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To my father, whose love got me this far. 

 

Abstract 
Inter-tumour heterogeneity is a significant barrier to the effective treatment of cancer. 

Heterogeneous molecular features of tumours cause patients to respond differently to 

therapies. The cancer community has addressed this problem to an extent by 

developing molecular stratifications and targeted therapies. However, formulating 

effective treatment strategies for individual patients remains challenging, and a deeper 

molecular understanding of inter-tumour heterogeneity is required to improve patient 

outcomes. 

 In this thesis, I investigate inter-tumour heterogeneity from two perspectives. 

First, I consider germline variation as a driving force behind inter-tumour 

heterogeneity. While heterogeneity is largely the result of stochastic processes, 

inherited genetic differences between patients can give rise to patient-specific 

selective pressures acting on somatic alterations during cancer evolution. However, 

this phenomenon is not yet fully understood. I analyse how germline variants that 

perturb the function of biological pathways affect the frequency of somatic driver 

alterations at the gene and pathway levels, using data from oesophageal 

adenocarcinoma. By addressing the methodological and statistical challenges 

involved in this analysis, I find evidence that ATM and its interactors play an important 

and as-yet unreported role in the biology of oesophageal adenocarcinoma. In 

particular, I find that perturbations to these genes can substitute for driver alterations 

in TP53, which is by far the most frequently altered gene in oesophageal 

adenocarcinoma. This analysis also uncovers evidence that ATM acts as a cancer 

predisposition gene and a tumour suppressor gene in oesophageal adenocarcinoma.  

 Second, I address the question of how to identify the aspects of inter-tumour 

heterogeneity that are most relevant to cancer biology and therapy, i.e. cancer drivers. 

The research community has identified many hundreds of driver genes across cancer 

types, and I describe the curation of a database, the Network of Cancer Genes (NCG), 

to capture this information. NCG also annotates the systems-level properties of 

reported cancer genes. I show that cancer genes are distinguished from other human 

genes by an array of these systems-level properties, and develop a machine learning 

method to use these properties to identify novel driver genes. This method (sysSVM2) 
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is capable of identifying driver genes at the level of individual patients, which 

overcomes the persistent problem of a portion of patients having too few driver 

alterations to explain the onset of cancer. It is also particularly useful in rare cancer 

types for which large-scale sequencing studies are infeasible. Using the properties of 

canonical driver genes to identify drivers in individual patients in this way can help to 

further the goals of precision oncology and overcome the challenge presented by inter-

tumour heterogeneity.  

 Taken as a whole, this thesis presents novel research that sheds light on both 

the causes of inter-tumour heterogeneity and how to interpret the heterogeneous 

molecular landscape of cancer.  
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Chapter 1. Introduction 
 

1.1. Cancer as a heterogenous genetic disease 
“All happy families are alike; each unhappy family is unhappy in its own way” – Leo 

Tolstoy, Anna Karenina 

Over the past century, cancer has risen to become a leading cause of death in many 

parts of the world. In 2016, it accounted for 29.8% of global premature deaths (age 

30-69 years) from noncommunicable diseases1. The picture is even more stark in 

countries with high Human Development Indexes such as those in Western Europe 

and North America, where in 2016 cancer was the single leading cause of premature 

death1. While therapeutic advances have improved patient survival in many cancer 

types in recent decades1, more work needs to be done to continue to improve clinical 

outcomes. 

 Medical advances in oncology have largely followed our increased 

understanding of the molecular basis of cancer. It has been known since the 1970’s 

that cancer is caused by genetic alterations acquired randomly by cells over the course 

of their life2 (somatic alterations). While the majority of such alterations have little or 

no phenotypic effect on cells, some confer a selective advantage, allowing cells to 

proliferate faster than their neighbours (Figure 1-1). Over time as these cells divide, 

they acquire more somatic alterations, and evolution selects for those subpopulations 

whose alterations give them the greatest proliferative advantages. These advantages 

can take a number of different forms, labelled the ‘hallmarks of cancer’ by Hanahan & 

Weinberg in 20003, and expanded upon in 20114. They include: genomic and 

mutational instability; sustained proliferative signalling; evading growth suppressors; 

resisting cell death; avoiding immune destruction; enabling replicative immortality; 

activating invasion and metastasis; inducing angiogenesis; tumour-promoting 

inflammation; and deregulating cellular energetics4. The somatic alterations that 

contribute to these hallmarks, and thus ultimately to the initiation and progression of 

cancer, are known as driver alterations. Most driver alterations contribute to the 

hallmarks of cancer by causing a gene to either gain or lose functionality. Genes 

whose gain-of-function (GoF) drives cancer are referred to as oncogenes, while genes 

whose loss-of-function (LoF) drives cancer are called tumour suppressor genes 

(TSGs). Conversely, the alterations that do not contribute to cancer are termed 
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passenger alterations, and genes whose alteration does not drive cancer are called 

passenger genes5. 

 Due to the stochastic nature of cancer evolution and the vast number of 

possible alterations to the human genome, every cancer is genetically distinct (Figure 

1-1). This phenomenon is termed inter-tumour heterogeneity, and it represents a 

significant challenge to oncology, because cancers with different genetic features 

often respond differently to therapy. In some cancer types, inter-tumour heterogeneity 

has been partially addressed by stratifying patients into broad categories based on 

molecular biomarkers. For example, it has been known since 1987 that breast cancers 

overexpressing the cell-surface receptor and oncogene HER2 are particularly 

aggressive6. Today, breast cancer patients are stratified by the presence of absence 

of HER27,8, and the resulting subtypes have different treatment guidelines. However, 

such stratifications are lacking in many cancer types. Moreover, even within 

established subtypes (such as those in breast cancer9) there is substantial variation in 

response to therapy between individual patients. 

 Since the advent of economical omic-scale DNA and RNA sequencing 

technologies, precision oncology has become a focus the cancer research community 

as a way to comprehensively address inter-tumour heterogeneity10,11. The core 

concept of precision oncology is the tailoring of cancer treatment to the molecular 

characteristics of individual tumours. It encompasses a variety of strategies, including 

improved stratification and targeting altered genes or pathways with specific drugs. 

Moreover, the biomarkers used to distinguish tumours can come from an array of 

sources, including DNA, RNA, and proteins11. Returning to the example of breast 

cancer, tumours that overexpress HER2 can be effectively treated with anti-HER2 

monoclonal antibodies (such as trastuzumab12), and the introduction of these 

precision medicines has resulted in much-improved prognoses13. This development 

was one of the early successes of precision oncology, driving subsequent efforts in 

other cancer types and with other biomarkers.  

 However, the example of trastuzumab also illustrates how a deep 

understanding of the biology hidden behind inter-tumour heterogeneity is necessary 

for progress in precision oncology. In that example, improving patient outcomes first 

required identifying overexpression of HER2 as a molecular driver of a subset of breast 

cancers, before HER2-specific drugs could be developed. More generally, the 

advancement of precision oncology first requires us to be able to identify what genetic 
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alterations drive cancer in individual patients. Once that has been accomplished, a 

detailed mechanistic understanding of how driver alterations function may be required 

to enable effective drug development, particularly for alterations that change protein 

function, such as amino acid substitutions. Even once these questions have been 

addressed and new precision therapies have been developed, however, the onset of 

resistance is likely to hamper progress in patient outcomes, so any single drug is 

unlikely to be sufficient in any tumour14. These stages in the development of precision 

oncology treatments represent substantial challenges to the cancer research 

community. 

 
Figure 1-1: Inter-tumour heterogeneity 
Cells randomly acquire somatic alterations as they divide. Driver alterations undergo 

positive selection, while passenger alterations are not selected for. As a result of the 

random process of acquiring somatic alterations, different tumours have distinct sets 

of somatic alterations, leading to different therapeutic requirements.  

 

1.2. Lifting the mask of inter-tumour heterogeneity 
In this thesis, I will address two primary research questions. Both are concerned with 

using cancer genomics data to investigate the heterogeneous nature of cancer driver 

events. The first (addressed in Chapters 2 and 3) asks how germline genetic variation 

promotes inter-tumour heterogeneity, by influencing the selection of somatic driver 

events. The second (addressed in Chapters 4 and 5) asks how to identify the aspects 

of inter-tumour heterogeneity that are the most relevant to cancer biology, i.e. the 

driver events, in individual tumours. 

Un-altered cells
Cells with (different)
passenger alterations

Cells with (different)
driver alterations

1. Proliferation and random 
    somatic alterations

2. Positive/neutral selection for
    driver/passenger alterations

3. Distinct alterations
    between tumours

4. Different responses
    to therapy
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 As discussed above, inter-tumour heterogeneity arises naturally from cancer 

evolution, as selection acts on randomly acquired somatic alterations. While the forces 

of selection are deterministic, the stochasticity of the acquisition of somatic alterations 

results in tumours having different sets of driver alterations. However, while much of 

this heterogeneity is simply due to the underlying stochastic process, there are 

context-specific factors that influence the selective pressures acting on driver 

alterations, and that thus constitute deterministic components of inter-tumour 

heterogeneity. Perhaps the most obvious example of such a factor is tissue type. 

Analysis of large pan-cancer cohorts has demonstrated very clearly that tumours 

arising from different tissues are characterised by different sets of recurring driver 

alterations15,16. For example, a study from The Cancer Genome Atlas (TCGA) found 

several driver genes that were recurrently altered only in gastrointestinal cancers, 

including the tumour suppressor gene APC15. This suggests that the selective 

pressures acting in different tissues favour different driver events. There is also 

evidence that environmental factors can influence the selection of driver events. For 

example, in lung adenocarcinoma tobacco smoking is positively associated with driver 

alterations in KRAS, and negatively associated with those in EGFR17. Inherited genetic 

(germline) variation represents a third possible factor in determining the selective 

pressures acting on driver alterations.  

It is well-known that some germline variants can predispose individuals to 

developing certain types of cancer18. For example, inherited variants that lead to LoF 

of the APC gene are the main cause of familial adenomatous polyposis, a syndrome 

which strongly predisposes patients to colorectal cancer19. However, it has recently 

been proposed that germline variants might also act as oncogenic modifiers20 that 

alter which driver events are positively selected for in the tumour. In Chapter 2, I will 

review the existing literature concerning the influence of germline variation on cancer 

evolution. I will then introduce a statistical framework to investigate this phenomenon 

in oesophageal adenocarcinoma, a cancer type with poor survival and minimal 

evidence for inherited predisposition21-23. In so doing, I will address some of the 

technical challenges posed by relating germline variants to somatic driver events, due 

to the high-dimensional nature of the data. In Chapter 3, I will describe a more 

sophisticated modelling approach that I applied to an expanded cohort, in order to 

address some of the limitations of the analysis in Chapter 2. In this way, I will uncover 
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evidence of a hitherto unreported role for germline damage to ATM in oesophageal 

adenocarcinoma.  

 In addition to asking what factors influence the selection of driver events, I will 

investigate what somatic alterations can constitute driver events. Indeed, the search 

for genes whose alterations promote cancer (driver genes) has been a major focus of 

cancer genomics since its inception15,16,24. Many efforts to identify driver genes have 

focused on the recurrence of somatic alterations across cohorts of patients, since 

genes under strong selective pressure are likely to be altered at higher frequencies 

than expected by chance. Such approaches have successfully identified hundreds of 

driver genes15,16,24. However, when these genes are mapped back to patients, a 

fraction of patients are left with few or no driver events, even in the largest and most 

comprehensive studies16. Thus, these approaches are insufficient to identify the 

drivers in every patient, as is necessary for precision oncology. Bert Vogelstein 

famously described the landscape of selection in cancer as consisting of “mountains” 

and “hills”, where the hills are the numerous genes that exhibit only weak signs of 

selective pressure25. The inability of established methods to identify the genes driving 

every cancer suggests that other approaches are required to investigate the “hills” of 

the cancer genome. As a starting point to address this problem, in Chapter 4 I will 

introduce a database maintained by the Ciccarelli lab called the Network of Cancer 

Genes (NCG)24,26. NCG is a repository of cancer driver genes reported in the literature, 

including both well-established canonical drivers and candidate drivers found by 

cancer sequencing screens. NCG also annotates a wide range of gene properties that 

reflect genes’ systems-level biological role24. In Chapter 4, I will describe these 

systems-level properties and demonstrate that cancer genes are distinguished from 

other genes by these properties. I will also describe my contribution to the update of 

NCG to its sixth version. I will then use these properties of cancer genes to investigate 

the “hills” of the cancer genome in Chapter 5. To achieve this, I will present the 

development and benchmarking of a machine learning tool, sysSVM2, that uses 

systems-level properties to identify driver genes in individual patients. sysSVM2 is a 

new version of an existing cancer type-specific method27, optimised for pan-cancer 

use. 

 In presenting this thesis, I hope to contribute to our understanding of the 

heterogeneous nature of cancer, and ultimately to how we might use this 

understanding to improve patient outcomes. 
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1.3. Intra-tumour heterogeneity 
Inter-tumour heterogeneity is not the only type of heterogeneity seen in cancer. As 

molecular profiling of cancer has become more widespread in research, another 

important form of heterogeneity has come under increased scrutiny: intra-tumour 

heterogeneity28,29. Whereas inter-tumour heterogeneity refers to the differences 

between tumours, intra-tumour heterogeneity refers to the differences between cell 

populations within individual tumours.  

These differences arise because the process of cancer evolution continues 

after the malignant transformation of the initial cell of origin of a tumour (Figure 1-2). 

The initial cell becomes cancerous after it has acquired sufficient driver alterations, as 

described above. These alterations are passed on to all daughter cells, and thus 

become common to all cancer cells in the tumour; such alterations are called clonal or 

truncal. However, as the daughter cancer cells proliferate, they continue to randomly 

acquire further somatic alterations (Figure 1-2). Most of these are passenger 

alterations that are not subject to selective pressures. However, a small subset of 

alterations confer additional selective advantages to already malignant cells, allowing 

them to proliferate faster than their neighbours. Over time, cell populations with these 

additional driver alterations can grow to make up a substantial proportion of the tumour 

(Figure 1-2). As a result, by the time that tumours present clinically, they often 

comprise multiple distinct subpopulations characterised by different sets of sub-clonal 

alterations28,29.  

Intra-tumour heterogeneity has important clinical implications in cancer. It is 

believed to be a major source of therapy resistance29,30. While the majority of cancer 

cells may be vulnerable to an initial therapy, a small minority may have somatic 

alterations that make them resistant. These cells can therefore survive the therapy, 

and go on to proliferate and form new tumours or metastases. Since all daughter cells 

then have the resistance alterations, these relapsed tumours are resistant to the initial 

therapy. Thus, resistance arises because the molecular heterogeneity between cancer 

cells is sufficient for some cells to be resistant to any given therapy29,30. Recent 

evidence also suggests that intra-tumour heterogeneity is relevant to response to 

immunotherapy, as responders to immune checkpoint blockade in non-small cell lung 

cancer have high burdens of clonal immunogenic mutations31,32.  
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Motivated by the clinical importance of intra-tumour heterogeneity, research 

has considerably deepened our understanding of intra-tumour heterogeneity in recent 

years. For example, truncal driver alterations are relatively constrained compared to 

subsequently-acquired sub-clonal alterations, which are substantially more diverse 

across cancers33. Perhaps unsurprisingly, the extent of heterogeneity in an individual 

tumour is strongly predicted by genomic instability34. However, it appears that the 

combination of both chromosomal and mutational instability is particularly potent for 

generating intra-tumour heterogeneity34. There is also a large body of experimental 

evidence indicating that heterogeneous cell populations within a tumour can cooperate 

with each other to promote tumour growth and metastasis35-37. Interrogating intra-

tumour heterogeneity presents technical challenges, however. Sub-clonal resolution 

in sequencing data is limited by sequencing depth, with high depths required to reliably 

identify alterations in small populations of cells38,39. Additional algorithms are also 

required to infer the clonal and/or phylogenetic makeup of tumours from sequencing 

data, but obtaining non-simulated ground truth data for benchmarking such algorithms 

is challenging38,40,41. Finally, inferring sub-clonal copy number alterations is particularly 

problematic, although algorithms have been developed for this purpose42,43.  

In this thesis, I will not focus on intra-tumour heterogeneity. While it is clearly of 

clinical and biological importance in cancer, incorporating intra-tumour heterogeneity 

adds complexity to any analysis. This is only beneficial if the data are sufficient to 

support this additional complexity. For example, it may be the case that the clonality 

of certain somatic alterations is influenced by particular germline variants. However, 

analysing clonality when investigating how the germline influences somatic evolution 

adds to model complexity in what is already a high-dimensional problem, as I will 

discuss in Chapter 2 and Chapter 3. In the absence of sufficiently large cohorts, 

considering intra-tumour heterogeneity in this context would therefore probably 

confound analyses due to lack of statistical power. By contrast, in identifying patient-

level driver alterations, it may well be the case that certain drivers are more important 

in certain contexts when they are clonal or sub-clonal. An analysis of this hypothesis 

would represent an extension of the work described in Chapter 5, which instead seeks 

to develop a framework for driver gene identification that is applicable to any cancer 

type. Only once such a framework has been developed would it be appropriate to 

consider the additional complexity of intra-tumour heterogeneity. Thus, I will instead 

consider the problem of inter-tumour heterogeneity in this thesis.  
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Figure 1-2: Intra-tumour heterogeneity 
An initial cancer cell with (truncal) driver alterations proliferates, and daughter cells 

randomly acquire further somatic alterations. Cells with additional driver alterations 

can out-proliferate their neighbours and go on to make up substantial portions of the 

tumour. As a result, individual tumours are composed of cell populations with distinct 

somatic alterations, leading to potential resistance to therapy and cooperation 

between populations to driver proliferation.   
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Chapter 2. A co-occurrence model for germline influence on cancer evolution 
Inter-tumour heterogeneity is a natural consequence of the stochastic nature of cancer 

evolution. Although certain genomic loci are altered at a higher frequency than others 

due to chromatin state, transcription-coupled repair and residue-biased mutational 

processes, somatic alterations to the genome are largely acquired at random44,45. 

Since they are only subsequently subjected to selective pressure, it is unsurprising 

that each cancer evolves differently. However, there are some factors which drive this 

heterogeneity by modifying the selective pressures themselves. In this chapter, I will 

undertake an initial investigation of the hypothesis that perturbative germline variation 

(i.e. variation that damages a biological process) can influence selective pressures on 

somatic driver alterations in cancer.  

 I will first review the existing literature concerning this and related hypotheses, 

and describe how my research relates to the existing body of work (Section 2.1). I will 

then detail the preparation of germline and somatic data for a cohort of 260 

oesophageal adenocarcinomas (OACs, 2.3). Given these data, I will describe the 

application of a co-occurrence-based method for identifying germline-somatic 

interactions that attempts to manage the available statistical power (2.4). This 

approach yields two distinct results, which I will investigate further using orthogonal 

approaches. Analysis in a validation cohort of 140 additional OACs does not reproduce 

these results, and I will discuss possible reasons why this is the case. I will end this 

chapter with a discussion of the limitations of the methods and data used (2.5), 

motivating the larger-scale analysis undertaken with more complex statistical 

modelling in Chapter 3.  
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2.1. Introduction and literature review 
In this section, I will first review the theoretical basis for germline-somatic interactions 

in cancer (2.1.1). I will then review recent studies that systematically investigate 

germline-somatic interactions, and compare their approaches to those that I will 

describe in Chapters 2 and 3 of this thesis (2.1.2). Finally, I will briefly review several 

studies that investigate germline-interactions from a perspective that is different but 

complementary to the one taken in this thesis (2.1.3). 

 

2.1.1. A developing view of germline-somatic interactions in cancer 
Germline variation has long been known to play a role in cancer, but this has mostly 

been understood in terms of cancer predisposition. Predisposition to cancer can be 

carried either by high-penetrance variants whose effects are strong enough to identify 

them individually, or by diffuse low-impact variants whose effects can only be inferred 

from family studies18,46,47. Estimates of cancer heritability from twin studies indicate 

that low-impact variants explain approximately 30% of cancer incidence46,47. However, 

throughout this work I will focus on variants with a putatively damaging effect on 

protein function, since these can often be better understood mechanistically. Many 

high-penetrance cancer predisposition variants fall in cancer predisposition genes18,48 

(CPGs). Understanding cancer predisposition is clearly of clinical value in its own right, 

for example for improved monitoring and early detection in affected individuals18,49. 

However, the influence of germline variation on somatic evolution in cancer is less 

well-studied. 

 Aside from germline variation in general, cancer predisposition has 

nevertheless been known to be linked with the somatic evolution of cancer for some 

time. Indirect evidence for this link comes from the substantial overlap between CPGs 

and somatic driver genes. Indeed, Rahman18 identified 114 CPGs for a variety of 

cancer types from the literature, of which 49 (43%) were also established somatic 

driver genes. Wang et al.50 investigated this overlap at the pathway level for lung 

cancer, finding that both CPGs and somatic driver genes were enriched in cell cycle, 

TP53 signalling and TGF-b signalling pathways, among others. Zhang et al.51 carried 

out a similar analysis in gastric cancer, finding common enrichment in pathways 

including insulin signalling and the PI3K cascade. These results suggest that germline 

predisposition to cancer and somatic driver events share some common mechanisms.   
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 Direct evidence for the narrow case of damaging germline variants influencing 

somatic evolution in cis (where both germline and somatic variants are in the same 

gene) is also well-established. Indeed, the earliest example of this came from Alfred 

Knudson’s two-hit hypothesis in 197152. Based on observations in retinoblastoma, 

Knudson hypothesised that the disease was caused by two mutations, the first of 

which was carried in the germline of some individuals. In 1983, Godbout et al.53 

showed that the germline and somatic mutations both inactivated the same gene 

(RB1). While this explained the mechanism of predisposition and led to RB1 being 

classified as a tumour suppressor gene54 (TSG), it also illustrated that the germline 

could influence somatic evolutionary pressures. In this case, the germline hit to RB1 

greatly increased the selective advantage of the subsequent somatic hit to the same 

gene. Similar second hit effects have since been observed in many TSGs49,55. 

However, germline-somatic interactions in cis are not restricted to TSGs, with effects 

also reported in oncogenes including JAK256, EGFR57 and ERBB458. This hints at 

relatively complex genetic interplay between germline variants and somatic alterations 

in cancer.  

 More recently, there have been systematic efforts to identify germline-somatic 

interactions in trans (GSITs), a selection of which is shown in Table 2-1. The 

hypothesis investigated by these studies is that certain germline variants can affect 

the selective pressures acting on somatic alterations in completely different genes. 

These investigations have become feasible with the availability of large cohorts of 

cancer patients with genomic sequencing data, such as those provided by The Cancer 

Genome Atlas (TCGA, https://www.cancer.gov/tcga) and the International Cancer 

Genome Consortium (ICGC, https://icgc.org). Lu et al.55 first used TCGA data to 

investigate GSITs in 2015, and more studies have followed since. However, even with 

the availability of large cohorts, relating germline variation to somatic alterations is 

non-trivial. Both the germline and somatic landscapes of cancer are 

complex15,16,18,25,49,55, so relating the two to each other suffers from a multiplicity of 

complexity. Researchers must choose how to characterise both germline and somatic 

variation, i.e. what aspects of germline and somatic variation to investigate, in any 

study. For example, in the germline one might only look at cancer predisposing 

variants or genes, and at the somatic level one might consider genes with putative 

driver alterations. Table 2-1 summarises these choices made in existing GSIT studies, 
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as well as in this thesis. I will now discuss these choices, and how they relate to my 

research in Chapters 2 and 3. 

 

First 
author 

Year  
Germline 
characterisation 

Somatic 
characterisation 

Cancer type 

Lu 2015 
Rare truncations in 

predisposition genes 
Driver genes Pan-cancer 

Carter 2017 Common SNPs Driver genes Pan-cancer 

Agarwal 2017 Damaging SNPs Driver genes Breast 

Puzone 2017 Predisposition SNPs Driver genes Breast 

Wang 2018 Predisposition SNPs 
Driver 

genes/pathways 
Lung 

Zhang 2018 Predisposition SNPs 
Driver 

genes/pathways 
Gastric 

This thesis 
Rare damaging variants at 

pathway level 

Driver 

genes/pathways 
OAC 

 

Table 2-1: Existing studies of germline-somatic interactions in trans 
SNP: single nucleotide polymorphism. OAC: oesophageal adenocarcinoma. 

 

2.1.2. Current research into germline-somatic interactions in trans 
Many GSIT studies have characterised the germline in terms of variants or genes that 

are known to predispose to cancer. Indeed, several have only investigated known 

predisposition single nucleotide polymorphisms (SNPs)50,51,59, while Lu et al.55 

analysed truncating variants in CPGs (Table 2-1). However, focusing on predisposition 

is a restrictive choice. While predisposition variants are more likely to play a role in 

cancer development than others, many potentially relevant germline variants will be 

excluded from a study. Some researchers have looked at broader scopes of germline 

variation. Carter et al.60 used all common SNPs (minor allele frequency, MAF, >1%) 

in a genome-wide association study (GWAS)-style approach. Interestingly they found 

many results that were unrelated to CPGs, confirming that restricting analysis to 

known CPGs discards relevant information. The GWAS-style approach taken by 

Carter et al. can be considered to be the opposite extreme of restricting to 
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predisposition variants. A middle ground was taken by Agarwal et al.20, who used 

CADD61 annotations to restrict their analysis to the top 1% most damaging germline 

variants. As described in Section 2.3, I will take a similar approach in this thesis, 

focusing on rare damaging germline variants. This represents a balance between 

being overly restrictive by only using known predisposition variants, and overly 

permissive as in GWAS. Additionally, I will characterise germline variation at the 

pathway level. Despite not being done in any GSIT studies to date, pathway-level 

analysis is frequently used in case-control studies to characterise germline 

variation22,62. I will show in Section 2.4 that aggregating rare damaging variants into 

pathways substantially reduces the burden of multiple hypothesis testing and 

increases statistical power.  

 Somatic landscapes in GSIT studies have almost exclusively been 

characterised in terms of gene-level driver alterations (Table 2-1), in contrast to the 

range of approaches taken to germline characterisation. This is a sensible restriction, 

since the selective pressure on a gene is only likely to be influenced by the germline 

if that gene contributes to cancer. Moreover, driver genes are of the greatest clinical 

interest for patient stratification and providing potential drug targets. Wang et al.50 and 

Zhang et al.51 both extended this characterisation to the pathway level, although they 

restricted their analysis to truncating somatic mutations. This restriction is counter-

productive, since it removes gain-of-function (GoF) alterations in oncogenes, and thus 

excludes many true drivers from their pathway analysis. I will investigate somatic driver 

alterations both at the pathway level (Chapter 2) and at the gene level (Chapter 3), 

integrating both mutation and copy number data to obtain as comprehensive a 

characterisation as possible. 

 A range of cancer types has been investigated by GSIT studies (Table 2-1). 

Both Lu et al.55 and Carter et al.60 carried out pan-cancer analyses. However, Lu et al. 

argued that a pan-cancer analysis can be confounding, since the frequencies of 

germline predisposition variants and somatic drivers differ across cancer types. The 

authors therefore carried out cancer type-specific analysis to mitigate this effect. 

Carter et al. instead controlled for cancer type as a covariate in a logistic regression 

model. Other studies have looked at individual cancer types, including breast, gastric 

and lung cancers. I will focus on oesophageal adenocarcinoma (OAC), a cancer type 

with poor clinical outcomes and increasing incidence in the UK22,63,64. In contrast to 

breast and gastric cancers, which are associated with highly penetrant predisposition 
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variants and their associated familial syndromes65,66, OAC does not have well-

established mechanisms of predisposition23. Indeed, even GWAS have identified very 

few predisposing variants21-23 (Table 2-2). OAC thus represents a particularly 

appropriate cancer type to investigate GSITs using damaging germline variants, rather 

than only predisposition variants. I will discuss OAC and its suitability to this study in 

more detail in Section 2.3.1. 

 The statistical challenge of identifying GSITs is reflected in the results of 

existing studies. This difficulty arises because of the complexity of both the germline 

and somatic landscapes in cancer. Wang et al.50 and Carter et al.60 reported only 

one0and two SNP-gene associations with a false discovery rate (FDR) <0.1, 

respectively. Meanwhile, Zhang et al.51 found no results with FDR below 1, and Lu et 

al.55 and Puzone et al.59 made no attempt to correct for multiple hypothesis tests. I will 

investigate this challenge in detail in Section 2.4, and propose a method for managing 

statistical power in this context.  

 However, the results that have been reported by GSIT studies do indicate that 

useful biological insights can be obtained from this analysis. Carter et al.60 

experimentally validated a genetic interaction, elucidating details of the role of the 

oncogene GNA11 in mTOR signalling. Puzone et al.59 showed that several SNPs, 

equivalently to certain somatic mutations, were associated with elevated expression 

of the driver gene MAP3K1, increasing the mutation rate of another driver gene, 

PI3KCA. These results show that GSIT analyses can further our understanding of 

genetic interactions in cancer. 

 

 

SNP Odds ratio Gene(s) Variant effect 

rs75783973 1.33 TPPP / CEP72  Intronic / Downstream 

rs2188554 1.23 ASZ1  Intronic 

rs76014404 1.21 KHDRBS2  Intronic 

rs10419226 1.18 CRTC1  Intronic 

rs9823696 1.17 - - 

rs7255 1.17 GDF7 3' UTR 

 
Table 2-2: Known predisposition variants in oesophageal adenocarcinoma 
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Only SNPs that reached genome-wide significance for OAC predisposition in original 

GWAS or meta-analyses21-23 are shown. Does not include SNPs found to jointly 

predispose to Barrett’s oesophagus and OAC, as the majority of cases in these 

analyses are Barrett’s. Genes and variant consequences are taken from dbSNP67 

(https://www.ncbi.nlm.nih.gov/SNP). UTR: un-translated region.   

 

2.1.3. Complementary lines of investigation into germline-somatic interactions 
In addition to investigating how damaging germline variants can influence selective 

pressures acting on somatic driver alterations, several complementary lines of inquiry 

have been undertaken in the literature. These studies look at germline-somatic 

interactions from different points of view. While they are less directly relevant to the 

hypothesis investigated in Chapters 2 and 3 than those listed in Table 2-1, they provide 

a broader context for this thesis. 

 Common germline variants are unlikely to damage protein function (at least in 

ways that have phenotypic consequences), and largely instead encode population 

structure68,69. Yuan et al.70 investigated the effect of genetic ancestry on the frequency 

of somatic alterations in known driver genes. They found that African Americans had 

significantly different rates of alteration in five driver genes compared to patients of 

European ancestry. However, interpretation of these results is problematic. First, there 

is no clear genetic mechanism that can be investigated. Second, there are numerous 

potentially confounding factors, including environmental and socioeconomic 

correlates. While Yuan et al. did control for environmental factors including smoking 

and alcohol exposures, they admit that socioeconomic data were unavailable for their 

study. Nevertheless, this work suggests a need to control for genetic ancestry in GSIT 

studies. One approach is to restrict to studying a particular population, as done by 

Carter et al.60 and in Chapter 2 of this thesis. Another alternative is to include principal 

components of genetic variation in a regression model, as in Wang et al.50, Zhang et 

al.51, and Chapter 3. 

 The somatic landscape of cancer can be characterised features besides driver 

alterations. For example, mutational burden indicates the overall rate of mutation, and 

mutational signatures can be used to measure the activity of individual mutational 

processes45. Some studies have investigated the effect of germline variation on such 

somatic features. Wang et al.50 and Zhang et al.51 used mutational signatures to 
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complement their analyses of GSITs. More recently, the Pan-Cancer Analysis of 

Whole Genomes (PCAWG) consortium investigated this comprehensively16. They 

found several germline loci associated with signatures of APOBEC mutagenesis, as 

well as demonstrating that germline truncating variants in BRCA1 and BRCA2 

increased the burden of certain types of somatic structural variants. I will incorporate 

both mutational burden and mutational signatures into my analysis in Section 3.5. 

 Research has also shown that the germline can shape somatic evolution in 

cancer by altering the tumour microenvironment. McGranahan et al.71 showed that 

loss of heterozygosity of HLA genes is common in non-small-cell lung cancer, 

constituting an immunogenic germline-somatic interaction in cis. An investigation in 

trans by Marty et al.72 found that HLA genotypes influenced the frequency of certain 

recurrent somatic driver alterations. While the tumour microenvironment clearly 

represents an important mechanism by which the germline can influence somatic 

evolution in cancer, the necessary focus on immunology in these studies is beyond 

the scope of this thesis. 
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2.2. Methods 

2.2.1. Annotation of germline data 
VCF files for germline variant calls were obtained for 260 OAC samples from the 

OCCAMS consortium73, as well as for 2,504 samples from the 1000 Genomes 

project68 (Phase III, v5a). Samples from 1000 Genomes were filtered to retain only 

unrelated European individuals, giving 503 in total (the EUR cohort). VCFs were 

annotated with ANNOVAR74 (July 2017) to: (1) map variants to genes and predict 

variant effects (using the RefSeq75 Gene hg19 database release 81); (2) provide MAFs 

in reference European populations (taken from the 1000 Genomes Project68 Phase III 

v5a and ExAC76 v0.3); and (3) annotate predicted measures of variant deleteriousness 

(taken from dbNSFP77 v3.3 and dbscSNV78 v1.1). Genes were then intersected with 

an internally curated set of 19,014 human genes, obtained by aligning protein 

sequences to the human genome26. 

 

2.2.2. Germline variant filters 
All OAC germline variant calls were filtered based on reads supporting the alternative 

allele (‘alternative reads’). Exonic and splicing variants were further filtered based on 

their MAF and their deviation from Hardy-Weinberg equilibrium. These filters were 

manually calibrated and did not rely on statistical tests. 

 First, variant calls in OAC that had <2 reads alternative reads were removed. 

For each variant call, the percentage of alternative reads was calculated as the 

number of alternative reads divided by the total number of reads at that locus. 

Heterozygous calls were retained if they had between 36.5% and 62.3% alternative 

reads, and homozygous calls were retained if they had 95% or greater alternative 

reads. After this filtering, only variants annotated as exonic or splicing were retained 

for downstream analysis. 

 Next, MAFs for each variant were obtained from reference European 

populations, provided by the 1000 Genomes Project68 and ExAC76. Since ExAC 

represented a much larger population (approximately 30,000 individuals, compared to 

just over 500 in the 1000 Genomes Project), the reference MAF was taken from ExAC 

where possible. Variants that were not annotated with a MAF in either database were 

assigned a reference MAF of 0. The MAF of each variant was then compared between 
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the OAC cohort (MAFOAC) and the reference populations (MAFref). Variants were 

removed if they had MAF!"# > %10 × MAF$%& and MAF!"# > 0.1. 

 Finally, variants were filtered out if they exhibited an excess of heterozygotes. 

The expected proportion of heterozygotes (hetexp) was calculated from Hardy-

Weinberg equilibrium based on the observed MAF of each variant as het%'( =

2 ×MAF!"# × (1 − MAF!"#). Variants were then removed if the observed proportion 

of heterozygotes (hetOAC) had het!"# > 1.04 − %1 − 1.87 × het%'(. 

 

2.2.3. Definition of rare damaging germline variants 
Four sets of predicted damaging germline variants were identified: Truncating 

variants, the Ensemble set, the Consensus set, and the High-confidence set. The 

High-Confidence set was used for downstream analysis, and was constructed from 

the other sets. 

 Truncating variants were defined as exonic SNPs with predicted stopgain or 

stoploss effect as well as frameshift indels, and included 7,583 unique variants. The 

Ensemble set included 4,158 missense variants predicted as damaging by both 

CADD61 (phred score >25) and MetaLR79. 

 The Consensus set included missense SNPs supported by at least five out of 

seven function-based deleteriousness prediction methods (SIFT80, PolyPhen2-

HDIV81, PolyPhen2-HVAR, MutationTaster82, MutationAssessor83, LRT84, and 

FATHMM85), as well as splicing variants supported by at least one of two splice site-

specific deleteriousness prediction methods from dbscSNV78 (ADA and RF). In total, 

the Consensus set consisted of 17,258 variants. In addition, 28,313 missense SNPs 

supported by at least two of three conservation-based methods (PhyloP86, SiPhy87, 

and GERP++88) were considered, but only those supported by function-based or 

splicing predictors were retained. 

 The High-Confidence set was then defined as the intersection of the Ensemble 

and Consensus sets, combined with the Truncating set, for a total of 11,383 variants. 

For downstream analysis, only 6,393 rare variants in the High-Confidence set were 

retained, defined as those with MAF <1% in reference European populations. 
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2.2.4. Gene expression and GSEA analyses 
For gene expression analyses, 92 out of the 260 OAC samples had available matched 

RNA-Seq data provided by the OCCAMS consortium. Readcount values were 

normalised into transcripts per million (TPM). Only genes expressed across the cohort 

with median TPM >1 were considered for analysis (11,104 genes). To identify 

differential expression associated with germline-somatic interactions, samples were 

stratified into four groups according to their germline/somatic status, as described in 

Section 2.4.3. For each gene, the median TPM value in each group was calculated, 

and the fold-change was measured comparing the G+S+ group to each of the other 

three groups. Genes for which all three fold-changes were >1 were considered to be 

upregulated in the G+S+ group, and the smallest of the three fold-changes was taken 

as a conservative measure of upregulation. Conversely, genes for which the fold-

changes were all <1 were considered to be downregulated, and the largest fold-

change was taken. 

 In order to establish pathway enrichment of upregulated and downregulated 

genes, gene sets with different thresholds of dysregulation (fold-change <0.5, <0.67, 

>1.5, >2) were first identified. Hypergeometric tests were then used to measure 

enrichment of these genes in 2,828 pathways from Reactome and KEGG. P-values 

were then corrected for multiple hypothesis testing using the Benjamini-Hochberg 

FDR method89, with all pathways considered together. 
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2.3. Preparing a high-quality dataset of 260 oesophageal adenocarcinomas  
Investigating germline-somatic interactions requires a cohort with high-quality and 

well-characterised germline and somatic data. In this section, I will describe the 

preparation of a cohort of 260 oesophageal adenocarcinoma (OAC) samples for this 

purpose. First, I will give a brief overview of the clinical and genomic characteristics of 

OAC, and discuss its suitability as a model cancer type to investigate germline-somatic 

interactions (2.3.1). I will then describe the annotation and quality control of germline 

variants in this cohort (2.3.2). Given this, I will discuss damaging germline variants as 

potential effectors of germline-somatic interactions, and describe a relatively stringent 

approach for identifying them in this cohort (2.3.3). I will then investigate the 

distribution of damaging germline variants at the gene and pathway levels, identifying 

several genes to be excluded from subsequent analysis (2.3.4). Finally, I will briefly 

describe the work of a colleague to characterise somatic driver events at the pathway 

level, completing the curation of this cohort (2.3.5). 

 

2.3.1. Features and suitability of oesophageal adenocarcinoma 
The incidence of oesophageal adenocarcinoma in Western countries has increased 

dramatically in the past 40 years, with Europe and North America accounting for 34% 

of global cases in 201290,91 (Figure 2-1). Nevertheless, it remains a relatively rare 

cancer type, accounting for an estimated 52,000 of 14.1 million global cancer 

cases90,92 (0.4%). OAC has poor clinical outcomes and a five-year survival rate of 

approximately 20%93, largely due to the fact that most cases present at an advanced 

stage. Research into possible early detection strategies has revealed a number of risk 

factors for OAC. Gender has a clear effect, with men being up to 9 times more likely 

to develop the disease than women90,91 (Figure 2-1). In addition, gastro-oesophageal 

reflux disease (associated with obesity) is a predictor for OAC, with chronic sufferers 

at approximately six-fold increased risk94. Long-term exposure of the oesophageal 

epithelium to acid reflux induces a metaplastic condition called Barrett’s oesophagus, 

which is thought to desensitise cells to acid exposure94. Barrett’s oesophagus is a 

precursor lesion to OAC, and in epidemiological studies the two conditions are often 

pooled together.  

 Our understanding of the somatic genomic landscape of OAC has increased 

substantially in the last ten years. There have been several OAC sequencing efforts 
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globally. The Oesophageal Cancer Clinical and Molecular Stratification consortium 

(OCCAMS, part of ICGC) is the largest such effort and is my primary source of OAC 

data. Many OACs are genomically unstable64,73,95 with high rates of focal 

amplifications and chromothripsis. Indeed, a recent pan-cancer study found that OAC 

has the fourth highest rate of genomic catastrophes across all cancer types16. Perhaps 

unsurprisingly given this instability, the most prevalent somatic driver gene in OAC is 

TP53, which is altered in approximately 72% of cases96. In total over 100 OAC driver 

genes have been identified by genomic screenings73,96-100. Analysis of mutational 

signatures in OAC has revealed a hallmark signature (COSMIC Signature 17), which 

is thought to reflect mutagenesis arising from acid reflux exposure98,100. Other 

mutational processes have also been identified in OAC by their signatures, including 

APOBEC mutagenesis and defective homologous recombination73. 

 There are several reasons why I have chosen to use OAC to investigate how 

perturbative germline variation can influence the somatic evolution of cancer. As 

mentioned above, OAC has a poor five-year survival rate, so greater understanding of 

the disease in general is required to improve clinical outcomes. In addition, while 

results from GWAS indicate that 25% of OAC cases are determined by common 

germline variants101, no high-penetrance predisposition genes or variants have been 

identified23. Indeed, a recent study showed that even the previously identified 

predisposition variants did not improve the ability to predict development of OAC 

compared to clinical factors102. This means that any germline influence on somatic 

evolution in OAC is unlikely to be dominated or biased by the effects of predisposition. 

It also reflects the fact that little is currently understood about the role of the germline 

in OAC, so there is a greater potential for results from this study to be of clinical use, 

for example in early detection. Finally, our laboratory (i.e. the Ciccarelli lab) is a 

member of the OCCAMS consortium, giving us particular access to data and expertise 

to learn more about this disease. The recent increased interest in germline-somatic 

interactions across cancer (Section 2.1.2) has coincided with the availability of 

sequencing data for large OAC cohorts, so this is the first time that such a study has 

been feasible.  
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Figure 2-1: Global incidence of oesophageal adenocarcinoma  
Age-standardised incidence rates of OAC in 2012 for males (A) and females (B). Data 

were taken from Arnold et al. 201590. 

 

2.3.2. Quality control of germline variants 
Data for 260 OAC patients were provided by the OCCAMS consortium. The germline 

data consisted of small variant calls (single nucleotide polymorphisms, SNPs, and 

insertions and deletions, indels) from whole genome sequencing (WGS). Since the 

data had not undergone benchmarking (the consortium had primarily focused on 

somatic data), and false positive germline calls could lead to spurious results in later 

analyses, I undertook ensure the quality of the data. Given that the vast majority of the 

260 patients were White British (99% of those with information available, Figure 2-2A), 

I used European samples from the 1000 Genomes Project 68 for comparison. In total, 

this control cohort (which I will refer to hereafter as EUR) consisted of 503 unrelated 

individuals.   
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 I first annotated the germline variants in the OAC and EUR cohorts to provide 

information on genes, allele frequencies in reference populations, and predicted 

variant effects (Methods 2.2.1). Across the whole genome, the average number of 

SNPs per sample was in very good concordance between OAC and EUR (Table 2-3). 

However, there was an excess of 33% more indels per sample in OAC (Table 2-3), 

suggesting that additional filtering would be required to remove potential false positive 

indel calls. Since I was primarily interested in variants that had damaging effects on 

protein sequences, I restricted subsequent analysis to exonic variants. The 

concordance of SNP burden and excess of indel burden were both also present at the 

exonic level, with indels inflated by 38% in OAC (Figure 2-2B, Table 2-3). Filtering was 

also motivated by the presence of a clear technical artefact in the OAC data that had 

a mean proportion of alternative reads of 34%, had an allele frequency over 150 times 

larger than in EUR, and was heterozygous in all 260 samples. 

 The percentage of alternative reads supporting any germline variant call should 

be near to 50% or 100%, depending on whether the variant is heterozygous or 

homozygous. The data did reflect this in large part (Figure 2-2C), however there were 

still many calls that were outliers to the expected distribution, particularly among 

indels. Removing these outlier variant calls filtered out 10% of SNP calls and 18% of 

indel calls (Figure 2-2C, Methods 2.2.2). This was appropriate given that indels were 

inflated in OAC compared to the EUR cohort. 

 I applied two other filters that relied on population-level measures. First, I 

compared the minor allele frequency (MAF) of each variant between the OAC cohort 

and reference European populations (Methods 2.2.2). While the vast majority of 

variants had very similar MAFs, a large number of variants deviated from this (Figure 

2-2D). Since I was aiming to remove possible false positive germline calls from the 

OAC data, I filtered out a subset of variants that were common in OAC despite having 

near-zero MAF in reference populations (Figure 2-2D, Methods 2.2.2). The lack of 

high-penetrance predisposition variants in OAC23 meant that such enrichment was 

most likely to represent technical artefacts. This filter removed only 0.15% of the 

unique variants in OAC. The second population-level filter removed 0.22% of unique 

variant that exhibited a clear excess of heterozygotes, as compared to expectation 

from Hardy-Weinberg equilibrium (Figure 2-2E, Methods 2.2.2). Excess 

heterozygosity has been reported as a characteristic of certain technical artefacts103. 
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 After applying these three filters, the final set of germline variants in the 260 

OACs contained just over five million exonic variant calls (Table 2-4). Overall, samples 

in the OAC cohort now had 12% fewer exonic SNPs and 12% more indels than EUR 

samples, compared to 38% more indels before filtering (Figure 2-2F, cf. Figure 2-2B). 

Since indels are much more likely to have damaging effects on protein function than 

SNPs (resulting from a shift in reading frame), this reflected the removal of many 

potential false positive damaging germline variant calls. Analysing germline variants 

by their predicted effect, there was good concordance of per-patient numbers of 

variants between OAC and EUR (Table 2-4). This indicated that the filtered germline 

variants represent a high-quality dataset for further analysis. 
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Figure 2-2: Quality control of germline variants 
A. Reported ethnicity of 260 OAC samples, with numbers of samples indicated. 

B. Distributions of exonic SNPs (left) and indels (right) per sample in the OAC and 

EUR cohorts, before filtering. Median values are indicated.  

C. Percentage of alternative reads supporting variant calls in the OAC cohort. 

Heterozygous calls were retained if they had between 36.5% and 62.3% alternative 

reads, and homozygous calls were retained if they had 95% or greater alternative 

reads, as indicated by dashed red lines. Percentages in blue indicate the proportion 

of variant calls removed by this filter. 

D. Minor allele frequencies (MAFs) of exonic variants in the OAC (y-axis) and EUR (x-

axis) cohorts. Variants in red were filtered out as overly-enriched in OAC. 

E. Observed (y-axis) and expected (x-axis) numbers of heterozygous individuals for 

each exonic variant. Expectation was derived from Hardy-Weinberg equilibrium 

(Methods 2.2.2). Variants in red were filtered out as exhibiting an excess of 

heterozygotes. 

F. Distributions of exonic SNPs and indels per sample in the OAC and EUR cohorts, 

after filtering variants in OAC. Median values are indicated. 

 

 

Table 2-3: Unfiltered germline variants in the OAC and EUR cohorts  
 

 Median Total 

Variant type OAC EUR OAC EUR 

All exonic 19635.5 22248 5098472 11185436 

SNP 19021 21703 4941555 10913734 

Missense 8716.5 10079 2266680 5068068 

  Median per sample Total 
  OAC EUR OAC EUR 

Genomic 
SNPs 3.66 x106 3.66 x106 9.53 x108 1.84 x109 

Indels 7.45 x105 5.60 x105 1.95 x108 2.82 x108 

Exonic 
SNPs 2.15 x104 2.17 x104 5.59 x106 1.09 x107 

Indels 7.47 x102 5.41 x102 1.95 x105 2.72 x105 
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Stopgain 64 78 16513 39219 

Stoploss 10.5 11 2710 5638 

Indel 604 541 156917 271702 

Frameshift 158 137 40919 68742 

 

Table 2-4: Filtered exonic germline variants by type in the OAC and EUR cohorts  
 

2.3.3. Rare damaging germline variants as effectors of germline-somatic 
interactions in OAC 
In order to investigate how germline variation can influence somatic evolution in 

cancer, it is first necessary to characterise germline variation appropriately. Studies 

that have systematically investigated germline-somatic interactions have mostly 

focused on cancer predisposing or putatively deleterious variants50,51,55,59 (Table 2-1, 

Section 2.1.1). There are very few known cancer predisposition variants for OAC, and 

they are not in protein-coding regions so lack a clear mechanistic explanation for their 

effect21-23 (Table 2-2, Section 2.1.2). As a balance between being overly restrictive 

and the permissive GWAS approach of Carter et al.60, I chose to investigate germline 

variants that had a putatively damaging effect on a protein sequence, and that thus 

might be relevant for OAC biology. However, in order to avoid potential false positives, 

I adopted a relatively stringent approach for identifying these variants, as detailed 

below. 

 Protein-truncating variants (PTVs) represent an obvious source of damaging 

variants. In the OAC cohort of 260 patients, I included all 3,783 stopgain, stoploss and 

frameshift variants as PTVs. Samples in OAC and EUR had very similar numbers of 

PTVs, with OAC samples having 3% more on average (Figure 2-3A). While some 

studies of damaging germline variants have only focused on PTVs55,69, this is 

restrictive. For example, among missense variants there is a proportion that are likely 

to have damaging effects on protein function77.  

 Identifying damaging non-truncating variants is an open but well-studied 

problem. Many algorithms have been developed to predict the impact of variants, 

using features such as the chemical change of amino acid type80-85 (“function”), or the 

evolutionary constraint at a locus across different species86-88 (“conservation”). There 

are also ensemble methods that use combinations of other algorithms to make 
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predictions61,79. Our lab has previously found that taking a consensus of multiple 

algorithms can successfully identify damaging variants, both at the germline104 and 

somatic27 levels.  

 To identify damaging non-truncating germline variants in the OAC cohort, I 

started from an approach previously published by the Ciccarelli lab27. This approach 

took a consensus of function-based and conservation-based annotations for missense 

variants, as well as specific annotations for splicing variants (Methods 2.2.3). 

However, I found that nearly half (48%) of the unique predicted damaging variants 

were only supported by conservation-based methods (Figure 2-3B). In addition, the 

majority (78%) of those supported by function-based methods were also supported by 

conservation-based methods (Figure 2-3B). This was also reflected in the numbers of 

variants per sample, where on average 79% of predicted damaging variants were only 

supported by conservation-based methods (Figure 2-3C). These observations 

suggested that the conservation-based methods were inflating the numbers of 

damaging variants and potentially introducing many false positives. Thus, I removed 

the conservation-based methods from the consensus approach to define a Consensus 

set of 17,258 unique variants. As a benchmark, I compared the overlap between the 

Consensus set and predicted damaging variants from two ensemble methods, 

CADD61 and MetaLR79. Each of the three sets had many variants that were not 

identified by the other approaches (Figure 2-3D). In order to remove as many potential 

false positives as possible, I used the 3,800 variants common to all three methods as 

a high-confidence set of damaging non-truncating germline variants.  

 The combined PTVs and high-confidence non-truncating damaging variants 

totalled 7,583 unique variants. As an additional check to remove potential false 

positives, I investigated the frequency of these variants, since deleterious variants are 

likely to be selected against, and therefore to be rare79. The PTVs included many 

common variants, while the non-truncating damaging variants were highly skewed 

towards rarer variants (Figure 2-3E). This likely reflected the stringent approach taken 

to identifying the non-truncating damaging variants. As further support for this, the 

variants in the Consensus set that were not supported by ensemble methods were 

substantially more common than the high-confidence variants (mean MAF 24% 

compared to 6%, Figure 2-3E). In order to remove potential false positive damaging 

variants, particularly from among the PTVs, I retained only rare variants, with a MAF 

<1% in reference European populations (Methods 2.2.3).   
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 The final set of rare damaging germline variants (RDGVs) included 6,393 

unique variants, occurring 9,334 times across the cohort and present in all 260 OACs. 

Compared to the reference EUR cohort, OAC samples had 23% fewer RDGVs on 

average (Figure 2-3F). Since this discrepancy was mostly introduced by restricting to 

rare variants (OAC had only 3% fewer damaging variants overall, Figure 2-3F) it may 

have reflected a bias stemming from the use of samples from the 1000 Genomes 

Project in the definition of reference MAFs. Nevertheless, the RDGVs represented a 

high-confidence set of damaging variants for further analysis.  
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Figure 2-3: Identification of high-confidence damaging germline variants  
A. Numbers of protein-truncating variants per sample in the OAC and EUR cohorts. 

Median values are indicated.  

B. Overlap of unique missense variants labelled as damaging by conservation-based 

methods (blue) and function-based methods (red).  
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C. Distributions of missense variants per sample labelled as damaging by function-

based methods only (left), conservation-based methods only (middle) or both (right). 

Median values are indicated. Conservation-based methods were removed from the 

Consensus set. 

D. Overlap of unique missense variants predicted as damaging by the Consensus 

approach (red), CADD61 (blue) and MetaLR79 (green). The intersection of all three was 

carried forward as damaging missense variants.  

E. Distributions of minor allele frequencies (MAFs) for protein-truncating variants (top), 

high-confidence damaging missense variants (middle) and missense variants in the 

Consensus set but not supported by CADD or MetaLR (bottom). Rare variants with 

MAF <1% (dotted red line) were retained. 

F. Numbers of damaging and rare damaging germline variants per sample in the OAC 

and EUR cohorts. Median values are indicated.  

 

2.3.4. Germline perturbations at the gene and pathway levels 
The RDGVs constituted a high-confidence set of damaging variants that were likely to 

perturb biological processes. However, analysis at the variant level would have 

suffered from the rarity of individual variants, since each RDGV was damaged in a 

median of just one patient. By aggregating RDGVs into genes, and then into pathways, 

this problem could be alleviated. Across the OAC cohort, 4,230 genes had at least one 

RDGV.  

 As described in Section 2.3.1, no high-penetrance predisposition variants or 

genes are known for OAC23. However, most efforts to date have investigated germline 

data from SNP arrays, rather than high-throughput sequencing21-23. Thus, as a 

preliminary analysis I investigated the prevalence of RDGVs in cancer predisposition 

genes (CPGs) in the OAC cohort. Out of 132 CPGs obtained from the literature18,48 for 

a range of cancer types, 47 had at least one RDGV in the OAC cohort. Fisher tests 

did not reveal any of these genes to be significantly enriched in OAC compared to the 

reference EUR cohort, and indeed the frequencies of the most commonly damaged 

CPGs did not differ substantially between the two cohorts (Figure 2-4A).  

 The most frequent CPG in both cohorts was BRCA2, damaged in 8 and 14 

samples in OAC and EUR respectively. These BRCA2-mutated samples presented 

an opportunity to investigate whether RDGVs were impacting mutational processes in 
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OAC. BRCA2 is an integral part of the DNA homologous recombination pathway, and 

its mutation is associated with COSMIC signature S3 in cancer45. Moreover, signature 

S3 has been shown to be prevalent in OAC, and to be potentially useful for clinical 

stratification73. Using mutational signatures extracted for the 260 OAC samples by the 

OCCAMS consortium, I compared the prevalence of S3 between samples with and 

without a RDGV in BRCA2. While the BRCA2-mutated samples had a 55% higher 

prevalence of signature S3 on average, this trend did not reach statistical significance 

(p =0.4, Wilcoxon rank-sum test, Figure 2-4B). This suggested that the germline might 

be playing a role in OAC mutational processes, but a larger sample size would be 

needed to verify this due to the rarity of BRCA2 RDGVs.  

 Overall, most of the 4,230 genes were only rarely damaged, with the majority 

(60%) damaged in only one sample (Figure 2-4C). However, some genes were 

damaged in large numbers of samples, suggesting that there might still be false 

positive RDGVs. For example, HLA-DRB5 was damaged in 113 samples (43%). In 

order to assess this systematically, I used Fisher tests to measure whether any genes 

were enriched compared to the reference EUR cohort. A total of 16 genes were 

enriched at FDR <0.1 (Figure 2-4D, Table 2-5). The lack of high-penetrance 

predisposition genes in OAC23 meant that these enrichments were more likely to 

constitute false positives than true biological effects. Indeed, several of the enriched 

genes were obvious candidates for technical artefacts, including genes from the large 

paralogous HLA105 and zinc finger families. HLA genes are also known to be highly 

polymorphic in order to ensure that immune systems can process diverse foreign 

peptides at the population-level106. I therefore flagged these genes as potential 

confounders for downstream analysis. 

 Finally, I aggregated RDGVs from genes into pathways. This is the level at 

which I will investigate germline-somatic interactions in this thesis, because it 

substantially improves statistical power when dealing with rare variants, as I will 

discuss in detail in Section 2.4. I obtained 2,828 pathways containing 11,199 genes 

from the union of three pathway databases (Reactome107, KEGG108 and BioCarta109). 

Of these 2,444 pathways had at least one RDGV, coming from 2,722 genes. Because 

of this aggregation, pathways were damaged substantially more frequently than 

genes. While genes were damaged in a median of only one sample, pathways were 

damaged in 11 samples on average (Figure 2-4E, cf. Figure 2-4C). This mitigated the 

statistical challenge of identifying germline-somatic interactions to some extent. In 
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order to assess possible enrichment of RDGVs in OAC at the pathway level, I used 

MEGA-V110 to compare OAC samples to reference EUR samples. MEGA-V uses 

Wilcoxon rank-sum and Kolmogorov-Smirnov tests to detect the enrichment of genetic 

alterations in biological processes in a cohort of interest. A total of 94 pathways were 

enriched with FDR <0.1. Of these pathways, 83 (88%) contained one of the 16 

enriched genes (Figure 2-4F). Among the 11 pathways that did not (Table 2-6), there 

was no clear relationship to OAC biology. Moreover, their statistical significance was 

not robust, as removing all pathways that contained an enriched gene led to no 

pathways being enriched (Table 2-6). Since the 16 enriched genes were 

disproportionately affecting pathway-level variation, I removed them from all 

subsequent analysis. The resulting set of 2,442 damaged pathways represented a 

high-quality germline dataset with which to investigate germline-somatic interactions.  
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Figure 2-4: Rare damaging germline variants at the gene and pathway levels 
A. Damaged cancer predisposition genes in the OAC and EUR cohorts. No genes 

were significantly enriched in OAC (Fisher’s exact test). 

B. BRCA-associated mutational signature (COSMIC S3) prevalence extracted from 

somatic mutation data, in samples with damaged (left) and undamaged (right) 

germline BRCA2. Median values are indicated. P-value from Wilcoxon rank-sum test. 

C. Number of samples in which each of the 4,230 genes is damaged.  
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D. Quantile-quantile (QQ) plot showing enrichment of damaged genes in the OAC 

cohort compared to EUR (Fisher’s exact test). Genes with FDR <0.1 are coloured red.  

E. Number of samples in which each of the 2,444 pathways is damaged. 

F. QQ plot showing enrichment of damaged pathways in the OAC cohort compared to 

EUR (p-values from MEGA-V110). Pathways with FDR <0.1 are coloured green if they 

do not contain an enriched gene, and red if they do. 

 

Gene OAC (260) EUR (503) P-value FDR 

ATXN3 76 0 6.95E-40 5.12E-36 

HLA-DQA1 38 0 2.54E-19 9.36E-16 

HRCT1 31 2 2.37E-13 5.81E-10 

TBP 25 1 1.67E-11 3.08E-08 

CD24 22 0 2.82E-11 4.15E-08 

HLA-DRB5 114 109 2.55E-10 3.14E-07 

ANKRD20A3 18 0 2.57E-09 2.37E-06 

HLA-DRB1 18 0 2.57E-09 2.37E-06 

ZNF626 18 1 3.38E-08 2.77E-05 

FAM209B 11 0 6.24E-06 4.60E-03 

GOLGA6L2 10 0 1.88E-05 1.15E-02 

KRTAP5-4 10 0 1.88E-05 1.15E-02 

COL18A1 14 3 5.10E-05 2.89E-02 

MAGEF1 9 0 5.65E-05 2.97E-02 

CCDC40 18 7 9.43E-05 4.63E-02 

ANKLE1 10 1 1.44E-04 6.65E-02 

 
Table 2-5: Enriched damaged genes in the OAC cohort 
Numbers of samples with each damaged gene in the OAC and EUR cohorts are 

shown. P-values of enrichment in the OAC cohort were calculate using Fisher’s exact 

test and corrected for false discovery rate (FDR). The 16 genes with FDR <0.1 are 

listed.  
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Table 2-6: Enriched damaged pathways in the OAC cohort  
Numbers of samples with each damaged pathway in the OAC and EUR cohorts are 

shown. P-values of enrichment in the OAC cohort were calculate using MEGA-V110 

and corrected for false discovery rate. Pathways with FDR <0.1 and that did not 

contain one of the enriched genes in Table 2-5 are listed. The filtered FDR was 

calculated by performing the FDR correction on p-values only for pathways that did 

not contain an enriched gene. 

 

Pathway Source 
OAC 
(260) 

EUR 
(503) 

P-value FDR 
Filtered 

FDR 

Golgi Cisternae 

Pericentriolar Stack 

Reorganization 

Reactome 10 3 5.11E-04 0.03 0.46 

Tryptophan catabolism Reactome 11 4 5.98E-04 0.04 0.46 

Phosphate bond 

hydrolysis by NTPDase 

proteins 

Reactome 11 4 6.04E-04 0.04 0.46 

Sperm Motility And 

Taxes 
Reactome 8 2 1.03E-03 0.06 0.55 

Serine biosynthesis Reactome 10 4 1.47E-03 0.08 0.55 

Zinc transporters Reactome 6 1 1.90E-03 0.09 0.55 

Zinc influx into cells by 

the SLC39 gene family 
Reactome 6 1 1.90E-03 0.09 0.55 

Catabolism of 

glucuronate to xylulose-

5-phosphate 

Reactome 6 1 1.91E-03 0.09 0.55 

Biotin metabolism KEGG 4 0 2.65E-03 0.03 0.58 

D-Arginine and D-

ornithine metabolism 
KEGG 3 0 7.91E-03 0.08 0.58 

Measles KEGG 43 53 9.22E-03 0.09 0.62 
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2.3.5. Somatic driver events at the pathway level 
Having characterised germline variation in terms of RDGVs in pathways, I 

characterised somatic driver alterations in the OAC cohort at the pathway level as well. 

By associating pathways containing RDGVs with pathways containing somatic driver 

events, I could investigate how germline perturbations can influence selective 

pressures in cancer evolution (Section 2.4). This section describes work done by 

Thanos Mourikis in the Ciccarelli lab, described in Mourikis et al.27, to identify pathways 

with somatic drivers in the OAC cohort. I have included a brief overview here for 

completeness.  

 Mutation and copy number data for the same cohort of 260 OACs were used to 

identify somatic driver events. Within these data, truncating, non-truncating damaging, 

and hotspot somatic mutations were identified, as well as CNVs in genes. These 

somatic alterations were then mapped to 202 cancer genes from the Cancer Gene 

Census111 that were annotated as either oncogenes (OGs) or tumour suppressor 

genes (TSGs). Driver alterations included putative gain-of-function alterations in OGs 

and loss-of-function alterations in TSGs, and were identified in 259 of the 260 samples. 

As expected for OAC, the most common driver by far was TP5396, altered in 197 

samples (75%). Other common driver genes included FHIT (30%), CDKN2A (28%) 

and MYC (21%). 

 With somatic driver alterations having been identified at the gene-level, they 

were mapped to cancer-related processes that were identified through a gene set 

enrichment analysis. Among pathways from Reactome107 and KEGG108, 297 and 188 

pathways were enriched for altered driver genes at FDR <0.05, respectively.  As with 

the germline data, aggregating genes into pathways substantially increased the 

frequency of observations. While driver genes were altered in a median of 4.5 

samples, pathways were altered in a median of 66 samples (Figures 2-5A, B). This 

increased frequency was statistically advantageous in finding germline-somatic 

interactions, as discussed in the next section. 
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Figure 2-5: Frequencies of somatic drivers at the gene and pathway levels  
A. Number of samples in which each of the 202 oncogenes and tumour suppressor 

genes had a somatic driver alteration. 

B. Number of samples in which each of the 485 driver gene-enriched pathways had a 

somatic driver alteration.   
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2.4. Relating germline perturbations to somatic driver events 
Having curated and quality-controlled the data for the cohort of 260 OAC samples, I 

proceeded to identify associations between germline perturbations and somatic driver 

alterations at the pathway level. In this section, I will first discuss a simple model to 

achieve this, as well as practical measures to manage the limited statistical power 

available (2.4.1). I will then describe two distinct germline-somatic associations 

revealed by this analysis (2.4.2), and investigate them in detail using both gene 

expression and clinical data (2.4.3, 2.4.4). Finally, I will discuss the results in an 

independent validation cohort of 140 OAC samples that became available at a later 

stage (2.4.5). 

 

2.4.1. Measuring co-occurrence and managing statistical power 
The hypothesis in question in Chapters 2 and 3 is that germline perturbations to 

biological processes could influence the selective pressures on somatic driver events 

in OAC. In theory, a germline perturbation could either increase or decrease the 

selective advantage of a particular driver alteration, but here I will restrict my focus to 

increased advantage. Such an increased advantage could be considered an ‘inherited 

vulnerability’ to a particular driver alteration. On the other hand, a decreased selective 

advantage might prove more difficult to interpret. Both increased and decreased 

selective advantages are considered in Chapter 3.  

 In order to identify cases of inherited vulnerability, I needed to measure co-

occurrence of germline perturbations with somatic driver alterations. A simple model 

for measuring co-occurrence is Fisher’s exact test, and this provided a useful first-

pass approach to the problem. Agarwal et al.20 used a Fisher test approach for their 

exploratory analysis of germline-somatic interactions. While considering both germline 

and somatic pathways as binary categorical variables is admittedly a highly granular 

approach, it has the advantage of making relatively few assumptions. More 

sophisticated statistical models are explored in Chapter 3. 

 Measuring co-occurrence between germline and somatic pathways requires 

large numbers of hypothesis tests to be carried out, demanding stringent thresholds 

for statistical significance. For the purposes of multiple hypothesis correction in this 

analysis, I considered pathways from different source databases as independent but 
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complementary, and thus corrected tests pertaining to different databases separately. 

The largest database of both germline and somatic pathways was Reactome, for 

which there were 1,787 and 297 pathways characterising the germline and somatic 

data respectively (Table 2-7). To test every pair of germline and somatic pathways in 

Reactome would require 5.3x105 hypothesis tests. Using Bonferonni correction as a 

mathematically simple guide, this would require a stringent p-value threshold of 

1.9x10-7 in order to achieve a family-wise error rate (FWER) <0.1. Given the available 

sample size and lack of highly penetrant germline events in OAC, it was a priori 

unlikely that any effect would be strong enough to reach this threshold. Thus, I needed 

to manage the available statistical power. 

 It is worth noting that the aggregation of germline variants into pathways had 

already reduced the multiple testing burden. In the OAC cohort, there were a total of 

6,393 unique RDGVs, which would have required more than three times as many 

hypothesis tests as the pathway-level data. Moreover, most of these variants (82%) 

were present in a single sample, which would have made association with somatic 

drivers highly unreliable. By contrast, pathways were perturbed in a median of 11 

samples.  

 An obvious way to further alleviate the multiple testing burden was to exclude 

some tests from consideration. Ideally, those tests whose statistical power was 

greatest would be retained. In order to achieve this, I considered the factors affecting 

the power of an individual Fisher test. These were: (1) the sample size N; (2) the test 

size a; (3) the effect size, as measured by the odds ratio (OR); (4) the frequency of 

the independent (i.e. germline) binary variable fgermline; and (5) the frequency of the 

dependent variable fsomatic. In this setting, N was fixed at 260 samples. The test size a 

depended on the number of hypothesis tests Nhyp; to achieve a FWER of 0.1, the 

significance threshold for individual tests was a=0.1/ Nhyp. However, in practice I used 

the less stringent FDR method89, so this was a conservative estimate of power. I used 

simulations to quantify how the power of tests depended on the effect size and the 

germline and somatic pathway frequencies. This analysis showed that statistical 

power was greatest when fgermline and fsomatic were both nearest to 0.5 (i.e. altered in 

50% of samples), and that the region around this centre with adequate statistical 

power expanded as the OR increased (Figure 2-6). This suggested a frequency 

restriction approach, retaining germline and somatic pathways whose frequencies 
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were between q and 1-q, for some threshold 0<q<0.5. I selected q=0.25, which 

reduced the number of tests for Reactome pathways from approximately 500,000 to 

7,000. Moreover, the retained tests had 80% power to detect associations with OR ≥5 

(Figure 2-6). Thus I proceeded to test for co-occurrence with pathways damaged in 

between 25% and 75% of samples (Table 2-7). 

 Another consideration for maximising statistical power was the method of 

multiple hypothesis test correction. As mentioned above, the FDR method of 

Benjamini & Hochberg89 is less stringent than the FWER method of Bonferroni, and 

thus provides a more powerful alternative. However, the standard FDR method 

assumes that hypothesis tests are independent, and this assumption was violated in 

this analysis due to the high degree of overlap among pathways. Ji & Li112 developed 

a method to calculate the effective number of independent hypothesis tests, and use 

this in FDR correction. Originally applied to overlapping multilocus SNP data, it takes 

the correlation of variables into account to relax p-value correction, increasing 

statistical power. It thus provided a potentially more appropriate way to calculate FDRs 

than the standard method in this context. Applying this method to the already reduced 

number of tests further reduced the burden of multiple hypothesis testing, giving 1,449 

independent tests for Reactome pathways (Table 2-7). By combining frequency 

restriction and correcting for the effective number of independent tests, I had reduced 

the total number of tests to correct for by 180-fold, thus substantially alleviating the 

burden on statistical power. 

 

Count type 
Germline Somatic 
Reactome KEGG BioCarta Reactome KEGG 

≥1 sample 1787 370 285 297 110 

25% to 75% of samples 87 73 0 81 53 

Effective independent 63 55 0 23 24 

 
Table 2-7: Numbers of somatic and germline pathways in the OAC cohort 
Only pathways altered in between 25% and 75% of samples were retained for 

germline-somatic interaction analysis. Using these pathways, the effective number of 

independent pathways was calculated using the method of Ji & Li112. 
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Figure 2-6: Statistical power of Fisher tests varies with observation frequencies 
Contour plots show the statistical power of a Fisher test to detect a germline-somatic 

association given the frequencies of the germline pathway (fgermline, x-axis) and the 

somatic pathway (fsomatic, y-axis). Analysis considered a range of effect sizes (odds 

ratios, ORs), indicated at the top. The test size was fixed using the Bonferroni method 

at 0.1 divided by the number of hypothesis tests. In the unrestricted (top) case, a total 

of 500,000 tests were considered. In the restricted (bottom) case, only pathways 

altered in between 25% and 75% of samples were considered (dotted red lines), giving 

7,000 tests.  

 

2.4.2. Two novel examples of inherited vulnerability in OAC 
Applying the above approach resulted in 25 significant associations between damaged 

germline pathways and somatic driver pathways with FDR <0.1 (Table 2-8, Figure 2-

7A). However, considering the overlap of the pathways involved, these 25 hits 

represented two distinct associations. This could be seen from the inter-correlations 

of the significant germline (Figure 2-7B) and somatic (Figure 2-7C) pathways.  

 The majority of the hits (23 out of 25) associated germline perturbations to 

digestive pathways with somatic driver alterations in FGFR signalling. However, closer 

investigation of gene-level data suggested that this in fact represented an association 

between extracellular matrix (ECM) germline perturbations with receptor tyrosine 

kinase (RTK) signalling somatic drivers, as discussed in Section 2.4.3. The other two 
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hits associated germline damage to DNA replication and repair with driver alterations 

in genes that were downstream of the RTK signalling, as discussed in Section 2.4.4. 

 

 
Figure 2-7: Results of the germline-somatic association analysis 
A. QQ plots showing the statistical significance of Fisher tests, stratified by the source 

database of the germline and somatic pathways. Significant results (FDR <0.1) are 

coloured red if they related germline perturbations to digestive pathways with somatic 

drivers in FGFR signalling pathways, and green if they related germline perturbations 

to DNA replication and repair with somatic drivers in MAPK signalling pathways. 
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B. Inter-correlation of the three significant germline pathways. Each pathway was 

treated as a binary variable, and the Pearson correlation coefficient was calculated 

between each pair of pathways. Pathways are coloured as in A.  
C. Inter-correlation of the 18 significant somatic pathways. Pathways are coloured as 

in A. 
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Table 2-8: Results of the germline-somatic association analysis 
*Indicates germline-somatic pathway pairs that were used for downstream analysis. 

 
 
 

Germline 
pathway Somatic pathway OR FDR Germline 

samples 
Somatic 
samples Intersection 

Protein digestion 
and absorption* 

Signalling by FGFR in 
disease* 3.19 0.022 89 91 47 

Digestive system Serotonergic synapse 4.43 0.024 188 85 76 
Digestive system Signalling by FGFR2 4.16 0.043 188 80 71 

Digestive system Natural killer cell mediated 
cytotoxicity 4.58 0.051 188 72 65 

Protein digestion 
and absorption 

Downstream signalling of 
activated FGFR2 3.17 0.053 89 68 37 

Digestive system Downstream signalling of 
activated FGFR2 4.37 0.065 188 68 61 

Protein digestion 
and absorption 

Signalling by FGFR2 in 
disease 3.03 0.065 89 67 36 

Digestive system Signalling by FGFR2 in 
disease 4.27 0.065 188 67 60 

Protein digestion 
and absorption Signalling by FGFR2 2.86 0.065 89 80 41 

Digestive system Signalling by FGFR4 3.80 0.065 188 76 67 
Protein digestion 
and absorption 

Signalling by FGFR1 in 
disease 2.80 0.065 89 83 42 

Replication and 
repair* MAPK6/MAPK4 signalling* 2.75 0.065 85 90 43 

Digestive system Signalling by FGFR3 3.52 0.065 188 79 69 

Digestive system Constitutive Signalling by 
EGFRvIII 3.22 0.065 188 92 79 

Digestive system 
Constitutive Signalling by 
Ligand-Responsive EGFR 
Cancer Variants 

3.22 0.065 188 92 79 

Digestive system Signalling by EGFR in 
Cancer 3.22 0.065 188 92 79 

Digestive system Signalling by EGFRvIII in 
Cancer 3.22 0.065 188 92 79 

Digestive system 
Signalling by Ligand-
Responsive EGFR Variants 
in Cancer 

3.22 0.065 188 92 79 

Digestive system Long-term depression 3.75 0.081 188 84 74 

Digestive system Signalling by FGFR in 
disease 3.15 0.082 188 91 78 

Digestive system GnRH signalling pathway 3.23 0.085 188 105 90 

Digestive system Chemokine signalling 
pathway 3.50 0.085 188 87 76 

Protein digestion 
and absorption Serotonergic synapse 2.77 0.085 89 85 43 

Replication and 
repair Jak-STAT signalling pathway 2.89 0.094 83 157 64 

Protein digestion 
and absorption 

Downstream signalling of 
activated FGFR1 2.73 0.096 89 72 37 
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2.4.3. Germline ECM perturbations associate with RTK signalling driver events 
The first distinct result from the germline-somatic association analysis associated 

germline perturbations to digestive pathways with somatic driver alterations in FGFR 

signalling-related pathways (Table 2-8). The two germline pathways involved 

(Digestive System and Protein Digestion & Absorption) were directly related in the 

KEGG hierarchy, with Digestive System containing Protein Digestion & Absorption. By 

contrast, the 18 somatic pathways were drawn from both Reactome and KEGG and 

were not directly adjacent to each other in the database hierarchies. However, many 

of these pathways clearly overlapped with each other, with 8 of them pertaining to 

FGFR signalling. The most significant hit was between the Protein Digestion & 

Absorption pathway and FGFR Signalling in Disease (FDR = 0.02). In the analysis in 

this section, I will take this as representative of the more general result. 

 In order to probe this association, I stratified the cohort of 260 OACs into four 

groups (Figure 2-8A): those with both the germline and somatic pathways altered 

(‘G+S+’, n=47); those with the germline pathway damaged only (‘G+S-’, 42); those 

with somatic only (‘G-S+’, 44); and those with neither (‘G-S-’, 127). I then investigated 

the genes most recurrently involved in both the germline and somatic pathways. The 

germline was strikingly dominated by collagen genes (Figure 2-8B), which accounted 

for 66 of the 89 G+S+ and G+S- samples (74%). Collagens are not obviously 

associated with digestion, and the KEGG map of the Protein Digestion & Absorption 

pathway lists collagens under the heading of ‘Nondigestible proteins’. This suggested 

that the result may have been driven by germline perturbations to the ECM more than 

to digestive processes. Indeed, retaining only the collagen genes in the pathway still 

gave a significant result (FDR =0.04). A notable feature of the somatic driver genes in 

the G+S+ and G-S+ samples was that, despite the relevant pathway being FGFR 

Signalling in Disease, the most commonly altered genes were not specific to FGFR 

signalling. Instead, they were genes that are more widely important in RTK signalling, 

namely KRAS113,114 and PIK3CA (Figure 2-8B). Thus, the association could be 

interpreted as germline perturbations to the ECM conferring an inherited vulnerability 

to RTK driver alterations. 

 As an orthogonal investigation, I compared the G+S+ samples to the other 

groups in the cohort using clinical and gene expression data. None of the available 

clinical indicators (including tumour stage, gender, age at diagnosis and survival time) 

significantly differentiated the G+S+ samples. Analysis of the 92 samples that had 
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available RNA-Seq data revealed 80 genes that were overexpressed (fold-change 

>1.5) in the G+S+ group, compared to each of the other three groups separately 

(Methods 2.2.4). A gene set enrichment analysis (GSEA) of these 80 genes revealed 

9 enriched pathways with FDR <10-3 (Methods 2.2.4), all of which were associated 

with the ECM (Table 2-9). In particular, collagen pathways appeared several times. 

Indeed, 15 of the 80 upregulated genes (19%) were part of Reactome’s Extracellular 

matrix organisation pathway, and this included five collagens (Figure 2-8C). This also 

provided orthogonal evidence that the RDGVs in collagens represented genuine 

biological perturbations. Moreover, among the 66 genes that were downregulated 

(fold-change <0.67) in the G+S+ samples, there was no clear enrichment in any 

biological processes. This suggested that samples with both germline ECM 

perturbations and RTK signalling somatic drivers had more transcriptional activity 

related to the ECM. 

 There are at least two potential biological connections between ECM 

perturbations and RTK signalling. One possibility is that the association could be 

mediated via discoidin domain receptors (DDRs). There are two human DDR genes 

(DDR1 and DDR2), both of which are RTKs that are triggered by collagen115. 

Moreover, there is evidence that they are involved that cancer progression, particularly 

in invasion and metastasis115-117. Interestingly, DDR2 was expressed most highly in 

the G+S+ group (fold-change =1.4), although this difference only reached significance 

in comparison to G-S- samples (the largest group, Figure 2-8D). This could suggest 

that germline perturbations to collagens were leading to increased DDR2 signalling, 

which increased the advantage of RTK signalling driver alterations. Another 

connection could be via integrins, which bind to ECM components and are known to 

cooperate with several RTKs, including EGFR and VEGFR118. Integrin inhibitors have 

been explored as potential anticancer drugs119. Interestingly ITAV, which codes for a 

component of the proposed targets (integrins avb3 and avb5), showed a trend of 

increased expression in the G+S+ group. However, as with DDR2 this difference was 

only statistically significant compared to the G-S- group (Figure 2-8E). These 

connections are speculative, and a fuller investigation into potential mechanisms for 

mediating the interaction between germline ECM perturbations and RTK driver 

alterations would require larger sample sizes and experimental evidence. 
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Figure 2-8: Germline ECM perturbations associate with RTK driver alterations 
A. Stratification of the OAC cohort by germline status (G+/- indicates samples 

with/without RDGVs in the Protein Digestion and Absorption pathway) and somatic 

status (S+/- indicates samples with/without somatic driver alterations in the Signalling 

by FGFR in Disease pathway).  

B. Genes involved in the germline-somatic interaction. For each gene, the number of 

samples of samples with a RDGV (left) or somatic driver alteration (right) is shown, 

coloured by the germline/somatic status of each sample.  

C. Genes in the Extracellular matrix organisation pathway that were upregulated in 

G+S+ samples with >1.5 fold-change of median TPM. Numbers of samples with 

available RNA-Seq data are shown in brackets.  

D. Expression of DDR2 in OAC samples, stratified by germline/somatic status. P-

values from Wilcoxon rank-sum test. 
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E. Expression of ITAV, stratified by germline/somatic status. 

 

 
Table 2-9: Pathways enriched in genes overexpressed in G+S+ samples 
A total of 80 genes with 1.5-fold overexpression were identified. Pathways enriched 

with FDR <0.001 are shown. 

 

2.4.4. Germline DNA repair defects associate with driver events downstream of 
RTK signalling 
The second distinct result found by the germline-somatic interaction analysis related 

germline damage in the DNA replication and repair pathway to driver events in the 

MAPK6/MAPK4 and Jak-STAT signalling pathways (Table 2-8). As in Section 2.4.3, I 

took the most significant of these hits (MAPK6/MAPK4) as representative of the 

general result, and stratified the cohort into four groups depending on germline and 

somatic status (Figure 2-9A). 

 In the germline, most of the damaged genes were involved in DNA repair rather 

than replication, and they included a number of CPGs, including MLH1, PMS2, BRCA2 

and the Fanconi Anaemia genes FANCA/L/M (Figure 2-9B). However, testing for 

drivers associated with germline damage to CPGs in general did not yield significant 

results, suggesting that this hit was not driven simply by CPGs. The somatic driver 

alterations were predominantly in MYC, FOXO1 and CCND3 (Figure 2-9B). 

Interestingly, these are all downstream of RTK signalling120-122, suggesting that 

Pathway Source FDR OR 

Extracellular matrix organisation Reactome 4.26E-09 15.26 

ECM proteoglycans Reactome 3.98E-05 26.58 

Degradation of the extracellular matrix Reactome 7.40E-05 16.31 

Collagen formation Reactome 7.40E-05 21.75 

Assembly of collagen fibrils and other 

multimeric structures Reactome 
1.20E-04 27.81 

Collagen degradation Reactome 1.33E-04 26.37 

Collagen biosynthesis and modifying enzymes Reactome 1.51E-04 25.08 

Collagen chain trimerisation Reactome 3.92E-04 32.26 

Integrin cell surface interactions Reactome 4.84E-04 19.34 
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different germline backgrounds (i.e. damage to the ECM or DNA repair) could give rise 

to somatic evolutionary trajectories that converged to different but closely related 

aspects of cancer biology. 

 Analysis of gene expression revealed 98 genes with 2-fold overexpression in 

G+S+ samples, compared to the other three groups. These genes were strongly 

enriched in Keratinisation, and its sub-pathway Formation of the cornified envelope 

(Table 2-10). This pathway contained 16 of the overexpressed genes, the majority of 

which were either keratins (n=6) or small proline-rich proteins (n=5, Figure 2-9C). The 

two most strongly overexpressed genes, KRT5 and KRT14, are the main keratins 

expressed by keratinocytes in the stratified squamous epithelium123. Intriguingly, while 

the normal oesophagus is not keratinised, oesophageal keratinisation is associated 

with oesophageal squamous cell carcinoma, rather than with OAC124. However, it is 

unclear why this particular germline and somatic background would be associated with 

a squamous morphology.  

 Stratified analysis of clinical data revealed that the G+S+ samples had a 

significantly lower age at diagnosis compared to other samples (Figure 2-9D). This 

could be related to the presence of CPGs in the germline pathway, since 

predisposition leads to earlier onset of many cancer types125-128. However, the G+S- 

samples, which had germline damage to DNA repair but not somatic drivers in the 

MAPK6/MAPK4 signalling pathway, did not exhibit an earlier onset of OAC (Figure 2-

9D). In addition, samples with RDGVs in CPGs in general did not show earlier onset 

of OAC compared to other samples (p =0.26, Wilcoxon rank-sum test). This suggested 

that the combination of germline perturbations and somatic drivers, rather than simply 

effects from CPGs, were responsible for the younger age at diagnosis. 
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Figure 2-9: Germline DNA repair perturbations associate with driver alterations 
downstream of RTK signalling 
A. Stratification of the OAC cohort by germline/somatic status. 

B. Genes involved in the germline-somatic interaction.  

C. Genes in the Formation of the cornified envelope pathway that were upregulated in 

G+S+ samples with >2 fold-change of median TPM.  

D. Age at diagnosis, stratified by germline/somatic status. P-values from Wilcoxon 

rank-sum test. 
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Chemokine receptors bind chemokines Reactome 3.33E-03 23.56 

 
Table 2-10: Pathways enriched in genes overexpressed in G+S+ samples 
A total of 98 genes with 2-fold overexpression were identified. Pathways enriched with 

FDR <0.01 are shown. 

 

2.4.5. Results in an independent validation cohort 
In order to see if the results of the germline-somatic association analysis were robust, 

I tested them in an independent validation cohort of an additional 140 OAC samples 

that became available from the OCCAMS consortium. I processed the data for these 

samples in the same way as described in Section 2.3, identifying pathways with rare 

damaging germline variants and pathways with somatic driver alterations. I then tested 

the two representative germline-somatic pathway pairs from the initial analysis (Table 

2-8) in the validation cohort. Unfortunately, these results could not be reproduced 

(Table 2-11). This suggested that the results of the initial analysis were not statistically 

robust. Although it is difficult to be certain why this was the case, there are a number 

of possible reasons. 

 One explanation for the lack of validation lay with the method of multiple p-value 

correction. I had calculated FDRs in the initial analysis using the method of Ji and Li112 

to account for inter-correlations, and this relaxation of correction may have been too 

lenient. However, this choice did not have a substantial impact, since using the 

standard Benjamini-Hochberg correction89 instead, both of the results discussed in 

Sections 2.4.3 and 2.4.4 would still have had FDR <0.08. Additionally, since different 

pathway databases provide similar but complementary information, I had corrected for 

multiple hypothesis tests treating associations between pathways from different 

databases separately. This may have been overly permissive. Indeed, correcting p-

values from all tested germline-somatic pathway pairs together regardless of 

database, no results had FDR <0.15. As an additional benchmark, using the more 

stringent Bonferroni correction for FWER would have only given two out of the 25 

results in Table 2-8 with FWER <0.5. It is also worth noting that the QQ plots in Figure 

2-7A showed features simiar to genomic inflation129, suggesting that some of the p-

values themselves may not have reflected the true statistical significance of the 
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results. These considerations suggested that the approach taken to multiple 

hypothesis test correction may have been too lenient. 

 Another explanation could be that, due to the basic nature of the Fisher test, I 

was unable to account for covariates. In particular, clinical features such as gender 

and environmental exposures, as well as genetic features such as population 

structure, may have had confounding effects. In order to account for these factors, a 

more sophisticated model would be required to analyse germline-somatic interactions.  

 
Germline 
pathway 

Somatic pathway OR P-value 
Germline 
samples 

Somatic 
samples 

Intersection 

Protein digestion 

and absorption 
Signalling by FGFR in disease 0.94 0.63 46 50 16 

Replication and 

repair 
MAPK6/MAPK4 signalling 0.85 0.73 57 37 14 

 
Table 2-11: Results of validation testing 
 

 

  



 61 

2.5. Discussion 
In this chapter, I have described a simple systematic investigation into germline-

somatic interactions. Using OAC as a model cancer type, I first curated the data for a 

cohort of 260 samples, ensuring the quality of germline variant calls in particular. I then 

identified high-confidence RDGVs, and aggregated these into pathways. By 

measuring co-occurrence between RDGVs in pathways and somatic driver events in 

cancer-related pathways (identified by a colleague), I found two distinct results 

suggestive of inherited vulnerability to particular driver alterations. Further 

investigation of these associations using gene expression and clinical data was 

promising. In the first association, inherited defects in ECM genes, and particularly in 

collagens, led to an increased rate of driver alterations in RTK signalling genes, 

particularly KRAS and PIK3CA. Discoidin-domain receptors and integrins both 

provided potential mechanisms to mediate this association, and showed interesting 

trends of gene expression supporting the result. In the second germline-somatic 

association, germline perturbations to DNA repair co-occurred with driver events 

downstream of RTK signalling, particularly in MYC, FOXO1 and CCND3. While 

potential mechanisms for this association were lacking, expression analysis 

suggested a link with tumour morphology, as germline/somatic status associated very 

strongly with upregulation of keratinisation genes. In addition, a statistically significant 

association with earlier age at diagnosis hinted at the possible clinical relevance of 

this association.  

 Both of these results demonstrated the potential for analysis of germline-

somatic associations to further our understanding of cancer biology. Ultimately, 

however, neither of these associations could be reproduced in a validation cohort of 

140 OAC samples, suggesting that the results were not statistically robust. In order to 

improve future analysis, both the data preparation and characterisation process and 

the applied method for identifying germline-somatic interactions needed to be critically 

evaluated. 

 Germline variants were extensively quality controlled in terms of their numbers 

per sample, read supporting alternative alleles, MAFs and deviation from Hardy-

Weinberg equilibrium (Figure 2-2, Section 2.3.2). Benchmarking variants against 

reference samples from the 1000 Genomes Project68 indicated that false positive 

variant calls were not prevalent in the OAC cohort. However, only rare variants (MAF 

<1%) were used in the germline-somatic association analysis, and identifying false 
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positive calls for rare variants is challenging. Moreover, rare variants are proportionally 

enriched for false positives compared to common variants69. However, since truly 

deleterious variants are very unlikely to be common in populations, the restriction to 

rare variants was appropriate on balance. The approach for identifying deleterious 

variants was restrictive, requiring the support of a large number of prediction 

algorithms for non-truncating variants. Thus, the final set of RDGVs were high-

confidence, and orthogonal evidence of their deleteriousness was provided by gene 

expression analysis, which revealed that germline perturbations to the ECM led to 

dysregulation of ECM genes in tumours (Figure 2-8, Section 2.4.3). However, the 

restrictive nature of this approach left relatively few RDGVs per patient (median 36, 

Figure 2F, Section 2.4.3). A slightly more permissive approach may have given more 

variants for analysis without compromising the integrity of the RDGV set. 

 The identification of somatic driver events could be improved in several ways. 

Drivers were identified using a list of known cancer genes25,26,111, but this was a pan-

cancer list, and was not specific to OAC. This was because the original purpose of 

these driver events was to characterise the features of cancer genes27, as discussed 

in Chapter 4. However, for the germline-somatic association analysis, a more tailored 

approach could be beneficial. Using only driver genes shown to play a role in OAC 

could remove some false positive driver alterations. In addition, the driver events 

considered in this chapter included structural variants (SVs) such as inversions and 

breakends27. While SVs are prevalent in OAC73, it is unclear to what extent they 

constitute driver events per se, or are simply the by-product of genomic instability. 

Thus, considering only mutation and copy number data could further refine the 

identification of drivers. Finally, while driver events were considered at the level of 

pathways in this chapter, the driver components of the results of the germline-somatic 

association analysis were dominated by individual highly recurrent genes. This 

suggests that treating drivers at the gene level might provide a more focused approach 

without losing relevant information. By contrast, the germline contribution to the results 

was diffuse and spread across many genes, indicating that considering germline 

perturbations at the pathway level was a useful approach. 

 The method used to identify germline-somatic interactions in this chapter was 

a simple first-pass approach to the problem, and could be improved in various ways.  

The Fisher test has the advantage of making very few assumptions. However, treating 

damage to germline pathways as a binary categorical event is crude. Instead, using 
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counts of damaging variants could capture more information about samples. 

Additionally, as discussed in Section 2.4.5, the Fisher test does not allow potentially 

confounding covariates to be accounted for. A more sophisticated model would be 

able to address both of these issues. A retrospective investigation in Section 2.4.5 

showed that the method of multiple p-value correction employed may have been overly 

permissive. In particular, treating different pathway databases separately had a 

substantial impact on FDRs. Moreover, the overlap between pathways complicated 

the interpretation of results and may have inflated measures of statistical significance. 

Pruning pathways before analysis to obtain a less redundant set of variables could 

mitigate these issues. The frequency restriction approach described in Section 2.4.1 

substantially alleviated the burden of multiple hypothesis testing and removed tests of 

association between very rare or ubiquitous events. A similar approach should ideally 

be applied to any future analysis. Finally, using one-sided tests to focus on co-

occurrence and the identification of inherited vulnerability to somatic driver events may 

have been overly restrictive. Germline perturbations being mutually exclusive with 

somatic driver events could indicate either compensatory or synthetic lethal 

interactions, both of which would be of interest. Moreover, using two-sided tests would 

only reduce the allowable test size by half, which represents only a marginal loss in 

comparison to the gains from frequency restriction. 

 While the results of the germline-somatic association analysis in this chapter 

could not be validated, an improved analysis may still provide useful insights into 

cancer biology. In Chapter 3, I will continue to investigate germline-somatic 

interactions in oesophageal adenocarcinoma, addressing many of the methodological 

limitations discussed here. I will also analyse a larger cohort of OAC samples, lending 

greater sensitivity and robustness to the analysis therein. 
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Chapter 3. Statistical modelling of germline-somatic interactions in trans 

3.1. Introduction 
As I discussed in Chapter 1, germline variation is a potential contributor to inter-tumour 

heterogeneity, with inherited genetic differences affecting evolutionary pressures 

acting on somatic alterations. In Chapter 2 I illustrated a co-occurrence-based 

approach for analysing germline-somatic interactions in trans (GSITs), although the 

results could not be validated in an external cohort. This suggested that improved 

methodologies and larger sample sizes might be required to robustly identify the 

influence of germline variants on somatic evolution.  

 In this chapter, I will attempt to address some of the limitations of the analysis 

in Chapter 2, which I discussed in detail in Section 2.5. Since the methods used to 

identify rare damaging germline variants (RDGVs) in Chapter 2 were restrictive, I will 

use a more permissive approach here. For somatic alterations, I observed that 

perturbed pathways were dominated by the same highly recurrent driver genes. Thus, 

in this chapter I will begin by focusing on individual driver genes instead. Later, I will 

also combine contributions from individual driver genes in a data-driven clustering 

approach. To improve upon the robustness of the Fisher testing approach for 

uncovering GSITs, I will instead use logistic regression modelling to account for 

potentially confounding covariates. Finally, I will use an expanded OAC cohort of 470 

samples, allowing for greater statistical power. However, I will continue to focus on 

OAC as a model cancer type with an absence of highly penetrant predisposition 

genes23 and poor clinical outcomes93. Nonetheless, the methodological questions of 

how best to analyse GSITs could apply to any cancer type. 

In Section 3.3 I will describe the data preparation for an expanded cohort of 470 

OAC patients, including germline data, somatic data, and potentially confounding 

covariates for downstream analysis. I will then describe the application of a logistic 

regression approach to associate RDGVs in pathways with the driver status of OAC 

driver genes in Section 3.4. This analysis uncovers two statistically significant results, 

which I investigate in more detail in Section 3.5. I will then characterise somatic 

variation with a more comprehensive set of descriptors, including multiple driver genes 

and other descriptors of somatic alterations, by adopting a sample clustering approach 

in Section 3.6, and attempt to relate RDGVs in pathways to the resulting clusters. 

Finally, I will discuss the results from this chapter in Section 3.7.  
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3.2. Methods 

3.2.1. Clinical and demographic data  
Clinical and demographic data were provided by ICGC for 400 OAC patients, and were 

extracted from the Genomic Data Commons (https://portal.gdc.cancer.gov/, 

downloaded December 2018) for 185 TCGA oesophageal cancer patients. Of these, 

89 patients had a histologic diagnosis of “Esophagus Adenocarcinoma” and were 

retained. Intersecting TCGA patients with those with available somatic15 and 

germline49 sequencing data gave 70 patients. 

 Missing data were imputed for features to be used in downstream analysis 

using the median value across the combined ICGC and TCGA cohort.  

 

3.2.2. Germline variant filtering  
Germline variant calls were provided by ICGC for 400 OAC patients, and obtained for 

70 TCGA OAC patients from the release of Huang et al.49 via the Genomic Data 

Commons portal. VCF files were annotated with ANNOVAR74 (downloaded November 

2018), and only variants annotated as either exonic or splicing were retained. 

Annotated genes were intersected with a set of 19,549 genes derived from the 

alignment of reference protein sequences to the human genome24, leaving 11.1x106 

germline variants.  

 Variants were first filtered using their zygosity (as labelled in VCF files) and 

supporting read counts. Only variants supported by five or more alternative reads were 

retained. Heterozygous variants were removed if their variant allele frequency (VAF) 

satisfied either 𝑉𝐴𝐹 < 25% or 𝑉𝐴𝐹 > 75%, where 𝑉𝐴𝐹 = #	+,-%$.+-/0%	$%+12
#	-3-+,	$%+12	+-	,3452

. 

Homozygous variants were removed if 𝑉𝐴𝐹 < 90%. Combined, these filters removed 

387,003 exonic and splicing germline variants. 

 The remaining variants were then filtered to remove variants present at higher 

frequencies in the OAC dataset compared to reference populations. Minor allele 

frequencies (MAFs) of variants were annotated with ANNOVAR, using data from the 

1000 Genomes68 and ExAC projects76. The observed MAF of each variant in OAC 

was then compared to the reference MAFs using a beta-binomial test. First, the 

parameters of a beta distribution were fit to the empirical distribution of observed MAFs 

in the OAC cohort using maximum likelihood estimation. The resulting parameters 

𝑎67897 and 𝑏67897 thus determined a prior distribution for MAFs. Second, for each 
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observed variant, a posterior beta distribution was fit using the MAFs in reference 

populations. Posterior beta parameters were calculated as 𝑎69:; = 𝑎67897 +

2𝑁7<=𝑀𝐴𝐹7<=, 𝑏69:; = 𝑏67897 + 2𝑁7<=A1 − 𝑀𝐴𝐹7<=B, where 𝑀𝐴𝐹7<= is the MAF of the 

variant in either ExAC or 1000 Genomes, and 𝑁7<= is the number of individuals in the 

reference population (60,706 for ExAC or 2,504 for 1000 Genomes). If a MAF was 

available in ExAC, this was used preferentially over 1000 Genomes. If a MAF was not 

available from either source, 𝑀𝐴𝐹7<= was set to zero. For each variant, the posterior 

beta distribution was then used to parametrise a beta-binomial distribution, from which 

p-values of enrichment in OAC were calculated. A total of 274,056 variants with p <10-

12 and observed MAF>10% in OAC  were removed. 

 

3.2.3. RDGV identification 
The filtered exonic and splicing germline variants were annotated with deleteriousness 

predictions, similarly to Section 2.2.3. Truncating variants included stopgain, stoploss 

and frameshift variants. Splicing variants were considered damaging if they were 

predicted as such by either the ADA or RF methods from dbscSNV78.  

Missense SNPs were annotated with CADD61 (phred score >25) and a set of 

seven function-based predictors (SIFT80, PolyPhen2-HDIV81, PolyPhen2-HVAR, 

MutationTaster82, MutationAssessor83, LRT84, and FATHMM85). Missense variants 

supported by both CADD (phred score >25) and at least five of the seven function-

based predictors were considered as damaging for downstream analysis. Annotations 

from MetaLR were not used in the definition of damaging germline variants. RDGVs 

consisted of damaging germline variants with 𝑀𝐴𝐹7<= < 1%. 

 

3.2.4. Variance-weighted Jaccard index 
The variance-weighted Jaccard index (VWJI) was used to assess the functionally 

relevant overlap of pathways. First, the variance 𝑣> of the RDGV allele count across 

the OAC cohort was calculated for each gene 𝑔. For two pathways 𝑝 and 𝑞, the VWJI 

was calculated as 

VWJI6? =
∑ 𝑣>>∈6∩?

∑ 𝑣>!>!∈6∪?
. 
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Thus, two pathways sharing a gene with high variance (or equivalently for Poisson-

distributed RDGV allele counts, high mean) across the cohort was given more weight 

than sharing a gene with low variance.  

 The VWJI can be cast in a linear algebra form for fast computation with large 

numbers of genes and pathways. First, define the gene-pathway membership matrix 

𝑴 as 𝑀>6 = 𝕀[𝑔 ∈ 𝑝], where 𝕀 denotes an indicator function taking the value 1 when 

its argument is true, and zero otherwise. From 𝑴, the matrices 𝑴Q  with 𝑀Q>6 = 1 −𝑀>6 

(complement membership matrix) and 𝑴R  with 𝑀R>6 = 𝑣>𝑀>6 (variance-weighted 

membership matrix) can be constructed. It can then be shown that 

VWJI6? =
A𝑴R C𝑴B

6?

A𝑴R C𝑴B
6?
+ A𝑴R C𝑴QB

6?
+ A𝑴Q C𝑴RB

6?

. 

 The VWJI was calculated between all pairs of pathways. In order to reduce 

pathway overlap, groups of pathways for which the VWJI exceeded 0.8 in a transient 

manner between all pathway pairs were first identified (pathways 𝑝 and 𝑞 were 

considered to be transiently overlapping if VWJI66! > 0.8 and VWJI6!? > 0.8 for some 

pathway 𝑝D). Within these groups, a single representative pathway was chosen as the 

pathway with the highest mean VWJI relative to all other pathways in the group. 

 

3.2.5. Genetic ancestry 
A total of 45,398 SNPs common SNPs with MAF >5% in reference populations were 

first identified. The genotypes of these SNPs (encoded as 0 for homozygous 

reference, 1 for heterozygous and 2 for homozygous alternative) were used as in the 

input for principal components analysis (without scaling).  

 

3.2.6. Somatic driver alterations 
Somatic small variant calls (SNVs and indels) were obtained from the MC3 TCGA 

release15 and annotated with ANNOVAR74. Hotspot mutations were identified with 

OncodriveCLUST v1.0 with default settings. Non-truncating damaging mutations 

included missense SNVs labelled as deleterious according to either at least five of 

seven function-based predictors (SIFT80, PolyPhen2-HDIV81, PolyPhen2-HVAR, 

MutationTaster82, MutationAssessor83, LRT84, and FATHMM85) or at least two of three 

conservation-based predictors (GERP++88, SiPhy87 and PhyloP86), as well as splicing 

mutations predicted as deleterious by one or both of the ADA and RF methods from 
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dbSCSNV77. Truncating mutations included stopgain, stoploss and frameshift 

mutations. 

 Copy number segments were obtained by running ASCAT130 on SNP array 

data from the Genomic Data Commons. Segments were intersected with the 

coordinates of 19,549 human genes24, and genes were considered to have a CNV if 

more than 25% of their length overlapped with a copy number segment. Ploidy values 

for each sample were also obtained from ASCAT. Gene amplifications included all 

genes with copy number > 2 x ploidy, and deletions included genes with copy number 

zero. 

 A list of 76 OAC-specific driver genes was obtained from Frankell et al.96 and 

intersected with lists of canonical driver genes across cancer types 24 to give a total of 

40 driver genes with at least one damaging somatic alteration in the OAC cohort 

(hotspot, truncating and non-truncating damaging mutations, amplifications and 

deletions). The OAC driver genes were divided in Frankell et al. into those driven by 

mutations, amplifications and deletions, based on what types of somatic alterations 

were recurrent in each gene according to a combination of statistical tools96. To map 

driver events in individual samples, damaging mutations in mutation-driven genes, 

amplifications in amplification-driven genes, and deletions in deletion-driven genes 

were considered to be driver alterations.  

 

3.2.7. Mutational signatures 
All exonic and splicing somatic SNVs were used to extract mutational signatures. The 

MutationalPatterns131 R package was run with default settings for de novo signature 

discovery. For interpretation, the profiles of 30 pan-cancer mutational signatures were 

obtained from COSMIC45. The contributions of each of the 96 possible trinucleotide 

contexts were compared between pairs of de novo and COSMIC signatures using the 

cosine similarity. For two signatures 𝑥 and 𝑦, the similarity 𝑆EF was calculated 

according to the formula 

𝑆EF =
∑ 𝑥8 × 𝑦8GH
8IJ

V∑ 𝑥KLGH
KIJ ×V∑ 𝑦MLGH

MIJ

, 

where 𝑥8 is the contribution of the ith trinucleotide context to signature 𝑥. 
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3.2.8. Logistic regression power calculations 
Simulated data were used to calculate the power of likelihood ratio tests (LRTs) in the 

logistic regression modelling framework. For simplicity, no covariates were included in 

these calculations. Predictor variables were generated using Poisson distributions with 

rate 𝜆, and outcome variables were then generated by Bernoulli trials parametrised to 

reflect both the desired effect size 𝛽 and the overall frequency 𝑦Z of the outcome. For 

given values of 𝜆, 𝛽 and 𝑦Z, this process was iterated 1000 times, and the power was 

calculated as the percentage of iterations for with the LRT returned a p-value smaller 

than the Bonferonni significance threshold. 

 Power curves with 𝜆 on the x-axis were generated with adaptive test sizes. For 

each value of 𝜆, the test size was taken as 0.05 divided by the number of germline 

pathways with rate parameter greater than 𝜆. For a given driver gene 𝑔 or a random 

forest cluster 𝑐 (i.e. a given value of 𝑦Z) and effect size 𝛽 = ±1, the appropriate 

minimum rate parameter 𝜆N8O
>  or 𝜆N8OP  to achieve 80% statistical power was then 

calculated using linear interpolation on the appropriate power curve. 

 

3.2.9. Random forest clustering 
Cancer-enriched pathways were identified by performing GSEA on OAC-specific 

driver genes from Frankell et al.96 in 1,338 pathways from Reactome107 with between 

10 and 500 genes, and excluding level one pathways. Hypergeometric tests gave 115 

pathways enriched with FDR <0.01. Duplicated pathways containing the same driver 

genes were removed, leaving a total of 64 distinct enriched pathways.  

 Random forest clustering was performed with the randomForest R package132. 

The data used to cluster samples included: counts of OAC driver genes with driver 

alterations in each enriched pathway; somatic exonic SNV burden; somatic exonic 

indel burden; ploidy; and the contributions of four de novo mutational signatures. 

Forests with 2,000 trees were used, and proximity between samples was calculated 

as the default, i.e. the proportion of trees in which a pair of samples ended up in same 

terminal node. For samples 𝑖 and 𝑗 with proximity 𝑝8K, a distance was calculated as 

𝑑8K = A1 − 𝑝8KQ.LSB, with the exponent chosen to sensitise clustering to small proximities 

since many proximities were near-zero. Partitioning around medoids (PAM) clustering 

was performed with the cluster R package133. For each number of medoids between 

2 and 15, 10 random forests were implemented to calculate silhouette widths (included 
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in the PAM clustering routine) for each forest and the Adjusted Rand Index (using the 

mclust R package134) between each pair of forests. 
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3.3. Germline, somatic and clinical data preparation for a cohort of 470 OACs 
In order to investigate GSITs in OAC, I first needed a suitable cohort of patients. Given 

this cohort, I then needed to characterise the relevant aspects of germline and somatic 

variation, as in Section 2.3. In this case, I also wanted to curate a set of covariates 

that could potentially confound downstream GSIT analysis, to be used as controls and 

to improve the robustness of the analysis. I divided covariates into three categories: 

clinical and demographic; germline; and somatic.  

In this section, I will describe the preparation of data for a cohort of 470 OAC 

samples from ICGC73,96 and TCGA15,49. In Section 3.3.1, I will describe the clinical and 

demographic covariates for these patients. I will then go on to characterise the 

landscape of deleterious germline variants and derive potentially confounding 

germline covariates in Sections 3.3.3 and 3.3.3. Similarly, I will characterise the 

landscape of somatic driver alterations and identify somatic covariates in Sections 

3.3.4 and 3.3.5. This dataset will be the basis of the vast majority of the analysis in the 

remainder of this chapter. 

 

3.3.1. Clinical and demographic covariates 
I obtained clinical and demographic data for 400 ICGC and 70 TCGA OAC patients 

(Methods 3.2.1). However, I reasoned that not all clinical or demographic annotations 

would be useful as covariates for GSIT analyses. I therefore imposed two criteria for 

annotations to be included in downstream analysis. First, they had to plausibly relate 

to either germline variation, somatic driver alterations, or both. Since the main role of 

covariates in the analysis was to control for potentially confounding effects, including 

annotations that were a priori irrelevant would simply have added to model complexity 

without introducing useful information. Second, they had to have adequate data 

completeness. While small numbers of missing values could be handled by imputation 

(Methods 3.2.1), I required annotations to be at least 80% complete across the 

combined ICGC and TCGA cohort to avoid substantially biasing analyses.  

Based on these criteria, I included four clinical and demographic covariates: 

gender; smoking status; treatment with neoadjuvant chemotherapy; and tumour stage. 

The distributions of these covariates across the OAC cohort are described in Table 3-

1, and their relevance to GSIT analysis is described below. Importantly, race and 

ethnicity have potentially confounding effects on both germline and somatic cancer 
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landscapes70. However, since these data were not sufficiently complete in 

demographic annotations (74%), I instead derived genetic ancestry directly from 

germline data (Section 3.3.3). 

Gender is strongly linked to OAC incidence, with men being roughly nine times 

more likely to develop OAC than women135. Both the ICGC and TCGA cohorts 

reflected the male prevalence of the disease, with 86% male patients overall (Table 3-

1). It is therefore reasonable to assume that gender has a significant influence on OAC 

biology. Indeed, it has been found that among OAC patients, men are substantially 

more likely than women to have a TP53 driver mutation (roughly 80% for men 

compared to 60% for women)96, for example. Thus, gender was a clear potential 

confounder for GSIT analysis. 

The relevance of tobacco smoking was less clear. Unlike oesophageal 

squamous cell carcinoma, it is not certain to what extent smoking can predispose to 

OAC, although it does seem to have a weak positive correlation with OAC 

incidence93,136,137. In my data, the proportion of current smokers in the UK-based ICGC 

cohort (15%) was not dissimilar from the UK national smoking rate in 2019 (14.1%)138. 

However, smoking has been shown to strongly affect somatic driver alterations in other 

cancer types. For example, in lung cancer current smokers and never-smokers have 

EGFR mutation rates of 5% and 43% respectively17. On balance, I decided to include 

smoking data in my analyses to control for possible predisposing and driver gene 

effects in OAC.  

Some clinical trials have suggested that neoadjuvant chemotherapy is an 

effective treatment choice for OAC, but the evidence so far is inconclusive139. A large 

proportion (62%) of the 470 OAC samples in my dataset received neoadjuvant 

chemotherapy. Since many of the samples for sequencing were taken at surgical 

resection, this meant that chemotherapy was administered before the tumour 

genomes were sequenced. It is known that chemotherapy can induce somatic 

mutations, and it has been associated with specific mutational signatures140, although 

the extent of this effect in OAC may be small141. Moreover, the rate of neoadjuvant 

chemotherapy was strikingly different between ICGC (60%) and TCGA (0%) samples. 

This might be explained by different countries of origin (UK for ICGC, mostly US for 

TCGA) and different inclusion criteria. Including an indicator of neoadjuvant therapy in 

subsequent analysis allowed me to control for any potential confounding affects 
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arising from therapy-related clinical differences, or from the effects of chemotherapy 

on somatic mutations. 

Finally, tumour stage indicates how advanced tumours are, and it is an 

important prognostic indicator. In addition, more advanced tumours typically have 

more somatic alterations, with metastases having particularly marked increases in 

mutational burden142. Since complete group staging data were unavailable for this 

cohort, I used separate tumour (T), node (N) and metastasis (M) stage information. In 

both the ICGC and TCGA samples, more than half of patients were diagnosed with 

highly invasive primary tumours (T3/4), in line with previous reports93 (Table 3-1). 

Overall, the combined ICGC and TCGA cohort had the expected clinical and 

demographic characteristics for OAC patients. Moreover, there were few differences 

between the two data sources, as seen in Table 3-1. 

Characteristic Category 
ICGC (400) TCGA (70) 
N % N % 

Gender 
Female 57 14.2 7 10 

Male 343 85.8 63 90 

Smoking status 

Never 99 24.8 17 24.3 

Former 173 43.2 35 50 

Current 59 14.8 7 10 

Missing/Unknown 69 17.2 11 15.7 

Neoadjuvant 

chemotherapy 

Yes 237 59.2 0 0 

No 78 19.5 70 100 

Missing/Unknown 85 21.2 0 0 

T stage 

0 1 0.2 1 1.4 

1 25 6.2 14 20 

2 56 14 9 12.9 

3 254 63.5 43 61.4 

4 16 4 0 0 

Missing/Unknown 48 12 3 4.3 

N stage 

0 110 27.5 19 27.1 

1 160 40 40 57.1 

2 77 19.2 5 7.1 

3 18 4.5 3 4.3 
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Missing/Unknown 35 8.8 3 4.3 

M stage 

0 315 78.8 49 70 

1 21 5.2 10 14.3 

Missing/Unknown 64 16 11 15.7 

Table 3-1: Distributions of clinical and demographic covariates in 470 OACs 

 

3.3.2. Identifying pathways with deleterious germline variants 
I obtained germline variant calls (SNPs and indels) for the 400 OAC patients from 

ICGC96 and 70 OAC patients from TCGA49. In a similar vein to Section 2.3.3, I chose 

to characterise the germline using putatively deleterious variants, as potential effectors 

of GSITs. Therefore, I retained a total of 11.1M exonic and splicing germline variants 

in an internally curated set of 19,549 human genes24 (Methods 3.2.2, Table 3-2).  

In order to remove possible technical artefacts, I applied two filters to the 

germline variants. First, I removed 387,003 variants that substantially deviated from 

the expected distribution of variant allele frequencies for homozygous or heterozygous 

variants (Methods 3.2.2, Table 3-2). This removed a particularly large number of 

variant calls (131,209) with a low proportion of reads supporting the variant (<25%) in 

TCGA samples (Figure 3-1A). The vast majority of these variant calls were SNPs as 

opposed to indels (97%), suggesting that these may have been artefacts arising from 

sample contamination, rather than problems with read alignment. Second, I removed 

a further 274,056 variants that were significantly enriched in the combined ICGC and 

TCGA OAC cohort, as compared to reference populations (p <10-12, beta-binomial 

test, Methods 3.2.2, Table 3-2). Among the variants removed were 33,293 that were 

not present in any reference populations but had high MAFs in the OAC cohort (Figure 

3-1B). Both the ICGC and TCGA cohorts contributed to these variants (96% and 4% 

respectively), suggesting that many of them may have been false negatives in the 

reference populations. However, any false positives in the OAC cohort could have had 

substantial impacts on downstream analyses, since I went on to characterise germline 

variation only using variants that were rare in reference populations. Therefore, I 

removed these variants to avoid spurious results at a later stage. 

As in Section 2.3.3, I used a combination of computational tools to identify 

putatively deleterious germline variants (Methods 3.2.3). In addition to protein-

truncating and splicing variants, I had previously identified deleterious missense 
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variants by requiring support from three composite sources: a consensus of seven 

function-based annotations (Methods 2.2.3); CADD61; and MetaLR79. In the combined 

ICGC and TCGA cohort MetaLR was particularly restrictive, only retaining 35% of 

variants that were deleterious according to both the consensus method and CADD 

(Figure 3-1C). Moreover, while variants with MetaLR support were rarer in reference 

populations than those only supported by the consensus and CADD, this difference 

was not substantial (median MAF 0.007% compared to 0.01%, Figure 3-1D). 

Deleterious variants are expected to be subject to negative selection and therefore 

rare in populations, so MAF is a useful readout of true positive deleteriousness. 

However, I judged that the reduction in MAFs achieved by requiring support from 

MetaLR was not substantial enough to warrant removing 65% of potentially 

deleterious missense variants. Therefore, I proceeded with deleterious missense 

variants that were supported by the consensus method and CADD.  In order to filter 

out likely false positives, I retained 46,329 damaging variants that had a MAF <1% in 

reference populations (RDGVs, Table 3-2). Overall, this reduced the number of 

germline variants per sample being analysed from around 22,000 exonic and splicing 

variants to roughly 100 RDGVs, with good agreement between the ICGC, TCGA and 

reference European cohorts (Figure 3-1E).  

Filtering 
stage 

ICGC (400) TCGA (70) 
Total variants Unique 

variants 
Total variants Unique 

variants 

Total exonic/ 
splicing 

9,415,541 233,338 1,736,793 113,464 

VAF filtering 9,172,460 223,524 1,592,871 106,568 

MAF filtering 8,929,218 222,383 1,562,057 105,778 

Rare 
damaging 

38,745 23,032 7,584 5,463 

Table 3-2: Germline variant processing 

Numbers of germline variants at different processing stages in the ICGC and TCGA 

cohorts of OAC patients. VAF and MAF filtering are described in detail in the Section 

3.7.  
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In order to more usefully leverage the RDGVs, I aggregated them into 10,941 

genes. As a further filter against possible technical artefacts, I removed genes that 

showed significant enrichment for RDGVs between cohorts. First, I compared the OAC 

cohort to 503 reference European samples from the 1000 Genomes Project68 (EUR, 

Figure 3-1F). Second, I compared the ICGC and TCGA OAC cohorts to each other, in 

order to account for possible differences in sample preparation and sequencing 

methods. In total, I removed 29 genes that showed highly significant enrichment in any 

of these comparisons (Tables 3-3 and 3-4, p<10-10 Fisher’s exact test). As in Section 

2.3.4, these included several genes that are well-known to be highly polymorphic or 

problematic for read alignment, such as the HLA genes HLA-A and HLA-DRB1, and 

those encoding the zinc finger proteins 806 and 880. Thus, it seemed plausible that 

these enrichments were due to technical artefacts rather than genuine biological 

differences between the cohorts. 

Gene OAC (n) EUR (n) P-value 

HLA-DRB1 123 0 1.65E-43 

ZNF806 72 0 1.10E-24 

CACNA1B 69 3 1.31E-19 

MUC6 57 1 5.93E-18 

TBP 55 1 2.78E-17 

TCAF2 47 0 4.75E-16 

BCLAF1 44 0 4.89E-15 

CD24 44 0 4.89E-15 

CNOT1 40 0 1.07E-13 

HLA-A 38 0 5.00E-13 

AP3S1 36 0 2.32E-12 

ADGRV1 35 0 4.98E-12 

ZNF880 32 0 4.90E-11 

LFNG 35 1 9.82E-11 

Table 3-3: Genes removed due to strong enrichment in the OAC cohort (n=470) 
compared to reference European samples from 1000 Genomes (n=503) 
 

Gene ICGC (n) TCGA (n) P-value 
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ZNF806 2 70 3.81E-82 

CACNA1B 4 65 1.13E-68 

MUC6 1 56 3.63E-58 

BCLAF1 0 44 4.74E-44 

AP3S1 0 36 8.07E-35 

CNOT1 2 38 3.19E-34 

PTCHD3 13 44 5.18E-32 

TCAF2 8 39 6.14E-30 

HLA-DRB1 64 59 2.20E-29 

LFNG 2 33 7.35E-29 

HLA-A 4 34 6.51E-28 

CDCP2 3 31 8.81E-26 

FOXD4L4 0 24 2.51E-22 

PMS1 5 28 3.59E-21 

CHST15 5 25 2.20E-18 

GNRH2 2 22 5.02E-18 

CBWD6 0 18 1.47E-16 

ZRANB1 0 17 1.26E-15 

SULT1A1 1 17 2.02E-14 

CCDC144NL 2 18 2.22E-14 

TMEM254 0 15 8.90E-14 

ARSD 3 18 1.38E-13 

PSORS1C1 1 16 1.61E-13 

CAMKK2 3 17 1.01E-12 

AGAP4 0 12 4.68E-11 

Table 3-4: Genes removed due to strong enrichment in either the ICGC OAC 
cohort (n=400) or the TCGA OAC cohort (n=70), compared to each other 
 

Finally, to overcome the fact that most genes were only very rarely damaged 

across the cohort, I aggregated the RDGVs into 2,737 pathways taken from 

Reactome107, KEGG108 and BioCarta109. Having already removed genes that were 

enriched for RDGVs in any of the cohorts, there was no sign of pathway-level 

enrichment of RDGVs in OAC compared to EUR (Figure 3-1G). Some pathways were 
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clearly depleted for RDGVs in OAC. However, this indicated that some genuine 

RDGVs in the OAC cohort had been missed, which was unlikely to lead to spurious 

results in downstream analysis.  

One of the difficulties of the analysis of GSITs in Chapter 2 was the substantial 

overlap of pathways with RDGVs. Therefore, I developed a method to identify groups 

of pathways with substantial functionally-relevant overlap, which I called the variance-

weighted Jaccard index (VWJI, Methods 3.2.4). The VWJI measured to what extent a 

pair of pathways shared genes, giving higher weight to genes that had more RDGVs 

across the cohort. Many pathways (497) had a high VWJI (>0.8) relative to at least 

one other pathway, and 203 of these had exactly the same damaged genes as another 

pathway (Figure 3-1H). In order to reduce the burden of pathway overlap, I identified 

sets of pathways that had a high VWJI relative to each other, and chose a single 

representative pathway for each of these sets (Methods 3.2.4). This gave a total of 

2,240 distinct pathways with at least one RDGV, to be used in downstream analysis 

of GSITs.  



 80 

 
Figure 3-1: Preparation of germline data for 470 OAC samples 

A. Histograms of variant allele frequencies (VAFs) of exonic and splicing germline 

variant calls in ICGC samples (left) and TCGA samples (right). Dotted red lines 

indicate VAF thresholds used to filter out variants. 
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B. Minor allele frequencies (MAFs) of exonic and splicing germline variants in the 

combined ICGC and TCGA OAC cohort (y-axis) and reference populations (x-axis).  

C. Venn diagram of unique missense variants identified as deleterious by the 

consensus method, CADD and MetaLR. 

D. MAF distributions of missense variants in reference populations. P-values from 

Wilcoxon’s exact test. Median values are shown. 

E. Numbers of filtered exonic and splicing germline variants (left) and RDGVs (right) 

per sample. Median values are shown. 

F. Percentage of samples in which each gene has at least one RDGV in the OAC 

cohort (y-axis) and the EUR cohort (x-axis). Colour indicates level of enrichment in the 

OAC cohort, calculated using Fisher’s exact test. A subset of the 29 genes that were 

removed from downstream analysis are indicated. 

G. Percentage of samples in which each pathway has at least one RDGV in the OAC 

cohort (y-axis) and the EUR cohort (x-axis). Colour is on the same scale as panel F. 

H. Distribution of the maximum value of the variance-weighted Jaccard index for each 

pathway with a different pathway.  

 

3.3.3. Germline covariates 
In addition to identifying RDGVs, I used the germline data for the OAC cohort to derive 

two potentially confounding covariates for downstream analysis of GSITs. These 

included principal components of common SNPs, and a total count of RDGVs in known 

cancer predisposition genes.  

While I was using rare variants to characterise functional germline variation, 

common variants also encode information that could potentially affect analyses of 

GSITs, including batch effects and genetic ancestry143. I therefore used principal 

components (PC) analysis to reduce the dimensionality of common SNPs in the OAC 

cohort (Methods 3.2.5). The first PC clearly segregated the ICGC and TCGA cohorts 

from each other, suggesting a strong batch effect (Figure 3-2A). Since there may have 

been other batch effects in the data (for example in the calling of somatic alterations), 

PC1 served as a useful control for all cohort-related batch effects. PCs four, five and 

six appeared in part to capture the ethnicity of patients, judging by the reported 

ethnicities that were available in demographic annotations of the dataset (Figures 3-

2B, C). In particular, Asian patients were outliers from the majority white cohort in 
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terms of these PCs. By including PCs 4-6, I could thus account for genetic ancestry 

for all patients. It is also possible that, even among white patients, controlling for these 

PCs would account for subtle population structure. This was important since it has 

been shown that genetic ancestry can affect the frequency of somatic driver alterations 

in certain cancer genes70. Further PCs seemed to be uninformative, so I did not retain 

them as germline covariates (Figure 3-2D).  

In the analysis of GSITs, I also wanted to account for possible effects coming 

from damaged cancer predisposition genes (CPGs). While CPGs are good candidates 

for genes that might influence somatic evolution, as a set they are not unified by a 

single biological process. In addition, recent work has shown that the presence of 

deleterious germline variants across all CPGs influences both the age at diagnosis 

and somatic mutational burden of patients at the pan-cancer level144. Thus, I wanted 

to account for the combined effect of CPGs. In order to do this, I derived the total allele 

count of RDGVs in a list of 151 pan-cancer CPGs from Huang et al.49 in each OAC 

sample. There were 332 samples with at least one RDGV in a CPG, and there was a 

median of one damaged CPG per sample (Figure 3-2E). The most frequently 

damaged CPGs were PMS1 (7%), BRCA1 (6%) and WRN (5%). These genes are 

involved in different aspects of the maintenance of DNA integrity, carrying out 

mismatch repair145, double-strand break repair146 and helicase activities147 

respectively. This illustrates their potential to affect somatic alterations in cancer as a 

group.  
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Figure 3-2: Germline covariates in the OAC cohort 
Principal components analysis of samples using common SNPs, coloured by OAC 

cohort (A) or reported patient ethnicity (B-D).  

E. Distribution of total allele count of RDGVs in 151 CPGs across samples. 
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driver by far was TP53, altered in 73% of samples. Other common driver genes 

included CDKN2A (29%), ERBB2 (19%), MYC (19%) and KRAS (17%) (Figure 3-3A), 

reflecting previous observations in OAC73,96,148. There was a median of three driver 

events per sample, with 454 samples (97%) having at least one driver event (Figure 

3-3B).  

In Chapter 2, I aggregated somatic driver alterations into pathways. However, 

in the subsequent analysis of GSITs, the contributions to most pathways seemed to 

be coming from a small number of highly recurrent driver genes. Therefore, I did not 

aggregate the 40 OAC driver genes into pathways for downstream analysis. This also 

had the advantage of removing the difficulties associated with overlapping pathways. 

Nonetheless, it was still possible that significant inter-dependence between driver 

genes could affect downstream analysis. To assess this possibility, I measured 

patterns of co-occurrence and mutual exclusivity between each of the 780 pairs of 

driver genes with Fisher’s exact test. Only four pairs of driver genes exhibited 

significant correlation (FDR <0.01, Figure 3-3C), suggesting that inter-dependence 

between drivers was not a widespread issue. Moreover, on inspection of these 

significant pairs, three of them represented co-occurrence between three genes 

(ACVR2A, RNF43 and RPL22) that had acquired driver alterations in 10, 20 and seven 

samples respectively. The small numbers of samples affected by these genes (out of 

a total of 470 OACs) suggested that this pattern of co-occurrence would not be a 

substantial confounding factor. The other significant gene pair was MDM2 and TP53, 

which tended towards mutual exclusivity in line with previous reports and MDM2’s role 

as an inhibitor of TP5396. However, since this was only a single gene pair, and MDM2 

was only altered in 28 samples, I did not explicitly account for this effect in downstream 

analysis. 
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Figure 3-3: Somatic driver alterations in 470 OACs 

A. Waterfall plot of somatic driver alterations across the OAC cohort, coloured by the 

type of somatic alteration. The bar plot shows the percentage of samples in which 

each gene has a driver alteration. The nine genes with driver alterations in ≥10% of 

samples are shown. 

B. Distribution of the number of driver genes altered per sample. 

C. Quantile-quantile plot showing p-values from Fisher’s exact tests of 780 pairs of 

driver genes. The four gene pairs with FDR <0.01 are indicated. 
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detail. I used total mutational burden (TMB), ploidy and mutational signatures as 

somatic covariates.  

ARID1A

CDK6

CCND1

SMAD4

KRAS

MYC

ERBB2

CDKN2A

TP53

Driver alteration type

Hotspot mutation

Truncating mutation

Damaging missense/splicing

Amplification

Deletion

0 20 40 60 80 100
OAC samples (%)

OAC samples

0

25

50

75

100

125

0 1 2 3 4 5−13
Driver genes (n)

O
AC

 s
am

pl
es

 (n
)

A

B

ACVR2A−RPL22

MDM2−TP53

RNF43−RPL22

ACVR2A−RNF43

0

2

4

6

8

10

0 1 2 3
−log10 expected p−value

−l
og

10
 o

bs
er

ve
d 

p−
va

lu
e

10-8
FDR

10-6

10-4

10-2

1

C



 86 

Damaging germline variants in certain genes (such as mismatch repair genes) 

are known to increase somatic TMB in some cancer types149,150. Thus, including TMB 

as a covariate would help to ensure that any germline-somatic interactions found by 

subsequent analysis were truly due to the germline affecting selective pressures in 

cancer, rather than simply causing an excess of somatic mutations. I extracted TMB 

as the total number of exonic and splicing somatic SNVs and indels in each sample. 

TMB approximately followed a log-normal distribution across the OAC cohort, with a 

median of 159 mutations per sample (Figure 3-4A).  

Ploidy served as an indicator of possible whole-genome doubling events, as 

well as a high-level descriptor of the extent and type of copy number variations in each 

sample, and could thus help to characterise the somatic landscape of the OAC cohort. 

Unsurprisingly given the prevalence of gene amplifications in OAC73,96, many samples 

were polyploid, with 66% of samples having a ploidy of 2.5 or greater (Figure 3-4B).  

Mutational signatures allowed me to further characterise the somatic landscape 

by the type of active mutational process in each sample. It has been shown that 

mutational signatures (particularly COSMIC signatures 2, 3, 17 and 18) are biologically 

and clinically relevant in OAC73. Moreover, germline variation influences a wide range 

of somatic mutational signatures across cancer types16. For a more parsimonious 

approach than using all 30 COSMIC signatures45 in each sample, I extracted de novo 

mutational signatures (Methods 3.2.7). To assess the appropriate number of 

signatures to use, I calculated the residual sum of squares (RSS) when reconstructing 

mutations in the cohort with different numbers of signatures. Based on the presence 

of an inflexion point in the resulting RSS graph, I determined that four signatures would 

be appropriate for this cohort (Figure 3-5C). These four de novo signatures contributed 

roughly equally to mutations across the cohort (Figure 3-5D). To help interpret the 

biological significance of the mutational signatures, I compared each of them to the 30 

COSMIC signatures using cosine similarity (Methods 3.2.7). The de novo Signature C 

was clearly analogous to COSMIC Signature 17, which is the hallmark signature of 

OAC and is believed to represent mutations arising from exposure of the oesophagus 

to stomach acid during acid reflux73 (Figure 3-5E). The other three de novo signatures 

were more diffuse, but showed the strongest similarity to COSMIC Signatures 1 

(aging, de novo Signatures B and D), 5 (unknown aetiology, A) and 6 (mismatch repair, 

D) (Figure 3-5E). COSMIC Signatures 2 (APOBEC) and 3 (BRCA-related) have 

previously been reported to be prevalent in OAC73, but were not clearly represented 
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by the de novo signatures. Nevertheless, these signatures provided an additional 

characterisation of the somatic landscape of the OAC cohort. 

 
Figure 3-4: Somatic covariates in the OAC cohort 
A. Distribution of total somatic mutational burden (TMB) across samples, calculated 

from exonic and splicing SNVs and indels.  

B. Distribution of ploidy across samples. 

C. Residual sum of squares (RSS) of extracted de novo mutational signatures for 

different values of the non-negative matrix factorisation (NMF) rank. 

D. Relative contribution of four de novo mutational signatures to mutations in different 

samples. 

E. Cosine similarity of de novo signatures to 30 mutational signatures from COSMIC. 
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3.4. Multivariate modelling of germline-somatic interactions in trans 
Having prepared the germline, somatic and clinical data for a cohort of 470 OACs in 

Section 3.3, I incorporated the data into a statistical model to investigate the influence 

of germline perturbations on somatic evolution. I chose logistic regression as a model 

(discussed in Section 3.4.1), and then went on to consider how best to manage the 

available statistical power (3.4.2). Finally, I carried out the modelling analysis, finding 

statistically significant results involving driver alterations in TP53 and SMAD4 (3.4.3).  

 

3.4.1. Logistic regression as a model for GSITs 
The statistical modelling problem at hand involved three main components: RDGVs 

assembled into genes and pathways; somatic driver alterations in known OAC driver 

genes; and potentially confounding covariates. Given these, there were a number of 

suitable modelling options, each with their own strengths and weaknesses. I wanted 

any model to include a sense of causality, in which RDGVs and other covariates could 

influence which driver alterations became fixed in a tumour. Since regression models 

are well-studied and directional by design, and driver alterations are binary outcomes, 

I opted for logistic regression. I considered two possibilities: standard logistic 

regression, and overlapping group lasso logistic regression. 

Standard logistic regression provided a simple, robust and well-established 

modelling approach while at the same time allowing for a full investigation of the effects 

of germline perturbations to pathways on somatic evolution. Because standard logistic 

regression lacks any form of parameter regularisation, I could not simultaneously 

model the effects of all germline pathways (n=2,240) given the cohort size (n=470). 

Instead, I chose to generate a single model for each germline pathway 𝑝 and each 

somatic driver gene 𝑔. The resulting models took the form 

Prob(driver	alteration	of	gene	𝑔	in	sample	𝑖) = 𝜎 q𝛽>6𝑥68 +r𝛾>M𝑍M8
M

u, 

where 𝜎 is the logistic sigmoid function, 𝑥68 is the RDGV allele count in pathway 𝑝 in 

sample 𝑖, 𝑍M8 is the value of the 𝑘;T covariate in sample 𝑖, and 𝛽>6 and 𝛾>M are 

regression coefficients. By first fitting a “null model” for each driver gene 𝑔 in which 

only covariates were used as predictor variables, I could calculate a p-value for the 

effect of 𝑝 on 𝑔 using a likelihood ratio test (LRT). Such a readily obtainable measure 

of statistical confidence was a major benefit of standard logistic regression. 
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As an alternative modelling strategy, I also considered overlapping group lasso 

logistic regression (OGLLR)151,152. Like other lasso methods, OGLLR uses an L1 

regularisation term to prevent model overfitting and select a small proportion of 

independent variables as having predictive value153. This allows for high-dimensional 

models to be fitted, where the number of independent variables can be many times 

more than the number of samples. The particular form of the OGLLR penalty is 

designed to capture group structures among the predictive variables. In the problem 

at hand, this would allow gene-level germline perturbations to be used as predictive 

variables, while still encoding the group structure of pathways into the model. For a 

particular outcome (somatic driver gene 𝑔), the probabilistic model would be very 

similar to that of standard logistic regression, i.e. 

Prob(driver	alteration	of	gene	𝑔	in	sample	𝑖) = 𝜎 qr𝛽>T𝑥T8
T

+r𝛾>M𝑍M8
M

u, 

where 𝑥T8 is now the RDGV allele count in gene ℎ. However, rather than applying 

vanilla maximum-likelihood estimation, the target function to be minimised to fit the 

OGLLR model would be  

𝑄U(𝛽, 𝛾) = −𝑙(𝛽, 𝛾) + 𝜆r%|𝑝|
6

{𝜷6{J, 

where 𝑙(𝛽, 𝛾) is the log-likelihood of the standard logistic regression model, 𝜆 is a 

regularisation parameter, 𝑝 indexes germline pathways, |𝑝| is the number of genes 

in	𝑝, and {𝜷6{J = ∑ }𝛽>}>∈6  is the L1-norm of the regression coefficients for all germline 

genes in pathway 𝑝. The effect of the penalty term (scaled by 𝜆) is to select entire 

groups of predictive variables (in this case, pathways)151,152. Further ‘elastic net-like’ 

extensions to OGLLR have also been proposed which additionally apply an L2-norm 

to shrink the non-zero parameters154.  

Such simultaneous modelling of genes and pathways was appealing, since 

some germline effects on somatic evolution could be mediated either at the gene or 

pathway level. However, there were two main practical drawbacks of the OGLLR 

approach for the problem at hand. First, as with all penalised regression methods, the 

regularisation parameter 𝜆 would need to be tuned to the data. This tuning process 

makes controlling false discovery rates challenging, and makes statistical inferences 

about the regression coefficients problematic155,156. Thus, while analysis with OGLLR 

may have selected individual genes and pathways, it would have been difficult to be 
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confident in the validity of any models without a sizeable external validation cohort. 

Second, RDGVs were extremely sparse at the gene level compared to pathway-level 

data, with 3,774 genes (35%) damaged only in one sample (Figure 3-5). Due to the 

discrete nature of the data and relatively small cohort size, this would have 

encumbered predictive variables with very low signal to noise ratios.  

On balance, I chose to proceed with standard logistic regression, because it 

allowed for robust statistical inference. The OGLLR might be considered to be an 

‘ideal’ model to be used given the availability of much larger datasets. In what follows, 

I included all of the covariates described in Section 3.3, except for ploidy and 

mutational signatures, since these served as additional descriptors of the somatic 

landscape of samples rather than potentially confounding covariates. 

 

 
Figure 3-5: Sparsity of gene- and pathway-level germline data in 470 OACs 

Distributions of the number of samples with RDGVs in each gene (A) and pathway 

(B). 
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Consider the statistical power of an individual LRT to detect the effect of a 

germline pathway on a somatic driver gene. The power depends on: the distribution 

of RDGVs in the pathway; the frequency of the driver alterations; the effect size; the 

test size; and the cohort size. In this setting, the cohort size was fixed at 470. The test 

size depended on the number of tests being carried out, and could be conservatively 

estimated using the Bonferroni method to achieve a particular overall family-wide error 

rate (FWER). Since I was treating driver alterations as binary outcomes, their 

distributions could be parametrised solely by the probability of observing a driver 

alteration in that gene in a given sample, denoted by 𝑦Z. Conversely, since I was 

measuring RDGVs in pathways as allele counts, it seemed reasonable to suppose 

that these variables would have Poisson distributions across the cohort. In support of 

this, the mean and variance for all pathways were very similar (Figure 3-6A), and 

individual pathways appeared to fit Poisson distributions very well (Figure 3-6B). Thus, 

the distribution of RDGVs in a pathway could be captured by a single rate parameter 

𝜆, which corresponded to the mean number of RDGV alleles per sample. The question 

thus became how to restrict 𝑦Z and 𝜆 to optimally reduce the number of tests and 

conserve statistical power. 

The effect size (regression coefficient 𝛽) in logistic regression can be 

interpreted as the log-odds ratio, i.e. 𝛽 = ln(odds	ratio)158. Thus, effect sizes of 1 and 

1.5 would correspond to the plausible odds ratios of 2.7 and 4.5, respectively. Since I 

was interested in both positive and negative effects (where an RDGV would decrease 

the likelihood of a particular driver alteration), I used simulated data to estimate the 

power of LRT tests to find interactions with effect size ±1 and ±1.5, for different values 

of 𝑦Z and 𝜆, with an overall FWER of q=0.05 (Methods 3.2.8, Figures 3-6C, D). The 

resulting power curves indicated that I was under-powered to detect effect sizes of ±1. 

They also suggested that driver genes altered in <10% of samples (i.e. 𝑦Z < 0.1) would 

not be sufficiently powered to detect any associations. The direction of the effect was 

important, with more power to detect negative associations with drivers altered in 

many samples, and more power to detect positive associations with drivers altered in 

fewer samples (Figure 3-6D). This analysis suggested that for each driver gene 𝑔, a 

threshold 𝜆N8O
>  could be calculated, and only pathways with 𝜆 > 𝜆N8O

>  tested for that 

gene, since only these pathways would confer sufficient power to the LRT. I calculated 

𝜆N8O
>  thresholds for each of the nine somatic driver genes with 𝑦Z ≥ 0.1 to achieve 80% 
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power (Methods 3.2.8), which left a total of 7,940 hypothesis tests to be carried out 

(median 885 per driver gene, Table 3-5).  

The structure of the problem could now be thought of as involving nine 

independent families of hypothesis tests, i.e. one family per somatic driver gene.  A 

reasonable approach for identifying GSITs might be to first select driver genes 

exhibiting some significant results, and then to identify the significant tests within these 

selected families. Controlling error rates in problems like this was previously explored 

by Benjamini and Bogomolov157, who were motivated by the extremely high-

dimensional case of voxel-wise genome wide association studies (vGWAS). In 

vGWAS, hundreds of thousands of SNPs are tested against tens of thousands of 

voxels from fMRI images to identify significant SNP-voxel associations159. The authors 

devised a method for controlling the average error rate across selected families of 

tests, valid for a wide variety of family selection procedures and error rate definitions. 

In the problem at hand, I could implement this method to control the average FDR at 

level q using the following procedure: 

1. For each of the nine driver genes 𝑔, use logistic regression to calculate a p-

value for the interaction of 𝑔 with each germline pathway satisfying 𝜆 > 𝜆N8O
>  

2. For each driver gene, assess the presence of one or more statistically 

significant germline pathways using Simes’ test160 

3. Perform FDR correction on the nine Simes p-values, and select the driver 

genes that have Simes FDR below a certain threshold 

4. For each of the selected driver genes, calculate the FDR across germline 

pathways, but control the FDR at 𝑞 × 𝑁:<V<P;<W 9� . 

By combining the approach of selecting only sufficiently frequent driver genes and 

germline pathways with the Benjamini-Bogomolov selective inference method, I could 

effectively manage the available statistical power in the problem at hand.  
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Figure 3-6: Managing statistical power in logistic regression modelling 
A. Scatter plot of the means and variances of allele counts of RDGVs for 2,240 

germline pathways. 

B. Distribution of allele counts of RDGVs in Reactome’s DNA Repair pathway. The 

mean allele count was 1.73, which was used to parametrise a Poisson distribution 

whose probability density is indicated by the black curve. 

Power curves for different values of the driver gene frequency 𝑦Z, the mean RDGV 

allele count of the germline pathway 𝜆, for effect sizes 𝛽 = ±1 (C) and 𝛽 = ±1.5 (D). 

The dotted red line indicates 80% statistical power. 
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SMAD4 0.153 1.5 0.118 862 

CCND1 0.149 1.5 0.123 843 

CDK6 0.145 1.5 0.124 834 

ARID1A 0.119 1.5 0.139 776 

Table 3-5: Germline pathway frequency thresholds 
Thresholds for the minimum value of the mean RDGV allele count of germline 

pathways 𝜆N8O
> , calculated for the nine somatic driver genes altered in >10% of OAC 

samples. Thresholds were derived assuming effect sizes of 𝛽 = ±1.5, with positive 𝛽 

for genes altered in <50% of samples, and negative 𝛽 for TP53 (altered in >50% of 

samples). The number of pathways with 𝜆 > 𝜆N8O
>  is shown for each gene. 

 

3.4.3. Results of likelihood ratio tests in nine driver genes 
I carried out the 7,940 LRTs, associating nine somatic driver genes with between 776 

and 965 germline pathways each (Table 3-5). Two of the driver genes (TP53 and 

SMAD4) exhibited possible associations with one or more germline pathways (Simes 

FDR <0.15, Table 3-6). This was further confirmed by visualisation with a quantile-

quantile plot, in which TP53 and SMAD4 showed the clearest deviation from the 

diagonal (Figure 3-7). I therefore selected these two genes and proceeded with the 

Benjamini-Bogomolov FDR corrections.  

Among the 1,813 germline pathways tested for these two genes, three had FDR 

<0.2 (Table 3-7). There were two pathways in which RDGVs were positively 

associated with driver alterations in SMAD4 (Regulation of insulin secretion, and 

Signalling by ROBO receptors). These pathways had a small overlap (three damaged 

genes out of a total of 113), so may or may not have been acting independently. 

Additionally, RDGVs in the ATM signalling pathway were negatively associated with 

driver alterations in TP53. I will explore these results in more detail in Section 3.5. 

 

Driver gene Simes p-
value 

FDR Selected 

SMAD4 0.0207 0.111 Yes 

TP53 0.0246 0.111 Yes 

CDKN2A 0.198 0.446 No 
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ARID1A 0.163 0.446 No 

KRAS 0.525 0.675 No 

CCND1 0.326 0.587 No 

CDK6 0.657 0.687 No 

MYC 0.459 0.675 No 

ERBB2 0.687 0.687 No 

Table 3-6: Driver gene test family selection 

Selection of driver genes showing evidence of significant interactions with germline 

pathways. The FDR was calculated using the Benjamini-Hochberg method using the 

nine p-values from Simes’ test shown. 
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Figure 3-7: Logistic regression modelling results 

Quantile-quantile plots of p-values from LRTs evaluating the association between 

somatic driver genes and RDGV allele counts in germline pathways. Each panel 

represents the hypothesis tests for a single driver gene (labelled above). The colour 

scale represents the FDR calculated for each driver gene separately. 

 

Germline pathway Driver gene P-value 
Estimated 

effect 
size 

Benjamini-
Bogomolov 

FDR 
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Regulation of insulin 

secretion 
SMAD4 4.74E-05 0.807 0.093 

Signalling by ROBO 

receptors 
SMAD4 4.81E-05 0.757 0.093 

ATM Signalling Pathway TP53 2.59E-05 -1.25 0.11 

Table 3-7: Significant results from logistic regression modelling 

Significant associations between RDGVs in pathways and somatic driver alterations 

in cancer genes, with Benjamini-Bogomolov FDR <0.2.  
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3.5. Exploratory analysis of germline influence on SMAD4 and TP53 in OAC 
In Section 3.4 I found three statistically significant associations between RDGVs in 

pathways and driver alterations in genes.  In this section, I will explore these results in 

more detail, with a view to assessing both their robustness and possible implications. 

First, I will explore a positive association between two partially overlapping pathways 

(Regulation of insulin secretion and Signalling by ROBO receptors) with SMAD4 

somatic driver alterations (3.5.1). Second, I will describe how RDGVs in the ATM 

signalling pathway, and in particular in the ATM gene itself, reduce the likelihood of 

TP53 driver alterations (3.5.2).  

 

3.5.1. Associations with SMAD4 are likely statistical artefacts 
The logistic regression modelling approach also identified positive associations 

between RDGVs in two pathways (Regulation of insulin secretion and Signalling by 

ROBO receptors) and SMAD4 driver alterations (Table 3-7). However, there were a 

number of reasons to suspect that these associations were not genuine, including the 

diffusivity of gene-level contributions in the germline, a lack of supporting results from 

orthogonal data sources, and the lack of a clear biological connection between these 

germline pathways and the biological function of SMAD4.  

 I first assessed the contributions of individual genes to the statistical results for 

both pathways. For each damaged gene in each pathway, I removed that gene from 

the pathway and re-calculated the significance of the association. If removing the gene 

led to a substantial increase of the p-value (i.e. a decrease of the significance of the 

result), I determined that this gene was contributing to the result. In both pathways, 

the distribution of gene-level contributions was diffuse, with a continuous gradient of 

gene contributions and many genes detracting from the result (Figures 3-8A, B). No 

single gene had a penetrant effect, and there were no clear unifying features of the 

genes that contributed to the result versus those that detracted from it. Finally, the vast 

majority (93 out of 112, 83%) of the genes in both pathways were damaged in fewer 

than five samples across the cohort. Thus, it was neither the case that a clear subset 

of genes was driving the results, nor that the pathway as a whole was contributing.  

 In order to investigate possible molecular or clinical mechanisms of the 

germline associations with SMAD4, I used orthogonal data sources. I stratified the 

cohort into four groups by the presence of germline RDGVs and SMAD4 driver 
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alterations, and looked for differences between these strata. First, I identified genes 

that were differentially expressed in samples with both germline RDGVs (in the insulin 

secretion or ROBO signalling pathways) as well as SMAD4 driver alterations, 

compared to other samples. By performing GSEAs on these differentially expressed 

genes, I hoped to gain mechanistic insights into the association. However, no 

pathways were significantly enriched for genes differentially expressed at a range of 

different thresholds (>4x, >3x, <0.5x). Second, I searched for clinical differences 

between the strata in terms of annotations that might be relevant to the germline 

pathways, and in particular to insulin secretion. However, there were no significant 

differences in diabetes incidence, body mass index or gastro-oesophageal reflux 

symptom duration between the strata.  

 Finally, I searched the literature for possible connections between insulin 

secretion or ROBO receptor signalling and SMAD4. It is well-known that SMAD4 is a 

critical component of TGF-beta signalling161, and more recently evidence has 

suggested that insulin can sensitise cells to TGF-beta signalling162. Regulatory 

interactions between ROBO signalling genes and both TGF-beta and SMAD4 activity 

have been reported163, and this interaction seems to play a particularly important role 

in pancreatic cancer164,165. While these connections were promising, they were not 

reflected in the OAC data. For example, RDGVs in either pathway did not affect the 

expression of TGF-beta genes (Figures 3-8C, D). Additionally, some of the most 

important genes in ROBO signalling (ROBO1/2/3 and SLIT1/2/3165) were on the whole 

not contributing to the association with SMAD4 driver status. 

 Given the diffuse nature of gene-level contributions, the lack of mechanistic 

insights from orthogonal data sources and the discordance between potential 

explanations from the literature with gene expression data, I concluded that the 

germline associations with SMAD4 driver alterations were either statistical artefacts, 

or were so weak as to require much larger sample sizes for insightful interrogation. 
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Figure 3-8: Interrogation of germline associations with SMAD4 driver status 
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Importance and frequency of genes in the Regulation of insulin secretion (A) and 

Signalling by ROBO receptors (B) pathways. Gene importance is shown on the left, 

while the number of OAC samples with RDGVs in each gene is shown on the right. In 

(B), only genes with RDGVs in at least two samples are shown. 

Expression levels of TGF-beta genes across samples, stratified by the presence of 

RDGVs versus wild type (WT) in the Regulation of insulin secretion (C) and Signalling 

by ROBO receptors (D) pathways. Median FPKM values are shown. Genes in the 

TGF-beta family with median expression >1 FPKM across the whole OAC cohort are 

shown. 

 

3.5.2. Germline perturbations to ATM signalling influence the evolutionary 
trajectory of OAC 
Logistic regression modelling revealed a significant negative association between 

RDGVs in the ATM signalling pathway and TP53 driver alterations (Table 3-7), 

illustrated clearly in Figure 3-9A. Two covariates in the model were also found to be 

predictive of TP53 driver status (Figure 3-9B). Female gender was negatively 

associated with TP53, with women less likely to have TP53 driver alterations than men 

(p=1.7x10-3) in line with previous studies96. In addition, there was a weak positive 

association between TP53 driver alterations and PC3 derived from common SNPs 

(p=0.01). However, the ATM signalling pathway was the most significant predictor in 

the model (p=2.6x10-5, Figure 3-9B) suggesting that it was not confounded by other 

factors.  

In order to understand this association in greater detail, I investigated the 

contributions of individual genes within the ATM signalling pathway to the association 

with TP53 as in Section 3.5.1. There were five genes in the ATM signalling pathway 

whose removal more than doubled the p-value (i.e. substantially weakened the 

association): ATM, BRCA1, NBN, RAD50 and RAD51 (Figure 3-9C). A total of 36 OAC 

patients had RDGVs in these ‘core’ ATM signalling genes, of whom only 13 (36%) had 

TP53 driver alterations (compared with 73% across the whole OAC cohort). While 

each of these genes contributed to the negative association with TP53, it was clear 

upon visual inspection that germline protein truncating variants (PTVs) in ATM 

exhibited the strongest effect (Figure 3-9D). Of the five patients with ATM germline 

PTVs, none had a TP53 driver alteration (p=1.3x10-3, Fisher’s exact test). Moreover, 
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three of these patients exhibited a second somatic hit to ATM, consistent with a tumour 

suppressive and possibly predisposing role for ATM in OAC. There was also a weak 

exclusivity between TP53 driver alterations and ATM somatic mutations (p=0.013, 

OR=0.37, Fisher’s exact test), indicating that the negative association was not purely 

mediated through the germline. This somatic exclusivity with TP53 provided evidence 

that ATM should be considered to be a driver gene in OAC, despite the fact that 

previous studies have not identified it as such73,96-100.  

There were several reasons to believe that this observed negative association 

was genuine. ATM and its interactors are established driver genes in many cancer 

types25,166, and germline ATM variants have reported predisposition roles in breast 

cancer167, lymphoma and acute leukaemia168. The five core ATM signalling genes 

found to be contributing most to the negative association with TP53 drivers in OAC 

are all involved in the sensing and repair of DNA double strand breaks169 (DSBs). In 

addition, ATM interacts directly with TP53, phosphorylating it to activate an apoptosis 

transcriptional programme in response to failed DSB repair169,170. It is therefore 

plausible that damage to ATM (and to a lesser extent, its interactors) can act as a 

substitute for TP53 driver alterations, permitting DSBs to go unrepaired and lead to 

further DNA damage, without inducing apoptosis. This pattern can also be observed 

in other cancer types. An analysis of other cancer types from TCGA revealed a 

negative association between germline RDGVs in the five core ATM signalling genes 

and TP53 driver alterations in stomach adenocarcinoma (Figure 3-9E, p=0.013, LRT). 

Notably, stomach adenocarcinoma is molecularly similar to OAC171, hinting at a 

common mechanism between these cancer types. Moreover, mutual exclusivity 

between ATM and TP53 mutations has previously been reported in breast cancer172, 

lung adenocarcinoma55, T-cell leukaemia173 and B-cell lymphoma174. Together, these 

observations provided strong evidence that the observed negative association in OAC 

was a genuine biological effect, rather than a statistical artefact.  

An obvious avenue for investigating possible mechanisms of this association 

would have been to look at transcriptional differences between samples. Unfortunately 

however, the available RNA-Seq data for the OAC cohort proved inadequate for this 

analysis. First, only one sample with an ATM germline truncation had matched RNA-

Seq data. Second, the nine samples with both ATM RDGVs and RNA-Seq data had 

substantially fewer total read counts across all human genes than other samples 
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(Figure 3-9F). These limitations made any transcriptional comparisons between 

samples unreliable.  

 I was particularly interested in the possibility that ATM variants could 

predispose to OAC, given the current lack of highly penetrant predisposition genes for 

OAC. As noted above, there was a perfect mutual exclusivity between ATM germline 

PTVs and somatic TP53 driver alterations in this data. Moreover, the somatic second 

hits to ATM were consistent with the two-hit hypothesis for tumour suppressive cancer 

predisposition genes52. These observations suggested that ATM germline PTVs might 

predispose to OAC, and that ATM mutations could substitute for TP53 drivers in these 

patients. If ATM could indeed predispose to OAC, one might expect that (i) patients 

with ATM germline PTVs would be diagnosed with OAC earlier than other patients, 

and (ii) that ATM germline PTVs would be enriched in OAC patients compared to 

reference healthy populations. Both of these predictions were borne out as weakly 

statistically significant. Patients with ATM germline truncations were diagnosed with 

OAC at a median age of 61, compared to the cohort-wide median of 67 (p=0.074, one-

sided Wilcoxon rank-sum test, Figure 3-9G). Moreover, ATM germline PTVs were 

present in 1.06% of OAC patients, compared to 0.2% of Europeans from the 1000 

Genomes Project (p=0.094, one-sided Fisher’s exact test, Figure 3-9H). The 

borderline significance of these results may well be due to small sample sizes, as only 

five OAC patients had a germline ATM truncation.  

In summary, the negative association between germline RDGVs in the ATM 

signalling pathway and TP53 driver alterations was largely driven by five genes 

involved in the sensing and repair of DNA DSBs. Exclusivity with TP53 was strongest 

for truncations of the ATM gene, consistent with reports in other cancer types. This 

exclusivity with OAC’s most frequent driver gene, TP53, suggests that ATM plays an 

important role in the cancers of these patients. Moreover, the prevalence of second 

hits to ATM, as well as trends of younger age at diagnosis and enrichment compared 

to reference populations, strongly suggest that ATM truncations can predispose to the 

development of OAC and that ATM can act as a tumour suppressor gene in OAC.  
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Figure 3-9: Negative association between germline RDGVs in the ATM signalling 
pathway and TP53 driver alterations in OAC 
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A. Distribution of RDGVs in the ATM signalling pathway and the associated TP53 

driver status.  

B. Odds ratios of statistically significant (p<0.05) predictive variables (as well as TMB) 

for TP53 driver status from logistic regression modelling. Horizontal bars indicate 95% 

confidence intervals. *=p<0.05; **=p<0.01; ****=p<0.0001, p-values from likelihood 

ratio tests. 

C. Contribution of individual ATM signalling genes to the negative association. The 

ratio between the p-value for the full pathway and the p-value for the pathway with 

each individual gene removed was calculated. Genes with higher p-value ratios 

contribute more to the association. The five genes with p-value ratio >2 are highlighted 

in orange. 

D. Visualisation of co-occurrence and mutual exclusivity of germline RDGVs in the 

ATM signalling pathway with somatic driver alterations in TP53 and ATM. The 53 

samples with at least one RDGV in the ATM signalling pathway or a somatic ATM 

alteration are ordered on the x-axis.  

E. Volcano plot showing the results of TCGA pan-cancer logistic regression modelling, 

measuring the association between RDGVs in the five core ATM signalling genes with 

TP53 driver alterations. The dotted red line indicates p=0.05.   
F. Distribution of total RNA-Seq read counts across all genes for OAC samples with 

and without ATM germline RDGVs, for the 148 samples with available transcriptomic 

data. 

G. Age at diagnosis for OAC patients with and without ATM germline truncations. P-

value from one-sided Wilcoxon rank-sum test. 

H. Proportion of individuals with ATM germline truncations in the OAC cohort and 503 

Europeans from the 1000 Genomes Project (EUR). P-value from one-sided Fisher’s 

exact test. 
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3.6. Mixed data type modelling for germline-somatic associations 
Having used logistic regression modelling to identify associations between RDGVs in 

pathways and driver alterations in genes, I next sought to use a more comprehensive 

characterisation of somatic variation in the OAC cohort to identify GSITs. In this 

section I will describe the application of a random forest (RF) clustering approach. I 

will first discuss the need for mixed data type analysis of somatic variation and the 

suitability of RF clustering for this task (3.6.1). I will then apply RF clustering to the 

OAC cohort, and describe the resulting partitions of OAC samples (3.6.2). Finally, I 

will apply logistic regression modelling to the results of the RF clustering in order to 

search for possible complex GSITs (3.6.3).  

 

3.6.1. Random forests allow for mixed data type analyses 
In Sections 3.4 and 3.5, logistic regression modelling had proven to be capable of 

identifying associations between RDGVs in pathways and driver alterations in 

individual genes. While the inclusion of both clinical and germline covariates in the 

model was useful, the characterisation of somatic variation with individual driver genes 

was not comprehensive. First, restricting the analysis to one driver gene at a time 

meant that complex patterns involving groups of driver genes could not be identified. 

However, in Chapter 2 it was clear that using the presence of driver alterations at the 

pathway level was not an optimal approach either, with most perturbed pathways 

being dominated by very few highly recurrent driver genes. Second, somatic 

covariates such as ploidy and mutational signatures, which also reflect the effects of 

cancer evolution, could not be simultaneously modelled with driver alterations as 

outcomes by logistic regression. I therefore sought a method for characterising 

samples based on both multiple driver genes and somatic covariates.  

A clustering approach would enable simple logistic regression modelling to 

capture complex outcomes via cluster assignments, since clusters could be based 

upon arbitrarily complex patterns. One challenge of any such approach would be to 

incorporate both somatic driver data and somatic covariates, since these were 

naturally binary and continuous data types, respectively. Clustering mixed data types 

is currently an open area of research175.  

Random forests176 (RFs) are most commonly used for classification problems, 

where they have been successfully used to handle mixed data types177,178. However, 
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RFs have also been adapted to perform clustering179. Given a dataset with 𝑁 samples 

and 𝑝 features, clustering with RFs works in a three-stage process:  

1. Simulated data are generated with 𝑁 samples and the same 𝑝 features by 

sampling each feature empirically and independently from the real dataset. 

Therefore, while each feature has the same marginal distribution in the real and 

simulated data, any inter-feature correlations are lost in the simulated data. 

2. A standard RF is trained to classify the real and simulated data points. In order 

to do this, it must learn the correlations that are present between features in the 

real dataset. This process allows for a notion of distance between real samples 

to be defined, based on the number of trees for which samples end up in the 

same leaf nodes during classification. 

3. Any clustering method can be applied using the distance metric calculated from 

the RF training and prediction process. 

I decided to apply RF clustering to the OAC cohort of 470 samples to characterise the 

somatic landscape using multiple driver genes and somatic covariates.  

 

3.6.2. Clustering OAC samples with mixed data type descriptors of somatic 
landscape 
In addition to the RF itself, I needed to choose a clustering algorithm and an 

appropriate number of clusters. I decided to use partitioning around medoids (PAM) 

as a more robust alternative to standard k-means clustering180. In order to choose the 

optimal number of clusters, I used silhouette analysis, which is a standard method for 

assessing the robustness of clusters181. A high silhouette width indicates that samples 

are closer to other samples in the same cluster than they are to other clusters, and 

therefore that the clustering is robust. In addition to this metric of robustness, I also 

used the Adjusted Rand Index182 (ARI). The ARI measures how similar two sets of 

cluster assignments are. It can thus be used to assess the reproducibility of stochastic 

clustering methods such as the RF.  

I implemented ten RFs to calculate pairwise distances between samples based 

on driver alterations in cancer gene-enriched pathways and somatic covariates 

(Methods 3.2.9). I then clustered samples using PAM, and measured the silhouette 

width and ARI for a numbers of clusters ranging from two to 15. The silhouette analysis 

had inflexion points at three and nine clusters (Figure 3-10A), although three clusters 
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would likely have been too few to be useful. The ARI had inflexion points at five and 

nine clusters (Figure 3-10B). I thus concluded that the most appropriate number of 

clusters to use was nine.  

The resulting clusters had distinct combinations of driver genes and somatic 

features, although they were primarily driven by the most frequent driver genes (Figure 

3-10C). For example, cluster 3 was comprised primarily of TP53-wild type samples, 

and had correspondingly lower burdens of somatic SNVs and indels, as well as lower 

ploidy, than other clusters (Figures 3-10D, E). Cluster 1 instead had TP53 driver 

alterations but lacked other common drivers, while cluster 2 was mainly characterised 

by the combination of TP53 and MYC drivers in the absence of KRAS alterations 

(Figure 3-10C). The remaining clusters were similarly characterised by different 

combinations of common driver genes. There was in general little difference in the 

relative contributions of mutational signatures to the nine clusters (Figure 3-10F).  
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Figure 3-10: Random forest clustering of 470 OACs 

A. Median silhouette width of clusters, for different numbers of PAM clusters. Boxplots 

show distributions over ten RF implementations. 

B. Adjusted Rand Index (ARI) for different numbers of PAM clusters. The ARI was 

calculated between 45 distinct pairs of ten RF implementations. Boxplots show 

distributions of the ARI over RF pairs. 

C. Incidence of common OAC driver genes in nine clusters. Dotted lines separate 

clusters of samples, which are labelled on the right-hand side. The nine driver genes 

altered in >10% of the OAC cohort are shown. 
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D. Exonic mutational burden of samples in each cluster, broken down into SNVs (left) 

and indels (right). 

E. Ploidy distributions across clusters. 

F. Contributions of four de novo mutational signatures (see Section 3.3) to samples in 

each cluster. The contribution of each signature was normalised to range between 0 

and 1 across the entire cohort for each signature. 

 

3.6.3. Germline associations with somatic clusters 
Having partitioned the OAC samples into nine clusters, I used logistic regression 

modelling to associate RDGVs in pathways with individual clusters. Analogously to 

Section 3.4, for each cluster I restricted analysis to pathways with an average RDGV 

allele count (𝜆) that was sufficiently high to detect associations with an effect size 𝛽 =

1.5 with 80% power (Methods 3.2.8). Given the cluster sizes ranging from 23 (cluster 

9) to 93 (cluster 1), this involved testing between 504 and 896 germline pathways 

against each somatic cluster (Table 3-8). 

Only clusters 1 and 2 showed potential signs of association with RDGVs (Simes 

p-value <0.1, Table 3-8, Figure 3-11). However, after FDR corrections using the 

Benjamini-Bogomolov method as in Section 3.4, the most significant pathways driving 

these results had relatively high FDRs (0.3<FDR<0.4, Table 3-9). The germline 

pathways (Chromatin organisation, and Activation of ATR in response to replication 

stress) were interesting, since they were both related to cancer biology183,184. 

However, orthogonal analyses using clinical and transcriptomic data did not yield any 

significant results that could give mechanistic insights into their associations with the 

somatic clusters. I therefore concluded that either these were not true associations of 

germline RDGVs with somatic features, or that substantially larger cohorts would be 

required to investigate them fully.  

Interestingly, cluster 3 (characterised by a lack of TP53 somatic driver 

alterations) was only weakly associated with RDGVs in the ATM signalling pathway 

(p=0.02, effect size =0.83). However, while all cluster 3 samples were TP53-wild type, 

cluster 3 only contained 57% of the total TP53-wild type samples across the cohort. 

The fact that the ATM-TP53 association obtained from individual driver gene analysis 

in Section 3.5.2 was not recapitulated here indicated that stratifying samples in this 

way diluted the statistical strength of the original result. 
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Cluster Samples (n) Threshold 𝝀𝒎𝒊𝒏𝒄  Pathways to test Simes p-value 

1 93 0.111 896 0.084 

2 62 0.126 821 0.075 

3 71 0.123 843 0.49 

4 60 0.135 791 0.56 

5 43 0.171 688 0.47 

6 45 0.15 749 0.87 

7 45 0.15 749 0.18 

8 28 0.23 550 0.7 

9 23 0.268 504 0.88 

Table 3-8: GSIT analysis of RF clusters 

RF clusters and their size, corresponding minimum RDGV allele count for pathways 

(𝜆N8OP ), total numbers of pathways to test for association and resulting Simes p-values. 

 



 112 

 
Figure 3-11: Logistic regression modelling results with RF clusters 
QQ plot showing the results of testing for association between RDGVs in pathways 

with assignments of samples to each of the nine RF clusters. The colour scale 

corresponds to the standard FDR calculated for each cluster separately. 
 

Germline pathway Cluster P-value 
Estimated 
effect size 

Benjamini-
Bogomolov FDR 

Chromatin organisation 2 9.1x10-5 0.611 0.337 
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Activation of ATR in 

response to replication 

stress 

1 9.4x10-5 1.04 0.379 

Table 3-9: Significant results from RF clustering and logistic regression 
modelling 
Cluster-pathway pairs with Benjamini-Bogomolov FDR <0.4 are shown.  
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3.7. Discussion 
In this chapter, I have attempted to identify the effects of germline variation on the 

acquisition of cancer drivers. I did so first by implementing a logistic regression 

approach to associate burden of RDGV alleles in pathways with driver alterations in 

individual genes. In an OAC cohort of 470 patients, this revealed two statistically 

significant results (FDR < 0.2). However, on closer inspection and analysis with 

orthogonal data sources, only one of these was readily interpretable, namely a 

negative interaction between germline ATM variants and somatic TP53 driver 

alterations. I also attempted to characterise the landscape of somatic variation of OAC 

samples with a multiple driver genes and other features including mutational burden, 

ploidy and mutational signatures. While this analysis clustered samples into potentially 

interesting groups based primarily on recurrent driver genes, there was no 

interpretable significant association between somatic clusters and RDGVs in 

pathways.  

This work has shown that there is value in analysing how germline perturbations 

influence somatic cancer evolution. In particular, the analysis in this chapter found that 

patients with RDGVs in ATM were significantly less likely than other OAC patients to 

have somatic TP53 driver alterations. There were a number of pieces of evidence to 

support this being a genuine biological effect: 

1. The result was found by treating all RDGVs equally, but was observed to be 

strongest for PTVs 

2. ATM and TP53 are direct interactors in a process that is relevant to cancer 

3. ATM somatic alterations were also negatively associated with TP53 drivers 

4. Exclusivity between ATM and TP53 mutations has previously been reported in 

several other cancer types. 

This negative interaction alone is an interesting result in OAC, where TP53 is by far 

most common somatic driver gene. The evolutionary pressures acting on TP53 

alterations in OAC are clearly mediated at least in part via TP53’s interactions with 

ATM. However, this result also raised the possibility that PTVs in ATM can predispose 

to developing OAC, albeit accounting for only ~1% of OAC cases (five out of 470 

samples). The possibility of predisposition was also supported by several 

observations: 

1. There were several somatic second hits to ATM for patients with germline PTVs 

2. ATM germline PTVs predispose to individuals to developing other cancer types 
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3. There was a trend for younger age at diagnosis among OAC patients with 

germline ATM PTVs  

4. ATM germline PTVs were observed to be more frequent in OAC patients 

compared to healthy controls.  

If germline ATM variants do indeed predispose to OAC, then aside from any clinical 

implications for disease management, they further demonstrate the value of germline-

somatic analyses to uncover functional roles of germline variation in cancer. It is 

important to note that case-control studies have not previously identified ATM as a 

predisposition gene for OAC. Indeed, OAC predisposition has only previously been 

identified from GWAS that have proven difficult to functionally interpret93. Thus, 

analyses of germline-somatic interactions may be able to detect germline effects in 

cancer that are missed by other study designs.  

This work has also highlighted the difficulties involved in analysing interactions 

between germline variation and somatic drivers. The task is inescapably high-

dimensional, with both germline variation and somatic mutational landscapes being 

complex, resulting in a multiplicity of complexity. In the approaches I chose, this 

burden was reflected by large numbers of hypothesis tests, despite characterising 

variation at the relatively high levels of pathways and genes. Combined with the fact 

that many effects of the germline are not highly penetrant in cancer, this placed a large 

burden on statistical power. Even with careful management of the available statistical 

power (for example, by frequency restriction and using non-standard corrections for 

multiple tests), it is likely that this work suffered from a small sample size. Indeed, I 

performed power calculations to estimate how many samples would be required to 

comprehensively assess GSITs using logistic regression, assuming that variants 

would be seen only in relatively few samples (such as ATM germline PTVs in 1% of 

OACs). In order to detect an interaction with effect size 𝛽 = 1 between germline 

variants of interest present in 1% of samples and a driver gene altered in 5% of 

samples with 90% power, maintaining a FWER of 0.05 with a total of 104 hypothesis 

tests, roughly 40,000 samples would be required. Unfortunately, cohorts of this size 

from individual cancer types with paired germline and somatic sequencing data may 

not be available in the near future.  

The analysis in this chapter relied on more sophisticated modelling approaches 

than those undertaken in Chapter 2. In particular, accounting for potentially 

confounding covariates was a substantial improvement. However, it is worth noting 
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that, taking the association between ATM and TP53 mutations as a benchmark, 

several of the methodological changes seemed to have little impact on the results. For 

instance, treating germline RDGVs as counts rather than as binary variables had little 

bearing on the main result, which was found to be largely driven by heterozygous 

variants in a single gene. The focus on identifying putatively deleterious missense 

variants may also have been unnecessary, since ultimately it was truncating variants 

in ATM that exhibited the strongest effect. Characterising germline variation at the 

level of pathways also appears not to have helped, since the result centred around a 

single gene in the germline. However, four other genes in the ATM signalling pathway 

also appeared to contribute to the association, suggesting that a balance between 

focusing on individual genes and on entire pathways could be useful. Finally, the fact 

that this gene (i.e. ATM) was a known cancer predisposition gene suggests that 

focusing on known cancer-related genes in the germline may be a more useful way of 

analysing germline-somatic interactions than using all biological processes, given 

currently available sample sizes.   

Similarly, the fact that the RF clustering analysis failed to identify interesting 

germline-somatic interactions suggests that individual driver genes may be the most 

useful way to characterise somatic evolution in GSIT analyses. It may also be the case 

that any clustering driven solely by somatic data is unlikely to identify features relevant 

to germline variation. Moreover, it is important to acknowledge the fact that, although 

RF clustering was chosen to handle the mixed data types of binary somatic driver 

alterations continuous somatic covariates, the resulting clustering was driven primarily 

by driver genes alone. This imbalance may be rectified by finer tuning of the RF 

approach, or by using a different clustering method altogether.  

Overall, the observations arising from the work in this chapter suggest that the 

approach taken by Lu et al.55 of associating germline PTVs in cancer genes with 

somatic alterations in driver genes may well be the most effective GSIT analysis 

approach currently available. Two strands of future work may be of value. First, further 

investigation into the potential role of ATM as a predisposition gene for OAC may have 

important clinical implications. For example, it may be helpful for patients with germline 

ATM PTVs to be monitored with regular diagnostic tests, particularly if they also have 

Barrett’s syndrome. Second, further analysis of the effect of germline variation on 

somatic evolution across cancer types will likely give greater insights into the role of 

the germline in cancer. However, it would seem that any such analysis should attempt 
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to relate germline PTVs in cancer genes with somatic alterations in driver genes, while 

accounting for covariates, and sample sizes for such analysis should aim to be around 

40,000.   
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Chapter 4. Literature support and systems-level properties of driver genes 
The second broad research question of this thesis is how to identify the aspects of 

inter-tumour heterogeneity that are most relevant to cancer biology and therapy, i.e. 

driver genes. Reliably identifying driver genes is challenging because of the enormous 

repertoire of passenger alterations in cancer25. An obvious starting point for new driver 

gene identification efforts is existing knowledge about previously-identified driver 

genes. In this chapter, I will first introduce a database curated by the Ciccarelli lab, the 

Network of Cancer Genes26,185-187 (NCG), that collects driver genes reported in the 

literature and annotates their properties (Section 4.1). I will then analyse the breadth 

of literature evidence for the driver genes curated in NCG and how this can inform 

focuses of future research (4.3), before describing the systems-level properties that 

distinguish driver genes from other human genes (4.4). Finally, I will discuss the results 

of this chapter in Section 4.5.    

This chapter describes results from a published study of which I was a lead co-

author24. I will present an overview of the main results of this publication, as well as 

detailed accounts of my own contributions.  

 

4.1. Introduction 
Genetic inter-tumour heterogeneity is the variation in somatically altered genes 

(including drivers) between tumours. The identification and further study of driver 

genes has allowed researchers and clinicians to overcome this heterogeneity to an 

extent, through the use of targeted therapies that have improved patient outcomes in 

some cancer types188,189. Much work has been done to identify driver genes, with 

hundreds of studies reporting on driver genes in many cancer types15,16,24. In order to 

leverage this body of work in ongoing and future research, it is imperative for 

researchers to have a resource where knowledge about driver genes identified in the 

literature is collected.  

The Cancer Gene Census111  (CGC) is a well-known example of such a 

resource. The CGC records genes with established roles in cancer, i.e. canonical 

driver genes, and it is constantly curated to maintain up-to-date information. The CGC 

identifies canonical drivers based on a combination of experimental evidence that 

genes contribute to the hallmarks of cancer3,4, and computational evidence that 

somatic alterations are consistent with the roles of genes in cancer111. For example, 
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genes with experimental evidence of a tumour suppressor role should exhibit a 

prevalence of loss-of-function alterations in cohorts, while oncogenes should show 

recurrent missense mutations or gene amplifications. As of version 86 (August 

2018)111, the CGC is divided into two tiers, with Tier 1 including genes supported by 

both experimental and computational evidence, and Tier 2 containing genes with a 

single line of evidence.  

Many cancer sequencing screens have been conducted by the cancer research 

community to identify driver genes. However, many drivers reported by these screens 

are not included in either tier of the CGC, as they do not meet the stringent inclusion 

criteria. In particular, while cancer sequencing screens can provide computational 

evidence that genes drive cancer, they often lack comprehensive experimental 

validation. Genes reported by sequencing screens that are not canonical driver genes 

can be considered to be ‘candidate’ drivers. It is likely that these candidate drivers are 

in reality a mix of true drivers and false positives, but in the absence of definitive 

experimental evidence it is impossible to establish their role in cancer with certainty. 

Other databases of driver genes tend to be more restrictive than the CGC, focusing 

only on tumour suppressor genes190, oncogenes191, or genes that drive a particular 

cancer type192. As such, in order for the research community to have a complete 

picture, there is a need for a resource that collects driver genes as they are reported 

in the literature, including candidate drivers. 

In addition to the identity of driver genes, the properties of driver genes have 

been studied extensively. Driver genes are distinguished from other human genes by 

an array of systems-level properties that do not directly relate to their role in cancer, 

but that instead describe them as a set. For example, canonical drivers, and in 

particular tumour suppressor genes, are less likely than other human genes to have 

duplicated loci elsewhere in the genome193,194. Conversely, oncogenes are more likely 

to have evolved through whole-genome duplication events that occurred at the basis 

of vertebrates (i.e. to be ohnologs)193. Canonical drivers are essential genes more 

often and in a higher proportion of cell lines than other genes24. They are expressed 

in a wider range of healthy human tissues, both at the gene26,195 and protein24 levels. 

Proteins encoded by canonical drivers have distinct topological features in the protein-

protein interaction network (PPIN), namely they have higher PPIN degree, 

betweenness and clustering coefficients than other proteins194. Canonical driver 

proteins also participate in more complexes26 and their genes are targeted by more 
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miRNAs193, suggesting that the expression of driver genes is tightly regulated. Tumour 

suppressor genes tend to be old genes with a pre-metazoan origin, while oncogenes 

tend to originate in metazoans and cancer drivers in general are depleted in post-

vertebrate genes193. Finally, canonical drivers encode longer proteins with more 

domains than other human genes26,195. An holistic view of the properties of cancer 

genes can lead to a deeper understanding of cancer biology, and even the 

identification of new cancer genes195. Thus, it would be valuable to have a resource 

that collected the systems-level properties of driver genes identified in the literature. 

The Network of Cancer Genes (NCG) is a project started in 201026,185-187 that 

aims to provide such a resource. NCG is a curated database that collects driver genes 

reported by cancer sequencing screens, extracted from the literature by a manual 

expert review. NCG also annotates the systems-level properties of these driver genes, 

with data extracted from external sources before being processed and analysed. Since 

many sequencing screens identifying driver genes are published each year, and the 

available data on the systems-level properties of driver genes continues to grow, the 

NCG database is updated regularly. In this chapter, I will describe the update to the 

sixth version of NCG, which was the subject of Repana et al.24. In Section 4.3 I will 

briefly outline the results of the literature review (conducted by several colleagues), 

and investigate the available literature evidence for driver genes (conducted by me) 

with a view to informing future research efforts. In Section 4.4, I will describe the 

annotation and analysis of the systems-level properties of cancer genes, focusing on 

those properties for which I was carried out the work. In Section 4.5, I will discuss NCG 

6 and its implications both for the rest of this thesis and for wider cancer research. 
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4.2. Methods 
For a full description of the methods used to extract driver genes from the literature for 

NCG 6, refer to Repana et al.24.  

 

4.2.1. Expression in healthy human tissues  
RNA-Seq data from healthy human tissues for 18,984 human genes (including all 

2,372 cancer genes) were derived from the non-redundant union of Protein Atlas196 

v.18 and GTEx197 v.7. Protein Atlas reported the average transcripts per million (TPM) 

values in 37 tissues, and genes were considered to be expressed in a tissue if their 

expression value was ≥ 1 TPM. GTEx reported the distribution of TPM values for 

individual genes in 11,688 samples across 30 tissue types. In this case, genes were 

considered to be expressed if they had a median expression value ≥ 1 TPM. Tissues 

were matched between the GTEx and Protein Atlas databases, giving 43 unique 

human tissue types. In tissues for which both sources provided expression data, genes 

were considered to be expressed only if both databases supported this. 

Protein expression was derived from immunohistochemistry assays of healthy 

human tissues, obtained from Protein Atlas v.18. Data were available for 13,001 

human proteins including 1,799 cancer proteins. Proteins were categorised as not 

detected or as having low, medium, or high expression in 44 tissues on the basis of 

staining intensity and fraction of stained cells. In Protein Atlas, expression levels were 

reported in multiple cell types for each tissue. The highest reported value was retained 

as the expression level for that tissue. For the expression analyses, proteins were 

considered to be expressed in a tissue if they were recorded as having low, medium 

or high levels of expression in Protein Atlas. 

 

4.2.2. Protein function  
Data on functional categories (pathways) were collected from Reactome107 v.63 and 

KEGG108 v.85.1. All levels of Reactome were included, and level 1 and 2 pathways 

from KEGG were added separately. Overall, functional annotations were available for 

11,344 human proteins, including 1,750 cancer proteins assigned to 2,318 pathways 

in total. Enrichment and depletion of cancer genes in pathways (for level 1 of 

Reactome and level 2 of KEGG) was assessed using Fisher’s exact tests, using the 

FDR correction for multiple hypothesis testing. 
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4.3.3. Other systems-level properties 
Other systems-level properties of human genes were obtained from various sources 

by my colleagues in the Ciccarelli lab. Duplicated gene loci (genes with 60% protein 

sequence shared with another locus) were identified by aligning protein sequences 

from RefSeq75 release 85 to the human genome. Data on gene essentiality in cell lines 

were obtained from the PICKLES (September 2017)198 and OGEE v2199 databases. 

Genes in PICKLES were considered to be essential in a cell line if they had Bayes 

factor >3, while original annotations of essentiality from OGEE were retained. The 

protein-protein interaction network was constructed from the union of BioGRID 

v3.4.157200, MIntAct v4.2.10201, DIP (February 2018)202 and HPRD v9203, resulting in 

16,322 proteins and 289,368 interactions supported by at least one original 

publication. Topological properties (PPIN degree, betweenness and centrality) were 

calculated using custom scripts. Genes were identified as participating in complexes 

using data taken from CORUM (July 2017)204, HPRD v9203 and Reactome v63107. The 

number of miRNAs targeting a gene was calculated using data from miRTarBase 

v7.0205 and miRecords v4.0206. The evolutionary origin (age) of genes was identified 

as previously described193, using data from EggNOG v4.5.1207.  

Other systems-level properties not included in NCG 6, including information on 

ohnolog genes, protein length and protein domain composition, were processed by 

me. A list of ohnolog genes was obtained from Nakatani et al.208. Protein length was 

obtained from RefSeq75 release 94 using the longest isoform for each gene. The 

number of domains in each protein was extracted from InterPro209 annotations in 

UniProt210 release 2019_07.  
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4.3. Analysis of the available evidence from cancer sequencing screens 
The core offering of the NCG database is a collection of driver genes, derived from 

published cancer sequencing screens as well as two separate sources of canonical 

drivers. The literature review to extract these genes was led by a colleague of mine, 

Dimitra Repana. Numerous other authors of the study24 also contributed, both by 

identifying and curating cancer sequencing screens, as well as by reviewing the initial 

curations of others. The literature review encompassed two primary sources of 

canonical drivers (the CGC version 84211 and a list from Vogelstein et al.25) and 273 

cancer sequencing screens, published between 2008 and March 2018. Driver genes 

were extracted as reported in the original publications, for a total of 2,372 drivers, 

comprising 711 canonical drivers (of which 239 were identified as tumour suppressor 

genes and 239 were identified as oncogenes) and 1,661 candidate drivers (i.e. genes 

reported by sequencing screens and not included in the sources of canonical drivers). 

Compared to the previous version of NCG26, this represented a more than 1.5-fold 

increase in both the number of publications and the number of driver genes. The 273 

sequencing screens included six pan-cancer studies, as well as screens of 119 cancer 

types from 31 primary anatomical sites. 

In order to help guide future research in driver gene identification, we sought to 

understand how driver genes were being identified and reported in the literature. I 

conducted analyses of how extensively different cancer types were studied in terms 

of sequencing screens, and of the breadth of literature support for different driver 

genes, described in the remainder of this section. 

The number of reported driver genes varied greatly across primary sites (Figure 

4-1A), ranging from one (vascular system) to 513 (blood). This stark variation was in 

large part accounted for by the total number of cancer donors sequenced for each 

primary site. Primary sites with more donors had a clear tendency to have more driver 

genes reported in the literature (Figure 4-1B, rho=0.9, p=6.5x10-12, Spearman 

correlation). This suggested that the variation in the number of driver genes per 

primary site may have been due to differences in how extensively cancer types had 

been studied, rather than due to biological differences between cancer types. This was 

unsurprising, since most widely used methods for identifying driver genes rely on 

recurrence across samples, and thus have strong dependencies on cohort size for 

statistical power. Thus, it is reasonable to suppose that if researchers analysed more 

patients from as-yet under-studied cancer types, they might discover many more 
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driver genes in these cancers. Alternatively, if sequencing larger cohorts in these 

cancer types is not feasible, other driver detection methods are required.  

The proportion of canonical to candidate driver genes also showed substantial 

variation between primary sites (Figure 4-1A). More than 75% of driver genes in 

cancers of the prostate, soft tissues, bone, ovary, cervix, thymus, and retina were 

canonical. By contrast, more than 75% of driver genes in cancers of the penis, testis, 

and vascular system were candidate drivers. The proportion of candidate drivers per 

primary site showed a weak positive correlation with the total number of driver genes 

(rho=0.37, p=0.04, Spearman correlation). This suggested that, as more drivers were 

found in a given primary site, a greater proportion of these genes lacked established 

experimental support. Thus, in extensively-studied cancers like those of the blood, 

brain and breast, efforts may be better spent experimentally validating cancer genes, 

rather than performing more sequencing screens. It also indicated that as more 

patients in a given cancer type were sequenced, a greater number of rare or poorly-

studied driver genes were reported. This was consistent with the dependence on 

cohort size of many established driver detection methods for statistical power. It may 

also be the case that such methods are ill-suited for analysing the long tail of rare 

driver genes, and therefore that other driver gene detection approaches are required 

to fully overcome inter-tumour heterogeneity and identify all driver genes. 

In the absence of experimental evidence, the consensus of different studies to 

identify the same driver genes could be a useful measure of how reliable driver gene 

predictions were. I assessed this for the driver genes in NCG 6 by investigating how 

many of the 273 sequencing screens reported each gene as a driver. As expected, 

highly penetrant drivers such as TP53, PIK3CA and KRAS were reported by many 

screens (Figure 4-1C). Strikingly however, the vast majority of candidate driver genes 

(80%) were supported by only a single screen (Figure 4-1C). This suggested that most 

driver genes reported in the literature had a poor level of support, and so were potential 

false positives. It was also possible that methodological limitations were causing a lack 

of reproducibility between studies. To assess this, I restricted analysis to the 108 

sequencing screens that used widely accepted gold-standard driver gene detection 

methods (MutSig44 and MuSiC212). These screens reported a total of 875 candidate 

drivers, of which 89% were reported a single one of the 108 screens. This suggested 

that even gold-standard methods were limited in their ability to reproducibly identify 

driver genes. However, the number of screens alone may not be a good predictor of 
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a gene’s true role in cancer. This was evidenced by the fact that the majority of 

canonical driver genes (57%) were only supported by either one or even zero 

sequencing screens (outside of the two primary sources of canonical drivers). Indeed, 

this called the veracity of these canonical drivers into question, since it indicated that 

they were rarely somatically altered across studied cancer cohorts, if at all. 

Furthermore, the known false positive driver gene TTN44 had broader support than 

any other candidate driver (nine screens, Figure 4-1C). This suggested that a 

combination of methodological limitations and extensive inter-tumour heterogeneity 

may have been driving a lack of consensus between cancer sequencing screens.  

In order to account for biological differences between cancer types, I 

investigated the consensus between studies to identify the same driver genes in a 

single cancer type, skin melanoma. NCG 6 included nine skin melanoma sequencing 

screens. Despite the fact that these screens investigated the same cancer type over 

a four-year period (2011 to 2015), there was a clear lack of consensus between the 

screens. In seven of the nine skin melanoma studies, over half of the reported driver 

genes were not identified by any of the other screens (Figure 4-1D). This was 

unaffected by cohort size (p=0.6, Spearman correlation), and over 50% of the driver 

genes from two out of the three studies with 200 or more patients were study-specific. 

It may be the case that consensus can be obtained by both having large cohort sizes 

and by using gold-standard driver detection methods. However, in the two studies for 

which this was the case, the proportions of study-specific driver genes were 71% and 

23%, suggesting that other factors may influence the consensus between cancer 

sequencing screens.  An obvious possible factor is the heterogeneity between 

patients, which represents a biological barrier to identifying driver genes, particularly 

when using recurrence-based methods. Indeed, skin melanoma has particularly high 

levels of mutations16 and genetic heterogeneity213, which may partially explain the poor 

levels of consensus between cancer screenings in this cancer type. Nonetheless, 

further methodological improvements in driver gene detection could help to improve 

the consensus between cancer sequencing screens. 
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Figure 4-1: Analysis of driver genes reported in the literature  
A. Total number of unique cancer genes (top) and proportion of canonical to candidate 

driver genes (bottom), reported for each primary anatomical site.  

B. Relationship between the number of sequenced cancer donors and the number of 

unique reported driver genes for each primary site. 
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C. Breadth of support for driver genes in the literature, as measured by the number of 

publications supporting each canonical and candidate driver gene. The two primary 

sources of canonical driver genes are not included in this count, so canonical driver 

genes that were not reported in any of the cancer sequencing screens are listed as 

having zero screens. 
D. Proportion of driver genes that are study-specific, for each of the nine studies 

investigating driver genes in skin melanoma. The overlap of reported driver genes was 

only assessed within these nine studies. Gold-standard methods include all versions 

of MutSig44 and MuSiC212. 
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4.4. Systems-level properties of driver genes 
In addition to curating lists of driver genes reported in the literature, NCG annotates 

the systems-level properties that distinguish driver genes from other human genes. 

Two systems-level properties were new to the sixth version of NCG, namely breadth 

of protein expression and gene essentiality. Different authors of the study24 were 

responsible for the analysis of different systems-level properties. I collected and 

analysed data on gene and protein expression in healthy human tissues and protein 

function, which I will describe in Sections 4.4.1 and 4.4.2. I will also provide an 

overview of the remaining systems-level properties of driver genes in Section 4.4.3.  

 

4.4.1. Driver genes are widely expressed across healthy tissues 
Driver genes tended to be more widely expressed across healthy human tissues than 

the rest of human genes. This was evident for canonical drivers both at the gene 

(p<2.2x10-16, Wilcoxon rank-sum test, Figure 4-2A) and protein (p=9.5x10-11, Figure 

4-2B) levels (Methods 4.2.1). The trend did not hold for candidate drivers, which were 

expressed in similar numbers of tissues to the rest of human genes. In particular, a 

sizeable proportion of candidate drivers (21%) were expressed in few tissues (≤6 

tissues for gene expression, ≤8 tissues for protein expression). This could be because 

candidate drivers include many false positives, and they therefore do not have the 

properties of true driver genes. However, it is also possible that many candidates are 

true drivers, but they are more rarely active in cancer than canonical drivers and are 

more tissue-specific in their cancer-promoting role.  

Of note, the pattern of expression was markedly different between tumour 

suppressor genes (TSGs) and oncogenes (OGs, p<0.006, Figures 4-2A, B). TSGs 

showed the strongest tendency of any gene category to be widely expressed, 

indicating that they were active in almost all healthy human tissues. By contrast, OGs 

were less widely expressed, indicating less ubiquitous functions in normal physiology. 

This difference between TSGs and OGs lended support to the possibility that some 

candidate drivers were not widely expressed due to their particular role in cancer, 

rather than because they were simply false positive cancer genes.  
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4.4.2. Driver genes are enriched in certain biological processes 
Driver genes also differed from the rest of human genes by their function in normal 

physiology. I performed gene set enrichment analyses using high-level pathways from 

Reactome and KEGG to assess the function of cancer genes (Methods 4.2.2). As 

expected, driver genes were consistently enriched in functional categories such as 

signal transduction, chromatin reorganisation, and cell cycle (Figures 4-2C, D). 

Candidate drivers generally showed weaker enrichment than canonical drivers, most 

notably in DNA repair. Interestingly, however, extracellular matrix (ECM) 

reorganisation showed a specific enrichment for candidate drivers. This might indicate 

that pathways that are not commonly associated with cancer, like ECM reorganisation, 

would be worth investigating more comprehensively, particularly from the point of view 

of experimental validation of their role in cancer.  

TSGs and OGs showed some differences in their patterns of functional 

enrichment. Most notably and as expected, TSGs were selectively enriched in DNA 

repair. This may help to explain why TSGs were more widely expressed in human 

tissues than OGs, since DNA repair is a core biological function that is common to all 

tissue types.  

Interestingly, all driver genes were depleted in metabolic pathways (Figures 4-

2C, D). Given that metabolism is known to play a key role in cancer, this may reflect 

the fact that most metabolism genes promote cancer through transcriptional 

dysregulation, rather than through acquiring somatic mutations214. Thus, these genes 

would not be identified as cancer genes by DNA sequencing screens. This supports 

the developing trend to interrogate cancer biology by incorporating multi-omic data, 

rather than using genomic data alone215. 
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Figure 4-2: Breadth of expression and functional enrichment of driver genes 
Number of healthy human tissues in which genes are expressed at the mRNA (A) and 

protein (B) levels. P-values were calculated with the Wilcoxon rank-sum test. 
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Enrichment and depletion of driver gene categories in pathways from level 1 of 

Reactome (C) and level 2 of KEGG (D), assessed with Fisher’s exact test. Tile colour 

corresponds to the false discovery rate (FDR) of enrichment (red) or depletion (blue), 

with non-significant tiles (FDR ≥0.05) coloured white.  

 

4.4.3. Other systems-level properties of driver genes 
The sixth version of NCG annotated other systems-level properties of driver genes 

that were analysed by other authors of the study24 (Methods 4.3.3). A smaller 

proportion of driver genes than other human genes had loci duplicated at ≥60% 

coverage elsewhere in the genome and this was particularly pronounced for TSGs, 

with OGs showing the opposite trend (Figure 4-3A). Canonical drivers, and in 

particular TSGs, were essential in more cell lines than the rest of human genes (Figure 

4-3B). Proteins encoded by canonical and candidate driver genes had distinct 

topological features in the protein-protein interaction network, having higher degree 

(Figure 4-3C), betweenness (Figure 4-3D) and clustering coefficient (Figure 4-3E) 

than other genes. They also participated in higher numbers of protein complexes 

(Figure 4-3F). Canonical driver genes were targeted by a higher number of miRNAs 

than other human genes (Figure 4-3G). Finally, candidate driver genes and TSGs 

were also more likely than other genes to have a pre-metazoan evolutionary origin 

(Figure 4-3H).  

In addition, driver genes were distinguished by several other systems-level 

properties that have been previously described26,193,195 but were not included in NCG 

6. I annotated these (Methods 4.3.3) and include them here for completeness, as they 

will be discussed further in Chapter 5. Canonical and candidate drivers, and 

particularly OGs, tended to have evolved through whole-genome amplification events, 

i.e. to be ohnologs (Figure 4-3I). They also encoded proteins with distinct structural 

features, being particularly long (Figure 4-3J) and having a large number of identifiable 

domains (Figure 4-3K). Together, these results demonstrated that driver genes 

possess distinct systems-level properties that set them apart from the rest of human 

genes. 
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Figure 4-3: Other systems-level properties of driver genes 
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A. Percentage of genes with ≥ 1 gene duplicate covering ≥ 60% of the protein 

sequence.  

B. Percentage of cell lines in which each gene is essential.  

Degree (C), betweenness (D) and clustering coefficient (E) of each protein in the 

protein-protein interaction network (PPIN). 

F. Number of complexes each protein is a part of.  

G. Degree of the target genes in the miRNA-target interaction network.  

H. Proportion of genes originating in pre-metazoan species.  

I. Percentage of genes that are ohnologs, i.e. that have evolved through whole-

genome duplication events that occurred at the basis of vertebrates. 

J. Protein length in amino acids. 

K. Number of identified domains making up each protein.  

Significance was calculated using a two-sided Fisher test (A, H, I) or Wilcoxon test (B-

G, J, K). Canonical drivers and candidate drivers were both compared to the rest of 

human genes, and TSGs and OGs were compared to each other. Only comparisons 

with p <0.05 are shown.  
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4.5. Discussion 
The Network of Cancer Genes (NCG) is a valuable resource for the cancer research 

community that collects driver genes reported by published sequencing screens, and 

annotates their systems-level properties. In the update to the sixth version of NCG, 

the database content increased more than 1.5-fold. Analysis of the breadth of support 

of driver genes showed that most reported driver genes were specific to a single study, 

and that studies could even fail to reach a consensus on the identity of driver genes 

in a single cancer type. Finally, driver genes were distinguished from other human 

genes by a range of systems-level properties.  

The primary use for NCG is as a repository of driver genes, and at the time of 

writing it has been used at least 29 times for this purpose in published research 

articles. However, the analysis of how driver genes were identified in the literature also 

highlighted some of the ways in which future efforts for driver gene identification could 

be improved. For instance, there was a strong link between the number of donors 

sequenced in a given cancer type, and the number of driver genes reported in that 

cancer type. Some rarer cancers such as those of the vascular system, retina and 

parathyroid gland had very low numbers of both donors and driver genes, suggesting 

that larger sequencing efforts in these cancer types could identify new drivers and 

better inform molecular therapy. In addition, the observation of a poor consensus 

between sequencing screens supports the increasing adoption of gold-standard 

cancer gene identification methods, rather than bespoke algorithms. However, the fact 

that even existing gold-standard methods failed to identify consensuses of driver 

genes suggested that other driver detection methods may be required to robustly 

investigate the long tail of rare or even patient-specific driver genes. Methods tailored 

to identifying these genes may also provide an alternative to sequencing large 

numbers of patients from rare cancer types, which can be challenging to undertake.  

As an example use-case of NCG, I made extensive use of the database 

throughout my work in this thesis. I used lists of canonical driver genes to identify 

somatic driver alterations in Chapters 2 and 3, to investigate how germline variation 

influenced somatic evolution in cancer. I will also use the systems-level properties of 

canonical driver genes as the basis for a patient-level driver gene detection algorithm, 

sysSVM2, in Chapter 5. This algorithm learns the properties of canonical drivers to 

identify other genes with similar properties, thus enabling the identification of new 

putative driver genes in individual patients. Thus, the NCG database is useful as a 
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collection of reported driver genes, its literature review process can help to guide future 

studies of driver genes, and its annotation of the properties of driver genes can be 

used for new driver detection approaches.  
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Chapter 5. Patient-level driver gene detection 
As discussed in Chapters 1 and 4, identifying cancer driver genes is necessary for a 

full understanding of cancer biology and for advancing cancer therapeutics. However, 

it is challenging to distinguish drivers from other human genes due to the large and 

heterogeneous array of passenger alterations to the genome that occur in cancer. 

Identifying driver genes in individual patients is an even greater challenge than doing 

so across cohorts, but also holds greater potential for advancing precision oncology. 

In this chapter, I will first introduce the problem of patient-level driver gene detection 

and review existing driver detection methods (Section 5.1). I will then describe the 

development of a machine-learning approach, sysSVM2, that uses the systems-level 

properties of canonical driver genes (discussed in Chapter 4), to identify drivers in 

individual patients (5.3). I will then assess the performance of sysSVM2 on real and 

simulated pan-cancer data (5.4), before exploring possible alternatives and extensions 

of the method (5.5). Finally, I will discuss the findings of this chapter in Section 5.6.  

 This chapter extensively incorporates material from Nulsen et al. Genome 

Medicine 13 (2021). I am the sole first author of this article, but I would like to thank 

the other authors for their contributions: Hrvoje Misetic, Prof. Christopher Yau and 

Prof. Francesca D. Ciccarelli. In particular, H.M. carried out the pan-cancer TCGA 

analysis (5.4.4), C.Y. supervised the machine learning aspects of the work, and F.D.C. 

conceived and directed the study.  

 

5.1. Introduction 

5.1.1. The challenge of patient-level driver detection 
The majority of somatic alterations to the cancer genome are thought to have little or 

no phenotypic consequence for the development of the disease. Only a small 

proportion of somatic alterations are believed to play a role in driving cancer. The 

repertoire of observed somatic alterations differs greatly between tumours, giving rise 

to differences in prognosis and response to therapy that represent a significant 

challenge to oncology. The clinical response to inter-tumour heterogeneity has been 

the development of precision oncology, in which driver events specific to patients are 

targeted10,11. This of course requires driver events, and the genes that they effect 

(driver genes), to first be identified. 
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Identifying driver genes amounts to sorting through the heterogeneous cancer 

genomic landscape, finding the drivers among the passengers25 (i.e. the somatic 

alterations with no phenotypic consequence). Driver alterations undergo positive 

selection during cancer development because of the advantages they confer to 

malignant cells4. As such, many approaches for identifying driver genes have looked 

for evidence of positive selection, most commonly in the form of recurrence across 

cohorts of patients 24. These cohort-level methods have been of great value, leading 

to the identification of more than 2,000 well-established (canonical) or candidate 

cancer driver genes24,111, as we saw in Chapter 4. However, cohort-level approaches 

fail to reliably identify rare driver events that occur in small cohorts or even in single 

patients because of low statistical power216. Even the largest and most comprehensive 

cohort-level efforts to identify driver genes typically leave a fraction of patients with 

few or no drivers16. Moreover, these methods are not ideal for application in the clinical 

setting because they return lists of drivers in entire cohorts, rather than predictions in 

individual patients. 

In order to fully realise precision oncology, the driver events in every tumour 

must be found, including rare and patient-specific events. Some patient-level driver 

detection methods have been developed for this purpose, but they are more 

challenging to implement than cohort-level methods for a number of reasons. First, 

there is a lack of available ground truth. Gold-standard sets of rare cancer drivers are 

scarce, since these genes are challenging to identify in the first instance. In addition, 

outside of a few very well-studied genes, little is known about why certain alterations 

in driver genes might or might not contribute to cancer16,217. Thus, it is difficult to 

formulate models in order to systematise patient-level driver gene detection.    

 

5.1.2. Review of existing driver detection methods 
Numerous cohort-level driver detection methods have been developed to date. For 

example, recurrence-based methods such as MutSigCV44 and MuSiC212 search for 

genes whose mutation rate (single nucleotide variants (SNVs) and small insertions or 

deletions (indels) per nucleotide) is above the background level. This is because 

mutations in cancer drivers are more likely to become fixed and recur across samples 

than those in non-driver genes. GISTIC2218 adopts a similar approach for recurrent 

copy number variants (CNVs). OncodriveCLUST219 and ActiveDriver220 look 
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specifically for mutations clustering in hotspot positions or encoding post-translational 

modification sites. TUSON221 and 20/20+222 predict new drivers based on features of 

canonical oncogenes and tumour suppressors, including the proportion of missense 

or loss-of-function to silent mutations occurring across patients. dNdScv217 computes 

the nonsilent to silent mutation ratio to identify gene mutations under positive selection, 

while OncodriveFM223 focuses on biases towards variants of high functional impact. 

Finally, network-based methods like HotNet2224 incorporate gene interaction networks 

to identify significantly altered modules of genes within the cohort. Albeit with different 

approaches, all these methods rely on the comparison of alterations and/or altered 

genes across patients. 

Patient-level methods are less well-established and less numerous than cohort-

level methods. A few attempts such as OncoIMPACT225, DriverNet226 and 

DawnRank227 combine transcriptomic and genomic data to identify gene network 

deregulations in individual samples. Such methods require user-specified gene 

networks and deregulation thresholds, which can affect their results225. In addition, 

matched exome and transcriptome data from the same sample are not always 

available, especially in clinical settings where shotgun transcriptomic sequencing is 

still rare. Alternative approaches such as PHIAL228 match the patient mutations with 

databases of known clinically actionable or driver alterations but have a limited 

capacity to identify as-yet unknown driver alterations. To overcome this limitation, 

iCAGES229 combines deleteriousness predictions and curated database annotations 

to learn features of true positive and true negative driver alterations. 

The Ciccarelli lab recently developed sysSVM, a patient-level driver detection 

method based on one-class support vector machines (SVMs)27,230. sysSVM learns the 

distinct systems-level features (gene properties) and molecular features (damaging 

somatic alterations) of canonical drivers. It then predicts as drivers the altered genes 

in individual patients that best resemble these features. When applied to 261 patients 

with oesophageal adenocarcinomas, sysSVM successfully identified the driver events 

in every patient27. 
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5.2. Methods 

5.2.1. The sysSVM algorithm 
As previously described27, sysSVM consists of four one-class Support Vector 

Machines230 (SVMs) trained on the molecular and systems-level properties of the 

canonical cancer drivers damaged in a cohort of patients. It then ranks damaged 

genes outside the training set based on how similar their properties are to those of 

canonical cancer drivers. sysSVM is implemented in R using the e1071 package231. 

The four one-class SVMs use different kernels, which control how each one 

learns from the training set. A kernel 𝑘 measures how similar the features of two genes 

are. Let 𝑥 and 𝑦 denote the features of two genes. Then an SVM measures their 

similarity as 𝑘(𝑥, 𝑦). The kernels used in sysSVM are: 

• Linear: 𝑘(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 

• Polynomial: 𝑘(𝑥, 𝑦) = (𝑥 ⋅ 𝑦)W 

• Radial: 𝑘(𝑥, 𝑦) = exp−𝛾|𝑥 − 𝑦|L 

• Sigmoid: 𝑘(𝑥, 𝑦) = tanh	(𝛾	𝑥 ⋅ 𝑦) 

Here 𝑥 ⋅ 𝑦 denotes the standard dot product, 𝑑 and 𝛾 are parameters, and tanh is the 

hyperbolic tangent function. sysSVM combines the outputs of the four kernels into a 

single score to use for prediction. The sysSVM algorithm consists of three stages: 

feature mapping; model selection; and training and prediction.  

Step 1. Feature mapping 
In feature mapping, molecular and systems-level properties are mapped to the 

damaged genes of the training cohort. These include seven molecular features 

(relating to mutation and copy number status) and 19 systems-level features. An 

additional six systems-level features are available but are excluded from the model by 

default, since their inclusion was seen to worsen performance. The full list of features 

is given in Supplementary Table 1.  

Step 2. Model selection 
Model parameters are then selected. The four one-class SVMs are controlled 

by certain parameters, and a grid search is implemented to select the best parameters 

for each kernel separately. These parameters and their default grid ranges are: 

• Nu (𝜈, all kernels): represents an upper bound on the proportion of the training 

set that can be classed as outliers. Values range from 0.05 to 0.35 in steps of 

0.05. 
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• Gamma (𝛾, radial and sigmoid kernels): controls the level of influence of 

individual training points on the model. Values assessed are 𝛾 = 2E, where 𝑥 ∈

	{−7,−6,… ,4} 

• Degree (𝑑, polynomial kernel): the degree of the polynomial kernel function, 

chosen from the set {3, 4, 5}. 

Kernel parameters are tuned separately for each kernel. Therefore, the total number 

of kernel parameter combinations to be assessed is 7 (linear) + 7x12 (radial) + 7x12 

(sigmoid) + 7x3 (polynomial) = 196. 

In the first implementation of sysSVM27 an additional parameter was tuned: 𝛾 

in the polynomial kernel. In this setting, the polynomial kernel had the form 𝑘(𝑥, 𝑦) =

(𝛾	𝑥 ⋅ 𝑦)W. However, in this case 𝛾 simply controls an overall scaling of the kernel, since 

(𝛾	𝑥 ⋅ 𝑦)W = 𝛾W(𝑥 ⋅ 𝑦)W. Constant scalings such as this do not change the behaviour of 

SVMs, and so the 𝛾 parameter is redundant. Thus, in sysSVM2 𝛾 is fixed to 1 for the 

polynomial kernel by default. 

In sysSVM2, model selection was updated from the original sysSVM 

formulation to improve convergence. A parameter grid search was carried out for each 

kernel separately, for a total of 196 kernel-parameter combinations. The aim was to 

select parameters that resulted in a model with a high sensitivity and stability (low 

standard deviation of sensitivity). The model sensitivity for each parameter 

combination was assessed on the simulated training set using three-fold cross-

validation for 5,000 iterations. For each kernel 𝑘 and parameter combination 𝑖, the 

mean 𝜇M8 and standard deviation 𝜎M8 of the sensitivity were calculated across the 

cross-validation iterations. These were then converted into z-scores 𝑧M8
(^) and 𝑧M8

(`), 

which measured the relative values of mean and standard deviation between the 

different parameter combinations such that: 

r𝑧M8
(^)

8
=r 𝑧M8

(`)

8
= 0 

and 

Variance8 �𝑧M8
(^)� = Variance8�𝑧M8

(`)� = 1. 

Finally, we defined the Dz score as:  

Δa = 𝑧M8
(^) − 𝑧M8

(`). 

High Dz scores corresponded to parameter combinations that had high mean 

sensitivity and low standard deviation relative to the other combinations for that kernel. 
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The four parameter combinations (one per kernel) with the highest Dz scores were 

selected and used to train the four kernels on the entire training set. 

When measuring the performance of various implementations of sysSVM using 

the Area Under the Curve (AUC) as in Figure 5-4A-D, we used a reduced range of 

parameter combinations. This assessment was based on the performance of the full 

model combining all four kernels, and thus the full range would have been prohibitively 

costly (1,037,232 parameter combinations, as described in Section 5.3.3). Instead, we 

considered ν ∈ 	 {0.05, 2}, 𝛾 = 2E where 𝑥 ∈ 	 {−7, 3, 0, 4}, and 𝑑 ∈ 	 {2, 4}. This resulted 

in a total of (2) × (2 × 4) × (2 × 4) × (2 × 2) = 512 parameter combinations to assess, 

where the brackets enclose the number of parameters for the linear, radial, sigmoid 

and polynomial kernels, respectively. We chose these ranges to provide a sparse 

coverage of the parameter grid used in the standard model selection step of sysSVM. 

Step 3. Training and prediction 
Once the parameters for each kernel have been selected, the four SVMs are 

trained using the entire training set of canonical drivers.  

The trained sysSVM model can then be used for prediction in individual 

samples. To combine the outputs of the four kernels, a combined score 𝑆>: is 

calculated for each gene 𝑔 in sample 𝑠. 𝑆>: measures the similarity of the features of 

gene 𝑔 to those of the training set. It combines the rank of 𝑔 in sample 𝑠 according to 

each of the four kernels, in such a way that the final score is normalised between 0 

and 1.  High ranks in each kernel are given exponential weighting and the kernels are 

weighted according to their sensitivity, with more sensitive kernels contributing more 

to the score. If 𝑅M>: is the rank of 𝑔 in sample 𝑠 according to the decision value of 

kernel 𝑘, 𝑁: is the total number of damaged genes in sample 𝑠 and 𝜇M is the mean 

sensitivity of kernel 𝑘 as assessed by cross-validation iterations, then the score is 

𝑆>: =
∑ �− logJQ �

𝑅M>:
𝑁:

� × 𝜇M�b
MIJ

4 × logJQ(𝑁:)
. 

 

5.2.2. Annotation of systems-level properties 
Systems-level properties of human genes were obtained as described in Section 4.2. 

From these properties, 25 systems-level features were derived to be used for gene 

classification, of which 19 were retained in sysSVM2 after feature selection 

(Supplementary Table 1). 
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For each feature, missing values were imputed using the median or mode (for 

numeric and categorical features, respectively) of available data for canonical drivers 

and the rest of genes separately. All features used in the model significantly 

differentiated cancer drivers from other human genes (Supplementary Table 1).  

Systems-level properties were encoded in sysSVM and sysSVM2 as either 

continuous or binary features, depending on their nature. To account for the fact that 

some SVM kernels learn more efficiently from binary features27 and to more 

comprehensively describe the underlying properties, additional binary features were 

derived for PPIN properties as well as for gene and protein expression. For PPIN 

features, hubs and central proteins were defined as those in the top 25% of degree 

and betweenness distributions, respectively. These thresholds were chosen because 

they marked out the high tails of the continuous distributions while describing 

sufficiently large numbers of proteins to be informative (Figures 5-1A, B). For gene 

and protein expression, the distributions of tissues expressing the gene/protein are 

broken down into four distinct sections (Figures 5-1C, D). For protein expression, two 

binary features (9-34 tissues, and 35-40 tissues) were not statistically different 

between cancer proteins and the rest of proteins. All systems-level features 

considered for the optimisation of sysSVM for pan-cancer use differed significantly 

either between canonical drivers, oncogenes or tumour suppressor genes and the rest 

of genes. This resulted in 25 systems-level features (Supplementary Table 1), which 

underwent further feature selection to obtain the 19 final features used in sysSVM2 

(Table 5-1). 
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Figure 5-1: Construction of binary features for PPIN and tissue expression 
properties 
Distributions of protein-protein interaction network (PPIN) degree (A) and 

betweenness (B) for 16,322 human proteins. Proteins in the top 25% for degree and 

betweenness values were designated as hubs and central proteins, respectively. 

Distributions of the number of tissues expressing 18,641 genes (C) and 13,001 

proteins (D). Both distributions were divided into four sections based on their shape to 

derive binary expression features.  

Features highlighted in red were statistically different between canonical drivers and 

the rest of genes (Supplementary Table 1). 
 

5.2.3. Pan-cancer TCGA data annotation and simulation 
Sequence mutations (SNVs and indels) for 9,079 samples were obtained from the 

MC3 release of TCGA15 and annotated with ANNOVAR74 (downloaded April 2018) 

and dbNSFP v3.077. Only mutations identified as exonic or splicing were retained. 
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Damaging mutations included (1) truncating (stopgain, stoploss, frameshift) mutations; 

(2) missense mutations predicted by at least five out of seven functional prediction 

methods (SIFT80, PolyPhen-2 HDIV81, PolyPhen-2 HVAR, MutationTaster82, 

MutationAssessor83, LRT84 and FATHMM85), at least two out of three conservation-

based methods (PhyloP86, GERP++RS88 and SiPhy87); (3) splicing mutations 

predicted by one of two splicing-specific methods (ADA77 and RF) and (4) hotspot 

mutations identified by OncodriveCLUST219 v1.0.0. 

Copy number data (array intensities) for 11,379 samples were obtained from 

the Genomic Data Commons portal (https://portal.gdc.cancer.gov/). Copy Number 

Variant (CNV) segments, sample ploidy and sample purity values were obtained using 

ASCAT130 v2.5.2, with 9,873 samples passing quality control. Segments were 

intersected with the exonic coordinates of 19,549 human genes that were derived as 

previously described24 in the reference genome hg38, and converted to hg19 

coordinates using the UCSC liftOver tool (http://genome.ucsc.edu/). Genes were 

considered to have undergone a CNV if at least 25% of their transcribed length was 

covered by a segment. RNA-Seq data were used to filter out false positive CNVs. 

Fragments per kilobase million (FPKM) values were obtained for 10,974 samples and 

only samples with matched copy number and expression data were retained. 

Damaging CNVs included homozygous gene losses (copy number 0 and FPKM <1 

over mean cancer type purity) and gene amplifications (copy number >2 x sample 

ploidy). 

Considering only one sample per patient, a total of 7,630 samples had matched 

mutation, CNV and RNA-Seq data that passed ASCAT quality controls and had at 

least one damaged gene. These comprised 535,615 damaging mutations and 

2,041,598 damaging CNVs in 18,784 genes (Supplementary Table 2). 

To simulate samples that reproduced the molecular features of real TCGA 

samples, the damaging mutation burden and ploidy were measured for the whole 

TCGA cohort. Then, 1,000 random combinations of damaging mutation burden and 

ploidy were extracted and assigned to the simulated samples. To preserve the same 

frequency of damaging alterations, damaged genes were extracted from within TCGA 

samples that had similar values of damaging mutation burden (+/-10%, for mutations) 

and ploidy (+/-0.1, for CNVs) and assigned to the simulated samples. Overall, the final 

simulated dataset of 1,000 samples contained 69,269 damaging mutations and 

252,409 damaging CNVs in 18,455 genes. 
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As a training set, 220 tumour suppressors with 2,433 loss-of-function 

alterations (truncating mutations, missense or splicing damaging mutations, 

homozygous deletions, or double hits) and 236 oncogenes with 5,539 gain-of-function 

alterations (hotspot mutations, missense or splicing damaging mutations or gene 

amplifications) were retained. For TP53 both loss- and gain-of-function alterations 

(n=352) were considered to be driver events and included in the training set. 301,103 

damaging alterations in the remaining 17,998 human genes not present in the training 

set were used for prediction (Supplementary Table 2). Somatic alterations in tumour 

suppressors and oncogenes that were not of the appropriate types (i.e. gain-of-

function in tumour suppressors and loss-of-function in oncogenes) were discarded 

from further analysis.  

 

5.2.4. Performance assessment 
The performances of all driver prediction models tested in sysSVM2 were measured 

using five metrics: Area Under the Curve (AUC); composition score; 

Observed/Expected (O/E) ratios; Rank-Biased Overlap (RBO) score and overlap of 

the top five predictions between models.  

For the AUC, Receiver Operating Characteristic (ROC) curves were derived for 

each sample individually by comparing the ranks of canonical drivers not used for 

training to known false positive genes and to the rest of human genes. For both of 

these comparisons, the median AUC was then measured across samples. The 

median ROC curve across the cohort was also derived by calculating the median true 

positive rate for each value of a false positive rate. 

The composition score assessed the top five predictions in each sample, and 

measured the prevalence and ranks of different types of genes. The score S was 

calculated as a weighted sum according to the following formula: 

𝑆 =r 𝑤> × 𝑡>
S

>IJ
. 

The weight 𝑤> of each gene g in the top five was such that higher-ranked genes were 

assigned greater weight. Specifically, 𝑤> = 6 − 𝑟> where 𝑟> is the rank of gene 𝑔 (with 

1 being the highest). The type contribution 𝑡> of gene g was defined for different gene 

categories as follows: cancer-specific canonical drivers (𝑡> = 3); other canonical 
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drivers (2); cancer-specific candidate genes (1.5); other candidate cancer genes (1); 

false positives (−1); other genes (0).  

Ratios between observed and expected numbers of canonical drivers and false 

positives in the top five predictions (O/E ratios) were calculated as follows: 

Canonical	driver	O/E	ratio

=
	Canonical	drivers	in	top	5	genes
Total	canonical	drivers	in	sample ×

Total	damaged	genes	in	sample
5  

 

False	positive	O/E	ratio

=
False	positives	in	top	5	genes
Total	false	positives	in	sample ×

Total	damaged	genes	in	sample
5  

 

These formulas accounted for the fact that the difficulty of ranking canonical drivers 

(or false positives) in the top five predictions depends on how many damaged genes 

there are in each sample. The percentages of samples where the observed number 

of canonical drivers in the top five predictions was higher than twice, five and ten times 

the expected numbers, and where the observed number of false positives was lower 

than expected, were calculated. 

The RBO score232 was used to assess the similarity of the top five predictions 

from pairs of models. It measures the overlap of ranked lists at incrementally 

increasing depths using a convergent series. Including a correction for finite lists of 

length five, it was calculated according to the formula: 

RBO =
1 − 𝑝
1 − 𝑝Sr𝑝WcJ

S

WIJ

× 𝐴W . 

where p was set to 0.9232, d indicates depth in the rankings (starting from the top-

ranked elements), and Ad is the overlap of the two lists, restricted to depth d.  

 

5.2.5. TCGA sample analysis 
Starting from the TCGA samples with matched mutation, copy number and RNA-Seq 

data, more stringent filters were applied for homozygous deletions and gene 

amplifications analysis of real samples (Sections 5.4.3 and 5.4.4). Genes with CN=0 

that either (1) had one or more mutations in their sequence, or (2) were expressed at 

greater than 1 FPKM over sample purity (as opposed to mean cancer type purity) were 

re-annotated as having CN=1. Amplifications were filtered by applying Wilcoxon tests 
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to compare expression levels between amplified and non-amplified cases, for each 

gene separately. Only genes for which amplification was associated with 

overexpression at FDR <0.05 were retained as having damaging amplifications. The 

resulting dataset comprised 7,651 samples at least one damaging alteration. To 

prevent sysSVM2 training sets from being biased by individual samples, five samples 

each accounting for more than 50% of the damaged genes in their respective cancer 

types were removed, leaving 7,646 samples for further analysis. For the purposes of 

measuring performance and overlap of the cancer-specific and pan-cancer sysSVM2 

settings, 752 samples with fewer than ten damaged genes were removed.  

 To tune the kernel parameters of sysSVM2, 10,000 iterations of three-fold 

cross-validation were run in each cancer type. In cases where parameters did not 

converge, an additional 15,000 iterations were run only for the non-converging 

parameters, with all other parameters fixed at their converged values. This was done 

for the gamma parameter of the sigmoid kernel in adrenocortical carcinoma (ACC), 

oesophageal adenocarcinoma (OAC), colon adenocarcinoma (COAD), kidney renal 

clear cell carcinoma (KIRC) and stomach adenocarcinoma (STAD), as well as for the 

degree parameter of the polynomial kernel in lung squamous cell carcinoma (LUSC). 

Predictions were assessed using the same metrics as for simulated data (AUC, 

composition score, RBO score and overlap of top-five predictions).  

Lists of cancer driver genes in individual TCGA samples were identified using 

a top-up procedure as follows. First, a list of canonical driver genes for each of the 34 

cancer types in TCGA was obtained from NCG24. Cancer-specific canonical drivers 

damaged in each sample were considered as cancer drivers for that sample. In 

samples with five or more such drivers, no further prediction was done. Otherwise, the 

highest-ranked genes from sysSVM2 were added so that there were five drivers in 

total. Samples with five or fewer damaged genes overall were not considered for the 

pan-cancer analysis. For the purpose of comparing sysSVM2 to other driver detection 

methods on gastro-intestinal cancer data one sample with less than five damaged 

genes (TCGA-FP-8210, stomach cancer) was included for completeness. 

sysSVM2 predictions in 657 gastro-intestinal (GI) cancer samples were 

compared to those of PanSoftware15; dNdScv217; OncoIMPACT225; and DriverNet226. 

Forty genes identified as GI cancer drivers by PanSoftware was taken from the original 

publication15. These genes were considered as drivers in every sample in which they 

were damaged. dNdScv was implemented with default parameters, taking all 
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mutations as input. Genes were considered to exhibit significant signs of positive 

selection if they had a FDR <0.05. OncoIMPACT was implemented with default 

parameters, using the gene network provided. Nonsilent mutations were used as input 

for mutations. Copy number amplifications were filtered as described above, and copy 

number losses included heterozygous and homozygous deletions. In each sample, all 

genes that shared the highest score were taken as the predicted drivers. DriverNet 

was implemented with default parameters, using the same gene network and data 

inputs as for OncoIMPACT. The events identified in each sample were taken as the 

predicted drivers. 

Human pathways for gene set enrichment analysis were obtained from 

Reactome v72107. Before testing, pathways were restricted to those of level 2 or 

higher, and with between 10 and 500 genes (total of 1,429 pathways containing 10,178 

genes). In each cancer type separately, the unique set of top-up predictions from 

sysSVM2 was tested for enrichment in pathways containing at least one prediction, 

using one-sided hypergeometric tests. The resulting p-values across all cancer types 

were corrected for False Discovery Rate (FDR) using the Benjamini-Hochberg 

method89, as a single set. 

 

5.2.6. Annotation of PCAWG osteosarcoma data 
Variant call VCF files (SNVs, indels) and BED files (copy number segments) were 

downloaded for 36 PCAWG osteosarcoma samples from the ICGC Data Portal 

(https://dcc.icgc.org/). Variants were annotated as described for TCGA samples, 

except for gene amplifications that could not be filtered based on overexpression since 

matched gene expression data were unavailable. Instead, a more stringent threshold 

of copy number >2.5 x sample ploidy was used. This resulted in a total of 4,969 

damaged genes across the cohort, comprising 3,270 unique genes (Supplementary 

Table 2).  
 

5.2.7. Autoencoder implementations 
Both the variational autoencoder (VAE) and the augmented autoencoder (AAE) were 

implemented in Python using the Tensorflow package233 and the Keras Functional API 

(GitHub repository https://github.com/fchollet/keras).  
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The same reference simulated cohort used for sysSVM2 development was 

used for VAE training and prediction. The VAE was composed of an encoder, a 

bottleneck (Reduced Dimensionality Representation, RDR), and a decoder. The 

encoder consisted of three fully-connected intermediate layers, before a RDR with 

three dimensions. This architecture was repeated in an inverted form for the decoder, 

giving a total of 796 trainable parameters. All layers were connected using the 

hyperbolic tangent activation function for smoothly nonlinear behaviour.  

During training, the accuracy of feature reconstruction was assessed using the 

Mean Squared Error (MSE). Each of the features was first normalised to range 

between -0.8 and 0.8 to be compatible with the tanh activation function. Then, the 

MSE was measured as: 

MSE =
1
26rrA𝑦>= − 𝑥>=B

L
LH

=IJ>

	 

where 𝑦>= and 𝑥>= are the real and reconstructed values for feature 𝑓 in gene 𝑔. 

To minimise the MSE for canonical drivers, the VAE was trained using 

backpropagation for 10,000 epoch iterations. The resulting trained model was then 

used for prediction on the 18,471 remaining damaged genes. In this case, the MSE 

was used to measure the similarity of the features of genes in the prediction set to 

those of canonical drivers and genes with low MSE were more similar to canonical 

drivers. Since VAEs are stochastic models, MSE values were averaged over 100 

prediction iterations. The final score 𝑆> was calculated as: 

𝑆> = −
1
100r

1
26r�𝑦>= − 𝑥>=

(8)�
L

LH

=IJ

JQQ

8IJ

 

where 𝑖 labels the prediction iteration. 

An AAE was developed to combine sysSVM2 with NN and incorporate 

additional samples into a pre-trained model. The AAE consisted of a standard auto-

encoder and an extension that produced an additional output for the gene score 

(Figure 5-11A). The aim of the AAE was to reconstruct the sysSVM2 gene scores for 

initial samples and predict scores for additional samples, while learning from the 

features of both cohorts. Thus, unlike the VAE, the AAE was trained on all damaged 

genes, not only canonical drivers. Because of the substantially larger training set, the 

AAE had a larger number of trainable parameters and a higher learning capacity than 

the VAE. To reflect this, the encoder consisted of a linear pre-layer and four fully-



 150 

connected intermediate layers. The RDR had seven dimensions, and the decoder had 

the inverted architecture of the encoder minus the linear pre-layer, for a total of 2,671 

trainable parameters. The gene score was derived from the RDR through an additional 

three fully-connected layers.  

The AAE was trained using molecular and systems-level features of all genes 

in initial and additional samples. During training, the accuracy of feature reconstruction 

was assessed with MSE. The accuracy of gene score reconstruction was measured 

with the sum of MSE and Mean Absolute Error, to penalise large numbers of small 

errors. The AAE was trained using backpropagation for 10,000 iterations. Gene scores 

of additional samples were predicted directly by the AAE from molecular and systems-

level features.  
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5.3. Developing a systems-level approach for patient-level driver detection 
In this section we introduce and further develop our method for patient-level driver 

detection, sysSVM. sysSVM was initially developed for use in oesophageal 

adenocarcinoma27, and here we optimise it for pan-cancer use. We first describe the 

rationale behind sysSVM and give an overview of the algorithm (5.3.1). We then 

construct a cancer-agnostic simulated dataset to use for optimisation (5.3.2). Finally, 

we use this data to optimise sysSVM for pan-cancer use in terms of data 

normalisation, parameter tuning and feature selection (5.3.3). 

 

5.3.1. The systems-level support vector machine (sysSVM) 
We saw in Chapter 4 that driver genes, and particularly canonical driver genes, are 

distinguished from other human genes by an array of systems-level properties 

(Figures 4-2 and 4-3). The sysSVM approach to driver detection prioritises somatically 

damaged genes in individual samples with features similar to those of canonical 

cancer drivers27. In addition to the systems-level properties discussed in Sections 4.1 

and 4.4, driver genes are also characterised by molecular properties. In sysSVM, both 

types of property are encoded as continuous or binary features for a Support Vector 

Machine (SVM) classifier (Methods 5.2.1). 

For the optimisation of sysSVM for pan-cancer use, systems-level properties of 

genes are encoded by 25 features (Supplementary Table 1, Methods 5.3.2). Molecular 

properties describe the somatic alterations that genes undergo in cancer tumours 

(sequence and copy number alterations). Molecular properties change in each 

analysed cohort because they derive from patient cancer sequencing data. The 

molecular properties used in optimising sysSVM for pan-cancer use are encoded by 

five continuous features (total exonic mutational load, non-truncating damaging 

mutations, truncating mutations, hotspot mutations, gene copy number) and two 

binary features that indicate whether the gene is amplified or deleted (Supplementary 

Table 1). Details on how damaging mutations, gene amplifications and gene deletions 

are derived from cancer sequencing data are provided in Methods 5.2.3.  

 To leverage the systems-level and molecular properties of canonical drivers, 

sysSVM first identifies a set of true positive canonical drivers damaged within a cohort 

of patients (Figure 5-2). It then uses the features of this positive set to train one-class 

SVMs based on four kernels (linear, radial, sigmoid, polynomial). Finally, it ranks the 
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remaining damaged genes in individual cancer patients with a combined score that 

weights the kernels based on their sensitivity (Methods 5.2.1). Highly ranked genes 

have the most similar properties to those of canonical drivers and will be then 

considered the cancer drivers for that patient. We use one-class SVMs for sysSVM 

because, while canonical drivers represent a reliable set of true positives, identifying 

a true negative set of non-cancer genes is not possible. For example, possible 

negative genes could be known false positives of driver gene detection methods26,44. 

However, these genes are representative of false positives rather than true negatives, 

so training a classifier on them is likely to introduce unwanted bias. A one-class 

support vector machine for novelty detection is therefore an optimal way to solve this 

issue. 

 
Figure 5-2: Overview of sysSVM 
Molecular (somatic SNVs, indels and mutation burden) and systems-level features 

(Supplementary Table 1) of damaged canonical drivers in the analysed samples are 

used for training. The best models of support vector machines (SVMs) with four 

kernels are selected using cross-validation and trained on the whole set of damaged 

canonical drivers. Finally, a combined weighted score is used to prioritise driver genes 

in individual patients. The SVM implementation was generalised for optimal 

performance on a simulated cancer-agnostic dataset through data normalisation, 

parameter tuning and feature selection. 

 

5.3.2. Preparing a cancer-agnostic simulated dataset 
In order to optimise the use of sysSVM for any cancer type in a controlled an unbiased 

way, we simulated 1,000 cancer-agnostic samples starting from all TCGA tumours 

with matched mutation, CNV and gene expression data (Methods 5.2.3). We ensured 

that the tumour mutation and copy number burdens were similar between real and 
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simulated samples (Figure 5-3A). The frequency of damaging alterations in known 

oncogenes and tumour suppressors was comparable between the two datasets, with 

TP53, PIK3CA and CDKN2A among the most frequently altered genes in both (Figure 

5-3B). We further verified that the molecular features of individual damaged genes did 

not deviate significantly between the real TCGA and simulated reference cohorts 

Figure 5-3C). Finally, we found that gene alteration frequencies in the simulated data 

were not significantly biased by cancer types with large cohort sizes in TCGA (Figure 

5-3D), confirming the suitability of the simulated data as a representative pan-cancer 

cohort. 

The simulated cohort for sysSVM pan-cancer optimisation (hereafter referred 

to as the reference cohort) was composed of 1,000 samples with 18,455 genes 

damaged 309,427 times. Of these, 686 were canonical drivers with an experimentally 

proven role in cancer25,111, 1,605 were candidate cancer genes from 273 cancer 

screens24, 43 were known false positive predictions of driver detection methods44,186 

and 16,121 were the remaining damaged genes (hereafter referred to as the rest of 

genes; Figure 5-3E, Supplementary Table 2). We annotated the seven molecular and 

25 systems-level features of all damaged genes (Supplementary Table 1) and used 

these features for training and prediction. As a training set, we selected 457 of the 686 

canonical drivers with proven roles as oncogenes (236) or tumour suppressors (221). 

We restricted somatic alterations of oncogenes and tumour suppressors to gain-of-

function or loss-of-function alterations, respectively (Methods 5.2.3). Since we could 

not reliably define the remaining 229 damaged canonical drivers as either oncogenes 

or tumour suppressors, we could not restrict their somatic alterations to the appropriate 

type. Therefore, we did not use them for training but could still use them for prediction 

and performance assessment (Figure 5-3E), together with 43 false positives and 

16,121 the rest of genes. 
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Figure 5-3: Constructing a simulated pan-cancer reference cohort 
A. Generation of a simulated reference cohort from TCGA data. Values of damaging 

mutation burden and ploidy were randomly assigned to samples. Damaged genes 

were then extracted from real samples with similar values of damaging mutation 
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burden (+/-10% for mutations) and ploidy (+/-0.1 for CNVs). Dots represent individual 

TCGA (orange) or simulated (yellow) samples. Red lines indicate average numbers of 

genes with damaging mutations or CNVs in TCGA samples, for each given values of 

damaging mutation burden or ploidy.  

B. Frequencies of canonical drivers in real and simulated samples. Oncogene gain-

of-function, tumour suppressor loss-of-function and both types of TP53 alterations 

were considered. 

C. Quantile-quantile (QQ) plots illustrating comparisons of molecular features of genes 

between TCGA (n=7,630) and simulated reference (n=1,000) cohorts. Features were 

compared using Poisson tests (mutation features), Wilcoxon tests (copy number) and 

Fisher tests (amplifications and deletions). 

D. For each cancer type in TCGA, the gene alteration frequency profile was calculated 

as the proportion of samples with a damaging alteration in each gene. This was then 

compared to the gene alteration frequency profile of the simulated reference cohort of 

1,000 samples using the root mean-squared error (RMSE). This was calculated as 

𝑅𝑀𝑆𝐸 = V J
JGSbG

∑ A𝑓>Cdef − 𝑓>:8NB
LJGSbG

>IJ , where 𝑓>Cdef and 𝑓>:8N are the frequencies of 

gene g being damaged in the TCGA and simulated cohorts, and 19549 is the total 

number of human genes24. Higher values of the RMSE indicate greater differences 

between the simulated reference cohort and the TCGA cohort for that cancer type. 

Cancer types with RMSE >0.05 are labelled. There was no significant correlation 

between cohort size and RMSE (Spearman correlation p=0.54, rho=-0.11). 
E. Gene sets used for sysSVM optimisation. The training set included oncogenes 

(OGs) and tumour suppressor genes (TSGs), as well as TP53. All other damaged 

genes were used for prediction and assessment. These included other canonical 

drivers (without a proven OG or TSG role), candidate cancer genes from published 

cancer sequencing screens, known false positives of established driver detection 

methods and the remaining damaged genes. Bars indicate the number of unique 

damaged genes across the reference cohort of 1,000 simulated samples. 

 

5.3.3. Optimising sysSVM for pan-cancer use 
Using the simulated reference cohort, we optimised sysSVM for pan-cancer use in 

terms of data normalisation, parameter tuning and feature selection (Figure 5-2).  
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Each kernel in sysSVM (linear, radial, sigmoid, polynomial) is controlled by one 

or more (hyper-)parameters. We tune these parameters to the training set of canonical 

drivers by performing a grid search (Methods 5.2.1). One of the challenges of 

implementing a multi-kernel approach like sysSVM is the combinatorial explosion of 

possible kernel parameter combinations. For example, in our standard grid search, 

the linear kernel has 7 parameter combinations, the radial and sigmoid kernels have 

84 combinations each, and the polynomial kernel has 21 combinations. If we were to 

tune these parameter combinations simultaneously for all kernels, we would have to 

investigate a total of 7 × 84 × 84 × 21 = 1,037,232 parameter combinations. This 

would be prohibitively costly. By tuning parameters separately for each kernel, we only 

need to assess 7 + 84 + 84 + 21 = 196 total parameter combinations, which is much 

more tractable.  

However, for the purposes of optimising sysSVM on the pan-cancer simulated 

dataset, we wanted not to bias our approach with a particular set of pre-tuned kernel 

parameters. Therefore, we implemented 512 multi-kernel models with parameter 

combinations representing a sparse coverage of the 1,037,232 possible models from 

a standard grid search (Methods 5.2.1). We then measured the ability of each of these 

512 models to prioritise the 229 canonical drivers not used for training over the rest of 

damaged genes or the false positives. We did this by computing the Area Under the 

Curve (AUC) in each sample individually, and taking the median AUC as 

representative of the whole cohort (Methods 5.2.2). 

First, we derived the optimal settings for data normalisation in terms of centered 

and un-centered data. While it is common practice in machine learning approaches to 

use centered data, there are theoretical considerations that suggest that this might not 

be optimal for the one-class SVM (Appendix 1). All 512 models robustly prioritised 

canonical drivers above the rest using either centered or un-centered data, but showed 

lower performance in distinguishing canonical drivers from false positives (Figure 5-

4A). We reasoned that false positives from recurrence-based driver detection 

methods44 shared some features with canonical drivers. For example, they encoded 

long and multi-domain proteins. Removing the protein length and number of protein 

domains features from the SVMs (Supplementary Table 2) substantially improved 

performance, particularly for un-centred data (Figure 5-4B). We therefore excluded 

these features from the model in further analysis. 
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Second, we selected the optimal sets of parameters in each kernel. Hyper-

parameter choice is known to have substantial impacts on classification and it is an 

open problem for one-class SVMs234. Since the parameters for each kernel needed to 

be tuned separately, we could not use AUC of the combined multi-kernel model for 

tuning in general. Instead, we used the sensitivity of each kernel to predict canonical 

drivers calculated from three-fold cross-validation on the training set (Methods 5.2.1). 

Average sensitivity across kernels was indeed a good predictor of the overall AUC of 

canonical drivers over the rest of genes (Figure 5-4C) and false positives (Figure 5-

4D). We therefore developed an approach to select the parameters that conferred the 

highest sensitivity for each kernel in multiple iterations of cross-validation (Methods 

5.2.1). In the reference cohort, parameters chosen in this way converged within 2,000 

cross-validation iterations for all kernels (Figure 5-4D). 

Finally, since the presence of highly correlated features can hinder SVM 

performance235, we performed systematic feature selection by assessing the pairwise 

correlations between all 25 systems-level features. Four features (gene expression in 

1≤ tissues ≤6 and in ≥37 tissues; protein expression in 0≤ tissues ≤8 and central 

position in the protein-protein interaction network) exhibited a significant degree of 

inter-correlation (Pearson |r| >0.5, FDR<0.05, Figure 5-4E). Removing them led to 

faster convergence of kernel parameters (Figure 5-4D) and improved performance 

overall (Figure 5-4F). 

Based on these results, we chose the default settings for the cancer agnostic 

SVM classifier, which we named sysSVM2. By default, data are un-centered but 

scaled to have unit standard deviation. Six of the original systems-level features are 

excluded resulting in a total of seven molecular and 19 systems-level features (Table 

5-1). Finally, kernel parameters optimised on the simulated reference cohort are 

provided as a default (Figure 5-4D), although users may perform specific cross-

validation iterations on their own cohorts. 
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Figure 5-4: Optimisation of sysSVM for pan-cancer use 
Model performances on the reference cohort using centered (left) and un-centered 

(right) data with all 25 systems-level features (A) or excluding protein length and 

number of protein domains (B). A sparse grid of 512 parameter combinations in the 
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four kernels was tested. The performance of each model was measured using the 

Area Under the Curve (AUC), comparing the ranks of canonical drivers to the rest of 

genes and false positives. Median AUC values across all samples were plotted. Red 

dotted lines represent the minimum AUC values.  

Correlation between model average sensitivity and AUCs of canonical drivers over the 

rest of genes (C) or false positives (D). The sensitivity of each kernel was measured 

on the training set over 100 three-fold cross-validation iterations. The median values 

over the four kernels are plotted. R and p-values from Pearson’s correlation test are 

reported. Dotted red lines indicate the linear regression curves of best fit. 

D. Parameter convergence on simulated data, with (top) and without (middle) 

correlated features. The four kernels had a total of seven parameters chosen from a 

grid search. Cumulative parameter selections are indicated over a series of 5,000 

cross-validation iterations, but parameter choices converged within 2,000 iterations. 

The final selected parameter values are indicated at the top and were the same for 

both settings (with and without correlated features). 

E. Correlation between systems-level features. Pearson correlation coefficient was 

measured between all possible pairs of features reported in Supplementary Table 1 

considering all genes with available data. Only features with at least one significant 

correlation (Pearson |r|>0.5, FDR<0.05) are shown. Three correlated feature pairs 

(Protein-Protein Interaction Network (PPIN) degree – PPIN hub, PPIN degree – PPIN 

betweenness, and pre-metazoan and metazoan origin) were retained because they 

were complementary in their description of gene properties. In particular, PPIN 

betweenness is a distinct topological property from degree, and hubs included proteins 

with a large range of degrees (41 to 2,116). The evolutionary origin features instead 

described the two most common epochs for the origin of human genes (11,624 pre-

metazoan, 3,076 metazoan, Supplementary Table 1).  Final features removed are in 

red. 

F. Comparison of model performances with (green) and without (grey) correlated 

features. Median Receiver Operating Characteristic (ROC) curves across samples are 

plotted, comparing the ranks of canonical drivers to the rest of genes (left) and to false 

positives (right). The median Areas Under the Curve (AUCs) are also indicated.   
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Category Property Feature Type 

Molecular 

Gene 

mutation 

Mutational load (n) Continuous 

Non-truncating damaging mutations 

(n)  
Continuous 

Truncating mutations (n) Continuous 

Hotspot mutations (n) Continuous 

Gene copy 

number  

Gene copy number (n) Continuous 

Gene is amplified Binary 

Gene is deleted Binary 

Systems-

level 

Gene 

duplication 

Gene is duplicated Binary 

Gene is an ohnolog  Binary 

Gene 

essentiality 

Cell lines in which gene is essential 

(%) 
Continuous 

Gene is essential  Binary 

Gene 

expression 

Tissues expressing gene (n) Continuous 

Gene is expressed in 0 tissues Binary 

Gene is expressed in 7≤ tissues≤ 36 Binary 

Protein 

expression 

Tissues expressing protein (n) Continuous 

Protein is expressed in ≥41 tissues Binary 

Protein-

protein 

interaction 

network 

(PPIN) 

PPIN degree Continuous 

Protein is a PPIN hub Binary 

PPIN betweenness Continuous 

PPIN clustering coefficient Continuous 

Protein 

complexes 
Complexes the protein is part of (n) Continuous 

miRNA 

interactions 
miRNAs targeting the gene (n) Continuous 

Gene 

evolutionary 

origin 

Pre-metazoan origin Binary 

Metazoan origin Binary 

Vertebrate origin Binary 
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Post-vertebrate origin Binary 

 

Table 5-1: Molecular and systems-level properties of genes used to prioritise cancer 

genes in sysSVM2. Molecular properties describe gene alterations in individual cancer 

samples. Systems-level properties are global gene properties and are not related to 

cancer (see also Supplementary Table 1). PPIN: Protein-protein interaction network. 

miRNA: micro RNA.  
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5.4. Assessment of sysSVM2 on real and simulated data 
Having optimised sysSVM2 for pan-cancer use, we sought to comprehensively assess 

its performance. In this section, we will start with simulated data, first running sysSVM2 

on the simulated reference cohort (5.4.1), and then assessing the effect of training 

cohort size on performance (5.4.2). We will then benchmark sysSVM2 against existing 

driver detection methods in gastro-intestinal samples from TCGA, both at the cohort-

level and at the sample-level (5.4.3). Having found that sysSVM2 is stable and has a 

low false positive rate, we will then apply sysSVM2 to all cancer types available in 

TCGA (5.4.4). Finally, we will validate the utility of sysSVM2 by applying a model 

trained on pan-cancer data to an external cohort of osteosarcomas, a rare cancer type 

with few known drivers (5.4.5).   

 

5.4.1. Performance in the simulated reference cohort 
We first assessed the performance of sysSVM2 in prioritising cancer drivers over other 

genes using the same simulated reference cohort on which its performance had been 

optimised in Section 5.3. We confirmed that, overall, the prediction scores of 229 

canonical drivers outside the training set were significantly higher than those of any 

other gene category (Figure 5-5A). Candidate cancer genes also scored significantly 

higher than the rest of genes, indicating that they were also in top ranking positions.  

We also measured the relative ranks of genes in individual samples using 

Receiver Operating Characteristic (ROC) curves. Comparing canonical drivers to the 

rest of genes and to false positives gave AUCs of 0.73 and 0.93, respectively (Figure 

5-5B), demonstrating that canonical drivers were prioritised above the rest of genes 

and especially above false positives. This was not surprising since canonical drivers 

differ more from false positives than they do from the rest of human genes by their 

systems-level properties (Figure 5-5C). This observation also supported the decision 

not to use two-class classification, since known false positives are not representative 

of non-cancer genes in general. 
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Figure 5-5: Performance of sysSVM2 on the simulated reference cohort 
A. Distributions of sysSVM2 prediction scores for different types of damaged genes in 

the reference cohort. Whiskers extend to 1.5 times the Inter-Quartile Range (IQR). 

Statistical significance was measured using two-sided Wilcoxon tests. The median 

values of the distributions are labelled. **** = p <2.2x10-16.  

B. Receiver Operating Characteristic (ROC) curves, comparing canonical drivers to 

the rest of genes (green) and to false positives (brown). Recall rates were calculated 

for each sample separately and the median ROC curve across samples was plotted. 

Median Areas Under the Curve (AUCs) for both comparisons are also indicated. 

C. Difference in average features between canonical drivers and the rest of human 

genes (green) and false positives (brown). For each of the three gene sets and each 

of the 19 systems-level features selected for sysSVM2, either the median value 

(continuous features, top row) or the proportion of genes for which the feature was 

positive (binary features, bottom row) was calculated. The difference in these values 

between canonical drivers and both the rest of genes and false positives is shown for 

each feature. For all features except Gene is expressed in 7≤tissues≤36, the 
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difference between canonical drivers and false positives is greater than the difference 

between canonical drivers and rest of genes, while the direction of the difference is 

the same. 

 

5.4.2. Effect of training cohort size on sysSVM2 performance 
The sample size of patient cohorts can highly vary across cancer types. For example, 

in TCGA it ranges from 32 samples for diffuse large B-cell lymphoma (DLBC) to 726 

for breast cancer (BRCA, Supplementary Table 3), with a median of 201 samples. We 

therefore sought to address how the sample size of the training cohort affected 

sysSVM2 performance.  
Starting from all TCGA samples and using the previously described approach 

(Methods 5.2.3), we simulated 40 training cohorts, ten of which were composed of ten 

samples, ten of 100 samples, ten of 200 samples and ten of 1,000 samples. We then 

trained sysSVM2 on each of these 40 cohorts independently and used the resulting 

models to rank damaged genes in the reference cohort and compared their 

performance.  

The distributions of AUCs of canonical drivers over the rest of genes or false 

positives were high for all four cohort sizes (Figure 5-6A). This suggested that 

sysSVM2 was overall very effective in prioritising cancer genes independently of the 

training cohort size. We then compared the composition of the prioritised gene list in 

each sample across models of a given size. We measured a composition score of the 

top five genes that accounted for the number and position of canonical drivers, 

candidate cancer genes and false positive genes (Methods 5.2.4). Similar to the AUC, 

the composition score of the top five genes was also very similar across training 

cohorts (Figure 5-6B). However, a few models trained on ten or 100 samples returned 

false positives in the top five positions while no false positives were predicted by 

models trained on larger cohorts of 200 or 1,000 samples.  Finally, we measured the 

ratio between observed and expected canonical drivers and false positives in the top 

five genes (Figure 5-6C, Methods 5.2.4). Independently of the training cohort size, 

false positives in the top five genes were always lower than expected, confirming that 

sysSVM2 efficiently distinguished false positives from drivers. The number canonical 

drivers in the top five genes was more than twice the expected number in >85% of 

samples and more than five times the expected value in around 65% of samples. As 
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with the other metrics, the performance of sysSVM2 did not change substantially with 

the size of the training cohort. 

Since we used the same reference cohort for prediction, we could directly 

compare the gene ranks in each patient across models, thus assessing their prediction 

stability. To do so, we measured the Rank-Biased Overlap (RBO) score that compares 

two ranked lists giving greater weight to the higher-ranked positions232 (Methods 

5.2.4).  The distributions of RBO scores of the top five genes were significantly higher 

for large training cohorts compared to those composed of ten samples (Figure 5-6D). 

Moreover, models trained on large cohorts showed overall higher gene overlap in the 

top five genes (Figure 5-6E).  

These results showed that, although sysSVM2 successfully separates 

canonical drivers from other genes independently of the training cohort size, small 

cohorts lead to occasional false positive predictions and to unstable gene ranking. 

Since the median cohort size of TCGA cancers is 201 samples, sysSVM2 is likely to 

separate canonical drivers from the rest of genes with a very low false positive rate 

and stable gene rankings for most cancer cohorts.  

 
Figure 5-6: Effect of training cohort size on sysSVM2 performance 
A. Distributions of AUCs comparing the ranks of canonical drivers to the rest of genes 

(green) and False Positives (brown). Models were trained on ten simulated cohorts 

composed of ten, 100, 200 and 1,000, for a total of 40 simulated cohorts. These were 
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then used to predict on the same reference cohort of 1,000 samples. The AUC was 

measured for each set of predictions in each sample. 

B. Distributions of composition scores of the top five predictions in terms of canonical 

drivers, candidate cancer genes, false positives and rest of genes (Methods 5.2.4). 

The composition score was measured for each set of predictions in each sample. Six 

training cohorts of size ten and two cohorts of size 100 gave negative composition 

scores in at least one sample, indicating highly ranked false positive genes. 

C. Ratios between observed and expected numbers of canonical drivers and false 

positives in the top five predictions (O/E ratios). For each size of the training cohort, 

the percentages of samples with a false positive O/E ratio of zero and canonical driver 

O/E ratios greater that 2, 5 and 10 are shown (Methods 5.2.4). 

D. Rank-Biased Overlap (RBO) score of the top five predictions in each sample 

(Methods 5.2.4). RBO scores measured the similarity between the predictions from 

every possible pair of models trained on cohorts of a particular sample size. Statistical 

significance was measured using two-sided Wilcoxon tests. **** = p <2.2x10-16. 

E. Distribution of the number of top five predictions shared between models trained 

with the same cohort size. The overlap was calculated between each pair of 

predictions in each sample. 

 

5.4.3. Benchmark of sysSVM2 against existing methods 
Next, we sought to compare the predictions of sysSVM2 on real cancer data to those 

of other driver detection methods. To do this, we used 657 Gastro-Intestinal (GI) 

adenocarcinomas from TCGA (73 oesophageal, 279 stomach, 219 colon and 86 rectal 

cancers, Supplementary Table 3). Overall, this cohort had 17,122 unique damaged 

genes, including 438 tumour suppressors and oncogenes used for sysSVM2 training 

(Supplementary Table 2). After ranking the remaining 16,684 damaged genes, we 

confirmed the overall ability of sysSVM2 to prioritise the 228 canonical drivers not used 

for training over the rest of damaged genes and false positives also in real data (Figure 

5-7A).  

To identify the list of cancer drivers in each patient, we adopted a top-up 

approach. Starting from the GI canonical drivers24 damaged in each sample, we added 

sysSVM2 predictions progressively based on their rank to reach five drivers per patient 

(Methods 5.2.5). This was based on the assumption that each cancer requires at least 
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five driver events to fully develop, in concordance with recent quantifications of the 

amount of excess mutations arising from positive selection in cancer16,217. While 154 

patients had damaging alterations in five or more GI canonical drivers, 503 patients 

(77%) needed at least one prediction (Figure 5-7B), highlighting the need for additional 

cancer driver predictions. This resulted in 564 unique sysSVM2 drivers.  

We then predicted the drivers in the same GI samples using two cohort-level 

(PanSoftware15 and dNdScv217) and two patient-level (OncoIMPACT225 and 

DriverNet226) detection methods. PanSoftware integrated 26 computational driver 

prediction tools and we took the list of 40 damaged drivers directly from the original 

publication15, given that we used a large subset (87%) of the same TCGA GI samples. 

We ran the other three methods with default parameters (Methods 5.2.5) and obtained 

25 predicted drivers with dNdScv, 607 with DriverNet and 1,345 with OncoIMPACT.  

We compared sysSVM2 to the four other methods in terms of recall rates of 

canonical drivers or false positives, proportion of novel predictions and patient driver 

coverage. Overall, cohort-level methods had higher recall rates of GI canonical 

drivers, fewer novel predictions and a comparably low false positive recall than 

sysSVM2 (Figure 5-7C). However, unlike sysSVM2, neither cohort-level method 

predicted drivers in all patients, leaving the vast majority of them with less than five 

predictions and some with no predictions (Figure 5-7D). 

Compared to sysSVM2, the other two patient-level methods had higher recall 

rates of the 228 canonical drivers, a comparably high proportion of novel predictions 

but higher false positive rate (Figure 5-7C). Namely, sysSVM2 made only one false 

positive prediction in one patient while DriverNet and OncoIMPACT predicted four and 

seven false positives in 124 and 306 patients, respectively (Figure 5-7E). Overall, all 

three methods had high patient driver coverage, but sysSVM2 outperformed the other 

two with only one sample where it predicted less than five drivers (Figure 5-7D). 

Interestingly, the overlap of predictions between sysSVM2 and the other patient-level 

methods was statistically significant (Figure 5-7E) even when only top-up predictions 

were considered (Figure 5-7F). This suggested that the majority of predictions 

converged to the same genes. 

These results showed that cohort-level methods have high specificity and 

sensitivity to identify cancer-specific canonical drivers but often fail to find drivers in a 

substantial subset of patients. Compared to other patient-level detection methods, 

sysSVM2 outperforms them in terms of specificity and patient coverage.  
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Figure 5-7: sysSVM2 benchmark on TCGA gastro-intestinal cancers 
A. Median Receiver Operating Characteristic (ROC) curves across 657 Gastro-

Intestinal (GI) samples from TCGA. Curves compare the ranks of canonical drivers to 

the rest of genes or to false positives. The median Areas Under the Curve (AUCs) are 

also indicated. 

B. Distribution of GI canonical drivers across the GI cohort. Lists of canonical drivers 

for each GI cancer type were obtained from NCG624 and mapped to samples of the 

corresponding cancer type where they were damaged. Numbers of samples are 

indicated above each bar. Samples with five or more GI drivers did not require 

additional driver predictions.  
C. Comparison of performance between sysSVM2 and four other driver detection 

methods. The set of unique drivers predicted by each approach were compared in 
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terms of recall of GI canonical drivers, other canonical drivers (non-GI and outside the 

sysSVM2 training set) and false positives and proportion of novel predictions not 

previously associated with a cancer driver role. The number of genes in each category 

is reported in brackets. The recall of GI canonical drivers could not be assessed for 

sysSVM2 because these were part of the training set. They were however considered 

as drivers by default, rather than predicted by the algorithm. NA = Not Applicable. 

D. Proportions of 657 GI samples left with no predicted drivers (left) or fewer than 5 

predictions. The one sample left with fewer than 5 predictions by sysSVM2 (TCGA-

FP-8210, stomach cancer) had four damaged genes overall. 

Overlap of driver predictions in individual samples, between sysSVM2, DriverNet226 

and OncoIMPACT225. The sysSVM2 predictions were considered both with (E) and 

without (F) the GI canonical drivers. The numbers of overlapping patient-level 

predictions are indicated, along with the number of unique genes in each set in 

brackets. P-values and Odds Ratios (ORs) for pairwise overlap were calculated using 

Fisher’s exact test, taking into account all damaged genes in all samples. 

 

5.4.4. Patient-level drivers in 34 cancer types 
In order to provide a comprehensive resource of trained models and patient-level 

drivers, we sought to apply sysSVM2 to 7,646 TCGA samples of 34 cancer types with 

at least one somatically damaged gene (Methods 5.2.5). Training, prediction and 

assessment of sysSVM2 in these 34 cancer types was conducted by a colleague of 

mine, Hrvoje Misetic. 
To find the best training setting for the algorithm on real cancer samples, we 

compared the performance of sysSVM2 trained on the whole pan-cancer cohort as 

well as on the 34 cancer types separately. In the pan-cancer setting, we used all 477 

tumour suppressors and oncogenes damaged across the whole cohort. In the cancer-

specific setting, we used instead only the subsets of these genes damaged in each 

cancer type (Supplementary Table 3). We then predicted on the remaining damaged 

genes and applied the top-up approach as described above, starting from the cancer-

specific canonical drivers damaged in each patient (Supplementary Table 3). We 

found that 6,067 samples (79%) required at least one sysSVM2 prediction in order to 

reach five drivers (Figure 5-8A). These corresponded to 4,369 and 4,548 unique genes 
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in the pan-cancer and cancer-specific settings, respectively, with a significant overlap 

of predictions (3,896, p <2.2x10-16, two-sided Fisher’s exact test). 

We then compared the performance of pan-cancer and cancer-specific settings 

of sysSVM2 in prioritising canonical drivers over rest of genes or false positives. The 

AUCs differed significantly (FDR <0.05) and substantially (|difference in medians| 

>0.05) in only five cancer types (Figure 5-8B). All of them were composed of small 

cohorts with <200 samples and in all cases the pan-cancer setting showed better 

performance than the cancer-specific setting. The composition score of the top five 

predictions also differed significantly and substantially (|difference in medians| >1) in 

only three cancer types (Figure 5-8C). All these cancer types were again characterised 

by small training cohorts and showed higher performance in the pan-cancer setting. 

Predictions of cancer-specific models and the pan-cancer model were mostly similar, 

with the exception of cancer types with small training cohorts (Figures 5-8D, E). 

Overall, these results confirmed the trend observed in the simulated data and indicated 

that the pan-cancer and cancer-specific settings performed similarly well in most 

cases, except for small cohorts where the pan-cancer model performed better. 

Based on these results, we used the pan-cancer setting for cancer types with 

small cohorts (N <200) and the cancer-specific setting for the others, as this could 

reflect cancer-type specific biology without jeopardising performance or stability. The 

final list of patient-specific predictions in 34 cancer types was composed of 4,470 

unique genes, the vast majority of which (93%) were rare (<10 patients) or patient-

specific (Figure 5-8F, Supplementary Table 4). A gene set enrichment analysis on 

these genes revealed 984 enriched pathways overall (Reactome level 2 or above, 

FDR <0.01, Methods 5.2.5, Supplementary Table 5). Interestingly, when mapping 

these pathways to broader biological processes (Reactome level 1), a few processes 

were widely enriched in almost all cancer types (Figure 5-8G). These included well-

known cancer-related processes such as chromatin organisation236, DNA repair237, 

cell cycle238 and signal transduction239. Therefore, although not recurring across 

patients, sysSVM2 predictions converged to perturb similar biological processes that 

are known to contribute to cancer. 
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Figure 5-8: sysSVM2 predictions in 34 cancer types 
A. Number of damaged canonical drivers per sample. Lists of canonical drivers for 

each cancer type were obtained from NCG24 and mapped to samples of the 

corresponding cancer type. 6,067 samples with less than five canonical drivers 

damaged underwent the top-up procedure to reach five drivers. 
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Difference in Areas Under the Curve (AUCs) between the pan-cancer and cancer-

specific settings in ranking canonical drivers over the rest of human genes and false 

positives (B) and in the composition score of the top five predictions (C). The median 

values of the distributions in each cancer type were used for comparison, with the 

yellow and blue regions indicating better performance in the pan-cancer and cancer-

specific settings, respectively. The number of samples used for training is indicated on 

the x-axis. Colour dots represent cancer types where the two settings differ both 

significantly (FDR <0.05, Wilcoxon rank-sum test) and substantially (|difference in 

medians| >0.05 for AUCs, >1 for composition score). ACC, adrenocortical carcinoma; 

TGCT, testicular germ cell tumours; PAAD, pancreatic adenocarcinoma; READ, 

rectum adenocarcinoma; MESO, mesothelioma; UVM, uveal melanoma; and OSCC, 

oesophageal squamous cell carcinoma. 

D. Rank-Biased Overlap (RBO) scores measuring the similarity between the top five 

predictions in the pan-cancer and cancer-specific settings. Median RBO scores for 

each cancer type are shown on the y-axis, and the number of samples used for training 

is shown on the x-axis. UVM, uveal melanoma; GBM, glioblastoma multiforme; TGCT, 

testicular germ cell tumours. 

E. Overlap in the top five predictions between the pan-cancer and cancer-specific 

settings, for each cancer type. The numbers of samples whose predictions were 

considered are indicated in brackets. 
F. Recurrence of damaging alterations in 282 canonical driver genes and 4,470 

sysSVM2 top-up predictions across 7,646 samples. 

G. Gene set enrichment analysis of sysSVM2 top-up genes, grouped in broad 

biological processes (Reactome level 1). Numbers of pathways enriched in at least 

one cancer type out of the total pathways tested are reported in brackets. Red vertical 

strokes indicate the mean number of cancer types that pathways from each broad 

process are enriched in (bottom x-axis). 

 

5.4.5. sysSVM2 predictions in an independent cancer cohort 
We finally sought to assess whether the sysSVM2 models trained on TCGA could be 

applied for driver prediction in a cancer type not included in TCGA. We therefore 

analysed 36 osteosarcomas from the Pan-Cancer Analysis of Whole Genomes 
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(PCAWG) consortium16. Osteosarcoma is a rare, genetically heterogeneous bone 

cancer with poor prognosis and only six well-established canonical drivers240,241.  

We annotated the genomic data of the PCAWG cohort finding 4,969 damaged 

genes overall with a median of 93 damaged genes per sample (Methods 5.2.6, 

Supplementary Table 2). Only two of these samples had three damaged 

osteosarcoma canonical drivers while 19 (53%) of them had no canonical driver 

(Figure 5-9A), highlighting the need for further predictions. Given the small cohort size, 

we used the TCGA pan-cancer setting to rank the damaged genes in each 

osteosarcoma. Considering the top five predictions per sample, we got 129 unique 

genes (Supplementary Table 6), which were poorly recurrent across samples (Figure 

5-9B), reflecting again the genetic heterogeneity of osteosarcoma. 

At the cohort level, sysSVM2 predictions included five of the six (83%) 

osteosarcoma canonical drivers240,241. At the patient level, the six osteosarcoma 

canonical drivers were damaged 27 times and in 14 of these cases (53%) they were 

in the top five predictions (Figure 5-9C). This proportion rose to 81% when considering 

the top ten predictions. In addition to osteosarcoma canonical drivers, 26 sysSVM2 

predictions were canonical drivers in other cancer types, 16 were candidate cancer 

driver genes and 81 had no previously known involvement in cancer (Supplementary 

Table 6). Despite this, these 81 genes were enriched in eight pathways (FDR <0.1), 

most of which have a known role in cancer (Figure 5-9D). Moreover, they included 

genes known to promote osteogenesis such as YAP1 and YES1242,243. 

These results showed that sysSVM2 is able to identify reliable cancer drivers 

in individual patients even for cancer types not used for training. This has relevant 

implications particularly in the case of rare cancers that are poorly studied and have 

little genomic data available.  
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Figure 5-9: Validation of sysSVM2 in osteosarcoma 
A. Distribution of osteosarcoma canonical drivers across the PCAWG osteosarcoma 

cohort. Lists of canonical drivers for osteosarcoma derived from the literature240,241 

and mapped to samples where they were damaged. Numbers of samples are 

indicated above each bar.  

B. Recurrence of the 129 sysSVM2 predictions across the PCAWG osteosarcoma 

cohort. The percentages of genes that are predicted in 1, 2 and ≥3 are shown. 

C. Patient-level predictions of osteosarcoma canonical drivers by sysSVM2 when 

considering the top five genes. The number of samples in which each canonical driver 

is damaged (yellow) and predicted as a driver by sysSVM2 (pink) is shown. 

D. Gene set enrichment analysis of 81 sysSVM2 predictions with no previously 

reported involvement in cancer. Reactome level 2 and above were considered and 

pathways with FDR <0.1 are shown. 
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5.5. Alternative and extended models for driver gene identification 
In order to identify drivers in individual patients using molecular and systems-level 

properties, a one-class learning approach is necessary due to the lack of an 

appropriate set of true negative driver genes for training a two-class model. However, 

one-class SVMs230 are not the only available machine learning algorithms for this task. 

In particular, neural networks (NNs) provide flexible alternatives for one-class learning 

that have been shown to perform well in other settings244, and that can benefit from 

flexible learning strategies245. We therefore sought to investigate whether NNs could 

perform better than sysSVM2 for patient-level driver gene identification. 

In this section, we will first construct a NN-based alternative to sysSVM2, and 

show that it has a worse performance than the one-class SVM (5.5.1). We will then 

explore a fusion method that combines the performance of the SVM with the ability of 

NNs to learn from new data after an initial model has already been trained (5.5.2).  

 

5.5.1. A variational autoencoder alternative to sysSVM2 
Autoencoders are a class of NN algorithms that can be used for one-class learning, 

as well as for dimensionality reduction246-248. They have an hourglass-like architecture, 

with the output layer having the same dimension as the input layer. In between, one 

or more hidden layers are used first to ‘encode’ the inputs into a reduced-

dimensionality representation (RDR), and subsequently to ‘decode’ the RDR to 

reproduce the original inputs as closely as possible. The principle behind using 

autoencoders for one-class applications is that they learn how to accurately encode 

and decode only the data included in the training set247,248. At prediction time, when 

they see a data point that differs substantially from the training set, the decoder should 

not accurately reconstruct the input. Thus, data with high or low reconstruction error 

are determined to be dissimilar or similar to the training set, respectively. Variational 

autoencoders (VAEs) are a particular type of autoencoder that, in addition to 

reconstructing the input data, attempt to produce an RDR that is similar to a Gaussian 

distribution244. This regularisation makes VAEs particularly stable, and makes their 

output probabilistically interpretable, as well as enabling them to perform generative 

modelling.  

 We implemented a VAE to perform the same task as sysSVM2 (Methods 5.2.7). 

Specifically, we used as input the same 26 molecular and systems-level features that 
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sysSVM2 used to characterise genes (Figure 5-10A). The VAE encoded these 26 

features into an RDR of just three dimensions before attempting to reconstruct the 

input data. We trained the VAE using the same simulated reference pan-cancer 

training set as sysSVM2, i.e. 457 unique tumour suppressor genes and oncogenes 

damaged 8324 times across 1000 simulated samples. When predicting on the 

remaining damaged genes, we considered low reconstruction errors to indicate high 

similarity to the training set of canonical drivers, and ranked genes accordingly. The 

training of the VAE converged within 10,000 epochs (Figure 5-10B). 

 Before assessing the performance of the VAE, we sought to ensure that it was 

meaningfully encoding the gene molecular and systems-level features. On inspection, 

genes with different features were indeed distributed differently within the RDR. For 

example, there was clear separation of genes according to amplification status (Figure 

5-10C), evolutionary origin (Figure 5-10D) and degree in the protein-protein interaction 

network (PPIN, Figure 5-10E). Some features, such as expression across healthy 

tissues at the mRNA level, showed less clear separation in the RDR (Figure 5-10F). 

However, there was still evident structure in the RDR relating to these features. The 

combination of an average training set reconstruction MSE of 7% across all features, 

as well as the obvious structure of the RDR, indicated that the VAE had indeed learned 

how to encode and decode the molecular and systems-level properties of genes.  

 Finally, we used receiver operator characteristic (ROC) curves to assess the 

ability of the VAE to rank canonical driver genes above the rest of human genes. The 

VAE had substantially worse performance than sysSVM2 on simulated TCGA data. 

Comparing the ranks of canonical drivers to the rest of genes and false positives, the 

VAE had areas under the curve (AUCs) of 0.59 and 0.67, compared to 0.73 and 0.93 

for sysSVM2 (Figures 5-10G, H). Since the VAE had a relatively high number of 

tuneable parameters, we reasoned that this might be due to a small training set size. 

However, even when training the VAE with data from the entire TCGA (7,630 

samples), it was still outperformed by sysSVM2 (AUCs of 0.61 and 0.65, Figures 5-

10G, H). 

 The VAE provided an alternative NN-based algorithm to carry out the same 

task as sysSVM2. However, it appeared that, despite any other advantages that NNs 

may have over SVMs, the VAE was unable to perform as well as sysSVM2.  
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Figure 5-10: Implementation of a neural network alternative to sysSVM2 
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A. Architecture of the VAE. Mean squared error (MSE) was used to measure the 

similarity between the inputs and the reconstructed outputs. High reconstruction MSE 

indicated that a gene was dissimilar to the training set of canonical drivers, and 

therefore corresponded with a low driver score. 

B. Convergence of VAE training. Each epoch represents one iteration of the training 

process. 

Visualisations of a random sample of 10,000 damaged genes in the RDR, coloured 

according to binary (C, D) and continuous (E, F) properties. Each panel only shows 

two of the three dimensions in the RDR, labelled µ1, µ2 and µ3. PPIN: protein-protein 

interaction network. 

Performance of the VAE trained on simulated data (yellow) and all available TCGA 

data (orange), compared to sysSVM2 trained on simulated data (blue). The median 

ROC curve comparing ranks of canonical drivers to the rest of genes (G) or false 

positives (H) for each algorithm is shown, along with the median area under the curve 

(AUC).   
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5.5.2. Fusion of SVM and NN for high performance and flexible learning 
Static models trained in a single instance on a given cohort can be used for prediction 

on new samples. However, they cannot incorporate information from additional 

samples without being re-trained de novo. This has drawbacks in both research and 

clinical settings. In research, it is common for new samples to be progressively added 

to large sequencing efforts such as the ICGC. Conversely, in clinical settings new data 

often arrive sporadically. For example, targeted and whole genome sequencing are 

rapidly becoming part of the diagnostic routine of new cancer patients. In both 

scenarios, it would be useful to dynamically extract data from these additional samples 

and use them to update a pre-trained driver detection model. This would allow a 

continuous learning of the model without re-training it de novo on the extended cohort. 

The one-class SVM framework behind sysSVM2 is not amenable to such a dynamic 

expansion. By contrast, the flexibility of NNs presents a possible solution245. We 

therefore investigated whether it would be possible to use NNs to address this 

drawback of sysSVM2 without compromising performance. 

 We constructed a NN to allow a trained sysSVM2 model to learn from additional 

samples without starting de novo. We used a multi-task architecture consisting of an 

autoencoder augmented with a secondary output that explicitly produced scores for 

genes (Methods 5.2.7, Figure 5-11A). We termed this NN an augmented autoencoder 

(AAE). The principle of the AAE was that information learned by the NN for the task of 

feature encoding and decoding could also help to improve explicit score prediction. 

Using one task to improve another is the basis of multi-task learning249. The AAE is 

trained using (1) a set of initial samples, on which sysSVM2 has already been trained, 

and (2) a set of additional samples that may have become available at a later time. 

During training, the AAE learns to encode and decode the features of all damaged 

genes from all samples, as in a standard autoencoder. However, it also learns to 

reproduce the scores that sysSVM2 assigned to genes damaged in the initial cohort. 

This is achieved with extra hidden layers branching off from the RDR of the 

autoencoder. During prediction on additional samples, the explicit scores predicted by 

this secondary output are used to score and rank genes as patient-specific drivers. 

Because the additional samples are used in training the autoencoder tasks of feature 

encoding and decoding, they can drive the AAE to learn a better-generalised RDR 

than by using initial samples alone. Since the explicit score prediction uses the RDR, 

this task can indirectly learn from the additional samples as well.  
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 In order to assess the utility of the AAE, we first generated additional simulated 

pan-cancer cohorts of a range of sizes (from one to 1000), such that for each size we 

had explored a total of 6000 samples. We verified that the training of the AAE 

converged within 10,000 epochs (Figure 5-11B). Notably, for cohorts of 1000 samples 

the average wall clock training time was only 12% of that required to train sysSVM2 

with 1000 cross-validation iterations (Figure 5-11C). This confirmed that the AAE could 

allow additional samples to be analysed more easily than with sysSVM2 alone.  

 To assess the impact of the AAE on the ability to detect driver genes, we made 

predictions in the additional samples with both the initial sysSVM2 model and the 

extended AAE model. For each set of predictions in each sample, we measured the 

AUC comparing the ranks of canonical drivers to both the rest of genes and to false 

positives. We then assessed whether the AUCs had increased or decreased as a 

result of applying the AAE. Overall, both types of AUC measures tended to increase 

with the application of the AAE (Figure 5-11C). However, while we had expected 

performance to improve more as larger additional cohorts were used to train the 

model, the opposite was true. For example, while the AUC comparing canonical 

drivers to the rest of genes increased in 69% of samples when using additional cohorts 

of size one, it only increased in 58.7% of samples with additional cohorts of 1000 

samples. This decrease in performance with larger training cohorts indicated that 

changes in the AUCs may have been due to how the AAE learned from the initial 

samples, rather than from new information brought in by the additional samples. While 

the performance did increase form sysSVM2 alone overall, this counter-intuitive result 

suggested that the AAE did not fulfil its intended purpose.  

 Due to these results, we did not proceed further with development or testing of 

the AAE framework. However, the issue of continuous learning as more data become 

available is one that remains to be adequately addressed in the cancer research 

community. Moreover, the need for continuous learning techniques will only become 

more pressing as larger data sets and more complicated model-based methods are 

adopted.  
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Figure 5-11: Augmented autoencoder extension to the sysSVM2 algorithm 
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A. Schematic illustrating the augmented autoencoder (AAE). First, sysSVM2 is trained 

on an initial cohort. The gene features and scores from the initial cohort are then 

combined with the gene features from additional samples. The NN attempts to 

simultaneously predict the scores for the initial cohort, and reconstruct the gene 

features of both initial and additional samples. The trained algorithm then outputs 

scores for genes in additional samples.  

B. Wall-clock computation time for sysSVM2 with 1,000 cross-validation (CV) 

iterations (blue), and the AAE with 10,000 training epochs (green). All computations 

were carried out on a high-performance computing cluster. 

C. Convergence of the AAE algorithm trained with different numbers of additional 

samples (left to right), starting from the sysSVM2 model trained on 1,000 simulated 

initial samples. The total loss was calculated as the sum of the feature reconstruction 

MSE (all samples) and the score error (initial samples only). The score error function 

was the sum of MSE and mean absolute error to penalise both small and large errors. 

D. Performance change resulting from the AAE implementation. For each number of 

additional samples used in training, the percentage of initial samples for which the 

performance increased or decreased is shown. Performance was measured using the 

per-sample AUC comparing the ranks of canonical drivers to the rest of human genes 

(green) and to known false positive genes (pink). Light shades indicate improved 

performance while dark shades indicate worse performance, compared to sysSVM2.  
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5.6. Discussion 
In this chapter, we developed a cancer-agnostic algorithm, sysSVM2, for identifying 

cancer drivers in individual patients. By refining the machine learning approach upon 

which the original algorithm was built27, we broadened its applicability to the pan-

cancer range of malignancies represented in TCGA. sysSVM2 successfully and stably 

prioritises canonical driver genes for most publicly available cancer cohorts. For those 

composed of fewer samples, the models optimised on the whole pan-cancer dataset 

offer a valid alternative. Moreover, compared to other patient-level driver detection 

methods, sysSVM2 has better patient coverage and a particularly low rate of predicting 

established false positives. We also found that sysSVM2 outperforms alternative 

models based on neural networks. The genes identified by sysSVM2 in pan-cancer 

data converged to well-known cancer-related biological processes. sysSVM2 can 

therefore be used to identify driver alterations in individual patients and rare cancer 

types where canonical drivers are insufficient to explain the onset of disease, as we 

have validated in osteosarcoma.  

This work potentially opens up further research and therapeutic opportunities. 

Identifying the complete repertoire of driver events in each cancer patient holds great 

potential for furthering the molecular understanding of cancer and ultimately for 

precision oncology. While many recurrent driver genes have now been identified, the 

highly heterogeneous long tail of rare drivers still poses great challenges for detection 

and validation. However, in overcoming inter-tumour heterogeneity by identifying 

these rare drivers, sysSVM2 and other patient-level driver detection methods can help 

researchers develop new therapeutic interventions for patients whose somatic 

alterations are not currently considered in precision oncology.  

Further studies could potentially use our driver predictions to investigate 

particular aspects of cancer biology, such as driver clonality and the progressive 

acquisition of drivers during cancer evolution. Extending the algorithm with additional 

sources of data is another avenue for future work. For example, transcriptomic and 

epigenomic data could enhance the ability of sysSVM2 to identify driver events. 

Additionally, recent efforts have identified a large number of driver events in non-

coding genomic elements16. Given such a training set of true positives, sysSVM2 could 

be further developed to identify non-coding drivers in individual patients, as long as 

appropriate features could be identified. The general approach of identifying drivers 
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using a combination of molecular and systems-level properties affords great flexibility 

for such developments.  

It is increasingly common for sequencing studies to integrate multiple tools for 

driver detection15, since building a consensus can make results robust to the 

weaknesses of individual methods. sysSVM2 also has its weaknesses. For example, 

while systems-level properties distinguish cancer genes as a set, there are some 

cancer genes that do not follow this trend24 and are thus likely to be missed by the 

algorithm. In addition, our reliance on canonical drivers (most of which are highly 

recurrent) for training and assessment of sysSVM2 was imperfect, but it illustrated the 

lack of currently available ground truth for developing patient-level driver detection 

methods. Our approach in the current work of topping up known driver genes with 

predictions from sysSVM2 is a simple example of how sysSVM2 can be used in 

conjunction with other approaches. More broadly, it is likely the case that patient-level 

driver detection will eventually rely on an entire ecosystem of different methods. In this 

work, we have demonstrated that there is a place for sysSVM2 in such an ecosystem. 
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Chapter 6. Discussion 
 

6.1. Summary and conclusions 
In this thesis, I have investigated how the biology of cancer differs from one patient to 

another. First, I described how germline variation can give rise to patient-specific 

selective pressures acting on somatic alterations, thus contributing to inter-tumour 

heterogeneity. I investigated this effect in oesophageal adenocarcinoma (OAC) in 

Chapter 2 with a co-occurrence-based approach, and then again in Chapter 3 with a 

logistic regression modelling approach and an expanded OAC cohort. Driver genes 

are the most relevant aspect of genetic inter-tumour heterogeneity for cancer biology 

and therapy. I therefore introduced the Network of Cancer Genes, a repository of 

reported driver genes and their systems-level properties, in Chapter 4. Finally, I used 

these properties to develop a method, sysSVM2, for identifying driver genes (including 

potentially rare or patient-specific drivers) at the patient-level in Chapter 5. 

My initial investigation of the germline influence on somatic evolution in Chapter 

2 found two patterns of co-occurrence between deleterious germline variants and 

somatic driver alterations at the pathway-level in 260 OACs. In the first, deleterious 

germline variants in extracellular matrix genes co-occurred with drivers in RTK 

signalling genes, most notably KRAS and PIK3CA. Literature evidence suggested that 

this effect could have been mediated by discoidin-domain receptors115-117 or 

integrins118,119, both of which had patterns of expression that suggested a genuine 

effect. In the second result, germline perturbations to DNA repair genes led to 

increased frequencies of driver events downstream of RTK signalling, including in 

MYC, FOXO1 and CCND3.  Differential expression of keratinisation genes suggested 

that this association may have been related to differences in tumour morphology 

between samples. In addition, a statistically significant association with earlier age at 

diagnosis hinted at a possible clinical relevance of this result. However, when I 

analysed an independent cohort of 140 OACs, neither of these germline-somatic 

associations could be validated. I concluded that there were a number of 

methodological limitations of this analysis, including sample size and the statistical 

approaches used. 

I attempted to address these limitations in Chapter 3. Using a logistic regression 

modelling approach and an expanded OAC cohort, I identified a negative association 
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between germline perturbations to the ATM signalling pathway and TP53 driver 

alterations. This signal was strongest for truncating variants in the ATM gene itself. 

This result was plausible because ATM mutations had previously been found to 

substitute for TP53 driver alterations in breast cancer172, lung adenocarcinoma55, T-

cell leukaemia173 and B-cell lymphoma174. In addition, ATM and TP53 interact directly 

to activate DNA repair and apoptosis programmes in response to DNA double-strand 

breaks169,170. The interaction between ATM and TP53 in my data also strongly 

suggested that ATM had two roles in OAC that have not been reported to date. First, 

the fact that ATM truncations could substitute for TP53 driver alterations (the most 

common driver in OAC) indicated that it acted as a tumour suppressor gene, as it does 

in other cancer types166. Second, ATM germline truncations exhibited frequent loss of 

heterozygosity, enrichment in OAC compared to healthy controls, and an association 

with younger age at diagnosis, suggesting that these variants could predispose 

individuals to developing OAC. While ATM is a known predisposition gene in other 

cancer types18,166, this was of note because to date no highly penetrant predisposition 

gene for OAC has been found23. Thus, ATM warrants further scrutiny for its role in 

OAC.  

In Chapter 4 I focused on the available knowledge regarding somatic driver 

genes as a starting point for future driver gene identification efforts. I studied the 

breadth of literature evidence for drivers, and found that the number of canonical driver 

genes in each cancer type depended strongly on the number of patients whose 

cancers had been sequenced. In particular, some rare cancer types had very few 

canonical drivers as a result of small cohort sizes. By contrast, extensively-studied 

cancer types tended to have large numbers of candidate drivers which had not been 

experimentally validated. I also found a general lack of consensus between studies to 

reproducibly find the same driver genes, even when using widely accepted gold-

standard methods for driver identification. These results suggested that larger 

sequencing efforts would be valuable in rare cancer types. In addition, they indicated 

that existing methods were not well-suited for interrogating the long tail of rare and 

possibly patient-specific driver genes in cancer. Different driver detection methods 

were required to overcome this issue. Moreover, such methods could provide a more 

feasible alternative to sequencing large cohorts of patients from rare cancer types. I 

also introduced the systems-level properties of driver genes, which distinguish drivers 
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from other human genes. It is possible to use these properties for driver gene 

identification195. 

In Chapter 5, I optimised sysSVM, a method previously developed by the 

Ciccarelli lab for patient-level driver detection in OAC27, for pan-cancer use. The 

resulting method, sysSVM2, learned the molecular and systems-level properties of 

canonical driver genes, and used these to predict drivers in individual patients. I found 

that, compared to other patient-level driver prediction methods, sysSVM2 had a low 

false positive rate and better patient coverage. Moreover, despite being 

heterogeneous at the gene-level, its predictions in pan-cancer data converged to well-

known cancer-related processes. It was also able to recover established driver genes 

in osteosarcoma, a rare cancer type. These results demonstrated that sysSVM2 is 

potentially useful in identifying drivers in individual patients. This is necessary to 

explain the onset of cancer in patients where no canonical drivers are altered, and for 

whom there is therefore a significant shortfall in our understanding of their tumours’ 

biology.  

These investigations helped to elucidate the ways in which the genetic 

components of cancer biology are specific to individual patients. For example, the ATM 

result in Chapter 3 showed that, in a small proportion of patients, inherited genetic 

variants strongly influence the evolutionary trajectories of OACs, preventing the 

fixation of the disease’s most recurrent driver gene. The results in Chapters 4 and 5 

also indicated that that many driver genes were rare or patient-specific. It is tempting 

to speculate that the reason for the rarity or patient-specificity for some drivers could 

be genetic, i.e. that some genes will only drive cancer in particular germline contexts. 

Indeed, in a previous study our group found that OAC patients with deleterious 

germline variants in cancer predisposition genes were less likely to have patient-

specific driver alterations in DNA repair and cell cycle genes in general27. This could 

imply that germline variants affecting DNA repair pathways make further somatic 

alterations in these pathways either to confer no selective advantage on cells, or even 

to become lethal. In either case, the selective advantage for these somatic alterations 

would be greatly reduced by the presence of the germline perturbations. Similarly, 

inherited vulnerabilities in which selective pressures on somatic alterations are 

increased by certain germline variants could exist, although I was unable to find robust 

evidence of such effects in this thesis.  
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6.2. Limitations of current approaches 
There are a number of limitations of currently-available approaches that impacted the 

research carried out in this thesis. These include the availability of patient genomic 

sequencing data, the lack of suitable experimental validation methods, a lack of 

available multi-omic data, and difficulties of systematically incorporating important 

aspects of tumour biology such as the tumour microenvironment and intra-tumour 

heterogeneity into analysis. 

My analysis of the germline influence on somatic evolution in cancer used 

cohorts of OAC patients that were almost as large as was possible at the time, given 

the requirement for matched germline and somatic sequencing data (n=470 in Chapter 

3). By comparison, only one of the cohorts in TCGA (breast cancer) was more than 

10% larger than this cohort. However, power calculations showed that a fully 

statistically-powered study using the same approaches would require approximately 

40,000 samples. Given that such analyses need to be conducted for individual cancer 

types to avoid confounding affects55, it is not likely that sufficiently large cohorts will 

be available in the near future. Thus, researchers do not yet have the data required to 

fully understand the effect of the germline on somatic evolution in cancer. OAC served 

as a useful model cancer type with relatively good data available and a lack of known 

penetrant predisposition genes that could strongly influence any results. Interestingly, 

the associations between germline ATM signalling and TP53 somatic drivers seemed 

to hold in stomach adenocarcinoma, suggesting a common mechanism between the 

two cancer types. However, analyses of other cancer types with well-established 

predisposition genes or less available data may not add to current knowledge. Larger 

cohorts than are currently available may be required to fruitfully investigate the role of 

the germline in these cancer types. By contrast, I used approximately 7500 pan-cancer 

samples for the development and assessment of sysSVM2 in Chapter 5. Here 

however, differences in cohort size between individual cancer types were 

consequential, with smaller cohorts giving rise to less stable models. In addition, 

TCGA does not include all cancer types. Thus, in the future more comprehensive 

cohorts could be used as a basis for patient-level driver gene prediction in the future. 

It should be noted however, that the validation of the pan-cancer model in 

osteosarcoma (not included in TCGA) suggested that information learned in one group 

of cancer types could be applied to others.  
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The results throughout this thesis would be challenging to systematically 

validate in experimental settings. The effect of germline variants on somatic evolution 

might be validated by experiments aimed at interrogating proposed mechanisms for 

germline-somatic interactions. However, it is probably infeasible to fully explore the 

effects of germline variants in a controlled in vivo experimental setting. The patient-

level driver predictions of sysSVM2 are similarly challenging to validate. Agreement 

with other prediction methods and convergence of predictions to cancer-related 

processes provided indirect support of their validity, but these did not constitute 

conclusive evidence. Some genes predicted as drivers by the earlier version of the 

algorithm in OAC were experimentally shown to increase proliferation in OAC cell 

lines27. However, given the sheer number of total genes predicted by this approach in 

large cohorts, it is unlikely that all predictions can be validated in this way. Moreover, 

it is important to consider why a driver event might be rare or patient-specific. If its 

driver role depends on a particular biological context (e.g. genetic makeup or 

environmental factor) then it is unlikely to be possible to validate it in vitro. 

Experimental validation of the patient-specific molecular features of tumours is likely 

to become a greater challenge as more such features are discovered. However, 

patient-derived organoid technology provides a possible avenue for such work, as 

recently demonstrated with patient-specific drug screens250.   

Due to data availability, the discovery approaches used in this thesis relied 

almost exclusively on genomic sequencing data. A systematic integration of multi-omic 

data, such as from RNA-Seq and methylation bisulphite sequencing, could improve 

the ability of statistical analyses to identify biological effects. The value of multi-omic 

approaches is increasingly appreciated by the research community, particularly in 

identifying driver alterations. For example, two other patient-level driver prediction 

algorithms, DriverNet226 and OncoIMPACT225, rely on model-based integration of 

genomic and transcriptomic data. Gaining a more complete picture of driver events 

from multi-omic data could also enhance investigations of germline contributions to 

somatic evolution. For example, it is likely that my analysis missed somatic driver 

events due to methylation or other transcriptional deregulation of canonical drivers. An 

integrative multi-omic approach could refine the statistical signals of biological effects 

by reducing the prevalence of similar false negatives in the data. However, matched 

multi-omic data is often unavailable for large numbers of samples, so these 
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approaches might be applied in the future as multi-omic sequencing becomes more 

common.  

Throughout this thesis, I did not consider the effect of the tumour 

microenvironment on the role of the germline in somatic evolution and the driver 

impact of genes. For example, immune editing is known to affect somatic evolution of 

the cancer genome in a manner that is dependent on patients’ germline HLA types72. 

Moreover, inherited immune defects are likely to modify the role of the immune system 

in cancer251. In a similar way, certain somatic driver genes are known to modulate 

tumour-immune interactions252. Understanding these relationships will likely be 

important for reliably identifying driver genes in individual patients. However, while my 

analysis of the germline in Chapters 2 and 3 did include immune system pathways, 

these did not associate with somatic driver genes, suggesting that larger cohorts may 

be required to analyse the impact of germline immune perturbations on somatic 

evolution. In addition, it is not clear how to usefully incorporate immune effects into 

driver gene detection methods. For example, including HLA types or immune cell 

population estimates as features in a classifier such as sysSVM2 may not improve 

performance if immune features are too heterogeneous between patients, subject to 

technical biases or simply not relevant for most driver genes. A deeper understanding 

of the role of the tumour microenvironment and greater data availability is required to 

systematically incorporate immune effects into the research questions of this thesis. 

Finally, in order to balance model complexity with data availability I did not 

consider the effects of intra-tumour heterogeneity in my analyses. By considering both 

clonal and sub-clonal somatic alterations, it would be possible to characterise somatic 

evolution at a finer resolution than I have done. This could allow us to find more subtle 

effects of the germline on cancer evolution, such as on the ordering of driver events. 

In addition, the patient-specificity of driver alterations could in part depend on clonality, 

with rare drivers acquired preferentially either early or late in evolution. However, it is 

important to note that incorporating clonality into these analyses would add a degree 

of freedom to already complex problems. Thus, additional insights could likely only be 

gained from considering intra-tumour heterogeneity if sufficiently large cohorts were 

available. 
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6.3. Perspectives 
I will conclude this thesis with my perspectives on inter-tumour heterogeneity and 

some outstanding challenges for the cancer genomics field.  

The extent to which inter-tumour heterogeneity is random versus deterministic 

remains to be fully addressed. A simple conceptual model is that randomly acquired 

somatic alterations undergo selective pressures that are common across all cancers 

of a particular type. Results in this thesis and elsewhere indicate however that 

selective forces can vary from patient to patient due to inherited and environmental 

factors17,50,51,55,60. It would be interesting to know the extent to which selective 

pressures are patient-specific across cancer types. However, at least with currently 

available methods and data, the impact of these patient-specific selective pressures 

appears to be small. Thus, it is possible that inter-tumour heterogeneity is primarily 

the result of the inescapably stochastic nature of the underlying process of somatic 

alteration to the genome. This suggests, unfortunately, that we may never be able to 

predict the evolutionary trajectories of cancer with complete certainty, no matter how 

deeply we understand cancer biology. However, a possible alternative is that selective 

pressures in cancer are indeed largely common between cancer patients and lead to 

highly convergent evolution, but at high functional levels. For example, it is well-

documented that many driver alterations converge to the same pathways15,16,96, 

despite occurring in different genes. Describing these higher levels of convergent 

evolution is challenging, however. Moreover, cancer therapies with low toxicity are 

likely to target highly specific components of tumour biology, rather than high-level 

processes. Indeed, chemotherapy could be considered to be an extremely high-level 

therapy targeted at cell division. Thus, even being able to fully describe convergent 

cancer evolution at a high level may have limited clinical utility.  

Inter-tumour heterogeneity presents one of the main obstacles for identifying 

potentially targetable, specific, components of tumour biology. For example, the 

exclusivity between germline ATM truncations and TP53 driver alterations was a weak 

signal at the cohort-level. Only about 1% of samples were affected, and overall ATM 

truncations explained only 3% of the variance in TP53 status. However, in those few 

samples where ATM was truncated, the effect appeared to be very strong, with perfect 

mutual exclusivity with TP53. This is a good illustration of how inter-tumour 

heterogeneity buries the signals of strong biological effects that rarely occur. Patient-

level driver prediction faces a similar obstacle. The fact that gold-standard methods 
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fail to identify drivers in some patients strongly suggests that many driver events are 

very rare. Nevertheless, by their very nature as drivers, they are crucial to the biology 

of the tumours where they have a driver role. Again, signals that appear weak at the 

cohort-level in fact reflect biology of great importance to a small number of cancers. 

This highlights the apparent paradox of inter-tumour heterogeneity. We know that 

every tumour is molecularly distinct, but in order to learn more about the disease we 

look for commonalities between tumours. For example, we look for recurrence of 

somatic alterations (at the mutation, gene or pathway levels), common gene properties 

(as in sysSVM2) or for patterns of germline and somatic co-occurrence and exclusivity. 

Nevertheless, all of these efforts have the ultimate aim of bringing more personalised 

therapies to the clinic. In order to better understand and treat the individual tumour, it 

is necessary to study thousands of tumours.  

In order to fully realise precision oncology therefore, there is a pressing need 

for more sequencing data to become available to researchers. As already alluded to, 

widespread inclusion of multi-omic data will be vital to gain a complete picture of 

tumour biology for discovery. While addition of multi-omic data may appear at first to 

add complexity to the molecular landscape of cancer, it will hopefully lead to identifying 

more common patterns across tumours by allowing them to be characterised at higher 

functional levels, rather than purely in terms of genomic alterations. Indeed, by 

obtaining stronger signals of functional features of cancers in this way, it is possible 

that fewer samples overall will be required to identify common patterns. In the 

germline, there is also a particular need for sequencing data to replace array data. 

Many results in cancer predisposition, for instance, rely on SNPs that have no 

functional interpretation23,253. Leveraging these associations for functional insights is 

therefore often not possible.  

Incorporating previous functional insights into discovery is non-trivial. A general 

methodological challenge for cancer researchers is appropriately leveraging prior 

knowledge in systematic analyses. For example, I aggregated damaging germline 

variants into known pathways in order to characterise them at a functional level. I might 

have also used interaction networks to prioritise tests between germline pathways and 

somatic drivers that are known to interact. I also leveraged prior knowledge by training 

sysSVM2 to learn the properties of canonical driver genes, in order to identify new 

drivers. Of course, all of these approaches are potentially biased by the very prior 

knowledge they leverage. Unbiased approaches might be ideal if sufficient data are 
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available for discovery, and they often appeal to researchers’ entirely correct desire to 

be impartial. However, prior knowledge should be used as a resource for more than 

just validation and assessment in computational analyses. How best to leverage prior 

knowledge while not just finding expected results, however, is a major challenge that 

will hopefully continue to be addressed in the coming years. 

The 2020’s are likely to be an exciting time for cancer research. Previous 

decades have brought a flurry of increased molecular understanding of cancer, 

widespread sequencing of the cancer genome, and the long-awaited development of 

targeted therapies. Substantial challenges remain, however, and cancer persists as 

the leading cause of premature death in the developed world1. We can hope that by 

adapting true multi-omic cancer medicine at scale, we might improve the outlook of 

millions of patients.  
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Appendix 1. Data normalisation and the one-class Support Vector Machine 
In this section we discuss the theory behind why data centering is not optimal for the 

one-class Support Vector Machines in sysSVM. 

 The one-class SVM algorithm of Schölkopf et al.230 aims to construct a 

decision boundary which encloses the region of input space 𝒳 where the training set 

lies. It then classes points inside the decision boundary as similar to the training set 

(cancer genes), and points outside as outliers (non-cancer genes). In order to draw 

complicated decision boundaries efficiently, it uses a kernel function 𝑘 to (implicitly) 

map the training set to a feature space, ℱ. In ℱ, the algorithm aims to separate the 

training set from the origin, using a linear decision boundary (a hyperplane). The final 

decision boundary is the result of mapping this hyperplane back to the input space 

𝒳. 

 The problem with data centering is most clear for the linear kernel. With this 

choice of kernel, feature space ℱ corresponds exactly to input space 𝒳. If data are 

centered around the origin (i.e. zero), then the algorithm attempts to separate the 

data from their own centre, which is clearly inappropriate. Indeed, experiments with a 

toy example indicate that this can lead to extreme sensitivity to small changes in the 

training set (data not shown).  

 On the other hand, centering is not an issue for the radial kernel, since it is 

translationally invariant: if gene features 𝑥 and 𝑦 are shifted by some constant value 

𝑐, then it can be seen from the radial kernel function that 𝑘(𝑥 − 𝑐, 𝑦 − 𝑐) = 𝑘(𝑥, 𝑦).  

 For the polynomial and sigmoid kernels, the effect of centering is less clear. 

They both preserve the origin – that is, the origin in 𝒳 corresponds to the origin in ℱ. 

This can be seen from the fact that 𝑘(0, 𝑥) = 0 for any set of gene features 𝑥, with 

either kernel. This might suggest that centering should be avoided with these 

kernels, and this is further borne out in toy model experiments. 
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