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Scalable and predictive spectra of correlated molecules with moment
truncated iterated perturbation theory

Oliver J. Backhouse,1 Alejandro Santana-Bonilla,1 and George H. Booth1, a)

Department of Physics, King’s College London, Strand, London WC2R 2LS, U.K.

A reliable and efficient computation of the entire single-particle spectrum of correlated molecules is an out-
standing challenge in the field of quantum chemistry, with standard density functional theory approaches
often giving an inadequate description of excitation energies and gaps. In this work, we expand upon a
recently-introduced approach which relies on a fully self-consistent many-body perturbation theory, coupled
to a non-perturbative truncation of the effective dynamics at each step. We show that this yields a low-
scaling and accurate method across a diverse benchmark test set, capable of treating moderate levels of
strong correlation effects, and detail an efficient implementation for applications up to ∼ 1000 orbitals on
parallel resources. We then use this method to characterise the spectral properties of the artemisinin anti-
malarial drug molecule, resolving discrepancies in previous works concerning the active sites of the lowest
energy fundamental excitations of the system.

The single-particle Green’s function is a compact ob-
ject, but with a vast wealth of information about an
interacting quantum system. Insight into the both the
ground state static quantities, as well as the excitation
spectrum is accessible, which is key in governing the re-
sponse, transport and optical properties of the system,
as well as being directly accessed through experimental
forward and inverse photoelectron spectroscopy. It is un-
surprising therefore that since early in the development
of electronic structure theory, this single-particle Green’s
function has often been cast as a central quantum vari-
able. These include perturbative approximations such
as the outer-valence Green’s function (OVGF)1, alge-
braic diagrammatic construction (ADC)2–4 and the GW
approximation5, as well as non-perturbative methods
such as dynamical mean-field theory (DMFT)6–9. Fur-
thermore, methods built around equation-of-motion for-
malisms for excitations are also closely related to Green’s
function formalisms, allowing for connections to be devel-
oped between existing theories10–12.

In this letter we demonstrate and expand a new
approach within this framework which has been re-
cently introduced, auxiliary second-order Green’s func-
tion (AGF2)13,14. This method exhibits a number of ap-
pealing features, as well as also building connections be-
tween established methods, to bring a new perspective on
these approaches. This includes a favourable O[N5] com-
putational scaling with efficient large-scale parallelism,
an almost entirely reference-independent and fully self-
consistent algorithm, and access to the entire energy-
dependence of the excitation spectrum, rather than a
state-specific approach to excitations. Previous work has
shown AGF2 to be an accurate and competitive method
for both static energetics, as well as charged excitations.
Here, we detail an efficient algorithm for its evaluation
which is implemented in a publicly available codebase,
allowing access to significant system sizes over large test
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sets, as well demonstrating its efficient application to
open problems in theoretical molecular spectroscopy.

The AGF2 method was originally proposed as a re-
formulation of its ‘parent’ method, iterated second-order
Green’s function (GF2)15–18. In this reformulation, it
avoided the numerically cumbersome description of an
explicit continuous dynamical variable, by describing its
effect as static auxiliary degrees of freedom. This ne-
cessitated the algorithmic addition of a renormalisation
group-inspired compression of the effective dynamics of
the self-energy at each step, which nevertheless conserved
key properties of the resulting self-energy via its spectral
moments. It was subsequently realised that in addition
to this compression ensuring a favorable numerical cost,
for certain well-defined truncations it in fact also sub-
stantially improved the spectral accuracy of the result-
ing theory across a range of systems. This observation
is in keeping with the common feature in perturbative
Green’s functions methods, that full self-consistency of
the propagators generally has a deleterious effect on spec-
tral properties, and thus a well-balanced self-consistency
in AGF2 can be motivated by the efficient truncation of
these dynamics, despite the loss of a rigorously conserv-
ing approximation19–23.

However, the AGF2 method is increasingly also being
seen as a self-consistent extension of the ADC(2) method,
a popular and low-scaling approach to determine accu-
rate excitations in quantum chemistry. This approach
builds an effective Hamiltonian from an equation-of-
motion formalism around the Møller-Plesset second-order
perturbative ground state, including all (bare) second-
order diagrams2–4,24–28. This effective Hamiltonian can
be diagonalised for extremal eigenvalues. The AGF2
method can be considered as a way to compress this effec-
tive Hamiltonian of ADC at each step, and use the result
to renormalise or ‘dress’ the propagators in the perturba-
tive expansion. This self-consistency results in a resum-
mation of diagrams to all orders and an insensitivity to
the choice of reference state. Meanwhile, the systematic
compression allows for the entire effective Hamiltonian to
be diagonalised, avoiding the need to rigorously separate
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particle and hole excitations, and ensuring simultaneous
access to excitations over all energy scales.

Previous work has referred to this efficient compres-
sion (or renormalisation) of the auxiliary space repre-
senting the effective self-energy as AGF2(1,0), to dis-
tinguish it from other such truncations. This ensures
that at each iteration, the first-order particle and hole
spectral moments of the full second-order self-energy are
conserved in the truncation. We will exclusively con-
sider this truncation in this work (and therefore just re-
fer to it as AGF2), and demonstrate that this reduces
to a particularly efficient algorithm, with favorable par-
allelism which can allow a comfortable treatment of 1000
orbitals. This is implemented within the PySCF open-
source simulation package29,30. This resulting scalable
implementation allows for benchmarking on the widely
used ‘GW100’ molecular test set for charged excitations
in large basis sets21, compared to the established and
similarly scaling ADC(2)2–4 and GW methods5,31, as
well as higher-scaling equation-of-motion coupled-cluster
methods10,12,32,33. Finally, we apply the AGF2 ap-
proach to an open problem of the excitation levels in the
artemisinin drug molecule, where light is shed on the con-
flicting results over the spatial location of the assignment
of peaks in previous studies in the literature.

We briefly review the AGF2 method to give context
to the efficient algorithm presented later and to clarify
emerging connections to the ADC method, with a more
detailed background available in Refs. 13 and 14. The
propagator in the frequency domain, corresponding to
the removal or attachment of an electron from a mean-
field reference, is given by the single-particle Green’s
function,

G0(ω) =
[
ωI − F

]−1
, (1)

where F is the generalised Fock matrix, with elements

Fpq = hpq +
∑
rs

[
(pq|rs)− 1

2
(ps|rq)

]
Drs, (2)

where h is the one-electron (kinetic and electron-nuclear)
Hamiltonian, D the one-body reduced density matrix,
and (pq|rs) the electronic repulsion integrals. Poles in the
Green’s function correspond to the excitation energies
to electron-attached/removed states. The one-particle
Green’s function can be dressed from this mean-field de-
scription, due to the presence of explicit electron inter-
actions and resulting correlation effects, according to the
Dyson equation

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω), (3)

where Σ(ω) is the frequency-dependent self-energy. In
AGF2, we take this self-energy to be built up itera-
tively from all bare second-order diagrams (direct and

exchange), given by

Σ(2)
pq (ω) =

occ∑
ij

vir∑
a

(pi|ja)[2(qi|ja)− (qj|ia)]

ω − εi − εj + εa
(4)

+

vir∑
ab

occ∑
i

(pa|bi)[2(qa|bi)− (qb|ai)]
ω − εa − εb + εi

,

where we can consider the first term spanning the 2h1p

space to be the ‘lesser’ self-energy (Σ(2),<
pq ), and the sec-

ond, spanning the 1h2p space to be the ‘greater’ self-
energy (Σ(2),>

pq ). We can exactly expand the effect of
this dynamical self-energy as a set of static auxiliary de-
grees of freedom. This can be considered an inversion
of the ‘downfolding’ procedure via Löwdin partitioning,
where degrees of freedom can be integrated out and ex-
actly represented as a dynamical potential34–37. To see
this, we note that a fully causal self-energy such as the
one in Eq. 4 can be rewritten in the form

Σpq(ω) =
∑
k

vpkv
†
qk

ω − Ek
. (5)

This allows one to describe a renormalization of the prop-
agator due this dynamical self-energy as an eigenvalue
problem, as a static formulation of Eq. 3, as[

F v
v† diag(E)

]
φ = λφ. (6)

In our case, the first sector of the matrix corresponds to
1h (occupied/hole) and 1p (virtual/particle) states (in-
dexed by the general physical space orbitals p, q), and
the second to 2h1p and 1h2p states (given by compound
indices ija and iab). The eigenvectors φ and eigenval-
ues λ give the exact pole structure of the propagator
having been dressed by the second-order diagrams cor-
responding to Eq. 4. Using this dressed propagator, we
can then form a new self-energy, updating the poles and
residues of Eq. 4, to allow the procedure to be in prin-
ciple iterated to convergence, and thus resumming the
effect of the diagrams to all orders. This would result in
a frequency-free, but physically identical reformulation
of the GF2 method16. However, the dimensionality of
the eigenvalue problem would grow exponentially with
iterations, necessitating a compression of this auxiliary
space. The specifics of this compression can materially
change results, and previous work has shown that our
physically-motivated compression based on constraints
from the spectra moments of Eq. 4 can have a dramatic
improvement on the resulting overall spectral properties
of the method compared to the ‘parent’ GF2 method14.
We detail an efficient formulation of this compression
later.

We can also relate the approach mathematically to the
popular ADC(2) approach. This (first iteration) AGF2
matrix has an identical form to the ‘Dyson’ ADC(2)
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matrix, which similarly includes these second-order dia-
grams, built on a Hartree–Fock reference38. The dimen-
sion of this matrix scales as O[N3], where N is the num-
ber of orbitals in the system. To render this tractable,
ADC(2) therefore separates the 2h1p and 1h2p contri-
butions to the self-energy (the first and second terms
in Eq. 4, respectively), in order to ensure that the ex-
tremal eigenvalues to these separated eigenvalue prob-
lems correspond to the lowest energy excitations (IPs
and EAs), which can be efficiently solved via iterative
eigensolvers (e.g. Davidson algorithm) at O[N5] cost.
To account for this separation, taking IP-ADC(2) as an
example, the 1h space gains an additional term consis-
tent through second-order perturbation theory describ-
ing this neglected mixing between the particle and hole
contributions to the self-energy2,26,39,40. This is some-
times termed a ‘non-Dyson’ ADC approach, and is now
standard in the community, with all ADC results in this
work corresponding to this non-Dyson ADC approxima-
tion where particle and hole sectors are separated.

In AGF2 we instead employ a compression of the full
frequency-dependence of Σ(2)(ω), in order to permit the
full diagonalisation of the resulting effective second-order
matrix of Eq. 6. This is achieved via a rotation and sub-
sequent truncation of the 2h1p/1h2p sector of the matrix,
according to a systematic criteria to preserve the spectral
moments of the resulting self-energy or propagators41.
Rather than only obtaining extremal parts of the spec-
trum, we therefore obtain a coarse-grained representa-
tion of the entire spectrum, whilst avoiding the require-
ment to separate the hole and particle self-energy con-
tributions as performed in ADC. Furthermore, this ap-
proach permits a self-consistency via Eq. 4 in which
i, j, a, b-labelled states become the renormalised orbitals
φ, termed ‘quasi-molecular orbitals’ (QMOs), instead of
the original mean-field molecular orbitals (MOs). This it-
eratively includes diagrammatic contributions at higher
orders, summing these diagrams (in the compressed rep-
resentation) to infinite order. As such, the propagator
is iteratively renormalised with all possible insertions of
the irreducible second-order diagrams, with the compres-
sion representing a coarse-graining of the full resulting
self-energy over their time orderings. An additional
relaxation of the one-body density matrix due to the
correlations is included each iteration, via these correla-
tion driven modification to the effective (Dyson) orbitals,
along with a chemical potential µ which must be main-
tained throughout in order to ensure that there is the cor-
rect number of electrons in the resulting non-idempotent
physical-space density matrix. We note that similar self-
consistent procedures exist in the literature, including the
real-frequency GF2 approach of Piers et. al42, as well as
recent related work in the nuclear physics community on
a truncated self-consistent ADC43–48.

Before describing the efficient O[N5]-scaling imple-
mentation of the chosen compression algorithm, we
demonstrate the efficacy of this truncated self-consistent
AGF2 approach on the GW100 test set established

for the benchmarking of charged excitations21. In
Fig. 1, we present the GW100 test set errors for
IPs and EAs of AGF2, correlating all electrons in
a def2-TZVPP basis set, compared to the similarly-
scaling ADC(2), the O[N6]-scaling EOM-CCSD10,32,33

and various GW -derived methods, which scale as O[N4]
in the most common implementations5,20,23,49–51, but
lower-scaling O[N3] state-of-the-art implementations are
emerging52,53. For the AGF2 and G0W0 methods, we
present data starting from both Hartree–Fock (HF) and
PBE references, as the G0W0 approach exhibits a sig-
nificant dependence on this initial reference, and PBE
is a commonly used choice54. The G0W0 calculations
were performed on the Fiesta code55–57. Since effective
core potentials (ECPs) are not currently available in this
codebase, molecules in the set which contained the atoms
Rb, Ag, I, Cs, Au or Xe were removed. Furthermore,
convergence was unsuccessful with default AGF2 options
for the hexafluorobenzene molecule, and so this molecule
was also removed from the test set. In order to allevi-
ate the reference dependence of G0W0, we also consider
quasiparticle self-consistent (qs) and fully self-consistent
(sc) GW , where the propagators are renormalized with
a static approximation or the fully dynamical self-energy
respectively22,58. These results are available for the IP
only from the GW100 database21,59. The AGF2 and
ADC(2) calculations were performed using the PySCF
simulation package13,14,27,29,30. The EOM-CCSD values
were taken from Ref. 12. The reference CCSD(T) values
were calculated using the ORCA program package60,61.

Figure 1 shows the distribution of errors in the IPs
and EAs, along with mean absolute errors (MAE) and
standard deviations of the signed error (STD) for the
remaining 94 molecules, in comparison to ∆-CCSD(T)
benchmark values. In keeping with conclusions from pre-
vious work over smaller test sets, we see that AGF2 im-
proves on the accuracy of these low-energy excitations
compared to the similarly scaling ADC(2). The qual-
ity of the ADC(2) results is particularly impacted by
the existence of large outliers. In the case of IPs their
identities are Cu2, CuCN and MgO, whilst for the EA
the single large outlier is TiF4. These systems are ex-
amples of stronger correlation, where the MP2 ground-
state of ADC(2) is inadequate, and showing the neces-
sity for higher order diagrammatic contributions, either
through a higher order level of theory or resummation
of low-order perturbation theory as performed exactly in
coupled-cluster, or approximately in AGF2. Van Setten
et al. note that the three problematic cases for the IP
belong to a subset of the GW100 set which present sig-
nificant quasiparticle renormalization, characterized by
large values for the derivative ∂Σ(ω=ε)

∂ω . This suggests the
presence of stronger correlation effects, and in G0W0 was
also found to result in non-uniqueness and convergence
difficulties in the solution to the quasiparticle equation21.
Further analysis shows that the character of the IPs for
these systems agrees between the self-consistent methods
EOM-CCSD and AGF2, while deviating qualitatively in
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FIG. 1. Errors in the computed IP (left) and EA (right) for AGF2 and a series of other established methods, across the GW100
benchmark set in a def2-TZVPP basis. Under each method is the mean absolute error (MAE) and standard deviation of the
signed errors (STD), while the solid point in each methods scatter indicates the mean (signed) error across the values. Errors
are calculated by comparison to benchmark CCSD(T) values, for which separate N + 1, N , and N − 1 electron systems were
computed.

their assignment with ADC(2) and ADC(3). For CuCN
and MgO, these IPs are not HOMO-like in their charac-
ter, and have a relatively low quasiparticle weight, which
likely explains the difficulty in capturing this physics in
non-self-consistent approaches. Due in part to the lack
of an iterative eigensolver or technical convergence pa-
rameters to consider in AGF2, we find that the method
is robust and relatively insensitive to technical details
compared to other ‘fully-dynamical’ Green’s function ap-
proaches, which generally require choices of grids in var-
ious domains and can observe multiple solutions62–64.
The present AGF2 calculations were converged using the
default settings in PySCF, and no manual selection of
states or physical solutions is required. Whilst AGF2
makes use of DIIS and damping to accelerate and sta-
bilise the self-consistency65, beyond the basis set there
are essentially no such convergence parameters which
change the resulting solutions.

Finally, the use of a self-consistent framework for
AGF2 results in reference-independent values for the IP
and EAs, in contrast to the widely used G0W0 method
for charged excitations, which retains a dependence on
the initial choice of exchange-correlation functional in
the reference state. This is found to manifest in consid-
erable differences in the performance of G0W0 for differ-
ent exchange-correlation functionals, where for molecular
systems Hartree–Fock or functionals with high levels of
exact exchange are expected to perform best66,67. This
agrees with the finding that G0W0@HF performs well for
the aggregated results across this test set in Fig. 1. For
the IP, we can also compare to self-consistent extensions
of GW , where they are found to be highly reliable, es-
pecially the qsGW method, as found previously21. We
note that the performance improvements of these self-
consistent flavors is not universal (especially in solid-state
systems), where a degradation in results has also been

found due to favorable cancellation of errors with the
neglected vertex term in non-self-consistent versions of
GW 58,68–71.

The efficient and parallelisable truncation algorithm
we choose for each iteration of this AGF2 work proceeds
by finding the smallest number of auxiliary states repre-
senting the effective self-energy which conserves the ze-
roth and first spectral moment of the lesser and greater
self-energies. In the first iteration, the auxiliaries repre-
senting these self-energies span the 2h1p and 1h2p spaces
respectively, before these are further renormalised to cap-
ture implicit higher-order excitations in subsequent iter-
ations. These spaces are separately rotated and trun-
cated each iteration, before being combined in an effec-
tive hermitian Hamiltonian. A more detailed description
of other truncations, including conserving spectral mo-
ments in the resulting Greens function72, can be found
in Ref. 13. However, in previous work, we showed that
the simplest truncation where just the zeroth and first
spectral moments of the self-energy are conserved yielded
accurate results for the prediction of IPs and EAs of small
molecules14, further corroborated by the results of Fig. 1.
This truncation transforms Eq. 6 into a reduced dimen-
sionality problem,

 F T< T>

T<† M< 0
T>† 0 M>

φ = λφ. (7)

All blocks in the Hamiltonian above have dimensionality
of N (compared to O[N3] of Eq. 6), and therefore the
resulting Hamiltonian can be completely diagonalized in
only O[N3] computational effort.

The conserved self-energy spectral moments are de-
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fined (for the ‘lesser’ contributions to Eq. 4) as

U (0)
pq =

∑
ija

(pi|ja)[2(qi|ja)− (qj|ia)] = v<v<† (8)

U (1)
pq =

∑
ija

(pi|ja)[2(qi|ja)− (qj|ia)](εi + εj − εa) (9)

= v<E<v<†. (10)

The required blocks of Eq. 7 can be obtained straight-
forwardly from these spectral moments, via a single step
of a modified block Lanczos approach41,73–75. This can
efficiently proceed as a Cholesky decomposition76,77, as

T<T<† = U (0), (11)

with the diagonal blocks subsequently computed as

M< = (T<−1)†U (1)T<−1, (12)

with analogous expressions for the auxiliary contribu-
tions from the ‘greater’ self-energy. It should also be
noted that the auxiliaries couple to both the particle and
hole spaces of the ‘physical’ F block, resulting in mix-
ing between occupied and virtual spaces in the diago-
nalisation step, despite no direct coupling between the
greater and less self-energy contributions. The highest
scaling step of the calculation is the construction of the
self-energy spectral moments of Eqs. 8 and 9. With the
use of density fitting, this constitutes the only O[N5] step
each iteration, which can be more accurately divided into
a scaling with respect to occupied (o) and virtual (v) or-
bitals of O[N2o2v +N2ov2], where N = o+ v. All other
steps, such as the transformation of the density-fitted
electronic repulsion integrals or construction of the Fock
matrix are lower scaling, at O[N4].

Importantly, the computational bottleneck represented
by Eqs. 8 and 9 can be very efficiently parallelised
by distributing blocks of the summed indices onto
MPI processes, with OpenMP parallelism within each
blocks introducing a hybrid parallel algorithm for high-
performance computing environments over distributed
memory. This scheme has a very low communication
overhead, with each MPI thread exploiting independent
matrix multiplications via optimised libraries82. Fig. 2
shows the parallel scaling of the resulting algorithm for
a guanine DNA nucleobase in an aug-cc-pVDZ basis,
demonstrating a perfect parallelism for the dominant
O[N5] scaling steps. At larger core counts, the less effec-
tive parallelism of the density-fitting integral transforma-
tions and Fock matrix construction become noticeable,
however for larger systems these are expected to become
an increasingly small fraction of the total resources re-
quired. Further details on this efficient hybrid parallel
scheme are included in the supplementary information.
This is implemented in the open-source PySCF simula-
tion package29, where the AGF2 code can scale to be-
yond 1000 orbitals (requiring approximately 5 days on
160 cores), with input files used for the generation of

20 40 60 80 100
Total Cores

20

40
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80

100

Sp
ee
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p

Full algorithm
O[N5] scaling steps
Ideal

FIG. 2. Parallel speedup of AGF2 iterations for the guanine
molecule using an aug-cc-pVDZ basis with 298 basis functions
and 78 electrons correlated. The scaling of the O[N5] step is
shown separately to the full algorithm, where larger systems
will be increasingly dominated by this step, indicating an im-
proved parallel scaling as systems become larger. The guanine
molecule was relaxed using the GFN-xTB method78–80, with
an aug-cc-pVTZ-RI density fitting basis, with nodes consist-
ing of two 20-core Intel Xeon Gold 6248 2.5 GHz processors.
On 100 cores, the time per iteration was less than three min-
utes.

these results also included in the supplementary infor-
mation.

Artemisinin is a molecule of particular interest due
to its antimalarial activity, with the discovery of
artemisinin-combination therapies in 1972 earning co-
receipt of the Nobel Prize in Medicine in 201583,84. The
site and energy of electron addition and removal in this
C15H22O5 molecule is critical in a description of its
resulting activity, where a reactive endoperoxide bond
leaves the molecule susceptible to electrophilic attack. It
is thought that the dissociative reduction of this bond
and subsequent radicals generated by this process are
key to the antimalarial properties of the drug which
ultimately destroy the parasite. Using UV photoelec-
tron spectroscopy (UV-PES), Novak and Kovac̆ identified
the ionization potential of artemisinin to be 9.40 eV85.
Density functional theory (DFT) calculations with the
B3LYP functional were used in order to support the as-
signment of these bands via Koopmans theorem, along
with further experimental UV-PES on different frag-
ments of the molecule. These attributed the spatial char-
acter of the ionization to the oxygen lone pairs of this
endoperoxide bond, i.e. the ionization having n(Op)−

character, consistent with the main reactive site of the
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FIG. 3. Simulated photoelectron spectra of artemisinin calculated using AGF2
within an aug-cc-pVDZ basis, shifted to line up the centers of the band gaps.
The geometry was obtained from x-ray crystallographic data from The Cam-
bridge Crystallographic Data Centre, identifier QNGHSU0381. The calculation
converged in around 16 hours using 8 MPI tasks with 20 OpenMP threads each,
for a total of 160 cores. The first panel shows the Hartree–Fock spectrum, and
that from the subsequent AGF2 calculation. The lower panel shows spectral
weight projected onto the atomic oxygen atoms of the molecule, over a finer
energy resolution, indicating the atomic amplitude of each of the excitations. A
broadening factor η of 0.2 eV was used.

FIG. 4. Artemisinin molecular structure,
with the different oxygen types labelled as
Op, Oe, Ol and Oc, denoting the peroxidic,
etheric, inner-ring lactonic and lactonic car-
bonyl atoms respectively.

FIG. 5. Spatial distribution of the Dyson
orbital corresponding to the first ionization
potential of the artemisinin molecule, plotted
with an isovalue of 0.05.

molecule. However in later photoelectron experiments by
Galasso et al., they corroborated the ionization potential
of Novak and Kovac̆ (revising it to 9.75 eV) but differed
in their assignment of its spatial location86. Supplement-
ing their experiment with numerical OVGF calculations,
they found the ionization to be associated with two near-
degenerate states with n(Oc,Ol) and n(Op,Oc,Oe,Ol)
character respectively, where Op,Oc,Oe,Ol indicate the
peroxidic, lactonic carbonyl, etheric and inner-ring lac-
tonic oxygen sites, respectively, as shown in Fig. 4. This
more delocalized and degenerate state differed from the
previous assignment of the primary ionization site of the
molecule. Galasso et al. additionally probed the electron
affinity using electron transmission spectroscopy, which
they found to have an energy of 1.76 eV. They again
supplemented this finding with OVGF calculations and
assigned the excitation to primarily σ∗(OpOp) orbital
character, with additional contributions from π∗(COc).
These observations provided an experimental fundamen-
tal bandgap of 7.69 eV, while their supporting OVGF cal-
culations gave a substantially underestimated bandgap of
5.4 eV86.

We compute the single-particle spectrum at the AGF2

level for this system, in a aug-cc-pVDZ basis of 658 or-
bitals and 152 correlated electrons, requiring 2,500 CPU
hours to fully converge. In Fig. 3 we show excellent
agreement with the experimental band gap, obtaining a
gap of 8.13 eV and successfully relaxing the inaccurate
Hartree–Fock reference spectrum. Comparison spectra
from ground-state density functional theory at the level
of PBE gives 2.11 eV and B3LYP gives 4.36 eV, signif-
icantly underestimating the gap87. An analysis at the
DLPNO-EOM-CCSD level of theory provides a value for
the gap of 7.85 eV, calculated using the ORCA program
package60,61,88,89, which is expected to be a good ap-
proximation to the full EOM-CCSD results. This close
agreement of the gap with the AGF2 value (0.28 eV dis-
crepancy), provides evidence that the accuracy from the
GW100 test set transfers to larger applications. By pro-
jecting the converged highest occupied quasi-molecular
orbital into the physical space, we can resolve the spatial
Dyson orbital corresponding to the first ionization, shown
in Fig. 5. This peak is relatively isolated in the spectrum
as a single state, with a quasiparticle weight of 0.947.
The dominant contributions to this excitation arise from
both the peroxidic and etheric oxygen lone pairs, with
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smaller additional contributions from the carbon atoms
neighbouring them. This is in agreement with the as-
signment by Novak and Kovac̆, while the lactone group
highlighted as the primary ionization site in the work of
Galasso et al. has insignificant contribution.

The electron-attachment states of AGF2 form a dense
manifold of overlapping and relatively low-weight transi-
tions, such that describing the character of these states
via a projected spectrum onto the different atomic con-
tributions provides a better reflection of the character of
these excitations than any single state-specific descrip-
tion. This is shown in the lower plot of Fig. 3, project-
ing onto atomic local meta-Lowdin states90, indicating
that the dominant oxygen contributions from the lowest
unoccupied states is characterized by the endoperoxidic
antibonding orbital, in agreement with Galasso et al.,
however significant low-energy contributions also arise
from the ether group. The specific Dyson orbital cor-
responding to the electron attachment state is shown in
the supplementary information. Overall, the character
of these states supports the view that initial reduction
of the artemisinin proceeds via the endoperoxidic oxygen
sites.

In conclusion, in this work we have presented an ap-
proach to the computation of the full charged excita-
tion spectrum of correlated molecules. This relies on
a combination of many-body perturbation theory com-
plete through second order, with self-consistent itera-
tion of these diagrams to dress the electron propaga-
tors to infinite order. As a way to improve both the
numerical accuracy of the resulting spectra, as well as
reducing computational effort, we additionally perform a
non-perturbative truncation of the resulting effective self-
energy at each renormalization step of the propagators,
while conserving the first two spectral moments of the
self-energy. This results in an efficient algorithm which
nevertheless performs very favourably when compared to
similarly scaling methods, and admits a large-scale paral-
lel algorithm, now publicably available within the PySCF
simulation package. Application and interpretation of
biologically relevant molecules such as the artemisinin
study in this work, pave the way for further investiga-
tions into this emerging approach for charged spectra.
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