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We investigate fully self-consistent multiscale quantum-classical algorithms on current genera-
tion superconducting quantum computers, in a unified approach to tackle the correlated electronic
structure of large systems in both quantum chemistry and condensed matter physics. In both of
these contexts, a strongly correlated quantum region of the extended system is isolated and self-
consistently coupled to its environment via the sampling of reduced density matrices. We analyze
the viability of current generation quantum devices to provide the required fidelity of these objects
for a robust and efficient optimization of this subspace. We show that with a simple error mitigation
strategy these self-consistent algorithms are indeed highly robust, even in the presence of significant
noises on quantum hardware. Furthermore, we demonstrate the use of these density matrices for
the sampling of non-energetic properties, including dipole moments and Fermi liquid parameters in
condensed phase systems, achieving a reliable accuracy with sparse sampling. It appears that un-
certainties derived from the iterative optimization of these subspaces is smaller than variances in the
energy for a single subspace optimization with current quantum hardware. This boosts the prospect
for routine self-consistency to improve the choice of correlated subspaces in hybrid quantum-classical
approaches to electronic structure for large systems in this multiscale fashion.

I. INTRODUCTION

A solution to the quantum many-body problem is held
up as a one of the most impactful and far-reaching appli-
cations of quantum computers [1–4]. Even in the current
era of noisy intermediate-scale quantum (NISQ) devices
[5], where the number of physical qubits is too small for
error correction and subject to significant decoherence
and quantum noise, significant progress in this area has
been made, with developments also impacting the re-
lated field of quantum machine learning [6]. However,
quantum resources are finite, and so treating entire sys-
tems of technological relevance is unlikely to be a realis-
tic near-term proposition. Instead, efficient and practical
hybrid quantum-classical and multi-scale approaches are
key to describing quantum systems with a desired accu-
racy within a limited quantum computational budget.

The general aim of these is to find a representation of
the full system in which only a small number of ‘active’
degrees of freedom are strongly entangled and require re-
alization on a quantum device. The remaining degrees
of freedom are then coupled to this quantum subsystem
in a low-rank perturbative or even (potentially dynam-
ical) mean-field representation of the quantum effects.
These ‘external’ weakly-interacting degrees of freedom
can be efficiently described on a classical computer with
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polynomially-scaling resources with system size, while it
is posited that an appropriate choice of strongly entan-
gled ‘active’ orbitals should not in general need to grow
with system size. Self-consistency can then be used to
update the initial choice of the active region, based on a
multi-level description of the full system. One of the key
technical considerations in devising these approaches is
in the choice of how the description of the active space on
the Quantum Processing Unit (QPU) can be efficiently
coupled to the external space. In this work, we con-
sider the sampling of reduced density matrices (RDMs)
as the natural choice of low-rank quantum variable for
NISQ computers, in order to describe the coupling of
the classical and quantum realizations of the system and
therefore straddle the length scales in the simulation of
quantum matter. We present a unified description of this
approach, with applications to both strongly correlated
quantum chemistry and condensed matter problems on
current generation quantum devices.

While multi-level descriptions of quantum systems are
in themselves not a new proposition for quantum comput-
ers [7–15], the practical realization of fully self-consistent
algorithms on quantum resources has proved to be a sig-
nificant technical challenge. The ability of self-consistent
coupled quantum-classical approaches to remain robust
in the presence of the noise inherent in the sampling of
the active space quantum effects is a key practical con-
sideration. We demonstrate that with a light-touch error
mitigation strategy, noise resulting from gate infidelities
does not preclude stable convergence of the algorithms
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presented in this paper. Furthermore, an efficient sam-
pling and grouping scheme for the terms required in den-
sity matrices is presented, detailing a huge reduction in
the number of these terms for a given active space size,
which tackles a key bottleneck for longer-term practical
quantum-classical multiscale methods.

We demonstrate the feasibility of two of these self-
consistent algorithms in a unified approach applicable to
both quantum chemistry and condensed matter physics.
The first is complete active space self-consistent field
(CASSCF) [16, 17], a powerful approach for the simu-
lation of molecular systems with strong quantum effects,
such as those encountered routinely in inorganic chem-
istry, systems with competing spin states, excited states,
and systems at bond-breaking geometries [18–20]. In
these problems, the dominant strong quantum fluctua-
tions can often be qualitatively captured within a small
number of low-energy orbitals, where these orbitals are
obtained from a prior mean-field calculation. However,
since this starting point does not account for the corre-
lated physics, these active orbitals are subsequently opti-
mized in a variational fashion across the overall state as a
product of the active space wave function and mean-field
electrons in the external space.

As systems get larger, and the spectrum of single-
particle states transitions towards a continuous function
of energy, the approach of choosing quantum regions us-
ing an energetic criteria becomes less well defined. In
this case, it is more appropriate to consider the active
quantum region in a real-space local picture, under the
assumption that local quantum fluctuations dominate,
such as those in the d-orbitals of a transition metal oxide
material. This is the approach taken in various quantum
embedding methods such as dynamical mean-field the-
ory [21], and in this work we consider the related energy-
weighted density matrix embedding theory (EwDMET)
[22–24]. We perform the self-consistency at the level of
energy weighted density matrices, denoting the moments
of the local density of states, resulting in a systematic ex-
pansion of the zero-temperature DMFT physics [24]. For
both of these approaches, we demonstrate the fidelity of
the QPU sampling of the active space RDMs required
for a fully QPU-coupled self-consistent algorithm, and
consider the scaling of sampling operations as the active
space increases in size in future applications.

In section II we review reduced density matrices and
their sampling within QPUs as the self-consistent quan-
tum variables in these multi-scale methods. We demon-
strate that judicious grouping of commuting terms allows
even large active space RDMs to be realistically sampled,
with the proposed groupings opening the prospect for
higher-rank RDMs and perturbative couplings to active
spaces. In section III we consider the CASSCF opti-
mization of carbon monoxide on IBM Quantum services
(IBMQ) machines, where active space wave function are
optimized on the QPU within the variational quantum
eigensolver (VQE) [25]. We find that a naive imple-
mentation fails to achieve full self-consistency, however

a light-touch error mitigation strategy aimed at compen-
sating for gate errors is enough to address this issue on
a 4-qubit system and to allow convergence of the active
space orbitals in the presence of the correlated physics.
Our error mitigation strategy focuses on estimating the
bias due to gate errors in the circuit execution via com-
puting the deviation of the sampled electron number to
the (known) number of electrons in the system (which can
be found from the trace of the sampled one-body RDM).
This approach is detailed in Appendix A. With this mit-
igation strategy, the sampling noise of the QPU does not
prevent convergence, and CASSCF is found to be robust
and reliable in its optimization. We stress that knowledge
of the active space RDMs also allows for the extraction
of beyond-energetic first-order expectation values of the
system, which are essential for a more complete descrip-
tion of the system properties, focusing on the effect of
self-consistency and RDM fidelity on the dipole moment
of a system.

Finally, in section IV we focus on extended bulk sys-
tems, with the strongly correlated Bethe-Hubbard lattice
considered. Specifically, we observe the QPU description
of a local region to allow for the opening of Hubbard
bands in the material within the QPU-coupled EwDMET
approach. Similar error mitigation strategies on the sam-
pled active space RDMs allows for robust self-consistency
in the method, resulting in excellent agreement for the
local density of states and Matsubara self-energy of the
system on current generation IBMQ machines.

II. SAMPLING REDUCED DENSITY
MATRICES ON A QUANTUM COMPUTER

The reduced density matrices (RDM) used in this work
are not defined by tracing out a subsystem, but rather
tracing out the entire phase space of many electrons from
the full N -particle density matrix of a pure state. For a
m-body reduced density matrix, Γm, this integration over
N −m electronic variables can be written as

Γm(x1, . . . ,xm; x′1, . . . ,x
′
m) = m!

(
N

m

)
× (1)∫

ΓN ({x}N ; {x′}N )∆N
m+1dxm+1 . . . dxNdx

′
m+1dx

′
N ,

where xi represents the combined spatial and spin coor-

dinate for electron i, and ∆N
m+1 =

∏N
i=m+1 δ(xi − x′i).

Fortunately, these reduced-body density matrices can be
directly computed, rather than requiring tracing from
higher-rank density matrices. By projecting the elec-
tronic coordinates into a basis set, we define the two-body
RDM as

Γijkl ≡ 〈ψ| â†i â
†
j âlâk |ψ〉 , (2)

with other rank RDMs defined equivalently, and where
the indices i, j, . . . label spin-orbital degrees of freedom,

â
(†)
i are the fermionic annihilation (creation) operators,
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and we have omitted the explicit subscript denoting the
rank of the RDM where it is obvious from the number of
indices. In this example, the partial trace down to the
one-body RDM can then be written as

γik =
1

N − 1

∑
j

Γij,kj . (3)

Despite tracing out large numbers of degrees of freedom,
these two-body RDMs still contain all the information
about a quantum system required for physical observ-
ables of interest which depend on (up to) pairwise opera-
tors, including the total energy. The rank of an operator
defining a given observable determines the rank of the
RDM required to compute its corresponding expectation
value. For example, the electric dipole moment is a one-
body quantity, requiring the one-body RDM, while the
Hamiltonian defining the energy is a two-body expec-
tation value, requiring the two-body RDM to evaluate.
Non-observable quantities of interest, such as entangle-
ment entropies or mutual information, can also in general
be computed from reduced-body density matrices [26].

Furthermore, using RDMs we can compute the proba-
bility of a given m-electron distribution, as the diagonal
of the m-RDM. The sum over this distribution then gives
the number of m-tuples of particles in the system, which
can be used as a normalization condition, e.g. the trace
of the 2-electron distribution giving the number of pairs
of electrons, as ∑

ij

Γij,ij =
N(N − 1)

2
. (4)

Overall, these m-RDMs have all the information about
the distribution and entanglement of m particles in a
given state of an N particle system, which rationalizes
their use as method-agnostic, low-rank quantities in order
to couple quantum systems described at different levels
of theory.

In this work, we consider second-quantized Hamiltoni-
ans where spin symmetry is preserved, allowing further
tracing out of spin degrees of freedom, defining the cen-
tral spin-free two-body RDM of interest as

Γpqrs ≡
∑
στ

Γpσqτrσsτ , (5)

where p, q, . . . denote spatial degrees of freedom and σ, τ
denote spin labels. Further permutational symmetries
can be used which reduce the number of independent
quantities to evaluate, as

Γpσqτrσsτ = −Γpσqτsτrσ = Γqτpσsτrσ = Γrσsτpσqτ , (6)

with time-reversal symmetry ensuring

Γpσqτrσsτ = Γpτ̄qσ̄rτ̄sσ̄ . (7)

The resulting set of fermionic operators must be
mapped to spin operators for sampling of the state on

FIG. 1. Distribution of relative errors in the Frobenius norm
for both QPU and quantum emulated sampling of the RDMs,
compared to exact classical calculation. To obtain the distri-
butions, we repeated the computation of the Frobenius norms
differences over 20 realizations of the RDMs for each number
of measurements considered. On the left, results are presented
for a QPU simulator (assuming perfect qubits) and therefore
displays the impact of finite sampling noise. On the right, the
results computed on IBMQ Athens (4-qubits, depth 3 HEA),
with and without error mitigation.

a QPU. For this, we use the Jordan-Wigner mapping
[27], though other mappings (e.g. Bravyi-Kitaev map-
ping [28, 29]) could be used, as long as the mapping is
consistent. While each fermionic operator will in general
be mapped to several spin operators, one can find several
efficiencies to reduce this overall number of terms. We
discuss scaling of number of terms for RDM sampling us-
ing efficient grouping methods in Appendix B, which will
be essential for scaling to larger numbers of qubits or for
the extraction of beyond two-body properties.

In order to test RDM sampling on a quantum com-
puter, we computed the one- and two-body RDMs of
magnesium porphyrin after optimization of a hardware
efficient ansatz (HEA) wave function using the gradient
free RotoSolve optimizer [30]. We use an active space
restricted to 2 orbitals and 2 electrons (a 4 qubit
Hamiltonian) for this test. It is worth noting that while
the HEA is convenient for studying small systems due
to its relatively small pre-factor, it is expected to have
difficulties scaling to larger active spaces [31], where
other VQE ansatz are expected to be preferred such as
the unitary coupled-cluster [32]. The resulting RDMs
are then compared to the RDMs obtained via exact
methods for the same active space, and the distribution
of relative errors in the elements are shown in Fig. 1. We
conducted this test on a simulated QPU with different
number of shots, as well as current quantum hardware
(IBMQ Athens QPU, details about each QPU used in
this paper can be found in Appendix C)).
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In our investigation of RDM observable sampling er-
rors, we also considered approaches to reliably mitigate
for these errors via physically justified extrapolation tech-
niques. It is clear from the results of Fig. 1 that these
can substantially ameliorate quantum noise and sampling
errors. We present the simple extrapolation technique
used in this work in Appendix A; the technique relies
on a binomial distribution of independent errors in the
quantum circuit, and has the benefit of requiring no ad-
ditional measurements (for a more involved approach to
extrapolation, we recommend Ref. 33).

This simple error mitigation technique significantly im-
proves the overall accuracy of the QPU estimates, bring-
ing it almost on par with the results of the simulator at an
equivalent number of measurements. A key question that
remains is whether the norm error presented above has
a significant impact on the ability to use these RDMs re-
liably within subsequent quantum chemical calculations,
where manipulation of these noisy RDMs may prevent
convergence or lead to unacceptable bias in desired quan-
tities. In order to test this we apply this sampling to
a QPU-solved complete active space self-consistent field
method (computing both energetics and molecular dipole
moments following the optimization), as well as a QPU
version of the energy-weighted density matrix embedding
theory, as examples of multi-scale approaches to allow
quantum resources to be applied to realistic systems in
electronic structure calculations.

III. QUANTUM CASSCF

The complete active space self-consistent field
(CASSCF) approach is generally the starting point in
quantum chemistry for molecular systems exhibiting
stronger correlation effects, and therefore a key step in
the development of electronic structure methods suitable
for quantum computation [16, 20, 34–48]. The central
tenet of CASSCF is that the dominant strong quantum
fluctuations required to qualitatively describe an elec-
tronic system are spanned by a small number of low-
energy degrees of freedom about the chemical potential.
The changes caused by explicitly considering interaction-
driven virtual excitations in this space can change the
occupation and induce entanglement of these orbitals,
giving rise to correlated physics far from a mean-field
description. The first step of CASSCF is therefore to
partition the orbitals into three subspaces, denoted core,
active and virtual. Core orbitals are deep-lying orbitals,
which are considered to be chemically-inert and fully oc-
cupied, while conversely, the virtual orbitals are consid-
ered high-energy states which remain unoccupied. To-
gether, these denote the ‘external’ space. The active
space denotes the degrees of freedom which are consid-
ered to span the dominant electron correlations corre-
sponding to low-energy virtual excitations of the Nact

electrons within it, with the full set of quantum fluctua-
tions amongst this set to be considered. No entanglement

or particle/spin fluctuations are considered between the
external and active spaces. The overall CASSCF wave
function at any point can therefore be written as

|ΨCASSCF〉 = |ψactive〉 ⊗ det[φc], (8)

where |ψactive〉 denotes an Nact-electron wave function
spanning the active degrees of freedom, while det[φc] is
a single product state over the core orbitals, accounting
for the N −Nact remaining electrons.

A key initial step for CASSCF is therefore to choose
the orbitals in each set. These are selected from an initial
mean-field calculation, where to a first approximation,
the highest-energy occupied and lowest-energy virtual or-
bitals about the chemical potential are chosen as the ac-
tive space. However, this choice is often augmented with
other criteria for selection of the active space, including
symmetry, locality and/or ‘chemical intuition’, with ap-
proaches for automatic selection of this space, e.g., from
quantum information arguments, a source of recent de-
velopments [1, 49, 50]. However, it is clear that selecting
these orbitals from an initial mean-field calculation has
an inherent flaw. The active space, designed to capture
the strong correlations and dominant entanglement be-
tween single-particle states, is chosen from a theory with
no correlations or entanglement via simple mean-field or-
bital energetics, which can change substantially in the
presence of electron correlation. To account for this, a
self-consistency in the choice of the active space orbitals
is required for meaningful and qualitatively accurate re-
sults in the presence of strong correlation. This involves a
variational optimization of the state given in Eq. 8, to ac-
count for an arbitrary mixing between all three classes of
orbitals, defined by the exponential of an anti-hermitian
one-particle operator. This allows the character of the
orbitals to change, by rotating core and virtual compo-
nents into the active space in a variationally optimal way.

The CASSCF method from another perspective can be
considered as an embedding of the correlated effects of
the active space into a mean-field description of its ‘envi-
ronment’ (as given by the electrons in core orbitals), as
presented in Ref. 14 for quantum emulation. However,
this active ‘embedding region’ is chosen largely on ener-
getic criteria, with a strictly separable form and no entan-
glement with the core electrons. We contrast this with an
alternative criteria based on locality in Sec. IV. The lim-
itations of the approach come from the size of the active
space, which for an exact treatment is often accepted to
be 16 electrons in 16 orbitals [20], with some instances of
computation up to 20 electrons in 20 orbitals [51]. This is
due to the exponential scaling of classical resources with
respect to this size in order to represent and optimize
|ψactive〉. Beyond this, approximate descriptions of the
active space wave function are increasingly being inves-
tigated, although all have their limitations [52–57]. This
active size constraint stymies the application of CASSCF
to systems with larger valence spaces, where a small ac-
tive space is not sufficient and convergence of desired
properties with respect to active size is not reached.
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This limitation is a potential opportunity for NISQ
computers to exhibit a quantum advantage in this
keystone method in quantum chemistry, with the ac-
tive space paradigm often being touted as a near-term
prospect for quantum computers [1, 12] (see e.g. Ref. 58
for a recent review of the limits of classical computers
in this field and the requirements for quantum advan-
tage). However, beyond simple analysis of gate depth
and qubit number required is the question of the prac-
tical feasibility of a robust and convergent algorithm for
the self-consistency of the full CASSCF method, which
has to date been recently demonstrated for a single or-
bital optimization step without full self-consistency in the
work of Takeshita et al. [12]. In the algorithm which we
use, the coupling of the active space correlations to the
orbital rotations required for self-consistency is provided
by the two-body RDM within the active space. There-
fore, the faithful sampling of this two-body RDM with
sufficient fidelity is critical for a well-behaved algorithm.
This is especially important as the orbital rotation up-
dates involve non-linear functionals of the sampled two-
body RDM elements, meaning that we expect noise from
the QPU sampling to manifest as systematic error in the
final results, even in the case that the sampling of the
underlying RDM elements is unbiased. We investigate
the two-body RDM active space sampling for this pur-
pose on QPUs as well as the importance of error mitiga-
tion, by using a parameterized gate circuit as the active
space wave function optimized via the variational quan-
tum eigensolver (VQE). However, the use of VQE in this
work could be replaced by quantum Krylov or imaginary-
time solvers suitable for NISQ devices [59, 60], as well as
quantum phase estimation algorithms when suitable de-
vices are available.

A. Fully self-consistent algorithm

We briefly summarize the key steps of the (two-step)
CASSCF approach (sometimes also described as the re-
lated multi-configurational self-consistent field method),
with more details available in Ref. 17. We start with the
second quantized electronic Hamiltonian in a basis, as

Ĥ =
∑
ij

hij â
†
i âj +

1

2

∑
ijkl

gijklâ
†
i â
†
j âlâk + Enuc, (9)

where hij and gijkl = 〈ij|kl〉 are the one and two-body
integrals respectively, with Enuc the scalar nuclear repul-
sion. We parameterize the orbitally-optimized CASSCF
wave function of Eq. 8 as

|ΨCASSCF〉 = |R, c〉 = e−
∑
ij Rij â

†
j âi
∑
n

cn |n〉 , (10)

where the one-body matrix operator R parameterizes the
single-particle unitary rotation operator of the molecular
orbital basis (Rij = −Rji), |n〉 the complete set of Slater
determinants spanning the active space, and c defines the

coefficients of the configurations indexed by n, spanning
the selected active space. The full optimization problem
can then be written as

E = min
R,c

〈R, c|H |R, c〉
〈R, c|R, c〉

. (11)

Within the two-step algorithm, the optimization of R
and c are treated separately and alternated, as the opti-
mization of R can be efficiently performed for one-body
unitary rotations on classical computers, given the knowl-
edge of the active space two-body RDM,

Γ2 = 〈ψactive|â†i â
†
j âlâk|ψactive〉. (12)

The optimization of R then proceeds via construction of
the gradient and Hessian of the energy with respect to
these parameters, which can then be updated at mod-
est computational expense via a quasi-second order step,
accelerated with iterative subspace methods as imple-
mented in the PySCF package [17, 61, 62].

For a given rotation matrix parameterized by R, the
Hamiltonian can then be transformed into the new basis,
and the Coulomb and exchange contribution from the
static core electrons integrated out, resulting in an active
space Hamiltonian, Hact(R), which only spans the active
space degrees of freedom. The optimization of this active
space wave function is then amenable to implementation
within a VQE minimization, as

E|R = min
θ
〈ψactive(θ)|Hact(R) |ψactive(θ)〉 , (13)

where θ denote the angles to optimize within the cho-
sen quantum circuit parameters [25]. Once optimized,
the 2RDM elements of the active space of Eq. 12 can
be sampled, in order to update R in the full space, until
convergence. In practice, convergence can be triggered in
a black-box fashion over a number of variables, such as
the energy, orbital gradients, or density matrices them-
selves. However in this work we run for a fixed number
(ten) of orbital updates, which is sufficient to gauge con-
vergence and to subsequently observe the fluctuations in
the quantities of interest at this point.

B. Results

While the computational procedures for this coupled
orbital optimization are well developed for exact or near-
exact solvers in the domain of quantum chemistry, their
utility in a fully self-consistent algorithm with a noisy
quantum computer is far from clear (although there is
some relevant recent work on noisy Monte Carlo solvers
for active spaces [54, 55, 63, 64]). We therefore consider
the CASSCF algorithm with an active space NISQ device
solver, to determine the stability of the algorithm in the
presence of sampling, gate noise, decoherence, and a pa-
rameterized quantum circuit for the state. This allows us
to understand the feasibility of this multiscale approach,
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and develop practical strategies to ameliorate potential
shortcomings from the noisy active space sampling.

We apply the method to a carbon monoxide (CO)
molecule in a cc-pVDZ basis set, and at a stretched bond
length of 1.54 Å. This stretching of the multiple bond en-
hances the strong correlation in the electronic structure,
as the atomic-like character of the constituent atoms is
increased. An active space of two orbitals and two elec-
trons, corresponding to the highest occupied and low-
est unoccupied molecular orbitals, is selected to capture
the dominant many-body entanglement in these lowest-
energy quantum fluctuations. To ensure a significant
level of orbital relaxation from the self-consistent proce-
dure, and to test the stability of this noisy optimization
in the case of a poor initial choice of orbitals, we select
initial orbitals (and active space) from only a partially
converged Hartree–Fock calculation. This was achieved
by an early stopping of the mean-field self-consistent field
procedure after only two updates of the Fock matrix prior
to the CASSCF.

We first implemented the method on a quantum sim-
ulator with 500, 2,000, 5,000 and 10,000 shots to sam-
ple each mapped two-body RDM operator required, but
in the absence of any additional noise model for the
gates. For the quantum hardware experiments, we use
IBMQ Bogota and IBMQ Santiago, which are both 5-
qubit QPUs available through the the IBMQ platform,
with equivalent levels of gate fidelity (details about each
QPU used in this paper can be found in Appendix C).
The initial calculations on IBMQ Bogota were performed
without accounting for any error mitigation, before ap-
plying the light-touch error mitigation strategy presented
in appendix A on the IBMQ Santiago hardware to as-
sess any improvements from this. For the QPU runs, we
use a measurement ramp-up schedule whereby the num-
ber of measurements is increased if the output energy
at a given iteration is higher than for the previous one
(which should not be the case during the optimization).
It is capped at 8,000 shots, which is also the number of
measurements used for RDM sampling after the state is
optimized.

We used the same ansatz for all experiments, built on
a four-qubit, three-layer version of the HEA [65, 66], and
the same optimizer: the gradient free RotoSolve methods
[30] . This resulted in a total of 24 variational parameters
in the model. We found it unnecessary to fully converge
the ansatz each iteration, and therefore investigated vary-
ing the level of ansatz optimization each CASSCF step
to improve efficiency. Five iterations of the VQE were
in general sufficient on the first cycle, and we then used
the parameters obtained to initialise the ansatz for the
next cycle. A single iteration of the VQE for subsequent
CASSCF steps after performing this warm start was suf-
ficient to fully converge in a reasonable time, and to reach
good accuracy.

The results of these CASSCF optimizations are pre-
sented in Fig. 2. Without error mitigation, the QPU
results show significant systematic error at convergence

of ∼ 60 mEh, but nevertheless allow for a stable opti-
mization. Including the error mitigation allows for sig-
nificantly better results, with fluctuations of less that
10 mEh from the exact CASSCF value from exact 2-
step optimization of the same initial active space. As
expected, the variance from the QPU experiment is sig-
nificantly more than the corresponding quantum simu-
lated results, even with error mitigation. This reflects
the fact that the error mitigation effectively removes the
bias in the sampled measurements, but does not mate-
rially improve on the variance resulting from quantum
noises. In our quantum simulated results, we find strong
convergence for any simulation without gate noise or de-
coherence above 5,000 shots. Below that number, fi-
nite sampling noise prevents the algorithm reaching the
sought after solution. At 500 shots, it fails to reach under
10 mEh difference to the target state energy on average.

We can distinguish and isolate the effects of certain er-
rors arising from the quantum solver on these results.
Firstly, we have the systematic error in the VQE at
each iteration, including the optimization, gate errors
and ansatz choice, which lead to a non-exact energy and
state for a given set of active orbitals. Secondly, we can
consider the effect of stochastic noise in the RDM due to
a finite number of samples. This second error will lead
to incorrect orbital updates in the CASSCF macroitera-
tions, and a loss of precision in the final CASSCF energy
due to an inability to propagate to the optimal orbitals
defining the active space and its Hamiltonian. Further-
more, since the orbital choices in CASSCF are not linear
functionals of the sampled density matrix elements, even
if the RDM elements are entirely unbiased and correct
on average, this does not preclude a systematic error en-
tering the orbital updates at any finite sampling.

To separate these sources of error, we can consider the
exact energy of each CASSCF iteration, but using the
active space orbitals obtained at each iteration from the
noisy VQE update from the quantum solver. This elim-
inates errors due to the VQE optimization of a given
active space, isolating the error due to convergence of
the non-optimal orbital rotations being found at each
step, primarily due to the inherent sampling noise of the
RDMs. These results are shown in Fig. 3, and show that
the overwhelming majority of the error is arising from
the bias in the VQE, while the convergence of the or-
bitals is highly robust to the errors in the active space
VQE description and sampling errors of the RDMs. Even
without error mitigation of the RDMs, orbital optimiza-
tion is accurate to within 10 mEh, while the results of
the simple error mitigation in the RDMs rendered an al-
most exact CASSCF energy. This demonstrates that the
orbital optimization procedure is less susceptible to the
errors in the VQE and RDM sampling than the inherent
errors in the energy and wave function optimization for
a given active space. This relative insensitivity to the
fidelty of the RDMs bodes well for larger active space
calculations on QPUs and the practicality of orbital op-
timization through RDM sampling, as well as the im-
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FIG. 2. Convergence of the energy of the CASSCF state for a 2-electron, 2-orbital active space of Carbon Monoxide for each
orbital update step. Results are shown for a quantum simulator, on IBMQ Bogota (without error mitigation) and on IBMQ
Santiago (with error mitigation). Plot (b) focuses on the final five orbital update cycles, showing the variation and bias in
converged results, with additional simulated results for 500 and 2,000 shots to illustrate the impact of finite sampling noise
(results for 5,000 shots are indistinguishable from those obtained with 10,000 shots and as such were not included). Error bars
for QPU results on plot (b) represent 1.96 times the standard error spread of the measurement data, or the 95 % confidence
interval for the values estimated.

provements which would transfer to this approach from
improved active space quantum algorithms [59, 60].

A key question remains as to whether this robustness
is a property just of orbital optimization, or whether this
also extends to a broader set of expectation values which
can be derived from the RDM sampling (other than the
energy), as these also relax due to a more faithful descrip-
tion of the correlated wave function. We consider here
the effect of orbital optimization and a correlated VQE
wave function on the magnitude of the dipole moment of
the carbon monoxide molecule in the same active space,
which can be extracted from the sampled one-body re-
duced density matrix as a one-particle expectation value.
This quantity characterizes the net charge distribution in
the molecule, and from symmetry constraints can be de-
scribed by a vectorial quantity which must be coincident
with the carbon-oxygen bond. The magnitude of this
vector is shown in Fig. 4, as the active space orbitals are
optimized in the presence of the correlated VQE state.

Since the dipole moments are linear functionals of the
one-body RDM, we would expect an unbiased sampling
of the RDM to give an unbiased estimate of the dipole
moment from the optimized VQE-CASSCF state. We
find that without error mitigation, there is still an error
of ∼ 0.6D, however the error mitigated results can effec-
tively reduce the systematic error in the final dipole mo-
ment completely, with fluctuations in each cycle of a sim-
ilar magnitude to the emulated values without quantum
noise or decoherence with 5,000 shots. It is also worth

noting that the dipole moment of carbon monoxide is no-
toriously difficult to converge theoretically [67], hence the
error with respect to experiment of 2 Debye is to be ex-
pected for CASSCF with a minimal active space. At this
point, the fluctuations in the dipole moment agree with
the magnitude of the fluctuations expected from the orig-
inal density matrix sampling experiments of Fig. 1, and
an unbiased estimate of the exact CASSCF dipole mo-
ment is obtained. We also note that the correlation and
orbital optimization reverses the direction of the charge
imbalance in this system from the starting description.

The overall runtime of the full QPU-CASSCF calcula-
tions on IBMQ Bogota was ∼14 QPU-hours, including 10
orbital updates, VQE optimization and RDM sampling.

However, one must consider the potential for paral-
lelization. In this case, all 8,000 measurements conducted
on the 49 operators could have been conducted in paral-
lel, possibly reducing the overall runtime up to well under
a second. While this is not a good indication for scaling
and long term viability of the method (we encourage the
reader to refer to Ref. 58 for an interesting assessment
of the scalability of VQE), it does illustrate the potential
for strong parallelization, and corresponding error miti-
gation techniques, for the viability of NISQ algorithms.

Finally, it is worth discussing the viability of extensions
to CASSCF on quantum devices. In quantum chemistry,
CASSCF is rarely the end of the story, as it neglects the
contributions to expectation values arising from interac-
tions between the active space electrons and the external
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FIG. 3. Convergence of the final six orbital update cycles of
the CASSCF energy, obtained with the IBMQ Bogota (with
no error mitigation) and IBMQ Santiago (with error mitiga-
tion). Two series are presented for each QPU calculation:
‘VQE energy’ results are equivalent to Fig. 2, while ‘Exact
solution’ represent the exact energy from the current active
space, that would have been obtained if the VQE was solved
perfectly given the molecular orbitals found from the previous
quantum VQE update step.

degrees of freedom. These can generally be treated at
a perturbative level of theory[68], cumulant or energy-
moment expansions [69] or via subspace expansions[12],
and are required for quantitative accuracy for predictive
calculations. These perturbative couplings between the
spaces can be computed by considering the higher-rank
RDMs in the active space. This approaches will signifi-
cantly increase the number of terms which must be sam-
pled. However, large reductions can be found with the
appropriate groupings, and this is demonstrated in Ap-
pendix B, where 440,154 Pauli strings for the sampling
of the four-body RDM within 6 qubits can be reduced to
only 3,182 commuting groups. We will explore the via-
bility of this perturbative extension to CASSCF in future
work.

IV. QPU-ENHANCED ENERGY-WEIGHTED
DENSITY MATRIX EMBEDDING

The CASSCF method exploits the locality of corre-
lation in the energy domain, choosing and optimizing
a low-energy subspace for the correlated treatment. In
this section, we demonstrate the utility of a faithful QPU
sampling of RDMs in order to correlate and optimize a
different subspace, which instead relies on spatial local-
ity. This perspective is often more useful for strongly-
correlated extended systems, where the atomic-level cor-
related degrees of freedom can be isolated, and where
widely used methods such as density functional theory
fail to provide accurate results [70]. These approaches fall

FIG. 4. Convergence of the dipole moment in Debye from
QPU-CASSCF as the orbitals are optimized, both with
(IBMQ Santiago) and without (IBMQ Bogota) error miti-
gation, as well as quantum simulated results from an RDM
sampling of 500, 2,000 and 10,000 shots. Positive dipole mo-
ments mean that the dipole moment points towards the oxy-
gen (i.e. the oxygen atom has net negative charge), while the
converged results flip the orientation of the dipole moment.

under the umbrella of quantum embedding or quantum
cluster methods, and are amongst the most promising for
QPU-enhanced materials modelling [21, 71, 72]. We in-
vestigate the recently-developed ‘Energy-weighted Den-
sity Matrix Embedding Theory’ (EwDMET) as a promis-
ing candidate in this direction [22–24].

The EwDMET method connects the density matrix
embedding theory (DMET) and dynamical mean-field
theory (DMFT), two established approaches in quantum
embedding [73–75]. Both of these ‘parent’ approaches
have recently been adapted for use with a quantum hard-
ware solver, as well as related embedding techniques [7–
11, 13, 76–78]. However, the EwDMET avoids a number
of difficulties. Similar to DMET, it avoids any necessity
to compute the single-particle Green’s function of the
resulting quantum cluster problem on the QPU, which
is challenging for quantum hardware, although impor-
tant progress is being made [79]. Instead, the method
requires a desired number of one-particle spectral mo-
ments from the subspace problem, which can be obtained
directly from the reduced density matrices of the ground
state. The number of self-consistent spectral moments
can then be systematically enlarged, to approach the
complete dynamical character of DMFT as an orthog-
onal polynomial expansion. The method also removes all
explicit numerical fitting steps, and constructs a rigor-
ous self-consistency on these spectral moments, system-
atically extending the DMET formulation and connect-
ing it to its fully dynamical limit. This rigorous and al-
gebraic self-consistency enables non-trivial results to be
obtained even at the lowest truncation of the spectral
moment expansion. This requirement of only computing
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ground-state RDMs, while at the same time benefiting
from a rigorous and algebraic self-consistency for non-
trivial emergent physics makes it an ideal candidate for
combination with QPU-derived RDMs in the NISQ era.
We briefly review the salient features of EwDMET for
this QPU formulation, with more details in Ref. 24.

As with all quantum cluster approaches, the algorithm
begins with the choice of a local correlated space. This
could be the d−shell of a transition metal atom, or a clus-
ter of sites for a discrete lattice model. The EwDMET
method then allows for an improvable and self-consistent
description of the one-particle quantum fluctuations be-
tween this fragment and its environment [22–24]. This
information is contained within the self-consistently op-
timized (hole and particle) spectral moments of the frag-
ment, defined as

T
(n)
h,αβ = 〈Ψ| â†α(Ĥ − E0)nâβ |Ψ〉 , (14)

T
(n)
p,αβ = 〈Ψ| âα(Ĥ − E0)nâ†β |Ψ〉 , (15)

where α, β index the degrees of freedom of this local frag-
ment, n ≥ 0 denotes the order of these moments, opti-
mized up to a maximum desired value nmom, and |Ψ〉
is the ground state of the constructed correlated sub-
space. As nmom→ ∞, the method exactly reproduces
the effective dynamics of DMFT, recast as a ground-state
wave function theory, while systematic truncation to low
nmomwill still faithfully describe the dominant low-energy
fluctuations from the fragment into its environment. The
EwDMET method rigorously maps the full system to a
subspace consisting of the chosen fragment coupled to a
‘bath’ space . The size of the bath is determined solely by
the size of the fragment and the desired number of spec-
tral moments to capture (and the correlated subspace
is hence independent of the size of the full system). It
is this correlated subspace problem which must then be
solved on the QPU at each iteration, and the spectral mo-
ments of Eqs. 14 and 15 computed. With these computed
spectral moments from the correlated fragment space,
the one-particle description of the full system can be al-
gebraically updated via the addition of non-interacting
auxiliary states, to ensure that the fragment moments
at the mean-field level over the full system exactly re-
produce the correlated subspace ones. The procedure is
iterated, updating the auxiliary space and bath space of
the quantum cluster problem, until convergence.

A. Infinitely coordinated Bethe-Hubbard Lattice

We apply this method to the paradigmatic Hubbard
model of condensed matter physics, which describes a
range of quantum phases and correlation-driven transi-
tions. Specifically, the limit of an infinitely-coordinated
extended Bethe-Hubbard lattice with local interactions
defines our model of interest, which has the particular
feature that correlation-driven changes to all one-particle

properties are site local. This property was used to great
effect to motivate the development of DMFT, by provid-
ing a non-trivial model for which it describes an exact
limit [80, 81]. The EwDMET has the same exact limit
for this model as nmom→∞.

The model can be equivalently defined in this infinite-
dimensional limit via its metallic non-interacting density
of states [82], which is defined to have the form

A(ω) =
1

2π

√
4− ω2, (16)

for a bandwidth of |ω| < 2. This non-interacting spec-
trum was fit to a single central fragment site with 200 ad-
ditional degrees of freedom, to approximate this full spec-
trum to a high energy resolution [83, 84]. The interacting
Hamiltonian is then defined as resulting from the addi-
tional on-site Hubbard interaction term, Un̂i↑n̂i↓, which
is included on the fragment in the correlated subspace
Hamiltonian at each iteration. The spectral moments
of this central fragment site are then self consistently
optimized, where we define the projection of the non-
interacting system Hamiltonian into this cluster subspace
as hclust.

In this work, we truncate the spectral moment expan-
sion at order nmom= 1, defining the set of self-consistent
fragment quantities. This simplifies their computation
from the VQE solution for the ground state of the clus-
ter Hamiltonian at each iteration, since these n = 0 and
n = 1 moments over the fragment can be constructed
from (parts of) the one- and two-body RDMs, for which
we have efficient sampling as detailed previously. For
instance, the n = 1 hole moment reduces to

T
(1)
h,00 =

∑
j∈clust

hclust0j γ0j + UΓ0000, (17)

where 0 denotes the fragment site index. Physically,
the restriction of nmom= 1 means that the center of
mass of the particle and hole spectral distributions can
be self-consistently optimized on the lattice in the pres-
ence of the local correlation effects. This contrasts with
DMET, where single site self-consistency cannot change
the physics of the full system from the non-interacting
picture in translationally symmetric systems, and so
QPU emulations of this method with a single fragment
site are restricted to single-shot computation without
any self-consistency [9, 10, 78]. By using VQE as the
solver on quantum hardware, we can identify the ground
state of the cluster Hamiltonian, and subsequently sam-
ple the relevant RDMs to construct the required fragment
spectral moments. We iterate this procedure until self-
consistency, which we define to be when the sum of the
squared update to the (four) parameters defining the aux-
iliary states varies by an energy of less than 10−4. These
self-consistent auxiliary states consist of individual poles
in a self-energy which modifies the spectral function of
the system to match the correlated local moments from
the VQE.
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FIG. 5. The density of states for the Hubbard model on
the Bethe lattice with infinite coordination for the EwDMET
method with nmom= 1. (a) Upper results are performed on a
classical QPU simulator with finite sampling noise and vary-
ing numbers of shots in the VQE solution to the cluster Hamil-
tonian at each iteration. (b) Lower panel shows results from
two QPU experiments, on IBMQ Santiago and IBMQ Bogota,
with and without error mitigation respectively, with 5,000
shots for the sampling of the required RDMs. Grey dotted
lines show the original non-interacting spectrum of the model,
while the red dotted line shows the EwDMET(nmom= 1) re-
sults with an exact solution of the cluster Hamiltonian each
iteration.

At this choice of spectral moment truncation, the clus-
ter Hamiltonian consists of the single fragment site and
a single bath orbital, resulting in a four-qubit system to
solve at each iteration of the EwDMET method. This
cluster is solved via VQE on the QPU with the same
three-layer HEA as applied in the CASSCF section, with
a Jordan-Wigner mapping to the qubit representation.
Additionally, the same error mitigation is used to control
the noise inherent in the sampling of the RDMs required
to construct the fragment spectral moments. Emulated
QPU simulations without noise models were also per-
formed for comparison to the QPU experiments of this
algorithm.

B. Results

Figure 5 presents results for the single-particle spec-
trum for the model at self-consistency for VQE-
EwDMET with nmom= 1, at a strongly correlated limit
with an on-site interaction of U = 8, which is twice
the non-interacting bandwidth of the material. Self-

consistency achieves the matching of the first two local
spectral moments (Eqs. 14 and 15 for n = 0 and 1 over
the fragment site) for both the mean-field state of the
whole system, and the VQE results over the correlated
cluster. At this point a spectrum can be obtained which
is consistent through these local moments, via diago-
nalization of the resulting (dynamical) mean-field, with
specifics found in Ref. 24. The final converged spectra
are presented for an exact solver, an emulated quan-
tum simulation without noise but with different num-
bers of shots for the sampling of the RDMs (500, 2000
and 10,000), and quantum hardware results on IBMQ
machines with and without error mitigation, with 5,000
shots for the sampling. All calculations converge within
8 iterations as the auxiliary and bath spaces adapt to
the correlations described over the fragment site in each
VQE cluster solution, demonstrating the robustness of
the self-consistency in the presence of noise. At this
level of theory, the spectrum shows significant qualita-
tive changes from the non-interacting spectrum. Upper
and lower Hubbard bands develop, splitting the original
density of states, with a qualitatively correct charge gap
between these bands shown. However, a small quasipar-
ticle peak remains at the Fermi level, showing that the
metallic character of the system is not entirely removed
by the correlations, as is to be expected from numerically
exact calculations on this system such as NRG+DMFT
[85]. Consistency in higher orders of the spectral mo-
ments are required to get to a true Mott insulating state
[24], which can be achieved at the expense of an increas-
ing size of bath space and sampling higher spectral mo-
ments (which requires higher-body RDMs, described in
Appendix B). Nevertheless, even at this low truncation,
much of the true correlated spectral density is reproduced
with significant physical correlation-driven redistribution
of spectral weight observed.

At 10,000 shots, the emulated results without further
simulated quantum noises are are almost indistinguish-
able from the exact benchmark at all energies. At lower
numbers of shots, the gap between the Hubbard bands is
too small, as the variance in the sampled RDMs increases.
As with the CASSCF method, the updated auxiliary
space at each iteration is a non-linear transformation of
the spectral moments (which are themselves linear func-
tionals of the RDM elements, as can be seen in Eqs. 17).
The consequence of this is a systematic error in the result-
ing spectral functions at convergence due to the increas-
ing RDM variance, rather than simply a manifestation
in a noisy but unbiased spectrum. This behavior of an
underestimated gap between the Hubbard bands is also
present in the QPU results, where unmitigated results
feature unrepresentative Hubbard bands. However, the
performance is once again considerably improved with
the error mitigation, with the Hubbard bands and low-
energy peak resolved to higher accuracy, suggesting the
method fits well with a QPU cluster solver, and removing
the necessity for the full solution of the fragment Green’s
function at each point within a DMFT framework.
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FIG. 6. Converged effective on-site Matsubara self-energy for
the Bethe lattice Hubbard model with EwDMET at nmom=
1. (a) Upper plot shows results from the quantum simulator
with finite sampling of the RDM elements, compared to exact
results (infinite sampling). (b) Lower plot shows results from
quantum hardware on IBMQ Santiago and IBMQ Bogota and
5,000 shots in the RDM sampling, with and without error
mitigation in the RDM sampling respectively.

Properties of the system can also be observed from
the effective self-energy of the system, which is obtained
directly from the self-consistent auxiliary states, and al-
lows access to quantities such as Fermi liquid parame-
ters [24]. For the same system, Fig. 6 shows the imagi-
nary part of the self energy on the Matsubara frequency
axis. The finite sampling results are seen to approach
the exact results with increasing shots, with 10,000 shots
reaching a comparable performance to the exact results,
with the discrepancy far more visible in the self-energy
than the original single-particle spectrum of Fig. 5. The
quantum hardware unmitigated results correspondingly
demonstrate significant overestimation of the resulting
self-energy. Despite the fact that the Hubbard bands are
closer, these unmitigated results show a larger effective
mass and quasi-particle renormalization at the Fermi sur-
face from the self-energy (a larger derivative at iω → 0),
which manifests in the smaller peak in Fig. 5 at that
point. Error mitigated QPU self-energies are however
more in line with exact results for the method, albeit
now slightly underestimated at low-frequencies. Further
improvement of the results can be obtained by increasing
the moment order (nmom) to which the dynamical quan-
tities are all resolved. Similar to the perturbative correc-
tions to CASSCF however, these will require sampling
of higher-body RDMs, and is an avenue of continuing
research.

V. CONCLUSIONS

We have presented a unified approach to self-consistent
coupling of quantum and classical computational re-
sources in quantum chemistry and condensed matter elec-
tronic structure problems. This coupling relies on the
faithful and efficient sampling of reduced density matri-
ces on quantum resources, where these objects span the
correlated physics of an iteratively optimized subspace
of the full system. We consider the required fidelity and
sampling quality of these density matrices for robust op-
timization on current generation quantum hardware, de-
veloping a simple but effective approach to mitigate for
gate errors and allow this full convergence. As well as
converged energetics, we also analyse the viability of the
sampled density matrices for non-energetic quantities, in-
cluding the dipole moment for ab initio simulation of
chemical systems, and the self-energy and mass renor-
malization of strongly correlated extended models.

Overall, the picture is encouraging, with the self-
consistent optimization found to be particularly robust
to the presence of sampling noise on current generation
quantum hardware. This self-consistency is found to be
more reliable than the uncertainties resulting from the
state optimization and energy obtained from the VQE at
any single iteration. This points to a significant trans-
fer from continuing improvements in both hardware and
quantum algorithms for state preparation on quantum
devices for self-consistent approaches. These conclusions
however are restricted to relatively small correlated sub-
spaces, and further work is required to understand the
generality of these conclusions as we access QPU with
larger qubit capacity. Furthermore, quantitative rather
than qualitative accuracy in these application areas will
require an efficient and compact description of higher-
body density matrices, which will be the focus of future
directions.
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A. LIGHT TOUCH ERROR MITIGATION

In order to improve the results and reduce the effects
of the quantum noises of the IBMQ devices used, we em-
ploy a simple, but costless, extrapolation approach based
on the assumption that the impact of the circuit errors is
evenly distributed on the output state (for a more rigor-
ous approach to extrapolation, see Ref. 33). The aim is to
recover an approximation of the true expectation value of
a quantum circuit with respect to an operator, assuming
a specific bias on the output results. It is worth noting
that this method primarily focus on correcting gate and
readout errors, and as such does not attempt to maintain
or restore the purity of the quantum state produced. It
is not expected to be an effective approach (when used in
isolation) for mitigating errors on deep quantum circuits
where the primary source of noise is decoherence.

We define the true (desired) expectation value of the

circuit with respect to an operator, Ô, as 〈Ô〉, while the

measured expectation value is denoted as 〈Ômes〉. The
outcome of a circuit can be associated with measurement
eigenvalues ±1, with the probability of measuring 1 equal
to P1 = Pr(Om = 1), and with Om referring to a single

measurement of operator Ô at the end of the quantum
circuit. Similarly, we have P1 = 1−P−1 = Pr(Om = −1).
We can associate the true expectation value with:

〈Ô〉 = P1 − P−1 = 2P1 − 1. (18)

We now assume that there is a certain probability,
Perr, that at least one gate error occurs during propa-
gation and measurement of the quantum circuit. Any
gate error changes the balance of probabilities between
Pr(Om = 1) and Pr(Om = −1). One can assume that
there exists a value between ±1, representing the expec-
tation value of Ô given the error rate, which we denote
〈Ôerr〉. This value, as well as the probability distribu-
tion of the operator measurements Om are unknown and
cannot be recovered easily.

We can approximate the expectation value of the mea-
sured operator as 〈Ômes〉 = (1 − Perr)〈Ô〉 + Perr〈Ôerr〉,
assuming a linear relationship between the gate errors
and effect on the expectation value. We can rewrite this
as

〈Ô〉 =
〈Ômeas〉 − Perr〈Ôerr〉

(1− Perr)
. (19)

We make the further assumption on the value of 〈Ôerr〉
that, given a sufficiently large number of a random circuit
errors, the probability of getting either eigenvalue when
an error occurs is equal (or 〈Ôerr〉 = 0). This assump-
tion is based on two observations: (1) there is no way
to tell exactly what the impact of a gate error will be on
measurement probability except that it will bias measure-
ment averages towards 0 (since the dominant probability
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will on average be affected by more errors), and (2) given
that the gate errors are random, these will not result in
always measuring 1 or −1, ensuring that these are the
least likely values for 〈Ôerr〉.

This method is largely sufficient for the purpose of our
experiments, and can act as a lower bound for the bene-
fits error mitigation can achieve with no additional com-
puting cost. With this approximation, and for eigenval-
ues ±1, we can ignore this final term, and the expression
simplifies to

〈Ô〉 =
〈Ômeas〉

(1− Perr)
, (20)

while for binary eigenvalues of 1 and 0, we get

〈Ô〉 =
〈Ômeas〉 − 0.5Perr

(1− Perr)
. (21)

In order to estimate the final bias on the true value
of the operator, we have considered the electron number
operator (trace of the one-body RDM). The deviation
from the set number of electrons in the system gives us
an estimate for the bias induced by quantum noise Perr.
Given our assumptions, the bias factor can be recovered
as follows:

1

1− Perr
=

Nelec

Nmeas
, (22)

with Nelec the target number of electrons, and Nmeas the
number of electron measured:

Nmeas =
∑
i

γii =
∑
i

〈ψ| â†i âi |ψ〉 (23)

This comes at no extra computational cost as the one-
body RDM terms used are necessarily computed as part
of the VQE process.

An alternative method would be to estimate Perr di-
rectly by computing it through the reported gate calibra-
tion data from the QPU provider (compounding the gate
fidelities), but we found that in general this approach is
less reliable. This is most likely due to the fact that using
this latter method treats the bias resulting from circuit
errors completely classically: it ignores any part of the
bias that could be due to the reduced purity of the quan-
tum state produced, which can otherwise be captured by
the former method.

B. OPERATOR GROUPINGS FOR RDM
ELEMENT SAMPLING

At most, sixteen Pauli strings result from each two-
body fermionic operator. While this implies polynomial
scaling (O(n4)) in the number of terms that need to be
measured on the quantum computer, the total number
of measurements can be further improved upon by using

FIG. 7. Number of unique fermionic operators, corresponding
set of unique Pauli strings (under Jordan-Wigner mapping),
and commutative groups to be measured in order to compute
all elements of the one-body (dotted line) and two-body RDM
(solid line), for up to 16 orbitals (32 qubits). The groups
were found via the Largest-degree First Coloring (LDFC) al-
gorithm.

commutative features of the Pauli strings. In particu-
lar, Pauli strings that commute can be measured jointly.
There are two main ways to approach commutativity:
qubit-wise commutation (QWC) and General Commu-
tation (GC) of the operators. For QWC, we group two
Pauli strings together if each operator in the first Pauli
string commutes with the operator of corresponding in-
dex in the second Pauli string. GC is more general, and
allows grouping of Pauli strings as long as they gener-
ally commute (for a review of Pauli strings commutation
rules, we recommend: [86–88]). In this appendix, we
study the scaling of measuring RDM using GC group-
ing for use in future research. These grouping strategies
tend to be computationally expensive. However the final
set of non-commuting Pauli strings required to measure
a given rank of RDM will be identical and agnostic to the
details of the Hamiltonian for a given number of orbitals.

As a result, once an optimal set of terms is established,
it can be used for all systems, in a similar fashion to the
energy measurement for a VQE problem of a given size
(which is equivalent to the two-body RDM).

We present in Fig. 7 the number of commutative
groups constructed for the one- and two-body RDMs as
a function of the number of molecular orbitals in the ac-
tive space (where each molecular orbital is mapped to two
qubits). Our results are similar to those found previously
in the literature (see for instance Ref. [69]), showing a
significant reduction in dimensionality and scaling of in-
dependant observable measurements as the active space
increases in size. This results in a reduction of over two
orders of magnitude for the number of terms to be sam-
pled in a 16 orbital active space, with this factor increas-
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ing for larger active spaces. We present these numbers
in Tab. I. In addition, we also present the groups for
three- and four-body RDMs, up to 6 orbitals (Tab. II),
as an investigation into the future feasibility of extended
coupling schemes between the quantum region and en-
vironment such as multi-reference perturbative or sub-
space expansion approaches [12, 55, 68]. Finding these
groups for the higher-body RDMs for larger numbers of
orbitals became too computationally demanding for the
current algorithm given our resources at time of writing.
One point of note is that the symmetries used in Eqs. 5-
7, combined with the Jordan-Wigner mapping, ensure
that the one-body RDM only relies on half of the wave
function (the same half of all Pauli strings required are
identities, rendering half of the qubits used obsolete in
the sampling). This feature can be used to easily sample
the energy of any tensor product state or one-body RDM
functional [89].

It is worth noting that grouping of terms may entail
additional costs. Firstly, the joint measurements of Pauli
operators results in a covariance between terms, poten-
tially increasing the overall variance of the observable
expectation values. In exceptional cases, this can even
increase the total number of samples required for a given
fidelity [86]. In general however, we should expect a re-
duction in number of measurements necessary for a given
precision [87]. Secondly, joint measurements of Pauli
strings groups require additional circuit depth to rotate
the measurement basis appropriately. This additional
circuit scales O(N2), with N the number of qubits [87],
and therefore should be considered small on larger gate
depth circuits (by comparison, the Generalized Unitary
Coupled Cluster Ansatz scales O(N3) in depth. See for
instance Ref. 32). In the case of current generation QPUs
however, this additional circuit length (largely composed
of entangling gates) results in quantum noise that would
arguably out-weigh the benefits obtained from reduc-
tion of finite sampling noise from operator joint measure-
ments. For this reason, while this reduction in terms to
sample is a promising feature for longer-term viability of
density matrix sampling, we are unlikely to benefit from
this for small qubit arrays on current generation QPUs,
and therefore leave the use of operator grouping in actual
experiments for future work.

We present below further details on the approach we
have used to group operators, as presented in Fig. 7. In
order to find these groupings, we require a graph of com-
mutative relationships between all the Pauli strings re-
quired to measure the elements of the RDMs. To find
a low number of groups of fully connected sub-graphs,
we employed the Largest-Degree First Coloring (LDFC)
algorithm (similar to what is proposed in [88]), a graph
coloring heuristic. As an example for an alternative to
the LDFC algorithm, one can start by grouping Pauli
strings according to the frequency of identity operators
in the string (as done, for instance in [69]).

The steps required to complete grouping of Pauli terms
(using LDFC), joint measurements and measurement re-

sults aggregation are outlined at a high level below. For
a more detailed description, we recommend Ref. 87.

• Initialization: From the list of Pauli terms that
require grouping, define a graph G(V, e), with V
the vertices, corresponding to each Pauli operator,
and e the edges representing anti-commuting rela-
tionship between Pauli operators.

• LDFC step 1: Rank the elements of V according
to their degree, i.e. number of edges they are con-
nected to. Colors are represented by integers, the
color of each vertex is initialized to 0 (unallocated).

• LDFC step 2: First allocate the color 1 to the
element of V with the highest degree. Continue
by allocating to the next element of V the lowest
color that is not already attributed to one of its
neighbours. Iterate likewise until all vertices have
a color.

• Joint-measurement basis identification: The
groups have now been defined. From each group,
identify a basis (multiplicative), from which all the
other elements of the groups can be computed.
The basis size should be N , with N the number
of qubits.

• Joint-measurement circuit construction:
Once a basis is identified, construct the circuit
required for joint measurements of the operators
(following for instance the instructions set in
Ref. 87, aiming to map each of the operators in the
basis to a single qubit Z-operator measurement.

• Reconciliation: From the results of the measure-
ment, reconstruct the expectation value of each el-
ement in each group that can then be used to com-
pute the one- and two-body RDMs.

C. IBM QPU LATTICE STRUCTURES AND
ADDITIONAL INFORMATION

In this appendix, we present additional information
about the IBM QPU used during the experiment. The
information provided below is sourced from IBMQ Expe-
rience reported calibration of the machines at time of run-
ning the experiment and may change slightly over time.

A. Lattice structures

IBMQ Bogota, Santiago and Athens are all 5-qubit
QPUs, following IBM’s Canary r3 processor type, with
reported quantum volume of 32 [90]. The lattice struc-
ture, as well as the qubits used are presented in Fig. 8,
9, 10 respectively.



18

Active orbitals 2 4 6 8 10 12 14 16

Fermionic operators 3 10 21 36 55 78 105 136
One-body RDM JW 6 28 66 120 190 276 378 496

JW-Groups 3 9 13 17 21 27 31 36

Fermionic operators 11 157 786 2,486 6,085 12,651 23,492 40,156
Two-body RDM JW 49 910 4,983 16,460 41,325 87,354 164,115 282,968

JW-Groups 5 70 227 497 853 1,342 1,928 2,601

TABLE I. Number of unique Pauli strings to be measured once grouped in order to sample all elements of the one- and two-
body RDMs, as the number of (spatial) orbitals in the active space is enlarged. These numbers represent the terms in a direct
Jordan-Wigner mapping (JW) and grouping of commuting terms from a Largest-degree First Coloring algorithm (JW-Groups).

Active orbitals 4 6

Fermionic operators 610 8,400
Three-body RDM JW 4,928 71,742

JW-Groups 189 2,049

Fermionic operators 939 40,065
Four-body RDM JW 11,425 440,154

JW-Groups 163 3,182

TABLE II. Number of unique Pauli strings to be measured
once grouped in order to sample all elements of the three-
and four-body RDMs, as the number of (spatial) orbitals in
the active space is enlarged. These numbers represent the
terms in a direct Jordan-Wigner mapping (JW) and group-
ing of commuting terms from a Largest-degree First Coloring
algorithm (JW-Groups).

FIG. 8. IBMQ Bogota lattice structure and qubits used for
experiments. This QPU was used to compute CASSCF and
EwDMET with error mitigation.

FIG. 9. IBMQ Santiago lattice structure and qubits used for
experiments. This QPU was used to compute CASSCF and
EwDMET without error mitigation.

FIG. 10. IBMQ Athens lattice structure and qubits used for
experiments. This QPU was used to compute the RDM sam-
pling studies presented in Fig. 1, with and without error
mitigation

B. Calibration information

The information presented in Table III summarizes the
calibration data of the QPU used. It is directly taken
from the IBMQ Experience Portal and may change over
time as IBM re-calibrates the processors.
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QPU Bogota Santiago Athens

Single-qubit Pauli-X error 2.95e-4 4.55e-4 4.16e-4
Qubit frequency (GHz) 4.89 4.78 5.094
Two-qubit gate error 1.40e-2 1.22e-2 1.043e-2

Two-qubit Gate time (ns) 536.89 408.89 346.67
Read-out length (ns) 5048.89 4017.78 3022.22

Read-out error 3.77e-2 1.82e-2 1.82e-2

TABLE III. Selected calibration metrics from IBMQ experi-
ence. These values are averaged for all qubits / connections
and taken at a point in time near the experiment was run.
They may change over time.


