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AIM AND OVERVIEW 

 

This thesis details work from one single multifaceted study. It examines the 

divergent clinical and pathophysiological features of high gradient and paradoxical 

low gradient aortic stenosis and their respective responses to transcatheter aortic 

valve implantation. The background to the research described evolved from my 

interest in valvular heart disease, and the clinical enigma of paradoxical low gradient 

aortic stenosis. Together with my supervisors, Professors Bernard Prendergast and 

Simon Redwood, and collaborators, Professors Mike Marber and Philippe Pibarot, 

the concept and methodology was conceived, and a BHF Clinical Research Training 

Fellowship grant allowed the entirety of this work to take place. I was wholly 

responsible for the successful HRA, REC and R&D applications, and created all the 

study documents from scratch. I have single-handedly recruited and consented all 

patients and collected and analysed all data.  

 

Chapter 1 and 2 describe the background and methodology used for the work 

completed with baseline characteristics being displayed in chapter 3. In chapter 4, 

the associated parameters of ischaemia are researched, and in chapter 5, the 

differences in left ventricular remodelling and dynamic function are outlined. 

Chapter 6 investigates the relationship of both replacement and interstitial fibrosis 

in the cohorts studied, and chapter 7 explores the relationship between coronary 

and left ventricular physiology. Chapter 8 summarises salient findings and suggests 

future work.  

 

ABSTRACT 

Background  

 

Low gradient severe aortic stenosis (LGAS) accounts for up to 35% of severe aortic 

stenosis cases and is associated with unfavourable outcomes when compared to 

high gradient aortic stenosis (HGAS). Controversy and conflicting evidence exist 

regarding this disease entity, yet the contributing pathophysiology is poorly 

understood. There is a paucity of invasive data to help characterise this 

phenomenon of distinct remodelling - how do they respond to valve intervention 

and what makes them “high-risk”? 
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Methods  

 

Patients with severe symptomatic AS and normal LVEF were dichotomised according 

to their mean aortic valve pressure gradient of less than or greater to 40mmHg. 

Patients listed for trans-catheter aortic valve implantation (TAVI) underwent 3T 

stress perfusion cardiac magnetic resonance imaging (CMR) pre-(within 24 hours) 

and post-(4-8 months) TAVI. Left ventricular (LV) mechanics and coronary flow and 

pressure parameters were measured during hyperaemia and rapid pacing, 

immediately before and after TAVI, using a conductance LV catheter and dual-

pressure and Doppler sensor–tipped guidewire in the mid-left anterior descending 

coronary artery. 

 

Results  

 

24 patients were recruited resulting in 19 suitable datasets (LGAS N=9, HGAS N=10, 

equally matched for comorbidities and symptoms. LGAS was characterised by 

smaller indexed LV end diastolic volumes (p=0.010) and indexed LV mass (p=0.037). 

Stress global endocardium-epicardium gradient did not change following TAVI (0.94 

[0.81,0.98] to 0.95 [0.80,1.0], p=0.694) whereas global myocardial perfusion reserve 

index improved following TAVI (2.1 [1.8,2.3] to 2.4 [2.3,2.8], p=0.029). There was a 

less significant gradient in LGAS patients (0.959±0.089 to 0.846±0.100, p=0.018) but 

a trend toward reduced MPRI in this group (1.88±0.32 vs 2.30±0.64, p=0.091).  

 
Baseline Characteristics  LGAS (n=9) HGAS (n=10) P value  

Age (years) 84±6 85±5 0.768 

Male (%) 33 10 0.303 

Mean aortic valve pressure gradient (mmHg) 32±5 67±22 <0.001 

Diabetes mellitus (%) 67 20 0.070 

Hypertension (%) 78 60 0.628 

Prior stroke (%) 33 10 0.303 

Obstructive airways disease (%) 33 10 0.303 

Indexed aortic valve area (cm2/m2) 0.490 0.336 0.008 

TAVI anaesthesia: conscious sedation 89 90 0.942 

Haemoglobin (g/l) 125 (112,130) 124 (113,136) 0.604 

eGFR (ml/min) 57±21 63±18 0.751 

Pre-TAVI BNP (ng/l) 720 (369,983) 1355 (935,6957) 0.058 
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Post-TAVI BNP (ng/l) 530 (290,915) 500 (144,1457) 0.950 

Body Surface Area (m2) 1.83±0.17 1.71±0.13 0.097 

Non-invasive systolic blood pressure (mmHg) 150±19 136±27 0.198 

LV end diastolic volume index (ml/m2) 76 (60,80) 83 (75,87) 0.010 

LV mass index (g/m2) 56.3±8.5 71.1±18.1 0.037 

LV ejection fraction (%) 64.5±4.2 60.9±5.9 0.143 

CT calcium score (Ag units) 2328 (1474,3655) 2982 (2686,6085) 0.028 

Indexed CT calcium score (Ag/m2) 1152 (825,1924) 1799 (1581,3383) 0.017 

 

Pre-TAVI, baseline coronary data demonstrated lower coronary augmentation 

pressure (p=0.035) and augmentation index (AIx, p=0.028) in the LGAS group along 

with reduced time-averaged peak Doppler flow velocity (APV, p=0.022) and 

coronary velocity time integral (VTI, p=0.006). These patients also exhibited a 

shorter ejection time (p=0.022), proportionately larger forward compression wave 

areas and smaller backward expansion waves (BEW) during rest, hyperaemia and 

rapid pacing when compared to HGAS patients. They also demonstrated increased 

inhibitory forward expansion waves (p=0.021). Lower baseline end LV systolic 

pressure (p=0.004), inotropy (dP/dt+, p=0.031), lusitropy (dP/dt-, p=0.050), pressure 

volume area (p=0.020), and stroke work (p=0.019) were observed in the LGAS group 

along with reduced LV volumes during hyperaemia (p=0.040) and pacing (p=0.003). 

Pacing at 90bpm induced minimal response in the LGAS ventricles, but a more 

profound impact in HGAS ventricles on the delta change in end systolic volume (-

12±45% vs +31±31%, p=0.048) and ejection fraction (-1±15% vs -19±12%, p=0.016). 

 

Post-TAVI, the hyperaemic BEW fell sharply (p<0.001) in both groups, along with 

coronary VTI (p=0.018) and APV (p=0.024), whilst coronary AP and AIx remained 

lower in LGAS patients (p=0.035 and p=0.028, respectively). The LGAS group 

displayed a less profound drop in dP/dt+ (-19±15% vs -37±9%, p=0.013) and dP/dt- 

(-17±19% vs -39±15%, p=0.015) at rest following intervention. Diastolic 

microvascular resistance was increased in LGAS patients during hyperaemia 

following TAVI (p=0.025). Repeat CMR demonstrated statistically significant 

reduction in indexed LV volume and mass (p=0.003 and p<0.001, respectively) with 

significant increase in 3D global peak radial, circumferential and longitudinal strain 

(p=0.006, p=0.010 and p=0.013, respectively). There was no difference in 

remodelling patterns or follow up perfusion assessment between cohorts.  
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Conclusion  

 

This is the first study detailing the combined invasive and CMR pathophysiological 

changes associated with LGAS. Despite invasive parameters indicating a disease of 

less severe AS, blunted microvascular-originating waves, and disproportionate 

myopathic and ischaemic changes in the LGAS group may underlie the adverse 

prognosis associated with this poorly understood condition. 
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1.1 Abstract 

 

Aortic stenosis (AS) is a heterogeneous disorder. Variations in the pathological and 

physiological responses to pressure overload are incompletely understood and generate 

a range of flow and pressure gradient patterns which ultimately cause varying 

microvascular effects. The impact of cardiac-coronary coupling depends upon these 

pressure and flow effects. In this article, we explore important concepts concerning 

cardiac physiology and the coronary microcirculation in AS, and their impact on 

myocardial remodelling, aortic valve flow patterns and clinical progression.  

 
1.2 Introduction 

 
“There is a form of cardiac lesion, not infrequent in occurrence,  

which has a clinical picture so characteristic  

that it deserves more frequent recognition than it commonly receives.” 

Henry A Christian, 18th July 19311 

 

Severe symptomatic AS has a bleak prognosis2,3 and no medical treatment exists. As the 

population ages, the clinical importance and burden of AS are increasing, yet its diagnosis 

and management are multifaceted, especially in the era of percutaneous interventions. 

AS is characterised by progressive valve narrowing which clinically manifests as dyspnoea, 

syncope and angina despite normal coronary arteries, and patients have a truncated 

lifespan of around two years without intervention. However, symptomatology is 

subjective and confounded by co-morbidities (particularly in the aging population), and 

assessment of transvalvular pressures is heavily flow-dependent. The clinician is 

therefore faced with the challenge of evaluating discordant parameters and balancing 

the potential risks and benefits of valve intervention.  

 

In 1616, William Harvey was the first to propose that blood circulates because of pulsatile 

cardiac force4. Interactions between the cardiac cycle and coronary circulatory flow were 

described in 1696 by Scaramucci who suggested that the coronary vasculature is filled in 
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diastole and squeezed empty during systole5. Cardiac-coronary coupling is pertinent in 

AS, since alterations to the coronary microcirculation are synonymous with the 

pathophysiology of progressive disease. Disruption to the coronary circulation by 

ventricular hypertrophy, high left ventricular pressure, low coronary perfusion pressure 

and extravascular forces (amongst many other factors) reduce physiological reserve. The 

ominous symptom of angina correlates with impaired myocardial perfusion reserve 

(MPR) and is strongly associated with increased ventricular mass index6. The fact that 

clinical symptoms occur at the end of the ischemic cascade (whereas perfusion 

abnormalities can be detected earlier) places great expectation on the physiological 

evaluation of AS7. 

 

Patients with AS and an aortic valve area (AVA) less than 1cm2 exhibit distinct 

pathophysiological responses to pressure overload. The ventricle remodels in response 

to pressure overload in different ways, generating a range of flow and pressure gradient 

patterns which ultimately cause varying microvascular effects. Detailed understanding of 

the pressure-flow relationship in this setting is important in fully understanding a 

patient’s symptoms, and the complex relationship between disrupted coronary flow, left 

ventricular mechanics and surrogate markers of ischemia.  

 

1.3 Cardiac-Coronary Coupling in Health 

 

Normal resting coronary blood flow comprises around 4% of total cardiac output8 and 

both oxygen extraction and the myocardial metabolic rate are high when compared to 

skeletal muscle. During the cardiac cycle, cardiac contraction cyclically increases 

intramural tissue and microvascular pressures to impede systolic flow. This contraction 

induces greater subendocardial resistance and blood displacement in comparison with 

the subepicardium9,10. Once the aortic valve closes and left ventricular (LV) relaxation 

ensues, the coronary vessels embedded in the myocardium recoil and blood flow 

accelerates. 
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Figure 1-1: Myocardial contraction results in muscle shortening and thickening to cause extravascular 

coronary compression. The mechanism of myocardium-vessel interaction is a collective effect of 

contraction-induced intra-myocyte pressure and LV pressure-derived interstitial pressure11. Adapted from 

Westerhof et al (2006)12. 

 

Coronary flow is dictated by this effect of cardiac contraction – the intramyocardial pump 

– which pushes blood backwards and draws it in during systole and diastole, 

respectively13 (Figure 1-1), but is also modulated by aortic and LV pressure, and inotropic 

state. The waterfall model14 proposes that external hydrostatic vascular pressure causes 

temporary partial collapse of the lumen. Distal luminal pressure therefore becomes 

similar to external (or intramyocardial) tissue pressure. This external pressure is 

presumed to result from intra-ventricular cavity pressure, creating a force against the 

myocardial walls that reduces from subendocardium to subepicardium. The 

intramyocardial pump model15 expands on this further to allow phase-lag between 

arterial and venous flows, and the role of vascular compliance.  

 

Subendocardial vulnerability to ischemia in normal hearts therefore reflects changes in 

two main factors16: 

1. Increased tension due to systolic compression and increased subendocardial 

wall stress, accompanied by increased myocardial oxygen requirements17. Both 

invasive and non-invasive studies have demonstrated increasing intramyocardial 

pressure from the epicardial to the endocardial surface of the ventricular wall18-

20.  
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2. Decreased subendocardial perfusion, secondary to:  

a. Systolic backflow from endocardial to epicardial vessels causing 

preferential epicardial blood flow21 

b. Thinned subendocardial vessel walls relative to their respective 

subepicardial counterparts22,23 making them more prone to external 

pressure and stress 

c. Greater subendocardial vascular volume density24 – although, with 

fewer (but larger) perfusion territories, the subendocardium is perfused 

by a small subset of penetrating arteries (Figure 1-2) 

 
Figure 1-2: Diagrammatic representation of the extravascular forces and intraluminal pressures affecting 

myocardial layers, demonstrating greater subendocardial contraction during systole. PLUMEN, pressure in 

the left ventricular lumen; PINTRAMURAL, intramural pressure; PPERICARDIUM, pressure in the pericardial space. 

Adapted from Duncker & Bache and Bell & Fox25,26. 

 

According to Laplace’s law, circumferential wall tension is equal to the product of the 

vessel pressure and radius, divided by wall thickness (T=P.r/Th) meaning that the 

diameter-to-thickness ratio of the vessel or chamber plays an important role. Wall 

tension and extravascular compressive forces are therefore greatest in the innermost 

layers of the LV wall. Supporting intramyocardial pressure as a strong determinant of 

subendocardial blood flow, an early study on anaesthetised dogs demonstrated a flow 
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gradient favouring the subendocardium during hyperaemia in cardiac arrest (thereby 

minimising intramyocardial pressures). However, when tissue pressures were maximised 

by rapid pacing and coronary perfusion maintained through autoperfusion, the gradient 

of flow favoured the subepicardium27. At low preload, intramyocardial pressure shuts off 

systolic coronary blood flow across the entire LV wall28. Conversely, there is preferential 

subepicardial blood flow at high preload29. Coronary blood flow is therefore a balance 

between intravascular arterial and extravascular tissue pressure30.  

 

1.4 Myocardial Blood Supply in Health 

 

The coronary vascular bed acts as the primary gatekeeper to myocardial blood supply. 

Resting myocardial blood flow (MBF) is greatest in the subendocardium 

(endocardial/epicardial flow ratio 1.29-1.3513,31) but subepicardial MBF is augmented 

during adenosine-induced hyperaemia to a greater extent. During systole, there is 

significant subendocardial underperfusion due to the aforementioned physical 

determinants (transmural perfusion endocardial to epicardial ratio 0.3813). After a period 

of ischemia, reactive hyperaemia is earliest in the subepicardium9 and this delayed 

subendocardial response is thought to be due to sluggish reopening of the coronary 

vasculature embedded in ischemic, poorly compliant myocardium. 

 

Among many other mechanisms, the gradient in coronary perfusion pressure (difference 

between aortic and LV end diastolic pressure [EDP]) facilitates coronary perfusion, and 

flow is determined by the product of the net velocity-time integral (VTI) and cross-

sectional arterial area (Q=VA). The largest cross-sectional area exists in the 

microvasculature where reduced velocity allows adequate time for capillary bed gas 

transfer. In normal hearts, aortic and LV pressures are coupled during systolic ejection 

and higher perfusion pressure gradients enable coronary perfusion during diastole. There 

is a non-linear connection between cross-sectional area and transmural pressure since 

vascular tone is influenced by metabolic/neurohormonal mediators and physical forces. 

According to Ohm’s law, flow through a vascular bed is equal to the perfusion pressure 

gradient divided by vessel resistance, 8hl/pr4 (Hagen-Poiseuille’s equation, where h is 
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blood viscosity, l is vessel length, and r is vessel radius). Microvascular resistance (MR) is 

therefore primarily determined by lumen diameter and vasodilatation is the principle 

means of microcirculatory autoregulation. 

 

During maximal coronary vasodilatation, coronary flow depends on the relative duration 

of diastole32. This diastolic time fraction (DTF, the length of diastole/length of cardiac 

cycle) has an inverse relationship with heart rate and is also determined by other 

modulators of systolic duration (such as altered myocyte contraction). Decreased 

coronary perfusion pressure induces an increase in DTF, which in turn reduces the 

duration of intra-myocardial vessel compression. 

 

1.4.1 Coronary Wave Intensity Analysis  

 

 

 

Figure 1-3: The four dominant coronary waves during the cardiac cycle in relation to hemodynamic indices 

(not to scale). BCW: backward compression wave, FCW: forward compression wave, FEW: forward 

expansion wave, BEW: backward expansion wave. 

 

Studies of wave intensity analysis (WIA) have identified four main coronary waves within 

the cardiac cycle in health and disease33 (Figure 1-3). Quantification of net wave intensity 

through the product of changes in pressure and flow velocity makes it possible to 

segregate components of coronary flow into forward or backward travelling waves from 
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the aorta or microcirculation, and those caused by suction (expansion) or compression – 

blood can be pushed into or pulled out of the coronary circulation.  

 

Flow from the coronary circulation to the myocardium is largely determined by the 

prominent backward expansion wave (BEW), originating at the onset of LV relaxation. 

The decelerating backward compression wave (BCW) and forward expansion wave (FEW) 

impede coronary flow, while the BEW and forward compression wave (FCW) are 

accelerating waves. Information concerning the size, direction and duration of coronary 

waves throughout the cardiac cycle has helped us understand coronary flow in normal 

hearts, in AS19 and transcatheter aortic valve implantation (TAVI)34,35, hypertrophic 

cardiomyopathy36 and several other settings33,37-42.  

 

1.5 Cardiac-Coronary Coupling in AS 

 

The pathophysiology of calcific degenerative AS has two distinct phases: initiation and 

propagation43. The former overlaps with the development of atherosclerosis, centred 

around endothelial disruption and activation of inflammatory responses. Progressive AS 

induces left ventricular hypertrophy (LVH) to increase contractile force and reduce wall 

stress44, in response to progressive and eventually insurmountable afterload. 

Compressive forces resulting from rising intracavitary pressure determine coronary 

perfusion pressure and limit coronary circulatory response to increased myocardial 

demand – an association related to the extent of LVH45. Oxygen requirements increase 

whilst perfusion through the small perforating coronary network is compromised by fixed 

elevated systolic wall stress46,47 and reduced relative capillary density48, creating supply-

demand mismatch. These structural changes of vascular rarefaction, compressive forces 

and perivascular fibrosis, and functional changes, such as reduced diastolic perfusion 

time (DPT, defined as [RR interval]-[S1-S2 interval] x heart rate) and endothelial and 

smooth muscle dysfunction, all exert adverse effects.  

 

Preferential coronary flow shifts from the endocardium to epicardium resulting in a 

significant decrease in subendocardial (but not subepicardial) MBF49. This reversal of 
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normal endocardial-epicardial blood flow ratio50 at rest is fundamental to the 

pathophysiology of AS, resulting in subendocardial ischemia51, apoptosis47 and fibrosis – 

clinically manifest as angina despite normal epicardial coronary arteries. Non-invasive 

detection of this shift in resting endocardial-epicardial ratio could be utilised to guide 

timing of valve intervention. 

 

Severe AS exhibits an array of flow parameters but there is significant LV outflow tract 

obstruction in all forms, typically accompanied by LVH52 which may cause dynamic 

obstruction in late systole with systolic anterior motion of the mitral valve. Unlike 

hypertrophic cardiomyopathy, where there is a strong linear relationship between peak-

to-peak gradient and peak instantaneous gradients, significant scatter exists in AS 

patients53.  

 

One study demonstrated that severity of AS and parameters of LV workload (but not LVH 

or diastolic indices) have important roles in determining coronary flow reserve (CFR)54. 

Another study, however, correlated impaired perfusion reserve with valve stenosis, 

myocardial fibrosis and strongly with LVH45. Cardiac amyloid is common in this population 

and may confound results.  

 

There are strong similarities in the pathogenic manifestations of AS and hypertension, i.e. 

interstitial and perivascular fibrosis, cardiomyocyte hypertrophy, reduced DPT, increased 

diastolic filling pressure (compressing the endocardium) and diastolic dysfunction, 

capillary rarefaction50 and arteriolar remodelling55. However, key differences exist. The 

BEW is the most important contributor to coronary blood flow and a measure of 

microcirculatory function – it is increased at rest in AS34,35 but reduced in isolated LVH33, 

probably as a result of lower wall stress and slower isovolumetric LV relaxation (dP/dtmin). 

Furthermore, there is a direct relationship between systolic coronary velocity and systolic 

perfusion pressure in hypertensive patients with no AS – extravascular compressive 

forces which normally impede systolic coronary flow may be overcome in the setting of 

higher perfusion pressure56. 
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Following TAVI or surgical aortic valve replacement (SAVR), there is restoration of 

myocardial perfusion, oxygenation, energetics and contractility, accompanied by 

improved microcirculatory function as a result of the relief of mechanical obstruction and 

wall stress, and eventual LVH regression57,58. Indexed stroke volume drops sharply (41±8 

to 33±10ml/m2, p<0.001) as a result of increased systemic vascular resistance (p<0.001), 

despite no clear difference in global afterload measured by valvulo-arterial impedance 

(Zva)59. Hyperaemic microvascular resistance (hMR) decreases after TAVI, independent 

of resting haemodynamics60. Remaining hypertrophy continues to influence coronary 

physiology with improved (but not normalised) CFR.  

 

1.6 Disrupted Coronary Flow in AS  

 

 
Figure 1-4: Impairment of CFR in progressive AS: simulated resting and hyperemic mean coronary blood 

flow as a function of the severity of AS and estimated orifice area. Induced hyperemia is fundamentally 

important during circulatory assessment in AS since adaptive hyperemia is already established at baseline 

– several well-cited studies are flawed in this respect. Adapted from Garcia et al61. 

 

Microcirculatory autoregulation induces vasodilation to minimise MR and increase total 

resting MBF, resulting in reduced CFR35,62,63 and MPR64 due to paired inability to further 

vasodilate (Error! Reference source not found.). Low coronary perfusion pressure65, 



THE HORNETS’ NEST OF CORONARY MICROCIRCULATION IN AORTIC STENOSIS 

28 

 

extravascular compressive forces66 and reduced DPT46,55,60 all appear to play a role. 

Reduced DPT due to prolonged systole in AS supports the maldistribution theory67.  

 

In contrast to normal physiology, the relative contribution of accelerating waves to total 

wave intensity decreases with exercise and hyperaemia in AS19. The contrary is true for 

decelerating waves: the BCW increases with exercise and hyperaemia, thereby 

hampering flow and driving ischemia. Davies et al analyzed wave intensity in the left main 

stem at programmed heart rates before and after TAVI (albeit without inducing 

hyperaemia) and demonstrated progressive reduction (rather than the expected 

increase) in the BEW with increasing heart rate34. This paradoxically blunted 

microvascular response normalised following TAVI where induced tachycardia caused the 

BEW to increase rather than decrease, probably due to a sharp reduction in afterload. A 

chronological summary of relevant invasive and non-invasive coronary physiology and AS 

studies are displayed in Table 1-1 and Table 1-2, respectively.  

 

Before valve intervention, forward flow is delayed, and peak systolic flow and VTI 

reduced68. In comparison to normal hearts, the aortic-ventricular diastolic relationship 

impairs coronary perfusion34,69. Following TAVI however, all coronary waves augment 

(apart from the BCW35), inducing an immediate increase in coronary flow70. In particular, 

the FCW improves and its onset is shortened35. Increased aortic diastolic pressure (with 

consequent forward pressure at the coronary ostia) accompanied by decreased LVEDP 

and increased DPT causes an elevated driving pressure across the coronary bed. In part, 

improved forward flow may be due to the resolution of abnormal helical and eccentric 

vertical flow patterns seen in AS71 which reduce high fluid pressure and the associated 

Venturi effect in the proximal aorta and coronary ostia. 
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Table 1-1: Invasive physiological measures in AS from previous studies (presented in chronological order) 

COHORTS N CORONARY INDICES SYSTEMIC/ 
VALVE INDICES 

MYOCARDIAL INDICES ISCHEMIC/OTHER 
INDICES  

Fallen EL et al 196772 
Left heart and coronary sinus catheterisation with baseline and hyperaemic measurements using Isoproterenol in patients with severe AS  
  Hyperaemic CBF    Hyperaemic myocardial oxygen 

extraction 
Hyperaemic 
lactate production 

No angina 7 ↑    ↓ o 
Angina without 
CAD 

5 o    o ↑ 

Angina with CAD 6 ↑    ↓ ↑ 
Marcus ML et al 198263 
Coronary reactive hyperaemia response following 20 second LAD occlusion in symptomatic severe AS patients during SAVR 
  Coronary reserve Repayment-debt area ratio    
Controls 8 o o    
Severe AS 14 ↓ ↓    
Julius BK et al 199773 
Invasive rest and dipyridamole stress data in patients without coronary disease  
  CFR Resting and minimal CR per 100g LVMM LV peak systolic 

pressure 
LV wall 
stress  

Resting 
CSBF 

Peak 
CSBF  

ST depression on 
stress ECG 

Controls 7 o o o o o o  
Severe AS – angina 11 ↓ o ↑ o ↑ o  
Severe AS + angina 18 ↓↓ o ↑↑ ↑ ↑ ↓ ↑ 
Davies et al 200633 
Invasive coronary physiology at the time of angiography in patients without coronary disease or aortic stenosis 
  Mean CFV BEW FCW:BEW ratio    
Controls 10 o o o    
LVH 10 o ↓ ↓    
Davies et al 201134 
Invasive coronary physiology at baseline and during rapid pacing before and after TAVI in patients with severe symptomatic AS 
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   BEW Flow velocity Pressure time 
integral 

  

Pre-TAVI rest 11 o o o   
Pre-TAVI 120bpm 11 ↓ o ↓   
Post-TAVI rest 11 ↓ o o   
Post-TAVI 120bpm 11 o o ↓   
Wiegerinck et al 201560 
Invasive coronary physiology immediately pre- and post-TAVI  
  bCFV hCFV CFR bMR hMR hAPV    
Controls 28 o o o o o o    
Pre-TAVI 27 ↑ ↓ ↓ ↓ o ↓    
Post-TAVI 27 ↑ o o ↓ ↓ o    
Rolandi et al 201635 
Invasive coronary physiology immediately pre- and post-TAVI  
  CFR bBEW hBEW Coronary bPPd and 

hPPd 
Systolic VTI rest 
and hyperaemia 

   

Controls 12 o o  o o o    
Pre-TAVI 15 ↓ ↑ ↓ o ↑    
Post-TAVI 15 ↓ ↑↑ o ↑ ↑↑    
Lumley et al 201619 
Rest and exercise coronary physiology with stress echocardiography in a subset (n=13) of severe AS patients 
  Hyperaemic 

CBF 
Fall in MR with 
hyperaemia  

Exercise CFR Hyperaemic 
CFR 

 Resting 
myocardial 
workload 

Exercise 
myocardial 
workload 

 

Controls 38 o ↓ o o  o o  
Severe AS 22 ↓ ↓↓ o ↓  ↑ ↑  
Gutiérrez-Barrios et al 201774 
Rest and hyperaemic invasive coronary physiology  
  CFR Tmnrest Tmnhyp IMR Br  Correlation of LVMI with CFR  
Controls 10 o o o o o    
Severe AS 36 ↓ Faster Slower ↑ ↓  -0.32, p<0.050  
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Abbreviations: ↑ indicates a higher measure, ↓ a lower measure where “o” is the baseline comparison. AS: aortic stenosis, bBEW: baseline BEW, bCFV: baseline CFV, BEW: backward 
expansion wave, bMR: baseline microvascular resistance, bPPD: baseline coronary pulse pressure in diastole, Br: baseline resistance, CAD: coronary artery disease, CBF: coronary blood 
flow, CFV: coronary flow velocity, CFR: coronary flow reserve, CR: coronary resistance, CSBF: coronary sinus blood flow, FCW: forward compression wave, hAPV: hyperaemic average 
peak flow velocity, hBEW: hyperaemic BEW, hCFV: hyperaemic CFV, hMR: hyperaemic microvascular resistance, hPPd: hyperaemic pulse pressure in diastole, IMR: index of 
microvascular resistance, LAD: left anterior descending artery, LVH: left ventricular hypertrophy, LVMI: indexed left ventricular mass, MR: microvascular resistance, SAVR: surgical 
aortic valve replacement, TAVI: transcatheter aortic valve implantation, Tmnhyp: transit mean times during hyperaemia, Tmnrest: transit mean times at rest, VTI: velocity time integral 
 
Table 1-2: Non-invasive physiological measures in AS from previous studies (presented in chronological order) 

COHORTS N CORONARY INDICES SYSTEMIC/VALVE 
HEMODYNAMIC INDICES 

MYOCARDIAL INDICES ISCHEMIC/OTHER 
INDICES  

Omran H et al 199675 
TEE Doppler of the LAD in patients with at least moderate AS and normal coronary arteries 
  Peak 

systolic 
velocity 

Peak 
diastolic 
velocity 

Systolic VTI Diastolic 
acceleration 
time  

AVA Pressure 
gradient 

LVMI 
 

LV wall stress  

Controls 15 o o o o   o   
All AS 58 ↓ ↓ ↓ ↑   ↑   
Symptomatic vs 
asymptomatic AS 

34 vs 
12 

Lower Higher Smaller Longer Smaller Higher Higher Higher  

Hildick-Smith et al 200076  
Echocardiographic rest and hyperaemic LAD Doppler data in patients with severe AS pre- and 6-months post-SAVR 
  CFR 

 
Hyperaemic peak 
systolic velocity 

Hyperaemic peak 
diastolic velocity 

 LVMI  

Pre-SAVR 24 ↓ ↓ ↓  ↑  
Post-SAVR 24 o o o  o  
Rajappan et al 200246 
CMR, ECHO and PET data from 20 patients with moderate-severe AS (asymptomatic and symptomatic) 
  CFR AVA hDPT hTransmural MBF  
Controls 20 o   o  
Mod-severe AS 20 ↓ Increase 

linearly 
Significant 
correlation 

↓  
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related to 
hMBF 

with hMBF 
and CFR 

Galiuto et al 200647 
Contrast and Doppler echocardiographic data from patients with severe symptomatic AS awaiting SAVR, LV biopsy during SAVR 
  Baseline CFV CFVI CFR  LVMI SI*b Apoptosis 

 
Controls 5 o o o  o o o 
Severe AS + LVH 11 ↑ ↓ ↓  ↑ ↓ ↑ 
Steadman et al 201264 
Cardiopulmonary exercise testing, CMR and echocardiography in patients with severe AS awaiting SAVR 
   Peak AV Velocity MPR LVMI Septal 

E/e’ 
LGE 

Association with 
MPR 

46  β=-0.34, p=0.020  β=0.51, 
p<0.001 

β =-0.33, 
p=0.030 

β=-0.46, p=0.002 

Association with 
peak VO2  

46   β=0.45, 
p=0.004  

 β=-0.34, 
p=0.020 

 

Mahmod M et al 201445 
CMR in 28 patients with severe AS (3 asymptomatic, 25 symptomatic) – 14 of the 25 symptomatic patients were rescanned 8 months after SAVR 
    MPRI Circumferential 

strain 
BOLD SI 
change 

PCr/ATP 

Controls 15   o o o o 
Severe AS 28   ↓ ↓ ↓ ↓ 
Post-SAVR 14   o o o o 
Ben-Dor I et al 201470 
Doppler LAD flow using TEE during TAVI 
  Peak systolic coronary 

velocity 
Peak diastolic coronary 
velocity  

Systolic VTI Diastolic VTI   

Pre-TAVI 90 o o o o   
Post-TAVI 90 ↑ ↑ ↑ ↑   
Ahn JH et al 20166 
CMR in patients with severe AS 
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Abbreviations: ↑ indicates a higher measure, ↓ a lower measure where “o” is the baseline comparison. AS: aortic stenosis, AVA: aortic valve area, AVG: aortic valve gradient, BNP: b-
type natriuretic peptide, BOLD: Blood oxygen level dependent, CBF: coronary blood flow, CFV: coronary flow velocity, CFVI: coronary flow velocity indexed for LV mass, CFR: coronary 
flow reserve, CI: cardiac index, CMR: cardiac magnetic resonance, ECHO: echocardiography, hDPT: hyperaemic diastolic perfusion time, hTransmural MBF: hyperaemic transmural 
myocardial blood flow, LAD: left anterior descending artery, LGE: late-gadolinium enhancement, LVH: left ventricular hypertrophy, LVMI: indexed left ventricular mass, MPR: myocardial 
perfusion reserve, MPRI: indexed myocardial perfusion reserve, PCr/ATP: phosphocreatine/adenosine triphosphate, PET: positron emission tomography, SAVR: surgical aortic valve 
replacement, SI*b: peak signal intensity (SI) multiplied by the rate of signal rise, TEE: transoesophageal echocardiography, VTI: velocity time integral  
 

 

    MPRI LVMI CI LGE 
Controls 20   o o o o 
AS – angina 41   ↓ ↑ ↑ ↑ 
AS + angina  43   ↓↓ ↑↑ ↑↑ ↑↑ 
Singh et al 201777 
Exercise test, echocardiography and CMR in asymptomatic patients with moderate-severe AS 
   AVA AVG Global 

MPR 
Stroke volume Fibrosis NT-proBNP 

No event 127  o o o o o o 
Event 47  ↓ ↑ ↓ ↓ o ↑ 
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LV systolic wall stress index and peak systolic flow velocity75 are tightly knit, suggesting 

that extravascular compressive forces change systolic flow, although these changes are 

independent of LV mass. This may explain why CFR may not respond immediately to relief 

of valve obstruction but improves after one year78. Other studies have also demonstrated 

improved subendocardial blood flow at two weeks49, CFR at six months76 and indexed 

MPR (MPRI) at eight months45 following valve replacement. The evidence is strong for 

structural and hemodynamic effects as the cause of myocardial ischemia in AS.  

 

Table 1-3: Classification of coronary microvascular dysfunction65 

 Clinical Setting Main pathogenetic 

mechanism  

Type 1  

Absence of myocardial or 

obstructive coronary artery disease  

Risk factors 

Microvascular angina 

Endothelial dysfunction  

Smooth muscle cell 

dysfunction  

Vascular remodelling  

Type 2  

Myocardial disease 

Hypertrophic cardiomyopathy  

Dilated cardiomyopathy  

Anderson-Fabry’s disease  

Amyloidosis  

Myocarditis  

Aortic stenosis  

Vascular remodelling  

Smooth muscle cell 

dysfunction  

Extramural compression  

Luminal obstruction  

Type 3 

Obstructive coronary artery disease 

Stable angina  

Acute coronary syndrome  

Endothelial dysfunction  

Smooth muscle cell 

dysfunction  

Luminal obstruction 

Type 4  

Iatrogenic 

Percutaneous coronary angioplasty 

Coronary artery grafting  

Luminal obstruction  

Autonomic dysfunction  

 

The pathophysiological and clinical manifestations of coronary microvascular 

dysfunction, described as heightened sensitivity to vasoconstrictor stimuli associated 

with limited vasodilator capacity, have been previously classified55 (Table 1-3). Coronary 

physiological response to hyperaemia can also be grouped into four categories, 

depending on the presence of normal or abnormal CFR (>2.0 and <2.0, respectively) and 

normal or abnormal hMR (<1.7 and >1.7mmHg/cm/s, respectively)79. The reference 

standard of microvascular dysfunction is invasive measurement of coronary vascular 

resistance using pressure and flow during hyperaemia80, where hMR is calculated by 

dividing the mean distal coronary pressure (Pd) by the hyperaemic average peak Doppler 

flow velocity (hAPV). However, hMR does not determine global microvascular 

dysfunction but minimal static resistance which is strongly dictated by microcirculatory 
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remodelling – either intrinsic (arteriolar remodelling or capillary rarefaction) or extrinsic 

to the vascular tree.  

 

Two reasons for reduced CFR in AS have been proposed. The first hypothesis is that 

inherent microvascular dysfunction elaborates ischemia, as initially proposed by Ahn et 

al6 who demonstrated reduced MPRI in patients with AS and angina using perfusion 

cardiac magnetic resonance (CMR) imaging (without reporting hemodynamic or 

microvascular mechanisms)80. The second is that ischemic signs and symptoms result 

from high wall stress and mechanical effects in response to AS, supported by 

improvement of coronary physiological indices immediately following TAVI.  

 
Figure 1-5: Factors implicated in disrupted coronary flow and reduced CFR in AS. Compensatory 

mechanisms fail due to structural and mechanical effects upon the ventricle and coronary circulation. 

There is reduced physiological reserve as a result of inadequate myocardial oxygen supply and increased 

oxygen demand. 

 

Transmural CFR and subendocardial-to-subepicardial perfusion ratio fall directly with 

decreased hyperaemic DPT in AS (measured using positron emission tomography) and 

improve with increased hyperaemic DPT and increased AVA after SAVR46,78, supporting a 

prominent role for hemodynamic conditions in determining CFR - microvascular disease 

would be expected to yield uniformly reduced transmural perfusion without a gradient80. 

Equally, MPRI may be low in AS patients6 due to the resting increase in perfusion (rather 

than reduced stress perfusion), since MPRI is a relative ratio of stress-to-rest of the 
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magnetic resonance signal80, and independently associated with exercise capacity64. 

Intrinsic endothelial dysfunction does not correlate convincingly with hemodynamic 

factors that are promptly corrected following TAVI60 - proposed mechanisms impacting 

disrupted microvascular function are illustrated in Figure 1-5.  

 

Lumley et al19 found that perfusion efficiency during exercise in patients with AS was 

reduced as a result of augmented early systolic deceleration waves (BCW) and attenuated 

rise in systolic acceleration waves (FCW). Importantly, further assessment found that AS 

patients and those with normal hearts are able to reduce MR to the same extent. 

Decreased hMR after TAVI independent of resting haemodynamics has also been 

demonstrated in patients with severe AS (not differentiated into flow or pressure 

gradient status)60. Clearly, both intra- and extra-myocardial pressures dictate coronary 

supply, and a combination of factors is likely to be responsible for the distortion of 

coronary flow and impaired CFR in AS.  

 

1.7 Aortic Valve Flow and Pressure Gradients  

 

The adaptive compensatory response to AS ultimately become maladaptive and results 

in cardiac decompensation, yet there are several guises with distinct anatomical and 

physiological characteristics (Figure 1-6 and Figure 1-7). Normal-flow high-gradient 

(NFHG) AS usually provokes concentric hypertrophy, whereas paradoxical low-flow low-

gradient (pLFLG) AS patients demonstrate concentric remodelling81. 

 
Figure 1-6: Classification of AS according to flow (low-flow [LF] <35ml/m2, normal-flow [NF] >35ml/m2) and 

gradient (low-gradient [LG] MPG <40mmHg, high-gradient [HG] MPG >40mmHg). Low-flow low-gradient 

can be further subdivided into “classical” and “paradoxical” according to the presence or absence of 

impaired LV function.  
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The ventricular adaptive response to high afterload in combination with valve obstruction 

is poorly understood and may be more varied than is currently appreciated. Flow and 

stroke volume can both be reduced or normal in patients with preserved and reduced LV 

ejection fraction (LVEF)82. Whilst there is clear consensus that symptomatic AS with AVA 

<1cm2, peak velocity (Vmax) >4m/s and mean pressure gradient (MPG) >40mmHg 

warrants intervention, diagnostic ambiguity exists in patients with a small AVA and lower 

pressure gradients (despite preserved LVEF) where lower stroke volumes contribute 

significantly to discrepancies83. Ageing, hypertension, diabetes mellitus and 

dyslipidaemia are associated with microvascular dysfunction and impaired CFR, and there 

is a higher proportion of diabetes mellitus and hypertension in pLFLG cohorts. These, in 

turn, are associated with an intrinsic likelihood of impaired CFR84-86, arising as a 

consequence of non-endothelium-dependent disorders of nitric oxide metabolism, 

dysregulation of inflammatory cytokines, oestrogen, or adrenergic receptors, and 

alterations in expression or production of local vasoactive substances such as angiotensin 

II and endothelin65. 

 

 

Figure 1-7: Patterns of cardiac remodeling based on normal or increased mass to volume ratio (concentric 

remodelling and concentric hypertrophy) and normal LV wall thickness (concentric remodeling) or 

hypertrophy (concentric and eccentric). Adapted from Gjesdal et al87. 

 

Low-gradient groups may be more susceptible to microvascular disturbance, as 

evidenced by a higher burden of subendocardial fibrosis on CMR88. Since the first 
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description of pLFLG AS by Hachicha et al89, there have been conflicting reports and 

evidence concerning the underlying pathophysiology. Accounting for up to 35% of severe 

AS cases (with a female preponderance), many are undiagnosed and surgical referral is 

frequently delayed or overlooked. The syndrome entails the perfect storm of valve, 

ventricular and vascular abnormalities, with valve stenosis, concentric LV remodelling 

(culminating in restrictive physiology), and high Zva with markedly lower systemic arterial 

compliance and higher arterial resistance88-93. 

 

A low indexed stroke volume (SVi) predicts mortality and risk increases sharply when it is 

<35 ml/m294-96. Although still controversial, the bulk of evidence suggests that patients 

with AS and SVi <35ml/m2 have markedly worse outcomes84,89,91,93,94,97-109. Some 

discrepant studies (which include a high proportion of asymptomatic patients or fail to 

account for stroke volume)110-113 have been criticised for imprecise data analysis and 

misclassification114. The phenomenon of distinct remodelling is poorly understood and 

there is a paucity of invasive data to characterise the cohort and understand factors that 

predict poor outcome and the response to valve intervention. 

 

European115 and American116 guidelines provide a Class IIA indication for aortic valve 

intervention in symptomatic pLFLG AS but only after careful confirmation of clinical, 

hemodynamic and anatomical data (in the normotensive setting), and exclusion of 

pseudo-stenosis, where the myopathic ventricle fails to generate adequate force. 

Although survival is improved when it is treated82,98,100,109,117,118, these patients have 

adverse outcomes during and after valve intervention when compared to other AS 

cohorts84,100,105, perhaps related to the burden of myocardial fibrosis100,113. This fibrosis 

also impacts on MPR owing to reduced arteriolar and capillary density. 

 

1.7.1 Low gradient aortic stenosis  

 

AS patients with AVA <1cm2 and MPG <40mmHg can be subdivided into three categories:  

1. Classical low-flow low-gradient AS (cLFLG AS) with impaired LVEF and stroke 

volume ≤35ml/m2 
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2. Paradoxical low-flow low-gradient AS (pLFLG AS) with preserved LVEF and stroke 

volume ≤35ml/m2 

3. Normal-flow low-gradient with preserved LVEF (NFLG AS) and stroke volume 

>35ml/m2 

 

Partial characterization of 600 patients with low gradient AS underwent 

echocardiography, and pre- and post-TAVI right and left heart catheterisation in a 

German retrospective study119. This demonstrated a greater proportion of female 

patients, with a significantly higher preponderance of atrial fibrillation and hypertension 

in the pLFLG AS group. Following TAVI, a significant decrease of systemic vascular 

resistance index was noted only in pLFLG and not in cLFLG or NFLG patients. Cardiac 

output and cardiac index was significantly higher in NFLG patients with outcomes in this 

group significantly more favourable at 5-years. NFLG is no doubt the most difficult to 

discern - some of these patients may have moderate AS since outcomes are comparable 

with medical therapy, surgical therapy or incidence of aortic valve intervention120. Any 

error in echocardiographic assessment of the valve haemodynamics may lead to 

misclassification of the aortic stenosis therefore rigorous assessment is required. In 

contrast to cLFLG, pLFLG patients are akin to the heart failure with preserved ejection 

fraction phenotype121.  

 

1.7.2 Structural Remodeling in Low Gradient AS 

 

The complex collagen weave is responsible for much of the ventricle’s passive diastolic 

stiffness122 and remodelling in response to pressure overload causes fibroblast 

proliferation and collagen I accumulation123. Myocardial collagen deposition is a common 

end point of many pathologies and accompanies advanced ageing124. Myocardial 

hypertrophy is detrimental to overall survival125-127 and correlates with fibrosis, impaired 

longitudinal shortening and worsening diastolic function. This fibrosis associated with 

AS128-131 is a crucial determinant of cardiac dysfunction and prognosis129,131-134, and 

replacement fibrosis may be the result of myocyte apoptosis accounting for progression 
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to heart failure135. Interstitial, subendocardial and mid-wall patterns of fibrosis have been 

demonstrated in patients with AS and normal coronary arteries88,127,133,136-143. 

 

Whilst endomyocardial biopsy is the gold standard for confirming fibrosis144, CMR 

imaging has been widely used in its detection, either using T1 mapping to calculate 

extracellular volume fraction (ECV) or late gadolinium enhancement (LGE). ECV can 

detect extracellular volume expansion with diffuse fibrosis, whereas LGE only identifies 

replacement fibrosis145.  

 

Patients with pLFLG AS typically have more profound impairment of LV longitudinal 

function106,118,146-148 and more florid myocardial fibrosis, predominantly located in the 

subendocardium88. In comparison to circumferential fibres located in the mid-wall, 

longitudinal subendocardial fibres (responsible for long-axis function)2,149-151 are 

particularly vulnerable to microvascular ischemia and wall stress88,142. Impaired 

longitudinal function as a consequence of subendocardial injury, small LV cavity size and 

increased wall thickness lead to reduced stroke volume and lower flow-dependent valve 

gradients152. Reduced stroke volume is primarily due to deficient LV filling (rather than 

emptying)101 and preserved LVEF should not be construed as “normal” systolic function. 

Consistent with this theme, a recent study demonstrated that indexed AVA, female 

gender, an abnormal exercise electrocardiogram and MPR (but not valve gradients or LV 

function) were independent predictors of event rates in moderate-severe AS77.  

 

This distinct remodelling may be explained by decreased cardiac reserve resulting from 

chronic exposure to high afterload, eventually exceeding the limit of compensatory 

mechanisms with resulting LV impairment and reduced cardiac output89. It is also possible 

that these patients have a co-existing or secondary heart failure syndrome, akin to heart 

failure with preserved ejection fraction121, the aetiology of which is complex and poorly 

understood. Importantly, these two pathologies (which are both relatively common in 

older age) are not mutually exclusive and exhibit significant similarities, including 

impaired LV relaxation and microvascular abnormalities46,75,153-156. Indeed, galactin-3, a 

novel marker of myocardial fibrosis, has prognostic value in heart failure with reduced or 
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preserved ejection fraction157,158 and is associated with adverse outcomes after TAVI159 - 

despite the lack of any association with AS severity160. Patients with elevated galactin-3 

prior to TAVI have lower valve gradients and reduced LVEF (although data were not 

divided into AS cohorts)159. Similarly, one study revealed that low flow (but not low LVEF 

or low gradient) is an independent predictor of early and late mortality following TAVI in 

high-risk AS patients105. Comparable to patients with heart failure, LVEF does not 

correlate with outcomes. 

 

Equally, the peril of low flow does not correlate with aortic valve calcification (AVC). There 

is less AVC but higher global afterload in pLFLG than other types of AS82, suggesting a co-

existent ventricular disease entity that may explain why these patients have reduced 

survival benefit following valve intervention than other subgroups. This would support 

the theory that pLFLG AS is not “end-stage” normal-flow high-gradient (NFHG) AS161 but 

a distinct and separate entity162-164. Furthermore, the concept of pLFLG AS as a “transition 

stage” from non-severe to severe82 is undermined by a preponderance of myocardial 

injury and adverse outcomes.  

 

1.8 Physiological Assessment of Coronary Stenoses in the Setting of AS  

 

Symptomatology overlaps in patients with AS and epicardial coronary disease, and 

distinction may be clinically impossible. Physiological assessment of epicardial coronary 

stenoses in this setting is challenging due to compounding factors that contribute to 

myocardial ischemia, such as LVH and excess afterload. Functional evaluation of isolated 

coronary artery disease is well validated165,166 and strongly linked with clinical outcomes 

but a clear understanding of the pitfalls amidst AS is important for clinicians.  

 

The results of coronary physiological assessment should be interpreted with caution in 

AS since it is not a true resting state. Distorted values may be caused by several factors:  

1. Elevation of coronary sinus outflow and distal coronary pressure15 which may 

underestimate the significance of a coronary stenosis 
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2. Secondary LVH which causes reduced capillary density and abnormal 

vasoreactivity16 

3. Elevated right atrial pressure167 

 

LVH causes fixed elevation of coronary resistance which may also be increased by 

neurohumoral factors that influence the response to adenosine168 - these include a-

adrenoceptor agonists, angiotensin and vasopressin17, the levels of which may be 

modulated by medication - adenosine infusion is safe and well-tolerated in patients with 

AS18-20. LVH is also associated with a lower ischemic threshold as a result of capillary 

rarefaction21 and transmural steal (with disproportionately high subepicardial blood 

flow). A higher cut-off value level of fractional flow reserve (FFR) to indicate myocardial 

ischemia is therefore appropriate in patients with AS22,23.  

 

Although data are scarce, two recent publications on the role of FFR and instantaneous 

wave-free ratio (iFR) in the setting of AS and epicardial coronary disease provide 

important insights. One study found that diagnostic accuracy of iFR was significantly 

lower in patients with AS when the standard iFR threshold of 0.89 (to correlate with FFR 

0.8) was used20. The authors found that the best iFR threshold to predict an FFR ≤0.8 in 

the setting of AS was 0.83 (although iFR values were widely scattered). Another study 

found that iFR was not subject to change after TAVI (p=0.94) unlike FFR which fell 

significantly after intervention (p=0.008)24. Positive FFR values worsen after TAVI whilst 

negative FFR values tend to improve169.  

 

1.9 Clinical Implications of Impaired Coronary Flow  

 

Reduced capacity to augment myocardial oxygenation in response to stress is a 

physiological hallmark of AS and manifest by angina, dyspnoea and syncope. Up to 40% 

of patients with AS experience angina despite normal coronary arteries73 and are at 

increased risk of sudden death170. These patients have reduced MBF, impaired CFR and 

increased apoptosis47, and are more likely to have impaired reserve6,73 and diminished 
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exercise capacity64. One study found that low CFR was the only independent predictor of 

future cardiovascular events in AS patients171. Exertion accentuates the imbalance 

between supply and demand, and rising LVEDP blunts the pressure gradient required to 

achieve adequate coronary perfusion. Any rise in LVEDP or fall in AVA has a deleterious 

effect on coronary supply35,46 and there is a strong association between ventricular load 

(measured by LV rate-pressure product) and decreased CFR, particularly affecting the 

subendocardium. Stuttering ischemia yields subclinical LV dysfunction and apoptosis 

which is linked with myocardial fibrosis172 - an independent predictor of mortality133.  

 

Biomarkers have an emerging role in the assessment of asymptomatic AS173. High-

sensitivity troponin I correlates with LVH, fibrosis and clinical event rates137, while cardiac 

myosin binding protein C correlates closely with LV mass, fibrosis and all-cause mortality 

(but not valve gradient)174. NT-pro B-natriuretic peptide (BNP) levels are significantly 

higher in paradoxical and classical low-flow low-gradient AS88, and correlate with CFR 

≤2.5 and parameters of diastolic function175 - use of BNP in asymptomatic AS is endorsed 

by recent European guidelines115.  

 

1.10 Conclusion  

 

Patients with AS host a caustic environment where impaired microvascular responses are 

compounded by high wall stress and hemodynamic load; those with angina (and impaired 

CFR) are at increased risk of sudden death. Progression of AS is characterised by 

discrepancies between blood supply and metabolic demand. There is an array of 

abnormalities in myocardial remodelling, stroke volume, pressure gradients and 

disordered coronary flow, which contribute to the signatures that determine varying AS 

phenotypes. These distinctions, which correlate with clinical outcomes, should prompt a 

directive path of physiological research. All patients with AS are not equal and the optimal 

timing and modality of treatment might differ according to phenotype. Relying on peak 

velocity to determine severity is now obsolete. Timing of intervention is crucial in 

avoiding irreversible myocardial fibrosis and a “burnt out” ventricle. Assessment of 

microcirculatory function may hold the key.  
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1.11 Objectives and Hypotheses  

 

The objective of this work is to provide novel mechanistic insight into the aetiology of 

paradoxical low gradient aortic stenosis, by distinguishing features of a separate entity in 

comparison to high gradient aortic stenosis, and to better understand the response to 

aortic valve intervention. Exploration of the relationship between disrupted coronary 

flow, left ventricular mechanics and biomarker release, along with cardiac magnetic 

resonance imaging assessment allows meticulous multi-modality assessment.  

 

This disease phenomenon remains poorly understood and detailed invasive 

characterisation is lacking, therefore this study, to complement available non-invasive 

research, aims to unravel associated pathophysiological mechanisms and potential 

interaction with myocardial ischaemia. Enhanced understanding of this high-risk group 

may direct future research and delineate optimal treatment options such as modality and 

timing of intervention.  

 

The hypothesis proposes that increased myocardial dysfunction plays a role in the 

paradoxical low gradient ventricle, and that myocardial remodelling leads to further 

disruption in coronary flow patterns, especially during stress. Specifically, we hypothesise 

that the low gradient cohort will exhibit:  

 

1. Depressed forward compression and backward expansion waves at rest and during 

stress before transcatheter aortic valve implantation  

2. A greater proportion and distinct distribution of myocardial fibrosis as measured by 

cardiac magnetic resonance imaging  

3. A higher systemic concentration and transcardiac gradient of lactate and troponin 

4. More florid evidence of restriction, based on impaired left ventricular relaxation 

assessed using the diastolic pressure volume relationship 
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2.1 Introduction 

 

This chapter contains the specific methodological techniques used to undertake the 

research described in this thesis. This multi-faceted study involves several layers of data 

extraction, and modalities of analysis. 

 

2.2 Ethical Approval  

 

The study was presented at the Cardiovascular Patient Representative Group Meeting 

21st March 2016, and the study documents (the Integrated Research Application System 

[IRAS] form, patient information sheet, protocol, consent form and general practitioner 

letter) were all created de novo.  

 

London Westminster Research Ethics Committee confirmed favourable ethical opinion 

for this project (reference 16/LO/1619) on 18th October 2016, and the Health Research 

Authority granted approval (IRAS Project ID 198673) on 31st October 2016.  

 

Guys & St Thomas’ NHS Foundation Trust research and development sign-off, 

incorporating capacity and capability, was granted on 1st December, and the project was 

listed on the National Institute for Health Research Clinical Research Network Portfolio.  

 

2.3 Recruitment  

 

This thesis was based upon the study of patients with severe, symptomatic aortic stenosis 

(AS), undergoing trans-femoral trans-catheter aortic valve implantation (TAVI) who were 

classed as intermediate (Society of Thoracic Surgeons [STS] score 4 – 8) or high (STS score 

> 8) surgical risk. Recruitment was via the St Thomas’ NHS Foundation Trust TAVI waiting 

list and patients were invited to participate either during an inpatient stay for workup 

investigations, or after the multidisciplinary team (MDT) meeting by a telephone call. 
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Patients had the patient information sheet for at least a week prior to consent, and 

written informed consent was obtained for all patients. 

 

2.3.1 Patient Selection 

 

Inclusion and exclusion criteria are presented in Table 2-1. Patients were suffering from 

severe, symptomatic AS, and referred for TAVI. In order to identify features of AS alone, 

patients were required to have no other reason to have myocardial scar or ischaemia and 

needed to be able to have a cardiac MRI scan.  

 

Table 2-1: Inclusion and Exclusion Criteria  

Inclusion criteria Exclusion criteria 

• Severe symptomatic aortic stenosis, 

referred for trans-femoral TAVI 

• Preserved left ventricular systolic 

function (ejection fraction ≥ 50%) 

• Aortic valve area <0.6cm2/m2 

• Ability to give informed consent 

• Life expectancy > 1 year 

• Epicardial coronary artery lesion ≥ 70% 

• More than mild concomitant valve disease 

• Contraindication to MRI (ferrometallic cerebral 

aneurysm clips, non-MRI safe pacing device, 

cochlear implant, ventriculo-peritoneal shunt, metal 

fragments in the eye, severe claustrophobia or eGFR 

< 30ml/min/1.73m2 contraindicating gadolinium-

based contrast agent) 

• Atrial arrhythmia or bundle branch block 

• Contraindication to adenosine 

 

2.3.2 Patient Journey  

 

Prior to the decision to undergo TAVI, all patients were formally worked up with coronary 

and femoral angiography, echocardiography, and a specific clinical ECG-gated computed 

tomography scan to assess aortic annular dimensions and access route vasculature. 

Following agreement to participate in the study, patients were contacted within 48-hours 

of their planned admission for TAVI to explain the schedule of events. Figure 2-1 presents 

the additional steps undertaken if recruited into the study. Patients were met on arrival 

to the ward, the day prior to valve intervention, and consented for both TAVI and the 

research study. A perfusion MRI study was carried out that afternoon, not more than 24-

hours prior to TAVI. The following day, the invasive protocol was carried out immediately 

pre- and post-TAVI. After a minimum of 4 months, patients attended for a clinical review 
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and repeat perfusion MRI study. As part of routine clinical care, all patients also had pre- 

and post-TAVI blood tests, electrocardiography and echocardiography.  

 

 
Figure 2-1: Study patient flow diagram  

 

2.4 Cardiac MRI Protocol  

 

Upon arrival, the patients’ height, blood pressure and weight (on a consistent set of 

scales) were recorded, and the body surface area (BSA) calculated using the Mosteller 

formula176. Two intravenous cannulae were inserted, one for gadolinium-based contrast, 

the other for an adenosine infusion as part of the vasodilatation stress protocol. Patients 

had abstained from caffeinated products for at least 24 hours and also completed a safety 

questionnaire. After checking that there was no metal or other non-suitable implants on 

their person, patients were transferred to the scanner. All MRI imaging was performed 

using a state-of-the-art 3 Tesla scanner (Philips Achieva-TX, Philips Medical Systems, Best, 

The Netherlands) equipped with 32-channel cardiac phased array receiver coil. Vector-

cardiographic trigger was used for cardiac synchronisation. A blood pressure cuff was 

Pre-operative tests
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Cardiac CT

Post-operative test
ECHO

TAVI

TAVI as planned

STANDARD CARE

Severe symptomatic aortic stenosis

Left ventricular ejection fraction > 50%
Aortic valve area < 0.6cm2/m2
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Combowire study in mid-distal LAD
4 minutes of pacing at 90-120bpm

±Transcardiac gradient sampling from coronary sinus and aorta
±4 endomyocardial biopsies taken

Post-operative tests
ECHO

4-month perfusion CMR

RECRUITED INTO STUDY
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attached, along with an MR-compatible injector pump and the line through which 

adenosine infusion would be given. Patients lay supine with their arms by their side, with 

ear plugs and headphones on, and were handed an emergency buzzer to use if needed. 

 

 
Figure 2-2: Thumbnail sequence of MRI protocol from Osirix  

 

2.4.1 CMR Acquisition 

 

Figure 2-2 outlines the sequence of scan acquisitions. Localiser scans or “scouts” were 

first acquired along with pseudo 2- and 4-chamber images using turbo field echo (TFE). 

To assess left ventricular (LV) myocardial function, volume and mass, 12 consecutive 

8mm short-axis images and 2-, 3- and 4-chamber long axis image of the LV were acquired 

using a cine balanced steady state free precession sequence (bSSFP, 50-phases per 

cardiac cycle, 1.5-fold SENSE, spatial resolution 2x2mm, temporal resolution at 60bpm of 

20ms). Stress and rest perfusion imaging was performed using a high resolution kt-turbo-

gradient echo sequence (T1TFE), with three short-axis slices (basal, mid and apical) using 

a saturation-recovery k-t sensitivity encoding accelerated gradient-echo method177 

acquired over every heartbeat covering the standard sixteen American Heart Association 

(AHA) segments178 with a typical in-plane spatial resolution of 1.2x1.2mm. Typical 
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imaging parameters: shortest echo time (range 1.35–1.54 ms), shortest repetition time 

(range 2.64–3.12 ms), 180° flip angle, 90° saturation pre-pulse, 120 ms pre-pulse delay, 

typical TR 2.6 ms, typical TE 0.9 ms. Following test perfusion, a proton density weighted 

sequence was acquired by turning off the pre-pulse thereby minimising echo time and 

signal differences due to transverse decay and magnetisation relaxation times – used as 

a correction map to account for special inhomogeneities due to surface coils179. A dual 

bolus protocol of Gadobutrol (Gadovist, Bayer, Berlin, Germany) at 4 ml/s followed by a 

20ml saline flush was used to correct for signal saturation (dilute Gadovist 

0.0075mmol/kg and neat 0.075mmol/kg, with a 25 second pause between injections)180, 

to allow quantification of perfusion, according to published methods181. Gadolinium-

based contrast shortens the longitudinal recovery time (T1) by increasing relaxation rates. 

Stress perfusion images were acquired during pharmacological vasodilation with 

adenosine, 140μg/kg/min (increasing to 175 then 210μg/kg/min if no symptomatic or 

haemodynamic response) for at least 2 minutes with symptomatic hyperaemia (chest 

tightness, dyspnoea, diaphoresis) and >10% rise in heart rate. Rest images were 

performed approximately 10 minutes after stress imaging.  

 

Balanced turbo field echo (gradient echo pulse sequence with a balanced gradient 

waveform) Modified Look-Locker Inversion recovery (MOLLI) sequences were acquired 

pre- and post-contrast to allow T1 map generation and calculation of the extracellular 

volume (ECV) (and thus the degree of interstitial fibrosis). Partition coefficient and ECV182 

appear to be the optimal non-invasive MRI T1 measures for quantifying diffuse myocardial 

fibrosis. 10-15 minutes after injection of Gadovist (total dose 0.2mmol/kg), late 

gadolinium enhancement images were acquired with an inversion-recovery gradient-

echo imaging sequence (Look-Locker) to evaluate focal myocardial scar in the same long 

and short-axis projections180. 

 

To measure the aortic valve area (AVA) and the left ventricular outflow tract (LVOT) area 

by planimetry, 7 contiguous orthogonal 4mm cine slices were taken of the aortic valve, 

starting 12mm upstream from the aortic valve annulus in the outflow tract and ending 
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10mm downstream of the annulus in the ascending aorta. These were planned in the 3-

chamber and coronal LVOT views.  

 

Flow quantification using spoiled gradient echo by phase contrast mapping was carried 

out at the level of the aortic valve. In-plane flow sequence planning was obtained in the 

3-chamber view with the aim of achieving a flow direction as close to the velocity 

encoding direction. Through-plane assessment is more accurate and negates some 

partial volume averaging. Initial VENC (velocity encoding) was estimated from 

echocardiography and repeated with a higher VENC if aliasing occurred. Flow 

quantification at the main pulmonary artery bifurcation level for ascending and 

descending aorta was also obtained. Maximal velocity from phase contrast images was 

estimated from the highest velocity pixel of aortic flow, by adjusting the contrast settings 

to highlight the brightest pixel in cine images. 

 

2.5 Catheter Laboratory Protocol  

 

The invasive protocol was carried out at the time of TAVI, and included paired coronary 

and LV physiology, paired serum sampling from the coronary sinus and aorta (trans-

cardiac gradients) in the first 10 patients and an endomyocardial biopsy when possible at 

the end of the procedure. During the invasive assessment of hyperaemia and rapid pacing 

before and after TAVI in LGAS and HGAS patients, a number of invasive haemodynamic 

parameters were measured. Each dataset was obtained pre- and post- valve 

implantation, at rest, hyperaemia (by intracoronary adenosine bolus), and paced at 

90bpm and 120bpm, each for 2 minutes. Table 2-2 summaries the step-by-step protocol. 

 

Table 2-2: Step by step guide to the invasive protocol  

Step  Procedure Equipment needed 

Pre Set up  Liquid nitrogen flask, OCT, Isopentane, cork 

discs, tin foil, left ventricular volumes from CMR 

1 ACCESS: Contralateral femoral 6F Arterial and venous sheaths 

Aortogram and ipsilateral puncture under fluoroscopic and 

angiographic guidance. Insertion of TAVI sheath.  

Cross the aortic valve with AL1 catheter  
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2 CORONARY: ComboWire placement in mid-LAD with longer 

acquisition to confirm position of coronary sinus 

Connect pressure first (Ethernet), then connect velocity cable. 

ComboWire connections to INCA (cables run top to bottom, left to 

right). Disable auto velocity scaling.  

Guide catheter 

ComboWire, ComboMap Console  

IVUS bag 

3 CORONARY SINUS: CS intubated with SL3 long sheath, then pass the 

pacing wire through to enable simultaneous pacing and serum 

sampling  

SL3 sheath, pacing wire 

4 LEFT VENTRICLE: Calibrate conductance catheter under water. 

Connect pressure cable, then volume cable. Once calibrated, insert 

over 0.025” wire which has been exchanged over the pigtail catheter 

in the left ventricle, via TAVI sheath. Rescale, record, then volume 

calibrate. 

PV loop 7F catheter over an Amplatz Extra Stiff 

0.025” 260cm J tipped wire, INCA Console 

5 PRE-TAVI STRESS PROTOCOL: Pacing protocol acquisitions: rest; intra-

coronary adenosine; 2mins pacing at 90bpm; 2mins pacing at 120bpm. 

Aortic and coronary sinus sampling at rest, after 2 minutes pacing at 

90bpm, after 2 minutes pacing at 120bpm and 5 minutes post-stress 

Record datasets via INCA and ComboMap for each of rest, 

hyperaemia, 90bpm, 120bpm and removal of conductance catheter  

Adenosine 40μg bolus  

5ml syringes x 16 (labelled: pre-TAVI/post-TAVI; 

rest/90bpm/120bpm/post-stress; CS/aorta) 

i-STAT, charger and printer  

6 REMOVAL OF KIT: Conductance catheter removed and exchanged for 

a pigtail catheter. Safari wire inserted. Guide catheter for changed for 

pigtail catheter (contralateral access). 

Safari wire  

7 VALVE IMPLANTATION TAVI prosthesis 

8 POST-TAVI STRESS PROTOCOL 

Repeat steps 2, 4 and 5 making a new file on INCA 

 

9  LEFT VENTRICULAR ENDOMYOCARDIAL BIOPSY:  

Long sheath inserted through the TAVI e-sheath and biopsies taken 

with the bioptome  

Cordis 5.5Fr Bioptome and 7Fr long sheath  

Gallipot with saline for biopsies 

10 END OF PROCEDURE  

Closure of femoral punctures and end of procedure 

 

11 TIDY UP RESULTS 

- Send one biopsy to histopathology to exclude amyloidosis 

- Snap freeze remaining samples, and store at -80˚C in an HTA 

compliant freezer  

- Collate serum results taken during procedure (ABG)  

- Take red top serum samples to Viapath for Troponin assay, and freeze 

supernatant for later MyC results  

- Recalibrate data files, and download once filtered and cleaned  

 

 

2.5.1 Pressure Volume Loop Assessment  

 

Real-time, in vivo pressure and volume measurements can be obtained from specific 

conductance catheters which are introduced into the left ventricle, either antegradely by 
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direct apical puncture, or by retrograde catheterisation from the aorta, through the aortic 

valve. Each loop created by the pressure and volume relationship represents a complete 

cardiac cycle and describes filling, contraction, ejection and relaxation – the dynamic 

physiological assessment of cardiac function. A list of indices used for analysis is displayed 

in Table 2-4. The benefit of this technique is the generation of a three-fold load-

independent ventricular contractile state relationship:  

1. The Frank-Starling contractile state index (Sci), which characterises contraction 

from the isovolumetric contraction phase  

2. The preload recruitable stroke work (PRSW), which characterises pan-cardiac 

cycle contractile state 

3. The end systolic elastance (Ees), encapsulating contractile state during 

isovolumetric relaxation 

 

The first development of cardiac functional assessment by electrical conductance, or 

impedance measurement of intravascular volume in humans was not until the early 

1980s183. Validation of this technique has been performed against cine computed 

tomography and electro-conductive balloons in animals; thus, the conductance catheter 

is capable of reproducing accurate global LV volumes and estimates of stroke volume as 

well as segmental volume calculation184,185. 

 

2.5.1.1 Properties of the Conductance Catheter  

A multi-electrode catheter measured intracavitary electrical conductance, from which 

ventricular volumes were then calculated by taking into account several calibration 

factors. Continuous volume signals were generated by taking into account specific 

resistivity of blood and the spacing between the sensing electrodes. Conductance 

catheters (CD Leycom, Zoetermeer, Netherlands) are currently available in 4F or 7F with 

a choice of electrode spacing, and are CE marked (Figure 2-3). 

 

Segmental volumes measured are always relative volumes. Ejection fraction and total 

volume by MRI volumetric assessment were used to calibrate these values by matching 
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cardiac output or stroke volume derived from the volume catheter to pre-determined 

values from MRI.  

 

Figure 2-3: A conductance catheter (left), the CD Leycom panel (middle), and the INCA console (right)  

 

Total volume is calculated as V(t) = rho.L2.G(t) where rho is blood resistivity, L is the 

electrode spacing, and G(t) is the sum of the segmental conductance. The main module 

of the Cardiac Function Laboratory Modular (CFLM)-system supplies a 21.5kHz, 30µA 

current to two pairs of electrodes (or one pair if set to Single Field Ratio) to set up an 

intracavitary field and measures the resulting voltage gradients between the other pairs 

of electrodes.  

 

2.5.1.2 INCA Console and Conduct NT Software 

CD Leycom’s CFLM series was used to run the software ConductNT, a Windows 16-Bit 

software program, which runs on a 32-Bit Windows operating system. The CFLM system 

includes a power cord, ethernet, volume and pressure cables, four auxiliary cables to 

slave data from the ComboMap to the console, and the CD Leycom conductance catheter 

(Figure 2-4). The Leycom INCA® console is an intra-cardiac function monitor which allows 

real-time, operator independent, beat-to-beat display, acquisition and analysis. It has a 

modular platform and 7 channels which compose the volume segments.  
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2.5.1.3 Conductance Catheter Insertion and Calibration 

7F catheters with a central lumen and 10mm spacing between 12 electrodes were passed 

retrogradely across the stenosed aortic valve, and across the new TAVI prosthesis 

following valve implantation. The valve was initially crossed with a straight wire and AL1 

catheter, which was then advanced into the left ventricle and the wire exchanged for an 

exchange-length (260cm) 0.025” Amplatz extra stiff wire (ordered from 

supplychain.nhs.uk). 7F catheters allow a maximum 0.025-inch wire to pass along a 

central lumen and the extra stiff wire provided reasonable support to advance the 

conductance catheter over the wire and into the left ventricle.  

 

 
Figure 2-4: Schematic of the connections between the conductance catheter and ComboWire  

 

The catheter was flushed with sterile saline then the distal portion of the catheter 

immersed in saline for approximately 10 seconds. The distal end was then connected to 

the pressure module, and pressure calibration performed whilst the catheter was still, 

lasting approximately 15 seconds. The catheter was then inserted into the left ventricle 

over a 0.025” super stiff Amplatz wire, verified fluoroscopically, and connected to the 

volume module of the Inca console, creating a circuit. Segmental loops were checked to 

help determine position which could be changed if necessary – ideally the catheter was 

coaxial with the ventricular long axis, with the pigtail tip sitting in the apex. The output 

was rescaled, and a baseline dataset acquired to allow volume calibration with manual 

input of end diastolic and end systolic volumes from MRI volumetric assessment (carried 

out within the previous 24 hours)186. 

 

2.5.2 Coronary Assessment  

 

Volume Module

Lumen port

Pressure plug

Flow plugPressure Module

Conductance catheter
ComboWire�
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Assessment of coronary pressure and flow during programmed physiological settings 

provides mechanistic insight of the interaction between cardiac contraction and coronary 

supply35.  

 

2.5.2.1 Properties of the ComboWire  

Coronary pressure and flow measurements were achieved through a dual pressure and 

Doppler sensor-tipped 0.014-inch intracoronary wire (ComboWire®, Volcano Corp, San 

Diego, CA) in the left anterior descending coronary artery (Figure 2-5). This is the only 

available guidewire capable of acquiring simultaneous and continuous coronary artery 

pressure and flow data187. It is a standard 185 cm long, and the pressure sensor is offset 

by 1.5cm from the flow sensor at the tip.  

 

 

 Figure 2-5: ComboWire in the left anterior descending coronary artery 

 

Irrespective of the Doppler device used to determine CFR, it is calculated as the time-

averaged peak velocity during hyperaemia (APVh), divided by the time-averaged peak 

velocity at resting conditions (APVr), assuming that the rate of flow through the artery is 

strictly proportional to the measured APV188. Adenosine induces coronary vasodilatation, 

which impacts the relationship between coronary flow velocity and volumetric flow. Flow 

velocity profile shapes change, and therefore this assumption can introduce potential 

error189. The true mean flow velocity is proportional to APV, independent of the vessel 

diameter, with high correlation coefficients for both antegrade and retrograde perfusion 

where the guidewire does not appear to disturb the velocity profile188. Blood flow velocity 
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is determined from the Doppler frequency shift – from the difference between 

transmitted and returning signals: 

 

V = (c*Fd)/2FoCosθ 

 

where V is flow velocity, c is the constant of velocity of sound in a medium, Fo is the 

transmitted frequency, Cosθ is the insonation angle cosine, and Fd the Doppler 

frequency190.  

 

The change in pressure from proximal (dP+) or distal (dP-) sources can be determined to 

be accelerating or decelerating waves depending on positive or negative values from the 

following equation:  

 

dP+ = ½ (dP + ρcdU) 

 

dP- = ½ (dP - ρcdU) 

 

where ρ is the density of blood (1050kg/m3), dP is the change in pressure, dU the change 

in flow velocity, and c is the wave speed calculated using simultaneous pressure and flow, 

measured by the following equation191:  

 

c = 1/ρ √(ΣdP2/ ΣdU2) 

 

Net wave intensity (WInet) is the sum of proximal (WI+) and distal (WI-) originating waves33 

derived from phasic changes in pressure and flow velocity: 

 

WInet = dP/dt × dU/dt 

 

The wave intensity for each of the 4 most prominent waves were analysed. The net wave 

intensity trace, WInet, is the sum of WI+ and WI− but does not depend on a wave speed 

estimation. 
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2.5.2.2 The ComboMap System 

The ComboMap console (Volcano® Therapeutics, USA) processes and displays pressure 

and flow velocity data acquired by the ComboWire. In addition, the patient's ECG and 

aortic pressure (via fluid filled manometry from the guiding catheter) were slaved from 

the Sensis Cardiac Catheter Laboratory monitoring system (Siemens Healthcare, 

Erlangen, Germany). All signals were displayed in real time and adjusted as necessary. 

The ComboMap system input was slaved into the INCA console, as depicted in Figure 2-4.  

 

2.5.2.3 ComboWire Insertion  

A fluid-filled hollow guide catheter (Extra Back-Up or Judkins, 3.5 or 4mm diameter) was 

used to measure pressure in the ascending aorta. Pressure was transmitted through a 

fluid column to an external pressure transducer, to which the fluid-filled system was 

connected. Prior to ComboWire insertion into the guiding catheter it was initially laid flat 

on the catheter lab table and the modular plug inserted into the pimmette of the 

ComboMap (model 6800). This automatically zeroed pressure on the pressure 

transducer. Following this, when the ComboMap indicated that pressure had zeroed 

successfully, the pin plug was inserted into the ComboMap, thereby activating the 

Doppler flow crystal. The fluid filled manometer pressure trace was also zeroed to air via 

the Sensis system. 

 

The ComboWire was then introduced through the guide catheter into the mid left 

anterior descending artery via an introducer needle. When the pressure sensor was 

visualised by fluoroscopy just beyond the tip of the guiding catheter in the left main stem, 

the two pressure signals were then compared, and the ComboWire signal normalised to 

aortic pressure. The ComboWire was then advanced to the chosen position, and the 

Doppler tracing assessed and adjusted by slight rotation or repositioning of the wire, and 

the X-ray tower elevated to minimise interference. Further optimisation was carried out 

on the ComboMap console, by changing the display threshold setting (adjusts the 

sensitivity of the greyscale pixels on the screen – usually set to 10-12) and the 
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instantaneous peak velocity threshold setting (usually set to 1) which adjusts the 

sensitivity of the tracking blue envelope to the Doppler greyscale area.  

 

2.5.3 Coronary Sinus Access  

 

 
Figure 2-6: Fluoroscopic image showing the elements of the invasive protocol  

 

On intubation of the left coronary circulation with a guide catheter, a prolonged 

fluoroscopic acquisition was taken with contrast to reveal the position and course of the 

coronary sinus (CS). Coronary sinus cannulation was achieved with a fixed curve 8 French 

63cm Fast-Cath Swartz SL3 sheath (St Jude Medical, Inc.) (Figure 2-6) which was 

exchanged over a wire following cannulation of the femoral vein. The sheath was 

advanced into the right atrium, followed by withdrawal of the dilator. The tip of the 

sheath was then manipulated to the CS ostium. A pacing wire was advanced into the CS, 

with the dual ability thereafter to pace and sample from the CS. This access remained in 

situ for the duration of the procedure and this part of the protocol was carried out for 

the first 10 cases. 

 

2.5.4 Stress Protocol  
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Stress was achieved with a 40mcg bolus of intracoronary Adenosine to produce 

hyperaemia187,192. After the average peak velocity had returned to normal, rapid pacing 

via the coronary sinus was initiated (or RA pacing if CS access was not required for serum 

sampling as in later cases), first at 90bpm for 2 minutes, then at 120bpm, after which the 

pacing was weaned and stopped. Pacing via the coronary sinus in patients who were 

sedated or under general anaesthetic, was reproducible and more physiological than 

right ventricular pacing. This combination of stress using adenosine and pacing provided 

substantial information, and avoided effects on peripheral vasculature and potentially 

large haemodynamic shifts in patients with AS. This protocol was performed prior to valve 

intervention, and immediately following valve deployment.  

 

2.5.5 Serum Sampling and Analysis 

 

By measuring transcardiac gradients of oxygen, we can obtain measures of myocardial 

oxygen delivery and extraction, which will be impacted by microvascular 

dysfunction72,193,194. Coronary sinus and aortic blood sampling was carried out using 5ml 

syringes via the SL3 sheath and the coronary guide catheter, respectively. Samples were 

taken at rest (baseline), following 2-minutes of pacing at 90bpm, following 2-minutes of 

pacing at 120bpm, then 5 minutes following withdrawal of pacing. This was repeated pre- 

and post-TAVI for the first 10 patients.  

 

Samples were divided into two: a few drops for the i-STAT cartridge, and the remaining 

blood was filled into red-topped blood tubes (gel-free) for high sensitivity Troponin-T 

analysis. The latter was analysed by Viapath (www.viapath.co.uk) who carried out 

centrifugation at room temperature and aliquoting to minimise possible sampling of red 

blood cells. The supernatant was then collected and transferred to a Human Tissue Act 

compliant -80˚C freezer in the Rayne Institute for later Cardiac Myosin-Binding Protein C 

(MyC) analysis. When ready, batched samples were prepared and 100µl of supernatant 

aliquoted into cryovials, labelled with a unique identifier 5-digit number, barcode and box 

number, and shipped to Singulex, Inc. 1701 Harbor Bay Parkway, Suite 200, Alemeda, CA 

94502, USA.  
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Viapath emailed troponin-T results within 24 hours and a paper copy was supplied with 

the return of the supernatant. The i-STAT 1 analyser (Abbott Laboratories Ltd) was used 

in the catheter laboratory to allow immediate assessment of lactate, oxygen and pH 

(using CG4+ cartridges). The machine and cartridges were calibrated with TriControls at 

recommended intervals. All results were collated as per Table 2-3.  

 

Table 2-3: How serum results were collated 

 Aorta  Coronary Sinus  

Pre-TAVI  

T=0 Rest      

T=2mins Post-2 mins 90bpm pacing      

T=4mins Post-2 mins 120bpm pacing      

T=9mins After 5 minutes of rest      

Post-TAVI  

T=0 Rest      

T=2mins Post-2 mins 90bpm pacing      

T=4mins Post-2 mins 120bpm pacing      

T=9mins After 5 minutes of rest      

 

2.5.6 Histological Sampling and Storage  

 

Human Tissue Act and Consent Training was completed at Guy’s Campus, King’s College 

London, on 9th March 2016. A Material Transfer Agreement (MTA) between King’s 

College London and Guy’s and St Thomas’ NHS Foundation Trust was established for the 

transfer of samples for the study. Proactive Gas Safety Ltd, Cryogenic Gas User Workshop 

was successfully completed on 19th January 2017, covering the following: gas properties 

and hazards; legislation of codes and practice; cylinder/vessel identification and data; 

associated equipment; gases storage; personal protective equipment; visual pre-use 

checks; practical manual handling; cryogenic vessels; emergency procedures; first aid for 

cold burns; and practical decanting procedures. Each biopsy sample was analysed by the 

hospital histopathology lab using CongoRed staining for assessment of amyloidosis.  
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2.6 Analysis of Invasive Parameters 

 

2.6.1 Left Ventricular Parameters with SimpleWires  

 

Exportation of left ventricular physiology datasets was from the INCA. First, pressure drift 

was checked from the file stored during the removal of the conductance catheter, and 

an offset added if necessary. The volume calibration was updated to the pre-TAVI 

baseline or “rest” file and a filter added (25Hz) to all files. Files were exported, named 

according to physiological setting, and edited in TextEdit to allow analysis using 

SimpleWires (Kings College London). The relevant .csv file was then imported to 

SimpleWires and beats selected for analysis (Figure 2-7). Results were saved and added 

to the master database for statistical analysis. 

 

 
Figure 2-7: An example of a case being analysed within SimpleWires  

 

Lusitropy, the rate and extent to which the heart relaxes during diastole, can be measured 

invasively as the end-diastolic pressure-volume relationship (EDPVR)195. This relationship 

is calculated by the following:  
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Ped = ß[e∝(Ved-Vu)-1] 

 

where Ped is the end diastolic pressure, Ved is the end diastolic volume, and ∝ and ß are 

constants of the curve, derived from the myocardial mechanical properties. 

 

2.6.2 Coronary Datasets with CardiacWaves  

 

Coronary signals were sampled at 200 Hz and the raw data exported as .SDY files into a 

custom-made Study Manager platform in collaboration between Volcano Corporation 

and the Academic Medical Centre (Amsterdam, Netherlands) for data extraction of 

selected beats in the various physiological settings. This allowed assessment of all the 

data collected and selection of the key sections to be analyzed, which were then exported 

as .txt files. These text files were then loaded into CardiacWaves (Kings College London), 

an application written in MATLAB, specifically for performing wave intensity analysis on 

invasive pressure and flow signals37. Briefly, a Savitzky–Golay convolution method was 

adopted using a polynomial filter to refine the derivatives of the intracoronary pressure 

and velocity signals. The selected minimum five consecutive cardiac cycles (usually many 

more) were gated to the ECG R wave peak, with ensemble averaging of aortic pressure, 

distal coronary pressure (Pd), average peak velocity (APV) and heart rate. The 

instantaneous peak velocity (IPV) was continually tracked from spectral recording, 

averaging the peak velocity (APV, cm/s). A delay was added to each of the datasets to 

account for the offset between pressure and Doppler sensors on the ComboWire. 

 

2.7 Analysis of Non-Invasive Datasets 

 

2.7.1 MRI Volumetric, Strain and Flow Analysis using CVI42  

 

CVI42® (Circle Cardiovascular Imaging Inc., Calgary, Canada, version 5.6.4) software was 

used to analyse the 3D cardiac volumes and left ventricular mass. This was carried out by 

manually contouring (by me for each scan) the endo- and epicardial borders at end-
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diastole and end-systole from cine short axis stack images, allowing calculation of the LV 

end diastolic and end systolic volumes, stroke volume, ejection fraction and LV mass. LV 

mass was measured in end-diastole and excluded papillary muscles and trabeculations. 

Contouring the compacted myocardium was the standard clinical practice in our 

institution and has been well described(196). Left atrial area was measured in the 

horizontal (4-chamber) long axis view197 and aortic measurements were also assessed. 

Aortic valve area by planimetry was carried out using the aortic valve stack.  

 

By tracking features between consecutive frames from SSFP cine acquisitions, tissue 

tracking is able to calculate 2D and 3D global radial, longitudinal and circumferential 

motion and deformation198.This was carried out using the tissue tracking software on 

CVI42, where the short axis stack endocardial and epicardial contours were completed, 

the superior and inferior right ventricular insertion points marked, and combined with a 

4-chamber long axis acquisition (with contours) in order to output the strain data. This 

was exported as a .txt file into the master data file. Flows from phase contrast sequences 

were assessed in the designated flow software incorporated into CVI42.  

 

2.7.2 Quantitative MRI Perfusion Analysis using MATLAB 

 

 
Figure 2-8: Left: signal intensity curve generated from dual bolus gadolinium sequence, Right: Manual 

segmentation of late gadolinium scar imaging in MATLAB 
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For perfusion analysis, each MRI dataset was divided into native and post-contrast 

MOLLIs, protein density map, stress and rest perfusion, and scar DICOM (Digital Imaging 

and Communications in Medicine) files. The corresponding short axis scar image relating 

to the positions of each of the 3-slice perfusion sequences was chosen. The DICOMDIR 

(DICOM directory) file was then uploaded into MATLAB and each cardiac slice manually 

segmented with endocardial and epicardial borders within a custom-made MATLAB tool 

(Figure 2-8). 

 

 
Figure 2-9: Kings College London custom designed perfusion analysis platform  

 

An experienced MRI operator (AC), blinded to results of visual perfusion assessment and 

low or high gradient AS, performed quantitative analysis by Fermi-constrained 

deconvolution using software and methods developed and validated by Kings College 

London against perfusion phantom, positron emission tomography data and 

microspheres199,200. Quantitative signal intensity analysis required a still heart during 

stress and rest perfusion (i.e., an adequate breath hold) for accurate myocardial contour 

delineation. Respiratory motion was corrected using affine image registration by 

maximisation of the joint correlation between consecutive dynamics within an 

automatically determined region of interest201. A temporal maximum intensity projection 
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was calculated to serve as a feature image for an automatic contour delineation method. 

The operator then manually optimised the automatically generated contours to avoid 

partial volume effects at the endocardial and epicardial border (Figure 2-9). Areas of 

subendocardial dark-rim artifact occurring at the arrival of the main bolus of contrast 

agent in the LV were carefully excluded from the segmentation.  

 

Segmental quantitative perfusion analysis was performed using spatially averaged 

myocardial signal intensity curves according to standard cardiac segmentation. 

Quantitative perfusion analysis was performed by Fermi deconvolution as previously 

described. Myocardial blood flow (MBF) was measured in ml/min/g and MRI sequences 

acquired transmural MBF during hyperaemia and at rest. 

 

2.7.3 MRI ECV Analysis  

 

T1 mapping by calculation of the extracellular volume is a robust, non-invasive method to 

quantify diffuse myocardial fibrosis which cannot be seen on late gadolinium 

enhancement. It avoids the need for myocardial biopsy and can calculate the myocardial 

contrast volume of distribution which closely reflects the fibrosis burden since collagen 

is aqueous and gadolinium is an extracellular tracer that can freely occupy this space202.  

 

ECV was calculated from pre-contrast (native) and post-contrast T1 images. The images 

were loaded onto Osirix (Version 10.0.2, Pixmeo SARL, Switzerland), and a closed polygon 

covering the extent of the mid-slice myocardium traced on the scanner-generated T1 map 

and a region of interest for the blood pool, producing a T1 value. The same was carried 

out on post-contrast T1 maps, as for native T1 maps. 

 

ECV was then calculated as182:  

ECV= (1-haematocrit) x [(1/T1MyoPC)-(1/T1MyoNative)]/[(1/T1BloodPC)-(1/T1BloodNative)] 

 

2.7.4 Computed Tomography Calcium Scoring  
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Computed tomography (CT) calcium scoring was carried out from routine standard of 

care pre-TAVI turboflash ECG-gated from 75-80% of the R-R interval, non-contrast 

enhanced, breath-hold, contiguous 3-mm axial CT slices commencing at the base of the 

valve. Calcium score calculation was carried out using dedicated analysis software 

(Aquarius iNtuition Edition Ver.4.4.11 TeraRecon) on axial slices, where particular care 

was taken to differentiate valvular calcium from that originating from extra-valvular 

structures such as the mitral valve annulus, coronary arteries or the aortic root203. The 

total aortic valve calcium score in AU was calculated and subsequently indexed to the 

body surface area.  

 

2.7.5 Echocardiographic assessment  

 

Left ventricular outflow tract diameter was remeasured by the same operator in the same 

location for each case (parasternal long-axis view from the inner edge to inner edge of 

the septal endocardium, and the anterior mitral leaflet in mid-systole204).  

 

Relative wall thickness (RWT) was calculated as (IVSd+PWd)/LVIDd. Left ventricular mass 

(LVM) by echocardiographic criteria was calculated using the Devereux formula205 and 

indexed to body surface area to provide left ventricular mass index (LVMIECHO). 

 

LVM (g) = 0.8 x ([LVIDd + PWd + IVSd]3 - [LVIDd]3) + 0.6 

 

Doppler stroke volume was estimated (LVOTarea × LVOT velocity-time integral) and 

indexed to body surface area101. This was used to calculate the aortic valve area with the 

continuity equation (stroke volume/aortic valve velocity-time integral)206. 

 

2.8 Grading aortic stenosis 

 

All patients had symptomatic severe aortic stenosis (AS) with preserved LV function and 

an aortic valve area ≤1cm2. They were categorized into two groups – low gradient (LG) 

and high gradient (HG) AS. This was carried out by using the aortic valve Doppler-derived 
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mean pressure gradient (MPG) from echocardiography; those with an MPG <40mmHg 

were classed as having low gradient aortic stenosis88. They were not subdivided according 

to flow since stroke volume according to MRI was significantly higher and most patients 

with LGAS did not meet criteria of either normal flow (SV >35ml/m2) or low flow (SV 

≤35ml/m2)89 by both echocardiography and MRI assessment.  
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2.9 Physiological Indices  

 

The parameters used in this study are summarised below in Table 2-4.  

 

Table 2-4: Table of Invasive Indices used in this study  

PARAMETER ABBREVIATION, 
(units)  

CALCULATION  DESCRIPTION 

Derived from Pressure-Volume Loop measurements  

End Diastolic Volume EDV, (ml)   
End Systolic Volume ESV, (ml)   
End Diastolic Pressure  EDP, (mmHg)   
End Systolic Pressure  ESP, (mmHg)   
Stroke Volume  SV, (ml) EDV-ESV  
Ejection Fraction EF, (%) 100 x SV/EDV  
Cardiac Output  CO, (l/min) SV x heart rate  
Stroke Work  SW, (mmHg.ml) SV x (Mean pressure – Filling pressure) Area within PV loop 
End Systolic Pressure Volume Relationship  ESPVR, (mmHg/ml) Pressure:volume ratio at end systole  
End Diastolic Pressure Volume 
Relationship (mmHg/ml) 

EDPVR, (mmHg/ml) Pressure:volume ratio at end diastole  

Preload recruitable stroke work  PRSW, (mmHg) SW/EDV  
Potential Energy  PE, (mmHg.ml) Area between ESPVR and EDPVR curves left of the PV loop i.e. (0.5 x 

ESP2/ESPVR) 
 

Pressure-Volume Area  PVA, (mmHg.ml) SW + PE  The total mechanical energy of 
contraction  

dP/dt+  (mmHg/s) Slope of peak maximum derivative of pressure change over time during 
isovolumetric contraction 

 

dP/dt-  (mmHg/s) Slope of peak minimum rate of pressure change over time during 
isovolumetric relaxation 

 



METHODS 

70 

 

Starling Contractile State Index  SCI, (mmHg/ml/s) dP/dt+/EDV  
Relaxation Time Constant  Tau (!), (ms) Time for dP/dt- to be reduced by 1/e (e=the natural base of log)   
Effective Arterial Elastance  Ea, (mmHg/ml) ESP/SV Index of afterload 
End Systolic (maximal) Elastance  Ees, (mmHg/ml) The slope of ESPVR Load-independent measure of LV 

contractility  
Ventricular–Arterial Coupling  VA Ees/Ea Index of energy efficiency 
Valvulo-arterial Impedance  Zva, (mmHg/ml/m2) ESP/SVi Index of global haemodynamic load  
Derived from coronary measurements  
Distal Coronary Pressure  Pd, (mmHg)   
Aortic Pressure  Pa, (mmHg)   
Instantaneous peak velocity  IPV, (cm/s) Minimum and maximum values, sampled every 5ms (200Hz)  
Average peak velocity  APV, (cm/s)   
Velocity-time integral VTI, (cm) Integral under the IPV curve  
Coronary flow reserve  CFR Hyperaemic APV/resting APV  
Microvascular Resistance (mmHg/cm/s) MR, (mmHg.s/cm) Mean Pd/APV  
Wave-free Microvascular Resistance 
(mmHg/cm/s) 

MRdias, 
(mmHg.s/cm) 

Microvascular resistance during the wave free period in diastole   

Systolic Resistance  SR, (mmHg.s/cm) Pdsystole/Vsystole  
Augmentation Pressure (mmHg) AP, (mmHg) P2-P1  
Augmentation Index (%) AIx, (%) AP/PP x 100  
Diastolic Time Fraction DTF Diastolic time/cardiac cycle time  
Tension Time Index TTI, (mmHg.s) Area under the curve of systole  Marker of myocardial oxygen 

demand  
Diastolic Time Index DTI, (mmHg.s) Area under the curve of diastole Marker of coronary perfusion 
Buckberg Index  BI DTI/TTI x 100  Subendocardial viability ratio  
Rate Pressure Product  RPP, (mmHg.bpm) BP/HR  
Reflection Coefficient  Γ  Measure of reflected waves  
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2.10 Statistical Analysis 

 

Statistical analysis was performed using SPSS version 26.0 software (IBM SPSS Statistics, 

Chicago, IL, USA). Data were assessed for normality of (Gaussian) distribution both 

graphically with a histogram, and also by use of the Shapiro-Wilk test. Results were 

presented as mean ± standard deviation when data were normally distributed, and non-

normal continuous data were expressed as median with interquartile range.  

 

Independent results were compared using Mann-Whitney U test, and the Wilcoxon 

signed-rank test used for paired samples. Continuous variables with normal distribution 

were compared with the independent and paired-samples Student T test. Repeated 

measures analysis of variance was not used – this was due to lack of normal distribution 

for some of the data, and that I was mostly interested in direct comparisons of two groups 

rather than between multiple groups. This does, however, come at a risk of a larger 

overall type I error rate. Categorical variables were presented as number and percentage 

and were compared using the chi-square test or Fishers exact test. Correlations between 

normally distributed data were performed using Pearson’s correlation, whilst Spearman’s 

correlation was used for non-parametric data. A two-sided significance level of P<0.05 

was considered statistically significant. 
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3 STUDY PATIENTS  
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Following successful HRA, REC and R&D approval, patients were recruited between 

January 2017 and December 2018. Figure 3-1 summarises the screened and recruited 

patients who were all deemed to have severe, symptomatic aortic stenosis by the Heart 

Team in a large tertiary centre. All patients were in sinus rhythm with no apparent 

conduction disease on their resting pre-TAVI ECG. Intra-coronary adenosine was not 

given pre-TAVI in one patient, and another patient died from Influenza A prior to the 

follow-up scan. Table 3-1 summarises baseline characteristics in the 19 final patient 

datasets. Comparing echocardiographic and MRI left ventricular (LV) assessment, there 

is discrepancy between stroke volume results and therefore the sub-categorisation of 

low gradient aortic stenosis (LGAS). In view of this, and because of the small study 

numbers, subdivision into normal flow-low gradient, and low flow-low gradient AS was 

not used in analysis.  

 

  
Figure 3-1: Study flow chart of patient recruitment  
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Table 3-1: Baseline characteristics of 19 analysed patient results 

Demographics Baseline Echocardiographic Findings Baseline MRI Findings CT 

Age HTN DM COPD CVD Symptom 
Resting 

HR 
(bpm) 

Resting 
BP 

(mmHg) 

MPG 
(mmHg) DI AVAi 

(cm2/m2) 
SVi 

(ml/m2) 

LF/ 
NF SVi 

(ml/m2) 
LVEDVi 
(ml/m2) 

LVMI 
(g/m2) 

LVEF 
(%) 

LF/ 
NF 

Calcium 
Score 
(AU) 

72 - Y - Y SOB 75 112/54 27 0.235 0.366 30.0 LF 42.1 71.4 45 59 NF 1052 
90 Y Y - - SOB, Syncope 66 138/97 35 0.250 0.377 18.5 LF 37.59 61.74 42.32 61 NF 2813 
82 Y Y - - SOB, CP 80 165/70 33 0.256 0.554 46.9 NF 54.28 79.4 60.65 68.35 NF 1436 
82 Y - Y - SOB, CP 77 133/57 35 0.260 0.571 54.4 NF 46.23 78.15 66.09 59 NF 3625 
88 Y - - - SOB 77 165/68 29.8 0.359 0.508 47.6 NF 54.39 82 60.36 66.32 NF 2720 
89 - Y Y Y SOB 80 158/62 22 0.361 0.333 25.8 LF 46.73 72.97 58.56 64.04 NF 1486 
79 Y Y Y Y SOB 70 155/88 38 0.205 0.301 30.8 LF 27.05 38.6 49.81 70.07 LF 3745 
88 Y - - - SOB 61 152/68 33 0.267 0.428 34.2 LF 44 67 64.37 64 NF 1935 
90 Y Y - - SOB 70 174/69 35 0.296 0.584 56.0 NF 43.84 63.66 59.56 68.87 NF 1007 

HIGH GRADIENT 
88 - - - - SOB 77 114/53 96 0.150 0.356 56.7 NF 56.24 89.55 66.46 63 NF 2839 
84 Y Y - - SOB, CP 80 158/80 47.8 0.293 0.386 49.9 NF 57.87 87.43 59.14 66.2 NF 2809 
87 Y Y - - SOB 64 152/84 76 0.184 0.306 48.8 NF 63.66 97.75 90.44 65 NF 3847 
76 Y - - - Syncope 74 122/53 105 0.111 0.202 40.5 NF 44.75 76.95 70.15 58 NF 2506 
90 Y - - - SOB, Syncope 70 122/54 46 0.264 0.539 53.6 NF 35.79 50.06 40.81 71.5 NF 3155 
88 Y - - - SOB 60 191/74 59 0.238 0.322 43.9 NF 53.53 83.5 75.3 61.6 NF 2652 
85 - - - Y SOB 63 104/54 42 0.244 0.370 32.8 LF 47.79 83.72 71.26 57.09 NF 5760 
90 Y - - - Syncope, CP 68 155/71 69 0.174 0.275 33.1 LF 47 82.26 66.42 57.12 NF 6352 
79 - - Y - SOB 63 123/55 47 0.200 0.332 33.0 LF 44.34 74.69 62.73 59.37 NF 2787 
85 - - - - SOB, CP 70 118/51 78 0.144 0.290 36.2 NF 50.49 100.81 108.35 50.29 NF 6193 

 
Abbreviations: LG: low gradient, HG: high gradient, HTN: hypertension, DM: diabetes mellitus, COPD: chronic obstructive airways disease, CVD: cerebrovascular disease, SOB: shortness 
of breath, CP: chest pain, MPG: mean pressure gradient, DI: dimensionless index, AVAi: indexed aortic valve area, SVi: indexed stroke volume, LF: Low Flow, NF: Normal Flow, LVEDVi: 
indexed left ventricular end diastolic volume, LVMI: indexed left ventricular mass, LVEF: left ventricular ejection fraction, PLS: peak longitudinal strain, AU: Agatston units, Y: yes. 
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Table 3-2: Baseline Characteristics: LFLG vs HGAS 

Baseline Characteristics  LGAS (n=9) HGAS (n=10) P value  

Age (years) 84±6 85±5 0.768 

Male (%) 33 10 0.303 

Mean aortic valve pressure gradient (mmHg) 32±5 67±22 <0.001 

Indexed aortic valve area (cm2/m2) 0.490 0.336 0.008 

Body Surface Area (m2) 1.83±0.17 1.71±0.13 0.097 

Non-invasive systolic blood pressure (mmHg) 150±19 136±27 0.198 

Diabetes mellitus (%) 67 20 0.070 

Hypertension (%) 78 60 0.628 

Prior stroke (%) 33 10 0.303 

Obstructive airways disease (%) 33 10 0.303 

Haemoglobin (g/l) 125 (112,130) 124 (113,136) 0.604 

eGFR (ml/min) 57±21 63±18 0.751 

TAVI anaesthesia: conscious sedation 89 90 0.942 

Pre-TAVI BNP (ng/l) 720 (369,983) 1355 (935,6957) 0.058 

Post-TAVI BNP (ng/l) 530 (290,915) 500 (144,1457) 0.950 

LV end diastolic volume index (ml/m2) 76 (60,80) 83 (75,87) 0.010 

LV mass index (g/m2) 56.3±8.5 71.1±18.1 0.037 

LV ejection fraction (%) 64.5±4.2 60.9±5.9 0.143 

CT calcium score (Ag units) 2328 (1474,3655) 2982 (2686,6085) 0.028 

Indexed CT calcium score (Ag/m2) 1152 (825,1924) 1799 (1581,3383) 0.017 

 

Error! Reference source not found. displays baseline characteristics for the two cohorts, 

dichotomised according to the mean aortic valve pressure gradient (p<0.001). Further 

detail regarding MRI baseline results is displayed in Table 5-2. There was no significant 

difference between groups with regard to age, sex, body surface area, or co-morbidities 

of hypertension, prior stroke, diabetes mellitus, airways disease or renal dysfunction. Not 

all patients had available BNP levels. LV cavity size and wall mass, along with aortic valve 

calcium score were significantly lower in LGAS patients.  
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4 ISCHAEMIA IN AORTIC STENOSIS  
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4.1 Introduction 

 

In the setting of severe aortic stenosis (AS), encompassing a cluster of different 

phenotypes based on gradient and flow patterns, the left ventricle is a disordered tumult 

of supply-demand mismatch. Prolonged systole (and the relative shortening of diastolic 

perfusion time) due to outflow tract obstruction, and the inability to increase coronary 

blood flow in proportion to excess cardiac demand, subject the myocardium to stress-

induced ischaemia, manifest as exertional angina, or dyspnoea in some cases.  

 

Coronary flow reserve (CFR), the ratio of coronary average peak velocity (APV) during 

hyperaemia and at rest, is a measure of vasodilator capacity. This is significantly reduced 

in patients with AS, since most have needed to increase resting flow to compensate for 

increased myocardial requirement. 

 

The mechanism whereby AS induces ischaemia was examined and the hypothesis of 

depressed accelerating coronary waves and higher systemic concentration of lactate and 

troponin in low gradient AS tested. In this chapter, I present the invasive and non-invasive 

determinants of ischaemia in the setting of AS, and whether any differences exist in 

patients with low gradient (LGAS) and high gradient AS (HGAS). 

 

4.1.1 Invasive Physiology  

 

The arterial bed determines pressure and flow based on resistance, compliance and 

inertance. This area has been extensively described and methods applied to study the 

pathophysiology of disease processes. The arterial waveform, as depicted in Figure 4-1, 

reflects the change in pressure over time (dP/dt, measured in mmHg/s) and relates to 

the force of LV contraction (dP/dt+) and relaxation (dP/dt-). The steeper the slope, the 

quicker the rise or fall, the greater the dP/dt, and therefore the stronger the inotropy or 

lusitropy207. The first derivative of aortic pressure (dP/dt+) is slowed by AS208 (Figure 4-2) 

– this slurred systolic upstroke is known as pulsus tardus209. There is a delay in peak 

systole (pulsus tardus), and arterial pressure may be small in amplitude (pulsus parvus). 
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During upstroke, the anacrotic notch corresponds to reflected waves from poorly 

compliant vessels – the position of the anacrotic notch on the arterial upstroke is not 

correlated with the severity of AS208. The dicrotic notch is often indiscernible in AS. 

 

 

Figure 4-1: The aortic waveform and associated derivations 

 

Left ventricular ejection time (ET) is measured from the upstroke of the arterial tracing 

until the trough of the dicrotic notch, and diastolic time (DT) accounts for the remainder 

of the cardiac cycle. The percentage of the pulse pressure formed by the augmentation 

pressure (AP, difference between early [P1] and late [P2] pressures) is known as the 

augmentation index and is a marker of pulsatile afterload. Increased augmentation index 

is indicative of arterial stiffness210, along with a diminished reflected wave (the dicrotic 

notch). 

 

The area under the curve (AUC) of systole is known as the tension time index (TTI) and 

the AUC of diastole known as the diastolic time index (DTI). The TTI relates to myocardial 

oxygen demand211, and DTI to coronary perfusion. The Buckberg Index (BI) is the ratio of 

demand and supply, and also known as the subendocardial viability ratio212. It has been 

shown to correlate well with the ratio of subepicardial to subendocardial blood flow, and 
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represents an index of subendocardial viability213. A lower BI indicates an increased risk 

of subendocardial ischaemia and can be used as a determinant of such, and valvuloplasty 

has previously been shown to increase baseline BI214. 

 

 

Figure 4-2: Differences in aortic waveform in normal and aortic stenosis 

 

Impaired CFR in AS is likely to result from both increased basal flow and blunted 

hyperaemic flow, related to capillary rarefaction, mechanical forces, and reduced 

diastolic time fraction. It has been shown that CFR does not improve immediately after 

relief of valve obstruction35 but improves after 1 year78. Other studies have also 

demonstrated improved subendocardial blood flow at 2 weeks49, CFR at 6 months76 and 

myocardial perfusion reserve index (MPRI) at 8 months45 following valve replacement. 

 

4.1.2 Wave intensity analysis  

 

Coronary blood flow is unique (Figure 4-3). It is intensely coupled with the myocardium 

and cardiac cycle and as a result it is not simply driven down a pressure gradient toward 

a passive capillary bed but pushed and pulled into and from the distal 

microvasculature215. Wave intensity assesses the rate of energy per unit area transferred 

by fluid waves. It allows mechanistic insight into this coupling between cardiac 

contraction and coronary supply and is typically applied both for the separation of 

measured waves into forward and backward travelling components, and for the 

interpretation of the timing and nature (compression/expansion) of wave reflections216.  
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Figure 4-3: A typical flow velocity waveform at rest in a patient with severe AS. There is almost entirely 

diminished flow during systole. 

 

Wave intensity has been extensively studied in healthy hearts and in an array of disease 

processes – AS19, transcatheter aortic valve implantation (TAVI)34,35,60, hypertrophic 

cardiomyopathy36, left ventricular hypertrophy (LVH)33, prediction of myocardial viability 

following acute coronary syndromes37, dyssynchronous heart failure38, intra-aortic 

balloon pump therapy217, warm-up39, nitroglycerin40, mental stress41 and cold stress218.  

 

Lumley et al19 studied WIA in patients with AS in comparison to normal hearts and found, 

as expected, reduced forward travelling waves (both FCW and FEW), but, with both 

hyperaemia and exercise, a greater increase in FEW in patients with AS. Patients with AS 

rely more on coronary flow related to BEW which has a significantly higher contribution 

to overall WI in comparison to that in normal hearts.  

 

4.1.3 Other Invasive Indices of Ischaemia 

 

The overall proportion of waves that accelerate and decelerate flow can be calculated:  

 

Accelerating wave proportion (%): (FCW + BEW)/(FCW + FEW + BEW + BCW) 

Decelerating wave proportion (%): (FEW + BCW)/(FCW + FEW + BEW + BCW) 

 

The accelerating wave proportion is known as the coronary perfusion efficiency index 

&ů
Žǁ

ǀĞ
ůŽ
Đŝ
ƚǇ

;Đ
ŵ
ͬƐ
Ϳ

dŝŵĞ ;ƐͿ
Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ

ϱϬ

ϭϬϬ



ISCHAEMIA IN AORTIC STENOSIS 

81 

 

(PE)19, a metric to quantify accelerating waves by the magnitude of the areas under the 

curve (AUCs) of the component waves. 

 

 

Figure 4-4: Considerations relating to microvascular resistance and tone 

 

Wave intensity analysis also enables identification of microvascular resistance (MR) 

during the wave-free period in diastole (MRdias). During this part of the cardiac cycle, 

intra-myocardial compressive forces are at their lowest, and this may more closely reflect 

vascular tone219. MR is defined as the ratio between distal coronary pressure and flow 

velocity, and hyperaemic MR (hMR) reflects this ratio during hyperaemia220. An hMR 

threshold of ≥2.5 mmHg/cm/s is optimal for predicting microvascular dysfunction 

determined by CFR and MPRI221. 

 

4.1.4 Non-Invasive Indices of Ischaemia  

 

Microvascular ischaemia is one of the hallmarks of AS, and can be diagnosed using non-

invasive imaging modalities, including positron emission tomography (PET)46, and first-

pass perfusion cardiovascular magnetic resonance (CMR)77. CMR is a powerful tool in its 

ability to provide information on cardiac volumes and function, fibrosis and ischaemia. 
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Myocardial perfusion reserve index (MPRI, the ratio of stress perfusion myocardial blood 

flow to resting perfusion myocardial blood flow) has an inverse relationship with left 

ventricular hypertrophy and the presence of late gadolinium enhancement, and a 

positive correlation with aortic valve area45. Transmural left ventricular myocardial 

perfusion is a relative crude measure of MBF since large differences exist between the 

subepicardium and the subendocardium. Important considerations may be glossed over 

if we purely assess the global transmural perfusion as MPRI.  

 

It is assumed that serum from the coronary sinus reflects venous cardiac metabolism. 

Previous studies have demonstrated normal coronary sinus lactate at rest in patients with 

AS, but under metabolic stress, a decrease in lactate extraction or increase in lactate 

production72,193. Under increased myocardial requirements, the coronary circulation is 

incapable of fully matching increased demand. This is commonly the case in patients with 

coronary artery disease or severe AS, despite compensation at rest – an inability to meet 

increased metabolic demand222. Measurement of trans-cardiac release of biomarkers at 

rest and during pharmacological and haemodynamic stress is an attempt to determine 

ischaemic abnormalities. 

 

Troponin is a component of thin filaments (along with actin and tropomyosin) and is the 

protein to which calcium binds to accomplish contraction and relaxation. Cardiac injury 

in the form of myocyte death can be detected by highly sensitive and specific cardiac 

biomarkers. In the setting of AS, plasma Troponin-I levels are associated with advanced 

hypertrophy and replacement fibrosis and predict aortic valve intervention and 

cardiovascular death137. In a large cohort of patients with AS, another highly sensitive 

marker of myocardial injury, cMyC, has also been shown to correlate with left ventricular 

mass, fibrosis volume and extracellular volume and associated with all-cause mortality174.  

 

Valvuloplasty has previously been shown to reduce myocardial oxygen consumption and 

demand, decreasing aorto-coronary sinus oxygen content difference, and reduce lactate 

productions under stress conditions214. Lactate values below 10% indicate abnormally 
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reduced extraction, or production (if a negative value) by the myocardium, signalling 

anaerobic glycolysis due to myocardial hypoxia.  

 

4.2 Results 

 

4.2.1 Aortic and Coronary Physiology in AS  

 

The effects of hyperaemia and pacing from baseline measurements, along with the 

impact of TAVI on these respective physiological settings are displayed in Table 4-1, Table 

4-2 and Table 4-3. 

 

Coronary VTI and APV increased, and MVR decreased both pre- and post-TAVI during 

hyperaemia, as expected. Pre-TAVI, hyperaemia and rapid pacing induced a fall in BI, an 

effect which was not observed following TAVI. Pre- and post-TAVI, rapid pacing lowered 

systolic BP, coronary VTI, TTI, DTI, DTF and shortened ET.  

 

During resting state and hyperaemia, TAVI induced a drop in coronary VTI and APV. Under 

conditions of rapid pacing, TAVI induced a significant increase in BI (p=0.008), diastolic 

time fraction (p=0.004), DTI (p=0.055), shortening of the ejection time (p=0.020) along 

with a decrease in TTI (p=0.045). TAVI also caused an increase in MR at baseline 

(p=0.001). 
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Table 4-1: The haemodynamic impact of hyperaemia pre- and post-TAVI from all paired datasets 

 Pre-TAVI Post-TAVI 
 Rest Hyperaemia  Rest Hyperaemia  

Heart rate (bpm) 78 (68,85) 80 (73,90) P=0.073 76 (67,85)  80 (73,87) NS 
sBPAo (mmHg) 117 (102,134) 123 (104,149) NS 123 (113,131) 133 (108,170) NS 
VTIcoro (cm) 19 (15,22) 24 (20,32) P<0.001 13 (10,16) 22 (16,30) P<0.001 
APVcoro (cm/s) 23 (19,27) 30 (26,42) P<0.001 17 (15,22) 28 (20,34) P<0.001 
BI 0.75±0.25 0.61±0.22 P=0.020 0.71±0.19 0.74±0.38 NS 
ET (s) 0.40±0.07 0.43±0.06 NS 0.38±0.06 0.42±0.14 NS 
DTF 0.49±0.10 0.43±0.11 P=0.059 0.50±0.08 0.47±0.15 NS 
TTI (mmHg.s) 37 (29,44) 39 (32,46) NS 35 (31,40) 40 (30,55) NS 
DTI (mmHg.s) 26±8 26±12 NS 25±6 32±23 NS 
MR (mmHg.s/cm) 3.1 (2.5,4.2) 2.2 (1.7,3.4) P=0.001 4.2 (3.4,5.4) 2.4 (2.0,3.3) P<0.001 
MRdias (mmHg.s/cm) 1.7 (1.2,2.5) 1.2 (0.8,2.0) P=0.014 2.3 (1.6,3.1) 1.2 (1.0,2.3) P<0.001 

 
Table 4-2: The haemodynamic impact of pacing pre- and post-TAVI from all paired datasets  

 Pre-TAVI Post-TAVI 
 Rest Pacing  Rest Pacing  
Heart rate (bpm) 78 (68,85) 126 (124,129) P<0.001 76 (67,85) 126 (124,130) P<0.001 
sBPAo (mmHg) 117 (102,134) 107 (85,128) P=0.008 123 (113,131) 100 (83,126) P<0.001 
VTIcoro (cm) 19 (15,22) 11 (8,14) P<0.001 13 (10,16) 9 (7,10) P<0.001 
APVcoro (cm/s) 23 (19,27) 21 (16,30) NS 17 (15,22) 18 (15,21) NS 
BI 0.68 (0.56,0.93) 0.41 (0.25,0.58) P<0.001 0.72±0.19 0.70±0.40 NS 
ET (s) 0.41±0.07 0.32±0.05 P<0.001 0.38±0.06 0.27±0.07 P<0.001 
DTF 0.51 (0.44,0.54) 0.32 (0.22,0.40) P<0.001 0.50±0.08 0.44±0.15 P=0.036 
TTI (mmHg.s) 37 (29,44) 30 (20,34) P<0.001 35 (31,40) 22 (17,30) P<0.001 
DTI (mmHg.s) 27±11 11±4 P<0.001 26±6 14±5 P<0.001 
MR (mmHg.s/cm) 3.1 (2.5,4.2) 3.3 (2.5,4.9) P=0.096 4.2 (3.4,5.4) 4.4 (3.2,4.8) NS 
MRdias (mmHg.s/cm) 1.7 (1.2,2.5) 2.5 (1.8,3.9) P=0.001 2.3 (1.6,3.1) 3.7 (2.4,4.7) P=0.003 
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Table 4-3: The haemodynamic impact of TAVI during three physiological states from all paired datasets  

 Baseline Hyperaemia Pacing 
 Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  
Heart rate (bpm) 78 (68,85) 76 (67,85) NS 80 (73,90) 80 (73,87) NS 126 (124,129) 126 (124,130) NS 
sBPAo (mmHg) 117 (102,134) 123 (113,131) NS 123 (104,149) 133 (108,170) NS 107 (85,128) 100 (83,126) NS 
VTIcoro (cm) 18 (15,22) 13 (10,16) P=0.001 24 (20,32) 20 (15,26) P=0.018 11 (8,14) 9 (7,10) NS 
APVcoro (cm/s) 23 (18,28) 17 (14,22) P=0.012 30 (26,42) 28 (19,32) P=0.024 21 (16,30) 18 (15,21) NS 
BI 0.74±0.25 0.72±0.19 NS 0.62±0.22 0.75±0.39 NS 0.41 (0.25,0.58) 0.56 (0.47,0.98) P=0.008 
ET (s) 0.41±0.07 0.38±0.06 NS 0.43±0.06 0.42±0.15 NS 0.32±0.05à 0.27±0.07 P=0.020 
DTF 0.48±0.09 0.50±0.08 NS 0.44±0.10 0.47±0.15 NS 0.32 (0.22,0.40) 0.43 (0.38,0.54) P=0.004 
TTI (mmHg.s) 37 (29,44) 35 (31,40) NS 39 (32,46) 40 (30,55) NS 30 (20,34) 22 (17,30) P=0.045 
DTI (mmHg.s) 27±11à 26±6 NS 25±11 32±23 NS 11±4 14±5 P=0.055 
MR (mmHg.s/cm) 3.1 (2.5,4.2) 4.2 (3.4,5.4) P=0.001 2.2 (1.7,3.4) 2.4 (2.0,3.3) NS 3.3 (2.5,4.9) 4.4 (3.2,4.8) NS 
MRdias (mmHg.s/cm) 1.7 (1.2,2.5) 2.3 (1.6,3.1) P=0.003 1.2 (0.8,2.0) 1.2 (1.0,2.3) NS 2.5 (1.8,3.9) 3.7 (2.4,4.7) P=0.055 

 
Table 4-4: Coronary and aortic haemodynamic indices in LGAS and HGAS cohorts. Results displayed when P<0.010 for LGAS then HGAS with SD or IQR in brackets.  

 Pre-TAVI Post-TAVI Pre-TAVI Post-TAVI 
 REST HYPERAEMIA 

HR (bpm)  NS  NS  NS  NS 
sBPAo (mmHg)  NS  NS  NS  NS 
VTIcoro (cm) 16(12,18)/21(18/29) P=0.006  NS  NS 18±7/27±13 P=0.087 
APVcoro (cm/s) 20(15,23)/26(22,32) P=0.022  NS  NS  NS 
BI  NS  NS  NS  NS 
ET (s) 0.36(0.34,0.39)/0.44(0.38,0.49) P=0.022  NS  NS  NS 
DTF 0.53(0.49,0.56)/0.45(0.36,0.54) P=0.053  NS  NS  NS 
TTI (mmHg.s)  NS  NS  NS  NS 
DTI (mmHg.s)  NS  NS 29(21,43)/20(14,32) P=0.094  NS 
MR (mmHg.s/cm) 3.9±1.2/2.9±1.0 P=0.070  NS  NS  NS 
MRdias (mmHg.s/cm) 2.5±0.9/1.5±0.6 P=0.012 3.1(1.8,3.9)/2.1(1.5,2.5) P=0.065  NS 2.1±1.0/1.1±0.4 P=0.025 
HMR (mmHg.s/cm)      NS 3.2(2.3,3.6)/2.1(1.9,3.0) P=0.095 
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Results concerning differences between LGAS and HGAS groups are displayed in Table 

4-4. Coronary VTI and APV were lower in LGAS patients and ejection time significantly 

shorter (p=0.022). Following TAVI during hyperaemia, diastolic MR was higher in LGAS 

patients. There were no differences observed between groups during rapid pacing both 

pre-TAVI and post-TAVI.  

 

4.2.2 Subendocardial Viability  

 

The BI fell with hyperaemia (p=0.020, Table 4-1) and rapid pacing (p<0.001, Table 4-2) 

pre-TAVI, yet when rapid pacing before and after TAVI were compared, BI increased 

(p=0.008, Table 4-3). From rest pre-TAVI and post-TAVI, the relative increase in TTI in 

LGAS in comparison to a decrease in HGAS (+12±13% vs -12±16%, p=0.002), reflects a 

relative decrease in BI (-11±20% vs +24±48%, p=0.058), and raises the suspicion of 

increased susceptibility to ischaemia and myocardial oxygen supply-demand mismatch in 

LGAS. This predisposition to ischaemia was further supported by a lack of change in DTF 

post-TAVI in LGAS but an increase in HGAS (-1% [-19,+4] vs +11% [0,29], p=0.053). 

Ejection time remained similar in LGAS but was significantly shortened in HGAS patients 

(+3±11% vs -14±11%, p=0.003).  

 

4.2.3 Coronary Flow Reserve 

 

CFR was assessed immediately before, and immediately following TAVI. It did not change 

significantly following TAVI (overall 1.42±0.44 to 1.52±0.41, p=0.460). There was no 

difference between the pre-TAVI CFR (1.49±0.53 vs 1.3±0.35, p=0.522) and post-TAVI CFR 

(1.48±0.35 vs 1.61±0.47, p=0.473) in low gradient and high gradient cohorts, respectively 

(Figure 4-5), or their delta change (p=0.546). 

 

There was significant correlation between pre-TAVI CFR and resting EDP (R=-0.494, 

p=0.044), global MPR (R=-0.497, p=0.036), Tau (R=-0.588, p=0.013) and microvascular 

resistance (pancardiac MR R=-0.549, p=0.018, diastolic MR R=-0.641, p=0.004 and 

hyperaemic MR R=-0.657, p=0.003).  
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Figure 4-5: CFR results 

 

4.2.4 Microvascular Resistance  

 

Both the pancardiac and diastolic coronary MR were calculated. There was a significant 

reduction in pancardiac and diastolic MR from rest during hyperaemia pre-TAVI (p=0.001 

and p=0.014, respectively) and post-TAVI (p<0.001 for both) (Figure 4-6), with no 

difference in the delta change pre-TAVI from rest between groups (p=0.387). There was 

no difference between hMR pre- and post-TAVI (2.2 [1.7,3.4] vs 2.4 [2.0,3.3], p=0.154), 

nor between groups pre-TAVI (2.65±0.76 in LGAS vs 2.33±1.03 in HGAS, p=0.462) or post-

TAVI (3.2 [2.3,3.5] vs 2.1 [2.0,3.0], p=0.095). Following intervention, wave-free 

hyperaemic microvascular resistance was higher in LGAS patients (p=0.025), suggesting 

underlying endothelial dysfunction.  
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Figure 4-6: Pan-cardiac microvascular resistance pre- and post-TAVI 

 

4.2.5 Wave Intensity Analysis during hyperaemia, pacing and following TAVI 

 

Results for all patients are displayed in Table 4-5, Table 4-6 and Table 4-7. Before TAVI, 

hyperaemia caused an increase in accelerating FCW and BEW, and decelerating BCW. 

There was an overall increase in the proportion of accelerating waves (p=0.024). Post-

TAVI, the impact of hyperaemia was certainly less impressive, with minimal statistical 

significance in changes in WIA aside from increased BCW, and greater area under forward 

travelling (p=0.023) and above backward travelling (p=0.018) waves.  

 

Pre- and post-TAVI, rapid pacing at 120bpm caused a reduction in forward travelling 

waves (p<0.001 and p=0.003, respectively). The most dramatic effect was with 

decelerating waves: there was a reduction in FEW pre-TAVI (possibly purely related to 

reduced forward flow in the aorta and not observed post-TAVI after relief of outflow tract 

obstruction) but a sustained increase in BCW, culminating in a greater proportion of 

decelerating waves both pre- and post-TAVI (p=0.005 and p=0.007, respectively). 
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The main differences when assessing the effect of TAVI were more profound during 

hyperaemia. The BEW fell sharply and there was a huge drop in accelerating waves which 

accounted for a smaller proportion of coronary flow (p=0.001), related almost entirely to 

the fall in backward travelling waves. Even comparing pre- and post-TAVI during rapid 

pacing, the proportion of accelerating waves dropped after intervention.  

 

Pre-TAVI, BEW during hyperaemia correlated with DTI (R=0.581, p=0.011), aortic AIx (R=-

0.488, p=0.040), aortic AP (R=-0.564, p=0.015), stroke work (R=-0.691, p=0.002), 

pressure volume area (R=-0.772, p<0.001) and with dP/dt- (from pressure-volume loop 

datasets) (r=0.581, p=0.014).  
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Table 4-5: Hyperaemic wave intensity analysis results pre- and post-TAVI from all paired datasets 

 Pre-TAVI (n=18) Post-TAVI (n=19) 
 Rest Hyperaemia  Rest Hyperaemia  
ACCELERATING WAVES 
FCW (WInet) (W.m-2s-2 x 104) 5.8 (3.0,8.7) 6.3 (5.2,12.4) P=0.008 6.2 (3.0,9.6) 6.7 (4.0,10.6) NS 
FCW (WI+) (W.m-2s-2 x 104) 6.5 (4.0,9.9) 8.1 (6.0,12.9) P=0.007 7.2 (4.3,10.9) 8.6 (4.9,12.8) NS 
FCW area (%) 27 (22,35) 29 (23,41) NS 23 (20,38) 25 (23,36) NS 
BEW (WInet) (W.m-2s-2 x 104) 2.2 (0.86,8.9) 6.0 (2.3,13.4) P=0.025 2.0 (0.8,4.4) 2.5 (0.8,4.7) NS 
BEW (WI-) (W.m-2s-2 x 104) 5.2 (2.3,13.7) 9.5 (4.6,17.6) P=0.005 4.0 (1.8,6.8) 3.6 (1.5,7.4) NS 
BEW area (%) 17 (8,23) 21 (13,32) P=0.024 10 (4,20) 7 (5,15) P=0.087 
Acc waves (%) 45 (37,59) 52 (38,63) P=0.024 33 (27,42) 33 (25,41) NS 
DECELERATING WAVES 
FEW (WInet) (W.m-2s-2 x 104) 2.9 (1.2,7.0) 3.3 (1.8,9.1) NS 4.9 (2.7,8.7) 6.1 (4.1,11.1) NS 
FEW (WI+) (W.m-2s-2 x 104) 6.5 (4.4,8.4) 6.9 (4.9,11.6) NS 7.2 (3.5,9.5) 8.7 (5.6,12.8) P=0.087 
FEW area (%) 26 (19,33) 28 (19,38) NS 28 (21,35) 33 (28,39) NS 
BCW (WInet) (W.m-2s-2 x 104) 8.0 (3.4,11.7) 9.3 (5.1,16.0) P=0.010 5.9 (4.7,10.8) 10.0 (5.6,14.8) P=0.018 
BCW (WI-) (W.m-2s-2 x 104) 8.9 (5.5,12.5) 10.0 (6.6,17.3) P=0.012 8.2 (6.3,11.2) 12.0 (7.1,14.9) P=0.004 
BCW area (%) 29 (19,39) 26 (18,37) NS 39 (28,47) 41 (26,54) NS 
Dec waves (%) 55 (41,63) 48 (37,62) P=0.024 67 (20,38) 67 (59,75) NS 
OTHER 
Area under WI+  1.3 (1.0,1.7) 1.6 (1.1,2.0) P=0.024 1.2 (0.9,2.2) 1.5 (1.1,2.5) P=0.023 
Area above WI-  1.8 (1.1,2.3) 2.4 (1.4,3.2) P=0.001 1.3 (0.9,2.2) 1.7 (1.3,2.2) P=0.018 
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Table 4-6: Rapid pacing wave intensity analysis results pre- and post-TAVI from all paired datasets 

 Pre-TAVI (n=19) Post-TAVI (n=19) 
 Rest Pacing  Rest Pacing  
ACCELERATING WAVES 
FCW (WInet) (W.m-2s-2 x 104) 5.8 (3.0,8.7) 2.3 (0.9-4.6) P=0.036 6.2 (3.0,9.6) 2.3 (1.1,4.9) P=0.011 
FCW (WI+) (W.m-2s-2 x 104) 6.5 (4.0,9.9) 4.8 (2.0,8.2) NS 7.2 (4.3,10.9) 4.2 (2.3,7.6) NS 
FCW area (%) 27 (22,35) 19 (14,36) NS 23 (20,38) 21 (13,29) NS 
BEW (WInet) (W.m-2s-2 x 104) 2.2 (0.86,8.9) 3.4 (2.2,6.6) NS 2.0 (0.8,4.4) 2.8 (0.6,5.0) NS 
BEW (WI-) (W.m-2s-2 x 104) 5.2 (2.3,13.7) 4.5 (3.2,9.5) NS 4.0 (1.8,6.8) 3.8 (1.6,5.7) NS 
BEW area (%) 17 (8,23) 17 (10,22) NS 10 (4,20) 10 (7,16) NS 
Acc waves (%) 45 (37,59) 33 (20,42) P=0.005 33 (27,42) 24 (18,31) P=0.007 
DECELERATING WAVES 
FEW (WInet) (W.m-2s-2 x 104) 2.9 (1.2,7.0) 2.4 (0.5,5.2) NS 4.9 (2.7,8.7) 3.1 (2.0,6.7) NS 
FEW (WI+) (W.m-2s-2 x 104) 6.5 (4.4,8.4) 4.9 (2.0,7.4) P=0.045 7.2 (3.5,9.5) 4.6 (2.4,8.2) NS 
FEW area (%) 26 (19,33) 33 (22,45) P=0.006 28 (21,35) 40 (22,53) P=0.087 
BCW (WInet) (W.m-2s-2 x 104) 8.0 (3.4,11.7) 9.6 (6.8,17.8) P=0.029 5.9 (4.7,10.8) 11.7 (8.4,20.3) P=0.049 
BCW (WI-) (W.m-2s-2 x 104) 8.9 (5.5,12.5) 11.6 (7.7,18.3) P=0.040 8.2 (6.3,11.2) 12.5 (10.0,21.0) P=0.045 
BCW area (%) 29 (19,39) 45 (32,53) P=0.001 39 (28,47) 54 (42,62) P=0.003 
Dec waves (%) 55 (41,63) 67 (58,80) P=0.005 67 (20,38) 76 (69,82) P=0.007 
OTHER 
Area under WI+  1.3 (1.0,1.7) 0.8 (0.3,1.1) P<0.001 1.2 (0.9,2.2) 0.7 (0.5,1.0) P=0.003 
Area above WI- 1.8 (1.1,2.3) 1.4 (0.8,1.9) NS 1.3 (0.9,2.2) 1.5 (0.9,2.2) NS 

 
  



ISCHAEMIA IN AORTIC STENOSIS 

92 

 

Table 4-7: The impact of TAVI (pre- vs post) on coronary wave intensity analysis results from all paired datasets 

 Baseline (n=19) Hyperaemia (n=18) Pacing (n=19) 
 Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  

ACCELERATING WAVES 
FCW (WInet) (W.m-2s-2 x 104) 5.8 (3.0,8.7)  6.2 (3.0,9.6) NS 6.3 (5.2,12.4) 6.7 (4.0,10.6) NS 2.3 (0.9-4.6) 2.3 (1.1,4.9) NS 
FCW (WI+) (W.m-2s-2 x 104) 6.5 (4.0,9.9)  7.2 (4.3,10.9) NS 8.1 (6.0,12.9) 8.6 (4.9,12.8) NS 4.8 (2.0,8.2) 4.2 (2.3,7.6) NS 
FCW area (%) 27 (22,35)  23 (20,38) NS 29 (23,41) 25 (23,36) NS 19 (14,36) 21 (13,29) NS 
BEW (WInet) (W.m-2s-2 x 104) 2.2 (0.86,8.9) 2.0 (0.8,4.4) NS 6.0 (2.3,13.4 2.5 (0.8,4.7) P<0.001 3.4 (2.2,6.6) 2.8 (0.6,5.0) NS 
BEW (WI-) (W.m-2s-2 x 104) 5.2 (2.3,13.7) 4.0 (1.8,6.8) P=0.096 9.5 (4.6,17.6) 3.6 (1.5,7.4) P<0.001 4.5 (3.2,9.5) 3.8 (1.6,5.7) NS 
BEW area (%) 17 (8,23) 10 (4,20) P=0.032 21 (13,32) 7 (5,15) P<0.001 17 (10,22) 10 (7,16) NS 
Acc waves (%) 45 (37,59) 33 (27,42) P=0.002 52 (38,63) 33 (25,41) P=0.001 33 (20,42) 24 (18,31) P=0.018 
DECELERATING WAVES 
FEW (WInet) (W.m-2s-2 x 104) 2.9 (1.2,7.0) 4.9 (2.7,8.7) P=0.051 3.3 (1.8,9.1) 6.1 (4.1,11.1) NS 2.4 (0.5,5.2) 3.1 (2.0,6.7) NS 
FEW (WI+) (W.m-2s-2 x 104) 6.5 (4.4,8.4) 7.2 (3.5,9.5) NS 6.9 (4.9,11.6) 8.7 (5.6,12.8) NS 4.9 (2.0,7.4) 4.6 (2.4,8.2) NS 
FEW area (%) 26 (19,33) 28 (21,35) NS 28 (19,38) 33 (28,39) NS 33 (22,45) 40 (22,53) NS 
BCW (WInet) (W.m-2s-2 x 104) 8.0 (3.4,11.7) 5.9 (4.7,10.8) NS 9.3 (5.1,16.0) 10.0 (5.6,14.8) NS 9.6 (6.8,17.8) 11.7 (8.4,20.3) NS 
BCW (WI-) (W.m-2s-2 x 104) 8.9 (5.5,12.5) 8.2 (6.3,11.2) NS 10.0 (6.6,17.3) 12.0 (7.1,14.9) P=0.005 11.6 (7.7,18.3) 12.5 (10.0,21.0) NS 
BCW area (%) 29 (19,39) 39 (28,47) P=0.016 26 (18,37) 41 (26,54) P<0.001 45 (32,53) 54 (42,62) P=0.016 
Dec waves (%) 55 (41,63) 67 (20,38) P=0.002 48 (37,62) 67 (59,75) P=0.001 67 (58,80) 76 (69,82) P=0.018 
OTHER 
Area under WI+  1.3 (1.0,1.7) 1.2 (0.9,2.2) NS 1.6 (1.1,2.0) 1.5 (1.1,2.5) NS 0.8 (0.3,1.1) 0.7 (0.5,1.0) NS 
Area above WI- 1.8 (1.1,2.3) 1.3 (0.9,2.2) P=0.045 2.4 (1.4,3.2) 1.7 (1.3,2.2) P=0.012 1.4 (0.8,1.9) 1.5 (0.9,2.2) NS 
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Table 4-8: Pre-TAVI coronary wave intensity analysis results in LGAS and HGAS cohorts. Results displayed when P<0.010 for LGAS then HGAS with SD or IQR in brackets. 

 REST HYPERAEMIA RAPID PACING 
ACCELERATING WAVES 
FCW (WInet) (W.m-2s-2 x 104)  NS  NS  NS 
FCW (WI+) (W.m-2s-2 x 104)  NS  NS  NS 
FCW area (%) 32(23,38)/27(10,28) P=0.022 31(24,40)/24(21,34) P=0.063  NS 
BEW (WInet) (W.m-2s-2 x 104) -0.8(-1.8,-0.6)/-2.2(-9.5,-1.5) P=0.070 -3.5(-7.6,-1.7)/-6.3(-16.0,-4.2) P=0.014 -2.8(-4.2,-1.3)/-4.6(-7.3,-1.9) P=0.095 
BEW (WI-) (W.m-2s-2 x 104) -2.7(-3.8,-1.9)/-6.4(-18.5,-3.7) P=0.006 -5.9(-11.6,-3.2)/-17.7(-23.3,-7.1) P=0.008 -3.3(-5.7,-2.1)/-5.7(-15.0,-3.3)  P=0.028 
BEW area (%) 7.3(6.1,11.8)/18.2(10.2,39.9) P=0.013 13(7,16)/32(15,52) P=0.011  NS 
Acc waves (%)  NS  NS  NS 
DECELERATING WAVES 
FEW (WInet) (W.m-2s-2 x 104) 6.2(3.7,11.2)/2.5(1.7,5.7) P=0.021  NS  NS 
FEW (WI+) (W.m-2s-2 x 104)  NS  NS  NS 
FEW area (%)  NS 39(28,41)/25(23,35) P=0.024  NS 
BCW (WInet) (W.m-2s-2 x 104)  NS  NS  NS 
BCW (WI-) (W.m-2s-2 x 104)  NS  NS  NS 
BCW area (%) 36(29,46)/22(16,31) P=0.079  NS  NS 
Dec waves (%)  NS  NS  NS 
Area under WI+   NS  NS  NS 
Area above WI- 1.3(1.0,2.4)/2.1(1.5,3.6) P=0.002  NS  NS 
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4.2.6 Wave Intensity Analysis in LGAS vs HGAS 

 

Results are displayed in Table 4-8. At baseline pre-TAVI, LGAS was associated with larger 

decelerating FEW, and smaller accelerating BEW waves. Backward travelling waves were 

reduced in LGAS patient (p=0.002). Before TAVI during hyperaemia, the BEW was 

significantly smaller in LGAS, and post-TAVI the only difference during hyperaemia was 

reduced FCW in LGAS patients (6.6 [4.2,9.7] vs 9.8 [5.4,17.8], p=0.035). Following TAVI, 

baseline rest measurements revealed a trend towards reduced overall backward 

travelling waves in LGAS patients (1.1 [0.7,1.9] vs 1.8 [1.2,2.5], p=0.079). In addition, the 

change in BEW from rest with hyperaemia was notable in that it decreased in LGAS 

patients but increased in HGAS patients (-63% [-69,+23] vs 55% [-22,+174], p=0.022). 

Comparing hyperaemic results pre-TAVI and post-TAVI, BEW fell in both cohorts (Table 

4-7) but the effect was less profound in LGAS patients (-23±70% vs -71±123%, p=0.077). 

 

4.2.7 Coronary Perfusion Efficiency 

 
Figure 4-7: Coronary perfusion efficiency 

 

In this study, improved PE was observed during hyperaemia pre-TAVI (p=0.024), but rapid 

pacing induced a significant fall in PE from resting measurements (p=0.005) (Figure 4-7). 

TAVI caused a significant drop at rest (p=0.001), hyperaemia (pre- to post-TAVI, p<0.001), 
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and during rapid pacing at 120bpm (pre- to post-TAVI, p=0.016). Following TAVI, 

hyperaemia made no difference but rapid pacing demonstrated reduced PE from post-

TAVI baseline (p=0.007). Comparing relative change of PE in LGAS and HGAS cohorts, 

following TAVI, rest to hyperaemia induced a decrease in PE in LGAS but an increase in 

HGAS patients (-17±18% vs +13±33%, p=0.028).  

 

4.2.8 Myocardial Perfusion Reserve Index  

 

Cardiac MRI was used to calculate MPRI. Patients with LGAS exhibited a more profound 

rise in heart rate with IV adenosine during stress perfusion imaging (93±11 vs 83±10bpm, 

p=0.038). Global MPRI increased following TAVI (2.1 [1.8,2.3] to 2.4 [2.3,2.8], p=0.029). 

Before TAVI, there was a trend towards reduced MPRI in LGAS patients (1.88 [1.63,2.13] 

vs 2.41 [1.97,2.84], p=0.090) (Figure 4-8), but no difference between groups post-TAVI 

(2.35±0.24 vs 2.55±0.68, p=0.711).  

 

 
Figure 4-8: Pre-TAVI MPR and endocardium-epicardium gradient results for LGAS and HGAS patients 

 

4.2.9 Endocardium-Epicardium Gradients 
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Endocardium-epicardium gradients did not change following TAVI (0.94 [0.81,0.98] to 

0.95 [0.80,1.02], p=0.694) but pre-TAVI stress endocardium-epicardium gradient closely 

correlated with left ventricular indexed stroke volume (R=-0.519, p=0.023). Pre-TAVI, 

there was a less significant gradient in LGAS patients (0.98 [0.88,1.03] vs 0.83 [0.76,0.94], 

p=0.014) (Figure 4-8) but following TAVI, there was no difference between groups (0.95 

[0.87,1.02] vs 0.93 [0.73,0.99], p=0.389). Interestingly, in this study, there was no 

correlation between endocardial-epicardial gradients and MPRI either before (r=0.101, 

p=0.682) or following (R=-0.147, p=0.560) TAVI. There was also no significant correlation 

between endocardium-epicardium gradients and end diastolic or systolic pressures (r=-

0.234, p=0.349).  

 

4.2.10 Serum Biomarkers 

 

Differences in serum concentrations of Troponin T, cardiac myosin binding protein C 

(cMyC), lactate and oxygen were assessed between the aortic root and coronary sinus. 

Transcardiac biomarker release was defined as coronary sinus (CS) concentration minus 

the aortic concentration.  

 

Table 4-9: Results from aortic and coronary sinus serum sampling  

 Pre-TAVI P value Post-TAVI P value 

 Aortic Troponin T (ng/l) 

Restà90bpm 92±74 à 100±82 0.023 203±163 à 218±168 0.039 

Restà120bpm  77±58 à 85±64 0.019 203±163 à 208±161 NS 

Restàpost-stress 98±75 à 117±85 0.015 203±163 à 218±163 NS 

Pre-àpost-TAVI 74±61 à 203±163 0.007   

 Troponin Transcardiac Release  

Restà90bpm 19±43 à 13±30 NS 25±43 à 2±12 0.095 

Restà120bpm  7±8 à 3±5 NS 25±43 à 14±29 NS 

Restàpost-stress 19±43 à 11±22 NS 25±43 à 35±103 NS 

Pre-àpost-TAVI 7±8 à 25±43 NS   

 Aortic cMyC (pg/ml)  

Restà90bpm 310±358 à 355±376 0.070 857±1015 à 971±1058 0.075 
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Restà120bpm  272±363 à 334±409 0.057 857±1015 à 945±1101 NS 

Restàpost-stress 310±358 à 403± 386 0.050 857±1015 à 936±1144 NS 

Pre-àpost-TAVI 272±363 à 897±1077 0.049   

 Aortic Lactate (mmol/l)  

Restà90bpm 0.476±0.196 à 0.599±0.227 0.004 0.524±0.203 à 0.663±0.294 0.002 

Restà120bpm  0.509±0.202 à 0.677±0.218 0.001 0.524±0.203 à 0.752±0.333 0.007 

Restàpost-stress 0.484±0.204 à 0.701±0.319 0.005 0.518±0.214 à 0.791±0.331 0.004 

Pre-àpost-TAVI 0.488±0.202 à 0.524±0.203 NS  

Key: NS - non-significant  

 

Results are displayed in Table 4-9. There was no statistical difference in any oxygen or 

lactate extraction values (calculated as Extraction = [Ao-CS]/Ao x 100) or cMyC 

transcardiac release. In some cases, the coronary sinus sheath may have sampled from 

the right atrium rather than directly from the coronary sinus, representing the challenge 

in this technique, resulting in unreliable results. Post-intervention, interpretation was 

muddied by TAVI. There was no difference between LGAS and HGAS groups for any of 

the values. 

 

4.3 Discussion and summary 

 

At baseline, a shorter ejection time in LGAS patients would suggest that AS is less severe 

as blood is briskly ejected through the aortic valve and systole is completed sooner. 

Despite this, there is a relative increase in TTI and decrease in BI in LGAS patients post-

TAVI and hyperaemia caused impaired (rather than improved) perfusion efficiency in 

LGAS patients. This suggests a pathological response to stressors and intervention with 

distorted cardiac-coronary coupling, rendering the heart vulnerable to resting ischaemia. 

Blunted microvascular-originating accelerating coronary waves, both a lack of shortening 

of the ET, and lack of lengthening of the DTF following TAVI, and raised microvascular 

resistance, all suggests an adverse response to TAVI.  

 

In all patients, improved BI during pacing post-TAVI alludes to improved subendocardial 

perfusion during stress following valve intervention. This correlates with previous work 

demonstrating an increase in BI up to seven days post-TAVI from pre-TAVI 
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measurements223. However, physiological assessment in the immediate aftermath of 

TAVI may represent, at least in part, ventricular stunning. BEW decline post-TAVI has 

already been demonstrated, but with a fall in LVMI at 12 months there is an 

accompanying increase in BEW fraction224. 

 

The results of this study indicate that patients with LGAS and unobstructed coronary 

arteries have a distinct profile of coronary flow when compared to that of HGAS patients. 

The hypothesis of depressed accelerating coronary waves in LGAS patients was 

supported by the findings, but not the hypothesised higher systemic concentration of 

lactate and troponin in this cohort. Despite lower LV mass, pressure and volumes in the 

LGAS cohort, there was no significant difference between MRI perfusion assessment or 

serum markers of ischaemia between groups at baseline, perhaps revealing a 

disproportionate degree of myocardial oxygen supply-demand mismatch in LGAS 

patients despite markers of less severe AS.  
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5.1 Introduction 

 

Aortic stenosis (AS) induces progressive left ventricular hypertrophy in an effort to reduce 

wall stress from chronic high afterload. This adaptive process continues to contribute to 

symptomatology and impaired cardiac reserve post-valve intervention and takes several 

months to regress. There is wide individual variation in the ventricular remodelling 

response to AS. Four left ventricular adaptive phenotypes in hypertensive patients have 

previously been identified on the basis of echocardiographic measurements225.  

 

• Normal (normal indexed LV mass (LVMI) and mass to volume ratio (M/V) 

• Concentric remodelling with normal LVMI but elevated M/V 

• Concentric LV hypertrophy (LVH), associated with a raised LVMI but normal 

indexed end-diastolic volume (EDV)  

• Eccentric LVH with high LVMI and EDV 

 

This has been expanded on by Dweck et al who categorised patients with AS into six 

groups, by CMR criteria226 (Table 5-1). 

 

Table 5-1: Cardiac remodelling phenotypes in aortic stenosis 

 LVMI LVEDV M/V Asymmetric 

wall thickness 

Normal  ⟷ ⟷ ⟷  

Concentric remodelling  ⟷ ↓ ↑  

Asymmetric remodelling  ⟷ ↓	 ↑	 ✓ 
Concentric Hypertrophy  ↑ ⟷ ↑  

Asymmetric hypertrophy  ↑ ⟷ ↑ ✓ 

Eccentric hypertrophy  ↑ ↑ ⟷  

 

5.1.1 Invasive Assessment of Myocardial Mechanics  

 

There is a complex interplay between preload, afterload and ventricular mechanics. 

Lusitropy, the rate and extent to which the heart relaxes during diastole, can be measured 

invasively as the end-diastolic pressure-volume relationship (EDPVR) (Figure 5-1, green 

line, ESPVR is the blue line). The ease with which blood enters and fills the ventricle during 
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diastole is related to the compliance or stiffness of the ventricular wall227. Compliance is 

the reciprocal of the EDPVR slope: the change in volume resulting from a change in 

pressure228. The EDPVR slope is shallow at low pressures, when compliance is greatest. 

Elastance, the reciprocal of compliance, is high in the setting of myocardial stiffness (a 

leftward shifted EDPVR signifies a stiff and noncompliant ventricle). 

 
Figure 5-1: The end-diastolic and end-systolic pressure volume relationship in a patient with AS 

 

Cardiac relaxation relates to the renin–angiotensin and endothelin systems229, muscle 

bulk230, capillary rarefaction and collagen content231. Rate of relaxation, as measured by 

the exponential time constant, t, is sensitive to ischaemia and dependent on heart rate. 

It is pathologically prolonged when tachycardia does not allow complete relaxation 

between beats and the pressure-volume loop progressively rises above the baseline 

EDPVR.  

 

In an elastic vessel of changing dimension, the conservation of mass and energy require 

that pressure and flow waves must generate reflected waves. The amount of reflection 

is expressed in the reflection coefficient (Γ)232, calculated from each harmonic, followed 

by derivation of the Fourier components of the forward and backward pressure and flow 

waves. Understandably, it is altered by peripheral resistance233,234. 
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Change in Augmentation index, AIx, is a robust predictor of left ventricular mass 

regression in hypertensive patients following therapy235 (see Figure 4-1 and Table 2-4). It 

has been shown to independently correlate with the extent of coronary artery disease, 

left ventricular hypertrophy, aortic wall structure, cardiovascular events and all-cause 

mortality and is determined by chronotropic rather than inotropic effects236. Arterial 

wave reflection may contribute to the process leading to aortic valve calcification, as 

postulated after a previous correlation between Γ and aortic valve calcification237.  

 

5.1.2 Non-Invasive Assessment of Myocardial Mechanics  

 

Echocardiographic (tissue Doppler and mitral valve inflow Doppler signals) and cardiac 

magnetic resonance imaging (CMR) tissue tracking software can also be used to examine 

relaxation of the myocardium. By using tissue tracking technology, this cardiac motion 

allows the assessment of displacements and velocity, and also deformation, i.e., strain 

and strain rates. The latter provides a relatively load-independent quantitative evaluation 

of the myocardium and can be a sensitive marker of subclinical dysfunction. Patients with 

preserved LV systolic function and AS, with an echocardiographic derived global 

longitudinal strain of ≤-14%, have a significantly higher survival than those with reduced 

strain238.  

 

The presence of cardiac amyloidosis is increasingly recognised as a common incidental 

finding in AS and may confound results239-241. Amyloid can be formed from a large number 

of precursor proteins. Amyloidosis denotes the deposition of amyloid proteins in the 

extracellular space, and this infiltration and accumulation causes organ dysfunction. The 

most common forms of protein producing cardiac amyloidosis are immunoglobulin-

derived light chains (AL) and transthyretin (TTR). TTR amyloidosis may arise from wild-

type (normal) TTR, or more commonly from a genetic mutation of the transthyretin 

protein gene. AL amyloidosis is the more serious form and is a haematological disorder, 

similar to multiple myeloma, where abnormal plasma cells overproduce lambda or kappa 

light chains.  
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Myocardial tissue histology is the current gold standard for detection of cardiac 

amyloidosis – stained using Congo Red where deposits of amyloid appear pale red but 

show apple-green birefringence under cross-polarised light. CMR has a high diagnostic 

accuracy for amyloidosis242 and the non-invasive nature of this technique is more 

favourable. Amyloidosis typically produces a progressive subendocardial to transmural 

late gadolinium enhancement with difficulty nulling the myocardium on phase-sensitive 

inversion recovery imaging. This infiltrative disease can significantly alter the cardiac 

mechanics and is an important factor when considering the LV in the setting of AS.  

 

Valvulo-arterial impedance, Zva, is considered a measure of global afterload and is 

calculated as the sum of the systolic arterial pressure and mean aortic valve pressure 

gradient divided by the indexed stroke volume. Non-invasively, the ESP is assumed to be 

the sum of the mean aortic valve pressure gradient (MPG) and the systolic arterial 

pressure (SAP). Zva is therefore a measure of both the valvular load (by MPG) and arterial 

load (SAP) – how much a structure resists motion when subjected to a given force. It 

represents the cost in pressure (mmHg) per systemic millilitre of blood indexed for body 

size pumped by the left ventricle during systole and is increased in patients with AS. Non-

invasively, >3.5mmHg/ml/m2 is considered to correlate with moderate AS, whereas 

>4.5mmHg/ml/m2 is in the severe range243. Thoracic aorta calcification burden correlates 

with increased Zva and unfavourable outcomes in patients with AS244. Patients with LGAS 

typically have higher LV global load245 and Zva can be used to predict adverse outcomes 

in AS92. 

 

Low gradient AS (LGAS) is often associated with a characteristic small left ventricular 

cavity and concentric remodelling, resulting in diastolic dysfunction, poor filling and a 

low-flow state. I sought to determine the remodelling patterns, contractility and lusitropy 

and their effects on flow and gradient in patients with AS and preserved LV systolic 

function. The hypothesis of more florid evidence of restriction in LGAS was tested.  

 

5.2 Results  
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5.2.1 Cardiac Magnetic Resonance Imaging Assessment  

 

Baseline results are displayed in Table 5-2. 

 

Table 5-2: Pre-TAVI baseline characteristics and cardiac magnetic resonance findings 

 LGAS (n=9) HGAS (n=10) P value 

Age (years) 84±6 85±5 NS 

Body Surface Area (m2) 1.83±0.17 1.71±0.13 0.097 

Hypertension (%) 78 60 NS 

Mean aortic valve pressure gradient (mmHg) 32±5 67±22 <0.001 

Resting heart rate (bpm) 72.9±6.6 68.7±6.3 NS 

Non-invasive systolic blood pressure (mmHg) 150±19 136±27 NS 

LV end diastolic volume (ml) 125±26 141±26 NS 

LV end diastolic volume index (ml/m2) 68±13 83±14 0.035 

LV end systolic volume (ml) 45±12 56±16 NS 

LV end systolic volume index (ml/m2) 25±6 32±9 0.032 

LV ejection fraction (%) 65±4 61±6 NS 

Stroke volume (ml) 80.5±17 85±15 NS 

Indexed stroke volume (ml/m2) 44±8 50±8 NS 

Effective volume (ml/min) 3645±1644 2709±1462 NS 

LV mass (g) 97±16 121±31 0.035 

LV mass index (g/m2) 56±8 71±18 0.017 

Mass:volume ratio  0.80±0.21 0.85±0.11 NS 

Regurgitant fraction (%) 12±21  18±16  NS 

 

5.2.2 Left Ventricular Mass  
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Figure 5-2: LVMI in LGAS vs HGAS  

 

LGAS patients had smaller baseline LV sizes and lower mass index (Figure 5-2), although 

there was no difference in mass/volume ratio (M/V). Left ventricular mass index by MRI 

(LVMIMRI) correlated significantly with mean aortic valve pressure gradient (MPG) from 

Doppler echocardiography (r=0.625, p=0.004, Figure 5-3), indexed calcium score 

(R=0.477, p=0.039), SVi (R=0.586, p=0.008) and indexed aortic valve area (r=-0.498, 

p=0.030). There was no significant difference in the change in M/V following TAVI 

between groups (LGAS -0.030±0.1778, HGAS -0.092±0.111, p=0.406).  
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Figure 5-3: Correlation between MPG and LVMI 

 

Following TAVI, significant remodelling occurred within a few months (Table 5-3). 

Pressure-loading was relieved: left ventricular and left atrial volumes and left ventricular 

muscle mass reduce; and ejection fraction and forward flow increase. Preferential 

reduction in LV hypertrophy over LV cavity size reduction was reflected in reduced M/V. 

 

Table 5-3: Paired (pre- and post-TAVI) MRI results in all patients (18 pairs), values are presented as the 

mean ± SD or median with interquartile range as appropriate 

 Pre Post P value  

Resting heart rate (bpm) 74±7 70±9 NS 

Resting systolic blood pressure (mmHg) 141±24 139±24 NS 

Resting diastolic blood pressure (mmHg) 66±14 61±8  NS 

LV end diastolic volume (ml) 135±27 124±28 0.009 

LV end diastolic volume index (ml/m2) 77±15  70±15  0.013 

LV end systolic volume (ml) 51±14  42±14 0.003 

LV end systolic volume index (ml/m2) 29±8 23±7 0.003 

LV ejection fraction (%) 62±5 67±6 0.006 

Stroke volume (ml) 83±15 83±17  NS 

Indexed stroke volume (ml/m2) 47±9 47±10 NS 

LV mass (g) 108 (97,119) 91 (78,105) 0.001 

LV mass index (g/m2) 63 (59,70) 51 (44,56) <0.001 
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Mass:volume ratio  0.83±0.17 0.76±0.12 0.023 

Indexed LA Volume (ml/m2) 15±4 14±4 0.030 

Indexed RA volume (ml/m2) 10±2 10±2 NS 

Total forward volume (ml)  48±17 67±13 0.001 

Effective volume (l)  3.1±1.6 4.5±1.0 0.001 

 

5.2.3 Tissue Tracking  
 

Table 5-4: Strain MRI results in all patients (18 pairs), values are presented as the mean ± SD or median 

with interquartile range as appropriate 

 Pre Post P value  

RADIAL 3D STRAIN  

Peak strain (%) 51 (41,62) 67 (54,85) 0.006 

Peak systolic strain rate (1/s) 4.0 (2.7,5.8) 6.0 (5.6,7.0) 0.005 

Peak diastolic strain rate (1/s) -3.8 (-4.7,-2.6) -5.0 (-7,-3) 0.065 

Peak displacement (mm) 6.3 (5.5,7.0) 7.4 (7.0,8.2) 0.003 

Peak systolic velocity (mm/s) 48 (43,67) 69 (55,79) 0.001 

Peak diastolic velocity (mm/s) -40 (-58,-35) -54 (-71,-45) 0.034 

CIRCUMFERENTIAL 3D STRAIN  

Peak strain (%) -16±3 (-18,-13) -20 (-21,-17) 0.010 

Peak systolic strain rate (1/s) -1.36 (-1.59,-0.95) -1.7 (-2.1,-1.3) 0.006 

Peak diastolic strain rate (1/s) 1.2 (0.9,0.4) 1.4 (1.3,1.7) 0.008 

Peak displacement (mm) -0.13 (-0.17,+0.18) 0.06 (-0.19,+0.20) NS 

Peak systolic velocity (mm/s) -1.28 (-2.98,+2.18) 1.9 (-2.0,+2.8) NS 

Peak diastolic velocity (mm/s) -0.5 (-2.9,+1.7) 1.5 (-3.2,+2.5) NS 

LONGITUDINAL 3D STRAIN  

Peak strain (%) -12 (-14,-10) -15 (-18,-13) 0.013 

Peak systolic strain rate (1/s) -1.02 (-1.37,-0.74) -1.2 (-1.5,-0.8) NS 

Peak diastolic strain rate (1/s) 0.90 (0.65,1.15) 1.2 (0.9,1.6) NS 

Peak displacement (mm) 3.8 (2.6,4.4) 4.8 (3.5,6.4) 0.016 

Peak systolic velocity (mm/s) 37 (11,47) 55 (32,69) 0.016 

Peak diastolic velocity (mm/s) -52 (-72,-24) -45 (-52,-34) NS 

 

Following TAVI, there was statistically significant improvement in peak radial, 

circumferential and longitudinal strain, radial and circumferential strain rate, radial and 
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longitudinal peak displacement and systolic velocity (mm/s), and radial diastolic velocity 

(Table 5-4).  

 

5.2.4 Remodeling Patterns between Cohorts 

 

Baseline strain data (Table 5-5Error! Reference source not found.) revealed that both 

cohorts had significant but similarly reduced global longitudinal strain (GLS). There was 

no significant difference following intervention in the delta change between groups. 

Circumferential time to peak strain was reduced in LGAS patients (330ms [277,373] vs 

400ms [358,430], p=0.034), and there was a trend towards reduced radial time to peak 

strain in this group (315 [260,372] vs 365ms [333,392], p=0.062). There were also 

differences in peak circumferential displacement (-0.14±0.03 vs +0.05±0.23mm, 

p=0.028) and diastolic velocity (1.3±2.1 vs -2.1±2.3mm/s, p=0.005).  

 

LVMIMRI correlated with peak radial (R=-0.540, p=0.021) and peak circumferential strain 

(R=0.476, p=0.046) but not longitudinal strain (R=0.150, p=0.553). LVEDVi also correlated 

with peak radial (R=-0.606, p=0.008), and peak circumferential strain (R=0.550, p=0.018) 

but not peak longitudinal strain.  

 

Table 5-5: LGAS vs HGAS pre-TAVI CMR strain results  

 LGAS (n=9) HGAS (n=10) P value 

Global 3D peak radial strain (%) 55±12 48±17 NS 

Global 3D peak circumferential strain (%) -17±2 -15±3 NS 

Global 3D peak longitudinal strain (%) -13 (-14,-12) -10 (-13,-10) NS 

3D peak radial displacement (mm) 6.3±0.8 6.3±1.1 NS 

3D peak circumferential displacement (mm) -0.14±0.03 +0.05±0.23 0.028 

3D peak longitudinal displacement (mm) 4.4±1.9 3.3±1.4 NS 

3D peak diastolic radial velocity (mm/s) -44±14 -46±16 NS 

3D peak diastolic circumferential velocity (mm/s) +1.25±2.12 -2.13±2.3  0.005 

3D peak diastolic longitudinal velocity (mm/s) -57±28 -45±29 NS 

 

 

Table 5-6 presents the follow-up MRI results separated into low or high gradient cohorts, 

and Table 5-7Error! Reference source not found. presents the relative change in MRI 

parameters. There were no significant differences between cohorts noted in these 

results.  
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Table 5-6: LGAS vs HGAS follow-up cardiac magnetic resonance scan results  

 LGAS (n=8) HGAS (n=10) P value 

Non-invasive systolic blood pressure (mmHg) 132±28 144±21 NS 

LV end diastolic volume (ml) 123±33 125±25 NS 

LV end diastolic volume index (ml/m2) 67±16 73±14 NS 

LV end systolic volume (ml) 40±17 42±12 NS 

LV end systolic volume index (ml/m2) 22±8 25±6 NS 

LV ejection fraction (%) 68±6 66±6 NS 

Stroke volume (ml) 83±17 83±17 NS 

Indexed stroke volume (ml/m2) 45±10 48±10 NS 

Effective volume (ml/min) 4436±1547 4290±937 NS 

LV mass (g) 89±15 97±27 NS 

LV mass index (g/m2) 49 (41,54) 54 (44,66) NS 

Mass:volume ratio 0.70 (0.64,0.86) 0.76 (0.68,0.86) NS 

Regurgitant fraction (%) 6 (2,8)  18 (5,30) NS 

Global 3D peak radial strain (%) 67±15 72±31 NS 

Global 3D peak circumferential strain (%) -20±3 -18±3 NS 

Global 3D peak longitudinal strain (%) -16±2 -13±5 NS 

Peak displacement radial (mm) 7.3±1.1 7.6±1.7 NS 

Peak displacement circumferential (mm) 0.05±0.17 -0.02±0.22 NS 

Peak displacement longitudinal (mm) 5.6±1.2 4.4±1.7 NS 

Peak diastolic velocity radial (mm/s) -59±21 -53±17 NS 

Peak diastolic velocity circumferential (mm/s) 0.47±3.3 -0.42±3.2  NS 

Peak diastolic velocity longitudinal (mm/s) -55±24 -38±15 0.084 

 

Table 5-7: LGAS vs HGAS change in MRI parameters following intervention  

 LGAS (n=8) HGAS (n=10) P value 

Resting heart rate (%) -3±8 2±18 NS 

Resting systolic blood pressure (%) -10±12 8±17 0.019 

Resting diastolic blood pressure (%) -13±15 1±21 NS 

LV end diastolic volume (%) -5±11 -14±14 NS 

LV end diastolic volume index (%) -4±11 -14±15 NS 

LV end systolic volume (%) -26±42 -32±25 NS 

LV end systolic volume index (%) -24±41 33±26 NS 

LV ejection fraction (%) 5±12 8±7 NS 

Stroke volume (%) 1±13 -3±14 NS 

Indexed stroke volume (%) 0 (-0.1,+0.1) 0 (-0.2,+0.1) NS 

LV mass (%) -11±18 -26±20 NS 

LV mass index (%) -17±13 -27±21 NS 

Mass:volume ratio (%) -3±18 -9±11 NS 

Global 3D peak radial strain (%) 24±34 59±43 0.093 

Global 3D peak circumferential strain (%) 19±20 24±30  NS 

Global 3D peak longitudinal strain (%) 22 (2,49) 17 (-14,+42) NS 

Peak displacement radial (%) 18±22 24±23 NS 

Peak displacement circumferential (%) -177 (-227,-143) -12 (-195,+20)  0.052 

Peak displacement longitudinal (%) 59 (-3,+116) 29 (-12,+142) NS 

Peak diastolic velocity radial (%) 48±79 19±32 NS 

Peak diastolic velocity circumferential (%) -152±188 -24±111 NS 

Peak diastolic velocity longitudinal (%) 16 (-44,+141) -23 (-37,+109) NS 
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5.2.5 Echocardiography for Left Ventricular Assessment 

 

Indexed stroke volume from the participants included in this study was calculated as 

47.2±8.5ml by MRI (SVIMRI), and 40.7±11.2ml by echocardiography (SVIECHO), null 

hypothesis p=0.014; correlation r=0.452, p=0.052. I observed that the LVOT areas derived 

from echocardiography correlated with gated computed tomography measurements 

(r=0.480, p=0.037) but were significantly smaller (2.99±0.65 vs 4.10±0.78cm2, p<0.001). 

 

There was no correlation between echocardiographic derived relative wall thickness 

(RWT) and MRI-derived LVMI (r=-0.016, p=0.949) but there was significant correlation 

between LVMI derived from MRI and ECHO (r=0.584, p=0.009). Despite a correlation 

between LVMIMRI and AV Calcium Score (R=0.477, p=0.039), none was found with 

LVMIECHO (r=0.13, p=0.591). There was also no correlation between E:A Doppler Mitral 

valve inflow and LVMIMRI (r=-0.240, p=0.323) or LVMIECHO (r=-0.099, p=0.686). In keeping, 

despite significant correlation between LVMI and tissue tracked strain markers, there was 

no correlation between RWT or LVMIECHO and radial, circumferential or longitudinal 

strain. 

 

5.2.6 Valvulo-Arterial Impedance  

 

Invasive Zva was assessed for each physiological setting pre- and post-TAVI with updated 

stroke volumes and blood pressure. It increased from baseline pre-TAVI with pacing 

(p=0.001), and from baseline post-TAVI with pacing (p=0.038). Zva during hyperaemia 

and rapid pacing fell post-TAVI when compared to before intervention (p=0.031 and 

0.030, respectively), and also during hyperaemia from baseline post-TAVI (p=0.021) 

(Table 7-2, Table 7-3, and Table 7-4).  

 

At baseline, there was no difference between the invasive Zva between LGAS and HGAS 
cohorts in this study ( 
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Table 7-5). There was, however, significant correlation between ZvaECHO and SViMRI (R=-

0.532, p=0.019), and also with hyperaemic invasive pre-TAVI Zva and LVMIMRI (R=0.505, 

p=0.029) and AVAi (R=-0.757, p<0.001).  
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5.2.7 Pressure-Volume Loop Assessment of the Left Ventricle  

 

 

 
Figure 5-4: Maximum and minimum dP/dt in LGAS and HGAS patients  

 

Pressure–volume loop (PVL) analysis is considered the gold standard for the investigation 

of myocardial haemodynamics. Results are displayed in Table 5-8, Table 5-9 and Table 

5-10 and this topic will also be explored in more detail in Chapter 7.  

 

Prior to TAVI, hyperaemia induced minimal effect on the myocardium, however post-

TAVI, a significant reduction in both dP/dt- and dP/dt+ was observed with hyperaemia. 

Both before and after intervention, pacing had a pronounced effect on the reduction of 
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dP/dt- (p<0001). TAVI induced significant reduction in ESPVR, dP/dt- and dP/dt+ at rest, 

with hyperaemia and with pacing.  

 

When assessing the correlation between the resting haemodynamic measurements of 

minimum and maximum dP/dt, ESPVR, EDPVR, and strain as derived from tissue tracking 

MRI cine images, only 3D radial strain and ESPVR (r=0.686, p=0.002) were significant 

associates. LVMIECHO did not correlate with dP/dt+, dP/dt-, EDPVR or ESPVR and LVMIMRI 

correlated only loosely with ESPVR (r=-0.432, p=0.073) and EDPVR (R=-0.430, p=0.083) 

and not with dP/dt+ or dP/dt-.  

 

In LGAS patients, I observed reduced baseline dP/dt- (-1066 [-1494,-974] vs -1439 [-1652,-

1153], p=0.050) and dP/dt+ (1267 [1047,1408] vs 1533 [1259,1812], p=0.031) (Figure 

5-4). In addition, there was a trend toward reduced values during hyperaemia before 

TAVI for dP/dt- (p=0.074).  

 

Post-TAVI, the relative change from pre-TAVI resting ESP (-9±19% vs -34±11%, p=0.004), 

dP/dt+ (-19±15% vs -37±9%, p=0.013) and dP/dt- (-17±19% vs -39±15%, p=0.015) was 

significantly less profound in LGAS when compared to HGAS patients. In addition, from 

resting state post-TAVI, hyperaemia also induced a less pronounced effect in the LGAS 

cohort concerning dP/dt+ (-1% [-6,+2] vs -6% [-12,-4], p=0.014), and dP/dt- (-3% [-11,+1] 

vs -10% [-18,-6], p=0.024). Post-TAVI with rapid pacing, ESP fell less significantly in LGAS 

patients (-16±11% vs -27±10%, p=0.037). 
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Table 5-8: Invasive results from induced hyperaemia in all paired datasets 

 Pre-TAVI Post-TAVI 

 Rest Hyperaemia  Rest Hyperaemia  
HR (bpm) 78 (68,85) 80 (73,90) P=0.073 76 (67,85) 80 (73,87) NS 
sBPAo (mmHg) 117 (102,134) 123 (104,149) NS 123 (113,131) 133 (108,170) NS 
AIxAo (%) 70 (46,99) 71 (61,98) NS 57 (29,68) 71 (47,99) NS 
AIxcoro (%) 71 (55,75) 67 (52,75) NS 37 (25,50) 42 (30,53) NS 
APcoro (mmHg) 40±17 42±14 NS 26±24 32±21 NS 
TTI (mmHg.s) 37 (29,44) 39 (32,46) NS 35 (31,40) 40 (30,55) NS 
DTI (mmHg.s) 26±8 26±12 NS 25±6 32±23 NS 
Γ 1.15±0.23 1.20±0.21 NS 1.04±0.25 1.11±0.28 NS 
dP/dt+ (mmHg/s) 1397 (1156,1563) 1430 (1106,1558) NS 960 (833,1095) 864 (742,1036) P=0.002 
dP/dt- (mmHg/s) -1297 (-1595,-1065) -1309 (-1577,-999) NS -834 (-1071,-715) -742 (-900,-657) P<0.001 
EDPVR (mmHg/ml) 0.14 (0.10,0.17) 0.13 (0.09,0.16) P=0.051 0.13 (0.79,0.20)) 0.13 (0.07,0.24 NS 
ESPVR (mmHg/ml) 3.15 (2.37,3.87) 2.76 (2.25,3.66) NS 2.12 (1.73,2.60) 2.12 (1.69,2.55) NS 
RPP (mmHg.bpm) 8536 (7367,11087) 9906 (7415,12518) P=0.090 9808 (8166,10605) 11078 (9096,13707) P=0.045 
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Table 5-9: Invasive results from pacing in all paired datasets 

 Pre-TAVI Post-TAVI 

 Rest Pacing  Rest Pacing  
HR (bpm) 78 (68,85) 126 (124,129) P<0.001 76 (67,85) 126 (124,130) P<0.001 
sBPAo (mmHg) 117 (102,134) 107 (85,128) P=0.008 123 (113,131) 100 (83,126) P<0.001 
AIxAo (%) 70 (46,99) 90 (49,104 NS 57 (29,68) 43 (27,99) NS 
AIxcoro (%) 71 (55,75) 64 (59,81) NS 37 (25,50) 60 (24,92) NS 
APcoro (mmHg) 42±18 28±14 P=0.012 26±24 27±18 NS 
TTI (mmHg.s) 37 (29,44) 30 (20,34) P<0.001 35 (31,40) 22 (17,30) P<0.001 
DTI (mmHg.s) 27±11 11±4 P<0.001 26±6 14±5 P<0.001 
Γ 1.14±0.23 1.37±0.24 P<0.001 1.04±0.25 1.31±0.16 P=0.002 
dP/dt+ (mmHg/s) 1397 (1156,1563) 1405 (1078,1781) NS 960 (833,1095) 1023 (860,1270) NS 
dP/dt- (mmHg/s) -1297 (-1595,-1065) -1029 (-1424,-750) P<0.001 -834 (-1071,-715) -679 (-905,-514) P<0.001 
EDPVR (mmHg/ml) 0.14 (0.10,0.17) 0.17 (0.10,0.28) NS 0.13 (0.08,0.20) 0.14 (0.08,0.23) NS 
ESPVR (mmHg/ml) 3.15 (2.37,3.87) 2.66 (2.23,4.05) NS 2.12 (1.73,2.60) 1.71 (1.37,2.38) P=0.018 
RPP (mmHg.bpm) 8536 (7367,11087) 13682 (10679,15621) P<0.001 9808 (8166,10605) 12094 (10795,15867) P<0.001 
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Table 5-10: The impact of TAVI (pre- vs post) on cardiac mechanics during three physiological settings in all paired datasets 

 

 Baseline Hyperaemia Pacing 

 Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  
HR (bpm) 78 (68,85) 76 (67,85) NS 80 (73,90) 80 (73,87) NS 126 (124,129) 126 (124,130) NS 
sBPAo (mmHg) 117 (102,134) 123 (113,131) NS 123 (104,149) 133 (108,170) NS 107 (85,128) 100 (83,126) NS 
AIxAo (%) 70 (46,99) 57 (29,68) P=0.023 71 (61,98) 71 (47,99) NS 90 (49,104) 43 (27,99) P=0.096 
AIxcoro (%) 71 (55,75) 37 (25,50) P=0.001 67 (52,75) 42 (30,53) P<0.001 64 (59,81) 60 (24,92) NS 
APcoro 
(mmHg) 

42±18 26±24 P=0.026 42±14 29±14 P<0.001 28±14à 27±18 NS 

TTI (mmHg.s) 37 (29,44) 35 (31,40) NS 39 (32,46) 40 (30,55) NS 30 (20,34) 22 (17,30) P=0.045 
DTI (mmHg.s) 27±11 26±6 NS 25±11 32±23 NS 11±4 14±5 P=0.055 
Γ 1.14±0.23 1.04±0.25 NS 1.20±0.21 1.12±0.28 NS 1.37±0.24 1.31±0.16 NS 
dP/dt+ 
(mmHg/s) 

1397 (1156,1563) 960 
(833,1095) 

P<0.001 1430 (1106,1558) 864 
(742,1036) 

P<0.001 1405 (1078,1781) 1023 (860,270) P<0.001 

dP/dt- 
(mmHg/s) 

-1297 (-1595,-1065) -834 (-1071,-
715) 

P<0.001 -1309 (-1577,-999) -741 (-900,-
657) 

P<0.001 -1029 (-1424,-750) -679 (-905,-
514) 

P=0.001 

EDPVR 
(mmHg/ml) 

0.14 (0.10,0.17) 0.13 
(0.79,0.20) 

NS 0.13 (0.09,0.16) 0.13 
(0.07,0.24) 

NS 0.17 (0.10,0.28) 0.14 (0.08,0.23) NS 

ESPVR 
(mmHg/ml) 

3.15 (2.37,3.87) 2.12 
(1.73,2.60) 

P<0.001 2.76 (2.25,3.66) 2.12 
(1.69,2.55) 

P=0.001 2.66 (2.23,4.05) 1.71 (1.37,2.38) P<0.001 

RPP 
(mmHg.bpm) 

8536 (7367,11087) 9808 
(8166,10605) 

NS 9906 (7415,12518) 11078 
(9096,13707) 

NS 13682 (10679,15621) 12094 
(10795,15867) 

NS 
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5.2.8 Reflection Coefficient and Augmentation Index  

 

Γ increased from baseline with pacing both pre- and post-TAVI (Table 5-9). TAVI caused 

the coronary AIx to fall at rest and during hyperaemia, presumably related to reduced 

systemic vascular resistance following valve intervention.  

 

These variables were also different between study groups (Table 5-11). Both coronary 

and aortic AIx, coronary AP and Γ were significantly lower in LGAS at rest and during 

hyperaemia pre-TAVI. Post-TAVI, the observation of reduced aortic AIx and coronary AP 

in LGAS patients was sustained during hyperaemia. There were no statistically significant 

differences observed between cohorts during rapid pacing. In this study, there was no 

association between the arterial wave reflection with either the aortic valve calcium score 

or indexed calcium score. 
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Table 5-11: Invasive results in LGAS and HGAS cohorts for resting and hyperaemic states. Results displayed when P<0.010 for LGAS then HGAS with SD or IQR in brackets.  

 Pre-TAVI Post-TAVI Pre-TAVI Post-TAVI 
 REST HYPERAEMIA 

HR (bpm)  NS  NS  NS  NS 
sBPAo (mmHg)  NS  NS  NS  NS 
AIxAo (%) 57 (28,72)/91 (55,102) P=0.010  NS 65 (35,71)/88 (76,102) P=0.014 49 (28,71)/99 (61,106) P=0.022 
AIxcoro (%) 55 (30,73)/74 (66,87) P=0.028  NS 65 (40,70)/74 (65,85) P=0.040 20 (14,29)/32 (20,53) P=0.095 
APcoro (mmHg) 26 (18,47)/49 (38,54) P=0.035  NS 36 (28,43)/45 (38,53) P=0.063 39 (20,43)/45 (34,64) P=0.022 
TTI (mmHg.s)  NS  NS  NS  NS 
DTI (mmHg.s)  NS  NS 29 (21,43)/20 (14,32) P=0.094  NS 
Γ 0.99 (0.85,1.08)/1.33 (1.12,1.45) P=0.028  NS 1.12 (0.88,1.25)/1.33 (1.20,1.42) P=0.014  NS 
RPP (mmHg.bpm)  NS  NS  NS  NS 
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5.2.9 Tissue and Serum Results 

 

In this study, of the ten endomyocardial biopsy samples, no cases of amyloidosis were 

detected. In addition, there was no evidence of amyloidosis in any case with CMR.  

 

The role of cardiac biomarkers in stratifying the risk and timing of intervention is key, 

especially when symptoms are confounded by comorbidities. Neurohormonal activation, 

stimulating the release of enzymes such as troponin and N-terminal pro-B natriuretic 

peptide (NT-proBNP) correlates well with symptom-free survival and allows monitoring 

using a simple blood test. NT-proBNP levels at baseline were 720ng/l (369,983) in LGAS 

patients and 1355ng/l (935,6957) in HGAS patients (p=0.058) and reduced following TAVI 

when both cohorts were analysed together (897 [566,1559] to 500 [174,1209], p=0.011). 

However, BNP change was less profound in LGAS patients when compared with HGAS 

(+16% [-55,+37] vs -73% [-89,-42], p=0.020). 

 

Baseline NT-proBNP levels correlated closely with the indexed aortic valve area (R=-

0.527, p=0.025), LVMI (R=0.550, p=0.018), backward expansion wave (R=-0.821, 

p<0.001), peak radial strain (R=-0.819, p<0.001), and microvascular resistance 

(pancardiac MR R=-0.496, p=0.036 and diastolic MR R=-0.480, p=0.044).  

 

5.3 Discussion and summary  
 

Significant remodelling occurred within a few months of valve intervention. LV size, mass 

and mass:volume ratio reduced. Poor correlation existed between measures of stroke 

volume, aortic valve area and left ventricular mass when measured by echocardiography 

and MRI or CT and echocardiography is known to underestimate stroke volume246. Left 

ventricular outflow tract (LVOT) diameter is an important measurement in stroke volume 

calculation by echocardiography, yet this calculation does not take into consideration its 

elliptical shape and it is frequently inaccurately measured. In this study, LVOT 

measurement by echocardiography was lower than comparative gated computed 

tomography resulting in a significant impact on stroke volume calculation. Stroke volume 
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as calculated by echocardiography was also significantly lower than that calculated by 

MRI.  

 

There was no significant difference in Zva between cohorts, contrary to previous work. 

Baseline AIx and Γ measurements were significantly lower in LGAS patients, perhaps 

related to lower LVMI or reduced vascular load, however these differences from HGAS 

patients were eliminated immediately following TAVI. There were minimal differences in 

strain parameters between cohorts but minimum and maximum dP/dt were lower in 

LGAS patients as was the change in LV end systolic pressure post-TAVI.  

 

GLS is closely related to all-cause mortality238 and both cohorts exhibited reduced strain. 

Whilst LGAS is typically associated with reduced GLS in comparison to HGAS81 which was 

not found in this study, the HGAS recruits in this study were at the “critical” end of severe 

AS and likely to feature profound subclinical LV dysfunction. Low-flow in the setting of AS 

has been linked with higher levels of miRNA1 and miRNA21 when compared to other 

subgroups of AS, the latter found to correlate with reduced global longitudinal strain247.  

 

These data are supportive of LGAS exhibiting reduced LV contractility and similarly 

reduced strain in comparison to HGAS patients despite reduced LVMI. LV remodelling did 

however respond to TAVI in a similar way to HGAS patients. 
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6.1 Introduction  

 

“...Factors other than the functional state of the myocardium may be responsible  

for substantial alterations in ventricular end-diastolic pressure” 

Herbert J Levine, 1972227 

 

Fibrosis is a maladaptive response to damaged myocardium. It can be macroscopically 

identifiable and is detected as late gadolinium enhancement on cardiac magnetic 

resonance. This replacement fibrosis is irreversible, whereas earlier diffuse interstitial 

fibrosis may be reversible, detected by cardiac magnetic resonance T1 mapping 

techniques. Interstitial fibrosis appears as fine strands of collagenous connective tissue 

encircling and separating individual muscle fibres. In another form, perivascular fibrosis 

is expansion of the amount of fibrosis in adventitia of intramyocardial arteries and 

veins128. Interstitial, and replacement fibrosis in the sub-endocardium, and midwall of the 

left ventricle have been demonstrated in patients with aortic stenosis (AS) and normal 

coronary arteries88,127,133,136,138,140,143. The result is stiffened, impaired myocardium with 

clinical sequelae of heart failure and increased mortality. This chapter will focus on the 

pathophysiology of fibrosis in AS, and findings from cardiac magnetic resonance imaging 

and histological assessment of patients undergoing trans-catheter aortic valve 

implantation to challenge the hypothesis of a greater proportion and distinct distribution 

of myocardial fibrosis in low gradient aortic stenosis. 

 

6.1.1 Pathogenesis of Fibrosis  

 

Pressure overload from AS results in compensatory hypertrophy, a response to increased 

biomechanical stress but this later becomes pathological and results in apoptosis and 

necrosis, and fibrosis. Cardiomyocyte width and subendocardial collagen content 

increase248. Myocardial extracellular matrix (ECM) provides a dynamic balance of proteins 

and signaling molecules to maintain an appropriate scaffold for cardiac structure and 

provide a link between intracellular cytoskeletal proteins and intercellular proteins. The 

myocardial cells are supported by it, which consists of a macromolecular network of 



MYOCARDIAL FIBROSIS IN AORTIC STENOSIS 

123 

 

fibres with intricate 3D organisation that largely determines the structural and functional 

integrity of the heart249. This matrix is composed of collagen, pericellular matrix 

components (fibronectin and proteoglycans), basement membrane components (laminin 

and collagen type IV), proteases and growth factors250.  

 

 
Figure 6-1: Schematic diagram of the pathogenesis of fibrosis  

 

Many different pathophysiological stimuli can insult the myocardium, inducing a cascade 

which ultimately results in fibrosis by stimulating cardiac myofibroblasts to mediate 

excessive deposition of connective tissue in the interstitial space. Instigators include 

myocarditis, ischaemia and infarction, pressure overload from hypertension or AS, 
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diabetes mellitus, chronic renal impairment, non-ischaemic dilated cardiomyopathy, 

hypertrophic cardiomyopathy, toxic cardiomyopathies, sarcoidosis, and infiltrative 

disease such as amyloidosis and Anderson-Fabry disease.  

 

In response to insult, cardiac myofibroblasts are activated by mechanical conductor 

signals and signaling molecules (including TGF-ß, endothelin-1, fibroblast growth factor 

and cytokines), become proliferative and invasive, increasing secretion of ECM-degrading 

matrix metalloproteinases (MMPs) and collagen turnover (Figure 6-1). Cardiac 

remodelling ensues, including myocyte hypertrophy, apoptosis, necrosis, fibroblast 

proliferation, increased fibrillar collagen and fibrosis251. Early response of MMP activation 

and regulation of tissue inhibitors of metalloproteinases (TIMPs) allow repair but later 

become maladaptive with clinical impact. Whilst MMPs, which control ECM degradation, 

do not normally exist in the ECM, they are upregulated in pathological settings, and TGF-

ß can suppress their activity and enhance activity of TIMPs252. 

 

Two main cell types are found in the heart, cardiac myocytes and mesenchymal cells 

(cardiac fibroblasts and myofibroblasts). Pro-fibrotic signaling factors cause quiescent 

cardiac fibroblasts to differentiate into myofibroblasts and proliferate, inducing ECM 

deposition. During this process they express α-smooth muscle actin (SMA), and 

synthesise and secrete fibrillar collagen types I and III253 and fibronectin. A cycle of 

increasing ECM ensues, with positive feedback from myofibroblasts which release 

profibrotic signaling factors, such as TGF-ß1 and Wnt, which further promote 

myofibroblast differentiation and ECM deposition. Typically, fibrosis is accompanied by 

apoptosis and necrosis, and its formation is related to complex spatial and temporal 

remodeling of the myocardium and controlled by a plethora of signaling cascades. These 

intra- and intercellular pathways include inflammatory, pro-fibrotic, and migratory 

mediators254. 

 

Several critical contributors are involved. TGF-ß stimulates α-SMA-rich myofibroblast 

formation255, and α-SMA is a powerful marker of myofibroblastic cells and negatively 

regulated by γ-interferon256. TGF-ß is mediated via fibronectin to induce α-SMA and 
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collagen formation, and also stimulates connective tissue growth factor (CTGF)257. CTGF 

is an essential mediator in TGF-ß induced tissue remodeling and fibrosis258 and it 

correlates with fibronectin and collagen types I and III in the setting of ischaemia. 

Inhibition of both CTGF and TGF-ß1 has been shown to prevent myocardial fibrosis in 

animal models258,259.  

 

The renin-angiotensin-aldosterone system is involved in regulating myocardial fibrosis 

and circulating angiotensin II is thought to affect gene expression. Blockade of 

angiotensin II type-1 receptors has been shown to normalise the ratio of collagen I 

(providing rigidity and stiffness) to collagen III (providing elasticity) since this is usually 

imbalanced (collagen I increases more than III), leading to increased wall tension260. 

 

 
Figure 6-2: Molecular signaling involved between cardiac fibroblasts and cardiomyocytes  

 

Inflammatory cells also play a vital role in the response to pathological stimulus. 

Monocytes differentiate into macrophages, travel to the area of damage and carry out 

proteolytic activity and secrete pro-inflammatory mediators. These cells can regulate the 

balance of MMPs and TIMPs261. 

 

6.1.2 Fibrosis in AS  
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Increasing pressure overload in AS results in left ventricular myocyte hypertrophy and 

the proliferation (or hyperplasia) of connective tissue cells262. The tensile stress of the 

myocardium reflects the mechanical properties of its integrated muscle and interstitial 

connective tissues, and with increased stiffness, ventricular filling requires more energy, 

leading to increased ventricular filling pressures and symptoms of heart failure. As the 

myocardium responds to pressure overload, reduced density of cardiac muscle nuclei 

signifies hypertrophy rather than hyperplasia, and there is a proportionate increase in 

connective tissue (muscle cell % of myocardium remains steady at 75-81% irrespective of 

left ventricular mass) – that commensurate connective tissue increase is a component of 

cardiac enlargement228,263.  

 

The mRNA expression of MMPs and TIMPs along with their protein levels has been 

investigated in patients with AS undergoing aortic valve replacement, with findings of 

significantly greater levels of MMP-2 and an overall balance shifted towards MMP 

inhibition, thereby favouring collagen accumulation264.  

 

Cellular adhesion molecules are expressed on vascular endothelium and on immune and 

inflammatory cells and are involved the migration of cells to areas of inflammation, 

transmigration of lymphocytes, and in immune effector functions. The molecules 

intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), 

and E-selectin are expressed on vascular endothelium and serve as ligands for counter- 

receptors on circulating inflammatory cells. Serum levels of these molecules are elevated 

in patients with AS265 and this upregulation may indicate underlying microvascular 

inflammation and macrophage activation.  

 

PECAM-1 (CD31) staining is known to be a highly sensitive endothelial marker and can be 

used to measure blood vessel density in myocardium. A higher percentage of blood 

vessels in the total myocardium correlates with reduced LV ejection fraction, higher E/e’, 

blunted global longitudinal strain, greater LVMI and smaller aortic valve area266.  

 
6.1.3 Interstitial and Replacement Fibrosis in Aortic Stenosis  
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Chelates of gadolinium, a ferromagnetic metal, are used routinely as contrast media for 

cardiac magnetic resonance imaging (CMR), having been first applied in 1984267. They are 

safe for clinical use since chelated gadolinium compounds are renally excreted, although 

rarely may cause nephrogenic systemic fibrosis in patients with severe renal impairment. 

Scarred tissue passively accumulates more contrast agent, thereby shortening the T1 

value in comparison to healthy myocardium, visible on inversion recovery sequences. 

Delayed imaging to detect this gadolinium hold up in the extracellular expansion (late 

gadolinium enhancement, LGE) provides detailed information on diseased myocardium, 

and is an independent and powerful predictor of death and cardiovascular risk. Utilisation 

of this tissue characterisation is arguably the most pertinent use for CMR. Once 

established, fibrosis progresses but is arrested (not reversed) by aortic valve 

intervention268,269. LGE is sensitive in detecting replacement fibrosis, however it is 

insensitive in the detection of diffuse fibrosis.  

 

Native longitudinal relaxation time (T1 ) is increased with the expansion of the interstitial 

space, for example with oedema, fibrosis, infarction, and protein infiltration (and 

shortened with fat and iron deposition) and can be used in the detection of interstitial 

fibrosis. T1 is measured in CMR by creating T1 mapping sequences and T1 mapping 

describes the pixel-wise quantification of the relaxation time, mapped to enable tissue 

characterisation. Extracellular volume (ECV) using pre- and post-contrast myocardial and 

blood pool T1 values was then calculated as outlined in Section 2.7.3 – this has been 

shown to correlate more closely with outcomes when compared with native T1 alone270. 

 

6.2 Results 

 

6.2.1 LGE results 

 

I found that three out of nine patients with LGAS exhibited subendocardial late 

gadolinium enhancement, and two patients out of ten with HGAS demonstrated mid-wall 

enhancement (Figure 6-3) – there was no crossover. Focal fibrosis did not change when 

assessed on follow-up CMR post-TAVI.  
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Figure 6-3: Late gadolinium demonstrating replacement fibrosis. Top panel: three patients with LGAS 

featuring subendocardial fibrosis; Bottom panel: Midwall fibrosis in two patients with HGAS (there was no 

crossover in this pattern of LGE) 

 

6.2.2 T1 Mapping for Interstitial Fibrosis  

 

ECV did not change following intervention (0.299±0.044 to 0.292±0.024, p=0.533). This 

was despite a fall in LVMI by 17% (64 to 53g/m2, p<0.001) and a similar reduction in matrix 

volume (the product of LV mass and ECV) by 18% (33.2±9.9 to 27.2±6.8ml/m2, p=0.002) 

(Table 6-1). These changes in LV mass and matrix volume are in keeping with previously 

published data demonstrating a 19% and 22% reduction, respectively, one year after 

aortic valve replacement269. 

 

Table 6-1: LGAS and HGAS results for myocardial components  

 LGAS HGAS P value 

Myocardial mass  

ALL (g) 108.0 (96.8,118.7) à 90.9 (78.4,104.7) 0.001 

Pre-TAVI (g) 97.3±16.4 120.9±30.6 0.051 

Post-TAVI myocardial mass (g) 88.5±15.4 97.3±27.4 NS 

Change following intervention (%) -11±18 -26±20 NS 

Left ventricular mass index  

ALL (g/m2) 62.7 (58.6,70.2) à 51.0 (44.1,55.8) <0.001 

Pre-TAVI (g/m2)  56.3±8.5 71.1±18.1 0.037 
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Post-TAVI (g/m2) 48.1±7.0 56.8±15.8 NS 

Change following intervention (%) -17±13 -27±21 NS 

Extracellular volume 

ALL (%) 29.9±4.4 à 29.2±2.4 NS 

Pre-TAVI (%) 30.3±4.9 29.4±3.8 NS 

Post-TAVI (%) 29.1±2.4 29.3±2.5 NS 

Change following intervention (%) -2±16 0.4±11 NS 

Matrix volume 

ALL (ml/m2) 33.2±9.9 à 27.2±6.8 0.002 

Pre-TAVI (ml/m2) 29.9±8.4 35.7±10.4 NS 

Post-TAVI (ml/m2) 25.6±3.9 28.5±8.5 NS 

Change following intervention (%) -8±30 -19±13 NS 

Native T1 

ALL (ms) 1158±67 à 1182±54 0.089 

Pre-TAVI (ms) 1158±75 1166±64 NS 

Post-TAVI (ms) 1168±63 1194±46 NS 

Change following intervention (%) 2±3 3±6 NS 

 

There was no difference between LGAS and HGAS groups for pre-TAVI native T1, ECV and 

matrix volume. There was also no difference for these values post-TAVI and relative 

change post-intervention.  

 

Significant correlations existed between baseline matrix volume and LVMIMRI (R=0.619, 

p=0.005), resting diastolic microvascular resistance (R=-0.482, p=0.036), LVEDVi 

(R=0.710, p=0.001), LVESVi (R=0.648, p=0.003), SVi (R=0.614, p=0.006, CO (R=0.528, 

p=0.020) and global radial strain (R=-0.578, p=0.012). Native pre-TAVI T1 was associated 

with the relative change in endocardial-epicardial gradient (r=0.471, p=0.049) following 

intervention, and with resting diastolic microvascular resistance (R=-0.483, p=0.036). In 

addition, the change in native T1 following TAVI was associated with baseline BNP level 

(R=-0.716, p=0.001), ejection fraction (R=0.599, p=0.009) and radial strain (R=0.576, 

p=0.016). There was no significant correlation between global MPRI and LVMI, indexed 

stroke volume, or indexed end systolic and diastolic volumes. 

 

6.2.3 Aortic Valve Calcification and Correlations 

 

The normal aortic valve is a complex functional unit which ensures seamless kinetic 

energy transfer from the ventricle to the aorta. Aortic valve calcification is not simply a 

degenerative process. The initial cause is often linked to altered mechanical loading, but 

tissue remodelling is perpetuated by inflammation and fibrosis. Calcific AS 
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pathophysiology can be divided into two distinct phases – initiation and propagation. The 

former has a similar profile to that of atherosclerosis, from endothelial insult/activation 

to inflammation with risk factors including male gender, body mass index, smoking, 

hypertension, and deranged lipid profile43.  

 

In this study, patients with LGAS had a lower calcium score compared to HGAS patients 

(1935 [1244,3219] vs 2997 [2753,5868], p=0.028) and also when indexed to body surface 

area (720 [550,1821] vs 1649 [1544,1799], p=0.017). There was significant correlation 

between indexed calcium score and indexed aortic valve area (R=-0.516, p=0.024), mean 

aortic valve pressure gradient (R=0.614, p=0.006), peak pressure gradient (R=0.610, 

p=0.006), baseline indexed LV end systolic volume (R=0.540, p=0.017), and LVMIMRI 

(R=0.477, p=0.039). There was no correlation between calcium score values and stroke 

volume calculated either by MRI or echocardiography.  

 

6.3 Summary  

 

Hermann et al88 demonstrated that patients with a low transvalvular gradient present 
with more advanced myocardial fibrosis, typically at the subendocardium. As discussed 
in section 1.7.2, longitudinal subendocardial fibres are vulnerable to ischaemia and left 
ventricular pressure overload and may not be reflected by global ejection fraction. Left 
ventricular pressure was lower in LGAS patients (see  
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Table 7-5), yet the pattern of subendocardial fibrosis as assessed by us was more 

prominent. Midwall fibrosis has been clearly described133 and carries significant risk and 

is the pattern of fibrosis typically associated with HGAS as seen in this study.  

 

There was no difference in the burden of interstitial fibrosis between patients with LGAS 

and HGAS. This was despite lower LVMI in patients with LGAS and reduced contractility. 

Patients with LGAS had reduced aortic valve calcification, correlating with LVMI, and valve 

gradients, but not stroke volume. Left ventricular mass regression following aortic valve 

intervention can be driven by ECM regression alone (reduction in ECV), by cellular 

regression alone (ECV increases), or by proportional regression in cellular and matrix 

compartments (ECV remains the same)269, as observed in this study in both cohorts. Our 

hypothesis that LGAS would demonstrate higher levels of interstitial fibrosis is not 

supported by these findings. AS may be a secondary condition in these patients, with an 

underlying primary ventricular myopathy yet this is not explained by LV mass regression, 

and a lack of differentiation between cohorts post-intervention. Further histological 

assessment to correlate ECV to collagen volume fraction would be beneficial in the 

assessment of fibrosis phenotyping.  
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7 CARDIAC-CORONARY COUPLING PRE- AND POST-

TAVI  
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7.1 Introduction 

 

“If it were possible to correlate the family of ventricular function curves under varying 

conditions with simultaneously obtained ventricular pressure-volume curves, 

a comprehensive view of the physical determinants of cardiac action would be at hand” 

Sarnoff & Berglund 1954271 

 

Left ventricular (LV) contraction influences the arterial systolic pressure upstroke in a 

complex interplay of contractility, aortic valve flow, arterial peripheral resistance, 

diastolic pressure, and the pattern of LV electrical activation. Cardiac-coronary coupling 

is the term used to describe the intertwined relationship which comes from simultaneous 

crosstalk between excitation-contraction, coronary blood flow and ventricular 

mechanical properties.  

 

This chapter focuses on the interaction of coronary and cardiac performance and 

efficiency, and their quantification by physiological assessment before and after 

transcatheter aortic valve implantation (TAVI) using left ventricular pressure-volume 

loops and coronary pressure and flow. This complex relationship has been described in 

previous chapters, but here, I will focus on acute modifications of coronary and LV 

performance and interaction, testing further hypothesised patterns of impaired coronary 

flow and left ventricular myopathy in low gradient patients.  

 

7.1.1 The Cardiomyocyte  

 

Cardiomyocytes are the individual functional units of cardiac muscle, providing the 

contractile power of the heart. Cardiac muscle is striated due to alternating thick and thin 

filaments composed of myosin and actin, respectively. Cardiomyocytes contain these 

contractile protein filaments known collectively as myofibrils, as repeating sections of 

sarcomeres, the basic unit of contractile muscle. Sarcomeres are connected to a plasma 

membrane, a sarcolemma, by transverse (T)-tubules, which speed up the rate of 
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depolarisation within the sarcomere. Contraction and relaxation is made possible by 

myosin and actin adenosine triphosphate binding, allowing the two proteins to slide past 

each other – thin over thick filaments. 

 

7.1.2 Cardiac Excitation-Contraction Coupling  

 

Excitation-contraction coupling embodies the process of converting electrical stimulus 

(excitation) to a mechanical response (contraction). Action potentials, induced by the 

pacemaker cells in the sinoatrial and atrioventricular nodes, are conducted to 

cardiomyocytes through gap junctions. When between sarcomeres in the sarcolemma, it 

travels into T-tubes, depolarising the cell membrane (Figure 7-1).  

 

 
Figure 7-1: Figure demonstrating the cardiac excitation-contraction on a cellular level  

 

Cell membrane calcium channel receptors respond to the action potential to open and 

allow calcium influx, which subsequently causes sarcoplasmic reticulum to release 

further calcium. Thin filaments are composed of troponin, tropomyosin and actin, 

together forming a regulatory protein complex. Resulting high levels of intracellular 

calcium binds to troponin-C in the regulatory complex and resulting changes in the 

structure of this complex triggers exposure of actin through Troponin-I, allowing myosin 

ATPase located on the myosin head to bind to actin, which is pulled towards the centre 

of the sarcomere, contracting the muscle. Intracellular calcium is then removed by the 
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sarcoplasmic reticulum, and with this reduction in concentration, the regulatory protein 

complex returns to its original structure, breaking the actin-myosin connection and 

ending contraction.  

 

7.1.3 Preload and Afterload  

 

Preload refers to the degree of tension on the cardiac myocytes when they begin to 

contract, and afterload is the load against which the muscle exerts its contractile force. 

End diastolic pressure relates to preload and is a measure of sarcomere length. Changes 

in preload dramatically affect ventricular dimensions and stroke volume by the Frank-

Starling mechanism – the greater the heart muscle is stretched during filling, the greater 

the force of contraction and the greater the stroke volume, within physiologic limits. By 

contrast, if preload decreases, stroke volume drops. 

 

Table 7-1: Influences of variables on parameters of ventricular function272 

 Contractility 

sensitive 

Diastolic 

function 

sensitive 

Afterload 

independent 

Size (body, 

heart) 

independent 

Valve function 

independent 

PRSW ✓ ✓ ✓ ✓ ✓ 

EF ✓ - - ✓ - 

Ees ✓ - ✓ - ✓ 

 

Preload recruitable stroke work (PRSW) is determined by the linear regression of stroke 

work with the end-diastolic volume. The slope of the PRSW is an index for evaluating the 

overall ventricular function that is independent of the afterload, preload, and ventricle 

size (Table 7-1).  

 

Starling’s contractility index (SCI), the slope of the relationship between dP/dt+ and EDV 

upon preload reduction, is more sensitive to changes in contractility than end-systolic 

elastance (Ees) and PRSW.  
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The PVA is the area between the EDPVR and ESPVR as a function of EDP and is 

independent of afterload. A previous study demonstrated a highly significant linear 

correlation with myocardial oxygen consumption273. 

 

The time constant of isovolumetric relaxation, Tau, has previously been shown to 

increase with progressive left ventricular dysfunction and pulmonary hypertension in the 

setting of aortic stenosis. It positively correlates with EDV, ESV, LV mass index, pulmonary 

capillary wedge pressure and EDP, and negatively with ejection fraction and dP/dt+274.  

 

7.1.4 Ventricular-Arterial Coupling  

 
Figure 7-2: Haemodynamic indices used in pressure-volume loop datasets  

 

Ventricular-arterial coupling (VA) is measured as the ratio between effective arterial 

elastance (Ea), an index of afterload, and end systolic elastance (Ees), a load-independent 

index of contractility (Figure 7-2). Ea is an integrative index incorporating the principal 

elements of arterial load including peripheral vascular resistance, total arterial 
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compliance, characteristic impedance and systolic and diastolic time intervals275. VA is 

therefore a measure of the interaction between the LV and the arterial system and can 

be used to assess acute modifications of LV performance. Increasing VA coupling signifies 

increased end systolic LV stiffness, which may be mediated by enhanced myocardial 

contractility. VA has been shown to fall post-TAVI, along with Zva – this is in relation to 

increased systemic arterial compliance and reduced systemic vascular resistance275.  

 

7.2 Results  

 

In all patients, both before and after TAVI, the PRSW fell from baseline with rapid pacing 

(p<0.001) and when comparing rest measurements, hyperaemia and rapid pacing, like 

for like, before and after TAVI, all PRSW values reduced (p<0.001) (Table 7-3 and Table 

7-4). Pre-TAVI, there was reduced PRSW in LGAS patients (p=0.013) indicating reduced 

myocardial contractility ( 
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Table 7-5). Stroke work at baseline closely corelated with dP/dt- (R=-0.661, p=0.003), and 

peak radial and circumferential strain (R=-0.510, p=0.037, and R=0.535, p=0.027, 

respectively). PRSW also closely correlated with resting dP/dt- (R=-0.658, p=0.003) and 

ESPVR (R=0.480, p=0.044). There was also a link between resting dP/dt- and PVA (R=-

0.606, p=0.008).  

 

SCI increased with rapid pacing, pre- and post-TAVI, and TAVI induced a reduction in SCI 

during like-for-like conditions of rest, hyperaemia and rapid pacing (p<0.001). There was 

a close correlation between SCI and ESPVR (R=0.847, p<0.001).  
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Table 7-2: The effect of hyperaemia on full pressure-volume loop results in all paired datasets 

 Pre-TAVI (n=17) Post-TAVI (n=18) 
 Rest Hyperaemia  Rest Hyperaemia  
SV (ml) 77 (66,96) 84 (65,95) NS 82 (62,92) 85 (59,89) NS 
EDP (mmHg) 17 (12,27) 19 (13,26) NS 17 (10,26) 18 (8,27) NS 
ESP (mmHg) 151 (126,172) 149 (125,168) NS 110 (104-126) 101 (95,121) P=0.003 
EDV (ml) 135 (104,152) 133 (107,159) NS 132 (108,148) 126 (101,147) NS 
ESV (ml) 50 (38,56) 49 (40,66) NS 55 (46,58) 53 (39,64) NS 
EF (%) 61 (56,68) 60 (53,68) NS 62 (55,66) 63 (52,69) P=0.074 
CO (l/min) 5.4 (4.3,6.5) 5.3 (4.3,7.3) NS 6.0 (4.0,7.1) 5.5 (3.7,6.8) NS 
Ea (mmHg/ml) 1.9 (1.6,2.5) 1.7 (1.4,2.6) NS 1.5 (1.2,1.8) 1.44 (1.09,1.94) P=0.021 
Ees (mmHg/ml) 3.0 (2.4,3.9) 2.7 (2.2,3.6) NS 2.0 (1.7,2.6) 2.1 (1.7,2.5) NS 
VA  0.63 (0.48,0.79) 0.66 (0.48,0.90) NS 0.63 (0.51,0.84) 0.60 (0.46,0.92) P=0.048 
SCI (mmHg/ml/s) 10.2 (8.1,14.8) 10.5 (7.9,13.2) P=0.071 7.9 (6.1,10.0) 7.9 (5.8,9.4) NS 
Tau (ms) 40 (36,53) 41 (37,58) NS 52 (37,423) 89 (40,415) P=0.067 
dP/dt+ (mmHg/s) 1397 (1156,1563) 1430 (1106,1558) NS 960 (833,1095) 864 (742,1036) P=0.002 
dP/dt- (mmHg/s) -1297 (-1595,-1065) -1309 (-1577,-999) NS -834 (-1071,-715) -742 (-900,-657) P<0.001 
EDPVR (mmHg/ml) 0.14 (0.10,0.17) 0.13 (0.09,0.16) P=0.051 0.13 (0.79,0.20) 0.13 (0.07,0.24) NS 
ESPVR (mmHg/ml) 3.15 (2.37,3.87) 2.76 (2.25,3.66) NS 2.12 (1.73,2.60) 2.12 (1.69,2.55) NS 
PVA (mmHg.ml) 15961 (13050,21389) 15149 (12954,20714) NS 11254 (8818,14518) 9707 (7612,13349) P<0.001 
SW (ml.mmHg) 12804 (9602,15221) 12336 (9356,15868) NS 8220 (5989,10703) 7439 (4323,9459) P=0.043 
PRSW (mmHg) 100 (87,109) 90 (81,107) NS 59 (53,68) 57 (49,65) NS 
Zva (mmHg/ml/m2) 3.46 (2.72,4.20) 3.12 (2.41,4.30) NS 2.74 (2.21,3.20) 2.56 (1.90,3.49) P=0.021 
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Table 7-3: The effect of pacing on full pressure-volume loop results in all paired datasets 

 Pre-TAVI (n=18) Post-TAVI (n=18) 
 Rest Pacing  Rest Pacing  
SV (ml) 77 (66,96) 56 (41,68) P<0.001 82 (62,92) 48 (34,66) P<0.001 
EDP (mmHg) 17 (12,27) 16 (12,26) NS 17 (10,26) 15 (8,20) P=0.060 
ESP (mmHg) 151 (126,172) 130 (106,169) P=0.003 110 (104-126) 90 (72,102) P<0.001 
EDV (ml) 135 (104,152) 101 (81,120) P=0.001 132 (108,148) 100 (80,111) P<0.001 
ESV (ml) 50 (38,56) 49 (33,64) NS 55 (46,58) 49 (43,60) P=0.067 
EF (%) 61 (56,68) 54 (44,65) P=0.004 62 (55,66) 52 (40,62) P=0.008 
CO (l/min) 5.4 (4.3,6.5) 6.7 (4.8,8.2) P=0.004 6.0 (4.0,7.1) 5.8 (4.1,8.1) NS 
Ea (mmHg/ml) 1.9 (1.6,2.5) 2.6 (1.9,3.0) P=0.001 1.5 (1.2,1.8) 2.0 (1.4,2.3) P=0.043 
Ees (mmHg/ml) 3.0 (2.4,2.9) 2.7 (2.2,4.0) NS 2.0 (1.7,2.6) 1.7 (1.4,2.4) P=0.099 
VA  0.63 (0.48,0.79) 0.85 (0.55,1.26) P=0.003 0.63 (0.51,0.84) 0.94 (0.60,1.49) P=0.008 
SCI (mmHg/ml/s) 10.2 (8.1,14.8) 14.0 (10.5,15.8) P=0.002 7.9 (6.1,10.0) 10.7 (8.1,14.2) P<0.001 
Tau (ms) 40 (36,53) 44 (36,69) NS 52 (37,423) 68 (41,219) NS 
dP/dt+ (mmHg/s) 1397 (1156,1563) 1405 (1078,1781) NS 960 (833,1095) 1023 (860,1270) NS 
dP/dt- (mmHg/s) -1297 (-1595,-1065) -1029 (-1424,-750) P<0.001 -834 (-1071,-715) -679 (-905,-514) P<0.001 
EDPVR (mmHg/ml) 0.14 (0.10,0.17) 0.17 (0.10,0.28) NS 0.13 (0.08,0.20) 0.14 (0.08,0.23) NS 
ESPVR (mmHg/ml) 3.15 (2.37,3.87) 2.66 (2.23,4.05) NS 2.12 (1.73,2.60) 1.71 (1.37,2.38) P=0.018 
PVA (mmHg.ml) 15961 (13050,21389) 9657 (6626,14485) P<0.001 11254 (8818,14518) 5412 (4149,9308) P<0.001 
SW (ml.mmHg) 12804 (9602,15221) 5813 (4520,9861) P<0.001 8220 (5989,10703) 3537 (2171,6645) P<0.001 
PRSW (mmHg) 100 (87,109) 62 (54,80) P<0.001 59 (53,68) 34 (27,57) P<0.001 
Zva (mmHg/ml/m2) 3.46 (2.72,4.20) 4.13 (3.39,5.56) P=0.001 2.74 (2.21,3.20) 3.50 (2.54,4.17) P=0.038 
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Table 7-4: The impact of TAVI (pre- vs post) on full pressure volume loop results during each physiological setting in all paired datasets 

 Baseline (n=18) Hyperaemia (n=17) Pacing (n=18) 
 Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  Pre-TAVI Post-TAVI  
SV (ml) 77 (66,96) 82 (62,92) NS 84 (65,95) 85 (59,89) NS 56 (41,68) 48 (34,66) NS 
EDP (mmHg) 17 (12,27) 17 (10,26) NS 19 (13,26) 18 (8,27) NS 16 (12,26) 15 (8,20) NS 
ESP (mmHg) 151 (126,172) 110 (104,126) P<0.001 149 (125,168) 101 (95,121) P=0.001 130 (106,169) 90 (72,102) P=0.001 
EDV (ml) 135 (104,152) 132 (108,148) NS 133 (107,159) 126 (101,147) NS 101 (81,120) 100 (80,111) NS 
ESV (ml) 50 (38,56) 545 (46,58) P=0.090 49 (40,66) 53 (39,64) NS 49 (33,64) 49 (43,60) NS 
EF (%) 61 (56,68) 62 (55,66) NS 60 (53,68) 63 (52,69) NS 54 (44,65) 52 (40,62) NS 
CO (l/min) 5.4 (4.3,6.5) 6.0 (4.0,7.1) NS 5.3 (4.3,7.3) 5.5 (3.7,6.8) NS 6.7 (4.8,8.2) 5.8 (4.1,8.1) NS 
Ea (mmHg/ml) 1.9 (1.6,2.5) 1.5 (1.2,1.8) P=0.090 1.7 (1.4,2.6) 1.4 (1.1,1.9) P=0.020 2.4 (1.9,3.0) 2.0 (1.4,2.3) P=0.030 
Ees (mmHg/ml) 3.0 (2.4,3.9) 2.0 (1.7,2.6) P<0.001 2.7 (2.2,3.6) 2.1 (1.7,2.5) P=0.001 2.7 (2.2,4.0) 1.7 (1.4,2.4) P=0.001 
VA  0.63 (0.48,0.79) 0.63 (0.51,0.84) NS 0.66 (0.48,0.90) 0.60 (0.46,0.92) NS 0.85 (0.55,1.26) 0.94 (0.60,1.5) NS 
SCI (mmHg/ml/s) 10.2 (8.1,14.8) 7.9 (6.1,10.0) P<0.001 10.5 (7.9,13.2) 7.9 (5.8,9.4) P<0.001 14.0 (10.5,15.8) 10.7 (8.1,14.2) P<0.001 
Tau (ms) 40 (36,53) 52 (37,423) P=0.014 41 (37,58) 89 (40,415) P=0.023 44 (36,69) 68 (41,219) P=0.060 
dP/dt+ (mmHg/s) 1397 (1156,1563) 960 (833,1095) P<0.001 1430 (1106,1558) 864 (742,1036) P<0.001 1405 (1078,1781) 1023 (860,270) P<0.001 
dP/dt- (mmHg/s) -1297 (-1595,-1065) -834 (-1071,-715) P<0.001 -1309 (-1577,-999) -741 (-900,-657) P<0.001 -1029 (-1424,-750) -679 (-905,-514) P=0.001 
EDPVR (mmHg/ml) 0.14 (0.10,0.17) 0.13 (0.79,0.20) NS 0.13 (0.09,0.16) 0.13 (0.07,0.24) NS 0.17 (0.10,0.28) 0.14 (0.08,0.23) NS 
ESPVR (mmHg/ml) 3.15 (2.37,3.87) 2.12 (1.73,2.60) P<0.001 2.76 (2.25,3.66) 2.12 (1.69,2.55) P=0.001 2.66 (2.23,4.05) 1.71 (1.37,2.38) P<0.001 
PVA (mmHg.ml) 15961 (13050,21389) 11254 (8818,14518) P<0.001 15149 (12954,20714) 9707 (7612,13349) P<0.001 9657 (6626,14485) 5412 (4149,9308) P=0.001 
SW (ml.mmHg) 12804 (9602,15221) 8220 (5989,10702) P<0.001 12336 (9356,15868) 7439 (4323,9459) P<0.001 5813 (4520,9861) 3537 (2171,6645) P<0.001 
PRSW (mmHg) 100 (87,109) 59 (53,68) P<0.001 90 (81,107) 57 (49,65) P<0.001 62 (54,80) 34 (27,57) P<0.001 
Zva (mmHg/ml/m2) 3.46 (2.72,4.20) 2.74 (2.21,3.20) P=0.099 3.12 (2.41,4.30) 2.56 (1.90,3.49) P=0.031 4.13 (3.39,5.56) 3.50 (2.54,4.17) P=0.030 
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7.2.1 Haemodynamic Changes with Intervention 

 

The haemodynamic effects of hyperaemia, pacing and the changes following TAVI are 
shown in Table 7-2, Table 7-3, Table 7-4 and  
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Table 7-5. TAVI impacted the relative change in response to physiological settings. From 

baseline to hyperaemia, there was an increase in ESV (+8±29%) before TAVI rather than 

a reduction (-6±9%) following intervention (p=0.036). There were also differences in EDV 

(+1% [-1,+7] vs -1% [-3,+1], p=0.011), dP/dt+ (-1% [-4,+1] vs -4% [-8,0], p=0.035), dP/dt- (-

2% [-6,+4], vs -5% [-15,-1], p=0.040) and PVA (0% [-3,+3], vs -4% [-10,-2], p=0.005) 

between these settings.  

 

The relative change between LGAS and HGAS also differed. At baseline following 

intervention, compared to pre-TAVI, there was a less profound drop in ESP in LGAS 

patients (-9±19% vs -34±11%, p=0.004) and lesser reduction in both dP/dt+ (-19±15% vs 

-37±9%, p=0.013) and dP/dt- (-17±19% vs -39±15%, p=0.015). PVA also reduced less 

profoundly in the LGAS group (-21±18% vs -39±15%, p=0.037). Pacing induced minimal 

change in LGAS patients but a significant drop in ejection fraction in HGAS patients pre-

TAVI at 90bpm (-1±15% vs -19±12%, p=0.016) when compared to LGAS patients.  

 

Post-TAVI, hyperaemia also induced a less significant reduction in the relative change in 

dP/dt- (-3% [-11,+1] vs -10% [-18,-6], p=0.024), dP/dt+ (-2±5% vs -11±10%, p=0.032) and 

SCI (-1% [-5,+7] vs -5% [-11,-3], p=0.050) from baseline in the LGAS patients. There was 

therefore more ventricular impact with hyperaemia, pacing and aortic valve intervention 

in patients with HGAS, which raises the suspicion of poor remodelling and compliance in 

the LGAS patients. 

 

In this study, Tau increased immediately following TAVI, at baseline, hyperaemia and 

rapid pacing, but there was no difference between LGAS and HGAS cohorts. There was 

significant correlation between pre-TAVI CFR and resting Tau (R=-0.525, p=0.030).  

 

PVA fell with rapid pacing pre- and post-TAVI and with hyperaemia post-TAVI. Like-for-

like following TAVI, during resting state, hyperaemia and pacing, PVA fell significantly 

(p<0.001). Baseline, hyperaemic and paced PVA was lower in LGAS patients, suggesting 

reduced oxygen consumption in this cohort.  
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7.2.2 VA results  

 

I found that pre-TAVI, VA increased during pacing both before (p=0.003) and after 

(p=0.008) TAVI (Table 7-3). Post-TAVI, hyperaemia also induced a drop in VA (p=0.048) 

(Table 7-2). Resting VA closely correlated with resting LVEDVi (R=0.687, p=0.002), LVESVi 

(R=0.696, p=0.001), indexed stroke volume by MRI (R=0.532, p=0.023), cardiac output by 

MRI (R=0.558, p=0.016), ejection fraction by MRI (R=-0.512, p=0.030) and pressure-

volume loops (R=-0.689, p=0.002), peak radial strain (R=-0.505, p=0.039), SCI (R=-0.682, 

p=0.002) and PRSW (R=-0.520, p=0.027).  

 

LGAS patients had lower VA coupling during pacing at 90bpm (0.65±0.38 vs 1.20±0.44, 

p=0.019), and a trend towards lower values during hyperaemia (0.57±0.25 vs 0.88±0.42, 

p=0.092) and pacing at 120bpm (0.74±0.38 vs 1.15±0.44, p=0.055) pre-TAVI ( 
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Table 7-5). There was no difference following intervention. This would suggest that the 

low flow ventricle is more compliant despite reduced maximum and minimum dP/dt, 

supported by a trend toward increased Ees in LGAS patients during rapid pacing pre-TAVI.  
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Table 7-5: Full pressure-volume loop results in LGAS and HGAS cohorts pre-TAVI. Results displayed when P<0.010 for LGAS then HGAS with SD or IQR in brackets. No differences were 

found post-TAVI between cohorts. 

 REST HYPERAEMIA RAPID PACING 
HR (bpm)  NS  NS  NS 
SV (ml)  NS  NS  NS 
Svi (ml/m2)  NS  NS  NS 
CO (l/min)  NS  NS  NS 
EDP (mmHg)  NS  NS  NS 
ESP (mmHg) 127 (115,147)/169 (151,181) P=0.004 125 (111,157)/163 (150,180) P=0.021 117±35/150±36 P=0.060 
EDV (ml)  NS  NS 90±15/119±28 P=0.015 
ESV (ml)  NS 43±15/67±25 P=0.040 37±14/61±17 P=0.003 
EF (%)  NS 65±11/55±12 P=0.088 60±13/48±10 P=0.053 
Ea (mmHg/ml)  NS  NS  NS 
Ees (mmHg/ml)  NS  NS  NS 
VA  NS 0.57±0.25/0.88±0.42 P=0.092 0.74±0.38/1.15±0.44 P=0.055 
SCI (mmHg/ml/s)  NS  NS  NS 
Tau (ms)  NS  NS  NS 
dP/dt+ (mmHg/s) 1267 (1047,1408)/1509 (1289,1736) P=0.031  NS  NS 
dP/dt- (mmHg/s) -1066 (-1494,-974)/-1475 (-1640,-1174) P=0.050 -1045 (-1462,-938)/-1493 (-1725,-1222) P=0.074  NS 
EDPVR (mmHg/ml)  NS  NS  NS 
ESPVR (mmHg/ml)  NS  NS  NS 
PVA (mmHg.ml) 13583±2975/20598±7123 P=0.020 13579±2337/21118±7549 P=0.026 7972±2659/13606±5423 P=0.017 
SW (ml.mmHg) 10745±2424/15212±4356 P=0.019 10741±1749/15089±4887 P=0.042  NS 
PRSW (mmHg) 91±13/ 107±12 P=0.013  NS  NS 
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7.3 Summary  
 

Gotzmann et al recently demonstrated that the left ventricle in LGAS exhibits increased 

stiffness and reduced contractility when compared to other cohorts of AS276, in addition 

to impaired vascular function – a pattern similar to that in heart failure with preserved 

ejection fraction (HFpEF). In this study, there was no significant difference in Ea and Ees 

between cohorts. In addition, despite reduced maximum and minimum dP/dt, there was 

lower VA coupling in LGAS patients suggesting more favorable compliance.  

 

The immediate response to TAVI was significant. There was a fall in ESP, Ees, SCI, ESPVR, 

PVA, maximum and minimum dP/dt, SW, PRSW, and Zva. End systolic pressure was lower 

in patients with LGAS and LV volumes smaller during hyperaemia and pacing. Reduced 

baseline dP/dt values in LGAS were combined with lower SW, PRSW and PVA – pointing 

towards less severe ventricular impact from aortic stenosis, or toward increased stiffness. 

Disparate features of cardiac efficiency were observed between cohorts which highlights 

the clinical challenges with this disease entity. 
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8 SYNTHESIS  
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8.1 Introduction 

 

“Aortic stenosis is a simple mechanical fault, which, if severe enough, 

imposes a heavy burden on the left ventricle and sooner or later overcomes it.” 

P Wood 1958 

 

Aortic stenosis is a disease of the valve, ventricle and microvasculature. The aim of this 

descriptive physiological study was to:  

- Determine the detailed effects of hyperaemia, rapid pacing, and valve implantation 

in patients with severe symptomatic aortic stenosis (AS) with preserved left 

ventricular systolic function. 

- Provide insight into the distinct features exhibited by low gradient (LGAS) and high 

gradient aortic stenosis (HGAS).  

- Pair meticulous invasive physiology with that of non-invasive techniques and assess 

short term remodelling phenomena. 

 

The study included 19 patients, recruited over a 2-year period from the transcatheter 

aortic valve implantation waiting list, where all patients were deemed to have severe, 

symptomatic aortic stenosis by the heart team. Very few patients met inclusion and 

exclusion criteria and many potential LGAS recruits were in atrial fibrillation as is known 

to be prevalent in this disease entity. Whilst final analysis compared LGAS and HGAS, 

further subdivision to low-flow or normal-flow cohorts was abandoned due to disparate 

measurements of stroke volume obtained from echocardiography and MRI, and small 

recruitment numbers (see Table 3-1).  

 

8.2 Ventricular Disparity between LGAS and HGAS  

 

Patients with HGAS exhibited significantly higher aortic valve calcium scores and NT-

proBNP levels fell more significantly in the HGAS group. Subendocardial late gadolinium 

enhancement was only observed within the LGAS group (despite lower left ventricular 
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pressures), and mid wall late gadolinium enhancement was only observed within the 

HGAS group. Interstitial fibrosis was no different between cohorts. These non-invasive 

findings suggest a different pattern of disease in LGAS – a myopathic disease with a 

degree of aortic stenosis which allows the cardiac physiology to reach tipping point. This 

is further supported by a shorter baseline ejection time and lower left ventricular mass, 

volume and pressure. The LGAS cohort displayed reduced baseline parameters of 

contractility and lusitropy (maximum and minimum dP/dt, SW, PRSW), and this was 

combined with lower PVA, which indicates reduced oxygen consumption in this group. 

Despite no difference in Ea between groups (i.e., afterload), a trend towards lower VA 

was seen during hyperaemia and rapid pacing in the LGAS group, in line with lower 

alternative markers of contractility such as dP/dt+.  

 

HGAS patients had higher end systolic pressure which reduced to a greater degree 

following TAVI, and pre-TAVI, rapid pacing induced increasing end systolic volumes and a 

plunge in the ejection fraction – contrary to that found in the LGAS cohort. Following 

intervention, PVA (signifying oxygen consumption) reduced more profoundly in the HGAS 

group, and hyperaemia induced a fall in dP/dt+. These findings would suggest more 

favourable malleability and response to various physiological settings – a divergent effect 

from the unwavering monotony of the LGAS group where unfavourable remodelling 

appears to allow minimal impact.  

 

8.3 Coronary Disparity between LGAS and HGAS  

 

The novel invasive coronary findings of this study demonstrate significant differences in 

the coronary flow between patients with LGAS and HGAS. At baseline, LGAS patients 

exhibit reduced acceleratory BEW, increased inhibitory FEW and lower microcirculatory-

derived coronary flow (are above WI-). During hyperaemia following TAVI, HGAS exhibited 

greater FCW, and the change from baseline following TAVI revealed that in LGAS patients 

the BEW reduced, but increased in HGAS patients. This distinct maladaptive coronary 

flow in response to vasodilatation is pathological and provides more insight into this 

challenging clinical and physiological condition.  
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Coronary and aortic AIx, and reflection coefficient were significantly lower in LGAS at rest 

and during hyperaemia pre-TAVI, likely to be related to lower left ventricular mass and 

reduced aortic stiffness. Contrasting trends were observed in tension time index (TTI) and 

BI following TAVI: an increase in TTI in LGAS signifying increased oxygen demand 

(decrease in HGAS patients) and decrease in BI in LGAS indicating subendocardial 

ischaemia (increase in HGAS). Importantly, a relative reduction in diastolic time fraction 

was seen in the LGAS cohort, in comparison to an increase in the HGAS cohort. Ejection 

time (although shorter at baseline in LGAS patients) was significantly shortened in the 

HGAS group but remained static in LGAS patients. It is clear that this study does not 

support the notion that LGAS is a condition of increased vascular stiffness.  

 

Post-TAVI, the change in perfusion efficiency from baseline to hyperaemia reduced in 

LGAS but increased in HGAS patients, and during hyperaemia the LGAS group’s response 

to augment accelerating waves was significantly blunted. In addition, post-procedure 

diastolic hyperaemic microvascular resistance was greater in LGAS patients suggesting 

underlying endothelial dysfunction, supported by a trend towards reduced baseline 

myocardial perfusion reserve index in LGAS patients.  

 

8.4 Structural and Functional Effects of TAVI  

 

Following balloon-expandable TAVI prosthesis implantation in this cohort, coronary VTI, 

APV and perfusion efficiency fell, possibly representing a period of ventricular stunning 

in the immediate aftermath of rapid pacing for valve deployment. In keeping with this, 

hyperaemia post-TAVI, in comparison to pre-TAVI, demonstrated significantly reduced 

backward expansion waves and reduced overall distal-originating waves. There was, 

however, evidence of improved forward flow with reduced ejection time, and increased 

diastolic time fraction and Buckberg Index during pacing stress, signifying improved 

myocardial oxygen supply-demand ratio. There was no immediate change in coronary 

flow reserve. Coronary augmentation pressure and augmentation index fell following 

TAVI, presumably related to a reduction in systemic vascular resistance. I also observed 
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a significant decrease in end systolic pressure, effective arterial elastance (Ea), end 

systolic elastance (Ees), Starling contractile state index (SCI), end systolic pressure volume 

relationship (ESPVR), pressure volume area (PVA), maximum and minimum dP/dt, stroke 

work (SW), preload recruitable stroke work (PRSW), and valvulo-arterial impedance (Zva) 

following TAVI. There is therefore strong evidence of reduction in load-independent 

indices of ventricular contractility. The effects of hyperaemia on the post-TAVI ventricle 

were more profound than on the pre-TAVI ventricle: reduced ESP, Ea, VA, PVA, SW, Zva, 

and maximum and minimum dP/dt. Prior to valve implantation, it is likely that 

vasodilatory capacity is exhausted and there is therefore a more prominent effect with 

hyperaemia following TAVI.  

 

Follow up cardiac magnetic resonance imaging demonstrated improved left ventricular 

ejection fraction and a preferential reduction in LV mass over cavity size, with improved 

global myocardial perfusion reserve index and global 3-dimensional strain. There was 

favourable delayed remodelling as assessed non-invasively in comparison to the 

immediate invasively-assessed parameters.  
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Limitations  

 

The main limitation of this study was the modest patient numbers. Additional patient 

recruitment would have increased statistical power and improved characterisation of 

both disease processes. Whilst all physiological indices were assessed at the end of the 

study, aside from MRI perfusion assessment, it was not possible to fully blind the results 

from the researcher. There was also no opportunity to repeat scans or invasive 

measurements, so we have not assessed the test/retest repeatability and have not re-

analysed results to present inter-observer variability based on the raw data. Statistical 

analysis using repeated T-tests rather than ANOVA where relevant may have increased 

the risk of inaccurate (falsely positive) results. Up to date echocardiography within 24-

hours of the invasive and non-invasive protocols would have allowed full and accurate 

assessment of the aortic valve gradient. In addition, there are multiple comparisons and 

since this in an exploratory, hypothesis generating study, there is no Bonferroni 

correction.  
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Future Directions  

 

This hypothesis-generating study has provided new insight into the disease processes 

described. The distorted coronary blood flow in LGAS is corrected by TAVI following which 

minimal difference is observed between groups. Many of the clinical challenges of 

paradoxical low gradient aortic stenosis are still prominent even in the detailed 

physiology described. In LGAS patients, AS is certainly contributory, but it remains unclear 

why this subset of valvular heart disease pose a higher risk with previously published poor 

outcomes. Detrimental coronary flow and distinct remodelling is evident from this work.  

 

Physiological assessment in the immediate aftermath of TAVI may represent, at least in 

part, ventricular stunning due to rapid pacing. Delayed invasive physiological assessment 

after a period of time to allow cardiac remodelling would be of extreme interest to 

determine the effects of valve intervention in combination with structural and functional 

changes observed by cardiac magnetic resonance imaging. In addition, studying the 

immediate effects between patients treated with balloon-expanding, versus self-

expanding TAVI prosthesis may help unravel the immediate deterioration in left 

ventricular parameters described here. The non-invasive assessment of detailed 

ventricular lusitropy and compliance would allow a more translational application of this 

work. Changes in preload and afterload and peripheral vascular studies would also 

provide additional insight in these cohorts which may exhibit vascular disease 

contributory to the overall condition.  
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