for 2 or more

mental disorders (NHS Digital 2017).

Quantitative genetic research suggests that shared

genetic factors contribute substantially to the

observed co-occurrence of psychopathological traits

(Plomin, DeFries, Knopik, & Neiderhiser, 2016).

Several multivariate twin and family studies have

replicated the finding that a common genetic factor

influences a wide range of emotional and behavioural

problems in childhood (Lahey, Van Hulle, Singh,

Waldman, & Rathouz, 2011; Pettersson, Larsson, &

Lichtenstein, 2016; Tackett et al., 2013; Waldman,

Poore, van Hulle, Rathouz, & Lahey, 2016). Many

studies have investigated developmental genetic

effects on specific psychopathological traits in child-

hood (e.g. Pingault et al., 2015), yet little is known

about the genetic and environmental architecture of

general psychopathology across development. Sta-

bility and change in p across time and the extent to

which genetic influences drive age-related patterns

remain largely unknown. Here, for the first time, we

systematically investigate p across diverse ages,

raters and measures in childhood and adolescence.
Conflict of interest statement: No conflicts declared.
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It is also unknown to what extent a general p factor

across earlier development relates to adult psy-

chopathology. In addition to genetic analyses using

the twin and family designs, polygenic scores are a

new genomic tool that can be used to test for shared

genetic effects across traits. Polygenic scores are

constructed by aggregating genetic risk across thou-

sands of genetic variants, thus indexing the genetic

liability that each individual carries for a specific

trait. A landmark study in the field of psychiatric

genetics (International Schizophrenia Consortium

et al. 2009) first showed that a polygenic score for

schizophrenia was also associated with bipolar

disorder, suggesting a shared genetic component

underlying these two disorders, which has been

substantiated further more recently (Cross-Disorder

Group of the Psychiatric Genomics Consortium et al.

2019). Several studies have used polygenic scores

for schizophrenia, ADHD and other psychiatric dis-

orders to predict general psychopathology in child-

hood. An increasing amount of evidence converges

on the finding that few polygenic effects specific to

individual aspects of psychopathology remains after

conditioning on the p factor (Brikell et al., 2017;

Jones et al., 2016, 2018; Riglin et al., 2018). These

studies also suggest that genetic risk for psychiatric

disorders emerges in childhood, in the form of

continuously measured behaviour problems. More

recently, a study using different genomic methods

provided evidence for a ‘polygenic p’ factor (Selzam,

Coleman, Caspi, Moffitt, & Plomin, 2018). However,

no studies to date have empirically related ‘polygenic

p’ to ‘phenotypic p’ or systematically tested the

architecture of p across development and across

different raters.

Here, we investigated the structure of general

psychopathology across childhood and adolescence.

Our study has three aims:

1. Investigate the genetic architecture of p in child-

hood through common pathway twin models

across ages and raters.

2. Test the stability of p across childhood and

adolescence through longitudinal quantitative

genetic analysis of first principal components of

psychopathology across ages (7, 9, 12 and 16)

and raters (parent, teacher and self-ratings).

3. Estimate associations between childhood pheno-

typic p and adult polygenic p. The latter can be

constructed by principal component analysis of

polygenic scores for mostly adult psychiatric

disorders created for each TEDS participant.

Methods

Sample

The sampling frame is the Twins Early Development Study

(TEDS), a multivariate, longitudinal study of >10,000 twin

pairs representative of England and Wales, recruited from

1994 to 1996 births (Haworth, Davis, & Plomin, 2013). The

following exclusions were applied: extreme perinatal condi-

tions, severe medical conditions, uncertain zygosity and

unknown gender. Analyses were conducted on a subsample

of unrelated individuals with available genotype data and their

cotwins (N = 7,026). Genomic analyses were limited to unre-

lated individuals (one twin from each pair).

Genotyping

Data were available for 3,057 individuals genotyped on the

Affymetrix GeneChip 6.0 and 3,969 individuals genotyped

on HumanOmniExpressExome-8v1.2 arrays. Typical quality

control procedures were followed (e.g. samples were removed

based on call rate <0.98, MAF < 0.5%). Genotypes from the two

platforms were separately imputed and then harmonised (for

detail see Selzam et al., 2018).

Measures

Twins Early Development Study (TEDS) measures have been

described previously (Haworth et al., 2013). Measures admin-

istered at ages 7, 9, 12 and 16 were included in our analyses.

Some of these measures (e.g. peer problems, prosocial

behaviour (reversed), autism traits) have not previously been

used in other studies of general psychopathology, but we

adopted a hypothesis-free approach in an attempt to capture a

general trait that is pervasive across diverse domains. For

similar reasons, we included all measures available at each

age, even though some measures (e.g. aggression) were avail-

able only at one age. Table 1 summarises the measures

included in this study. Due to the wide range of ages, raters

and measures used in the analyses; for information on

response rates, please see Haworth et al. (2013).

For all phenotypes, z-standardised residuals were derived

for each scale regressed on sex and age. Standardised scores

for each scale were calculated as mean scores, with the

requirement of complete data for more than half of the items

(i.e. 3 of 4 or 2 of 3). All procedures were executed using

RStudio (version 1.1.419; Rstudio 2019).

Age 7 measures. We used both parent and teacher

ratings of all subscales of the Strengths and Difficulties

Questionnaire (SDQ; Hyperactivity, Conduct Problems, Peer

Problems, Emotional Problems and Prosocial (reversed;

Goodman, 1997), as well as the Antisocial Process Screening

Device (APSD; Frick & Hare, 2001) and a measure of autism

traits.

Age 9 measures. The five subscales of the SDQ and the

Childhood Autism Spectrum Test (CAST; Scott, Baron-Cohen,

Bolton, & Brayne, 2002; Williams et al., 2005) were included in

the set of self-, parent- and teacher-reported measures. In

addition, we used parent- and teacher-rated APSD and

aggression (a mean of proactive and reactive scales) measures

(Dodge & Coie, 1987).

Age 12 measures. The five subscales of the SDQ, the

APSD and the CAST were included in the set of self-, parent-

and teacher-reported measures. Parent reports of the Moods

and Feelings Questionnaire (MFQ) assessing depressive traits

(Angold, Costello, Messer, & Pickles, 1995) and the Conners’

ADHD behaviour measure (Conners, 2003) were also avail-

able.

Age 16 measures. The five subscales of the SDQ, MFQ

and The Autism Quotient (Baron-Cohen, Wheelwright,

Skinner, Martin, & Clubley, 2001) were available from self-,

parent and teacher reports. Parent-rated data on Conners

doi:10.1111/jcpp.13113 The genetics of general psychopathology in childhood and adolescence 31
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ADHD measure, the inventory for the Callous Unemotional

scale (Kimonis et al., 2008) and the Anxiety-related Behaviors

Questionnaire (Eley et al., 2003) were also included.

Statistical analyses

Common pathway twin models of behaviour prob-

lem measures for each rater at each age. To

estimate the genetic and environmental influence on pheno-

typic variance in general psychopathology and to examine

loadings of individual psychopathology measures on p, we

conducted multivariate twin model-fitting analyses. In the twin

design, differences in within-pair trait correlations for monozy-

gotic (MZ) and dizygotic (DZ) twins are used to estimate genetic,

shared environmental and nonshared environmental effects on

traits. Greater MZ than DZ similarity indicates additive genetic

influence (A). Within-pair similarity that is not due to genetic

factors is attributed to shared environmental influences (C).

Nonshared environment (E) accounts for individual-specific

factors that influence differences among siblings from the

same family, plus measurement error. We considered genetic

and environmental associations between all psychopathology

measures at each age and separately for each rater. Specifi-

cally, we fit the data to the common pathway model (Rijsdijk,

2014). This is a multivariate twin model, in which common

genetic and environmental variation influence all measures via

a single common latent (p) factor. The model allows the

estimation of genetic and environmental influences on a

common factor (p) and of the factor loadings of each measure

of psychopathology on the latent liability (p). The common

pathway model also allows the estimation of genetic and

environmental variance in each trait that is independent of the

common factor.

Longitudinal twin analysis: Cholesky decomposi-

tion of phenotypic principal components. We

performed a Cholesky decomposition of the parent-rated

phenotypic p principal components, allowing for the investi-

gation of stability and innovation in the genetic and environ-

mental influences on our measures of p across the four ages.

We focused on parent-rated data since measures were much

more consistent across time than for self-report and teacher

report. The first genetic factor (A1) represents genetic influ-

ences on p at age 7. The extent to which these same genes also

influence p at ages 9, 12 and 16 is also estimated, and is

represented by the diagonal pathways from A1 to the other

variables. The second genetic factor (A2) represents genetic

influences on p at age 9 that are independent of those

influencing age 7. The extent to which these genes also

influence p at ages 12 and 16 is also estimated. The third

genetic factor (A3) indexes genetic influences on p at age 12

that are independent of genetic influences shared with the

previous ages. The impact of these genes on age 16 general

psychopathology is also estimated. Finally, the fourth genetic

factor (A4) represents residual genetic influences on age 16

general psychopathology. The same decomposition is done for

the shared environmental and nonshared environmental influ-

ences (C1–4 and E1–4, respectively). All twin model fitting

analyses using full-information maximum likelihood were

carried out with structural equation modelling software

OpenMx (Neale et al., 2016).

Extracting p: Principal Component Analyses

(PCA). In preparation for longitudinal analyses and genomic

prediction analyses, we obtained the first principal component

(1st PC) of behaviour problem phenotypes at each age sepa-

rately for child, parent and teacher ratings. Only individuals

with complete data were used to generate PCs, as PCA does not

allow for missing data. We report full results from PCA, which

in themselves give insights into the phenotypic architecture of

p in childhood. The variance explained by the first PC suggests

how much the p factor underpins diverse forms of psy-

chopathology, and loadings of each measure on the first PC

Table 1 Summary of psychopathology measures available in the Twins Early Development Study (TEDS)

Construct Measure Age/reporter Reference

ADHD behaviours Conners Parent Rating Scale P12, P16 Conners (2003)

Aggression Reactive-Proactive Aggression

Questionnaire

P9, T9 Dodge and Coie (1987)

Anxiety-related

Behaviours

ARBQ P16 Eley et al. (2003)

Autism traits Autism traits P7, T7 DSM-IV criteria items

Childhood Autism Spectrum Test

(CAST)

C9, P9, T9, C12, P12, T12 Scott et al. (2002) and Williams

et al. (2005)

Autism Quotient (AQ) C16, T16 Baron-Cohen et al. (2001)

Callous

Unemotional Traits

Callous Unemotional Scale P16 Kimonis et al. (2008)

Conduct Problems Strengths and Difficulties

Questionnaire (SDQ)

P7, T7, C9, P9, T9, C12, P12, T12,

C16, T16

Goodman (1997)

Depressive

Symptoms

Moods and Feelings Questionnaire

(MFQ)

P12, C16, T16 Angold et al. (1995)

Emotional Problems Strengths and Difficulties

Questionnaire (SDQ)

P7, T7, C9, P9, T9, C12, P12, T12,

C16, T16

Goodman (1997)

Hyperactivity Strengths and Difficulties

Questionnaire (SDQ)

P7, T7, C9, P9, T9, C12, P12, T12,

C16, T16

Goodman (1997)

Peer Problems Strengths and Difficulties

Questionnaire (SDQ)

P7, T7, C9, P9, T9, C12, P12, T12,

C16, T16

Goodman (1997)

Prosocial Behaviour Strengths and Difficulties

Questionnaire (SDQ)

P7, T7, C9, P9, T9, C12, P12, T12,

C16, T16

Goodman (1997)

Psychopathic

Tendencies

Antisocial Process Screening Device

(APSD)

P7, T7, P9, T9, C12, P12, T12 Frick and Hare (2001)

Letters refer to the reporter (C = child self-report, P = parent report, T = teacher report), and numbers refer to the ages at which

measures were available.
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indicate the extent to which variables reflect general psy-

chopathology.

We also obtained the first PC from polygenic scores for

psychiatric disorders (polygenic p). We used publicly available

genome-wide association summary statistics for eight major

psychiatric traits: autismspectrumdisorder (Groveet al., 2019),

major depressive disorder (MDD; Wray et al., 2018), bipolar

disorder (BIP), schizophrenia (SCZ; Pardi~nas et al., 2018),

attention deficit hyperactivity disorder (ADHD; Demontis et al.,

2019), obsessive–compulsive disorder (OCD; International

Obsessive Compulsive Disorder Foundation Genetics Collabo-

rative (IOCDF-GC) and OCD Collaborative Genetics Association

Studies (OCGAS), 2018), anorexia nervosa (AN; Duncan et al.,

2017) and posttraumatic stress disorder (PTSD; Duncan et al.,

2018). For each psychiatric disorder, polygenic scores for each

TEDS participant were created in LDpred (Vilhj�almsson et al.,

2015), assuming a fraction of causalmarkers of 1 (analysis steps

were similar to Selzam et al., 2018).

Assessing the association between the polygenic

1st PC and the phenotypic 1st PC across childhood

and adolescence. To assess the extent to which the

genetic predisposition for a general psychopathology factor

relates to p in childhood, we performed ordinary least square

regression analyses of phenotypic p on polygenic p at each age

separately by each rater. Age, sex and the first 10 genomic

principal components were regressed from all dependent and

independent variables, and standardised residuals were used

in all linear models.

Results

Common pathway twin models

Common pathway twin models showed substantial

heritability for the p factor at each age for all raters

(50%–60%). See Figure 1 for parent-rated measures

and Figure S1 for teacher-rated and child-rated

measures. Figure S2 summarises the heritability

estimates for the common factor at each age and for

each rater. Shared environmental effects were mod-

erate for the parent-rated common factors (~30%;

Figure S1), absent for the teacher-rated common

factors (~0%; Figure S1) and weak for the self-rated

common factors (~15%,decliningwithage; FigureS1).

Autism traits, conduct problems, antisocial beha-

viour andpsychopathic tendencies loaded thehighest

on the parent-rated and teacher-rated common fac-

tors, while emotional problems, depression and anx-

iety loaded the highest for the child-rated p factor. We

also found substantial specific genetic and environ-

mental variance for all measures suggesting unique

influences on psychopathological measures beyond

the p factor. See Table S1 for full estimates of common

and specific genetic and environmental influences.

Table S1 also contains full model-fitting results, and

sample sizes ofmeasures, which ranged from2,216 to

5,592 twin pairs who also had genotype data. See

Table S2 for model fit statistics.

Cholesky decomposition of p across development

The Cholesky decomposition of principal compo-

nents suggests stability of genetic effects on general

psychopathology across childhood and adolescence,

in addition to new genetic components at each age,

as shown in Figure 2 for parent ratings. Figure S5

shows genetic correlations derived from a correlated

factor solution. Age-to-age genetic correlations

derived from these results are high, ranging from

0.49 to 0.78 (see Figure S5). Figures S3 and S4

present the Cholesky model-fitting results for shared

and nonshared environmental variance components,

respectively. Figures S6–S15 indicate phenotypic

correlations among psychopathology measures at

all ages and for all raters. These correlations are

notably similar to genetic correlations from the

Cholesky model. Figure S16 shows phenotypic cor-

relations between principal components across age

and raters. Parent-rated correlations were the stron-

gest, ranging from .47 to .68, while child and

teacher-rated correlations were somewhat weaker,

but still substantial (i.e. ~.3 to ~.4 for both). Cross-

rater correlations were strongest for child- and

parent-rated p factors, ranging between ~.3 and

~.4, and weakest between teacher-rated and child-

rated p factors (~.1 to ~.2). Table S3 lists loadings of

observed measures on first principal components,

which shows that loadings are consistently substan-

tial for all measures, ages and raters. The first

unrotated principal component of phenotypic mea-

sures accounted for 40% to 50% of the variance

across ages and raters (see Table S4, which also

shows the sample sizes for each 1st PC, which

ranged from 1,391 to 4,490).

Prediction of phenotypic p with polygenic p

A polygenic p score defined as the first unrotated

principal component of polygenic scores for mostly

adult psychiatric disorders was significantly asso-

ciated with phenotypic p scores in childhood, pre-

dicting 0.3%–0.9% of the variance across ages and

raters. See Table S5 for full polygenic prediction

results. Prediction was generally consistent across

ages and raters, although standard errors are

largely overlapping (see Figure 3). Figure S17 shows

correlations between the polygenic scores in TEDS

used to derive polygenic p. Although these correla-

tions are modest (0.01–0.32), the first principal

component of polygenic scores from psychiatric

traits explained up to 20% of the polygenic score

variability. The loadings on polygenic p (shown in

Figure S18) were all above 0.3, apart from obses-

sive–compulsive disorder (0.13) and posttraumatic

stress disorder (0.18). This could be because the

GWA summary statistics for these disorders were

derived from smaller samples than the others.

Analyses applying to differentially powered sum-

mary statistics for the same traits to TEDS data

have demonstrated that, as GWA study sample

sizes increase, factor loadings on a polygenic p

factor are likely to approach those derived from

family studies (Selzam et al., 2018).
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Discussion

For the first time, we systematically quantified the

extent to which a single common factor relates to

diverse forms of psychopathology across childhood

and adolescence using phenotypic, genetic and

genomic methods. Phenotypically, our results

parallel previous findings, suggesting a common

psychopathology factor. We show that p emerges

consistently across different measures at different

ages and raters. Our genetic results support three

main conclusions. First, multivariate twin analyses

revealed that 48%–80% of the variance in the

Figure 1 Common pathway twin models of p (parent rated) at ages 7, 9, 12 and 16

Figure 2 Additive genetic influences on parent-rated p across age, derived from longitudinal twin model-fitting (Cholesky

decomposition)
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common factor was due to genetic influences,

depending on age and raters considered. It is

important to note, however, that although we found

a consistent and stable genetic p factor across

childhood and adolescence, substantial unique

genetic and environmental influences indicate that

there are also genetic components specific to each

trait and each age beyond p. Second, longitudinal

twin model fitting showed that this genetic p factor

was stable across time. Third, polygenic prediction

analyses demonstrate that there are shared genetic

influences connecting childhood psychopathology to

general risk for (mostly) adult psychiatric disorders.

Even though variance predicted is low (i.e. ~1%),

effect sizes are within the expected range considering

previous research in this area (e.g. Riglin et al.,

2018; Grotzinger et al., 2019; see below). In sum,

these analyses provide further evidence that a com-

mon genetic substrate permeates the landscape of

psychopathology, across measures, ages and raters.

Our common pathway twin modelling analyses, for

which we adopted a hypothesis-free approach to the

inclusion of measures, show that diverse psy-

chopathological traits contribute to p. Furthermore,

it is commonly acknowledged that all psychopatho-

logical traits are dimensional traits both at the

phenotypic and genetic levels (Plomin, Haworth, &

Davis, 2009). Future research might investigate the

extent to which p extends to other behavioural

domains. For example, suggestive evidence of links

between p and personality has begun to emerge

(Rosenstr€om et al., 2018). In addition, instead of

testing competing factor structures, we focused on

the common pathway model, since the present study

aimed to investigate the most parsimonious highest

orderpart of thehierarchy thatwecall p. This is further

justified by evidence for correlations and heterotypic

sequential comorbidity across the internalising and

externalising domains (Caspi & Moffitt, 2018).

Differences between raters in our common path-

way twin analyses suggested some additional

insights. First, inspection of the loadings of psy-

chopathology measures revealed that ‘externalising’

problems relating to conduct and antisocial beha-

viour contributed most to parent- and teacher-rated

common factors, whereas ‘internalising’ problems

such as depression and anxiety loaded highest for

the child-rated p factor. This could suggest that

parents report on overt behaviours, which might

stem from worry and sadness from the child’s

perspective. Second, we observed that shared envi-

ronmental influences were moderate for the parent-

report-based p factor, but negligible for self- and

teacher-rated p, respectively. This pattern of results

is most likely due to rater bias in that parent ratings

are based on a single informant rating both twins,

whereas for teacher and self-ratings different infor-

mants rate each twin (Bartels et al., 2004).

Our longitudinal twin model fitting and polygenic

scoring revealed substantial genetic influences on

stability of general psychopathology across child-

hood. Our polygenic score results suggest that these

stable genetic influences overlap with those under-

lying adult psychiatric disorders.

In terms of predictive value, effect sizes of our

polygenic p score in association with phenotypic p

are weak (~1%). However, these are within the

expected range for polygenic prediction of psychi-

atric traits, and consistent with previous literature

on polygenic risk and general psychopathology,

whereby current polygenic scores for adult psychi-

atric traits often explain < 1% of the variance in

general psychopathology (Riglin et al., 2018), similar

to a polygenic score created from a p factor GWAS

(Grotzinger et al., 2019). The predictive accuracy of a

polygenic p score will increase as the power of single

GWAS of psychiatric traits grows, especially when

GWAS go beyond DNA arrays consisting of common

Figure 3 Prediction of phenotypic p with polygenic p by ages and raters. Note: Error bars represent � 1 standard error
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SNPs to include all DNA variants as assessed by

whole-genome sequencing. In addition, there is

increasing evidence that joint multivariate analyses

of traits are likely to increase the predictive power of

polygenic scores (e.g. Grotzinger et al., 2019; Maier

et al., 2018).

Future research could assess influences on differ-

ent temporal trajectories of p across childhood and

adolescence. One study recently showed that poly-

genic scores for neurodevelopmental disorders

(schizophrenia, ADHD) and depression were associ-

ated with early adolescent onset depression, whereas

later onset depression was only predicted signifi-

cantly by depression polygenic scores (Rice et al.,

2018). This could be repeated with more powerful

polygenic p scores.

Notably, some interesting results also emerge

about the environment. There are some known gen-

eral ‘environmental’ risks for psychopathology such

as birthweight, birth complications and childhood

maltreatment that are associated with diverse neu-

rodevelopmental outcomes (Caspi & Moffitt, 2018;

Lim et al., 2018). However, we find that nonshared

environmental effects contribute less than genetic

effects to the general psychopathology factor and its

temporal stability. As has been demonstrated in

previous studies of specific psychopathology, non-

shared environment is largely time-specific, and

genetic effects clearly contribute more to stability.

Naturally, through the course of multivariate lon-

gitudinal studies like TEDS, there are changes in

available measures and informants, which in turn

can introduce variability in the pattern of results.

That is, our measures of p are not perfect indices of

general liability to psychopathology, but reflect the

specific measures and raters available at each age.

This is problematic when estimating genetic and

environmental influences on stability and change in

p across time. Specifically, any innovation cannot

solely be attributed to p, as it will reflect new

influences on new measures that were not available

at the previous age. This criticism is difficult to

overcome even with the availability of consistent

data: exactly the same measure at different time

points does not necessarily reflect the same thing.

We consider that the availability of varied measures

is a strength rather than a limitation of the present

study because this means that our strong evidence

for genetic p and genetic stability for p emerges

despite the use of different measures. In the

cognitive literature on g, this phenomenon is known

as the indifference of the indicator – any set of diverse

cognitive measures yields a strong g factor

(Spearman, 1904). Factor loadings were consistently

substantial, not only across measures but also

across ages and raters. Importantly, the phenotypic

correlations between first principal components

across time (ranging between ~0.5 and ~0.7) suggest

that p indexes a consistent core psychopathology

trait.

The fact that we can predict childhood p using

polygenic p derived from typically adult case–control

genome-wide association studies has several inter-

esting implications. First, it suggests that in young

children there are already continuous manifesta-

tions of genetic risk for adult case–control psychi-

atric disorders that are unmeasured in our

population-based, developmental sample. Therefore,

this extends the insight from twin analyses within

our sample that genetic risk for psychopathology at

age 7 correlates about 0.50 with genetic risk for

psychopathology at age 16. In other words, early

onset behavioural and emotional problems are early

signs of psychiatric genetic risk. This supports other

evidence for the usefulness of early intervention for

psychiatric problems. The second implication of the

genetic overlap between p in childhood and adult-

hood relates to research design. Specifically,

researchers could increase the power of genome-

wide association studies to detect DNA variation

associated with general risk for psychopathology by

aggregating diverse traits across wide age ranges.

One way to implement this is a common factor

genome-wide association analysis using Genomic

SEM (Grotzinger et al., 2019). Similarly, the modest

power of psychiatric polygenic scores to predict traits

in childhood could be enhanced using multitrait

frameworks to generate predictors that leverage the

shared genetic risk between traits (e.g. SMTpred;

Maier et al., 2018).

The current clinical zeitgeist focuses on specificity.

The recognition that a common factor transcends

diverse aspects of psychopathology in childhood is of

primary importance, as this knowledge can inform

early detection of children at risk in the general

population.
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Key points

� We investigated the underlying structure of p across diverse measures, ages and raters, and consistently

found a substantial genetic component, in line with previous theory.

� We showed that this genetic component is stable across time, with influences in childhood being pervasive

across development through to adolescence.

� Genomic analyses revealed shared genetic risk between p in children as young as 7 and general risk for adult

psychiatric disorders.
� We provide further evidence that, in addition to residual variation specific to each trait, a common genetic

substrate permeates the landscape of psychopathology.
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Abstract 

Disentangling between-person (co)variance from within-person (co)variance between 

psychiatric measures across childhood is vital to understand causes of (adult) comorbidity, 

and may reveal developmental pathways underlying mental health problems. We present 

results of a preregistered study conducted in two large population-based cohorts, the Twin 

Early Developmental Study (n=8,549) and the Netherlands Twin Register (n=16,677). We 

investigated the longitudinal associations between measures of common psychopathologies 

from childhood to early adolescence (age 7 to 12), jointly estimating trait-like between-person 

and state-like within-person processes across time to determine whether and to what extent 

directional relationships between psychiatric traits within-person, and between individuals 

within families, play a role in multivariate comorbidity. We conducted random intercepts 

cross-lagged panel model (RI-CLPM) analyses to unravel the longitudinal co-occurrence of 

child psychopathology dimensions, and developed an extension of the model to estimate 

sibling effects within-family (wf-RI-CLPM). Analyses were separately conducted in two large 

population-based cohorts, the Twin Early Developmental Study (n=8,549) and the 

Netherlands Twin Register (n=16,677), including measures of child problem behaviours 

based on the SDQ and CBCL scales respectively. We found evidence for strong between-

person effects underlying the positive intercorrelation between problem behaviours across 

time. We further identify within-person positive directed relationships between measures of 

different psychopathologies that partly overlapped between cohorts and accounted up to 15% 

of the variance over time depending on measure. Lastly, by accommodating family-level data, 

we found evidence for reciprocal directional influences within sib-pairs over time, after 

accounting for similarities that arise through shared (genetic or environmental) influences. 

Our results indicate that directed relationships between psychopathology dimensions within-

person and between siblings, within-family, partly explain the cooccurrence of 

psychopathologies in childhood and should be taken into account in developmental models of 

comorbidity.  
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Introduction 

For many psychiatric disorders, disease onset can be traced back to childhood or adolescence 

(Akingbuwa et al., 2020; Jansen et al., 2018; Kessler, Chiu, Demler, & Walters, 2005; Riglin 

et al., 2018). Psychopathological comorbidity – the co-occurrence of psychiatric disorders – is 

pervasive, half of individuals with a mental health diagnosis is likely to be diagnosed with one 

or multiple other disorders within a year time (Bartels et al., 2018; Kessler et al., 2005; 

Kessler et al., 1994). Converging evidence from the quantitative genetics literature suggests 

that a common genetic predisposition may underlie psychopathology throughout development 

(Allegrini et al., 2019; Caspi & Moffitt, 2018; Grotzinger et al., 2019). However, residual trait 

variation in (longitudinal) common factor models of psychopathology, suggests that there are 

specific genetic contributions to separate psychopathological traits across time (Bartels et al., 

2004). Probing the nature of co-morbidity as a population phenomenon, but perhaps more 

importantly across development within an individual, is critical for our understanding of the 

development of psychopathology. 

 

Analogous to the concept of general intelligence (Spearman, 1961), the observation that 

psychopathology traits are positively intercorrelated across the lifespan has led to the 

conclusion that a common cause might underly such positive covariation (also called positive 

manifold; Borg, 2018). A number of studies have looked at the common aetiology between 

traits, both in childhood and adulthood, modelling the correlated factor structure of 

psychiatric traits (Lahey et al., 2012; Pettersson, Anckarsäter, Gillberg, & Lichtenstein, 2013). 

Considering several psychopathology traits, a seminal study in the field (Caspi et al., 2014) 

showed that a hierarchical structure produces the best fit to the data, pinnacle of which is a 

common psychopathology factor (called the p-factor; Caspi et al., 2014). 

 

However, the positive intercorrelation observed across psychopathology measures can arise 

from different mechanisms than a common cause. In fact, it has been noted that a hierarchical 

solution is a mathematical necessity when observing a positive manifold (van Bork, Epskamp, 

Rhemtulla, Borsboom, & van der Maas, 2017). That is, at one point of the hierarchical 

structure there is always a common latent component that can be extracted from positive 

intercorrelations (van Bork et al., 2017). There is a variety of data generating processes that 

can give rise to the positive manifold between measures of psychopathology (van Bork et al., 

2017). For example, a compelling alternative for the p-factor model is that proposed by the 

network approach of psychopathology, which poses that the observed correlation structure 

between psychopathology traits can arise from an underlying pattern of causal effects at the 
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symptom level (Borsboom, 2017). In this regard the temporal causal relationships between 

symptoms can induce a positive correlation between psychopathology traits, which appears 

consistent with the presence of a common cause. The different models, though, are not easily 

distinguished based on cross sectional data. 

 

In summary, there is evidence that psychopathologies are the result of a developmental 

process, and tend to co-occur. This co-occurrence has been attributed to a common genetic 

aetiology (Caspi et al., 2014; Pettersson et al., 2013). However, it remains unclear whether 

and to what extent the correlation between psychopathologies is the product of correlated 

fundamental individual differences between people on stable traits (stable across the life 

course, with their correlation attributable to a general “p-factor”), or the product of a causal 

process within people where the temporal state on one variable (e.g. mood) causally 

influences the state of another variable (e.g. attention), inducing correlation. These two 

processes are not mutually exclusive and it is conceivable, perhaps even likely, that both 

correlated stable traits as well as direct influences of within-person states on other within-

person states play a role in the development of (comorbid) psychopathology. 

 

Disentangling trait like between-person from state like within-person processes of psychiatric 

traits across childhood is vital to understand causes of comorbidity, and to gain insights on 

developmental pathways underlying mental health problems. Here we set out to investigate 

the longitudinal directional relationships between psychopathology related traits from 

childhood to early adolescence (age 7 to 12), jointly estimating between-person and within-

person processes. Traditionally, trait associations in panel data are modelled within a cross-

lagged panel model (CLPM) to infer causal predominance of one variable over another across 

time (in the sense of Granger causality; Granger, 1969). This model cannot, however, 

distinguish a between-person from a within-person level of variation. Here we employ an 

alternative approach, the random intercept cross-lagged panel model (RI-CLPM), that 

formally models between-person trait-like stability across time by the addition of a random 

intercept (Hamaker, Kuiper, & Grasman, 2015). This random intercept can be thought of as a 

latent factor accounting for between-person stability over time. 

 

Individuals, and their psychopathologies, do not develop in a vacuum, but rather are nested in 

social structures, often, but not always, primarily in a nuclear family. We can extend the 

contrast between trait like individual differences and state like within person processes to the 

family. Members of a family, siblings in particular, are known to behave alike and this is 
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attributed to similarities in their upbringing, the means their parents had available to support 

their development, their cultural capital, and shared heritable influences. Similarities between 

siblings in terms of their symptoms of psychopathology and co-morbidities can be attributed 

to state like individual differences which, in twin family models, can be further specified to be 

heritable stable influences or influences of the shared environment. However, there are 

obvious direct interactions between siblings, where age specific symptoms in one sibling, 

could precipitate mental symptoms in the other sibling at a later age. 

 

Sibling interactions can result in cooperation and contrast effects, which respectively index 

the extent to which siblings will tend to imitate/stimulate each other increasing their 

phenotypic similarity, or contrast each other, decreasing their resemblance (Carey, 1986). 

Siblings interactions have been investigated in the quantitative genetics literature especially in 

regard to externalizing traits such as hyperactivity and conduct disorder (Boomsma, 2014; 

Rebollo & Boomsma, 2006; Simonoff et al., 1998; Thapar, Hervas, & McGuffin, 1995). A 

typical observation for traits such as these is the low dizygotic twin correlations compared to 

monozygotic twin correlations, which can be attributed to genetic dominance (interactions of 

two alleles at the same locus) or contrast effects. Results of such studies are mixed, finding 

that contrast effects are either due to siblings interactions (Thapar et al., 1995) or due to 

parental bias (Simonoff et al., 1998), where the difference in, say, hyperactivity ratings within 

sibling pairs index parental perception rather than a true difference between siblings. 

Importantly contrast effects can mask dominance (Simonoff et al., 1998). This picture is 

complicated by issues of power, which makes it difficult to estimate contrast versus dominant 

effects concurrently (Rebollo & Boomsma, 2006). With few notable exceptions (Carey, 1986; 

Dolan, de Kort, van Beijsterveldt, Bartels, & Boomsma, 2014; M. Rietveld, Posthuma, Dolan, 

& Boomsma, 2003; M. J. Rietveld, Hudziak, Bartels, Van Beijsterveldt, & Boomsma, 2004) 

these studies infer contrast effects rather than directly quantifying the reciprocal effects of 

sibling phenotypes within families. Here we investigate within-family reciprocal directed 

influences between siblings across several behavioural problems over time. 

 

We extend the RICLPM to accommodate trait like similarities between siblings, leveraging 

monozygotic and dizygotic twin pairs, while concurrently allowing for siblings direct 

influences on each other’s behaviours. The aim of this extension is to estimate reciprocal 

directional influences between siblings over time from similarities between siblings that arise 

through shared (genetic or environmental) influences that exist in a family. The pre-registered 

aim of the present study (See 
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(https://osf.io/dtvc8/?view_only=fe8e8eff7df1417da399a05625a5df8e) is exploratory in 

nature, as we do not have an assumption on the underlying directional relationships between 

the measures of psychopathology. We jointly estimate the between- and within-person 

contributions to the correlations between conduct problems, hyperactivity/inattention, 

emotional problems, and peer problems across development. Here the presence of within-

person correlations between psychopathologies over time is viewed as a pre-requisite for, but 

not definitive evidence for, within-person direct causal effects between features of 

psychopathologies. In additional analyses, that were not pre-registered, we test whether 

similarities in symptoms of psychopathology between siblings are a function of correlated 

stable traits, due to heritable or environmental factors, or direct mutual influences of the 

behaviour of one sibling on the other. 

 

Methods 

Samples  

We tested our primary analyses using data from the Twin Early Development Study (Rimfeld 

et al., 2019), a large longitudinal population-based study involving 16,810 pairs of twins born 

in England and Wales between 1994-1996. Here we focused on parent rated (mainly 

maternal) psychopathology measures administered when the twins were aged 7, 9 and 12 

(total sample used in analyses n = 8,549). We then conducted a replication of these analyses 

in the Netherlands Twin register (NTR)  (Ligthart et al., 2019), a longitudinal population-

based sample with new twins data added every year. The Young-NTR (Bartels et al., 2007) 

contains data on twins from birth onwards. Twins are categorized by birth cohort and data 

collection is cohort driven. Here we also focused on maternal rated psychopathological 

measures administered when the twins were aged 7, 10, and 12 (total sample used in analyses 

n = 16,677). 

Measures 

In TEDS we employed the parent rated version of the Strength and Difficulties Questionnaire 

(SDQ) (Goodman, 1997) comprising four scales indexing emotional symptoms (anxiety and 

depression), conduct problems, hyperactivity/inattention, peer relationship problems. In NTR 

we applied the same analysis pipeline using the mother rated Child Behaviour Checklist 

(Achenbach, Ivanova, & Rescorla, 2017) at similar age intervals as in TEDS (mean age 7, 9, 
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and 12, vs mean age 7, 10 and 12). The CBCL comprises eight syndrome scales including 

aggressive behaviour, anxious/depressed, attention problems, rule-breaking behaviour, 

somatic complaints, social problems, thought problems, and withdrawn/depressed. For 

consistency we use equivalent scales between the SDQ (available in TEDS) and the CBCL 

(available in NTR), i.e. conduct problems, hyperactivity/inattention, emotional problems, and 

peer problems in SDQ, and externalizing, inattention, internalizing and social problems in 

CBCL. These are henceforth called CND, HYP, EMO and PER for both TEDS and NTR, 

with subscript 1, 2, or 3 to indicate the different time points (age 7, 9-10, and 12 respectively). 

SDQ  and CBCL scales have been shown to correlate highly with each other (r =.59 to .84) in 

childhood (Goodman & Scott, 1999) and to be highly comparable across cohorts. For 

example, scales from the SDQ and CBCL show very similar patterns of co-occurrence in 

TEDS and NTR with aggression (Bartels et al., 2018) and similar genetic architecture (Porsch 

et al., 2016).  

As age ranges partly overlapped across time lags in both cohorts, first, we excluded 

individuals with overlapping information across age ranges, to create non-overlapping age 

bins. Then, we derived z-standardised residuals for each SDQ and CBCL subscale regressed 

on sex and age (at each age bin). We then used standardized residuals in structural equation 

models. Supplementary Tables S1a and S1b report descriptive statistics of all measures used 

in the study by cohort.  

Analyses 

We modelled psychopathology measures longitudinally fitting random intercept cross-lagged 

panel models (RI-CLPM; Hamaker et al., 2015; Mund & Nestler, 2019) to test for the 

presence of within-person directional influences of psychopathological traits over time. The 

RI-CLPM (Figure 1, left and right models) is an alternative to the widely used Cross-Lagged 

panel model (CLPM). A detailed critique of the CLPM is available elsewhere (Hamaker et al., 

2015). Briefly, the CLPM cannot disentangle within-person effects over time from between-

person stable effects. However, the inclusion of a random intercept capturing between-person 

individual differences over time allows for this separation. There are several generalizations 

and alternatives to the RI-CLPM described elsewhere (Epskamp, 2020; Mund & Nestler, 

2019; Zyphur et al., 2019). 

Figure 1 is a schematic representation of a RI-CLPM for two traits and three measurements.  

The random intercepts (+ or ,) represent the stable between-person trait like influences 

across time, while the fixed intercepts estimate the group mean level at each measurement for 
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a trait. The individual level deviation at each measurement is estimated by the latent variables 

pit and qit, while -2 and	-3 (and .2,	.3) estimate the within-person carry-over effects between 

measurement xit and measurement xit+1. Finally, the cross-lagged paths, %2 and %3 (and /2, /3) 

estimate the effects of the within-person deviation over the expected mean (0t or 1t) for a trait 

at one measurement, on the deviation from the expected mean for another trait at another 

measurement. These latter effects are reciprocal directed influences between traits from one 

time point to another, over and above (controlled for) group-level mean differences, between-

person trait-level stability over time, and within-person carry-over effects. In other words, any 

effect found in this regard is indicative of processes acting at the individual level, indexing the 

extent to which a person’s unusually high (or low) levels for a trait at one time point are 

predictive of the person’s unusually high (or low) levels for another trait later in time.   

We present results for TEDS followed by replication of analyses in NTR. For both TEDS and 

NTR we conducted the same procedures as described below. First, we fit a model in which we 

constrain variances, autoregressive, and cross-lagged paths to be the same across time and 

compare it to an unconstrained model in which we let these parameters vary freely overtime. 

An unconstrained model may be warranted as our observations are taken further apart in time. 

In this case we might expect to be measuring a latent overarching trait rather than simply 

random intercepts (Hamaker et al., 2015), such as a common (heritable) predisposition 

underlying psychopathological stability over time (e.g. the p factor).   

The best fitting model is then carried forward in analyses. Within this model we specifically 

test whether the longitudinal (cross-lagged) paths (%2, %3 and /2, /3) in the example diagram 

in Figure 1) are significantly different from 0. We remove paths for which we do not find 

evidence against the null-hypothesis of no effect (using the Benjamini-Hocberg FDR 

procedure for multiple testing) (Cribbie, 2007), and refit the model. Finally, we fit a ‘null’ 

model with all (cross-lagged) longitudinal paths removed. We then evaluate the difference in 

model fit between these nested models. To study sex specific developmental processes, we 

perform multi-group analyses by sex, using parameter constraints to test whether regressions 

differ between males and females. For all analyses we used a Maximum Likelihood estimator 

with robust standard errors (MLR), and full information maximum likelihood to treat missing 

data (FIML). Analyses were performed in Rstudio (v1.2.1335), structural models were 

specified using Lavaan (v0.6-5). See 

https://osf.io/dtvc8/?view_only=fe8e8eff7df1417da399a05625a5df8e for the preregistered 

protocol. 
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Within family RI-CLPM 

In analyses that were not pre-registered, we extended the RI-CLPM to family data, by 

considering siblings pairs instead of unrelated individuals. Specifically, we extended the 

model to include monozygotic (MZ) and dizygotic (DZ) twin pairs, employing different 

model specifications depending on zygosity. We call this model within-family RI-CLPM 

(wfRI-CLPM). Aim of this extension is to further separate reciprocal directional influences 

between siblings (within families) from similarities between siblings that arise through shared 

(genetic or environmental) influences that exist in a family. Furthermore, this application can 

be used to parse out genetic and environmental components of variance at the level of time-

invariant overarching stable traits, and age specific effects. In practice this extension takes the 

network model from an individual to a family level, while controlling for the fact that family 

members are related to each other.  

First, we run a multi-group RI-CLPM on MZ and DZ twins. We fix random intercepts, 

variances, covariances, and regressions within individuals to be equal across zygosity and for 

twin 1 and twin 2. Conversely, we let between person covariances of random intercepts and 

latent factors to vary between zygosity groups (MZ vs DZ). Finally, between-sibling 

regressions are constrained to be equal across zygosity.   

Similar to the RI-CLPM, the measurement model can be expressed as follows for Twin 1 (i) 

and Twin 2 (j): 

xit = 0t + ,i + pit  (1) 

yit = 1t + +i + qit 

xjt = 0t + ,j + pjt 

yjt = 1t + +j + qjt 

Where 0	234	1	are the group means at measurement t for trait xt and trait yt, , and +	are the 

between-person latent factors (random intercepts) for the two traits respectively measured 

over time. pt and qt are the deviations from a person expected score (i.e. , + 	0).  In the wfRI-

CLPM the within-person variance for the random intercepts is the same for both MZ and DZ, 

and twin 1 (i), twin 2 (j):  

var(+i) = var(+j)  (2) 
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var(,i) = var(,j) 

While covariance between two members of a twin pair is freely estimated across zygosity 

groups: 

covMZ(+i, +j)  67 covDZ(+i, +j)   (3) 

covMZ(+i, ,j)  67 covDZ(+i, ,j) 

covMZ(pit,pjt) 67 covDZ(pit,pjt) 

covMZ(pit,qjt) 67 covDZ(pit,qjt) 

Expanding on the equation for change of the RICLPM using the original notation from 

(Hamaker et al., 2015) the model for the longitudinal deviations can be expressed as follows 

for a given MZ or DZ pair (example for two traits p and q):  

Trait p: 

pit = -tpi,t-1 + %tqi,t-1 + 8tpji,t-1 + 9tqji,t-1 + :it   (4) 

pjt = -tpj,t-1 + %tqj,t-1 + 8tpij,t-1 + 9tqij,t-1 + :jt 

Trait q: 

qit = .tqi,t-1 + /tpi,t-1 + ;tqji,t-1 + <tpji,t-1 + =it  (5) 

qjt = .tqj,t-1 + /tpj,t-1 + ;tqij,t-1 + <tpij,t-1 + =jt 

The first part of the equation pit = -tpi,t-1 + %tqi,t-1 + :it is akin to the equation for the time 

deviations of RI-CLPM in (Hamaker et al., 2015). Where αtpi,t-1 and βtqi,t-1 are the within-

person regressions within-trait and cross-trait (respectively) for trait p in twin 1 (subscript i), 

while 	.tqj,t-1 and /tpj,t-1  are the within-person regressions within-trait and cross-trait 

(respectively) for trait q in twin 2 (subscript j). :it is the residual trait variation for trait p in 

twin 1 and =jt is the residual trait variance of trait q in twin 2. The second part of the equation 

(bold) differs in the following ways: -tpji,t-1 and %tqji,t-1 are the between-sibling regressions 

within-trait and cross-trait (respectively) of twin 1 on twin 2 (subscript ji), for trait p. While 

.tqij,t-1 and /tpij,t-1 are the between-sibling regressions within-trait and cross-trait (respectively) 

of twin 2 on twin 1 (subscript ij), for trait q. Note that in the model specification -tpji,t-1 = 
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-tpij,t-1 and /tpij,t-1 = /tpji,t-1 (similarly .tqi,t-1 = .tqj,t-1 and 	%tqji,t-1 = %tqij,t-1) within and across 

zygosity. In this context -t and .t represents the between sibling effects within-trait and /t and 

%t index between sibling effects cross-trait, after accounting for within-person changes from 

one time point to the next, group mean level at each time point, and between person 

differences overtime. Here the main interest is in both within-trait cross-twin and between-

trait cross-twin effects (conversely in the standard RICLPM the main interest is in cross-

lagged effects). In Appendix (see Appendix 4) we report model specification of the within-

family RI-CLPM. Figure 1 is a schematic depiction of the wfRI-CLPM for two traits and 

three measurements in a sib pair.  

For the wf-RI-CLPM we take a three-step procedure akin to the RI-CLPM analyses in 

singletons. First, we fit a full (unconstrained) model estimating all within-person within and 

cross-trait effects, and all between-sibling within and cross-trait effects. We then formally 

compare this model (Model 1) with nested models: 1) a pruned model in which we drop all 

non-significant between-sibling paths (using a nominal significance threshold of - <	0.05); 2) 

and a ‘null’ model in which we drop all between-sibling paths. We use the “qgraph” R 

package (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012) to plot associations 

between random intercepts (between-person networks), and regression estimates within-

person (within-person networks) and between networks within families (sibling network). 
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Figure 1. Schematic depiction of the random-intercept cross-lagged panel model extended to sibling pairs (i.e. 

within-family; wfRI-CLPM) for two traits and three measurements. The green and yellow shades respectively 

outline within-person and between-person effects (for sibling ‘i’) modelled in the RI-CLPM. The blue shade 

outlines between-sibling (i and j) effects (regressions overtime) within a family modelled in the wfRI-CLPM, on 

top of within-person and between-person effects, and after accounting for similarities due to family influences. 

Note. This model has depiction purposes only, actual models tested included 4 traits and 3 measurement 

occasions for both the singletons model, and the within-family model including regressions of one sibling’s 

deviations over the other’s across time lags.  

Genetic and environmental variance components   

Every twin phenotypic value at a given time point is a function of the person genetic 

contributions at that time (h2, additive or dominance effects), shared environmental (c2) and 

unique environmental (plus error; e2) variance. In the wfRI-CLPM we further separate genetic 

and environmental effects (h2 + c2 + e2) of the stable between-person component, and time 

specific (h2
t + c2

t + e2
t) effects, which can be parsed out into genetic and environmental 

component of variance on top of within-person effects from one time point to the next 

(independent of between-person effects and time specific cross-twin cross-trait covariance):   

For latent phenotype ‘p’ of person i at time point t:  

pit = h2
t + c2

t + e2
t + -tpi,t-1 + %tqi,t-1 + -tpji,t-1 + %tqji,t-1   (6) 
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that is, the phenotypic value of each twin at a certain time point is given by the within-person 

effects and the sibling effects from the previous time point (within and cross trait), and an age 

specific residual that is separated in shared genetic, shared environmental, and unique 

environmental influences, after controlling for between-person stable effects overtime.  

Modelling the between-person covariances separately for MZ and DZ twins as a multi-group 

analysis, we can thus estimate genetic and environmental relative contributions to the 

variation in latent stable traits (the random intercepts) and age specific effects (the time 

specific residuals for each trait). Based on Falconer’s formula, we can estimate genetic (h2 

and d2) and environmental (c2 and e2) contributions by comparing MZ twins correlations 

(rMZ) to DZ twins correlations (rDZ) as follows: 

h2 = 2*(rMZ - rDZ)  (7) 

c2 = 2*rDZ – rMZ  (8) 

For traits where non additive effects are evident (negative c2 represented by rmz being more 

than twice rDZ) we estimate additive vs dominance effects as follows: 

a2 = 4*rDZ – rMZ   (9) 

d2 = 2*rMZ – 4*rDZ  (10) 

Unique environmental contributions (+ error) can be estimated as follows: 

e2 = 1= rMZ    (11) 

An ADE or ACE model can be specified a priori upon inspection of the covariance structure 

for each trait. 

Results 

Supplementary Tables S2a and S2b show bivariate correlations between all study variables. In 

TEDS, both the full constrained and unconstrained models showed an excellent fit (table S3a). 

A chi-square test showed that the unconstrained model was favoured over the constrained 

model:  Δc2 (26) = 32.688, p = 0.170.  However, CFI and RMSEA favoured the unconstrained 

model. Upon inspection of cross-lagged regressions it was evident that the pattern of 

relationships differed between the two time lags (age 7-9 and age 9-12; see below) indicating 

a developmental change in the within-person process overtime. As such we carried forward 
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the unconstrained model: c2 (6) = 10.550, p = .103, RMSEA= 0.009, SRMR = 0.004, CFI = 

0.999. In NTR the full unconstrained model had an excellent fit too and was favoured over the 

constrained model based on the chi-square test Δc2 (26) = 64.238, p = 4.403E-5 and standard 

fit indices (table S3c and S3d): c2 (6) = 10.550, p = .103, RMSEA= 0.009, SRMR = 0.004, 

CFI = 0.999. 

Between-person stable effects  

In TEDS, between-person individual differences as indexed by the random intercepts   

accounted for a substantial proportion the variation of the constructs under study over time 

(CND = 48%, HYP = 56%, EMP = 45%, PER = 42%). There were positive correlations 

(ranging from 0.36 to 0.60, see between-person network in Figure 2) between all traits 

indicating that higher rating for a particular child problem behaviour across time also tended 

to be higher for other problem behaviours across the three measurements waves. These 

between-person correlations were twice the magnitude within-person correlations at any given 

time point (Table S4a).  

Consistent with TEDS findings, in NTR we observed substantial between-person effects 

across time for all traits (CND = 57%, HYP = 54%, EMO = 44%, PER = 43%) and strong 

positive correlations (Figure 2). Again, these were more than twice in extent the within-person 

simultaneous correlations at any given time (Table S4b). We then considered evidence for 

within-person associations.  

Within-person time-varying effects  

We detected several positive directed effects between problem behaviours across time that 

were significant after FDR correction, indicating the extent to which deviations from a person 

expected score in one problem behaviour at one time point (say age 7) predicted deviations in 

the person’s other problem behaviour at a subsequent time point (say age 9), after accounting 

for stable between-person differences and time-varying carry-over effects. Table S5a and S5b 

report coefficients for all regression in TEDS and NTR, Figure 2 shows network plots of 

directed within-person relationships. 

Within-person networks evidenced a reciprocal pattern of relationships between several 

dimensions over time. Of note, for example, were reciprocal effects of conduct and 

hyperactivity/inattention at both time lags in TEDS and between emotional and peer problems 

at both time lags in NTR. In both cases directed effects were of the same magnitude (β ~ 0.1) 
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indicating a positive loop overtime, rather than causal predominance of one variable over the 

other across time. 

The pattern of relationship emerging in the network plots partly overlapped between TEDS 

and NTR, specifically conduct problems were predictive of emotional problems (β =  0.140, 

se = 0.037, p = 4.486E-5; and β =  0.100, se = 0.042, p = 5.39E-3) and hyperreactivity (β =  

0.099, se = 0.034, p = 4.465E-3; and β =  0.089, se = 0.037, p = 1.14E-2) from age 7 to 9 (age 

7 to 10 in NTR); while peer problems predicted emotional problems (β =  0.170, se = 0.034, p 

= 6.000E-4; and β =  0.080, se = 0.032, p = 1.26E-2) from age 7 to 9-10; in turn emotional 

problems were predictive of peer problems (β =  0.115, se = 0.040, p = 3.70E-3; and β =  

0.097, se = 0.033, p = 3.17E-3) from age 9-10 to age 12.   

Within-person directed effects accounted for 4% to 11% of the variance in TEDS and 10% to 

18% of the variance in NTR in the full models, depending on measure and wave. Nested 

model comparisons between the full model, a pruned model in which only FDR adjusted 

parameters (as shown in Figure 2 and S5 tables) were included in the model, and a null model 

in which all cross-lagged paths were dropped, favoured the pruned model in TEDS and the 

full unconstrained model in NTR (Tables S3b, S3d).   
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Figure 2. Between-person and within-person (directed) networks of relationships in TEDS (blue) and NTR 

(green) obtained from the RI-CLPM. Nodes represent the measure of interest (the random intercept in the case of 

between-person networks, and residual deviation of measurement occasion for the within-person network). 

Edges width and labels indicate and quantify the strength of relationships between nodes, and in the case of 

within-person networks also the temporal direction of the effect. For every time lag (7->9 and 9->12 for TEDS; 

7-10 and 10->12 for NTR) edges represent directional effects within-trait (self-pointing arrows; !" and #" in 

Schematic figure 1) or cross-trait ($" and %" in Schematic Figure 1). Note. TEDS/NTR acronyms: CND = 

conduct/externalizing, HYP = hyperactivity/ hyperactivity-inattention, EMO = emotional problems/internalizing, 

PER = peer problems/social problems. All edges survived FDR correction for multiple testing.   

Sex differences 

While in TEDS we did not find evidence for sex differences as indicated by multigroup 

comparisons, in NTR developmental differences between groups were evident (Tables S6a-

S6d).  On one hand, in males, autoregressive effects were stronger for emotional and conduct 

problems than in females. The network of cross-lag relationship involved effects of conduct 

problems on emotional problems across time lags (age 7-10 and 10-12) and on hyperactivity 

from age 10 to 12. In turn emotional problems and peer problems were reciprocally predictive 

form age 10 to 12. On the other hand, in females we find only weaker evidence (nominal 

significance) for within-person effects, which suggested a role of conduct problems only in 

the first time lag (on peer problems and hyperactivity), with a more predominant role of peer 

problems later in life (on conduct and emotional problems; Tables 7a-7b and Figure S1).  
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Within family extension of the RI-CLPM 

Both in TEDS and NTR the full unconstrained models including sibling effects had an 

excellent fit excellent fit:  c2 (428) = 848.883, p < 1E-8, RMSEA= 0.015, SRMR = 0.033, CFI 

= 0.992 and  c2 (428) = 848.883, p < 1E-8, RMSEA= 0.012, SRMR = 0.031, CFI = 0.997 

respectively (Table S9a/S9c). Tables S9a to S9d show correlations for observed variables by 

zygosity. Figure S2 shows MZ vs DZ twin correlations for random intercepts and age specific 

residual variances for TEDS and NTR.  

Overall, these were consistent with an additive model of genetic variance, and little shared 

environmental effects. For inattention/hyperreactivity, genetic dominance effects were evident 

with the exception of age 9 and age 12 in TEDS. In TEDS for the HYP random intercept we 

found evidence of overdominance (d2 effects exceeding 1) possibly due to a mix of true 

dominance effects and contrast effects. Figure 3 depicts variance component estimates for 

latent stable traits, and age specific residual variances. The pattern of variance components 

estimates was not always consistent between TEDS and NTR. Inspection of the observed 

covariance matrix for DZs and MZs twins (Tables S9a to S9d; figure S3 for twin correlations 

for random intercepts and age specific residuals) showed that the overdominance evident in 

TEDS was underlay by DZs correlations of ~0 for hyperactivity/inattention at age 7. On the 

other hand, the differing ADE vs ACE pattern for HYP at ages 9 and 12 for NTR vs TEDS 

might be attributable to differences in measures employed (see discussion).   

104



 

 

 

Figure 3. Variance components for random intercepts and age specific residual variances estimated from MZ 

and DZ correlations, corresponding to shared additive (a2), dominance (d2), environmental effects (c2), and 

unique environmental effects (e2). Note the over-dominance for hyperactivity is consistent with DZ correlations 

< .25* the MZ correlation. 
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Figure 4. Sibling network plots in TEDS (blue) and NTR (green) obtained from the w-fRI-CLPM. Figure shows 

within-person networks for sibling pairs within-families (light and dark blue for TEDS; light and dark green for 

NTR), with between-sibling relationship represented by directed edges form one within-person network to the 

other. Blue edges survived FDR correction for multiple testing, while gray edges correspond to nominal 

significance ! <	0.05. Note. TEDS/NTR acronyms: CND = conduct/externalizing, HYP = hyperactivity/ 

hyperactivity-inattention, EMO = emotional problems/internalizing, PER = peer problems/social problems. All 

edges survived FDR correction for multiple testing.   

Within family RI-CLPM: sibling effects 

Nested comparisons indicated that the pruned model where only significant between-sibling 

regression paths were retained was to be favoured (Tables S9b/S9d).  Figure 4 shows siblings 

network plots where the concept of Figure 2 is extended to include regressions from one 

within-sibling network to another’s, within a family (Tables S10a/S10b).   

In both TEDS and NTR we detected a positive cross-trait between-sibling effect, at the first 

time lag, of conduct on emotional problems (β = 0.066, se = 0.028, p = 8.190E-3 for TEDS, 
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and β = 0.064, se = 0.03, p = 1.180E-2 for NTR). This indicated that unexpectedly high 

conduct problems for one sibling at age 7 longitudinally predicted unexpectedly high 

emotional problems for their sibling at a later time point (age 9 for TEDS and age 10 for 

NTR), after controlling for within-person time-varying effects and between-person individual 

differences, such as stable genetic or environmental confounds. We further detected a within-

trait between-sibling effects of hyperactivity on subsequent hyperactivity in TEDS (β = 0.084, 

se = 0.038, p = 2.800E-2), this effect was however not replicated in NTR (Table S10a/S10b 

for all regression estimates). In total, sibling effects accounted for less than 3% of the variance 

in psychopathology measures on top of within-person effects at age 9 and 12 in both TEDS 

and NTR. 

Discussion 

In the present study we investigated directional relationships between problem behaviours in 

two population based twin cohorts (TEDS and NTR), separating within- vs between-person 

effects over time. We found that modelling cross-trait relationships over time provides the 

best fit to the data, indicating that within-person effects are an important source of covariation 

between problem behaviours in childhood. These state-like relationships partly account for 

the observed correlation between psychopathology dimensions over time after controlling for 

between-person effects. This finding provides evidence towards the hypothesis that the 

positive intercorrelation between psychiatric traits arises as a function of both common 

underlying predispositions of a trait-like nature, accounting for between-person individual 

differences across time, and an underlying network of state-like directional effects between 

psychopathology dimensions.  

Several within-person directed relationships replicated across cohorts. First, we found 

directed within-person relationships of conduct problems age 7 on emotional problems at age 

9-10 in both TEDS and NTR. This is consistent with recent evidence (Hannigan et al., 2018) 

pointing to shared genetic causes accounting for child co-development of conduct and 

emotional problems trajectories over time. This in turn suggests that part of the reason these 

traits co-develop are within-person state-like directed effects of conduct on emotional 

problems over time. Peer problems at age 7 were also predictive of emotional problems at age 

9-10. Problematic relationships with peers in early childhood have been known to precipitate 

emotional and behavioural problems later in childhood (Menting, Koot, & van Lier, 2015; van 

Lier & Koot, 2010). In turn emotional problems predicted peer problems from age 9-10 to age 

12 within-person, indicating a positive feedback over time. Finally, within-person 
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associations of conduct problems on hyperactivity from age 7 to age 9-10 were evident in 

both cohorts   

We also found several cohort specific effects. For example, in TEDS we found a reciprocal 

relationship between conduct and hyperactivity from age 9 to 12, consistent with previous 

findings (Thapar, Harrington, & McGuffin, 2001; Waschbusch, 2002), but with no evidence 

of causal predominance in either direction. Findings in NTR on the other hand indicated 

reciprocal relationships of emotional problems and peer problems across time, again with no 

evidence for causal predominance. In NTR sex differences were also evident: the reciprocal 

influence between emotional problems and peer problems from age 10 to 12 only hold for 

males, while for females there was only (weaker) evidence for a directed relationship of peer 

problems on emotional problems. Finally, perhaps the most salient difference was that 

conduct problems seemed to play a more prominent role in males than in females, predicting 

all traits across time, while in females we only find weak evidence for directed within-person 

influences of conduct problems from age 7 to age 10. 

We further modelled sibling interactions to account for within family reciprocal relationships 

between siblings over time. Overall, we found that accounting for such relationships within-

trait and cross-trait provided the best fit to the data, suggesting that reciprocal relationships 

between siblings should be take into account in developmental models of comorbidity. These 

longitudinal between-sibling effects from one time point to the next were detected on top of 

stable and age specific genetic and environmental effects that make children more similar (or 

different) within families. The effects detected were in a positive direction indicating that one 

twin behaviour reinforced the other twin’s behaviour or the perception of parents thereof.  

Sibling interactions can be separated into cooperative and contrast effects, indicated in our 

models by positive or negative predictions of one twin behaviour at one time point on the 

other twin behaviour at another time point. Within age specific traits, however, sibling 

interactions would load on either d2 (dominance effects) or c2 (shared environmental factors), 

depending on whether these are contrast or cooperative effects respectively. There is 

evidence, at least for childhood hyperactivity, that maternal ratings may suffer from rater 

contrast (Meike Bartels, Boomsma, Hudziak, van Beijsterveldt, & van den Oord, 2007; 

Simonoff et al., 1998), as such contrast and cooperative effects between siblings are rather an 

index of parental perception of siblings interacting rather than an index of true behavioural 

interaction between siblings. Again, these effects will inflate d2 and c2 estimates, decreasing 

or increasing DZ similarities respectively. Contrast effects can also mimic dominance 
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(Simonoff et al., 1998) and this would partly explain the out of bounds estimates we find in 

TEDS for the latent time invariant hyperactivity trait. We observe overdominance (d2 above 

1) in TEDS for hyperactivity which is likely a combination of true dominance effects (that we 

also observe in NTR for this trait) and competition effects (which might in part be inflated by 

parent bias).  

 

We did not attempt to formally distinguish between contrast and cooperative effects when 

separating genetic and environmental influences at each age. However, no dominance effects 

were observed for emotional problems or conduct problems, which were the two problem 

behaviours involved in the between sibling effects that replicated across cohorts. In this 

regard, if rater contrast accounted for the underlying pattern of relationships, we should have 

observed negative directed relationships between siblings. That is, the more one twin is rated 

high on a construct the less the other twin will be perceived to be problematic and thus rated 

accordingly. However, this effect is in the opposite direction than what we generally 

observed, with higher ratings on one trait corresponding to higher ratings on the other trait. 

We could have the reverse where globally we perceive siblings to have same levels of 

problem behaviours, this would inflate c2 estimates as observed elsewhere (Allegrini et al., 

2019). However, we do not observe consistent c2 estimates for any of the replicated findings 

across cohorts, both within and between sibling effects.  

 

The approach employed in the current study can be extended to other within family designs to 

help separating relative familial contributions to trait variation. Evidence in this regard can in 

turn reinforce our confidence in a putative causal relationship. For example, it is intriguing 

that the effects of conduct/externalizing on emotional problems/internalizing we observed is 

not only a function of within-person effects, but it is partly accounted for by between sibling 

relationships. Further triangulation is however warranted before any conclusion can be drawn. 

Another exciting avenue for future studies is to extend this model further by the incorporation 

of polygenic scores. This may allow extending already existing approaches to estimate gene-

environment interplay and causality in family-based designs (Dolan, Huijskens, Minica, 

Neale, & Boomsma, 2019; Minică, Dolan, Boomsma, de Geus, & Neale, 2018). In principle 

implementing the current approach to extended family-based designs, may help separating 

measured direct and indirect genetic effects of siblings, on top of parent-child relationships.  

 

We should note that similar methods have been developed that leverage longitudinal sibling 

based designs to infer gene-environment covariance via phenotypic transmission (De Kort et 
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al., 2014; Dolan et al., 2014). Alternative methods also exist that consider difference scoring 

instead of sibling relationships within a cross-lagged framework (Moscati, Verhulst, McKee, 

Silberg, & Eaves, 2018; Ritchie, Bates, & Plomin, 2015). However, out method emphasizes 

between siblings phenotypic effects, rather than gene-environment interplay, and could be 

further extended to include parental effects as well as polygenic scores effects.  

 

It is important to highlight that the between-person genetic effects captured by the current 

model specification are of a stable nature. However, if developmental genetic changes were 

present these will likely be pushed into within-person effects affecting directed relationships 

within-trait (autoregressive effects) and cross-trait (cross-lag effects). Including random-

slopes effects in this model might shed light on whether this is the case. However, this model 

would necessitate of at least four measurement occasions across time to be specified. In 

addition, siblings directed effects as estimated in the within-family extension of the RICLPM, 

could also capture such genetic developmental effects, although in a diluted form as DZ 

sibling are only 50% genetically similar on average.  

 

A few other limitations should be highlighted. First, the use of different scales in TEDS and 

NTR might have influenced our results. For example, although as noted earlier SDQ and 

CBCL scales have been found to be highly comparable across cohorts (Meike Bartels et al., 

2018; Goodman & Scott, 1999; Porsch et al., 2016), differences between constructs might still 

account for some of the cohort specific effects we observed in our study. A second limitation 

is that our measurements were taken relatively far apart in time. Arguably closer in time 

measurement are needed to more robustly detect state-like effects as those presently 

investigated. By the same token however it is all the more surprising that we find that such 

effects hold across time, and partly replicate across cohorts, suggesting that we are tapping 

into something worth investigating further. Application of the wfRI-CLPM to panel data with 

measurements closer in time might yield even more interesting results. A last limitation is that 

while we talk about directed influences, these need not be causal influences, there might still 

be third variable confounding at play. In this regard triangulation with other genetically 

sensitive approaches, and integration with extended family-based designs might help 

increasing confidence in our findings.  

 

Notwithstanding these limitations, to our knowledge the present study is the first 

systematically investigating directional within-person and between-sibling effects between 

psychopathology dimensions across childhood. In conclusion, our analyses provided 

110



 

 

substantive results on trait associations between behavioural problems within an open science 

framework replicating our analyses in two well powered longitudinal child cohorts. We found 

that correlations between psychopathology dimensions are partly attributable to a network of 

direct within-person relationships between traits acting against a background of between-

person trait-like differences. Finally extending this approach to family-level data we provided 

a framework that can be extended to other within-family, genetically sensitive designs in the 

future. 
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Chapter 6 – Discussion 

 

This thesis explored questions of prediction and statistical inference of complex traits in 

childhood within a genetics-based multivariate framework. Throughout the thesis I employed 

different multivariate genetic and genomic approaches applied to the prediction of complex 

cognitive traits and the co-occurrence of child psychopathology dimensions across 

development. This chapter summarises salient findings from the previous chapters of the 

thesis, highlights limitations and outlines possible future research directions.  

 

Summary of key findings, and limitations 

With increasing availability of large genome-wide summary statistics accuracy of polygenic 

scores is increasing. However, while advances in genomic methods afford powerful methods 

to harness the information from GWAS to predict complex traits, there is no consensus on 

which polygenic score method performs best. Chapter 1 discussed genomic prediction in the 

context of child and adolescence cognitive related traits. First, a comparison of the predictive 

accuracy of three state-of-the-art polygenic score approaches (PRSice, LDpred and Lassosum) 

employing the most powerful GWAS summary statistics of intelligence (IQ3) and educational 

attainment (EA3) showed that, at the univariate level, we can now predict up to 9% of the 

variance in general intelligence and 14% in educational achievement during childhood and 

adolescence. This polygenic prediction substantially increases from age 12 to 16 and does not 

differ significantly between boys and girls. A formal comparison of approaches showed that 

depending on how the correlated information between SNPs across the genome is handled 

(i.e. linkage disequilibrium; LD) polygenic score prediction can be improved over a more 

standard (p-value clumping + thresholding; C+T) approach, by discarding less information 

genome-wide. However, it should be noted that the data QC procedure employed, described 

in Appendix 1, while allowing to compare methods on a same set of SNPs and reducing 

computational burden, might have affected accuracy of the C+T approach by limiting the 

available information to the set of genotyped SNPs.  

 

By extending these models to include information about genetically correlated traits, 

emerging multi-trait genomic approaches can be used to boost power of GWAS summary 

statistics and therefore prediction accuracy of polygenic scores. By comparing several multi-

trait approaches (Genomic SEM, MTAG, SMTpred) I showed that polygenic score prediction 

of cognitive related traits can be increased up to 3% of the variance depending on polygenic 

score approach and target phenotype. Notably, within polygenic score method, multi-trait 

approaches had comparable performance with respect to predictive power suggesting that 
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improving accuracy of GWAS SNP effect sizes with a multivariate approach is equally 

effective regardless of the specific method employed. Finally, the difference between top and 

bottom polygenic scores deciles for the best model implied a difference of one full standard 

deviation on average for general intelligence, and two full grades difference for educational 

achievement.  

 

Importantly, if our ultimate goal is prediction (and not, say, causal or statistical inference of 

trait associations) more comprehensive models should be considered. For example, improved 

prediction accuracy could be achieved by integrating polygenic score and measured 

environmental effects in a multivariable framework. As large biobank data become 

increasingly available prediction models integrating both genomic based and environmental 

(risk) factors will become more common. In chapter 3, employing a different multi-trait 

framework, I consider the joint modelling of several polygenic scores and environments 

measured early in life as they predict educational achievement (EA) at age 16. By employing 

a regularization technique, elastic net, I show that the joint predictive performance of several 

polygenic scores is substantial (R2 = .18) and that jointly modelling polygenic scores and 

measured environments significantly improves hold-out set prediction of EA (R2 = .34) over 

either nested model (multiple polygenic scores or multiple environmental measures) 

considered alone.   

 

Furthermore, I considered the role of gene-environment correlation and interaction on hold-

out set prediction, showing that two-way gene-environment interactions do not significantly 

contribute to overall prediction over main effects. These results indicated that if GxE 

interactions will be of any use in predictive modelling, it will only be by considering higher 

order interactions (three way or more) at least for EA. It should be noted, however, that this 

conclusion is conditional on the variables and predictive modelling framework employed. In 

contrast, gene-environment correlation as measured by the information overlap between the 

two predictive models was substantial (r = .40). Furthermore, I showed that polygenic scores 

effects on EA are partly accounted for by their correlation with environmental effects, 

similarly environmental effects on EA are linked to polygenic scores effects (genetic 

confounding). However, despite ubiquitous GE correlation jointly modelling multiple 

polygenic scores and correlated environmental effects significantly improved overall 

prediction of EA, showing that beyond their correlation, polygenic scores and environmental 

measures still provide unique information. 
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An important multivariate theme tackled in chapter 4 and 5 of the thesis regards the 

mechanisms underlying covariation of psychopathology related traits across development.  

In chapter 4, I explored the manifestation of a common cause of psychopathology accounting 

for the covariation of problem behaviours throughout development. First, I showed that this 

common psychopathology component consistently arises across development and is robust 

across different raters (parent, self, teacher) and psychopathology measures employed, at the 

phenotypic level. This common dimension is consistently heritable ~60% and genetically 

stable across time.  

It must be highlighted, however, that the spectrum of traits was not always captured by the 

common (p) factor to the same degree in each instance. Some traits had low common genetic 

factor loadings depending on the rater considered, for example teacher rated emotional 

problems had lower loadings (.17 to .24) on the common factor across all ages. While for the 

child rated p-factor antisocial behaviour showed lower loading compared to other 

psychopathology measures (.12 to .25) across time. As noted in chapter 4, this partly reflect 

differences in the composition of this common latent factor across raters. In addition, 

substantial specific ACE factors (reported in supplementary table S1, Appendix 3) were 

evident across models considered especially in regard to teacher and child measures. For 

example, substantial specific A factor variance (As) was evident across most measures in 

teacher reports at age 7. Particularly, the most extreme case at age 7 was represented by 

teacher rated emotional problems, for which specific A contributions were sizeable, As = .48, 

while virtually no variance in this trait was shared, Ac = .02. Another such example was child 

rated antisocial behaviour at age 12, with substantial specific A contributions (As = .42), but 

virtually no shared A contributions (Ac =.02). This suggests the potential for specificity in 

psychopathology dimensions, perhaps depending on rater and age considered, and future 

studies might consider testing independent pathway in contrast to common pathway models 

(information on specific ACE component is not reported in Figure 1 of Chapter 4, 

supplementary Figure S1 in Appendix 6 reports these estimates in an improved version of that 

diagram). 

 

Lastly, I demonstrated that childhood phenotypic p (as soon as age 7) is consistently 

associated with adult polygenic p (constructed from polygenic scores reflecting adult 

psychiatric disorders). These associations (modest in extent: R2~.01) are consistent with other 

reports of polygenic scores for adult psychiatric traits on childhood psychopathology (see 

below) and suggests a (genetic) link between the two. However, given the modest effect size 

estimates, conclusions that can be drawn from these specific analyses remain limited, 
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especially when considered in light of potential confounding factors such as those described 

in Chapter 3.  

One pitfall of longitudinal studies is represented by attrition. This is especially an issue when 

considering complete cases on many traits concurrently in multivariate analyses such as those 

carried out in Chapter 4. Specifically, in principal component analyses individuals were 

dropped listwise. This can lead to participation bias as the subset of individuals included in 

analyses with all available data might not be representative of the originally intended 

population (in this case of UK-based youth), in other words this will limit generalizability of 

findings. There is evidence that TEDS remained fairly representative throughout collection 

waves with respect to demographics collected at first recruitment (Rimfeld et al., 2019). For 

the analysed measures investigated in Chapter 4 with respect to all complete cases (i.e. 

complete cases across all measures considered across age by rater bins) I provide measures of 

associations with socio economic variables available at recruitment (Table S1 and S2, 

Appendix 6), showing that overall individuals with complete data were generally coming 

from a higher socio economic status background, families with higher education and 

occupational status, compared to dropouts since inclusion. Although, this is to some extent 

expected, it should be taken into account when considering findings from Chapter 4.  

 

In Chapter 5, I further investigated the idea of developmental co-occurrence of 

psychopathology. A common heritable cause is only one of the plausible mechanisms 

underlying covariation between psychopathology traits in childhood (the positive manifold). 

Other data generating mechanisms can account for the positive intercorrelation between 

psychopathology dimensions observed across development. In fact, another plausible reason 

for this positive manifold is that psychopathology dimensions temporally cause each other 

inducing correlation. That is a causal network might (at least in part) underly 

psychopathological comorbidity in childhood. In chapter 5, I explored to what extent the 

longitudinal covariation between child problem behaviours results from between-person 

stable individual differences, attributable to heritable trait-like stable effects, or from state-like 

temporal directed influences of one variable over the other. With replication in two large twin 

cohorts (the Twin Early Development Study and the Netherlands Twin Register) I show that 

beyond between-person differences, a temporal network of directed effects accounts for up to 

15% of trait variation (depending on specific trait) from age 7 to age 12. This provides 

promising evidence for the existence of a network of causal influences, and once the links 

between psychopathology dimensions are accurately mapped and further empirically 
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replicated, interventions along the causal chain may be implemented to eventually ameliorate 

the outcome of child problem behaviours.  

 

I further developed an extension of this network model to family-level data towards the goal 

of quantifying direct reciprocal sibling effects over time. Again, with replication in TEDS and 

NTR, I show that sibling effects are an important component of variation and covariation of 

psychopathology traits within-family accounting for up to 3% more of the variance on top of 

within-person effects after controlling for shared genetic and environmental effects that make 

siblings alike. Burgeoning availability of large family datasets with genotypic data, this model 

could be extended to include parental effects as well as genomic based predictors in the future 

(see Integrating family and genomic methods section below). 

 

Challenges and prospects for developmental quantitative genetics  

 

Prediction of complex developmental traits using genomic data   

As shown in chapter 2 and 3, polygenic scores are becoming a powerful tool for prediction of 

cognitive relevant traits in childhood. However, in the context of genomic prediction 

educational attainment is a special phenotype because it is typically available as standard 

demographic variable in most studies, it’s relatively straightforward to measure (years of 

education), and therefore it is easier to collect very large GWAS samples compared to other 

behavioural phenotypes. Prediction of behavioural problems in childhood from GWAS of 

adult psychiatric traits, on the other hand, has a longer way to go. An example is a recent 

effort to meta-analyse polygenic score associations with problem behaviours in childhood 

(Akingbuwa et al., 2020), in ~50k individuals where the strongest effects detected for any 

problem behaviour were predicted by EA3 and fell short of 1% of the variance explained. In 

this regard the polygenic-p effects on child problem behaviour discussed in chapter 4 are at 

the upper bound of this association effects.  

 

Thus, at present, polygenic scores have limited value for prediction of child psychopathology. 

However, a promising avenue for future polygenic score work in this field might lie in 

identifying strata of individuals at increased predisposition to develop mental health disorders, 

to then target screening interventions accordingly (Lewis & Vassos, 2020), akin to the 

medical field where this is already implementable for example in cancer screening or 

coronary heart disease (Jia et al., 2020; Khera et al., 2018). 
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The low polygenic score heritability of childhood psychopathology can be in partly attributed 

to the low SNP heritability of child psychopathology (Cheesman et al., 2017) roughly around 

10%. In this regard it has been shown that focusing on variation in common across traits can 

improve estimation of SNP h2 (Cheesman et al., 2017). Part of the problem, however, can be 

ascribed to the fact that power of polygenic scores (R2) is a function of GWAS sample size 

(Daetwyler, Villanueva, & Woolliams, 2008; Dudbridge, 2013; Pasaniuc & Price, 2017; 

Wray, Kemper, Hayes, Goddard, & Visscher, 2019; Wray et al., 2013). The equation that 

governs polygenic score predictive power can be defined as follows:  

 

(1) 

@$ =
ℎ%
$

1 +D (Fℎ
%

$ )⁄
 

 

Where M is the effective number of independent SNPs contributing to the trait (this can be 

approximated to 50,000 for complex behavioural phenotypes; Wray et al., 2013), N is the 

sample size of the discovery GWAS sample and h2 is the heritability (hence ℎ%
$

 correspond to 

the SNP heritability). Thus, as N increases to infinity the denominator becomes 1 and R2 = 

ℎ%
$

. Only relatively recently have we started accumulating large enough samples for adult 

psychiatric disorders (e.g. Wray et al., 2018), while, for most traits, child samples efforts are 

still currently under way (with two notable exceptions, such as autism spectrum disorder, 

Grove et al., 2019, and ADHD, Demontis et al., 2019). Some studies have accrued samples 

comparable in magnitude to EA (e.g. Howard et al., 2019). However, this comes at the 

inevitable expense of the phenotypic definition (also known as shallow, or minimal, 

phenotyping; Cai et al., 2020), and therefore an increase in heterogeneity at the expense of 

predictive power (see below). For example there is evidence that lowering heterogeneity 

improves detection  and estimation of variants effect sizes (Manchia et al., 2013) this in turn 

would increase power of polygenic scores. Summary statistics obtained from GWAS of 

minimal phenotypic definitions also produce less powerful polygenic scores predictors for 

specific disorders, compared to more strict phenotypic definitions at equal sample size (Cai et 

al., 2020). 

 

A solution to this problem might be afforded by large international efforts to accrue child 

samples large enough to directly conduct GWAS of child phenotypes. While several efforts in 

this regard are under way, it is typically difficult when pulling many child cohorts together to 

be able to keep a homogenous phenotypic definition across samples. One example is the 
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recent GWAS of (broad) aggression (Ip et al., 2019) where notwithstanding the sheer size of 

the discovery set (~500k) the polygenic score derived from the GWAS only achieved an out-

of-sample prediction of .2% and .4% depending on the target set. This might be partly 

attributable to the low SNP h2 for the broad aggression phenotype (SNP h2 = 3.3%; which in 

turn might be due to measurement error across the many different phenotypic definitions 

employed by the various datasets), in part to the difference between out-of-sample and 

discovery set phenotypes (e.g. self-reported retrospective conduct disorder and mother 

reported childhood aggression). That is, the discrepancy between these phenotypic definitions 

might compromise polygenic prediction.   

 

In fact, we can quantify heterogeneity in the context of polygenic prediction as the imperfect 

genetic overlap within trait, between the cohort where we estimate the SNP effect sizes (the 

discovery set) and the hold-out set, where we test polygenic score performance (de Vlaming 

et al., 2017). Hold-out sample predictive power for polygenic scores can be written as follows 

(de Vlaming et al., 2017):  

 

(2) 
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Where ℎ%
$!

 is the hold-out set trait SNP h2, ℎ%
$  is the training set SNP h2, and rg is the genetic 

correlation between the two (this equation is also generalizable to cross-trait prediction). 

When genetic correlation equals unity, and assuming that we are measuring the same trait 

with equal SNP heritability in the discovery and hold-out set, this equation equals Equation 1.  

Otherwise R2 will grow as a function of rg and the upper limit of R2 will be given by I&ℎ%
$

 as 

sample size in the discovery set increases (de Vlaming et al., 2017; Figure 1). 

This implies that any deviation from the phenotypic definition between the two cohorts 

introduce heterogeneity at the expense of out-of-sample prediction, governed by discovery set 

sample size and rg between the two traits. Tangentially this is part of the reason why 

depending on genetic architecture we can achieve higher cross-trait predictive power than 

within-trait hold-out set prediction (depending on the relative combination of discovery and 

hold-out set SNP heritability).  
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Figure 1. Heterogeneity and out-of-sample prediction: Out-of-sample prediction of polygenic 

scores as a function of genetic correlations (rg) between discovery and target set according to 

Equation 2, assuming both traits have SNP h2 = .2 and M = 50,000.  

 

This suggest that before we can achieve large GWAS sample sizes of childhood 

psychopathology traits with homogenous phenotypic definitions across cohorts, multivariate 

approaches to trait prediction will lead the way in terms of polygenic score prediction. For 

example, as we have seen in chapter 2 multi-trait genomic approaches can be used to boost 

power for discovery by jointly analysing correlated traits. Another, perhaps more easily 

implemented, way is to use a multivariable approach (as seen in chapter 3) where combining 

multiple polygenic predictors in the same model yielded a powerful hold-out-set prediction. 

 

Improving prediction by solving the still missing heritability problem  

Bridging the gap between SNP h2 and polygenic score heritability will, however, remain an 

active area of research. One way forward is afforded by whole genome sequence (WGS) data. 

As WGS data will become cheaper we will start bridging the gap between SNP and narrow 

sense heritability, as we will start mapping rare variants in low LD regions across the 

population (Wainschtein et al., 2019). For example, using WGS data recovered almost all the 

‘lost’ heritability for height and BMI. By increasing the theoretical ceiling of polygenic 

prediction with recovery of the so called still missing heritability (Wainschtein et al., 2019), 
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WGS data will in turn lead to improve genomic prediction by integrating rare variants in 

polygenic scores.  

 

However, by the same token, this will also imply a substantial increase of independent 

variants involved in the trait of interests, according to early estimations approximately a 10-

fold increase (~500k, Wray et al., 2019). In turn, this will lead to a lower R2, despite the 

increase in estimated SNP heritability, because the amount of noise along with more SNP 

estimates will increase (Figure 2; de Vlaming et al., 2017; Wray et al., 2019). Future 

polygenic scores methods will need to tackle this problem by trying to balance more 

effectively M vs SNP h2 (Wray et al., 2019; Wray et al., 2013). One way to do that might be 

incorporating prior information such as genomic annotations to bin variants, and 

regularization methods that introduce sparsity in the data (akin to Lassosum employed in both 

chapter 2 and 3; or Bayesian shrinkage such as LDpred; chapter 2). In practice it has been 

shown that binning variants according to functional annotations to then introduce sparsity via 

a regularization method improves prediction over existing methods by effectively reducing 

the number of estimated effect sizes (Marquez-Luna et al., 2020; Wray et al., 2019). Another 

option is to include information on close relatives in the discovery set. This in practice 

reduces M by decreasing effective sample size, in turn minimizing the number of parameters 

to be estimated by having discovery and target samples sharing recent common ancestors 

(Lee, Weerasinghe, Wray, Goddard, & Van Der Werf, 2017; Truong et al., 2020). The 

usefulness of this approach increases as large biobanks datasets and registries include both 

unrelated as well as closely and distantly related individuals, bringing personalized medicine 

from unrelated samples to a family-type level.  
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Figure 2. Effective M and out-of-sample prediction: Predictive power of polygenic scores 

according to Equation 1 as a function of effective M (number of independent SNPs involved 

in the trait). Left: example for a trait with SNP h2 = .3 based on genotype array data. Right: 

example for the same trait with WGS data increasing estimation to SNP h2 = .6. In blue is the 

number of independent SNPs from WGS  involved in the trait (500k), based on Wray et al., 

2019. 

 

This also implies that at low sample sizes, which can be currently obtained until costs can be 

reduced, the value of WGS for genomic prediction will be limited (Figure 2), that is WGS 

based prediction will perform similarly to genotyped data for the same trait (with lower h2), 

for which much larger samples can be more easily and cheaply obtained. This is further 

complicated by heterogeneity, in the sense that even when WGS data will become available, 

an important role will remain collecting high quality data with homogenous definitions across 

child cohorts. In addition, it remains to be established whether the theoretical expectation for 

recovery of missing heritability will be the same for (developmental) behavioural phenotypes. 

 

Until we can collect large discovery (and hold-out) WGS samples, multi-trait approaches will 

be powerful tools to increase predictive capacity of genomic based predictors. As sample size 

of GWAS grows, joint modelling of multiple polygenic score predictors from genotype (non 
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WGS) data will remain most effective, straightforward and easily implemented. 

Notwithstanding these challenges, large collaborations between child (twin) cohorts will be an 

essential tool to map the genetic architecture of (psychopathology) related complex traits and 

aiming to collect ever growing sample sizes will remain the most effective way to improve 

predictive accuracy of polygenic scores, with important implications for downstream analyses 

(see section below). 

 

Multi-trait genomic analyses of developmental phenotypes  

As large international GWAS efforts accumulate one important game changer in the GWAS 

landscape will be employing results from GWAS of childhood phenotypes using multivariate 

data from large longitudinal cohorts. With increasingly large collaborative efforts ‘stratified’ 

GWAS for several developmental phenotypes are under way. One example is the GWAS of 

broad aggression mentioned above (Ip et al., 2019), where separate GWAS were run for 

different strata of rater by age bins (which were then meta-analysed together). Stratified 

GWAS such as this are an important resource for future studies investigating child 

development, because the genetic architectures and correlations between GWAS traits thus 

calculated can then be formally modelled to investigate developmental questions at the 

genomic level. Several similar efforts are under way for a number of complex traits across 

childhood. At the time of writing this thesis, TEDS has participated in several such 

collaborations including cognitive-related and psychopathology traits. This is one very 

exciting avenue for future research. 

 

For example, in chapter 2 a multi-trait method, Genomic SEM (Grotzinger et al., 2019), was 

employed to fit a common factor model using GWAS summary statistics for several 

cognitive-related traits. In turn, a common factor GWAS was run to obtain summary statistics 

for this common factor. In a similar vein, we could explore other (longitudinal) factor 

structures using stratified summary statistics for GWASs of childhood traits. Akin to twin 

methods, several factor structures and competing models can be tested, for example, fitting a 

Cholesky model to infer genetic stability or innovation of a particular trait over time (similar 

to what was done in chapter 4 with a phenotypically defined parent-rated p-factor); or fitting a 

common factor (chapter 4) vs independent pathway model of childhood psychopathology to 

then run a GWAS of this factor structure to infer the mechanisms through which single 

variants affect variation and covariation across traits.  
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Other multivariate approaches exist that employ SEM to model (individual-level) genomic 

data (St Pourcain et al., 2018; Verhulst, Maes, & Neale, 2017). Multivariate methods that 

model the (genetic) relationships between traits are an important resource for studying 

multivariate developmental data and are becoming increasingly important with the availability 

of large longitudinal family data such as the Norwegian Mother father and Child cohort 

(MOBA). However, an advantage of methods such as Genomic SEM is the use of summary-

level data instead of relying on measured genotypes from individual-level data, thereby 

achieving powerful samples without issues of data sharing, and in addition being able to study 

traits at the multivariate level that might be difficult to obtain within the same sample. 

 

Summary statistics generated from different factor structures can be used to construct 

‘bespoke’ polygenic scores, for example capturing common vs trait specific polygenic effects, 

which in turn could be employed for trait prediction or in SEM models for more nuanced 

hypothesis tests. For example, an interesting avenue could be to test gene-environment 

interactions using polygenic scores for trait-specific effects vs common polygenic liability to 

psychiatric traits. The integration of more powerful and nuanced polygenic scores with 

family-level data will help illuminate several important developmental questions in the near 

future. This type of approaches which analyse genomic factor structures will likely lead the 

way to tackle important questions related to developmental complex traits. By employing 

powerful modelling techniques widely applied in the twin literature modern quantitative 

genetics is bringing together new genomic methods and family-level data. As large 

longitudinal family cohorts invest in genotyping the integration between the two worlds is 

becoming more common. 

 

Integrating family and genomic methods   

The integration between family-level data and genomic methods is an important avenue for 

future research in child development. Studies that leverage the availability of genotyped 

cohort with family data such as DZ twin pairs and family trios (parents and offspring) are 

emerging to investigate questions related to gene-environment correlation and genetic nurture 

using polygenic scores (Bates et al., 2018; Kong et al., 2018). As discussed in chapter 3 gene-

environment correlation refers to the ways in which an individual’s genotype covary with the 

environment; we can typically distinguish three main type of GE correlation: passive, active 

and evocative. Genetic nurture can be thought of as a special type of GE correlation in which 

parental genotypes (partly shared with the offspring) influence child phenotype via the rearing 

environment. In practice this opens a ‘backdoor path’ from child genotypes to child 
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phenotype mediated by the environment. In chapter 3 I discussed how we can think about GE 

correlation within a prediction modelling framework in terms of genetic confounding and 

environmentally mediated polygenic scores effects on hold-out-set prediction.  

 

As explained, this concept is not novel to the genomic era, but historically it has been 

investigated by the quantitative genetics literature, with extensive evidence showing that 

measures of the environment are themselves heritable (Plomin, 2014; Plomin, DeFries, 

Knopik, & Neiderhiser, 2016). An advantage of genomic-based methods in this regard, 

however, is that they allow us to directly quantify this environmentally mediated effects using 

measured genetics. In turn this can help us better understand the mechanisms through which 

genetic predisposition links to the eventual phenotype and separate so called ‘direct’ from 

‘indirect’ genetic effects.  

 

For example, emerging methods using family trios infer direct and indirect genetic effects by 

testing associations of polygenic scores created using transmitted and non-transmitted alleles 

from parent to offspring (Kong et al., 2018). This phenomenon of environmental mediation, 

has been shown also at the level of SNP heritability estimation by leveraging family data 

(Eilertsen et al., 2020; Young et al., 2018) to partition paternal and maternal indirect genetic 

effects from offspring genetic effects. Data such as MOBA, which includes information of 

parent and offspring genotypes, can be leveraged to separate ‘direct’ genetic effects from 

indirect mediated effects via the rearing environment. However, recent advances in genomic 

methods will make this type of research generally accessible to (twin) cohorts via imputation 

of parental genotypes from genotyped sibling pairs (Young et al., 2020; Hwang et al., 2020). 

These data in turn could be leveraged in large collaborative efforts to reach larger sample 

sizes.  

 

More broadly, the integration of polygenic scores in family-based (twin) models have been 

already employed to investigate several important questions related to gene-environment 

interplay and causality (Dolan, Huijskens, Minica, Neale, & Boomsma, 2019; Minică, Dolan, 

Boomsma, de Geus, & Neale, 2018). Particularly, it seems clear that there is a lot of potential 

for developing statistical models to strengthen causal inference with family data. For example, 

in chapter 5 I discussed an extension of a network approach to sibling pairs that can be used to 

assess reciprocal sibling effects longitudinally while controlling for shared genetic and 

environmental effects that make siblings alike. A model such as this could be further extended 

to include parental effects as well as polygenic scores effects. If phenotypic information from 
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parents is available a model could be fit to test for reciprocal longitudinal effects between 

parents and siblings, on top of reciprocal sibling effects and within-person phenotypic effects, 

after controlling for shared genetic and environmental effects that make people in families 

alike.  

 

On top of these effects we could look at measured genetic differences, and test how parental 

polygenic scores relate to child residual variance at each measurement over time. A study 

design such as this could provide a direct test of genetic nurturing effects, testing for 

phenotypic mediation of parental (non-shared) polygenic scores effects on child outcomes 

longitudinally. Of course, this would be a complex model to fit requiring a large sample size 

to account for subtle effect sizes, and polygenic scores more powerful than the ones that are 

currently available. This integration will also be more challenging for psychopathology 

related traits than for other complex traits for which we possess powerful polygenic scores 

(e.g. BMI or educational attainment) because the variance explained by the polygenic scores 

will be underpowered in longitudinal models including familial effects and reciprocal sibling 

effects. Until more powerful polygenic scores become available, one possible solution will be 

to employ multivariable polygenic score approaches to boost predictive power (chapter 3). 

However, as discussed, as we keep accumulating data on large longitudinal child cohorts, 

advances in genomic methods (for example, imputing parents’ genotypes when these are not 

available) will make models such as this feasible in the near future. 

 

Conclusion  

It seems likely that a triangulation between multivariate methods will be at the forefront of 

research discovery for child development in the years to come. On one hand, with 

increasingly powerful GWAS summary statistics, genomic multi-trait methods will be able to 

be leveraged to further boost predictive power of polygenic scores. Powerful multivariable 

models integrating several such scores jointly could be implemented along with 

environmental effects. This will be key for further polygenic score work especially with 

respect to child psychopathology. Furthermore, modelling of genomic structures in 

multivariate SEM might be leveraged to create more nuanced polygenic scores, as well as to 

infer mechanisms underpinning covariance between traits, which will in turn help 

illuminating important developmental questions. Concurrently efforts to bring together high-

quality phenotypic data from several child cohorts, as well as genotyping family-level data, 
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will afford the possibility to implement genomic methods at the family level by exploiting 

powerful quantitative genetics approaches on an unprecedented scale.  
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Supplementary methods  

Methods S1: Genotyping protocol and quality control  

DNA for 8,743 individuals (including 3,722 dizygotic co-twin samples) was extracted from 

saliva and buccal cheek swab samples and hybridized to HumanOmniExpressExome-8v1.2 

genotyping arrays at the Institute of Psychiatry, Psychology and Neuroscience Genomics & 

Biomarker Core Facility. The raw image data from the array were normalized, pre-processed, 

and filtered in GenomeStudio according to Illumina Exome Chip SOP v1.4. 

(http://confluence.brc.iop.kcl.ac.uk:8090/display/PUB/Production+Version%3A+Illumina+Ex

ome+Chip+SOP+v1.4). In addition, prior to genotype calling, 919 multi-mapping SNPs and 

501 samples with callrate <0.95 were removed. The ZCALL program was used to augment 

the genotype calling for samples and SNPs that passed the initial QC.  

DNA from 3,747 samples was extracted from buccal cheek swabs and genotyped at 

Affymetrix, Santa Clara, California, USA. From this sample, 3,665 samples were successfully 

hybridized to AffymetrixGeneChip 6.0 SNP genotyping arrays 

(http://www.affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf) 

using experimental protocols recommended by the manufacturer (Affymetrix Inc., Santa 

Clara, CA). The raw image data from the arrays were normalized and pre-processed at the 

Wellcome Trust Sanger Institute, Hinxton, UK for genotyping as part of the Wellcome Trust 

Case Control Consortium 2 (https://www.wtccc.org.uk/ccc2/) according to the manufacturer’s 

guidelines 

(http://www.affymetrix.com/support/downloads/manuals/genomewidesnp6_manual.pdf). 

Genotypes for the Affymetrix arrays were called using CHIAMO 

(https://mathgen.stats.ox.ac.uk/genetics_software/chiamo/chiamo.html).  

After initial quality control and genotype calling, the same quality control was performed on 

the samples genotyped on the Illumina and Affymetrix platforms separately using 

PLINK(Chang et al., 2015; Purcell et al., 2007), R(R Core Team, 2018), BCFtools(Li, 2011), 

and EIGENSOFT(Patterson, Price, & Reich, 2006; Price et al., 2006). 

Samples were removed from subsequent analyses on the basis of call rate (<0.98), suspected 

non-European ancestry, heterozygosity, and relatedness other than dizygotic twin status. 

SNPs were excluded if the minor allele frequency was smaller than 0.5%, if more than 2% of 

genotype data were missing, or if the Hardy Weinberg p-value was lower than 10-5. Non-

autosomal markers and indels were removed. Association between SNP and the platform, 

batch, plate or well on which samples were genotyped was calculated; SNPs with an effect p-
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value < 10-4 were excluded. A total sample of 10,346 samples (including 3,320 dizygotic twin 

pairs and 7,026 unrelated individuals), with 7,289 individuals and 559,772 SNPs genotyped 

on Illumina and 3,057 individuals and 635,269 SNPs genotyped on Affymetrix remained after 

quality control. 

Genotypes from the two platforms were separately phased using EAGLE2 (Loh et al., 2016), 

and imputed into the Haplotype Reference Consortium (release 1.1) using the Positional 

Burrows-Wheeler Transform method (Durbin, 2014) through the Sanger Imputation 

Service(McCarthy et al., 2016). Prior to merging, we excluded variants with info <0.75 and 

removed non-overlapping SNPs between platforms. After merging, we tested for minor allele 

frequency differences between platforms and removed SNPs with an effect p-value < 10-4, 

and Hardy Weinberg p-value > 10-5. Using these criteria, 7,363,646 genotyped and well-

imputed SNPs were retained for the analyses. 

To generate principal components to be used as covariates, we performed principal 

component analysis on a subset of 39,353 common (MAF > 5%), perfectly imputed (info = 1) 

autosomal SNPs, after stringent pruning to remove markers in linkage disequilibrium 

(r2 > 0.1) and excluding high linkage disequilibrium genomic regions so as to ensure that only 

genome-wide effects were detected. 
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Methods S2: Description of phenotypes 

Outcome Variables  

Intelligence. Intelligence was operationalized as general cognitive ability. At age 12 and 16 

twins participated in web-based testing, assessing verbal and non-verbal cognitive ability. At 

age 12 we administered two verbal ability test: WISC-III-PI Multiple choice Information 

(general knowledge)(Wechsler D, 1992); and WISC-III-PI Vocabulary Multiple-Choice; and 

two non-verbal tests: Raven’s Standard Progressive Matrices (Raven, Court, & Raven, 1996) 

and WISC-III-UK Picture Completion (Wechsler & Golombok, 1992). At age 16, web testing 

consisted of one verbal: ‘Mill Hill Vocabulary test’; and one non-verbal: ‘Raven’s 

Progressive Matrices’ tests. We computed scales as the mean of the standardized web-test 

scores. Intelligence was defined as a mean composite of the verbal and non-verbal cognitive 

standardized scores.   

Educational achievement. At age 12, educational achievement was based on teacher-ratings 

and test grades obtained through the UK National Pupil Database (NPD) 

(https://www.gov.uk/government/collections/national-pupil-database). Test grades are based 

on the National Curriculum, which is a set of standardized subjects taught in all primary and 

secondary schools in the UK. It consists of national tests and teacher assessments in English, 

mathematics and science (https://www.gov.uk/national-curriculum). At age 12 teachers rated 

NPD scores on a 9-point Likert scale, with higher scores indicating higher educational 

achievement. 

At age 16, educational achievement was indexed as performance on standardized UK 

General Certificate of Secondary Education (GCSE) exams obtained via the NPD. This is 

the examination for educational achievement at the end of compulsory education. 

Individuals take around 8-10 subjects (Shakeshaft et al., 2013), with three of them being 

compulsory (‘core subjects’): English, mathematics, and science. Families of TEDS twins 

were contacted following GCSE examinations by email and twins’ parents completed test 

results forms and reported on results qualifications (Shakeshaft et al., 2013). For 

individuals for whom self-report data were not available, families of TEDS’ twins were 

contacted and asked for consent to access the National Pupil Database. In the present study 

educational achievement was operationalized as the mean grade of the three compulsory 

subjects, with results coded from 4 (G, or lowest grade) to 11 (A+, or highest grade). 

 All phenotypes were corrected for age, sex and 10 genetic principal components. The 

obtained residuals were used in all subsequent analyses. Figure S1 shows correlations 

between the four outcome variables, and Table S1 reports descriptive statistics.  
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Methods S3: Polygenic Score Approaches 

 

After stringent quality control, we restricted the sample to include only unrelated individuals 

(N=7,026). In addition, in order to ease computational burden across polygenic scores 

approaches, and to be able to efficiently compare results across them, we further limited 

analyses to variants genotyped or imputed at Info = 1 (with minor allele frequency > 0.5% 

and Hardy-Weinberg equilibrium p-value >1x10-5), leaving a total of 515,100 SNPs.  

 

PRSice2 

 

Summary statistics used in analyses were coordinated with our genotyped sample and p-value 

clumping was performed with a R2 = 0.25 cutoff within a 250-kb window. After coordination 

and clumping, 106,000 SNPs remained for analyses in PRSice (Euesden, Lewis, & O’Reilly, 

2015). In PRSice we constructed polygenic scores as the sum of individuals’ genotypes across 

SNPs, weighted by the betas of IQ3 and EA3 GWAS, as well as the summary statistics 

derived from MTAG (for IQ3 and EA3) and Genomic SEM (the common factor GWAS). 

Next, a best-fit polygenic score was obtained for intelligence and educational achievement at 

ages 12 and 16 through the high-resolution scoring option in PRSice. This consisted in 

regressing each of our phenotypes in the validation set on GPS calculated at a high number of 

p-value thresholds (from 0.001 to 1 with increments of 0.001) for each of our base datasets 

(IQ3, EA3, the summary statistics for MTAG IQ3, MTAG EA3 and the one obtained from 

the common factor GWAS in Genomic SEM), until the best-fit GPS was identified as the 

GPS threshold associated with the phenotype at the lowest p-value (and the highest R2).  

 

LDpred 

 

LDpred (Vilhjalmsson et al., 2015) is a Bayesian method that calculates GPS based on 

GWAS summary statistics, by taking into account the trait-heritability, assuming a prior for 

the polygenicity of a trait (i.e. fraction of associated markers) and adjusting for linkage 

disequilibrium (LD) from a reference panel. In LDpred no LD clumping or pruning is 

performed on the individual-level genotyped data, which avoids losing information across the 

genome. Rather, the prior is used to stabilize the betas by re-weighing the coefficients. 

Genotypes were coordinated with the summary statistics, leaving 496,633 SNPs for the EA3 

GWAS, 497,059 for IQ3 GWAS, 475,767 for EA3 MTAG, 411,947 for IQ3 MTAG and 
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476,321 for the common factor GWAS (Genomic SEM). LD adjustment was performed using 

the target sample (TEDS) genotype data as LD reference panel. The weights were then 

estimated based on the heritability explained by the markers in the GWAS summary statistics 

and the assumed fraction of markers with non-zero effects. For each summary statistic we 

created LDpred GPS based on 9 fractions (i.e. 1,0.3,0.1,0.03,0.01,0.003,0.001,0.0003,0.0001) 

which we then optimized with respect to prediction accuracy (highest R2) in our validation set 

for all our phenotypes of interest.  

 

Lassosum 

 

Lassosum (Mak, Porsch, Choi, Zhou, & Sham, 2017) is a machine-learning approach which 

uses penalized regression in the context of GWAS summary statistics. The LASSO, or L1 

regularization, approach is particularly useful within highly dimensional data where m 

(number of SNPs) > N (individuals), and most betas weights are assumed to be 0, because it 

allows variable selection (i.e. the removal of SNPs). 

In LASSO regression an L1 penalty, or L1 regularization term, (λ||β||1) is applied to the least 

square estimator. That is minimize 

 

β||y−Xβ||2 

subject to a constraint parameter, s:  

 

||β||1 ≤ s 

 

The notation ||β||1 describes the L1 norm of a coefficient vector β, defined as  

 

||β||1 = ∑|βj|.  

 

This L1 norm depends on a specific parameter &,  which controls the amount of shrinkage 

applied to the estimator (Tibshirani, 1996), while s is the boundary for how large ∑|βj| can be.  

& and s have thus an inverse relationship: as s approaches infinity & becomes 0, no shrinkage 

is applied on the least square estimator and the problem becomes unconstrained (such as 

ordinary least squares). On the other hand as s becomes 0 & approaches infinity thus betas are 

shrunk to 0. A simpler way to look at this is that depending on &, some SNP betas are shrunk 

to 0, that is, the higher the penalty the more sparse the model will be. In the extreme, when & 

= 0, all betas are retained in the model (no betas are set to 0 and therefore eliminated from the 
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model); when & approaches infinity all betas are shrunk to 0. LASSO optimizes the tuning 

parameter & to perform shrinkage and variable selection, thereby dealing with overfit and 

multicollinearity. 

& and s are hyperparameters which are tuned in a cross-validation step (see below). 

In the context of Lassosum, the equation for the LASSO is rewritten to include a matrix 

correlation between SNPs and phenotype, and LD information from a reference panel is 

directly integrated in the formula as a matrix correlation between SNPs: see (Tibshirani, 

1996) for more details.  

 

Tuning and constraint parameters, & and s, are chosen in the validation step (this is akin to 

optimization that can be performed in p-value thresholding methods). As with other 

approaches we used our validation set to perform parameter tuning and we retained the best 

polygenic score (with respect to R2) to assess model performance in the test set. LD was 

accounted for via a reference panel, here the same as the test sample, and estimation of LD 

blocks was performed using LD regions defined in (Berisa & Pickrell, 2016), as 

recommended (Mak et al., 2017).  
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Methods S4: Multi-trait approaches. 

Genomic SEM 

 

Genomic SEM (Grotzinger et al., 2018) is a structural equation modeling approach, which can 

be used to jointly analyze GWA summary statistics to boost power for discovery and 

polygenic prediction. In the form used here, the common factor GWA analysis, we 

specifically test SNP effects at the level of a latent common factor constructed from GWA 

summary statistics for several traits. We used the most recent GWA summary statistics for 

intelligence (IQ3) and educational attainment (EA3) along with three UKbiobank traits: ‘Age 

when completed full time education’, and ‘Time spent using computer’, and ’Household 

Income’. Table S2 provides more information about these GWA summary statistics. 

First, we estimated the genetic covariance and corresponding sampling covariance matrices 

by using multivariate LD-score regression (LDSC) a multivariate extension of LDSC, which 

is used in Genomic SEM to populate the off-diagonal elements of the sampling covariance 

matrix, accounting for unknown sample overlap (Grotzinger et al., 2018). Secondly, we fitted 

a common factor model to the data using a Diagonally Weighted Least Square (DWLS) 

estimator (default in Genomic SEM). Table S3 shows results for the common factor model in 

terms of standardized and unstandardized factor loadings and residual variance of the 

indicators after removing the effects of the common factor. The model fit indices showed a 

reasonably good fit for our specified model: χ2(5) = 45.899, AIC = 65.899, CFI = .99, SRMR 

= .032. 

 

We then proceeded to run the common factor GWAS. Here, the genetic and sampling 

covariance matrices are expanded to include effects of individual SNPs, and a common factor 

model is fitted to the data for each SNP in common between the indicators (in our case ~ 7 

million SNPs in common across all summary statistics).  

 

After the common factor GWAS analysis we calculated an effective sample size for the 

common factor GWAS summary statistics(Nivard, 2018), in order to be able to run further 

analyses (e.g. polygenic scores in LDpred): 

 

First, we computed the dot product of the square root of N (where N is a matrix containing 

GWAS sample sizes): 

sqrt(N)%*%t(sqrt(N)) 

143



 

 

 

Second, we extended the dot product with an inner matrix, which is the correlation matrix 

between the square root of the sample sizes: 

 

I <- diag(5) 

  

sqrt(N)%*%solve(I) %*% t(sqrt(N)) 

 

Lastly, we replaced the inner matrix with the matrix holding the cross-trait intercepts from the 

multivariable LDSC function. This yielded an effective sample size of N = 1,387,848.  

The analyses yielded a common factor trait with SNP h2 of 8.4%. It has been noted 

(Grotzinger et al., 2018) that the WLS estimator will tend to produce a solution mainly 

reflecting the loadings of the most powered traits and will boost power for prediction 

accuracy accordingly. This property was desirable in our case as EA3 had the highest loading 

on the common factor (Table S4).  

 

This was also reflected in the pattern of genetic correlations from Genomic SEM (rg estimates 

presented in Supplementary Figure S3), where the common factor trait had a genetic 

correlation of rg = .96 with EA3 and of rg = .86 with IQ3. This finding suggest that the 

common factor trait captured more of the genetic architecture of educational attainment than 

of that of IQ, which was also suggested by standardized factor loadings on the common factor 

of .92 and .79 for EA3 and IQ3, respectively.” 
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MTAG 

 

MTAG (Turley et al., 2018) is a meta-analytic approach that jointly analyzes univariate 

GWAS summary statistics from several potentially different traits, and outputs trait-specific, 

power-boosted summary statistics, which can be used for variant discovery or polygenic 

prediction. In a similar fashion as Genomic SEM, bivariate LDSC is used to account for 

unknown sample overlap between GWA summary statistics. As for Genomic SEM, here we 

jointly analyzed IQ3 and EA3 (our GPS of interest) along with Income, ‘Age completed full 

time education’ and ‘time spent using computer’. Table S5 reports mean χ2 of summary 

statistics before and after analysis in MTAG. Both in the case of IQ3 and EA3 the analysis 

yielded substantial gains in power, with a mean χ2 increase of 19.1% for IQ3 which 

corresponds to an increase in power from a GWA sample size of N = 266,453 to N = 383,743 

(i.e. 44% increase in GWAS sample size), and a mean χ2 increase of 8.9% for EA3, 

corresponding to an increase in GWA sample size from N= 766,345 to N = 883,280 (i.e. 15% 

increase in GWAS sample size). Table S4 shows MTAG results for all summary statistics. 

SNP h2 of intelligence increased from 18.4% to 28.2% and SNP h2 of educational 

achievement from 10.7% to 12.6%. 

 

MTAG makes the assumption that SNP effects share the same variance-covariance matrix 

across traits (Turley et al., 2018). This assumption is however likely to be violated because 

effects across traits are heterogeneous, which could lead to inflated type I error. Nevertheless, 

as outlined in the original manuscript (Turley et al., 2018), even if this assumption is not met, 

polygenic scores constructed from MTAG summary statistics are expected to yield more 

accurate prediction estimates (R2) than polygenic scores derived from GWA summary 

statistics for individual traits. However, this may still cause problems at the level of 

interpretability, because increases in false positive rates could bias the genetic architecture of 

MTAG analyses towards the traits with the most powered GWAS (Hill, 2018). 

 

To keep track of Type I error inflations, we ran the recommended max False Discovery Rate 

(maxFDR) (Supplementary table S5) analyses on our traits, which showed that Type I error 

did not seem inflated for IQ3 (FDR <. 0001) or EA3 (FDR <.0001). However, maxFDR 

calculations only provide information regarding contamination of genome-wide significant 

hits. As such, the insights provided by these analyses regarding the level of possible genetic 

confound are limited.   
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We therefore estimated genetic correlations between our main variables of interest before and 

after MTAG as well as with a schizophrenia GWA (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014), used here as a control variable. As shown elsewhere (Hill, 

2018), since schizophrenia has a negative moderate genetic correlation with IQ and a very 

weak and positive, or non-significant, association with EA, this analysis provided insights 

about the degree to which MTAG summary statistics for IQ3 and EA3 were leaning more 

towards one trait or the other. Figure S4 shows genetic correlations between these traits. 

Before being meta-analyzed in MTAG, IQ3 had a moderate negative genetic correlation with 

schizophrenia, rg = - 0.20 (p = 2.95e-22), while EA3 had a negligible positive genetic 

correlation with SCZ, rg = 0.063 (p = 0.0006). After the analysis in MTAG the genetic 

correlation between IQ3 and SCZ was somewhat attenuated rg = -0.10 (p = 3.0475e-08), but 

still consistent and in the direction expected. The genetic correlation between EA3 and SCZ 

was even closer to 0 and was not significant, rg < 0.003 (p = .86). These analyses, along with 

FDR results, suggested that confounding due to violation of MTAG assumptions was not 

likely for IQ3 and EA3.  
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SMTpred 

 

SMTpred (Maier et al., 2018) is a multi-trait method that combines beta weights from GWAS 

summary statistics or, more directly, already calculated polygenic scores, based on sample 

size, SNP h2 and genetic correlations between traits, in order to boost prediction accuracy of 

polygenic scores (Maier et al., 2018). In the form used here, SMTpred is an extension of the 

genomic best linear unbiased predictor (GBLUP) method (whereby in a linear mixed model 

framework SNP effects are jointly fit in the same model; (Yang et al., 2012) to the extent that 

we apply multi-trait weighting to BLUP predictors based on summary statistics (wMT-

SBLUP). First, we converted beta (OLS) estimates from GWA summary statistics of ‘IQ’, 

‘EA’, ‘Income’, ‘Age completed full time education’ and ‘Time spent using computed’, to 

summary statistics based BLUP estimates using GCTA-Cojo (Yang et al., 2012). As 

recommended (Maier et al., 2018) we used a shrinkage & parameter M*(1-h2/h2), where M is 

the number of SNPs and h2 is the SNP h2 of the trait, and an LD window of 2000 Kb, using 

our target sample (TEDS) as the reference panel. 

We then calculated SNP h2 and genetic correlation estimates between traits in LDSC (Bulik-

Sullivan et al., 2015) to obtain SNP h2 and genetic correlation estimates between traits. These 

were input in SMTpred, along with SBLUP estimates, to derive wMT-SBLUP estimates using 

an optimal index weighting for each trait (Maier et al., 2018), which takes into account 

contributions of jointly analysed traits depending on GWAS sample size, SNP h2 and genetic 

correlation with the target trait. Polygenic scores were then calculated for the multi-trait 

weighted IQ3 and EA3 summary statistics using PLINK 2. 
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Supplementary figures 

 

Figure S1. Phenotypic correlations between outcome variables. 
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Figure S2. Genetic correlations between GWAS summary statistics. 

 

 

 

 

Note. EA3 = educational attainment GWAS, IQ3 = intelligence GWAS, Income = Income 

GWAS, AgeEdu = Age completed full time education GWAS, TimePC = Time spent at 

computer GWAS.  
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Figure S3. Genetic correlations between pre and post multi-trait analyses. 

 

 

 

Note. EA3 = educational attainment GWAS, IQ3 = intelligence GWAS, SCZ = Schizophrenia 

GWAS. 
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Figure S4. Test of difference in predictive power between polygenic score approaches. 

 

Note.  Figure shows pairwise bootstrapped R2 differences (%) and 95% confidence intervals calculated as the 2.5th and 97.5th percentiles of the 

distribution of R2 differences for the polygenic score methods tested.     
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Figure S5. Test of difference in predictive power between multi-trait approaches. 

 

Note.  Figure shows pairwise bootstrapped R2 differences (%) and 95% confidence intervals calculated as the 2.5th and 97.5th percentiles of the 

distribution of R2 differences, for the multi-trait methods tested. Polygenic scores were calculated using Lassosum.    
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Figure S6. Variance predicted in intelligence and educational achievement at age 12 and 16 across multi-trait and polygenic scores methods. 

 

Note. Figure shows variance predicted in intelligence (panel a) and educational achievement (panel b) at age 12 and 16 using polygenic scores 

constructed from IQ3 MTAG, EA3 MTAG, common factor GWAS (summary statistics from genomic SEM), and multi-trait weighted IQ3 and 

EA3 SBLUP predictors (wMT-SBLUP).  

Error bars are bootstrapped 95% confidence intervals based on 1,000 replications
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Supplementary Table S1. Descriptives statistics of phenotypes.

Outcome N Mean SD

Intelligence age 12 3273 0.003 0.982

Educational achievement age 12 4537 4.428 0.577

Intelligence age 16 1925 -0.016 0.983

Educational achievement age 16 4925 8.754 1.275

Training set

Intelligence age 12 1734 0 0.99

Educational achievement age 12 2331 4.42 0.57

Intelligence age 16 994 0 0.96

Educational achievement age 16 2516 8.74 1.24

Test set

Intelligence age 12 1539 0.01 0.97

Educational achievement age 12 2206 4.44 0.58

Intelligence age 16 931 -0.03 1

Educational achievement age 16 2409 8.77 1.31

Supplementary Table S2. GWA summary statistics.

Name N h2 SE h2 Repository

EA3 (without 23andMe) 766,345 0.1066 0.0026 https://www.dropbox.com/s/ho58e9jmytmpaf8/GWAS_EA_excl23andMe.txt?dl=0

IQ3 (without TEDS) 266,450 0.1841 0.0063 https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip

Income (UK Biobank) 96,900 0.0703 0.0065 Hill2016_UKB_Income_summary_results_21112016.txt.gz

Age completed full time education (UKB) 226,899 0.0831 0.0043 https://www.dropbox.com/s/ia7o57jpr4so3y7/189.assoc.tsv.gz?dl=0

Time spent using computer (UKB) 261,987 0.0959 0.0041 https://www.dropbox.com/s/cxp82nmxfxi1fwz/2178.assoc.tsv.gz?dl=0

Name References

EA3 (without 23andMe) Lee et al., 2018. Nat. Genet. 2018; 50:1112–1121. 

IQ3 (without TEDS) Savage et al., 2018. Nat Genet. 2018;50:912–9.

Income (UKB) Hill et al., 2016. Curr Biol. 2016;26:3083–9.

Age completed full time education (UKB) Seed C Hail: An Open-Source Framework for Scalable Genetic Data. 2017.

Time spent using computer (UKB) Seed C Hail: An Open-Source Framework for Scalable Genetic Data. 2017.
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Supplementary Table S3. Model selection and model performance in training and test sets.

Polygenic score approach Summary statistics Beta (SE) R2% tuning parameter N SNPs Beta (SE) R2% tuning parameter N SNPs

PRSice GWAS IQ3 0.203 (0.024) 3.9 p-value threshold = 0.3 72,614 0.22 (0.020) 5.18 p-value threshold = 0.3 72,614

GWAS EA3 0.230 (0.023) 5.1 p-value threshold = 0.3 75,860 0.270 (0.019) 7.89 p-value threshold = 0.3 75,860

LDpred GWAS IQ3 0.210 (0.023) 4.3 Fraction = 1 497,059 0.257 (0.019) 6.77 Fraction = 1 497,059

GWAS EA3 0.221 (0.023) 4.8 Fraction = 1 496,633 0.271 (0.019) 7.5 Fraction = 1 496,633

Lassosum GWAS IQ3 0.217 (0.023) 4.6 λ = 0.001; s = 0.9 149,922 0.265 (0.019) 7.19 λ = 0.00162; s = 0.9 107,322

GWAS EA3 0.237 (0.023) 5.4 λ = 0.001; s = 0.5 74,009 0.290 (0.019) 8.55 λ = 0.001; s = 0.9 110,698

Polygenic score approach Summary statistics Beta (SE) R2% tuning parameter N SNPs Beta (SE) R2% tuning parameter N SNPs

PRSice GWAS IQ3 0.253 (0.029) 6.8 p-value threshold = 0.1 10,399 0.25 (0.019) 6.46 p-value threshold = 1 141,805

GWAS EA3 0.274 (0.029) 7.9 p-value threshold = 0.1 41,905 0.365(0.018) 13.8 p-value threshold = 0.1 41,905

LDpred GWAS IQ3 0.280 (0.029) 8.4 Fraction = 1 497,059 0.274 (0.018) 7.76 Fraction = 1 497,059

GWAS EA3 0.270 (0.029) 8.2 Fraction = 1 496,633 0.367 (0.018) 14 Fraction = 1 496,633

Lassosum GWAS IQ3 0.266 (0.032) 8.8 λ = 0.001; s = 0.9 149,922 0.284 (0.018) 8.32 λ = 0.001; s = 0.9 149,922

GWAS EA3 0.285 (0.029) 8.6 λ = 0.001; s = 0.9 110,698 0.391 (0.018) 15.9 λ = 0.001; s = 0.5 74,009

Intelligence age 12 Educational achievement age 12

Polygenic score approach Summary statistics Beta (SE) R2% Beta (SE) R2%

PRSice GWAS IQ3 0.189 (0.024) 3.9 2.22 5.95 0.230 (0.020) 5.64 3.03 7.48

GWAS EA3 0.250 (0.024) 6.4 4.05 9.09 0.240 (0.020) 5.9 4.1 7.99

LDpred GWAS IQ3 0.221 (0.023) 5.3 3.42 7.7 0.259 (0.020) 6.65 4.85 8.75

GWAS EA3 0.263 (0.024) 7.1 4.93 9.58 0.259 (0.020) 6.66 4.62 9.1

Lassosum GWAS IQ3 0.215 (0.024) 4.9 3.1 7.37 0.267 (0.020) 7.06 5.19 9.22

GWAS EA3 0.265 (0.024) 7.2 4.83 9.97 0.259 (0.020) 6.64 4.83 8.7

Intelligence age 16 Educational achievement age 16

Polygenic score approach Summary statistics Beta (SE) R2% Beta (SE) R2%

PRSice GWAS IQ3 0.232 (0.032) 5.2 2.82 8.09 0.273 (0.019) 7.25 5.55 9.49

GWAS EA3 0.304 (0.032) 8.7 5.62 12.12 0.360 (0.019) 12.7 10.28 15.41

LDpred GWAS IQ3 0.260 (0.032) 6.4 3.92 9.71 0.302 (0.019) 8.91 7.05 11.18

GWAS EA3 0.308 (0.031) 9.1 6.06 12.71 0.376 (0.019) 13.8 11.16 16.23

Lassosum GWAS IQ3 0.266 (0.032) 6.7 4.01 10.03 0.310 (0.019) 9.4 7.24 11.63

GWAS EA3 0.321 (0.031) 9.9 6.7 13.7 0.389 (0.019) 14.8 12.27 17.28

Note: significance test across all: p < 2e-16

Training sets

Test sets

 95% CI (lower/upper bound)  95% CI (lower/upper bound)

Intelligence age 12 Educational achievement age 12

Intelligence age 16 Educational achievement age 16

 95% CI (lower/upper bound) 95% CI (lower/upper bound)

Supplementary Table S3a. Bootstrapped R2 difference and 95% confidence intervals for polygenic score methods tested.

Intelligence age 12 Intelligence age 16

Polygenic score approach comparison Summary statistics Bootstrapped R2 difference Bootstrapped R2 difference 

PRSice vs LDpred GWAS IQ3 -0.014281321 -0.023996651 -0.00492503 -0.012479971 -0.03739398 0.0084961

GWAS EA3 -0.006440552 -0.019373234 0.00580973 -0.003773637 -0.02116681 0.0154004

LDpred vs Lassosum GWAS IQ3 0.003639075 -0.002952799 0.01017529 -0.003304759 -0.01321172 0.0066538

GWAS EA3 -0.001096851 -0.013921895 0.00971285 -0.007979123 -0.02598166 0.0089394

PRSice vs Lassosum GWAS IQ3 -0.010642246 -0.020898629 -0.00107778 -0.01578473 -0.03638437 0.0020232

GWAS EA3 -0.007537404 -0.019097489 0.00443493 -0.01175276 -0.02939713 0.0072051

Educational achievement age 12 Educational achievement age 16

Polygenic score approach comparison Summary statistics Bootstrapped R2 difference Bootstrapped R2 difference 

PRSice vs LDpred GWAS IQ3 -1.03E-02 -0.01956885 -0.00146299 -0.016504655 -0.02579594 -0.0075171

GWAS EA3 -7.33E-03 -0.01791592 0.0021386 -0.01101581 -0.02435639 0.0011394

LDpred vs Lassosum GWAS IQ3 -4.08E-03 -0.01200445 0.0038833 -0.00464733 -0.01151893 0.001991

GWAS EA3 -2.41E-05 -0.01007874 0.0099258 -0.009969713 -0.02088693 0.0011764

PRSice vs Lassosum GWAS IQ3 -1.44E-02 -0.0246109 -0.00463441 -0.021151985 -0.03111475 -0.0103181

GWAS EA3 -7.35E-03 -0.01691077 0.00273215 -0.020985522 -0.03170075 -0.009227

 95% CI (lower/upper bound)

 95% CI (lower/upper bound)

 95% CI (lower/upper bound)

95% CI (lower/upper bound)
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Supplementary Table S4. Model selection and model performance in training and test sets.

Polygenic score approach Summary statistics Beta (SE) R2% tuning parameter N SNPs Beta (SE) R2% tuning parameter N SNPs

PRSice Common factor GWAS 0.025 (0.023) 6.23 p-value threshold = 0.1 43,889 0.301 (0.019) 9.27 p-value threshold = 0.1 43,889

MTAG IQ3 0.247 (0.023) 5.99 p-value threshold = 0.1 37,912 0.297 (0.019) 9.04 p-value threshold = 0.1 37,912

MTAG EA3 0.253 (0.023) 6.21 p-value threshold = 0.3 77,465 0.299 (0.019) 9.14 p-value threshold = 1 141,470

Ldpred Common factor GWAS 0.278 (0.024) 5.74 Fraction = 1 476,321 0.303 (0.019) 9.38 Fraction = 1 476,321

MTAG IQ3 0.247 (0.023) 5.91 Fraction = 1 411,947 0.302 (0.019) 9.32 Fraction = 1 411,947

MTAG EA3 0.234 (0.023) 5.3 Fraction = 1 475,767 0.292 (0.019) 8.7 Fraction = 1 475,767

Lassosum Common factor GWAS 0.253 (0.023) 6.21 λ = 0.001; s = 0.5 58,988 0.317 (0.019) 10.28 λ = 0.001; s = 0.5 58,988

MTAG IQ3 0.260 (0.023) 6.6 λ = 0.001; s = 0.5 103,554 0.316 (0.019) 10.21 λ = 0.00264; s = 0.2 28,276

MTAG EA3 0.252 (0.023) 6.14 λ = 0.001; s = 0.5 76,252 0.309 (0.019) 9.76 λ = 0.001; s = 0.5 76,252

Beta (SE) R2% tuning parameter N SNPs Beta (SE) R2% tuning parameter N SNPs

PRSice Common factor GWAS 0.311 (0.029) 9.96 p-value threshold = 0.1 43,889 0.370 (0.018) 14.17 p-value threshold = 0.1 43,889

MTAG IQ3 0.315(0.029) 10.4 p-value threshold = 0.3 71,903 0.352 (0.018) 12.76 p-value threshold = 0.03 20,156

MTAG EA3 0.299 (0.029) 9.39 p-value threshold = 0.3 77,465 0.378 (0.018) 14.83 p-value threshold = 0.1 44,159

Ldpred Common factor GWAS 0.316 (0.029) 10.23 Fraction = 1 476,321 0.396 (0.017) 16.19 Fraction = 1 476,321

MTAG IQ3 0.316 (0.029) 10.23 Fraction = 1 411,947 0.363 (0.018) 13.58 Fraction = 1 411,947

MTAG EA3 0.326 (0.029) 10.88 Fraction = 1 475,767 0.382 (0.018) 15.06 Fraction = 1 475,767

Lassosum Common factor GWAS 0.327 (0.029) 10.84 λ = 0.00127; s = 0.2 32,257 0.408 (0.017) 17.2 λ = 0.001; s = 0.5 58,988

MTAG IQ3 0.336 (0.020) 11.56 λ = 0.001; s = 0.5 103,554 0.386 (0.018) 15.42 λ = 0.001; s = 0.5 103,554

MTAG EA3 0.310 (0.029) 9.97 λ = 0.001; s = 0.9 112,655 0.410 (0.017) 17.39 λ = 0.001; s = 0.5 76,252

intelligence age 12 educational achievement age 12

Polygenic score approach Summary statistics Beta (SE) R2% Beta (SE) R2%

PRSice Common factor GWAS 0.267 (0.024) 7.32 4.99 10.1 0.274 (0.020) 7.42 5.57 9.7

MTAG IQ3 0.263 (0.024) 7.2 4.87 9.91 0.281 (0.020) 7.79 5.79 10.01

MTAG EA3 0.266 (0.024) 7.26 4.9 10.88 0.261 (0.020) 6.72 4.87 8.92

Ldpred Common factor GWAS 0.278 (0.024) 7.95 5.51 10.78 0.296 (0.020) 8.69 6.56 11.35

MTAG IQ3 0.270 (0.023) 8.02 5.72 10.76 0.297 (0.020) 8.72 6.69 11.06

MTAG EA3 0.280 (0.024) 8.06 5.66 10.8 0.288 (0.020) 8.27 6.2 10.93

Lassosum Common factor GWAS 0.284 (0.024) 8.28 5.9 11.39 0.292 (0.020) 8.43 6.38 10.77

MTAG IQ3 0.274 (0.024) 7.79 5.48 10.47 0.302 (0.020) 9.03 6.89 11.43

MTAG EA3 0.287 (0.024) 8.38 5.96 11.3 0.292 (0.020) 8.43 6.27 10.76

SMTpred IQ3 0.261 (0.025) 7.33 4.65 10.21 0.297 (0.020) 8.74 6.63 11.12

EA3 0.267 (0.025) 7.59 4.95 10.49 0.283 (0.020) 7.89 5.88 10.13

Beta (SE) R2% Beta (SE) R2%

PRSice Common factor GWAS 0.320 (0.032) 9.75 6.58 13.39 0.371 (0.019) 13.45 11.14 16.07

MTAG IQ3 0.309 (0.032) 9.02 6.04 12.7 0.345 (0.019) 11.65 9.56 14.21

MTAG EA3 0.317 (0.032) 9.5 6.4 13.05 0.379 (0.019) 14.06 11.66 16.67

Ldpred Common factor GWAS 0.322 (0.031) 9.97 6.62 13.63 0.396 (0.018) 15.36 12.81 17.93

MTAG IQ3 0.296 (0.032) 8.36 5.34 11.81 0.378 (0.019) 13.98 11.61 16.6

MTAG EA3 0.280 (0.032) 7.77 4.88 11.4 0.395 (0.019) 15.25 12.54 18.02

Lassosum Common factor GWAS 0.334 (0.032) 10.53 7.25 14.41 0.393 (0.019) 15.11 12.68 17.68

MTAG IQ3 0.327 (0.032) 10.04 6.7 13.9 0.382 (0.019) 14.28 12.1 16.81

MTAG EA3 0.332 (0.031) 10.58 7.19 14.5 0.403 (0.018) 15.91 13.38 18.42

SMTpred IQ3 0.318 (0.031) 9.67 6.59 13.22 0.0397 (0.018) 15.45 13.09 18.1

EA3 0.308 (0.031) 9.12 6.03 12.49 0.401 (0.018) 15.75 13.13 18.37

Note: significance test across all: p < 2e-16

Training sets

Test sets

 95% CI (lower/upper bound)

95% CI (lower/upper bound) 95% CI (lower/upper bound)

intelligence age 16 educational achievement age 16

intelligence age 12 educational achievement age 12

intelligence age 16 educational achievement age 16

95% CI (lower/upper bound)

Supplementary Table S4a. Bootstrapped R2 difference and 95% confidence intervals for multi-trait methods tested.

Multi-trait approach comparisonSummary statistics Bootstrapped R2 difference Bootstrapped R2 difference 

Genomic SEM vs MTAG IQ 0.005195566 -0.028898336 0.043116661 0.004721998 -0.012023 0.02106937

EA -0.000932435 -0.007487815 0.005488146 -0.000536255 -0.015058 0.01376225

Genomic SEM vs SMTpred IQ 0.009886851 -0.028121942 0.049892766 0.008583246 -0.041507 0.05659638

EA 0.00711602 -0.032066286 0.045629472 0.014250987 -0.032128 0.0618653

MTAG vs SMTpred IQ 0.004691286 -0.033835197 0.044525301 0.003861247 -0.045346 0.05543739

EA 0.008048454 -0.031312676 0.045999744 0.014787242 -0.032516 0.06579134

Educational achievement age 12 Educational achievement age 16

Bootstrapped R2 difference Bootstrapped R2 difference 

Genomic SEM vs MTAG IQ -0.005536917 -0.013945717 0.002838683 0.00823242 -0.002308 0.01970279

EA -0.000126251 -0.006123323 0.005733628 -0.007720841 -0.014386 -0.000281249

Genomic SEM vs SMTpred IQ -0.002970655 -0.01132872 0.005650657 -0.003527456 -0.013971 0.007059419

EA 0.005402023 -0.003684722 0.014830101 -0.006145427 -0.017474 0.004328821

MTAG vs SMTpred IQ 0.002566261 -0.008591518 0.014724984 -0.011759876 -0.022392 -0.001644046

EA 0.005528274 -0.001956338 0.013552312 0.001575414 -0.00799 0.01109316

Note.  Estimates refer to the Lassosum-based polygenic scores assosciations depicted in Figure 3 of the manuscirpt. 

 95% CI (lower/upper bound)  95% CI (lower/upper bound)

Intelligence age 12 Intelligence age 16

95% CI (lower/upper bound)  95% CI (lower/upper bound)
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Supplementary Table S5.  MTAG results.

Trait Sample size mean χ2 Sample size (equivalent) mean χ2 maxFDR 

1. Intelligence (IQ3) 266,450 1.67 392,833 1.989 0.000607

2. Educational attainment (EA3) 766,345 2.235 887,057 2.434 2.06E-05

3. Age when completed full time education 226,899 1.258 874,284 1.992 0.036225

4. Income 96,900 1.089 948,643 1.874 0.157761

5. Time spent using computer 261,987 1.354 388,744 1.525 0.003028

pre-MTAG post-MTAG

Supplementary Table S6. Genomic SEM: model fit and indicator loadings. 

χ2  df χ2 p-value AIC CFI SRMR

45.899 5 9.52E-09 65.899 0.995 0.032

Estimate SE Estimate SE

F1 =~  EA3 0.31017126 0.006074982 0.9260441 0.0181374

F1 =~  IQ3 0.35044795 0.008897467 0.7969648 0.02150712

F1 =~ Age Edu 0.26558754 0.006239188 0.9155075 0.01467975

F1 =~  Time PC 0.23375656 0.007166691 0.8819124 0.02703836

F1 =~  Income 0.18364141 0.006360183 0.5913828 0.02048178

EA ~~ EA3 0.01598009 0.002449829 0.1424423 0.02183715

IQ ~~ IQ3 0.07054708 0.005003863 0.3648469 0.02587836

Age Edu ~~ Age Edu 0.01362054 0.002863664 0.1618458 0.03402753

Time PC ~~ Time PC 0.01561277 0.005021845 0.2222307 0.07148034

Income ~~ Income 0.06270398 0.003160402 0.6502664 0.03277469

Note. F1 =~  trait : factor loading; trait ~~  trait : residual variance. 

AgeEdu = Age when completed full time education; Time PC = Time spent using computer.

Modelfit:

Factor Loadings and Residual Variance

Unstandardized Standardized
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Supplementary Table S7. Multiple regression of univariate GPS calculated in LDpre

Beta SE Pvalue R2(%) adj R2 (%)

Polygenic score 8.9 8.6

EA3 0.194 0.023 <.0001

IQ3 0.128 0.029 <.0001

Income -0.027 0.026 0.289

AgePC 0.006 0.025 0.795

AgeEdu 0.045 0.028 0.107

Beta SE Pvalue R2(%) adj R2 (%)

10.49 9.92

EA3 0.224 0.042 <.0001

IQ3 0.155 0.04 <.0001

Income -0.009 0.037 0.803

AgePC 0.03 0.037 0.409

AgeEdu 0.004 0.039 0.917

Beta SE Pvalue R2(%) adj R2 (%)

9.85 9.58

EA3 0.186 0.022 <.0001

IQ3 0.174 0.027 <.0001

Income 0.001 0.025 0.993

AgePC -0.003 0.024 0.874

AgeEdu -0.003 0.026 0.894

Beta SE Pvalue R2 (%) adj R2 (%)

16.98 16.76

EA3 0.3 0.026 <.0001

IQ3 0.167 0.024 <.0001

Income -0.006 0.023 0.783

AgePC -0.052 0.023 0.023

AgeEdu 0.053 0.025 0.037

Note. AgeEdu = Age when completed full time education; Time PC = Time spent 

using computer.

Educational achievement at age 12

Educational achievement at age 16

Intelligence at age 16

Intelligence at age 12 

162



 

 

Appendix 2– supplementary material for Chapter 3 

 

 

Contents: 

 

Supplementary Figures 

 

• Figure S1. Polygenic score (G) model used in hold-out set prediction.  

• Figure S2. Environmental predictors (E) model used in hold-out set prediction.  

• Figure S3. G*E model used in hold-out set prediction.  

• Figure S4. Network plot of Glinternet model. 

Supplementary Information: 

• Methods S1. Quality control and genotyping protocol  

Supplementary Tables: 

 

• Table S1. Descriptive statistics 

• Table S2. Training vs hold-out set fit indices, and nested comparisons  

• Table S3. Statistical inference  

• Table S4. Mediation models, bootstrapped estimates and 95% Confidence Intervals. 

• Table S5. List of interactions identified through Glinternet  

• Table S6. GWAS Summary statistics  

• Table S7. Parameter tuning for lassosum GPS 

Supplementary References 
 

 

 

 

 

  

163



 

 

 

 

Supplemental figures 

 

 

 
 

 

 

Figure S1. Polygenic score (G) model used in hold-out set prediction. Figure shows variables 

importance for the best G model selected via repeated cross-validation in the training set.  

Note. ASD = Autism Spectrum Disorder, ADHD = Attention-Deficit Hyperactivity Disorder, 

BIP = Bipolar Disorder, EA3 = educational attainment, IQ3 = intelligence, MDD = Major 

Depressive Disorder, SWB = Subjective Well-Being, OCD = Obsessive Compulsive 

Disorder, PTSD = Post-Traumatic Stress Disorder, SCZ = Schizophrenia. 
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Figure S2. Environmental predictors (E) model used in hold-out set prediction. Figure shows 

variables importance for the best E model selected via repeated cross-validation in the 

training set.  
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Figure S3. G*E model used in hold-out set prediction. Figure shows variables importance for 

the best G*E model selected via repeated cross-validation in the training set. Note. For 

interactions the first name refers to polygenic scores, the second name refers to 

environmental predictors. ASD = Autism Spectrum Disorder, ADHD = Attention-Deficit 

Hyperactivity Disorder, BIP = Bipolar Disorder, EA3 = educational attainment, IQ3 = 

intelligence, MDD = Major Depressive Disorder, SWB = Subjective Well-Being, OCD = 

Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, SCZ = 

Schizophrenia. 
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Figure S4. Interaction network of glinternet model. Note. E = Environmental measure, G = 

Genome-wide polygenic score. ASD = Autism Spectrum Disorder, ADHD = Attention-

Deficit Hyperactivity Disorder, BIP = Bipolar Disorder, EA3 = educational attainment, IQ3 = 

intelligence, MDD = Major Depressive Disorder, SWB = Subjective Well-Being, OCD = 

Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, Risk PC1 = first 

principal component of risky behaviours, SCZ = Schizophrenia.  
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Supplemental information 

 

 

QC and genotyping protocol  

 

DNA for 8,743 individuals (including 3,722 dizygotic co-twin samples) was extracted from 

saliva and buccal cheek swab samples and hybridized to HumanOmniExpressExome-8v1.2 

genotyping arrays at the Institute of Psychiatry, Psychology and Neuroscience Genomics & 

Biomarker Core Facility, London, UK. The raw image data from the array were normalized, 

pre-processed, and filtered in GenomeStudio according to Illumina Exome Chip SOP v1.4. 

(http://confluence.brc.iop.kcl.ac.uk:8090/display/PUB/Production+Version%3A+Illumina+E

xome+Chip+SOP+v1.4). In addition, prior to genotype calling, 919 multi-mapping SNPs and 

501 samples with callrate <0.95 were removed. The ZCALL program was used to augment 

the genotype calling for samples and SNPs that passed the initial QC.  

 

DNA from 3,747 samples was extracted from buccal cheek swabs and genotyped at 

Affymetrix, Santa Clara, California, USA. From this sample, 3,665 samples were 

successfully hybridized to AffymetrixGeneChip 6.0 SNP genotyping arrays 

(http://www.affymetrix.com/support/technical/datasheets/genomewide_snp6_datasheet.pdf) 

using experimental protocols recommended by the manufacturer (Affymetrix Inc., Santa 

Clara, CA). The raw image data from the arrays were normalized and pre-processed at the 

Wellcome Trust Sanger Institute, Hinxton, UK for genotyping as part of the Wellcome Trust 

Case Control Consortium 2 (https://www.wtccc.org.uk/ccc2/) according to the 

manufacturer’s guidelines 

(http://www.affymetrix.com/support/downloads/manuals/genomewidesnp6_manual.pdf). 

Genotypes for the Affymetrix arrays were called using CHIAMO 

(https://mathgen.stats.ox.ac.uk/genetics_software/chiamo/chiamo.html).  

 

After initial quality control and genotype calling, the same quality control was performed on 

the samples genotyped on the Illumina and Affymetrix platforms separately using PLINK 

(Chang et al., 2015; Purcell et al., 2007), R (R Core Team, n.d.), BCFtools (Li, 2011), and 

EIGENSOFT (Patterson, Price, & Reich, 2006; Price et al., 2006). 
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Samples were removed from subsequent analyses on the basis of call rate (<0.98), suspected 

non-European ancestry, heterozygosity, and relatedness other than dizygotic twin status. 

SNPs were excluded if the minor allele frequency was smaller than 0.5%, if more than 2% of 

genotype data were missing, or if the Hardy Weinberg p-value was lower than 10-5. Non-

autosomal markers and indels were removed. Association between SNP and the platform, 

batch, plate or well on which samples were genotyped was calculated; SNPs with an effect p-

value < 10-4 were excluded. A total sample of 10,346 samples (including 3,320 dizygotic twin 

pairs and 7,026 unrelated individuals), with 7,289 individuals and 559,772 SNPs genotyped 

on Illumina and 3,057 individuals and 635,269 SNPs genotyped on Affymetrix remained 

after quality control. 

 

Genotypes from the two platforms were separately phased using EAGLE2 (Loh et al., 2016), 

and imputed into the Haplotype Reference Consortium (release 1.1) using the Positional 

Burrows-Wheeler Transform method (Durbin, 2014) through the Sanger Imputation Service 

(McCarthy et al., 2016). Prior to merging, we excluded variants with info <0.75 and removed 

non-overlapping SNPs between platforms. After merging, we tested for minor allele 

frequency differences between platforms and removed SNPs with an effect p-value < 10-4, 

and Hardy Weinberg p-value > 10-5. Using these criteria, 7,363,646 genotyped and well-

imputed SNPs were retained for the analyses. 

 

We performed principal component analysis on a subset of 39,353 common (MAF > 5%), 

perfectly imputed (info = 1) autosomal SNPs, after stringent pruning to remove markers in  

linkage disequilibrium (r2 > 0.1) and excluding high linkage disequilibrium genomic regions 

so as to ensure that only genome-wide effects were detected. 
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Supplemental Tables 

 

Table S1. Descriptive 
statistics 

         

          
Training set N = 2170      Frequency  

  mean sd min max skew kurtosis level = 0  level = 

1 

sex        0.56 0.44 
Age chaos at home  11.21 0.68 9.80 13.31 -0.29 -0.92   
Age life events were reported   16.32 0.67 14.92 18.76 -0.33 -1.03   
Age GCSE scores taken  16.31 0.29 15.83 16.75 -0.05 -1.25   
SES at recruitment  0.30 0.95 -2.18 2.40 -0.05 -0.82   
Chaos at home Age 12  3.88 2.05 0.00 12.00 0.53 0.32   
Moving new school    0.00 1.00   0.74 0.26 

Loss Parent Job    0.00 1.00   0.91 0.09 
Involved with drugs    0.00 1.00   0.95 0.05 
Death close friend    0.00 1.00   0.78 0.22 
Hospitalized    0.00 1.00   0.92 0.08 
Breaking up    0.00 1.00   0.77 0.23 
Hospitalisation sibling    0.00 1.00   0.93 0.07 
Hospitalisation parent    0.00 1.00   0.92 0.08 
Decrease parent income    0.00 1.00   0.93 0.07 

Decrease parent arguments    0.00 1.00   0.77 0.23 
Beginning to date    0.00 1.00   0.77 0.23 
Educational Achievement   0.00 1.00 -3.80 1.80 -0.50 0.06   
Educational Achievement 

transformed 

 0.00 1.00 -3.26 3.41 0.00 -0.07   

ADHD  0.00 0.00 0.00 0.00 -0.57 -0.67   
Anorexia  31.91 2.92 21.58 41.66 0.05 0.04   
ASD  12.32 2.64 4.73 23.34 0.11 0.01   

BIP  9.17 3.34 -2.65 20.25 0.02 0.10   
BMI  0.54 0.59 -1.49 2.45 0.06 0.04   
Broad Depression  0.00 0.00 -0.02 0.00 -0.75 0.25   
EA3  -0.30 0.33 -1.26 0.88 0.15 -0.02   
Height  -0.21 0.41 -1.76 1.22 -0.02 0.24   
Income  -1.36 0.64 -3.33 0.87 -0.02 -0.14   
Insomnia  0.00 0.00 0.00 0.01 0.31 -0.42   
IQ3  -1.08 1.33 -6.46 3.56 0.04 0.13   
Irritability  -0.15 0.39 -1.34 1.17 0.03 -0.03   

MDD  -0.01 0.01 -0.04 0.01 -0.87 0.64   
Mood Swings  0.00 0.00 0.00 0.01 0.37 -0.30   
Neuroticism  -0.01 0.01 -0.03 0.01 -0.09 -0.79   
OCD  0.07 0.05 -0.09 0.25 0.12 -0.21   
PTSD  0.02 0.03 -0.07 0.11 -0.08 -0.02   
Risk PC1  0.00 0.00 0.00 0.00 -0.36 -0.25   
SCZ  5.50 1.91 -1.59 11.34 -0.11 0.01   
SWB  -0.54 0.29 -1.49 0.37 0.05 -0.03   

PC1  0.00 0.01 -0.04 0.05 0.03 1.50   
PC2  0.00 0.01 -0.03 0.06 0.65 2.47   
PC3  0.00 0.01 -0.04 0.04 -0.03 0.77   
PC4  0.00 0.01 -0.04 0.03 -0.04 0.65   
PC5  0.00 0.01 -0.04 0.04 -0.07 0.90   
PC6  0.00 0.01 -0.03 0.04 0.04 0.70   
PC7  0.00 0.01 -0.04 0.04 -0.07 0.56   
PC8  0.00 0.01 -0.04 0.04 -0.02 0.94   

PC9  0.00 0.01 -0.05 0.04 -0.15 1.06   
PC10  0.00 0.01 -0.04 0.04 -0.01 0.52   
Chip  1.56 0.50 1.00 2.00 -0.23 -1.95 0.44 0.56 
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Hold-out set N = 

542 

      Frequency   

  mean sd min max skew kurtosis level = 0  level 

= 1 

sex  1.44 0.50 1.00 2.00 0.24 -1.94 0.56 0.44 

Age chaos at home  11.23 0.72 9.84 12.76 -0.42 -1.00   

Age life events were 

reported  

 16.33 0.72 14.97 18.58 -0.34 -0.97   

Age GCSE scores taken  16.29 0.28 15.83 16.75 -0.02 -1.21   

SES at recruitment  0.30 0.96 -2.18 2.40 -0.06 -0.83   

Chaos at home Age 12  3.75 1.92 0.00 11.00 0.45 0.29   

Moving new school    0.00 1.00   0.73 0.27 

Loss Parent Job    0.00 1.00   0.88 0.12 

Involved with drugs    0.00 1.00   0.94 0.06 

Death close friend    0.00 1.00   0.78 0.22 

Hospitalized    0.00 1.00   0.91 0.09 

Breaking up    0.00 1.00   0.76 0.24 

Hospitalisation sibling    0.00 1.00   0.93 0.07 

Hospitalisation parent    0.00 1.00   0.92 0.08 

Decrease parent income    0.00 1.00   0.91 0.09 

Decrease parent arguments    0.00 1.00   0.77 0.23 

Beginning to date    0.00 1.00   0.75 0.25 

Educational Achievement   0.00 1.00 -3.20 1.97 -0.55 -0.09   

Educational Achievement 

transformed 

 0.00 1.00 -2.78 2.81 -0.02 -0.24   

ADHD  0.00 0.00 0.00 0.00 -0.61 -0.74   

Anorexia  32.07 2.82 23.18 42.37 0.12 0.37   

ASD  12.43 2.57 4.27 19.21 0.10 -0.13   

BIP  9.24 3.31 -0.95 22.23 0.25 0.20   

BMI  0.55 0.63 -1.16 2.65 -0.02 -0.10   

Broad Depression  0.00 0.00 -0.02 0.00 -0.81 0.80   

EA3  -0.31 0.33 -1.39 0.67 -0.05 -0.06   

Height  -0.21 0.41 -1.36 1.15 0.11 0.16   

Income  -1.35 0.67 -3.45 0.57 -0.05 -0.23   

Insomnia  0.00 0.00 0.00 0.01 0.34 -0.53   

IQ3  -1.11 1.43 -4.99 3.68 0.14 -0.15   

Irritability  -0.15 0.41 -1.39 1.26 0.07 0.21   

MDD  0.00 0.01 -0.04 0.01 -0.93 1.04   

Mood Swings  0.00 0.00 0.00 0.01 0.29 -0.32   

Neuroticism  -0.01 0.01 -0.02 0.01 -0.04 -0.82   

OCD  0.07 0.05 -0.07 0.28 0.37 0.31   

PTSD  0.02 0.03 -0.05 0.09 0.00 -0.41   

Risk PC1  0.00 0.00 0.00 0.00 -0.17 -0.39   

SCZ  5.47 1.87 -0.75 11.56 0.08 0.10   

SWB  -0.54 0.27 -1.47 0.23 -0.14 -0.11   

PC1  0.00 0.01 -0.04 0.04 -0.01 1.43   

PC2  0.00 0.01 -0.03 0.03 0.08 0.44   

PC3  0.00 0.01 -0.03 0.03 -0.15 0.64   

PC4  0.00 0.01 -0.03 0.03 -0.04 0.86   

PC5  0.00 0.01 -0.03 0.04 0.10 1.26   

PC6  0.00 0.01 -0.03 0.03 -0.02 0.39   

PC7  0.00 0.01 -0.03 0.03 -0.16 0.36   

PC8  0.00 0.01 -0.03 0.03 0.22 0.85   

PC9  0.00 0.01 -0.03 0.03 0.11 0.27   

PC10  0.00 0.01 -0.03 0.04 0.23 1.08   

Chip  1.57 0.50 1.00 2.00 -0.27 -1.93 0.43 0.57 
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Table S2. Train and hold-out set fit indices 

        95% Cis Best tuning parameters 

 model median 

R2 cv 

Train 

sd R2 

cv 

Train 

median 

RMSE 

cv 

Train 

sd 

RMSE 

cv 

Train 

RMSE 

test 

 R2  

test 

0.025 0.975 Alpha  Lambda 

Elastic Net G 0.167 0.042 0.912 0.037 0.901 0.183 0.127 0.236 0.200 0.062 

 E 0.280 0.049 0.846 0.036 0.834 0.301 0.243 0.356 0.800 0.006 

 E + G 0.331 0.050 0.819 0.037 0.798 0.361 0.304 0.416 0.300 0.034 

 E + G + 

E*G 

0.339 0.050 0.813 0.037 0.798 0.361 0.305 0.418 0.200 0.034 

Glinternet E + G + 

E*G + 

E*E + 

G*G 

0.354 0.037 0.804 0.024 0.799 0.364 0.297 0.411 NA 0.001 

Note: cv = cross-validation 

 

 

Table S2b.  Bootstrapped R2 difference and 95% confidence intervals for prediction models tested. 

Prediction model comparison median R2 

difference  

95% Cis (lower/upper bound) 

G+E - E  0.059 0.028 0.091 

G+E - G  0.177 0.132 0.223 
G*E - G+E  0.001 -0.012 0.013 
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Table S3.  Statistical inference  

names Coef 

Naive 

Pval 

Naive 

Lci 

Naive 

Uci 

Naive 

Coef 

Test 

Pval 

Test 

Lci 

Test 

Uci 

Test 

Coef 

Cond 

Pval 

Cond 

Lci 

Cond 

Uci 

Cond 

chaos at home -0.144 0.000 -0.179 -0.109 -0.200 0.000 -0.269 -0.131 -0.145 0.000 -0.175 -0.116 

moving to new 

school 

-0.076 0.000 -0.111 -0.041 -0.066 0.062 -0.135 0.003 -0.076 0.000 -0.105 -0.046 

involved with 

drugs 

-0.054 0.002 -0.089 -0.019 -0.065 0.069 -0.136 0.005 -0.055 0.002 -0.085 -0.025 

hospitalized -0.048 0.006 -0.083 -0.014 -0.001 0.980 -0.071 0.069 -0.049 0.112 -0.078 0.019 

beginning to 

date 

-0.035 0.056 -0.071 0.001 0.013 0.725 -0.060 0.087 -0.034 0.063 -0.065 0.003 

loss of parent 

job 

-0.036 0.042 -0.070 -0.001 -0.037 0.298 -0.108 0.033 -0.040 0.039 -0.070 -0.003 

breaking up -0.025 0.171 -0.061 0.011 -0.078 0.036 -0.151 -0.005 -0.025 0.168 -0.056 0.020 

death of close 

friend 

-0.028 0.120 -0.062 0.007 -0.028 0.432 -0.098 0.042 -0.029 0.107 -0.058 0.011 

decrease parent 

arguments 

-0.024 0.183 -0.058 0.011 -0.016 0.656 -0.086 0.054 -0.025 0.163 -0.054 0.019 

Risk PC1 0.029 0.190 -0.014 0.071 0.013 0.768 -0.074 0.101 0.029 0.181 -0.026 0.066 

SWB 0.016 0.356 -0.018 0.051 -0.001 0.977 -0.071 0.069 0.016 0.366 -0.046 0.045 

Irritability 0.019 0.284 -0.016 0.054 -0.044 0.229 -0.116 0.028 0.018 0.310 -0.039 0.049 

Insomnia 0.021 0.228 -0.013 0.056 0.072 0.042 0.003 0.142 0.021 0.233 -0.028 0.052 

MDD 0.022 0.248 -0.015 0.058 -0.035 0.337 -0.107 0.037 0.037 0.208 -0.040 0.080 

PTSD 0.025 0.161 -0.010 0.059 0.017 0.621 -0.052 0.086 0.025 0.163 -0.018 0.053 

SCZ 0.024 0.230 -0.015 0.063 0.055 0.164 -0.023 0.133 0.025 0.217 -0.030 0.059 

Anorexia 0.023 0.209 -0.013 0.058 -0.054 0.125 -0.124 0.015 0.023 0.204 -0.025 0.066 

OCD 0.030 0.092 -0.005 0.064 0.051 0.148 -0.018 0.121 0.030 0.092 -0.008 0.059 

BIP 0.024 0.210 -0.014 0.062 0.043 0.272 -0.034 0.119 0.024 0.227 -0.030 0.056 

Mood Swings 0.047 0.032 0.004 0.089 0.024 0.592 -0.065 0.113 0.046 0.037 0.004 0.082 

Income 0.040 0.057 -0.001 0.081 0.028 0.498 -0.054 0.111 0.042 0.048 0.000 0.076 

IQ3 0.119 0.000 0.078 0.159 0.132 0.003 0.045 0.219 0.120 0.000 0.085 0.154 

EA3 0.137 0.000 0.092 0.181 0.169 0.001 0.072 0.265 0.137 0.000 0.097 0.177 

SES at 

recruitment 

0.368 0.000 0.331 0.406 0.331 0.000 0.255 0.408 0.369 0.000 0.337 0.405 

Note. Naïve = coefficients from multiple regression of selected variables in training set; Test = coefficients from multiple regression of selected 

variables in test set; Cond = coefficients estimated with a conditional probability from truncated distribution. 
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Table S4. Mediation models, bootstrapped estimates and 95% Confidence Intervals. 

 Environmentally mediated effects Genetically mediated effects (genetic confounding) 

 Beta lower 

CI 

Upper 

CI 

 Beta lower 

CI 

Upper 

CI 

   

Y~X 0.26 0.189 0.333  0.451 0.387 0.511    

Y~M 0.452 0.385 0.51  0.262 0.185 0.335    
M~X 0.38 0.306 0.451  0.382 0.316 0.455    

a*b 0.172 0.135 0.212  0.1 0.065 0.137    

c+(a*b) 0.432 0.363 0.503  0.551 0.499 0.6    

ab/total 0.399 0.31 0.497  0.182 0.117 0.247    

Note. Y = outcome; X = predictor; M = mediator; Y~X = effects of X on Y while controlling for M; Y ~ M = 

effects of M on Y while controlling for X; M~X effects of X on M; a*b = indirect path; c+(a*b) = total 

effects; ab/total = percentage of effect mediated. 
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Table S5. List of interactions between significant main effects identified through Glinternet 

Main effect 1 Main effect 2 Weights 

SES at recruitment BIP -0.007 

SES at recruitment Height -0.013 

SES at recruitment IQ3 0.002 

Chaos at home Age 12 SWB 0.002 
Loss Parent Job Hospitalized -0.013 

Loss Parent Job Risk PC1 -0.008 

Death close friend Income -0.008 

Death close friend Irritability 0.015 

Hospitalized Breaking up -0.003 

Hospitalized Moving new school -0.015 

Breaking up Decrease parent arguments -0.007 

Breaking up Insomnia -0.008 

Breaking up Mood Swings 0.001 

Hospitalisation parent Insomnia 0.000 

Hospitalisation parent Irritability 0.000 

Decrease parent arguments SCZ -0.010 
Beginning to date SCZ -0.001 

Moving new school Height -0.002 

Moving new school Mood Swings 0.002 

ADHD Broad Depression -0.005 

ADHD MDD -0.007 

Anorexia EA3 0.005 

Anorexia MDD 0.005 

Anorexia OCD 0.012 

ASD Income 0.000 

BIP Risk PC1 0.011 

BIP SCZ -0.004 
EA3 MDD 0.007 

EA3 PTSD -0.010 

Height OCD 0.001 

Insomnia IQ3 0.005 

IQ3 OCD -0.004 

Note. Interactions are listed in order of discovery. 

 

 

 

 

Table S5b. List of GxE interactions introduced in Elastic Net model  

Environment Polygenic score weight 

SES at recruitment BIP -0.007 
SES at recruitment Height -0.013 

SES at recruitment IQ3 0.002 

Chaos at home Age 12 SWB 0.002 

Loss Parent Job Risk PC1 -0.008 

Death close friend Income -0.008 

Death close friend Irritability 0.015 

Breaking up Insomnia -0.008 

Breaking up Mood Swings 0.001 

Hospitalisation parent Insomnia 0.000 

Hospitalisation parent Irritability 0.000 

Decrease parent arguments SCZ -0.010 

Beginning to date SCZ -0.001 
Moving new school Height -0.002 

Moving new school Mood Swings 0.002 
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Table S6. GWAS Summary statistics  

Trait Cases Controls Sample 

Size 

h2 se Download link for summary stats 

ADHD 20183 35191 55374 0.220 0.01 http://www.med.unc.edu/pgc/results-and-downloads/data-use-agreement-

forms/copy_of_ADHDEA2017_data_download_agreement 

 

Anorexia Nervosa 16992 55525 72517 0.11-.17 0.01 https://www.med.unc.edu/pgc/download-results/ed/ 

 

Autism Spectrum 

Disorder 

18381 27969 46350 0.118 0.01 https://www.med.unc.edu/pgc/results-and-downloads 

 

Bipolar Disorder 20352 31358 51710 0.200 0.3 https://www.dropbox.com/s/kzg4hhttihva95d/2395_4.gwas.imputed_v3.

male.tsv.bgz?dl=0 -O 2395_4.gwas.imputed_v3.male.tsv.bgz 

 

BMI   681275 0.246 0.037 https://portals.broadinstitute.org/collaboration/giant/images/c/c8/Meta-

analysis_Locke_et_al%2BUKBiobank_2018_UPDATED.txt.gz 

 

Broad depression   500199 0.089 0.003 https://datashare.is.ed.ac.uk/handle/10283/3203 

 

Years of 

Education (EA3) 

excluding 

23andMe 

  766345 0.106 0.0026 https://www.dropbox.com/s/y3tkhblvbrzilzl/GWAS_EduYears_excl23an

dMe.txt?dl=0 

 

Standing Height   693529 0.483 0.037 https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-

analysis_Wood_et_al%2BUKBiobank_2018.txt.gz 

 

Household 

Income 

  286301 0.074 0.033 https://www.lothianbirthcohort.ed.ac.uk/content/gwas-summary-data 

 

Insomnia   113006 0.110 0.009 http://ctg.cncr.nl/software/summary_statistics 

 

Intelligence (IQ3) 

excluding TEDS 

  266453 0.190 0.01 correspondence 

Irritability 90282 232386 322668 0.117 0.0122 https://www.dropbox.com/s/r8tcj6ppl7lpq28/1940.assoc.tsv.gz?dl=0%20-

O%201940.assoc.tsv.gz 

 

MDD no 23andme 59851 113154 173005 0.087 0.004 https://www.med.unc.edu/pgc/results-and-downloads/downloads 

 

Mood swings 148601 180827 329428 0.108 0.00637 https://www.dropbox.com/s/4on2uuwif6dg5y5/1920.assoc.tsv.gz?dl=0%2

0-O%201920.assoc.tsv.gz 

 

Neuroticism   329821 0.088 0.0068 https://www.thessgac.org/data 

 

OCD 2688 7037 9725 0.280 0.04 http://www.med.unc.edu/pgc/results-and-downloads/data-use-agreement-

forms/pgc-ocd_aug2017.zip%20data_download_agreement 

 

PTSD 2424 7113 9537 0.180 0.06 https://www.med.unc.edu/pgc/results-and-downloads/data-use-

agreement-forms/PTSD%20EA_data_download_agreement 

 

Risk - First PC 

from automobile 

speading, drinks 

per week, ever 

smoker, sexual 

partners 

  315894 0.156 0.004 https://www.thessgac.org/data 

 

Schizophrenia 40675 64643 105318 0.240 0.0068 http://walters.psycm.cf.ac.uk 

 

Well-being   298420 0.047 0.004 http://ssgac.org/documents/SWB_Full.txt.gz 
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Table S7. Parameter tuning for lassosum GPS 

 Tuning parameters   

GPS names s lambda N best beta R2% validation 

ADHD 0.5 0.029763514 1 0.0052 

Anorexia 0.9 0.004281332 233163 0.7482 

ASD 0.9 0.001 386670 0.1524 
BIP 1 0.004281332 197683 0.3387 

BMI 1 0.006951928 3672 0.0741 

Broad Depression 0.9 0.011288379 20 0.0655 

EA3 0.5 0.001 149650 14.4394 

Height 0.2 0.001 135386 0.3581 

Income 0.9 0.002069138 143019 6.328 

Insomnia 0.2 0.018329807 4 0.2378 

IQ3 0.9 0.001 304122 9.1025 

Irritability 0.5 0.001 193689 0.0133 

MDD 0.2 0.011288379 49 0.0561 

Mood Swings 0.2 0.011288379 19 0.0159 

Neuroticism 0.2 0.014384499 35 0.0028 
OCD 1 0.037926902 159 0.0907 

PTSD 0.9 0.037926902 117 0.1974 

Risk PC1 0.2 0.018329807 26 0.0078 

SCZ 0.9 0.001623777 239742 0.0863 

SWB 0.2 0.001274275 109447 0.2172 
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Appendix 3 – Supplementary material for Chapter 4 

 

 

Contents: 

 

Supplementary Figures 

 

● Supplementary Figure S1: Common pathway twin models for child-rated and 

teacher-rated psychopathology measures by age.  

● Supplementary Figure S2: Comparison of twin heritability estimates from common 

pathway models. 

● Supplementary Figures S3-S4: Shared environmental and non-shared environmental 

influences on p (parent-rated) across age, derived from longitudinal twin model-fitting 

(Cholesky decomposition) 

● Supplementary Figure S5: Correlated factor solution of the longitudinal Cholesky 

decomposition 

● Supplementary Figures S6 to S15: Phenotypic correlations among psychopathology 

measures used to construct phenotypic p factors. 

● Supplementary Figure S16: Correlations of 1st PCs across ages.  

● Supplementary Figure S17: Correlations between polygenic scores for psychiatric 

traits used to construct polygenic p.  

● Supplementary Figure S18: PCA results for polygenic p-factor.  

Supplementary Tables 

● Supplementary Table S1: Additional parameters derived from common pathway 

twin models of childhood psychopathology in TEDS 

● Supplementary Table S2: Model fit statistics for common pathway twin models of 

childhood psychopathology in TEDS. 

● Supplementary Table S3: Loadings on first principal components of 

psychopathology measures for each age and rater. 

● Supplementary Table S4: Variance explained by 1st PCs for each age and rater.  

● Supplementary Table S5: Association statistics for polygenic p across phenotypic p 

measures. 
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Supplementary Figure S1 Common pathway twin models for teacher-rated and child-rated 

measures by age. Note: The ACE variance decomposition results for the common factor are 

presented in the top half of each figure, and the factor loadings of observed psychopathology 

variables on p are presented in the bottom half. See Supplementary Tables 1 and 2 for 

additional model parameters and model fit statistics, respectively. Also note that Antisocial = 

prosocial SDQ scale reversed; and psychopathy = APSD scale. 

 

 

Teacher-rated p factor.  
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Child-rated p factor.  
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Supplementary Figure S2. Comparison of twin heritability estimates from common 

pathway models. Error bars are 95% CIs. 
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Figure S3. Shared environmental influences on p (parent-rated) across age, derived from 

longitudinal twin model-fitting (Cholesky decomposition) 

 

 

Figure S4. Unique environmental influences on p (parent-rated) across age, derived from 

longitudinal twin model-fitting (Cholesky decomposition) 
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Figure S5. Correlated factor solution of the longitudinal Cholesky decomposition. The figure 

shows genetic correlations between and univariate heritability of phenotypic p, defined by the 

first unrotated principal component of psychopathology measures, using parent-reported data 

at age 7, 9, 12 and 16.  
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Supplementary Figures S6- to S15: Phenotypic correlations among psychopathology 

measures used to construct phenotypic p factors. Darker blue indicates stronger positive 

correlation.  

 

Figure S6. Phenotypic correlations between parent-rated traits at age 7. Note prosocial was 

reversed. 
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Figure S7. Phenotypic correlations between Teacher rated psychiatric traits at age 7. Note 

prosocial was reversed. 
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Figure S8. Phenotypic correlations between Child rated psychiatric traits at age 9. 
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Figure S9. Phenotypic correlations between Parent rated psychiatric traits at age 9. 
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Figure S10. Phenotypic correlations between Teacher rated psychiatric traits at age 9. 
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Figure S11. Phenotypic correlations between Parent rated psychiatric traits at age 12. 
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Figure S12. Phenotypic correlations between Teacher rated psychiatric traits at age 12. 
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Figure S13. Phenotypic correlations between Child rated psychiatric traits at age 12. 
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Figure S14. Phenotypic correlations between Parent rated psychiatric traits at age 16. 
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Figure S15. Phenotypic correlations between Child rated psychiatric traits at age 16.
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Figure S16. Correlations of 1st PCs of parent teacher and child rated measures across ages. 

Note variable names denote first principal component for parent reported data at age 7 to 16. 

E.g. P7pc1 = First principal component for parent rated age 7 data.  
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Supplementary Figure S17. Correlations between polygenic scores for psychiatric traits 

used to construct polygenic p. OCD =obsessive compulsive disorder; BIP =bipolar disorder; 

SCZ = schizophrenia; PTSD = Post-traumatic stress disorder; AN = anorexia nervosa; 

MDD = major depressive disorder; ADHD = attention deficit hyperactivity disorder; AUT = 

Autism. Darker blue indicates stronger positive correlation. 
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Supplementary Figure S18. PCA results for polygenic p factor. Note labels for polygenic 

scores: MDD= major depressive disorder, BIP= bipolar disorder, SCZ= schizophrenia, ASD= 

autism, AN= anorexia nervosa, ADHD=attention-deficit hyperactivity disorder, OCD= 

obsessive compulsive disorder, PTSD= post-traumatic stress disorder. 
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Supplementary Table S1: Additional parameters derived from common pathway twin 

models of childhood psychopathology. Note that c= common; s=specific; Tot=total. 

 

Parent Report Age 7           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Hyperactivity SDQ 0.11 0.23 0.05 0 0.03 0.58 0.35 0.05 0.61 5588 

Conduct SDQ 0.21 0.45 0.09 0 0.05 0.2 0.66 0.09 0.25 5592 

Peer Problems SDQ 0.23 0.29 0.1 0 0.06 0.32 0.53 0.1 0.37 5591 

Emotional Problems SDQ 0.1 0.44 0.04 0 0.02 0.39 0.54 0.04 0.41 5591 

APSD Psychopathy= Narcissism + CU-Traits 0.2 0.36 0.09 0 0.05 0.3 0.56 0.09 0.35 5587 

Autism Traits = Social + Nonsocial 0.33 0.29 0.14 0 0.08 0.16 0.62 0.14 0.24 5591 

Prosocial SDQ 0.11 0.52 0.05 0.02 0.03 0.27 0.63 0.07 0.3 5591 

           

Teacher Report Age 7           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Hyperactivity SDQ 0.26 0.44 0 0 0.07 0.23 0.7 0 0.3 4608 

Conduct SDQ 0.37 0.31 0 0 0.09 0.22 0.69 0 0.31 4610 

Peer Problems SDQ 0.21 0.43 0 0 0.05 0.3 0.64 0 0.36 4602 

Emotional Problems SDQ 0.02 0.48 0 0 0.01 0.49 0.5 0 0.5 4591 

APSD Psychopathy= Narcissism + CU-Traits 0.7 0.04 0 0 0.18 0.08 0.74 0 0.26 4591 

Autism Traits = Social + Nonsocial 0.23 0.47 0 0 0.06 0.24 0.7 0 0.3 4601 

Prosocial SDQ 0.53 0.21 0 0 0.13 0.13 0.73 0 0.27 4603 

           

Child Report Age 9           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Hyperactivity SDQ 0.17 0.17 0.06 0 0.08 0.52 0.34 0.06 0.6 2635 

Conduct SDQ 0.21 0.17 0.08 0 0.1 0.44 0.38 0.08 0.54 2631 

Peer Problems SDQ 0.17 0.17 0.06 0 0.08 0.51 0.34 0.06 0.6 2621 

Emotional Problems SDQ 0.19 0.19 0.07 0 0.09 0.46 0.38 0.07 0.56 2633 

CAST autism traits 0.22 0.16 0.08 0 0.11 0.43 0.38 0.08 0.54 2556 

Prosocial SDQ 0.04 0.33 0.01 0.02 0.02 0.58 0.37 0.04 0.59 2637 

           

Parent Report Age 9           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Hyperactivity SDQ 0.18 0.32 0.18 0.00 0.04 0.28 0.50 0.18 0.32 2671 

Conduct SDQ 0.26 0.26 0.27 0.02 0.06 0.13 0.52 0.29 0.19 2673 

Peer Problems SDQ 0.09 0.51 0.10 0.00 0.02 0.27 0.61 0.10 0.30 2673 

Emotional Problems SDQ 0.08 0.44 0.08 0.02 0.02 0.36 0.52 0.10 0.38 2673 

CAST autism traits 0.15 0.52 0.16 0.00 0.04 0.13 0.67 0.16 0.17 2675 
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APSD Psychopathy 0.34 0.13 0.35 0.00 0.08 0.09 0.48 0.35 0.17 2676 

Aggression 0.15 0.09 0.15 0.02 0.04 0.55 0.24 0.18 0.58 2666 

Prosocial SDQ 0.08 0.53 0.08 0.14 0.02 0.16 0.61 0.22 0.18 2675 

           

Teacher Report Age 9           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Hyperactivity SDQ 0.32 0.26 0.05 0 0.11 0.26 0.58 0.05 0.37 2217 

Conduct SDQ 0.42 0.14 0.06 0 0.14 0.23 0.56 0.06 0.37 2221 

Peer Problems SDQ 0.16 0.35 0.02 0.06 0.05 0.35 0.51 0.08 0.41 2229 

Emotional Problems SDQ 0.03 0.46 0.004 0 0.01 0.50 0.49 0.004 0.51 2225 

CAST autism traits 0.27 0.42 0.04 0 0.09 0.18 0.69 0.02 0.27 2228 

APSD Psychopathy 0.61 0.00 0.09 0 0.20 0.10 0.61 0.09 0.30 2229 

Aggression 0.24 0.20 0.04 0 0.08 0.44 0.44 0.04 0.52 2216 

Prosocial SDQ 0.29 0.23 0.04 0.1 0.09 0.25 0.52 0.14 0.34 2226 

           

Parent Report Age 12           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Prosocial 0.1 0.6 0.05 0.02 0.02 0.2 0.7 0.07 0.22 4654 

Conduct 0.31 0.27 0.17 0.04 0.07 0.14 0.58 0.21 0.21 4645 

Depression 0.16 0.33 0.09 0.04 0.04 0.34 0.49 0.13 0.38 4644 

Peer Problems 0.15 0.48 0.08 0 0.03 0.27 0.62 0.08 0.3 4644 

Emotional Problems 0.11 0.38 0.06 0 0.02 0.42 0.49 0.06 0.45 4644 

CAST autism traits 0.2 0.44 0.11 0 0.04 0.2 0.65 0.11 0.24 4743 

Conners 0.31 0.34 0.17 0 0.07 0.11 0.66 0.17 0.17 4652 

APSD 0.37 0.26 0.2 0 0.08 0.09 0.63 0.2 0.17 4643 

           

Teacher Report Age 12           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Prosocial 0.35 0.22 0 0.02 0.13 0.28 0.57 0.02 0.41 3812 

Conduct 0.46 0.13 0 0 0.18 0.23 0.59 0 0.41 3842 

Peer Problems 0.12 0.44 0 0 0.04 0.4 0.56 0 0.44 3842 

Emotional Problems 0.04 0.39 0 0 0.02 0.55 0.44 0 0.56 3836 

CAST autism traits 0.22 0.35 0 0 0.08 0.34 0.57 0 0.43 3811 

APSD 0.61 0.06 0 0 0.23 0.1 0.67 0 0.33 3828 

           

Child Report Age 12           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Prosocial 0.01 0.41 0 0 0.01 0.57 0.42 0 0.58 4631 
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Conduct 0.14 0.24 0.04 0 0.1 0.48 0.37 0.04 0.59 4631 

Peer Problems 0.16 0.2 0.05 0 0.12 0.47 0.36 0.05 0.59 4631 

Emotional Problems 0.23 0.1 0.07 0 0.17 0.42 0.33 0.07 0.6 4631 

Depression 0.3 0.01 0.1 0.02 0.23 0.33 0.32 0.12 0.56 4649 

           

Parent Report Age 16           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Prosocial 0.22 0.33 0.1 0.18 0.05 0.1 0.56 0.28 0.15 4011 

Conduct 0.28 0.31 0.13 0 0.6 0.2 0.6 0.13 0.26 4011 

Depression 0.15 0.3 0.07 0 0.03 0.43 0.46 0.7 0.12 4011 

CAST autism traits 0.14 0.66 0.06 0 0.02 0.09 0.81 0.6 0.12 4010 

Cu 0.31 0.27 0.14 0.07 0.6 0.12 0.58 0.22 0.18 4010 

Conners 0.23 0.44 0.1 0 0.04 0.16 0.68 0.1 0.21 4010 

Arbq 0.15 0.34 0.07 0.07 0.03 0.32 0.49 0.14 0.35 3995 

           

Child Report Age 16           

 Ac As Cc Cs Ec Es Tot-H2 Tot-C2 Tot-E2 N 

Prosocial 0.01 0.37 0.00 0.00 0.01 0.62 0.38 0.00 0.62 3999 

Conduct 0.08 0.26 0.00 0.00 0.06 0.61 0.33 0.00 0.67 3998 

Peer Problems 0.17 0.25 0.00 0.00 0.12 0.46 0.41 0.00 0.59 3999 

Emotional Problems 0.35 0.06 0.00 0.00 0.26 0.33 0.41 0.00 0.59 3999 

Depression 0.34 0.06 0.00 0.00 0.25 0.35 0.40 0.00 0.60 4000 

CAST autism traits 0.13 0.35 0.00 0.00 0.10 0.42 0.48 0.00 0.52 4002 
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Table S2: Model fit statistics for common pathway twin models of childhood 

psychopathology. Note that Sat= saturated model; CPACE = the common pathway ACE 

model 

 

Model base 

comparis

on ep 

minus2L

L df AIC diffLL 

diffd

f p 

Age 7 parent report Sat CPACE 38 198398.6 77905 42588.63 8872.522 201 0.0000 

Age 7 teacher report Sat CPACE 38 153092 64219 24654 8562.541 201 0.0000 

Age 9 self report Sat CPACE 33 83002.4 31375 20252.4 1032.731 148 0.0000 

Age 9 parent report Sat CPACE 43 101865.3 42701 16463.31 3960.66 262 0.0000 

Age 9 teacher report Sat CPACE 43 83562.71    35208  13146.70 4933.27 262  0.0000 

Age 12 self report Sat CPACE 28 121208.1 46270 28668.05 966.53 103 0.0000 

Age 12 parent report Sat CPACE 43 178367.5 74408 29551.5 5872.72 262 0.0000 

Age 12 teacher 

report Sat CPACE 33 113280.2 45806 21668.24 4135.12 148 0.0000 

Age 16 self report Sat CPACE 48 170085.1 65525 39035.12 4212.57 331 0.0000 

Age 16 parent report Sat CPACE 38 134663.4 55982 22699.37 6624.52 201 0.0000 
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Supplementary Table S3: Loadings on first principal components of psychopathology 

measures for each age and rater. 

 

Parent report age 7 

Hyperactivity SDQ 0.34 

Conduct SDQ 0.42 

Peer problems SDQ 0.38 

Emotional problems SDQ 0.29 

APSD psychopathy = Narcissism + 

CU-traits 0.41 

Autism = Social + Nonsocial 0.45 

Prosocial SDQ (reversed) 0.32 

  

Teacher report age 7 

Hyperactivity SDQ 0.35 

Conduct SDQ 0.40 

Peer problems SDQ 0.39 

Emotional problems SDQ 0.22 

APSD psychopathy= Narcissism + 

CU-traits 0.45 

Autism = Social + Nonsocial 0.40 

Prosocial SDQ (reversed) 0.40 

  

Child report age 9 

Hyperactivity SDQ 0.42 

Conduct SDQ 0.45 

Peer problems SDQ 0.42 

Emotional problems SDQ 0.43 

Autism CAST= Social + Nonsocial 0.46 

Prosocial SDQ (reversed) 0.21 

  

Parent report age 9 

Hyperactivity SDQ 0.36 

Conduct SDQ 0.41 

Peer problems SDQ 0.32 

Emotional problems SDQ 0.30 
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Autism CAST 0.38 

APSD psychopathy 0.44 

Aggression 0.34 

Prosocial SDQ (reversed) 0.22 

  

Teacher report age 9 

Hyperactivity SDQ 0.36 

Conduct SDQ 0.40 

Peer problems SDQ 0.32 

Emotional problems SDQ 0.17 

CAST 0.38 

APSD psychopathy 0.46 

Aggression 0.31 

Prosocial SDQ (reversed) 0.35 

  

Child report age 12  

Prosocial (reversed) 0.16 

Peer Problems SDQ 0.47 

Emotional Problems SDQ 0.5 

Conduct 0.48 

Depression 0.54 

  

  

Parent report age 12  

Conners 0.5 

Conduct SDQ 0.5 

CU-traits 0.32 

Emotional problems SDQ 0.43 

Depression 0.47 

  

Teacher report age 12  

Conduct SDQ 0.44 

Peer problems SDQ 0.38 

Emotional problems SDQ 0.26 

CAST 0.44 

APSD psychopathy 0.47 

Prosocial SDQ 0.43 

  

Child  report age 16  
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Prosocial 0.07 

Peer Problems SDQ 0.32 

Emotional Problems SDQ 0.49 

Conduct 0.4 

Depression 0.47 

CAST 0.39 

CASI 0.41 

  

Parent report age 16  

Conduct SDQ 0.4 

Conners 0.38 

CAST 0.36 

ARBQ 0.36 

Prosocial SDQ 0.36 

Depression 0.34 

CU 0.4 
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Supplementary Table S4. Variance explained by first principal components (phenotypic p 

factors) for each age and rater, plus the sample size for each 1st PC. P/T/C= 

parent/teacher/child ratings; 7/9/12/16 = age. 

 

Age/rater R2 by 1st PC N 

P7 0.40 4109 

T7 0.50 3435 

C9 0.42 2074 

P9 0.45 2157 

T9 0.48 1594 

C12 0.46 4490 

P12 0.45 3227 

T12 0.50 2146 

C16 0.42 1391 

P16 0.46 3258 
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Supplementary Table S5. Association statistics for polygenic p across phenotypic p 

measures.  

 

Outcome beta se p-value r squared df residual  

P age 7 0.083554 0.015365 5.70E-08 0.007149 4107 

P age 9 0.082633 0.021656 0.00014 0.006711 2155 

P age 12 0.085961 0.017255 6.63E-07 0.007637 3225 

P age 16 0.078936 0.017206 4.65E-06 0.006423 3256 

T age 7 0.097842 0.016814 6.47E-09 0.009767 3433 

T age 9 0.089132 0.025625 0.000518 0.007542 1592 

T age 12 0.055183 0.020751 0.007889 0.003288 2144 

C age 9 0.066584 0.022225 0.002769 0.004313 2072 

C age 12 0.065225 0.014811 1.09E-05 0.004303 4488 

C age 16 0.068554 0.026306 0.009258 0.005750 1389 

      

Bold. Significant after Bonferroni correction (alpha 0.05/10).  

Note. P = parent rated , T = teacher rated, C = child-rated.   
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Appendix 4 – Model specification of the wfRI-CLPM example for two siblings measured on 

two traits at two waves. 

 

Measurement model: 
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Appendix 5 – Supplementary material for Chapter 5 
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wfRICLPM in TEDS and NTR. 

Supplementary Tables: 
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• Table 9c. MZ Cross-twin cross-trait correlations of variables under study - NTR 

• Table 9d. DZ Cross-twin cross-trait correlations of variables under study - NTR 

• Table 10a. Within-person and between-sibling regression estimates from the 

wfRICLPM - TEDS 

• Table 10b. Within-person and between-sibling regression estimates from the 

wfRICLPM - NTR 
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Supplementary Figures 

 

 

 

Figure S1. Between-person and within-person (directed) networks of relationships in Males (top) and Females 

(bottom) obtained from the RI-CLPM in NTR. Nodes represent the measure of interest (the random intercept in 

the case of between-person networks, and residual deviation of measurement occasion for the within-person 

network). Edges width and labels indicate and quantify the strength of relationships between nodes, and in the 

case of within-person networks also the temporal direction of the effect. For every time lag (7-10 and 10->12) 

edges represent directional effects within-trait (self-pointing arrow) or cross-trait. Note. Acronyms: CND = 

conduct/externalizing, HYP = hyperactivity/ hyperactivity-inattention, EMO = emotional problems/internalizing, 

PER = peer problems/social problems. All edges survived FDR correction for multiple testing.  
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Figure S2. Twin correlations for random intercepts and residual deviations in the wfRICLPM 

in TEDS and NTR. 
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Supplementary Tables 

 

 
 

 
 

Table S1a. Descriptive Statistics TEDS

Measure n mean sd median min max skew kurtosis se % females

CON_t1a 7758 1.709 1.644 1 0 10 1.186 1.616 0.019 0.51

HYP_t1a 7753 3.611 2.556 3 0 10 0.551 -0.444 0.029 0.51

PEp_t1a 7754 1.007 1.429 0 0 10 1.897 4.262 0.016 0.51

EMp_t1a 7754 2.232 1.868 2 0 10 0.972 0.74 0.021 0.51

CON_t2a 3388 1.278 1.439 1 0 10 1.525 3.253 0.025 0.525

HYP_t2a 3386 3.26 2.384 3 0 10 0.814 0.114 0.041 0.525

PEp_t2a 3388 1.07 1.545 0 0 9 1.884 3.873 0.027 0.525

EMp_t2a 3388 1.761 1.917 1 0 10 1.297 1.451 0.033 0.526

CON_t3a 5829 1.337 1.483 1 0 10 1.471 3.074 0.019 0.525

HYP_t3a 5829 2.848 2.272 2 0 10 0.857 0.347 0.03 0.525

PEp_t3a 5828 1.106 1.536 1 0 9 1.88 4.088 0.02 0.525

EMp_t3a 5829 1.843 1.946 1 0 10 1.252 1.394 0.025 0.525

CON_t1b 7758 1.725 1.661 1 0 10 1.203 1.726 0.019 0.51

HYP_t1b 7752 3.634 2.573 3 0 10 0.565 -0.448 0.029 0.51

PEp_t1b 7754 1.017 1.455 0 0 10 2.006 5.021 0.017 0.51

EMp_t1b 7754 2.202 1.843 2 0 10 0.989 0.815 0.021 0.51

CON_t2b 3387 1.308 1.466 1 0 10 1.531 3.274 0.025 0.525

HYP_t2b 3385 3.274 2.407 3 0 10 0.839 0.194 0.041 0.525

PEp_t2b 3388 1.073 1.57 0 0 10 2.02 4.738 0.027 0.525

EMp_t2b 3387 1.717 1.9 1 0 10 1.386 1.823 0.033 0.526

CON_t3b 5829 1.322 1.462 1 0 10 1.427 2.694 0.019 0.525

HYP_t3b 5829 2.843 2.281 2 0 10 0.884 0.442 0.03 0.525

PEp_t3b 5829 1.122 1.535 1 0 10 1.858 4.145 0.02 0.525

EMp_t3b 5830 1.811 1.927 1 0 10 1.266 1.395 0.025 0.526

Age7 7732 7.065 0.248 7.044 5.574 7.984 0.259 -0.011 0.003 0.511

Age9 3411 9.019 0.275 9.01 8.082 9.966 0.268 -0.484 0.005 0.527

Age12 5989 11.36 0.669 11.48 10.001 13.495 -0.157 -0.491 0.009 0.519

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 9; t3 = Age 12

Table S1b. Descriptive Statistics NTR

Measure n mean sd median min max skew kurtosis se % females

CON_t1a 12674 6.446 6.324 5 0 50 1.631 3.664 0.056 0.509

HYP_t1a 12710 3.118 3.1 3 0 20 1.239 1.629 0.027 0.509

PEp_t1a 12700 2.133 2.443 1 0 19 1.86 4.496 0.022 0.509

EMp_t1a 12474 4.603 4.639 3 0 45 1.857 4.929 0.042 0.509

CON_t2a 11344 5.654 6.212 4 0 53 1.887 4.977 0.058 0.508

HYP_t2a 11418 3.024 3.125 2 0 20 1.29 1.728 0.029 0.509

PEp_t2a 11412 2.023 2.547 1 0 18 1.917 4.498 0.024 0.509

EMp_t2a 11260 4.732 5.075 3 0 45 1.961 5.379 0.048 0.509

CON_t3a 8815 4.824 5.631 3 0 50 2.001 5.398 0.06 0.513

HYP_t3a 8854 2.719 3.017 2 0 20 1.409 2.045 0.032 0.513

PEp_t3a 8842 1.674 2.395 1 0 20 2.197 5.799 0.025 0.513

EMp_t3a 8748 4.267 4.895 3 0 48 2.121 6.546 0.052 0.513

CON_t1b 12667 6.482 6.366 5 0 52 1.607 3.439 0.057 0.509

HYP_t1b 12717 3.084 3.092 3 0 20 1.285 1.867 0.027 0.509

PEp_t1b 12700 2.11 2.437 1 0 20 1.907 5.014 0.022 0.508

EMp_t1b 12488 4.619 4.693 3 0 41 1.921 5.329 0.042 0.508

CON_t2b 11362 5.655 6.189 4 0 47 1.847 4.575 0.058 0.509

HYP_t2b 11416 3.033 3.15 2 0 20 1.244 1.389 0.029 0.509

PEp_t2b 11422 2.017 2.525 1 0 19 1.91 4.505 0.024 0.509

EMp_t2b 11250 4.719 5.108 3 0 44 1.987 5.294 0.048 0.508

CON_t3b 8806 4.751 5.675 3 0 49 2.09 6.058 0.06 0.512

HYP_t3b 8852 2.704 3.001 2 0 18 1.455 2.295 0.032 0.513

PEp_t3b 8838 1.669 2.406 1 0 20 2.277 6.67 0.026 0.513

EMp_t3b 8738 4.316 4.994 3 0 48 2.181 6.879 0.053 0.512

Age7 12751 7.454 0.386 7.4 6.2 9 0.996 0.973 0.003 0.508

Age10 10878 9.985 0.388 10 9.1 11 0.107 -0.293 0.004 0.51

Age12 8909 12.265 0.393 12.2 11.1 13.5 0.54 -0.131 0.004 0.513

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 10; t3 = Age 12
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Table S2a. Correlation matrix of variables under study - TEDS

CON_t1 CON_t2 CON_t3 HYP_t1 HYP_t2 HYP_t3 EMp_t1 EMp_t2 EMp_t3 PEp_t1 PEp_t2 PEp_t3

CON_t1 1 0 0 0 0 0 0 0 0 0 0 0

CON_t2 0.577 1 0 0 0 0 0 0 0 0 0 0

CON_t3 0.514 0.584 1 0 0 0 0 0 0 0 0 0

HYP_t1 0.422 0.375 0.334 1 0 0 0 0 0 0 0 0

HYP_t2 0.389 0.48 0.388 0.669 1 0 0 0 0 0 0 0

HYP_t3 0.34 0.402 0.483 0.589 0.674 1 0 0 0 0 0 0

EMp_t1 0.252 0.221 0.193 0.204 0.21 0.195 1 0 0 0 0 0

EMp_t2 0.237 0.323 0.241 0.205 0.295 0.237 0.539 1 0 0 0 0

EMp_t3 0.199 0.25 0.327 0.195 0.226 0.301 0.468 0.549 1 0 0 0

PEp_t1 0.28 0.228 0.216 0.221 0.22 0.217 0.321 0.263 0.227 1 0 0

PEp_t2 0.247 0.327 0.247 0.241 0.301 0.245 0.255 0.409 0.28 0.518 1 0

PEp_t3 0.225 0.258 0.331 0.226 0.257 0.306 0.226 0.274 0.412 0.441 0.525 1

Note: t1 = Age 7; t2 = Age 9; t3 = Age 12

Table S2b. Correlation matrix of variables under study - NTR

CON_t1 CON_t2 CON_t3 HYP_t1 HYP_t2 HYP_t3 EMp_t1 EMp_t2 EMp_t3 PEp_t1 PEp_t2 PEp_t3

CON_t1 1 0 0 0 0 0 0 0 0 0 0 0

CON_t2 0.71 1 0 0 0 0 0 0 0 0 0 0

CON_t3 0.624 0.73 1 0 0 0 0 0 0 0 0 0

HYP_t1 0.573 0.444 0.402 1 0 0 0 0 0 0 0 0

HYP_t2 0.478 0.584 0.462 0.69 1 0 0 0 0 0 0 0

HYP_t3 0.424 0.488 0.59 0.604 0.729 1 0 0 0 0 0 0

EMp_t1 0.515 0.372 0.336 0.428 0.345 0.297 1 0 0 0 0 0

EMp_t2 0.415 0.545 0.417 0.324 0.452 0.359 0.616 1 0 0 0 0

EMp_t3 0.358 0.432 0.554 0.293 0.366 0.462 0.512 0.651 1 0 0 0

PEp_t1 0.655 0.485 0.428 0.608 0.492 0.432 0.622 0.462 0.391 1 0 0

PEp_t2 0.508 0.659 0.517 0.466 0.609 0.497 0.461 0.671 0.506 0.613 1 0

PEp_t3 0.439 0.512 0.646 0.421 0.495 0.614 0.388 0.502 0.68 0.512 0.665 1

Note: t1 = Age 7; t2 = Age 9; t3 = Age 12

Table S3a. Model fit Indices - TEDS

chisq df chisqPval rmsea srmr cfi

TEDS_Constrained 54.6854 32 0.0075 0.0091 0.014 0.9988

TEDS_Unconstrained 10.5506 6 0.1033 0.0094 0.0049 0.9998

TEDS_Pruned 40.9425 22 0.0084 0.01 0.0123 0.999

TEDS_NoLags 91.2658 30 0 0.0155 0.0216 0.9968

Table S3b. Nested models comparison - TEDS

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

TEDS_Unconstrained 6 170165.783 170758.283 10.5506 NA NA NA

TEDS_Pruned 22 170164.175 170643.817 40.9425 25.5521 16 0.0607

TEDS_NoLags 30 170198.498 170621.712 91.2658 43.3825 8 0

Table S3c. Model fit Indices - NTR

chisq df chisqPval rmsea srmr cfi

NTR_constrained 172.5375 32 0 0.0162 0.0125 0.9983

NTR_unconstrained 54.9716 6 0 0.0221 0.007 0.9994

NTR_pruned 96.4998 22 0 0.0142 0.0115 0.9991

NTR_noLags 172.4929 30 0 0.0169 0.0177 0.9982

Table S3d. Nested models comparison - NTR

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

NTR_unconstrained 6 283997.669 284646.299 54.9716 NA NA NA

NTR_pruned 22 284007.197 284532.278 96.4998 26.6536 16 0.0455

NTR_noLags 30 284067.19 284530.497 172.4929 44.9768 8 0

213



 

 

 

 

 

Table S4a. Simultaneous residual correlations and residual variances  - TEDS

correlations beta lower CI upper CI stdBeta robust SE p.value p_value adjusted index

CND1<->CND1 0.511 0.463 0.559 1 0.025 2.22E-16 2.22E-16 *

CND2<->CND2 0.533 0.466 0.6 0.956 0.034 2.22E-16 2.22E-16 *

CND3<->CND3 0.494 0.455 0.534 0.923 0.02 2.22E-16 2.22E-16 *

EMO1<->CND1 0.077 0.046 0.109 0.145 0.016 2.22E-16 2.22E-16 *

EMO1<->EMO1 0.556 0.513 0.6 1 0.022 2.22E-16 2.22E-16 *

EMO1<->HYP1 0.017 -0.013 0.046 0.034 0.015 2.65E-01 2.74E-01

EMO2<->CND2 0.151 0.113 0.189 0.28 0.019 7.33E-15 2.22E-16 *

EMO2<->EMO2 0.546 0.49 0.602 0.928 0.029 2.22E-16 2.22E-16 *

EMO2<->HYP2 0.111 0.076 0.147 0.226 0.018 5.49E-10 6.87E-10 *

EMO3<->CND3 0.125 0.101 0.148 0.242 0.012 2.22E-16 2.22E-16 *

EMO3<->EMO3 0.54 0.504 0.576 0.956 0.019 2.22E-16 2.22E-16 *

EMO3<->HYP3 0.103 0.083 0.123 0.219 0.01 2.22E-16 2.22E-16 *

HYP1<->CND1 0.108 0.076 0.141 0.228 0.017 2.22E-16 2.22E-16 *

HYP1<->HYP1 0.442 0.403 0.482 1 0.02 2.22E-16 2.22E-16 *

HYP2<->CND2 0.168 0.131 0.206 0.346 0.019 2.22E-16 2.22E-16 *

HYP2<->HYP2 0.444 0.402 0.485 0.925 0.021 2.22E-16 2.22E-16 *

HYP3<->CND3 0.14 0.119 0.162 0.313 0.011 2.22E-16 2.22E-16 *

HYP3<->HYP3 0.408 0.381 0.434 0.886 0.013 2.22E-16 2.22E-16 *

PER1<->CND1 0.073 0.04 0.107 0.134 0.017 2.22E-16 2.22E-16 *

PER1<->EMO1 0.114 0.08 0.148 0.2 0.017 6.41E-11 8.74E-11 *

PER1<->HYP1 0.001 -0.029 0.032 0.002 0.016 9.35E-01 9.35E-01

PER1<->PER1 0.582 0.525 0.639 1 0.029 2.22E-16 2.22E-16 *

PER2<->CND2 0.126 0.083 0.169 0.222 0.022 9.28E-09 2.22E-16 *

PER2<->EMO2 0.218 0.173 0.263 0.381 0.023 2.22E-16 2.22E-16 *

PER2<->HYP2 0.085 0.047 0.123 0.165 0.019 1.00E-05 2.22E-16 *

PER2<->PER2 0.602 0.525 0.679 0.965 0.039 2.22E-16 2.22E-16 *

PER3<->CND3 0.102 0.076 0.128 0.195 0.013 2.22E-16 2.22E-16 *

PER3<->EMO3 0.172 0.144 0.2 0.315 0.014 2.22E-16 2.22E-16 *

PER3<->HYP3 0.077 0.055 0.098 0.162 0.011 2.22E-16 2.69E-12 *

PER3<->PER3 0.553 0.507 0.599 0.936 0.023 2.22E-16 2.22E-16 *

Note: t1 = Age 7; t2 = Age 9; t3 = Age 12
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Table S4b. Simultaneous residual correlations and residual variances  - NTR

correlations beta lower CI upper CI stdBeta robust SE p.value p_value adjusted index

CND1<->CND1 0.429 0.377 0.482 1 0.027 2.22E-16 2.22E-16 *

CND2<->CND2 0.386 0.348 0.424 0.894 0.019 2.22E-16 2.22E-16 *

CND3<->CND3 0.381 0.35 0.413 0.848 0.016 2.22E-16 2.22E-16 *

EMO1<->CND1 0.219 0.174 0.263 0.441 0.023 2.22E-16 2.22E-16 *

EMO1<->EMO1 0.571 0.504 0.638 1 0.034 2.22E-16 2.22E-16 *

EMO1<->HYP1 0.179 0.137 0.221 0.349 0.021 2.22E-16 2.22E-16 *

EMO2<->CND2 0.211 0.182 0.24 0.474 0.015 2.22E-16 2.22E-16 *

EMO2<->EMO2 0.513 0.464 0.562 0.883 0.025 2.22E-16 2.22E-16 *

EMO2<->HYP2 0.168 0.141 0.194 0.36 0.013 2.22E-16 2.22E-16 *

EMO3<->CND3 0.2 0.175 0.224 0.467 0.012 2.22E-16 2.22E-16 *

EMO3<->EMO3 0.48 0.439 0.522 0.837 0.021 2.22E-16 2.22E-16 *

EMO3<->HYP3 0.156 0.136 0.175 0.36 0.01 2.22E-16 2.22E-16 *

HYP1<->CND1 0.202 0.162 0.242 0.455 0.02 2.22E-16 2.22E-16 *

HYP1<->HYP1 0.46 0.41 0.51 1 0.026 2.22E-16 2.22E-16 *

HYP2<->CND2 0.181 0.156 0.206 0.449 0.013 2.22E-16 2.22E-16 *

HYP2<->HYP2 0.424 0.391 0.456 0.878 0.016 2.22E-16 2.22E-16 *

HYP3<->CND3 0.176 0.157 0.196 0.458 0.01 2.22E-16 2.22E-16 *

HYP3<->HYP3 0.389 0.365 0.413 0.819 0.012 2.22E-16 2.22E-16 *

PER1<->CND1 0.277 0.229 0.324 0.56 0.024 2.22E-16 2.22E-16 *

PER1<->EMO1 0.305 0.252 0.358 0.536 0.027 2.22E-16 2.22E-16 *

PER1<->HYP1 0.232 0.186 0.278 0.454 0.023 2.22E-16 2.22E-16 *

PER1<->PER1 0.568 0.506 0.629 1 0.031 2.22E-16 2.22E-16 *

PER2<->CND2 0.241 0.211 0.27 0.538 0.015 2.22E-16 2.22E-16 *

PER2<->EMO2 0.302 0.267 0.336 0.584 0.018 2.22E-16 2.22E-16 *

PER2<->HYP2 0.197 0.168 0.225 0.419 0.014 2.22E-16 2.22E-16 *

PER2<->PER2 0.519 0.478 0.561 0.88 0.021 2.22E-16 2.22E-16 *

PER3<->CND3 0.21 0.185 0.234 0.491 0.013 2.22E-16 2.22E-16 *

PER3<->EMO3 0.277 0.247 0.307 0.579 0.015 2.22E-16 2.22E-16 *

PER3<->HYP3 0.183 0.161 0.204 0.424 0.011 2.22E-16 2.22E-16 *

PER3<->PER3 0.477 0.441 0.513 0.818 0.018 2.22E-16 2.22E-16 *

Note: t1 = Age 7; t2 = Age 9; t3 = Age 12
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Table S5. Within-person regressions - TEDS

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CND1->CND2 0.166 0.071 0.261 0.159 0.048 6.15E-04 2.19E-03 *

CND1->EMO2 0.15 0.078 0.222 0.14 0.037 4.49E-05 3.89E-04 *

CND1->HYP2 0.096 0.03 0.163 0.099 0.034 4.65E-03 9.91E-03 *

CND1->PER2 0.08 -0.001 0.161 0.072 0.041 5.20E-02 9.24E-02

CND2->CND3 0.144 0.054 0.234 0.147 0.046 1.74E-03 5.07E-03 *

CND2->EMO3 0.032 -0.043 0.107 0.032 0.038 4.01E-01 5.71E-01

CND2->HYP3 0.118 0.055 0.182 0.13 0.032 2.68E-04 1.71E-03 *

CND2->PER3 -0.008 -0.083 0.067 -0.008 0.038 8.40E-01 9.27E-01

EMO1->CND2 0.029 -0.04 0.098 0.029 0.035 4.11E-01 5.71E-01

EMO1->EMO2 0.144 0.064 0.224 0.14 0.041 4.29E-04 2.19E-03 *

EMO1->HYP2 -0.003 -0.066 0.059 -0.004 0.032 9.17E-01 9.47E-01

EMO1->PER2 0.013 -0.061 0.087 0.012 0.038 7.30E-01 8.98E-01

EMO2->CND3 0.109 0.038 0.18 0.115 0.036 2.50E-03 6.68E-03 *

EMO2->EMO3 0.173 0.09 0.256 0.177 0.043 4.86E-05 3.89E-04 *

EMO2->HYP3 0.077 0.013 0.141 0.087 0.033 1.84E-02 3.47E-02 *

EMO2->PER3 0.115 0.037 0.192 0.115 0.04 3.70E-03 8.46E-03 *

HYP1->CND2 0.109 0.026 0.192 0.097 0.042 1.00E-02 2.00E-02 *

HYP1->EMO2 0.036 -0.045 0.117 0.031 0.042 3.84E-01 5.71E-01

HYP1->HYP2 0.244 0.156 0.331 0.234 0.045 4.60E-08 9.96E-07 *

HYP1->PER2 0.015 -0.081 0.11 0.012 0.049 7.65E-01 9.06E-01

HYP2->CND3 0.117 0.04 0.195 0.111 0.04 3.06E-03 7.53E-03 *

HYP2->EMO3 0.038 -0.039 0.116 0.035 0.039 3.31E-01 5.30E-01

HYP2->HYP3 0.224 0.143 0.305 0.229 0.041 6.23E-08 9.96E-07 *

HYP2->PER3 0.074 -0.005 0.154 0.067 0.041 6.80E-02 1.14E-01

PER1->CND2 0.001 -0.067 0.069 0.001 0.035 9.73E-01 9.73E-01

PER1->EMO2 0.117 0.05 0.184 0.117 0.034 6.00E-04 2.19E-03 *

PER1->HYP2 -0.022 -0.084 0.041 -0.024 0.032 4.93E-01 6.57E-01

PER1->PER2 0.165 0.063 0.266 0.159 0.052 1.48E-03 4.75E-03 *

PER2->CND3 0.004 -0.063 0.071 0.004 0.034 9.08E-01 9.47E-01

PER2->EMO3 0.018 -0.056 0.092 0.019 0.038 6.28E-01 8.03E-01

PER2->HYP3 -0.008 -0.072 0.056 -0.009 0.033 8.14E-01 9.27E-01

PER2->PER3 0.156 0.068 0.244 0.16 0.045 5.05E-04 2.19E-03 *

Note: 1 = Age 7; 2 = Age 9; 3 = Age 12; p_value adjusted = Benjamini-Hocberg FDR correction; * = estimate survives FDR 
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Table S5b. Within-person regressions - NTR

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CND1->CND2 0.296 0.2 0.393 0.296 0.049 1.86E-09 9.92E-09 *

CND1->EMO2 0.116 0.034 0.198 0.1 0.042 5.39E-03 1.33E-02 *

CND1->HYP2 0.094 0.021 0.167 0.089 0.037 1.14E-02 2.59E-02 *

CND1->PER2 0.126 0.042 0.209 0.107 0.043 3.09E-03 9.22E-03 *

CND2->CND3 0.31 0.227 0.392 0.303 0.042 2.25E-13 2.40E-12 *

CND2->EMO3 0.057 -0.016 0.131 0.05 0.038 1.28E-01 2.16E-01

CND2->HYP3 0.068 -0.001 0.136 0.065 0.035 5.21E-02 9.81E-02

CND2->PER3 0.023 -0.051 0.097 0.02 0.038 5.41E-01 6.19E-01

EMO1->CND2 -0.01 -0.067 0.047 -0.011 0.029 7.34E-01 7.79E-01

EMO1->EMO2 0.24 0.156 0.324 0.238 0.043 2.30E-08 9.21E-08 *

EMO1->HYP2 0.033 -0.019 0.085 0.036 0.027 2.17E-01 3.02E-01

EMO1->PER2 0.094 0.029 0.158 0.092 0.033 4.64E-03 1.24E-02 *

EMO2->CND3 0.029 -0.032 0.089 0.033 0.031 3.54E-01 4.72E-01

EMO2->EMO3 0.259 0.175 0.343 0.261 0.043 1.83E-09 9.92E-09 *

EMO2->HYP3 0.02 -0.037 0.076 0.022 0.029 4.90E-01 6.00E-01

EMO2->PER3 0.097 0.033 0.162 0.097 0.033 3.17E-03 9.22E-03 *

HYP1->CND2 0.01 -0.051 0.07 0.01 0.031 7.54E-01 7.79E-01

HYP1->EMO2 -0.023 -0.089 0.044 -0.02 0.034 5.06E-01 6.00E-01

HYP1->HYP2 0.258 0.181 0.334 0.252 0.039 5.05E-11 4.04E-10 *

HYP1->PER2 0.006 -0.065 0.077 0.005 0.036 8.68E-01 8.68E-01

HYP2->CND3 0.016 -0.04 0.071 0.016 0.028 5.79E-01 6.39E-01

HYP2->EMO3 0.05 -0.009 0.11 0.046 0.03 9.61E-02 1.71E-01

HYP2->HYP3 0.363 0.299 0.428 0.366 0.033 0.00E+00 0.00E+00 *

HYP2->PER3 0.046 -0.017 0.108 0.041 0.032 1.51E-01 2.20E-01

PER1->CND2 0.044 -0.014 0.101 0.05 0.029 1.36E-01 2.17E-01

PER1->EMO2 0.08 0.017 0.144 0.08 0.032 1.26E-02 2.68E-02 *

PER1->HYP2 0.044 -0.015 0.103 0.048 0.03 1.44E-01 2.20E-01

PER1->PER2 0.214 0.14 0.288 0.21 0.038 1.29E-08 5.89E-08 *

PER2->CND3 0.078 0.016 0.14 0.089 0.032 1.40E-02 2.80E-02 *

PER2->EMO3 0.119 0.054 0.185 0.121 0.033 3.34E-04 1.19E-03 *

PER2->HYP3 0.022 -0.035 0.078 0.024 0.029 4.51E-01 5.77E-01

PER2->PER3 0.322 0.25 0.394 0.324 0.037 0.00E+00 0.00E+00 *

Note: 1 = Age 7; 2 = Age 10; 3 = Age 12; p_value adjusted = Benjamini-Hocberg FDR correction; * = estimate survives FDR 

Table 6a. Model fit Indices - TEDS sex differences  

chisq df chisqPval rmsea srmr cfi

Equal regressions between groups 62.0019 44 0.0379 0.0098 0.0139 0.9991

Unconstrained 18.41 12 0.1038 0.0112 0.0059 0.9997

Table 6b. Nested model comparison - TEDS sex differences 

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

Unconstrained 12 168835.278 170020.278 18.41 NA NA NA

Equal regressions between groups 44 168814.87 169774.155 62.0019 34.7552 32 0.338

Table 6c. Nested model comparison - NTR  sex differences 

chisq df chisqPval rmsea srmr cfi

Equal regressions between groups 137.8591 44 0 0.0158 0.0136 0.9989

Unconstrained 55.6022 12 0 0.0206 0.0063 0.9995

Table 6d. Model fit Indices - NTR sex differences 

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

Unconstrained 12 287238.234 288539.82 55.6022 NA NA NA

Equal regressions between groups 44 287256.491 288310.156 137.8591 50.8299 32 0.0185
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Table S7a. Within-person regressions - NTR males

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CND1->CND2 0.376 0.241 0.51 0.369 0.069 4.57E-08 2.44E-07 *

CND1->EMO2 0.138 0.031 0.245 0.127 0.055 1.17E-02 2.87E-02 *

CND1->HYP2 0.084 -0.019 0.186 0.086 0.052 1.09E-01 1.93E-01

CND1->PER2 0.13 0.016 0.243 0.118 0.058 2.49E-02 5.69E-02 nominal

CND2->CND3 0.408 0.305 0.511 0.396 0.052 7.55E-15 1.42E-13 *

CND2->EMO3 0.112 0.026 0.199 0.104 0.044 1.07E-02 2.85E-02 *

CND2->HYP3 0.115 0.027 0.203 0.114 0.045 1.01E-02 2.85E-02 *

CND2->PER3 0.065 -0.028 0.158 0.059 0.047 1.73E-01 2.63E-01

EMO1->CND2 0.01 -0.08 0.099 0.01 0.045 8.33E-01 8.33E-01

EMO1->EMO2 0.335 0.219 0.45 0.335 0.059 1.42E-08 9.11E-08 *

EMO1->HYP2 0.009 -0.074 0.092 0.01 0.043 8.31E-01 8.33E-01

EMO1->PER2 0.104 0.008 0.201 0.102 0.049 3.47E-02 7.39E-02 nominal

EMO2->CND3 0.037 -0.056 0.131 0.039 0.048 4.32E-01 6.29E-01

EMO2->EMO3 0.378 0.259 0.497 0.374 0.061 4.78E-10 3.82E-09 *

EMO2->HYP3 0.014 -0.067 0.096 0.015 0.042 7.30E-01 8.06E-01

EMO2->PER3 0.157 0.062 0.253 0.154 0.049 1.27E-03 4.52E-03 *

HYP1->CND2 0.02 -0.079 0.118 0.018 0.05 6.94E-01 8.06E-01

HYP1->EMO2 -0.02 -0.119 0.082 -0.016 0.051 7.15E-01 8.06E-01

HYP1->HYP2 0.262 0.142 0.381 0.254 0.061 1.76E-05 8.06E-05 *

HYP1->PER2 0.042 -0.068 0.152 0.036 0.056 4.54E-01 6.31E-01

HYP2->CND3 0.011 -0.067 0.089 0.011 0.04 7.77E-01 8.29E-01

HYP2->EMO3 -0.02 -0.095 0.065 -0.013 0.041 7.14E-01 8.06E-01

HYP2->HYP3 0.358 0.267 0.448 0.343 0.046 8.88E-15 1.42E-13 *

HYP2->PER3 0.022 -0.063 0.106 0.019 0.043 6.14E-01 7.86E-01

PER1->CND2 0.031 -0.054 0.115 0.033 0.043 4.78E-01 6.37E-01

PER1->EMO2 0.075 -0.013 0.162 0.076 0.045 9.38E-02 1.77E-01

PER1->HYP2 0.065 -0.022 0.151 0.073 0.044 1.41E-01 2.26E-01

PER1->PER2 0.202 0.097 0.307 0.203 0.054 1.61E-04 6.42E-04 *

PER2->CND3 0.077 -0.009 0.164 0.082 0.044 8.01E-02 1.60E-01

PER2->EMO3 0.124 0.042 0.207 0.125 0.042 3.06E-03 9.78E-03 *

PER2->HYP3 0.06 -0.017 0.138 0.065 0.04 1.27E-01 2.14E-01

PER2->PER3 0.316 0.218 0.413 0.315 0.05 2.42E-10 2.58E-09 *

Note: 1 = Age 7; 2 = Age 10; 3 = Age 12; p_value adjusted = Benjamini-Hocberg FDR correction; * = estimate survives FDR;

nominal =  α< 0.05
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Table S7b. Within-person regressions - NTR females

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CND1->CND2 0.196 0.075 0.317 0.198 0.062 1.55E-03 9.90E-03 *

CND1->EMO2 0.093 -0.03 0.215 0.07 0.063 1.38E-01 2.46E-01

CND1->HYP2 0.109 0.013 0.205 0.096 0.049 2.57E-02 6.85E-02 nominal

CND1->PER2 0.136 0.018 0.254 0.106 0.06 2.35E-02 6.84E-02 nominal

CND2->CND3 0.165 0.044 0.286 0.164 0.062 7.49E-03 3.00E-02 *

CND2->EMO3 -0.04 -0.164 0.08 -0.032 0.062 4.99E-01 6.39E-01

CND2->HYP3 0.002 -0.096 0.1 0.002 0.05 9.73E-01 9.89E-01

CND2->PER3 -0.04 -0.152 0.063 -0.035 0.055 4.18E-01 5.81E-01

EMO1->CND2 -0.02 -0.083 0.049 -0.022 0.034 6.16E-01 7.04E-01

EMO1->EMO2 0.177 0.065 0.289 0.174 0.057 1.94E-03 1.04E-02 *

EMO1->HYP2 0.041 -0.022 0.104 0.047 0.032 1.98E-01 3.34E-01

EMO1->PER2 0.079 -0.002 0.161 0.08 0.042 5.66E-02 1.29E-01

EMO2->CND3 0.044 -0.031 0.119 0.058 0.038 2.53E-01 4.05E-01

EMO2->EMO3 0.171 0.058 0.284 0.176 0.058 3.06E-03 1.40E-02 *

EMO2->HYP3 0.014 -0.059 0.087 0.018 0.037 7.09E-01 7.71E-01

EMO2->PER3 0.037 -0.045 0.12 0.039 0.042 3.76E-01 5.73E-01

HYP1->CND2 0 -0.066 0.067 0.001 0.034 9.89E-01 9.89E-01

HYP1->EMO2 -0.04 -0.124 0.054 -0.03 0.045 4.39E-01 5.85E-01

HYP1->HYP2 0.25 0.157 0.343 0.249 0.048 1.51E-07 1.61E-06 *

HYP1->PER2 -0.04 -0.124 0.051 -0.032 0.045 4.08E-01 5.81E-01

HYP2->CND3 0.014 -0.063 0.09 0.016 0.039 7.23E-01 7.71E-01

HYP2->EMO3 0.105 0.015 0.195 0.092 0.046 2.26E-02 6.84E-02 nominal

HYP2->HYP3 0.356 0.264 0.448 0.383 0.047 2.73E-14 8.74E-13 *

HYP2->PER3 0.08 -0.011 0.171 0.071 0.047 8.62E-02 1.62E-01

PER1->CND2 0.062 -0.008 0.133 0.078 0.036 8.29E-02 1.62E-01

PER1->EMO2 0.086 -0.004 0.177 0.08 0.046 6.20E-02 1.32E-01

PER1->HYP2 0.021 -0.051 0.094 0.023 0.037 5.63E-01 6.93E-01

PER1->PER2 0.236 0.137 0.334 0.225 0.05 2.66E-06 2.13E-05 *

PER2->CND3 0.088 0.007 0.169 0.114 0.041 3.23E-02 7.95E-02 nominal

PER2->EMO3 0.126 0.025 0.227 0.126 0.052 1.45E-02 5.16E-02 nominal

PER2->HYP3 -0.02 -0.097 0.057 -0.024 0.039 6.11E-01 7.04E-01

PER2->PER3 0.34 0.241 0.44 0.346 0.051 2.39E-11 3.83E-10 *

Note: 1 = Age 7; 2 = Age 10; 3 = Age 12; p_value adjusted = Benjamini-Hocberg FDR correction; * = estimate survives FDR;

nominal =  α< 0.05
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Table 8a. Model fit Indices - wfRICLPM TEDS

chisq df chisqPval rmsea srmr cfi

Full model 848.8839 428 0 0.0153 0.0335 0.9926

Pruned model 879.3469 458 0 0.0148 0.0337 0.9926

Null model 903.2612 460 0 0.0151 0.0341 0.9922

Table 8b. Nested models comparison - wfRICLPM TEDS

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

Full model 428 325127.231 326676.298 848.8839 NA NA NA

Pruned model 458 325097.694 326435.525 879.3469 22.5334 30 0.8339

Null model 460 325117.609 326441.356 903.2612 18.1226 2 1.00E-04

Table 8c. Model fit Indices - wfRICLPM NTR

chisq df chisqPval rmsea srmr cfi

Full model 955.6536 428 0 0.0122 0.0314 0.9972

Pruned model 1011.7082 459 0 0.012 0.0314 0.9971

Null model 1023.991 460 0 0.0121 0.0314 0.9971

Table 8b. Nested models comparison - wfRICLPM NTR

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

Full model 428 537429.595 539128.572 955.6536 NA NA NA

Pruned model 459 537423.649 538883.225 1011.7082 35.4228 31 0.2674

Null model 460 537433.932 538885.786 1023.991 7.3618 1 0.0067
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Table 9a. MZ Cross-twin cross-trait correlations of variables under study - TEDS

CON_t1b HYP_t1b PEp_t1b EMp_t1b CON_t2b HYP_t2b PEp_t2b EMp_t2b CON_t3b HYP_t3b PEp_t3b EMp_t3b

CON_t1a 0.747 0 0 0 0 0 0 0 0 0 0 0

HYP_t1a 0.352 0.582 0 0 0 0 0 0 0 0 0 0

PEp_t1a 0.265 0.212 0.57 0 0 0 0 0 0 0 0 0

EMp_t1a 0.258 0.223 0.214 0.611 0 0 0 0 0 0 0 0

CON_t2a 0.428 0.312 0.161 0.166 0.784 0 0 0 0 0 0 0

HYP_t2a 0.334 0.491 0.184 0.194 0.456 0.726 0 0 0 0 0 0

PEp_t2a 0.239 0.232 0.344 0.185 0.306 0.276 0.68 0 0 0 0 0

EMp_t2a 0.232 0.239 0.232 0.351 0.333 0.306 0.309 0.649 0 0 0 0

CON_t3a 0.472 0.325 0.182 0.189 0.485 0.349 0.213 0.253 0.764 0 0 0

HYP_t3a 0.313 0.432 0.189 0.194 0.389 0.514 0.227 0.279 0.417 0.729 0 0

PEp_t3a 0.24 0.236 0.301 0.17 0.189 0.187 0.36 0.244 0.278 0.273 0.709 0

EMp_t3a 0.198 0.217 0.164 0.337 0.213 0.189 0.196 0.394 0.3 0.284 0.3 0.598

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 9; t3 = Age 12

Table 9b. DZ Cross-twin cross-trait correlations of variables under study - TEDS

CON_t1b HYP_t1b PEp_t1b EMp_t1b CON_t2b HYP_t2b PEp_t2b EMp_t2b CON_t3b HYP_t3b PEp_t3b EMp_t3b

CON_t1a 0.443 0 0 0 0 0 0 0 0 0 0 0

HYP_t1a 0.166 0.003 0 0 0 0 0 0 0 0 0 0

PEp_t1a 0.214 0.153 0.29 0 0 0 0 0 0 0 0 0

EMp_t1a 0.208 0.173 0.182 0.382 0 0 0 0 0 0 0 0

CON_t2a 0.265 0.137 0.14 0.18 0.485 0 0 0 0 0 0 0

HYP_t2a 0.141 -0.023 0.134 0.152 0.196 0.123 0 0 0 0 0 0

PEp_t2a 0.157 0.137 0.149 0.122 0.206 0.171 0.392 0 0 0 0 0

EMp_t2a 0.203 0.145 0.152 0.233 0.266 0.193 0.253 0.403 0 0 0 0

CON_t3a 0.273 0.123 0.116 0.168 0.281 0.137 0.192 0.205 0.484 0 0 0

HYP_t3a 0.19 0.028 0.117 0.178 0.2 0.096 0.183 0.21 0.236 0.224 0 0

PEp_t3a 0.188 0.134 0.166 0.153 0.194 0.152 0.241 0.208 0.229 0.21 0.351 0

EMp_t3a 0.162 0.084 0.141 0.204 0.182 0.121 0.169 0.247 0.206 0.19 0.209 0.322

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 9; t3 = Age 12

Table 9c. MZ Cross-twin cross-trait correlations of variables under study - NTR

CON_t1b HYP_t1b PEp_t1b EMp_t1b CON_t2b HYP_t2b PEp_t2b EMp_t2b CON_t3b HYP_t3b PEp_t3b EMp_t3b

CON_t1a 0.824 0 0 0 0 0 0 0 0 0 0 0

HYP_t1a 0.521 0.708 0 0 0 0 0 0 0 0 0 0

PEp_t1a 0.558 0.499 0.691 0 0 0 0 0 0 0 0 0

EMp_t1a 0.459 0.4 0.5 0.686 0 0 0 0 0 0 0 0

CON_t2a 0.621 0.405 0.405 0.322 0.824 0 0 0 0 0 0 0

HYP_t2a 0.414 0.521 0.386 0.282 0.487 0.709 0 0 0 0 0 0

PEp_t2a 0.438 0.399 0.485 0.377 0.548 0.514 0.689 0 0 0 0 0

EMp_t2a 0.36 0.319 0.402 0.476 0.448 0.388 0.484 0.656 0 0 0 0

CON_t3a 0.543 0.328 0.34 0.284 0.605 0.378 0.384 0.333 0.811 0 0 0

HYP_t3a 0.404 0.436 0.347 0.27 0.385 0.502 0.343 0.269 0.505 0.697 0 0

PEp_t3a 0.365 0.364 0.423 0.341 0.369 0.371 0.451 0.374 0.505 0.505 0.691 0

EMp_t3a 0.319 0.295 0.384 0.437 0.36 0.307 0.368 0.477 0.472 0.428 0.517 0.686

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 10; t3 = Age 12

Table 9d. DZ Cross-twin cross-trait correlations of variables under study - NTR

CON_t1b HYP_t1b PEp_t1b EMp_t1b CON_t2b HYP_t2b PEp_t2b EMp_t2b CON_t3b HYP_t3b PEp_t3b EMp_t3b

CON_t1a 0.504 0 0 0 0 0 0 0 0 0 0 0

HYP_t1a 0.327 0.24 0 0 0 0 0 0 0 0 0 0

PEp_t1a 0.417 0.307 0.399 0 0 0 0 0 0 0 0 0

EMp_t1a 0.404 0.342 0.395 0.455 0 0 0 0 0 0 0 0

CON_t2a 0.39 0.257 0.297 0.301 0.477 0 0 0 0 0 0 0

HYP_t2a 0.279 0.171 0.216 0.252 0.319 0.232 0 0 0 0 0 0

PEp_t2a 0.314 0.228 0.267 0.284 0.369 0.287 0.369 0 0 0 0 0

EMp_t2a 0.33 0.273 0.316 0.352 0.408 0.349 0.394 0.473 0 0 0 0

CON_t3a 0.349 0.198 0.255 0.235 0.358 0.212 0.262 0.287 0.496 0 0 0

HYP_t3a 0.234 0.11 0.181 0.218 0.253 0.154 0.2 0.25 0.316 0.23 0 0

PEp_t3a 0.293 0.178 0.246 0.242 0.301 0.199 0.259 0.283 0.372 0.273 0.364 0

EMp_t3a 0.329 0.245 0.301 0.315 0.336 0.262 0.316 0.354 0.405 0.334 0.38 0.482

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 10; t3 = Age 12
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Table 10a. Within-person and between-sibling regression estimates from the wfRICLPM - TEDS

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CNDa1->CNDa2 0.138 0.068 0.207 0.13297737 0.035 9.81E-05 1.05E-03 *

CNDa1->CNDb2 -0.002 -0.067 0.062 -0.0021332 0.033 9.46E-01 9.68E-01

CNDa1->EMOa2 0.063 0.007 0.118 0.0571944 0.028 2.68E-02 8.13E-02 nominal

CNDa1->EMOb2 0.073 0.019 0.127 0.06651538 0.028 8.19E-03 3.25E-02 *

CNDa1->HYPa2 0.089 0.041 0.138 0.09345268 0.025 2.86E-04 1.91E-03 *

CNDa1->HYPb2 0.04 -0.007 0.086 0.04151165 0.024 9.28E-02 2.33E-01

CNDa1->PERa2 0.074 0.016 0.132 0.06673742 0.029 1.20E-02 4.28E-02 *

CNDa1->PERb2 0.035 -0.022 0.092 0.03170058 0.029 2.27E-01 4.27E-01

CNDa2->CNDa3 0.169 0.096 0.242 0.17065674 0.037 5.27E-06 1.12E-04 *

CNDa2->CNDb3 -0.045 -0.112 0.022 -0.0457852 0.034 1.84E-01 4.21E-01

CNDa2->EMOa3 0.008 -0.048 0.064 0.00759083 0.029 7.84E-01 9.38E-01

CNDa2->EMOb3 -0.009 -0.065 0.047 -0.008414 0.029 7.61E-01 9.38E-01

CNDa2->HYPa3 0.106 0.047 0.165 0.11487326 0.03 4.15E-04 2.42E-03 *

CNDa2->HYPb3 -0.002 -0.06 0.056 -0.0018627 0.03 9.54E-01 9.68E-01

CNDa2->PERa3 0.009 -0.053 0.072 0.00899003 0.032 7.66E-01 9.38E-01

CNDa2->PERb3 -0.012 -0.072 0.047 -0.0118016 0.03 6.84E-01 9.33E-01

EMOa1->CNDa2 0.007 -0.039 0.054 0.00732728 0.024 7.64E-01 9.38E-01

EMOa1->CNDb2 0.001 -0.045 0.047 0.00122194 0.023 9.60E-01 9.68E-01

EMOa1->EMOa2 0.131 0.072 0.19 0.12789604 0.03 1.26E-05 2.02E-04 *

EMOa1->EMOb2 -0.011 -0.065 0.043 -0.0108392 0.027 6.85E-01 9.33E-01

EMOa1->HYPa2 0.013 -0.028 0.055 0.01488727 0.021 5.27E-01 8.33E-01

EMOa1->HYPb2 -0.007 -0.047 0.032 -0.0082141 0.02 7.16E-01 9.38E-01

EMOa1->PERa2 0.028 -0.025 0.082 0.02720481 0.027 3.00E-01 5.42E-01

EMOa1->PERb2 -0.014 -0.065 0.037 -0.0135339 0.026 5.89E-01 8.89E-01

EMOa2->CNDa3 0.069 0.017 0.12 0.07350291 0.026 8.64E-03 3.25E-02 *

EMOa2->CNDb3 0.048 -0.003 0.098 0.05096716 0.026 6.28E-02 1.68E-01

EMOa2->EMOa3 0.183 0.12 0.246 0.18616619 0.032 1.39E-08 4.44E-07 *

EMOa2->EMOb3 -0.004 -0.063 0.055 -0.0039211 0.03 8.99E-01 9.68E-01

EMOa2->HYPa3 0.073 0.02 0.126 0.08380688 0.027 6.61E-03 2.82E-02 *

EMOa2->HYPb3 0.034 -0.018 0.086 0.03947086 0.027 1.94E-01 4.27E-01

EMOa2->PERa3 0.105 0.049 0.16 0.1053955 0.028 2.20E-04 1.76E-03 *

EMOa2->PERb3 0.019 -0.036 0.074 0.01890822 0.028 5.02E-01 8.24E-01

HYPa1->CNDa2 0.088 0.026 0.15 0.07986594 0.032 5.27E-03 2.41E-02 *

HYPa1->CNDb2 0.004 -0.055 0.062 0.00336244 0.03 9.01E-01 9.68E-01

HYPa1->EMOa2 0.095 0.036 0.155 0.08189772 0.031 1.74E-03 8.58E-03 *

HYPa1->EMOb2 0.037 -0.021 0.094 0.03130904 0.029 2.10E-01 4.27E-01

HYPa1->HYPa2 0.218 0.154 0.281 0.21314632 0.032 1.89E-11 1.21E-09 *

HYPa1->HYPb2 0.002 -0.056 0.061 0.002193 0.03 9.41E-01 9.68E-01

HYPa1->PERa2 0.039 -0.023 0.102 0.033184 0.032 2.18E-01 4.27E-01

HYPa1->PERb2 0.036 -0.022 0.094 0.03018317 0.03 2.27E-01 4.27E-01

HYPa2->CNDa3 0.065 0.005 0.125 0.06070608 0.031 3.34E-02 9.29E-02 nominal

HYPa2->CNDb3 0.007 -0.05 0.065 0.00669514 0.029 8.07E-01 9.40E-01

HYPa2->EMOa3 0.071 0.008 0.134 0.06329438 0.032 2.68E-02 8.13E-02 nominal

HYPa2->EMOb3 -0.015 -0.075 0.045 -0.0135316 0.031 6.22E-01 9.05E-01

HYPa2->HYPa3 0.149 0.068 0.23 0.14950582 0.041 2.99E-04 1.91E-03 *

HYPa2->HYPb3 0.084 0.009 0.159 0.08442537 0.038 2.80E-02 8.13E-02 nominal

HYPa2->PERa3 0.076 0.011 0.141 0.06691503 0.033 2.23E-02 7.51E-02 nominal

HYPa2->PERb3 0.009 -0.056 0.073 0.00765615 0.033 7.92E-01 9.38E-01

PERa1->CNDa2 0.005 -0.043 0.053 0.00525089 0.025 8.37E-01 9.57E-01

PERa1->CNDb2 -0.01 -0.058 0.038 -0.0104461 0.025 6.85E-01 9.33E-01

PERa1->EMOa2 0.102 0.052 0.153 0.10063477 0.026 7.27E-05 9.31E-04 *

PERa1->EMOb2 0.025 -0.024 0.074 0.02490162 0.025 3.13E-01 5.42E-01

PERa1->HYPa2 -0.011 -0.053 0.031 -0.0127191 0.021 5.97E-01 8.89E-01

PERa1->HYPb2 0.019 -0.021 0.059 0.02112345 0.021 3.61E-01 6.07E-01

PERa1->PERa2 0.139 0.065 0.213 0.13508431 0.038 2.16E-04 1.76E-03 *

PERa1->PERb2 0.033 -0.031 0.096 0.03192491 0.032 3.10E-01 5.42E-01

PERa2->CNDa3 0.034 -0.019 0.087 0.03674194 0.027 2.09E-01 4.27E-01

PERa2->CNDb3 0.009 -0.041 0.06 0.01003833 0.026 7.19E-01 9.38E-01

PERa2->EMOa3 0.046 -0.013 0.106 0.04781837 0.03 1.27E-01 3.00E-01

PERa2->EMOb3 -0.001 -0.056 0.054 -0.0011599 0.028 9.68E-01 9.68E-01

PERa2->HYPa3 0.018 -0.04 0.076 0.02136383 0.03 5.33E-01 8.33E-01

PERa2->HYPb3 -0.004 -0.06 0.051 -0.0050893 0.028 8.78E-01 9.68E-01

PERa2->PERa3 0.134 0.054 0.214 0.13682848 0.041 1.02E-03 5.46E-03 *

PERa2->PERb3 0.057 -0.01 0.125 0.05866529 0.034 9.47E-02 2.33E-01

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 9; t3 = Age 12; pvalue adjusted = Benjamini-Hocberg FDR correction; *= estimate survives FDR; 

nominal =  α< 0.05
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Table 10b. Within-person and between-sibling regression estimates from the wfRICLPM - NTR

direction beta lower CI upper CI stdBeta robust SE p-value p_value adjusted index

CNDa1->CNDa2 0.265 0.194 0.336 0.26321359 0.036 2.43E-13 2.22E-12 *

CNDa1->CNDb2 -0.017 -0.079 0.045 -0.016654 0.032 5.97E-01 8.13E-01

CNDa1->EMOa2 0.06 -0.002 0.121 0.05108393 0.031 5.83E-02 1.97E-01

CNDa1->EMOb2 0.075 0.017 0.133 0.06404189 0.03 1.18E-02 5.38E-02 nominal

CNDa1->HYPa2 0.06 0.006 0.114 0.05822213 0.027 2.81E-02 1.12E-01 nominal

CNDa1->HYPb2 0.022 -0.027 0.072 0.02168025 0.025 3.70E-01 6.77E-01

CNDa1->PERa2 0.072 0.011 0.133 0.06199938 0.031 2.03E-02 8.67E-02 nominal

CNDa1->PERb2 0.039 -0.017 0.095 0.03374877 0.028 1.68E-01 4.67E-01

CNDa2->CNDa3 0.284 0.22 0.349 0.27796539 0.033 0.00E+00 0.00E+00 *

CNDa2->CNDb3 -0.004 -0.058 0.05 -0.0040232 0.028 8.82E-01 9.40E-01

CNDa2->EMOa3 0.004 -0.049 0.056 0.00307434 0.027 8.96E-01 9.40E-01

CNDa2->EMOb3 0.025 -0.025 0.075 0.02177773 0.025 3.24E-01 6.56E-01

CNDa2->HYPa3 0.075 0.023 0.126 0.07165066 0.026 4.41E-03 2.42E-02 *

CNDa2->HYPb3 -0.011 -0.057 0.034 -0.0109286 0.023 6.21E-01 8.19E-01

CNDa2->PERa3 0.013 -0.041 0.067 0.01151021 0.028 6.30E-01 8.19E-01

CNDa2->PERb3 -0.026 -0.074 0.023 -0.0221178 0.025 2.98E-01 6.56E-01

EMOa1->CNDa2 -0.004 -0.041 0.034 -0.0040876 0.019 8.53E-01 9.40E-01

EMOa1->CNDb2 0.015 -0.022 0.051 0.0167053 0.019 4.35E-01 7.33E-01

EMOa1->EMOa2 0.225 0.165 0.284 0.22168664 0.03 1.47E-13 1.57E-12 *

EMOa1->EMOb2 -0.024 -0.077 0.028 -0.02413 0.027 3.60E-01 6.77E-01

EMOa1->HYPa2 -0.004 -0.042 0.035 -0.00424 0.02 8.47E-01 9.40E-01

EMOa1->HYPb2 0.012 -0.026 0.051 0.01385725 0.02 5.26E-01 7.83E-01

EMOa1->PERa2 0.066 0.02 0.111 0.06475869 0.023 4.53E-03 2.42E-02 *

EMOa1->PERb2 0.014 -0.029 0.057 0.01381646 0.022 5.26E-01 7.83E-01

EMOa2->CNDa3 0.029 -0.013 0.072 0.03302273 0.022 1.79E-01 4.78E-01

EMOa2->CNDb3 0.014 -0.026 0.055 0.01626962 0.021 4.90E-01 7.65E-01

EMOa2->EMOa3 0.265 0.205 0.326 0.26800766 0.031 0.00E+00 0.00E+00 *

EMOa2->EMOb3 -0.014 -0.065 0.037 -0.0144167 0.026 5.85E-01 8.13E-01

EMOa2->HYPa3 0.011 -0.03 0.053 0.01262622 0.021 5.91E-01 8.13E-01

EMOa2->HYPb3 0 -0.041 0.04 -0.0003368 0.021 9.88E-01 9.88E-01

EMOa2->PERa3 0.084 0.037 0.131 0.08439101 0.024 4.46E-04 2.86E-03 *

EMOa2->PERb3 0.016 -0.029 0.061 0.01599754 0.023 4.89E-01 7.65E-01

HYPa1->CNDa2 0.005 -0.038 0.048 0.00504575 0.022 8.22E-01 9.40E-01

HYPa1->CNDb2 0.008 -0.032 0.049 0.00853765 0.021 6.85E-01 8.43E-01

HYPa1->EMOa2 -0.032 -0.082 0.017 -0.0283859 0.025 2.01E-01 4.99E-01

HYPa1->EMOb2 0.014 -0.035 0.062 0.01193359 0.025 5.84E-01 8.13E-01

HYPa1->HYPa2 0.212 0.156 0.269 0.21019865 0.029 1.15E-13 1.48E-12 *

HYPa1->HYPb2 -0.009 -0.06 0.042 -0.0087759 0.026 7.33E-01 8.85E-01

HYPa1->PERa2 0.033 -0.018 0.085 0.02935451 0.026 2.03E-01 4.99E-01

HYPa1->PERb2 -0.004 -0.052 0.044 -0.0031909 0.025 8.82E-01 9.40E-01

HYPa2->CNDa3 0.004 -0.037 0.045 0.00395298 0.021 8.50E-01 9.40E-01

HYPa2->CNDb3 -0.008 -0.045 0.029 -0.0080556 0.019 6.74E-01 8.43E-01

HYPa2->EMOa3 0.022 -0.021 0.066 0.01997138 0.022 3.17E-01 6.56E-01

HYPa2->EMOb3 -0.002 -0.042 0.038 -0.0019329 0.02 9.16E-01 9.46E-01

HYPa2->HYPa3 0.299 0.25 0.349 0.29560394 0.025 0.00E+00 0.00E+00 *

HYPa2->HYPb3 -0.016 -0.06 0.028 -0.0155703 0.022 4.80E-01 7.65E-01

HYPa2->PERa3 0.032 -0.013 0.077 0.02835199 0.023 1.67E-01 4.67E-01

HYPa2->PERb3 -0.021 -0.06 0.017 -0.0190994 0.02 2.80E-01 6.43E-01

PERa1->CNDa2 0.037 -0.004 0.077 0.04167413 0.021 7.95E-02 2.54E-01

PERa1->CNDb2 -0.016 -0.053 0.02 -0.018621 0.019 3.81E-01 6.77E-01

PERa1->EMOa2 0.052 0.005 0.098 0.05085748 0.024 3.01E-02 1.13E-01 nominal

PERa1->EMOb2 0.023 -0.019 0.066 0.02296426 0.022 2.81E-01 6.43E-01

PERa1->HYPa2 0.041 -0.001 0.083 0.04509274 0.021 5.74E-02 1.97E-01

PERa1->HYPb2 0.019 -0.019 0.056 0.02056135 0.019 3.28E-01 6.56E-01

PERa1->PERa2 0.19 0.135 0.246 0.18743672 0.028 1.60E-11 1.28E-10 *

PERa1->PERb2 -0.012 -0.06 0.037 -0.0114287 0.025 6.40E-01 8.19E-01

PERa2->CNDa3 0.058 0.015 0.101 0.06536797 0.022 8.63E-03 4.25E-02 *

PERa2->CNDb3 -0.004 -0.043 0.035 -0.0043327 0.02 8.49E-01 9.40E-01

PERa2->EMOa3 0.113 0.067 0.159 0.1139425 0.023 1.35E-06 9.57E-06 *

PERa2->EMOb3 0.02 -0.023 0.062 0.02007721 0.022 3.60E-01 6.77E-01

PERa2->HYPa3 0.035 -0.006 0.076 0.03875089 0.021 9.26E-02 2.82E-01

PERa2->HYPb3 0.016 -0.022 0.053 0.01733305 0.019 4.14E-01 7.16E-01

PERa2->PERa3 0.32 0.268 0.372 0.31996245 0.026 0.00E+00 0.00E+00 *

PERa2->PERb3 0.001 -0.046 0.047 0.00081036 0.024 9.73E-01 9.88E-01

Note: a = Sib 1; b = Sib 2; t1 = Age 7; t2 = Age 10; t3 = Age 12;pvalue adjusted = Benjamini-Hocberg FDR correction; *= estimate survives FDR

nominal =  α< 0.05
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Appendix 6 – Supplementary material for Chapter 6 

 

 

 

Supplementary figures  

 

Figure S1. Common pathway model presenting standardized squared path estimates for genetic (A), shared 

environmental (C) and unique environmental (E) influences on the p-factor obtained from different parent rated 

psychopathology measures across time (age 7, 9, 12 and 16). In the diagram are also reported measure specific 

ACE estimates as well as loadings on the p-factor (arrows leaving P). 
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Table S1. Logistic regression results of droput status vs demographic variables available at recruitment in the full sample

outcome predictor b 2.5% CI 97.5% CI SE Zscore Pval OR 2.5% CI OR 97.5% CI OR index

parent_7_pc SEX 0.162 0.096 0.229 0.034 4.78 1.76E-06 1.176 1.1 1.257 *

parent_7_pc QUAL_father -0.124 -0.14 -0.108 0.008 -15.164 6.15E-52 0.883 0.869 0.897 *

parent_7_pc QUAL_mother -0.084 -0.099 -0.069 0.008 -10.764 5.08E-27 0.919 0.905 0.934 *

parent_7_pc EL_mother -0.072 -0.094 -0.05 0.011 -6.319 2.63E-10 0.931 0.91 0.951 *

parent_7_pc EL_father -0.054 -0.068 -0.04 0.007 -7.508 6.02E-14 0.948 0.934 0.961 *

parent_7_pc SES -0.251 -0.285 -0.217 0.017 -14.365 8.63E-47 0.778 0.752 0.805 *

parent_9_pc SEX 0.183 0.095 0.272 0.045 4.071 4.68E-05 1.201 1.1 1.312 *

parent_9_pc QUAL_father -0.089 -0.11 -0.067 0.011 -8.131 4.24E-16 0.915 0.896 0.935 *

parent_9_pc QUAL_mother -0.067 -0.087 -0.047 0.01 -6.488 8.68E-11 0.935 0.917 0.954 *

parent_9_pc EL_mother -0.022 -0.051 0.007 0.015 -1.505 1.32E-01 0.978 0.95 1.007

parent_9_pc EL_father -0.036 -0.055 -0.018 0.009 -3.832 1.27E-04 0.965 0.947 0.982 *

parent_9_pc SES -0.165 -0.21 -0.12 0.023 -7.216 5.35E-13 0.848 0.811 0.887 *

parent_12_pc SEX 0.277 0.203 0.351 0.038 7.331 2.28E-13 1.319 1.225 1.42 *

parent_12_pc QUAL_father -0.152 -0.17 -0.135 0.009 -17.03 4.89E-65 0.859 0.844 0.874 *

parent_12_pc QUAL_mother -0.112 -0.129 -0.095 0.009 -13.133 2.13E-39 0.894 0.879 0.909 *

parent_12_pc EL_mother -0.094 -0.119 -0.069 0.013 -7.372 1.68E-13 0.91 0.888 0.933 *

parent_12_pc EL_father -0.066 -0.081 -0.05 0.008 -8.282 1.21E-16 0.936 0.922 0.951 *

parent_12_pc SES -0.318 -0.356 -0.28 0.019 -16.506 3.31E-61 0.728 0.701 0.756 *

parent_16_pc SEX 0.275 0.201 0.349 0.038 7.319 2.50E-13 1.317 1.223 1.417 *

parent_16_pc QUAL_father -0.15 -0.168 -0.133 0.009 -16.874 7.02E-64 0.86 0.846 0.876 *

parent_16_pc QUAL_mother -0.111 -0.128 -0.095 0.009 -13.082 4.16E-39 0.895 0.88 0.91 *

parent_16_pc EL_mother -0.09 -0.115 -0.065 0.013 -7.074 1.51E-12 0.914 0.892 0.937 *

parent_16_pc EL_father -0.065 -0.081 -0.05 0.008 -8.247 1.62E-16 0.937 0.922 0.952 *

parent_16_pc SES -0.314 -0.352 -0.276 0.019 -16.363 3.51E-60 0.731 0.704 0.759 *

teacher_7_pc SEX 0.132 0.06 0.203 0.037 3.606 3.12E-04 1.141 1.062 1.226 *

teacher_7_pc QUAL_father -0.124 -0.141 -0.106 0.009 -14.062 6.47E-45 0.884 0.869 0.899 *

teacher_7_pc QUAL_mother -0.084 -0.101 -0.068 0.008 -10.071 7.43E-24 0.919 0.904 0.934 *

teacher_7_pc EL_mother -0.072 -0.097 -0.048 0.012 -5.872 4.31E-09 0.93 0.908 0.953 *

teacher_7_pc EL_father -0.056 -0.071 -0.04 0.008 -7.182 6.87E-13 0.946 0.932 0.96 *

teacher_7_pc SES -0.254 -0.29 -0.217 0.019 -13.529 1.06E-41 0.776 0.748 0.805 *

teacher_9_pc SEX 0.237 0.136 0.339 0.052 4.574 4.80E-06 1.268 1.146 1.404 *

teacher_9_pc QUAL_father -0.083 -0.108 -0.059 0.013 -6.642 3.09E-11 0.92 0.898 0.943 *

teacher_9_pc QUAL_mother -0.068 -0.091 -0.044 0.012 -5.723 1.05E-08 0.935 0.913 0.957 *

teacher_9_pc EL_mother -0.029 -0.063 0.004 0.017 -1.703 8.86E-02 0.971 0.939 1.004

teacher_9_pc EL_father -0.047 -0.068 -0.026 0.011 -4.359 1.31E-05 0.954 0.934 0.974 *

teacher_9_pc SES -0.175 -0.226 -0.123 0.026 -6.66 2.73E-11 0.84 0.798 0.884 *

teacher_12_pc SEX 0.296 0.207 0.385 0.045 6.518 7.14E-11 1.344 1.23 1.469 *

teacher_12_pc QUAL_father -0.166 -0.187 -0.145 0.011 -15.76 5.83E-56 0.847 0.83 0.865 *

teacher_12_pc QUAL_mother -0.118 -0.138 -0.098 0.01 -11.561 6.49E-31 0.889 0.871 0.907 *

teacher_12_pc EL_mother -0.097 -0.127 -0.067 0.015 -6.365 1.95E-10 0.908 0.881 0.935 *

teacher_12_pc EL_father -0.079 -0.098 -0.061 0.01 -8.266 1.39E-16 0.924 0.906 0.941 *

teacher_12_pc SES -0.346 -0.391 -0.301 0.023 -15.041 3.93E-51 0.708 0.676 0.74 *

child_9_pc SEX 0.206 0.116 0.296 0.046 4.489 7.16E-06 1.229 1.123 1.344 *

child_9_pc QUAL_father -0.094 -0.115 -0.072 0.011 -8.467 2.53E-17 0.911 0.891 0.931 *

child_9_pc QUAL_mother -0.073 -0.094 -0.053 0.01 -7.008 2.43E-12 0.929 0.91 0.949 *

child_9_pc EL_mother -0.029 -0.059 0 0.015 -1.939 5.25E-02 0.971 0.943 1

child_9_pc EL_father -0.037 -0.056 -0.018 0.01 -3.86 1.14E-04 0.964 0.946 0.982 *

child_9_pc SES -0.179 -0.224 -0.133 0.023 -7.678 1.61E-14 0.836 0.799 0.875 *

child_12_pc SEX 0.157 0.093 0.222 0.033 4.813 1.48E-06 1.17 1.098 1.248 *

child_12_pc QUAL_father -0.123 -0.138 -0.107 0.008 -15.456 6.85E-54 0.884 0.871 0.898 *

child_12_pc QUAL_mother -0.083 -0.098 -0.068 0.008 -11.007 3.54E-28 0.92 0.907 0.934 *

child_12_pc EL_mother -0.065 -0.087 -0.044 0.011 -5.961 2.51E-09 0.937 0.917 0.957 *

child_12_pc EL_father -0.054 -0.068 -0.041 0.007 -7.831 4.85E-15 0.947 0.934 0.96 *

child_12_pc SES -0.244 -0.277 -0.211 0.017 -14.434 3.16E-47 0.784 0.758 0.81 *

child_16_pc SEX 0.42 0.311 0.531 0.056 7.492 6.79E-14 1.523 1.364 1.7 *

child_16_pc QUAL_father -0.142 -0.167 -0.117 0.013 -10.973 5.14E-28 0.867 0.846 0.89 *

child_16_pc QUAL_mother -0.114 -0.138 -0.09 0.012 -9.219 3.01E-20 0.892 0.871 0.914 *

child_16_pc EL_mother -0.069 -0.106 -0.032 0.019 -3.682 2.31E-04 0.933 0.9 0.968 *

child_16_pc EL_father -0.066 -0.089 -0.043 0.012 -5.684 1.32E-08 0.936 0.915 0.958 *

child_16_pc SES -0.3 -0.355 -0.246 0.028 -10.76 5.30E-27 0.741 0.701 0.782 *

Note. N full sample = 27,444; Outcome is dropout status (yes = 1, no = 0) with respect to complete cases on measures employed in principal component (pc) analyses 

in Chapter 4 (see also supplementary Table S5 in Appendix 3); Sex was coded as 0 = females, 1 = males; EL = employment level (ranging from 1 = unemployed to 

9 = manager); QUAL = highest qualification obtained (ranging from 1= none to 8 = postgrad); SES = socio economic status composite as descirbed in Chapter 3. 

index = whether association survived Bonferroni correction for multiple testing.
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Table S2. Logistic regression results of droput status vs demographic variables available at recruitment in the genoryped sample

outcome predictor b 2.5% CI 97.5% CI SE Zscore Pval OR 2.5% CI OR 97.5% CI OR index

parent_7_pc SEX 0.111 0.032 0.19 0.04 2.766 5.68E-03 1.118 1.033 1.21

parent_7_pc QUAL_father -0.08 -0.1 -0.06 0.01 -7.975 1.52E-15 0.923 0.905 0.941 *

parent_7_pc QUAL_mother -0.063 -0.082 -0.045 0.009 -6.701 2.07E-11 0.939 0.922 0.956 *

parent_7_pc EL_mother -0.038 -0.065 -0.011 0.014 -2.784 5.37E-03 0.963 0.937 0.989

parent_7_pc EL_father -0.033 -0.05 -0.016 0.008 -3.87 1.09E-04 0.968 0.952 0.984 *

parent_7_pc SES -0.158 -0.199 -0.118 0.021 -7.602 2.91E-14 0.854 0.819 0.889 *

parent_9_pc SEX 0.124 0.029 0.219 0.049 2.554 1.06E-02 1.132 1.029 1.245

parent_9_pc QUAL_father -0.03 -0.053 -0.006 0.012 -2.463 1.38E-02 0.971 0.948 0.994

parent_9_pc QUAL_mother -0.036 -0.058 -0.014 0.011 -3.166 1.54E-03 0.965 0.944 0.987

parent_9_pc EL_mother 0.023 -0.009 0.055 0.016 1.431 1.52E-01 1.023 0.991 1.056

parent_9_pc EL_father -0.009 -0.029 0.011 0.01 -0.918 3.59E-01 0.991 0.971 1.011

parent_9_pc SES -0.045 -0.093 0.004 0.025 -1.802 7.16E-02 0.956 0.911 1.004

parent_12_pc SEX 0.252 0.168 0.336 0.043 5.9 3.63E-09 1.286 1.183 1.399 *

parent_12_pc QUAL_father -0.114 -0.135 -0.094 0.01 -10.918 9.41E-28 0.892 0.874 0.911 *

parent_12_pc QUAL_mother -0.097 -0.116 -0.077 0.01 -9.809 1.03E-22 0.908 0.89 0.926 *

parent_12_pc EL_mother -0.066 -0.094 -0.037 0.015 -4.515 6.33E-06 0.936 0.91 0.963 *

parent_12_pc EL_father -0.047 -0.064 -0.029 0.009 -5.198 2.02E-07 0.954 0.938 0.971 *

parent_12_pc SES -0.239 -0.282 -0.196 0.022 -10.862 1.74E-27 0.787 0.754 0.822 *

parent_16_pc SEX 0.25 0.167 0.334 0.043 5.882 4.05E-09 1.284 1.182 1.396 *

parent_16_pc QUAL_father -0.112 -0.132 -0.091 0.01 -10.714 8.72E-27 0.894 0.876 0.913 *

parent_16_pc QUAL_mother -0.096 -0.115 -0.077 0.01 -9.741 2.02E-22 0.909 0.891 0.926 *

parent_16_pc EL_mother -0.06 -0.089 -0.032 0.014 -4.149 3.34E-05 0.942 0.915 0.969 *

parent_16_pc EL_father -0.046 -0.064 -0.029 0.009 -5.144 2.69E-07 0.955 0.938 0.972 *

parent_16_pc SES -0.234 -0.277 -0.191 0.022 -10.672 1.37E-26 0.791 0.758 0.826 *

teacher_7_pc SEX 0.067 -0.015 0.149 0.042 1.596 1.11E-01 1.069 0.985 1.16

teacher_7_pc QUAL_father -0.076 -0.096 -0.056 0.01 -7.368 1.73E-13 0.927 0.908 0.946 *

teacher_7_pc QUAL_mother -0.061 -0.08 -0.042 0.01 -6.239 4.39E-10 0.941 0.923 0.959 *

teacher_7_pc EL_mother -0.038 -0.066 -0.01 0.014 -2.642 8.24E-03 0.963 0.937 0.99

teacher_7_pc EL_father -0.034 -0.051 -0.017 0.009 -3.842 1.22E-04 0.967 0.95 0.984 *

teacher_7_pc SES -0.157 -0.199 -0.115 0.022 -7.272 3.54E-13 0.855 0.819 0.892 *

teacher_9_pc SEX 0.181 0.074 0.288 0.055 3.302 9.61E-04 1.198 1.076 1.334

teacher_9_pc QUAL_father -0.024 -0.05 0.003 0.013 -1.768 7.70E-02 0.976 0.951 1.003

teacher_9_pc QUAL_mother -0.036 -0.06 -0.011 0.013 -2.84 4.51E-03 0.965 0.941 0.989

teacher_9_pc EL_mother 0.013 -0.022 0.049 0.018 0.737 4.61E-01 1.013 0.978 1.05

teacher_9_pc EL_father -0.022 -0.044 0 0.011 -1.929 5.37E-02 0.978 0.957 1

teacher_9_pc SES -0.057 -0.112 -0.003 0.028 -2.052 4.01E-02 0.944 0.894 0.997

teacher_12_pc SEX 0.254 0.159 0.35 0.049 5.208 1.91E-07 1.29 1.172 1.42 *

teacher_12_pc QUAL_father -0.124 -0.147 -0.101 0.012 -10.621 2.38E-26 0.883 0.863 0.904 *

teacher_12_pc QUAL_mother -0.096 -0.118 -0.074 0.011 -8.625 6.43E-18 0.908 0.889 0.929 *

teacher_12_pc EL_mother -0.066 -0.098 -0.033 0.017 -3.951 7.79E-05 0.937 0.906 0.967 *

teacher_12_pc EL_father -0.06 -0.08 -0.039 0.01 -5.773 7.80E-09 0.942 0.923 0.961 *

teacher_12_pc SES -0.258 -0.307 -0.209 0.025 -10.306 6.65E-25 0.772 0.735 0.811 *

child_9_pc SEX 0.15 0.053 0.246 0.049 3.035 2.40E-03 1.161 1.055 1.279

child_9_pc QUAL_father -0.036 -0.059 -0.012 0.012 -2.941 3.27E-03 0.965 0.942 0.988

child_9_pc QUAL_mother -0.043 -0.065 -0.021 0.011 -3.792 1.50E-04 0.958 0.937 0.979 *

child_9_pc EL_mother 0.015 -0.018 0.047 0.016 0.889 3.74E-01 1.015 0.982 1.048

child_9_pc EL_father -0.01 -0.031 0.01 0.01 -1.008 3.13E-01 0.99 0.97 1.01

child_9_pc SES -0.061 -0.11 -0.012 0.025 -2.42 1.55E-02 0.941 0.896 0.989

child_12_pc SEX 0.108 0.03 0.186 0.04 2.71 6.72E-03 1.114 1.03 1.204

child_12_pc QUAL_father -0.079 -0.099 -0.06 0.01 -7.971 1.58E-15 0.924 0.906 0.942 *

child_12_pc QUAL_mother -0.064 -0.082 -0.045 0.009 -6.822 8.95E-12 0.938 0.921 0.956 *

child_12_pc EL_mother -0.029 -0.055 -0.002 0.014 -2.129 3.32E-02 0.972 0.946 0.998

child_12_pc EL_father -0.034 -0.051 -0.018 0.008 -4.078 4.54E-05 0.966 0.951 0.982 *

child_12_pc SES -0.151 -0.191 -0.111 0.021 -7.334 2.23E-13 0.86 0.826 0.895 *

child_16_pc SEX 0.379 0.264 0.494 0.059 6.459 1.05E-10 1.461 1.303 1.639 *

child_16_pc QUAL_father -0.092 -0.119 -0.064 0.014 -6.604 4.00E-11 0.912 0.888 0.938 *

child_16_pc QUAL_mother -0.088 -0.114 -0.062 0.013 -6.69 2.23E-11 0.916 0.893 0.94 *

child_16_pc EL_mother -0.032 -0.071 0.007 0.02 -1.607 1.08E-01 0.969 0.932 1.007

child_16_pc EL_father -0.042 -0.066 -0.019 0.012 -3.497 4.71E-04 0.959 0.936 0.981 *

child_16_pc SES -0.198 -0.255 -0.14 0.029 -6.7 2.08E-11 0.821 0.775 0.87 *

Note. N genotyped sample = 10,346; Outcome is dropout status (yes = 1, no = 0) with respect to complete cases on measures employed in principal component (pc) 

analyses in Chapter 4 (see also supplementary Table S5 in Appendix 3); Sex was coded as 0 = females 1, = males; EL = employment level (ranging from 1 = unemployed to 

9 = manager); QUAL = highest qualification obtained (ranging from 1= none to 8 = postgrad); SES = socio economic status composite as descirbed in Chapter 3. 

index = whether association survived Bonferroni correction for multiple testing.
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