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Abstract

Natural systems consist of many interacting degrees of freedom. The corresponding

dynamical behaviour is frequently erratic, i.e. strongly influenced by minute changes

in system’s parameters, like e.g. boundary conditions. In quantum systems this may

lead to huge sample-to-sample fluctuations of observable properties while in classical

systems to changes in topological characteristic of the dynamical flow. This intrinsic

stochasticity and disorder require statistical tools to achieve a quantitative description

of the system’s behaviour. In these regards, Random Matrix Theory is the leitmotif of

the whole thesis as it provides powerful and versatile techniques for such studies and

it connects the investigated topics. The first chapter of this thesis contains the rele-

vant analytical results from Random Matrix Theory necessary for the comprehension

of the following chapters. Particular emphasis is devoted to averages of characteristic

polynomials of different random matrix ensembles.

The first topic presented in this thesis is the description of quantum scattering in sys-

tems with wave chaos. This is an area of active experimental interest and provides

one of the best verification of Random Matrix Theory. In particular, we will focus on

the presence of uniform absorption, with and without the hypothesis of time-reversal

invariance. We computed the distributions of the real and imaginary parts for off-

diagonal entries of the Wigner reaction matrix. Such calculations were made possible

by previous results for characteristic polynomials of well-known random matrix ensem-

bles and the use of Berezin integrals. We published this work in [1].

The next chapter is devoted to the description of the phase portrait and chaos in

classical disordered systems. After a brief overview of recent models and May’s work

in 1972, we go beyond the linear approximation supported by the Hartman-Grobman

theorem, around equilibrium points. We connect this problem and the notion of topo-

logical complexity with the mean number of real roots of random multivariate Kac

polynomials. A fine tuning of the free parameters reveals the existence of a ”resilience

radius”. Assuming the origin to be stable, the number of fixed points within such

radius is exponentially suppressed as the size of the system grows. This represents a

measure of the resilience for disordered systems. In ecological terms, we show that the

study of resilience of randomly assembled systems has to go through the investigations



of higher order interactions among species. This work has culminated into a paper

available at [2]. This chapter is ended with three subsections. In the first one, we

introduce a dynamical mean field approach to address and describe the co-existence

of fixed points and chaotic motion. However, what presented requires additional work

before reaching a publication level. In the second subsection, we investigate the phase

portrait for systems whose dynamics is generated by the superposition of random pe-

riodic potentials with random amplitudes and wave vectors. This model represents a

first connection between dynamical systems and the spectrum of generalized Wishart

matrices. The coexistence of more sources of disorder has several implications. Quali-

tative and few analytical results lead to a rather different statistical picture compared

to the behaviour of the models above. Indeed, the energy landscape does not seem to

undergo abrupt topological changes, as for any values of the control parameter, the

fixed points remain, on average, exponentially abundant. This project is in prepara-

tion for publication [3]. The last subsection contains few remarks on May’s model with

delayed response.

Lastly, the project described in chapter 4 remains, at present, to a preliminary stage.

The aim of this chapter is the investigation of critical values for a random, constrained

and quadratic function. The complexity of this problem is contained in the definition

and tractability of the feasible set. Additionally, difficulties reside in the numerical

validation of the analytical results obtained by the replica trick.

This thesis does not include the following second-author publications:

• G.Gradoni, S.Belga Fedeli, M.Richter, O.Legrand, “Mutual Information Statis-

tics for Wireless MIMO Propagation Channels in Confined Environments”. In

final review before submission-2021.
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Introduction

The first chapter of this thesis contains a quick introduction to Random Matrix Theory

and Statistical Physics tools used for the subsequent chapters. The results are pre-

sented in a simple way in order to make this work self-contained and accessible. The

reader might want to skip these initial parts as the necessary mathematical results will

be outlined and will be referred when necessary. The aim of the subsequent chapters

is to show how a random matrix approach, in particular by characteristic polyno-

mials of certain random matrix ensembles, is capable of describing some features of

different phenomena: quantum chaos, disordered dynamical systems and constrained

optimization.
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Chapter 1

Random Matrix Theory

From its early stage in 1950s, Random Matrix Theory(RMT) has gradually become

a mathematical research field on its own. Benefiting from a very large community

of mathematicians and physicists, its success is due to its versatility to describe and

embrace several fields of science and engineering. We start by summarizing its history,

in particular considering those events which have relevancy for this thesis. We refer

the reader to [6] [7] and references therein for more accurate reviews.

1.1 The overview of Classical RMT

The foundation of RMT trace back to 1928 with a work, in Statistics, on finite size

Gaussian matrices by J.Wishart [8]. However, the symbolical roots of RMT, as sub-

field in nuclear Physics, are attributed to Wigner in the 1950s [9]. Interested in heavy

nuclei under strong interactions, Wigner realized that a random matrix could be in-

troduced to model the Hamiltonian, i.e. he replaced the self-adjoint operator with

a random matrix sufficiently large. Such a matrix, since we are interested in energy

levels and, in order to conform to physical principles of probability conservation, has to

be Hermitian. Initially Wigner considered the simplest case where the main diagonal

is null while the off diagonal entries take value ±1 with equal probability. He proved,

by combinatorics, that the limit spectral density of this matrix converges to the semi-

circle law. Later it became clear that the semicircle law was valid for any Hermitian

matrix whose independent entries are i.i.d. random variables, provided the latter are

distributed according to sufficiently fast decaying probability density function. This

was the first universality result in RMT1. Remarkable achievements were later ob-

1we will retrieve this result differently for the Gaussian case by using Supersymmetry in sec-
tion 1.1.1.4.
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Chapter 1. Random Matrix Theory

tained by Mehta in [10] and Dyson in [11] followed by several other publications. If

one assumes the distribution of a Hermitian random matrix H to be written as the

product of the densities of its independent entries, and invariant with respect to any

change of the basis, then such probability density function must be proportional to the

exponential of the trace of HHT . This is the foundation of the Gaussian ensembles

further discussed in this chapter. Dyson showed the existence, by Group Theory, of

three symmetry ensembles labelled by the Dyson index β. The probability distribu-

tion of the latter remains invariant under orthogonal β = 1, unitary β = 2 or unitary

symplectic β = 4 transformations. This ”Threefold way” was obtained initially for

the circular ensembles whose eigenvalues reside on the unitary circle in the complex

plane. However, this classification goes beyond the unitary ensembles and is valid for

the Gaussian Ensembles above and other distributions. In a nutshell, this is due to

the appearance in the joint distribution of the eigenvalues of a repulsion term, coming

from the so-called Vandermonde determinant, namely, |λi − λj |β (see section 1.1.1.1).

Despite its initial motivations in nuclear physics and the results above random matrix

theory had a setback due to the discrepancies with experiments for the energy states

of Uranium 228 and Erbium 166. In 1967, simultaneously to the publication of the

celebrated Mehta’s book [12], however not receiving the deserved attention, Marcenko

and Pastur retrieved the limit distribution of the singular value of rectangular random

matrices [13]. Subsequently, just before the ’70s, Ginibre established the circular law

for matrices with i.i.d with Guassian entries giving rise to a new thriving period for

RMT [14]. The latter includes influences from and to other fields as the emblematic

Montgomery’s hypothesis on the correlation of zeros of the Riemann zeta function co-

inciding with the corresponding correlation of random Hermitian matrices [15]. It is

also worth to mention, for this thesis, May’s seminal paper in ecology [16] (see sec-

tion 3.1.1). The latter partially explained the discrepancy between experiments and

simulations in ecology. Around a decade later, a remarkable milestone in RMT was

achieved by the discovery of Free probability [17, 18]. Founded by Voiculescu, such the-

ory aimed to tackle the non-commutative nature of matrices. Introducing the concept

of asymptotic freeness, the limit spectral density of the sum of two matrices can be

obtained starting from the spectral densities of the single matrices. Similar conclusions

hold concerning the product of two free matrices. While the bulk regime of the spec-

trum of Hermitian matrices has marked the beginning of RMT, the edge regime was

considered almost 50 years after. The distribution of the maximal eigenvalue, depends

3



Chapter 1. Random Matrix Theory

on β and was obtained by Tracy and Widom from the solution of a Painleve equation

[19][20]. At the beginning of the last century, the spectral properties for the Gaussian

and Wishart ensembles were generalized to sparse tri-diagonal random matrix models

for non integer β [21]. Last to mention, the circular law was generalized by Tao in [22]

including outliers for finite rank perturbed random matrices. More generally, many

results mentioned above, with time, have been enriched of proofs and generalizations.

Nowadays, RMT have applications in many fields, beyond the Reimann hypothesis, in

stochastic calculus, condensed matter and statistical physics, chaos, ecology and sig-

nal processing to name few. Beyond the scope of this work, we will mention the most

influential papers to this thesis in each section and project separately as necessary. We

now review the necessary literature in Random Matrix theory.

1.1.1 Gaussian Ensembles

We start with the GβE matrices (see [12]). Each component of the entry of the latter

is a centered Gaussian random variable of variance J . The probability density function

of such matrices is then proportional to the exponential of the trace of H2, i.e.

dµ(H) = CGβEe
− βN

4J2 Tr H2

dH (1.1)

where the constant CGβE = 1
2N/2

(
2β−2N
πJ2

)N
4

(βN+2−β)
provides the right normalization

in eq(1.1). Hence we have:

• Gaussian Orthogonal Ensemble (GOE)β = 1: the matrix H is symmetric and

its entries are real. For these matrices the measure in eq(1.1) is invariant under

transformations H → OTHO with O ∈ O(N) and dH =
∏N
i=1 dHii

∏
i<j dHij .

The matrix OT is the transpose of O, i.e. (OT )ij = Oji.

• Gaussian Unitary Ensemble (GUE)β = 2: the matrix H is Hermitian. For these

matrices eq(1.1) is invariant under transformations H→ U†HU with U ∈ U(N)

and dH =
∏
k≤j dReHkj

∏
k<j d ImHkj . U† is the conjugate transpose of U, i.e.

(U†)ij = U∗ji.

• Gaussian Symplectic Ensemble (GSE)β = 4: the matrix H is self dual Hermitian

matrix. For these matrices eq(1.1) is invariant under automorphism: H →

WRHW with W ∈ Sp(2N) and dH =
∏
k≤j dH

(1)
kj

∏4
`=2

∏
k<j dH

(`)
kj . (·)R is

defined as follows. If we consider W to be a N × N matrix with 2 × 2 entries

wjk =

[
ajk bjk
cjk djk

]
, then (WR)kj =

[
djk −bjk
−cjk ajk

]
.
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Chapter 1. Random Matrix Theory

For any random variable, x, and its probability density function, p(x), we will indicate

the expectation as

Ex[g(x)] =

∫
supp{p}

p(x)g(x)dx

for sufficiently nice function g(x). The form of eq(1.1) is particularly useful when-

ever we need to compute EGβE [eTr AH]. By expanding the definition of the trace,

assuming for simplicity J = 1, and performing a multivariate Gaussian integral, it is

straightforward to prove:

EGUE(N)

[
eTr AH

]
= exp

(
1

2N
Tr A2

)
(1.2)

and

EGOE(N)

[
eTr AH

]
= exp

(
1

4N
Tr(A + AT )2

)
(1.3)

For g(x) invariant under the transformations mentioned above it is sufficient to com-

pute the average EH[g(H)] with respect to the joint probability density function of

the eigenvalues of H. Examples of such gs include function of the trace of power of

H and functions of the characteristic polynomial of H. Remarkably, the probability

density function of H, written in terms of its eigenvectors and eigenvalues, factorizes

into the product of the corresponding probability densities, implying that eigenvalues

and eigenvectors are independent.

1.1.1.1 Joint PDF of the Eigenvalues

To retrieve the joint probability density function of the eigenvalues we need to compute

the Jacobian of the change of variables (see [23]). In what follow we consider, for

simplicity the case β = 1, although similar considerations lead to the distribution of

the eigenvalues for the remaining ensembles β = 2 and β = 4. Any symmetric matrix

H can be decomposed as the product OΛOT where O ∈ O(N) while Λ is the diagonal

matrix collecting the eigenvalues of H. The differential of H is given by the chain rule,

dH = dOΛOT + OdΛOT + OΛdOT

Since OOT = 1N one retrives that d(OOT ) = dOTO + OTdO = 0. It follows

dH = O(dΛ + [OTdO,Λ])OT

where we introduced the commutator [a, b] = ab− ba. If we relabel OTdO = dΦ, due

to the diagonal form of Λ, the Euclidean line element is given by

(ds)2 = (dHTdH) = ((dΛ + [OTdO,Λ])T (dΛ + [OTdO,Λ])) (1.4)

5



Chapter 1. Random Matrix Theory

Since ∑
i,j

[dΛT ]ij(dΦΛ−ΛdΦ)ij =
∑
ij

[dΛT ]ii(dΦiiΛi − ΛidΦii) = 0

([dΦ,Λ]T )ij = [dΦ,Λ]ji and [dΦ,Λ]ij = (Λj − Λi)dΦij , then the quadratic term of

the commutator in eq(1.4) simplifies to Tr([OTdO, dΛ]T , [OTdO, dΛ]) =
∑

ij(Λi −

Λj)
2(dΦij)

2. Finally:

(ds)2 =
∑
i

(dΛi)
2 +

∑
ij

(Λi − Λj)
2(dΦij)

2

The line element does not contain terms of the form (dΛi)(dΦij). This implies that

the Jacobian matrix is a block matrix and its determinant is given by the product of

the determinants of two squared blocks. The Jacobian |J |β=1 is therefore given by the

Vandermonde determinant, ∆(Λ) =
∏
i<j |Λi−Λj |. A similar result holds for the GUE

and GSE ensembles. In the first case each entry of Φ is a complex variable, in the

second case the entries of Φ are quaternion parametrize by four variables. Therefore

|J |β=2 =
∏
i<j |Λi − Λj |2 and |J |β=4 =

∏
i<j |Λi − Λj |4. By integrating out O one

obtain the probability density function of the eigenvalues, namely:

Theorem :(see [12]) the joint probability density function for the eigenvalues of ma-

trices drawn from the Gaussian Orthogonal(β = 1), the Gaussian Unitary(β = 2) and

the Gaussian Symplectic(β = 4) Ensembles is given by:

pNβ(x1, .., xN ) = CNβ exp
(
− β

2

N∑
j=1

x2
j

)∏
j<i

|xj − xi|β (1.5)

The constant CNβ is chosen such that pNβ is normalised, i.e.:∫
RN

pNβ(x1, .., xN )dx1..dxN = 1

At this point, one can obtain the distribution of the single eigenvalue by integrating

out the remaining N − 1 variables from eq(1.5). Additionally, passing to the limit

N → +∞, one retrieves the semicircle law, ρsc(x). Following Wigner’s initial spirit,

the latter can be derived by explicitly computing, to the leading order, the average

of the trace of the powers of H. These powers are associated with the sequence of

Catalan numbers. Alternatively, the spectral density, for finite N , can be obtained by

introducing the set of Hermite polynomials and re-write the joint probability density

function as a determinantal(β = 2) or Pfaffian(β = 1, 4) point process with a given

6



Chapter 1. Random Matrix Theory

kernel ([24, 25]). The joint density function for k of the N eigenvalues drawn from

eq(1.5) satisfies

pN2(x1, ..., xk) =
N !

(N − k)!
det
(
K

(2)
N (xi, xj)

k
i,j=1

)
for β = 2, and

pNβ(x1, ..., xk) =
N !

(N − k)!
Pf
(
K

(β)
N (xi, xj)

k
i,j=1

)
for β = 1, 4 and where the functions K

(2)
N and K

(β)
N are scalar and 2× 2 matrix kernels

respectively2. The complexity of such expressions can be considerably reduced, with

the help of the Christoffel-Darboux formula to the single eigenvalue distribution. We

take this opportunity to introduce two powerful tools which will be essential in the

following chapters. We will retrieve the semicircle by introducing the so called replica

trick and a set of anticommuting Grassmann variables. As it will be pointed out, this

lacks the mathematical rigour. However, the most general and complete result will be

promptly presented.

We define the limiting spectral density of an ensemble of random Hermitian matrices

H, ρ(x), as

ρ(x) = lim
N→+∞

1

N
E

[
N∑
i=1

δ(λi − x)

]

where λi are the eigenvalues of H. Since Im
(

limε→0+
1

x−iε

)
= πδ(x), ρ(x) can be

written by introducing the resolvent GN (x) = 1
N Tr 1

H−x1N where 1N is the identity

matrix. Hence, the semicircle law is obtained as

ρsc(x) = − 1

π
lim
ε→0+

ImEGUE [G+∞(x− iε)]

Lastly, the average of the resolvent can be written in terms of

− 1

N

d

dx
EGUE [log det(HN − x1N )] (1.6)

The average of a logarithm is clearly unpleasant and one would like to find an alterna-

tive way to compute such average. Ideally, if one could possibly move and interchange

the logarithm with the expectation the calculation would simplify considerably. Inher-

iting its name from Physics, this approach is called annealed. In what follows we will

perform a more justifiable calculation, the quenched calculation by the replica trick.

2For an exhaustive treatise on determinantal and Pfaffian point processes we refer the reader to
[26]
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Chapter 1. Random Matrix Theory

1.1.1.2 Replica Trick

Firstly, we consider a positive random variable Z, for which the integral E[logZ] =∫ +∞
0 dxpZ(x) log x is well defined and convergent. Since such integral is usually chal-

lenging we can make use of the following identity for positive variable:

logZ = lim
n→0

Zn − 1

n

We plug this expression inside the average. Then the calculation of the expectation of

the logarithm is equivalent to the calculation of E[Zn] and clearly

E[logZ] = lim
n→0

E[Zn]− 1

n
(1.7)

Going back to the initial problem one easily identifies Z(x) with det(H − x1N ). If

one knows E[Zn] for any real n then E[log(Z)] easily follows. As it will be presented

in the next section, the average of the power of this characteristic polynomial is again

tricky and it is usually known only for integer values of n. We overcome this difficulty

in the following way. As our main goal is to retrieve ρsc, we need to take the limit

N → +∞. Firstly, we assume that, by taking the latter for E[Zn], there is, to the

leading order, an analytical continuation from natural to the real numbers in n for such

average. Indeed, we address the limit N → +∞ in the saddle-point framework, taking

the replica limit n → 0 in the end. For sake of clarity, we will omit the details of the

saddle point approximation. The latter, together with more complete and exhaustive

results, will be the subject of section 1.2.

To motivate the content of the next chapters, we temporally turn our attention to a

useful example of the replica trick. This is an adapted version of an example contained

in [27]. We consider a model for which the replica trick holds in order to illustrate its

essential features.

Replicas of Harmonic Oscillator:

We start computing the partition function Z of the system described by the following

quadratic Hamiltonian

H(x, p) =
λ2x2

2
+
p2

2
(1.8)

We assume that the frequency of the oscillator, λ, is a positive random variable with

probability density function f(λ) = 2
π

1
1+λ2 , i.e. one side Cauchy distributed. We

8



Chapter 1. Random Matrix Theory

introduce an additional variable, the inverse temperature, β, and compute the partition

function

Z =

∫
R
dx

∫
R
dp exp (−βH(x, p)) (1.9)

The Gaussian integrals above, for a fixed realization of λ, give Z = 2π
βλ . Therefore,

after performing the average in λ, we have, from the definition of secant function, for

n < 1,

E[Zn] =

(
2π

β

)n
sec
(nπ

2

)
(1.10)

We now forget the result above and we replicate the system above n-times, namely

(n ∈ N),

E[Zn] = Eλ

[∫ n∏
i=1

dxidpi exp

(
n∑
i=1

H(xi, pi)

)]
(1.11)

The integration over all pi is simply (2π
β )n. Therefore,

E[Zn] =

(
2π

β1/2

)n 1

Γ
(
n
2

) ∫ +∞

0
dRRn−1

∫ +∞

0
dλe−λ

2 βR
2

2 f(λ) (1.12)

For simplicity we perform the integration over λ first. This is equivalent to

exp

(
βR2

2

)
erfc

(
β1/2R

2

)

Lastly, the integral in R is convergent for n < 1. This is perfectly fine as n does not

need to be an integer anymore. Therefore,

E[Zn] = 2

(
π

β

)n Γ
(

1−n
2

)
Γ(n)

√
πΓ
(
n
2

) (1.13)

For n < 1, eq(1.10) and eq(1.13) are equal.

1.1.1.3 Supersymmetry Approach

In order to compute the expectation of det(HN −x1N )n the simplest way is to rewrite

the latter making use of the formulas at the beginning of section 1.1.1. To do so, we

introduce the Supersymmetry Method. This approach finds its roots and vocabulary in

particle Physics as adapted to condensed matter theory in the work of Efetov[28][29].

In this regard, for the purpose of this thesis we only briefly discuss the Fermionic

formulation. Systems of Fermions can be described by a set of Grassmann variables

ψi. Any pair of these anticommutes i.e.

ψiψj = −ψjψi.

9



Chapter 1. Random Matrix Theory

Instead, usual variables commute with ψi. Taking j = i in the equality above implies

that any ψi is nilpotent since for the square and any other greater power n, ψni = 0.

Therefore, any analytic function of ψi reduces, by its Taylor expansion, to a finite order

polynomial. For our purpose a meaningful example is

exp(xψiψj) = 1 + xψiψj

Considering n Grassmann variables, any function of the latter is truncated to the first

2n terms. Lastly, we introduce the operation of integration over such variables. This

integral, called Berezin integral, cannot be formulated in the usual way, as Lebesque

or Riemann integral, since ψi are only symbolic variables and do not have numerical

values. The integral over ψi is formally defined by postulating two properties, i.e.

•
∫
Dψ = 0

•
∫
Dψψ = 1

Any change of variable within the integral requires a counter intuitive differential. In

fact, in order to have the value of the integral unique and keep the properties above,

for xψi = ψ̃ we need to impose dψi = xdψ̃. The generalisation to multivariate integral

follows straightforwardly recalling that each differential is a Grassmann variable and

therefore anticommutes with all the other Grassmann variables as well. Hence, any

function of ψj can be integrated. Indeed, the analogy with usual integral is only formal

as the Berezin integral does not require any notion of convergence. This stems from

the fact that the integral of a generic function is obtained by the integral of its Taylor

expansion. As an example∫
Dψi

∫
Dψje

xψjψi =

∫
Dψi

∫
Dψj(1 + xψjψi) = x

In analogy with the one dimensional case, if we replace x with the determinant of a any

N × N matrix A with commuting entries, and introduce two set of anti-commuting

Grassmann vectors ψT = (ψ1, ..., ψN ) and ψ̃T = (ψ̃1, ..., ψ̃N ) we have

det(A) =

∫
DψDψ̃ exp

(
ψ̃TAψ

)
The argument in the exponential is equivalent to ψ̃TAψ = −Trψψ̃TA. We are now

able to compute the average over the Gaussian ensembles of eq(1.6), we just need to

introduce n replicas of the Berezin integral.

10



Chapter 1. Random Matrix Theory

1.1.1.4 The Semicircle Law

As already stated, the validity of the result we are going to present goes beyond the

Gaussian ensemble and a complete stand-alone theorem is presented at the end of this

section. However, this section gives us the opportunity to master the theory so far

introduced. The ingredients presented so far allows one to retrieve the semicircle for

the Gaussian Ensembles easily. From eq(1.7), the resolvent of the matrix H reads

EGUE(N) [GN (x)] = − 1

N

d

dx
lim
n→0+

1

n
EGUE(N) [det(H− x1N )n]

where, for simplicity, we assume H is drawn from the Gaussian Unitary ensemble.

Without issues of convergence, the argument of the logarithm can be written as inte-

grals of Grassmann variables (ψ,ψ†), namely:

EGUE(N) [det(H− x1N )n] =
1

iN
EGUE(N)

∫ n∏
j=1

DψjDψ
†
je
i
∑n
j=1ψ

†
j (H−x1N )ψj


performing the ensemble average of exp

(
−iTr H(

∑n
j=1ψψ

†)
)

from eq(1.2) we obtain:

EGUE(N) [det(H− x1N )n] =
1

iN

∫ n∏
j=1

DψjDψ
†
j

(
e−ix

∑
j=1ψ

†
jψj
)
e

1
2N

Tr Q2
(1.14)

where:

Q =

ψ
†
1ψ1 ψ†1ψ2 . . .
...

. . .

ψ†nψ1 ψ†nψn


So far, up to a constant factor, the equations above are exact for any dimension N . If

one prefers to work with exact formulas, it is possible to pass from the set of matri-

ces Q with nilpotent entries to an integration over the manifold of standard unitary

matrices according to the rotational symmetries of the integrand. This procedure is

called Superbosonization and it will be the subject of the next chapter. To obtain the

circular law, we are interested in the leading order, as N → +∞, of the integral above.

Therefore, we proceed as follows. The last term in eq(1.14) can be linearized by the

Hubbard-Stratonovich transformation as

e
1

2N
Tr Q2 ∝

∫
Herm(n)

dQ̂e−
N
2

Tr Q̂2+Tr Q̂Q

11



Chapter 1. Random Matrix Theory

where the integration runs over the set of n × n Hermitian matrices and the omitted

proportionality constant depends upon N and n. However, the latter contains sub-

leading terms as we take N → +∞ and n→ 0+. Substituting back into eq(1.14) and

exchanging the order of the integrals we obtain:

EGUE(N) [det(H− x1N )n] ∝
∫
Herm(n)

dQ̂e−
N
2

Tr Q̂2

∫ n∏
j=1

DψjDψ
†
j

× exp



ψ1

ψ2
...
ψn


†


(Q̂11 − ix)1N Q̂121N . . . Q̂1n1N

Q̂121N
. . .

...
...

Q̂1n1N . . . . . . (Q̂nn − ix)1N



ψ1

ψ2
...
ψn


 (1.15)

The matrix above can be written as (Q̂ − ix) ⊗ 1N and its determinant is equal to

(det(Q̂− ix1N ))N . Therefore we obtain:

EGUE(N) [det(H− x1N )n] ∝
∫
dQ̂e−

N
2

Tr Q̂2+N log det(Q̂−ix1n)

We have reduced the complexity of our calculation as we started from the integral over

2nN (Grassmannian variables). Since Q̂ is Hermitian and the integrand in eq(1.15)

is unitary invariant, we can perform a final change of variables Q̂ = UΛU†, i.e.

dQ̂ =
∏
i<k |λi − λk|2(U†dU)dΛ. The integral above becomes3

EGUE(N) [det(H− x1N )n] ∝
∫
dUdΛ

∏
i<k

|λi − λk|2eN
∑n
j=1 L(λj)

with L(λ) = −1
2λ

2 + log(λ − ix). As N � 1, the main contribution to the integral

above stems from the saddle points of the argument at the exponent. In fact, it has

to be noted that the Vandermonde determinant is not taken into account to find the

position of such points as it consists of only n(n−1) terms and it doesn’t scale with N .

So we can write EGUE(N) [det(H− x1N )n] ∝ exp{NnΦ(x)} for some Φ(x). A critical

points of L(λ) is given by λsd = 1
2(ix +

√
4− x2). Therefore, in a neighbourhood of

the latter4

L(λ) ≈ L(λsd) +
1

2

(
x2 − 4− ix

√
4− x2

)
(λ− λsd)2.

3See section 1.1.1.1
4We postpone and provide the details of this technique in section 1.2.2
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We can modify the contour of integration in order to approach λsd with angles θ =

−ϕ
2 + (2k + 1)π2 with k = 0, 1. The phase of d2L

dλ2 (λsd), ϕ, is given by

ϕ =


π for x ≤ −2

π − arctan
(
x
√

4−x2

x2−4

)
for − 2 < x ≤ 0

−π − arctan
(
x
√

4−x2

x2−4

)
for 0 < x ≤ 2

0 for x > 2

(1.16)

One can easily see that L(λsd) is exactly Φ(x). So we are left with the evaluation of∫ +∞

−∞
dznj=1

∏
i<k

|zi − zk|2e−
Nα
2

∑n
j=1 z

2
j (1.17)

with α =
∣∣∣d2L
dλ2

∣∣∣ (λsd). Integral in eq(1.17) can be computed exactly. Moreover, one

observes that it is proportional to the normalizing factor in eq(1.5) and it does not

represent a matter of concern. We can now substitute these results back into the

resolvent, namely limN→+∞ E [GN (x)] = − d
dxΦ(x) = −1

2(x+ i
√

4− x2). Lastly:

ρsc(x) =
1

2π
lim
ε→0+

Im{(x− iε) + i
√

4− (x− iε)2}

=

√
4− x2

2π
for |x| < 2 (1.18)

This is the semicircle law obtained from the Gaussian Unitary Ensemble. Similar

calculations occur for the other two invariant ensembles.

We conclude this section with a generalized and more rigorous version, beyond

the Gaussian ensembles, of this result. Let’s consider N(N+1)
2 i.i.d. real and centered

random variables Xi≤j drawn from two distributions, one for Xii and another one for

Xi<j respectively, with finite second moment. We rescale such variables by 1/
√
N ,

rearrange them in a N ×N symmetric matrix MN according to the indexes above and

compute its spectral empirical distribution RN (x) = 1
N

∑N
i=1 δ(x − λi) where λi are

the eigenvalues of MN . Then, the random measure RN converges in probability to the

semicircle law, i.e.

Theorem: ([30]) Given the ensemble of matrices with the properties above, a bounded

continuous function f and δ > 0 the following limit holds

lim
N→+∞

p(|(RN , f)− (ρsc, f)| > δ) = 0

13
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1.1.1.5 Ratio of Characteristics Polynomials

While we will address the corresponding applications in Physics later in this thesis, the

mathematical results on characteristics polynomials are interesting on their own. In

particular, the mean value of ratio of characteristics polynomials of certain ensembles

provides a wonderful insight in the statistical description of quantum chaos with uni-

form absorption. For unitary invariant Hermitian matrices, whose probability density

function is of the form exp(−N TrV (H)), such ratios have a determinantal form given

by integrable kernels. The latter are defined by orthogonal polynomials and the asso-

ciate Cauchy transform. For the purpose of this thesis, we want an explicit formula

for

FK(µ, ε) = EHerm(N),V

 K∏
j=1

det(µj1N −H)

det(εj1N −H)

 (1.19)

To obtain this quantity, [31] rewrote such expression as function of the correlation

among products of characteristic polynomials only. Consider Im εj 6= 0 for j = 1, ..,K,

then

FK(ε,µ) = (−1)K(K−1)/2

(
− 2πi

c2
N−1

)K
∆(ε,µ)

∆2(ε)∆2(µ)
det[WN (εi, µj)]

K
i,j=1

where the kernel WN (ε, µ) is given by:

WN (ε, µ) =
hN (ε)πN−1(µ)− hN−1(ε)πN (µ)

ε− µ
,

The constant cj is the normalization for the monic polynomials πj(x) = xj + .. orthog-

onal with respect to the meausure e−NV (x)dx. The term hj(x) is its Cauchy transform

hj(x) =
1

2πi

∫
e−NV (y)πj(y)

y − x
dy with x ∈ C/R

Dyson limit for F(µ, ε):

The previous result is exact for any finite N . However, we will be interested in K = 2

and the large N regime, at the scale of the mean separation length between two

eigenvalues. This corresponds to the Dyson limit

FK
(
x+

ξ

Nρ(x)
, x+

η

Nρ(x)

)
= (−1)K(K−1)/2e−α(x)

∑K
i=1(ξi−ηi)

× ∆(ξ, η)

∆2(ξ)∆2(η)
det[SII(ξi − ηj)]Ki,j=1 (1.20)
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where α(x) = V ′(x)
2ρ(x) and the kernel SII(ξ − η) is given by{

eiπ(ξ−η)

ξ−η with Im ξ > 0
e−iπ(ξ−η)

ξ−η with Im ξ < 0
(1.21)

This was obtained again in [31] by adopting a Riemann-Hilbert approach.

1.1.1.6 Correlations for Determinants of GOE Matrices

To obtain new results concerning the average of ratios of characteristic polynomials for

GOE matrices, we do not follow the techniques used in [31]. The difficulties in obtaining

the correlations function of GOE characteristic polynomials are related to the absence

of a Harish-Chandra-Itzykson-Zuber integral for orthogonal matrices (although see

[32]) and the fact that the joint density of eigenvalues has a Pfaffian structure due to

the De Brujin identities. However, even in this case, averages of products and ratios of

determinants are known due to Borodin and Strahov [33]. Once again we don’t need the

finiteN expression rather the Dyson limit of Z(µ1, µ2) = det(H−µ11N ) det(H−µ21N ).

Such result was obtained by [34], i.e.

lim
N→+∞

√
2π
NN−3/2e−Nξ

2/2

N !
EGOE(N)

[
Z
(
ξ +

λ1

Nρsc(ξ)
, ξ +

λ2

Nρsc(ξ)

)]
= (1.22)

= eξ(λ1+λ2)/(2ρ(ξ))(2πρsc(ξ))
3 1

2

(
sin(π(λ1 − λ2))

(π(λ1 − λ2))3
− cos(π(λ1 − λ2))

(π(λ1 − λ2))2

)
where ξ ∈ (−2, 2).

We will provide an example for which H is symmetric but its entries are strongly

correlated so this (Dyson) rescaling does not hold (see section 1.3.3).

1.1.1.7 Half-integer Powers of Characteristic Polynomials

In investigating the chaotic scattering of quantum systems we will assume the presence

or absence of time symmetry. The presence of such symmetry poses challenging tasks

for the calculation of the statistics of the entries of the Wigner reaction matrix (we

postpone its definition and investigation to chapter 2). The most successful approach

to describe this quantity is by its characteristic function. The latter is proportional

to the average of ratios of characteristic polynomials of GOE matrices. In principle,

after obtaining the characteristic function is sufficient to compute its Fourier transform.

This procedure contains several limitations due to the complicated form of the functions

involved. For these reasons an explicit formula for these averages represents a hard
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task. Remarkable results were obtained in [35] motivated by study of scattered waves

without an absorbing environment. More precisely they obtained

lim
ε→0,N→+∞

E

[
det(H2)

det(H2 + x2

N2 )1/2 det(H2 + ε2

N2 )1/2

]
=

2

π

(
|x|K0(|x|) +

∫ +∞

|x|
dyK0(y)

)
(1.23)

Where K0(x) is the modified Bessel function of the second kind. This result was

extended to include further complex shift of the spectrum of H (see [1] and sec-

tion 1.1.1.7). This will allow us to include the presence of absorption for the mentioned

problem.

1.1.2 Circular Law and Outliers

We now turn our attention to fully asymmetric random matrices whose entries are

again normally distributed. These correspond to the Ginibre ensembles. For the

present work it is sufficient to consider the real ensemble (GinOE) such that each

entry is i.i.d. and Gij ∼ N (0, 1). The probability density function of the entries can

re-arranged similarly to GβE as

dµ(G) = (
√

2π)−N
2
e−

1
2

Tr GGT
dG

Analogously to the Hermitian case one can work out the expectation of the trace:

EGinOE
[
eTr(GA+GTB)

]
= e

1
2

Tr(ATA+BTB+2AB)

The probability density function above is invariant under G → OGV with O,V ∈

Orth(N). To obtain the distribution of the eigenvalues one can proceed similarly to

the case for Hermitian matrices considering G = U(Λd + Λs)U
T . Λd is a diagonal

block matrix and Λs has non null blocks above the blocks in Λd. One then arrives to

the joint distribution of the eigenvalues, distributed over C (see [6]),

dp(λ1, ..., λN ) ∝
∏
i<j

|λi − λj |
N∏
i=1

√
erfc

(
|λi − λ∗i |√

2

)
e−

1
2

(λ2
i+λ

∗
i

2) (1.24)

One notices that the spectrum is clearly symmetric with respect to the real axis and

the presence, once again, of a repelling term between each pair of eigenvalues. It

can be further shown ([6]) that the eigenvalues of such matrices display properties of

a so-called Pfaffian process, as marginal densities can be expressed via the so-called
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Pfaffians. In particular, joint probability function of the eigenvalues can be integrated

and yields the density of complex and real eigenvalues respectively (see [36]),

RC1 (z) =
2|y|√

2π
e2y2

erfc(
√

2|y|)Γ(N − 1, |z|2)

Γ(N − 1)
(1.25)

and

RR1 (x) =
Γ(N − 1, x2)√

2πΓ(N − 1)
+

1

2N−1/2Γ(N/2)
ν

(
N − 1

2
,
x2

2

)
(1.26)

with ν(N, x) = 1/xN (1−Γ(N, x)/Γ(N)) and Γ(N, a) =
∫ +∞
a e−ttN−1dt. The quantity

above can be related to the averages of characteristic polynomials of the same ensemble

of matrices:

RC1 (x+ iy) = CN |y|e−
1
2

(x2−y2) erfc(
√

2|y|)EGinOE [det((x1N−1 −GN−2)2 + y21N−1)]

(1.27)

for some normalizing constant CN and

RR1 (x) =
1

2N/2Γ(N/2)
e−

1
2
x2
EGinOE [|det(x1N−1 −GN−1)|] (1.28)

If in eq(1.25), we rescale x → x̃
√
N and y → ỹ

√
N , such that x̃, ỹ < +∞ (the bulk

regime) and we use

lim
N→+∞

Γ(N − 1, Na)

(N − 2)!
=

{
1 if 0 ≤ a < 1

0 if a > 1

we obtain the circular law. We state the latter in the strong form, given by Tao [37]:

Theorem:([37]) the spectral empirical distribution of a random matrix 1√
N

G with i.i.d

entries such that Gij is a centered complex random variable of unitary variance and

E[|Gij |2+η] < +∞ for some η > 0 converges uniformly to

ρc(z) =

{
1
π for |z| < 1

0 otherwise

This result is still valid if we replace the last assumption with E[|Gij |2(log(2+|Gij |))δ] <

∞ for a sufficiently large δ > 0 and the case of Gij being independent but not identi-

cally distributed.

There is a secondary regime at the edge of the spectrum, namely, after we rescale

x̃ = 1 + δ√
N

, with δ = O(1). RR1 (x) becomes

RR1 (x) ≈ 1

2
√

2π
(1− erf(δ

√
2) +

1√
2
e−δ

2
(1 + erf(δ))) (1.29)
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where we used

lim
N→+∞

Γ(N − 1, N(1 + δN−1/2))

(N − 2)!
=

1√
2π

∫ +∞

δ
e−

v2

2 dv = erfc
√

2δ

Note that the absolute value of the determinants in eqs(1.27,1.28) formally involves

the Ginibre matrix globally shifted by the spectral identity operator: λ1N .

However in chapter 3, we will need to evaluate such quantity additionally consid-

ering the Ginibre matrix deformed by a rank-1 perturbation. Such perturbation takes

the deterministic form M = h ⊗ h† where |h| = O(1) and does not alter the circular

law, since

Theorem:([22]) the convergence in probability to ρc(z) of the empirical distribution is

also preserved for matrices 1√
N

G+M where
(
Tr
(
MM†))1/2 = O(N1/2) and rank (M) =

o(N).

However the perturbation M might be sufficient to generate a finite number of outliers

in the spectrum:

Theorem:([22]) consider M with rank(M) = O(1) and operator norm O(1). For

ε > 0, let assume that for large N there are no eigenvalue in the region {z ∈ C :

1 + ε < |z| < 1 + 3ε} and there are n = O(1) eigenvalues of M in |z| ≥ 1 + 3ε. Then

almost surely, for N � 1, there are n eigenvalues of 1√
N

G+M in the region |z| ≥ 1+2ε.

Starting from these theorems and considerations, in section 1.3.2 we will address some

statistics of the determinants of such matrices.

1.1.3 Generalized Wishart Matrices

We introduce the last class of random Hermitian matrices we will use in the second

part of this thesis, namely W ∈ CN,N or RN,N such that

W = AN +

M∑
j=1

Tiwiw
†
i (1.30)

where AN is an Hermitian matrix, Tis are i.i.d random scalar with probability density

pT (t) and wj are random column vectors of N components. As we are interested in the

spectral properties of W we will take M,N → +∞ such that M/N = α < +∞. The
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ensemble in eq(1.30) generalizes the ensemble of Wishart matrices5[8]. We assume

that AN is null, to avoid any problem which may arise due to violation of rotational

invariance of the resulting ensemble of random matrices. Similarly to the hypothesis

for the semicircle and circular laws, we assume finite values for the fist four centered

moments of w, i.e.{
E[w†iwj ] = 1

N δij + aij(N)

E[w†iwjw
†
lwm] = 1

N2 (δijδlm + δimδjl) + ϕil(N)ϕ∗jm(N) + bijlm(N)
(1.31)

We further impose, as N → +∞, the following scaling: |aij |2 ∼ 1/N ε1 , |ϕ|ij ∼ 1/N ε2

and |bijlm| ∼ 1/N ε3 with ε1 < 3, ε2 < 2 and ε3 < 6 respectively. These guarantees the

statistical unitary invariance of w and,

Theorem:([13]) with the premises above, the spectral cumulative empirical density of

W converges in probability to a function F (x, α) =
∫ x
−∞ ρα(ξ)dξ for N → +∞. Its

Stieltjes transform m(z, α) of BN satisfies

m(z, α) = −
(
z − α

∫ 1

0

tdFT (t)

1 + tm(z, α)

)−1

(1.32)

and it is analytic in z in the region Im z > 0. FT (t) is the cumulative distribution of Ti.

The knowledge of m(z, α) allows one to compute the probability of observing the

eigenvalue within an interval (x1, x2) in R by the inverse transform

F (x2, α)− F (x1, α) = lim
η→0+

1

π

∫ x1

x2

Imm(ξ + iη, α)dξ (1.33)

The calculation of F (x, α) by the formula above is not always an easy task. In the

original paper [13], F (x, α) was retrieved for w being uniformly distributed on the

unit sphere and three particular choices of FT (t): dFT
dt (t) = δ(t− r)(single point mass),

dFT
dt (t) = 1

π
√

1−t2 (arcsine distribution) and dFT
dt (t) = 1

π(1+t2)
(Cauchy distribution). In-

teresting, regardless of the nature of Ti and the details on the behaviour at the edge

of the spectrum, these examples seem to suggest the boundedness of the domain of

dF
dx (x, α). This is not a universal behaviour (see section 1.3.3).

5These correspond to Ti = 1 in eq(1.30)
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1.2 Overview of Existing Methods and Techniques

The following subsections are a collection of mathematical tools used in this thesis.

Hence, the aim is to sketch some methods underlying results briefly mentioned in

previous sections, and show the most relevant works which have lead to the original

results of section 1.3.

1.2.1 Change of Variables For the Replica Methods

In many of our calculations, we will be left with evaluating integrals over the pair of

complex vectors (zj , z
†
j ), each of dimension N , for j = 1, ..., n which appears in the

form of a n × n matrix Q̃ whose entries are Q̃ij = z†i zj . Namely, we will exploit the

following identity given in [38, 39]:∫ n∏
j=1

dzjdz
†
jf(Q̃) =

2π−n(n−1)/2∏n
j=1(N − j)!

∫
Q�0

dQ det (Q)N−n f(Q) (1.34)

where the integration runs over the positive definite Hermitian matrices. Eq(1.34)

was extended to the real case Q̃ij = xTi xj , namely [39]:∫ n∏
j=1

dxjf(Q̃) =
2π−n(n−1)/4∏n−1
j=0 Γ

(
N−j

2

) ∫
Q�0

dQ det (Q)
N−n−1

2 f(Q) (1.35)

This time considering Q being a positive definite symmetric matrices.

1.2.2 Saddle Point-Steepest Descent Approximation

In this chapter we made use of the saddle point approximation whenever we were

interested in the large N behaviour. In what follows there will be frequently a need to

approximate integrals and series as a function of a parameter, when the latter becomes

sufficiently large. Here we briefly sketch the essence of the corresponding method. Let’s

consider a generic integral in the complex plane

I(η) =

∮
γ
eηL(z)g(z)dz (1.36)

where the integration occurs over a contour γ, not necessarily closed, in the complex

plane. The idea is to the deform the latter such that the integrand, for large η, can

be replaced by a simpler function. Qualitatively, as η increases, the main contribution

to the integral arises from the neighbourhood dz where the real part of L reaches its

maximum. For simplicity, let’s assume L is holomorphic within the path γ. Therefore,
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we need to obtain the sets of points zsd such that dL
dz = 0 (see [40]). However, we need

to approach such points carefully as the imaginary part of L leads to rapid oscillations.

These points generate a set of surfaces ReL(zsd) = ReL(z) and ImL(zsd) = ImL(z).

By virtue of Cauchy-Riemann equations we have ∇ ImL = (−∂y ReL, ∂x ReL)T and

clearly (∇ ImL)T (∇ReL) = 0. Therefore the direction of maximum increase of the

real part of L, namely ∇ReL, is also the direction on which the imaginary part of

L remains constant. We can include in this approach higher order saddle points. A

N − 1 order saddle point, is such that the first non-vanishing derivative is dNL
dzN
6= 0 so

that

L(z) = L(zsd) +
1

N !

dNL
dzN

(zsd)(z − zsd)N + o((z − zsd)N ). (1.37)

We can rewrite any complex number as z = zsd+ reiθ and dNL
dzN

(zsd) = seiϕ. Therefore,

L(z)−L(zsd) ' 1
N !r

Nsei(Nθ+ϕ). The imaginary part of L remains constant on sin(Nθ+

ϕ) = 0. We now want to select the curves where Re(L(z)) < Re(L(zsd)), this occurs

for curves approaching zsd:

θ = − ϕ
N

+ (2k + 1)
π

N
(1.38)

for k = 0, .., N − 1. Therefore to compute eq(1.36) we need to deform the path γ in

order to approach and leave zsd with the paths indicated by eq(1.38).

1.2.2.1 Generalization to RN

The saddle point approach can be generalized to RN . For the purpose of this thesis, we

assume L is C2(R2) and has only first order saddle points. The Hessian of L computed

in such points is negative definite. In particular, if the integration runs over a compact

subset, U , and over the latter ReL(z) has a single maximum at x0 such that the

Hessian of L(z) is non singular, then ([41])

I(η) =

∫
U
g(x)eηL(x)dx =

(
2π

η

)N/2 eηL(x0)√
det(−∇2L(x0))

(g(x0) + o(1)) (1.39)

for η � 1. Lastly, it might happen that the maximum of L(z) is achieved at an

accumulation point of U . We present here the case N = 2 which is particular simple,

making use of the Green Theorem:

I(η) =
1

η

∮
∂U
eηL(x(s))g0(x(s))

∇L
|∇L|2

· n(x(s))ds− 1

η

∫
U
eηL∇ ·

(
g0(x(s))

∇L
|∇L|2

)
dx

(1.40)

where n(x) is the outward normalised and orthogonal vector on ∂U . The second

integral is of order O(eηL(x0)η−2) while the first term is of order O(eηL(x0)η−3/2) and
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therefore it is the leading contribution. With a local parametrization of ∂U around

x0, i.e. the critical point of L(x) on ∂U , we obtain the leading order of I(η),

I(η) =

√
2π

η3
g0(x0)eηL(x0)× (1.41)

(√
|∂x1,x1L(∂x2L)2 − 2∂x1,x2L∂x1L∂x2L+ ∂x1,x2L(∂x1L)2 ± k|∇|3|

)−1

(1 + o(1))

Where k is the curvature of ∂U at x0.

1.2.3 Watson’s Lemma

The results contained in section 1.3.3.5 are expressed in terms of finite sums and hy-

pergeometric function. To derive the large N behavior it is convenient to ”transform”

the sum into a proper integral. Such approximation is an inverse procedure of the

Watson’s lemma here presented. Hence, let’s consider again a control parameter η,

which takes sufficiently large values in R+ and a given integral (see [40])

I(η) =

∫ b

0
f(t)e−ηtdt,with b > 0 (1.42)

As the critical point of L(t) = t is zero, we restrict our attention to those continuous

functions f which admit a series representation for t→ 0+, i.e.

f(t) ∼ tα
+∞∑
n=0

ant
βn

with α > −1 and β > 0. Then I(η) for η → +∞ behaves as

I(η) ∼
+∞∑
n=0

an
Γ(α+ βn+ 1)

ηα+βn+1

To derive this result we introduce I(η, δ) =
∫ δ

0 f(t)e−ηtdt and we impose δ to be

sufficiently small such that we have, for 0 ≤ t ≤ δ∣∣∣∣∣f(t)− tα
N∑
n=0

ant
βn

∣∣∣∣∣ ≤ Ctα+β(N+1)

For some C > 0. Replacing the statements above into the formula for I(η):∣∣∣∣∣I(η, δ)−
N∑
n=0

an

∫ δ

0
tα+βne−ηtdt

∣∣∣∣∣ ≤ C
∫ δ

0
tα+β(N+1)e−xtdt

the r.h.s. is bounded by C Γ(α+β+βN+1)
ηα+β+βN+1 . So we can take δ → +∞ and η → +∞ and

observe that, therefore, the l.h.s. is bounded by η−α−βN−1. If b → +∞ we also need

to impose f(t)� evt as t→ +∞.
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1.2.4 Kac-Rice Formula

The investigations of dynamical systems necessarily require to identify those states

which do not change with time. These are called equilibrium or fixed points. For

discrete systems, with x(n+1) = f
(
x(n)

)
, the latter satisfy x = f (x). Similarly, for a

continuous dynamical system, with dx
dt = f(x), such states belong to the set of solutions

of f(x) = 0. In both cases, the analysis of the number of fixed points clearly reduces

to finding the real zeros of a vector field which describes the evolution of such systems.

Before addressing this problem, we start from the simplest one dimensional case for a

more general counting problem (see [42]). This is equivalent to finding the real roots

of a function, f(x), on a feasible interval on the real line. Let’s consider the case for

which f(x) is continuous and with continuous derivative on the real line. Furthermore

f(x) is assumed to have a finite number of turning points. This guarantees that the

set of fixed points is countable. We further introduce the rectangular function ψε(x)

such that

ψε(x) =

{
1 for− ε < x < +ε

0 otherwise
(1.43)

With these premises, f(x) defines a family of u open sets Ii on the real line where

−ε < f(x) < +ε. We take ε sufficiently small so that each Ii contains a single zero

of f(x). On each of these sufficiently small interval follows
∫
Ii
|f ′(x)|dx = 2ε. We can

sum the latter on any interval (a, b) such that a and b are not the zeros of f , and divide

by a common factor 2ε in order to obtain

1

2ε

u∑
i=1

∫
Ii

|f ′(x)|dx

The sum can be replaced with the indicating function ψ(x) inside the integral. Lastly,

with hypothesis on f(x), we can take the limit ε→ 0+. This is equivalent in the sense

of the distributions, to replace 1/(2ε)ψε(x)→ δ(x). Therefore the number of zeros of

f(x) within (a, b) is given by

Nf (a, b) =

∫ b

a
δ(f(x))

∣∣∣∣ dfdx(x)

∣∣∣∣ dx (1.44)

If in addition, as it is the case in this thesis, f is a random function, we may wish

to compute the mean (expected) number of fixed points. Hence, for this we need to

compute Ef
[
δ(f(x))

∣∣∣ dfdx(x)
∣∣∣]. In [42], Kac investigated the real zeros of the following

algebraic polynomial

pξ(x) = ξ0 + ξ1x+ ξ2x
2 + ...+ ξN−1x

N−1 = 0 (1.45)
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where ξn are random coefficients whose distribution is given by p(ξn) ∝ e−ξ2
n . Indeed,

functions as in eq(1.45) are called univariate Kac Polynomials. By using the formulae

above, the mean number of real zeros, for finite N , is given by

Np(R) =
4

π

∫ 1

0

(1−N2(x2(1− x2)/(1− x2N ))2)1/2

1− x2
dx (1.46)

and for N � 1, it behaves as (see [42])

Np(R) =
2

π
logN +O(1) (1.47)

In this thesis, we generalize the result above to a set of multivariate Kac polynomials,

i.e.

pξ,n(x) = −µxn +

Ω∑
k=1

σk

N∑
i1,..,ik=1

ξn,i1,...,ikxi1 · · ·xik = 0 (1.48)

for n = 1, ..., N . In this case the large N behaviour of Np(RN ) is given by

Np(RN ) = e
N
2

log Ω(1 + o(1)) (1.49)

See appendix C.4. To obtain the result above we exploit the well-known multivariate

Kac-Rice formula. The natural generalization of the formula eq(1.44) to multivariate

setting is provided by replacing | dfdx |dx with the elementary volume | det(f ′(x))|dx.

The mean number of real zeros of a random function f(x;µ) on V ⊆ RN is given by

Nf (V ) =

∫
V
dxE

[
N∏
k=1

δ(fk(x;µ))

∣∣∣∣∣det

(
∂fi
∂xj

(x;µ)

)N
i,j=1

∣∣∣∣∣
]

(1.50)

We also mention here a more general result:

Theorem:([43]) Given N,M ≥ 1, consider the random fields f = (f1, ..., fN ) and

g = (g1, ..., gM ) and fix T ⊂ RN and B ⊂ RM and assume, for some u ∈ RN , that

• f , g,∇f are almost surely continuous and of finite variance. For any x ∈ RN ,

the density pf(x)(t) of f(x) is continuous in t = u.

• the conditional density of f(x) given ∇f(x) and g(x) is bounded by above and

continuous in u, uniformly over T .

• the conditional density of det(∇f(x)) given f(x) = t is continuous in the neigh-

bourhood of zero and for t in the neighbourhood of u, uniformly over T .
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• in addition, we require:

sup
x∈RN

max
1≤i,j≤N

E
[
|∂jfi(x)|N

]
< +∞ (1.51)

• given the Euclidean metric d(x,y) on T , defining ωf (δ) = supd(x,y)≤δ |f(x) −

f(y)| we assume, for sufficiently small δ,

p(ωq(δ) > ε) = o(δN ) (1.52)

with q = f ,∇f and g.

Then the mean number of points x in T satisfying f(x) = u and g(x) ∈ B ⊂ RM is

given by

E [Nu] =

∫
T

(∫
RD:v∈B

| det(∇y)|pf ,∇f ,g(u,∇y,v)d(∇y)dv

)
dx (1.53)

where pf ,∇f ,g is the joint probability density function of f ,∇f and g computed in x

and D = N(N + 1)/2 +M .

We will use eq(1.53) or the multivariate version of eq(1.44) at our convenience.

Both of the latter are valid for any random field satisfying the hypothesis above.

However, we will only consider applications involving random Gaussian fields f .

1.2.5 Random Fields

Eqs(1.45,1.48) are just examples of Gaussian random fields. Later, in section 3.1.3, we

will encounter dynamical systems whose evolution is described by random functions.

The mean number of fixed point is clearly an average over the realization of these

functions. In our calculations, we will heavily rely upon the theory of random fields

(see [43]). The latter can be thought as a random process which occur in a coordinate

space, in our case a subspace U ⊆ RN . More precisely,

Definition: A random field f , over a set U of a dimension N > 1, is a set of random

variables parameterized by the elements of U .

In virtue of the Kolmogorov extension theorem, analogously to real random variables,

a real Gaussian random field, ϕ(x), is defined by the first two moments:

µ(x) = E[ϕ(x)] (1.54)
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Σ(x,y) = E[(ϕ(x)− µ(x))(ϕ(y)− µ(y))T ] (1.55)

As an example, for a real Gaussian field ϕ(x) with value in R with x ∈ RN this means,

given K observations, thatϕ(x1)
...

ϕ(xK)

 ∼ N

µ(x1)

...
µ(xK)

 , [Σ(xi,xj)]
K
i,j=1


As classic Gaussian random variables, a linear combination of Gaussian fields is a

Gaussian field. More generally any linear operator preserves (in mean-square sense)

Gaussianity, this includes differentiation and integration with respect to x. Provided

µ(x) and Σ(x,y) are differentiable functions, the derivatives of ϕ(x) are again Gaus-

sian with the statistics given by:

E[∂xiϕ(x)] = ∂xiµ(x) (1.56)

E[∂xiϕ(x)∂yjϕ(y)] = ∂xi∂yjΣ(x,y) (1.57)

We notice in obtaining the quantities above that ϕ(x) and ∇ϕ(x) are correlated, in

fact,

E[ϕ(x)∂yjϕ(y)] = ∂yjΣ(x,y) (1.58)

As our goal is to apply the multivariate Kac-Rice formula, it is useful to investigate the

conditions under which the random field and its derivatives are uncorrelated. For our

purpose, we assume the Gaussian field to be centered, i.e. µ(x) = 0. Since the random

field and its derivatives are Gaussian, un-correlation implies statistical independence.

They are uncorrelated if:

• ϕ is homogeneous, i.e. the correlation function is invariant under spatial trans-

lation, i.e. E[ϕ(x)ϕ(y)] = Φ(x− y).

• ϕ is isotropic, i.e. the correlation function is invariant for any rotation O ∈ O(N)

of the coordinates, i.e. for x→ Ox and y → Oy, we have

E[ϕ(x)ϕ(y)] = E[ϕ(Ox)ϕ(Oy)] (1.59)

If the two properties above are satisfied then the field and its derivatives are statistically

independent.
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Chapter 1. Random Matrix Theory

1.2.6 Superbosonization

For the introductory calculation of the semicircle law we made use of the replica trick,

generating n copies of the Fermionic partition function. Afterward, we send the number

of replicas to zero and successively N to infinity. We omitted further generalizations

of such technique not essential for understanding of the content of this thesis, such

as notion of supermatrices, containing both bosonic and fermionic entries. We now

consider a more general picture, which allows one to easily deal with matrices such as

those appearing in eq(1.30) for finite value of n and N . Before doing so, following the

notation introduced in section 1.1.1, we introduce the circular ensembles CβE:

• Orthogonal ensemble β = 1: it corresponds to the unitary and symmetric n× n

matrices U whose unique measure is invariant under U→WTUW where W is

a n× n unitary matrix.

• Unitary ensemble β = 2: it corresponds to the unitary n× n matrices U whose

unique measure is invariant under U→WUV where W and V are n×n unitary

matrix.

• Symplectic ensemble β = 4: it corresponds to the self-dual unitary quaternion

n×n matrices U whose unique measure is invariant under U→WRUW where

W is a n× n unitary quaternion matrix.

Let’s now consider the following integral,

Iβ(F̂ ) =

∫ n∏
j=1

DψjDψ̃jF̂ ({ψj , ψ̃j}pj=1). (1.60)

This Berezin integral involves n Grassmannian pairs vectors of size N . As we deal

with β rotationally invariant ensemble, we assume the Grassmannian entries can be

re-arrange such that the integrand F̂ is function of the block matrix

Q̂ =

[
ψ̃Ti ψj ψ̃Ti ψ̃j
−ψTi ψj −ψTi ψ̃j

]
(1.61)

Namely F̂ ({ψj , ψ̃j}nj=1) = Fβ(Q̂). The subscript β is introduced to take into account

the symmetries of F̂ . With these premises we have ([44][45] and [46])

Iβ(F ) =

∫
Un

(U†dU) det(U)
− 2N

β Fβ(U)∫
Un

(U†dU) det(U)
− 2N

β e
2
β

Tr U
(1.62)

The differential (U†dU) denotes the normalised Haar measure over the corresponding

group:
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• For β = 1: Un = CSE(2n), i.e. the integrals run over the group of 2n × 2n

unitary matrices U with skew symmetric sub-blocks, satisfying

P−1UP = UT (1.63)

where P =

[
0n −1n
1n 0n

]
. Therefore U has the following block form:

U =

[
U11 U12

U21 UT
11

]
with U12,U21 ∈ Skew(Cn,n). This group corresponds to the unitary matrix of

the circular symplectic ensemble CSE(n). Validity of eq(1.62) can be demon-

strated by introducing a shift operator and the N × N skew-symmetric matrix

A =
∑n

i=1ψiψ
T
i , and observe the following identity∫

DψF1

(
n∑
i=1

ψiψ
T
i

)
=

∫
Dψ exp

(
Tr

n∑
i=1

ψiψ
T
i

δ

δA

)
F1(A)|A=0 (1.64)

The integral operator can be written in terms of Pfaffian so the equation is

proportional to

det

(
2
δ

δA

)n/2
F1(A)

∣∣∣∣∣
A=0

(1.65)

• In a similar way one can treat the complex case (β = 2). In this case the integrand

can be written as a function of Q̂ which only consists of the n × n upper left

block of eq(1.61). Namely, the Berezin integral is replaced by an integral over

the group of the n× n unitary matrices and Un = CUE(n).

Clearly if Fβ(U) is unitary invariant, the formula eq(1.62) above can be expressed

in terms of the eigenvalues of Circular β-Ensemble. The joint probability density

function of the latter is given by

pn({eiθj}nj=1) =
1

Cβ,n

∏
j<k

|eiθj − eiθk |β (1.66)

with Cβ,n = (2π)nΓ(βn/2 + 1)/(Γ(β/2 + 1))n with θj ∈ (0, 2π). Before finding an

explicit formula for some choices of F̂ , it is useful to include the following digression for

N � 1. Let suppose that Fβ(x) can be written as eTrxfβ(x) with fβ(x) homogeneous

in the size N , i.e. fβ(Nx) = Nαfβ(x) for some parameter α ∈ R. An example is simply

given by the denominator of eq(1.62) for which fβ(x) = 1. If that is the case, we can

perform a saddle point approximation as N � 1 observing that the main contribution
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Chapter 1. Random Matrix Theory

to the closed contour integrals is given by the critical point of L(z) = z − log z, i.e.

z = 1. Such point is crossed at angles {π2 ,
3π
2 }. Therefore, for N � 1, the numerator

(equivalently the denominator) is proportional to,∫ +∞

−∞

n∏
j=1

dxj
∏
j<k

|xj − xk|β
n∏
j=1

e−
N
2
x2
j

1 + ixj
fβ ((1 + ix1), ..., (1 + ixn)) (1.67)

This shows that the integration over CβE can be effectively reduced to integration over

the corresponding Gaussian matrices. Therefore after some calculations, for N � 1,

up to a constant depending on N , we arrive to

Iβ(F ) ∝ EGβE

[
fβ
(
N
(
12/βn + i

√
n
NH

))
det
(
12/βn + i

√
n
NH

) ]
(1.68)

For finite N and generic Fβ we need to parametrize the entries of CβE matrices.

1.2.7 Parametrization of Unitary Matrices

We have given the probability distribution of the eigenvalues of CβE matrices. How-

ever, the integrand in eq(1.62) is not necessarily unitary invariant. Therefore a

parametrization of such matrices is required. For this purpose we will sketch the

parametrization proposed in [47] and [48]. Any n × n unitary matrix U is described

by (n− 1)2 real parameter and can be written as follows

U =

[
aeiϕ b

c D

]
(1.69)

where 0 ≤ a ≤ 1 and ϕ ∈ (0, 2π), b ∈ C1,n−1, c ∈ Cn−1,1 and D ∈ Cn−1,n−1 and

subject to the constraints 
|a|2 + bb† = 1

|a|2 + c†c = 1

cc† + DD† = 1n−1

(1.70)

where 0 ≤ a ≤ 1 and ϕ ∈ (0, 2π). The block matrices in U are contractions. Therefore,

a = U11 admits a defect operator da = (1 − |a|2)1/2. This fixes the norm of b and

c and their entries since: b = dau and c = dav where u and v are normalized

vectors belonging to C1,n−1 and Cn−1,1. The vectors u and v are isometric and admit

diagonalizable defect operators Dv = (1n−1−vv†)1/2 and Du = (1n−1−u†u)1/2. The

eigenvalues of the latter are λ = 1 with multiplicity n− 2 and λ = 0 with multiplicity

one. If we substitute these results back in the last equation of eq(1.70) we obtain the

last block matrix D, i.e.

D = −ae−iϕvu + K1

[
U? 0
0 0

]
K2
† (1.71)
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the matrix U? is an arbitrary unitary (n− 2)× (n− 2). The matrix K1 and K2 diag-

onalize Dv† and Du respectively. To obtain the parametrization of CSE(n) matrices

we additionally impose the constraints of eq(1.63). Iteratively, we obtain:

For CUE(n):

• n = 1: U = eiθ with θ ∈ (0, 2π)

• n = 2: U =

[
ei(ψ11+ψ12) cosϕ eiψ12 sinϕ

−ei(ψ11+ψ22) sinϕ eiψ22 cosϕ

]
with i, j = 1, 2, ψij ∈ (0, 2π) and

ϕ ∈ (0, π/2)

For CSE(n):

• n = 1: U =

[
eiθ 0
0 eiθ

]
with θ ∈ (0, 2π)

• n = 2: U =

[
U11 U12

−U12e
i(ϕ12+ϕ21−2ϕ14) Ut

11

]
with

U11 =

[
eiϕ11h eiϕ22d

√
1− h2

eiϕ21d
√

1− h2 −e−i(ϕ11−ϕ21−ϕ22)h

]
and

U12 = eiϕ14
√

1− h2
√

1− d2

[
0 −1
1 0

]
with h, d ∈ (0, 1) and ϕ11, ϕ21, ϕ22, ϕ14 ∈ (0, 2π).
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1.3 Overview of Original RMT Results

We now turn our attention to the original technical results of this thesis concerning

properties of random matrices (these results will form the basis for applications in the

rest of the thesis). These represent extensions and generalizations of what stated so

far.

1.3.1 Extension of Eq(1.23)

In section 1.1.1.7, we introduced the ratios of half integer powers of determinants for the

Gaussian Orthogonal ensemble. Eq(1.23) can be used for obtaining the characteristic

function of the entries of the Wigner reaction matrix in absence of absorption. We

want to generalize it and include uniform absorption in the scattering region. We

postpone further discussing the physical meaning of these results for chapter 2. Here

for convenience of the reader, we provide the mathematical results. In particular, later

on we will exploit the following equalities and limits derived by us in ([1]):

lim
N→+∞

EGOE(N)

 det((λ1N −H)2 + α2

N2 1N )∏2
`=1 det((λ1N −H)2 +

ω2
`

N2 1N )1/2

 = (1.72)

−
∫
R+

dq1

∫
R+

dq2|q1 − q2|J0

(
sα(q1 − q2)

)
× e−

1
4

(q1+q2)((q1q2)−1+4α2)

×D(q1, q2, α) sinh(2α)− 2αC(q1, q2, α) cosh(2α)

512
√
πq3

1q
3
2(q1 + q2)5/2α3

where ω2
1 = α2 − iαs, ω2

2 = α2 + iαs and

lim
N→+∞

EGOE(N)

 det((λ1N −H)2 + α2

N2 1N )∏2
`=1 det((λ1N −H)2 + i(−1)` kN (λ1N −H) +

ω2
`

N2 1N )1/2

 =

(1.73)

−
∫
R+

dq1

∫
R+

dq1dq2|q1 − q2|I0

(
k

√
k2

4
+ α2(q1 − q2)

)
e−

1
4

(q1+q2)((q1q2)−1+2(k2+2α2))

×D(q1, q2, α) sinh(2α)− 2αC(q1, q2, α) cosh(2α)

512
√
πq3

1q
3
2(q1 + q2)5/2α3

with:

C(q1, q2, α) = q2
2−4q3

2 +4q3
1(4q2−1)+2q1q2(1−4q2 +8q2

2)+ q2
1(1−8q2 +44q2

2) (1.74)

−4(q1 +q2)
(
−q3

2 + q2
1q2(4q2 − 5) + q1q

2
2(4q2 − 5) + q3

1(4q2 − 1)
)
α2 +16q2

1q
2
2(q1 +q2)2α4
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and

D(q1, q2, α) = C(q1, q2, α)− 8(q1 + q2)2α2
(
q1 + q2 − 2q1q2 + 4q1q2(q1 + q2)α2

)
The function J0(x) is the Bessel function of order zero and I0(x) is the modified

counterpart. In the process of derivation, presented in full in appendix B.4, we made

use of eq(1.22), firstly assuming λ = 0 and successively introducing the Dyson limit

(see appendix B.4). For α→ 0+ in eq(1.72) and eq(1.73), one returns to eq(1.23).

1.3.2 New Results for Non-Hermitian Matrices

The results of section 1.1.2 are clearly non-exhaustive and insufficient to infer the

statistics of the characteristic polynomials of λ1N + εe1 ⊗ eT1 − G. One can start

addressing this problem by computing EGinOE [det(λ1N + εe1 ⊗ eT1 −G)] where e1 =

(1, 0, ..., 0)T . This is a simple task as the determinant is a linear function of the entries

and its average is equal to λN−1(λ + ε). Therefore, the outlier contributes to the

expectation only if it is of the order of the shift λ. More important, the asymptotics

N � 1 is dominated by |λ| being smaller(bulk regime) or greater(outer regime) than

one. The expectation of higher powers and the absolute value of the determinant

require a more sophisticated approach. The calculation of the latter is contained in

appendix A and [2]. The essential idea is the ”Hermitization” of the non Hermitian

matrix G and to re-write the determinant by introducing pairs of Grassmannian vectors

in order to obtain (fig(1.1))

EGinOE [det(λ1N + εe1 ⊗ eT1 −G)2] = λ2N + (N + ε2 + 2λε)eλ
2
Γ(N,λ2) (1.75)

Once again |λ| discriminates the two regimes. Our attention, for the purpose of this

thesis, is devoted to the expectation of the absolute value, namely (fig(1.1))

EGinOE [| det(λ1N + εe1 ⊗ eT1 −G)|] =
2−

N
2
−1e−λ

2

√
πΓ(N+1

2 )

∫
R
dx1

∫
R+

dx2e
L(x1,x2)g(x1, x2)

(1.76)

where we found [2]

g(x1, x2) = x
N−3

2
2 (x2

1 +x2 +1)−
N
2
−2
(

+λ2N (ε2x2 +(N −1)(x2 +x2
1 +1))+2ελ2N+1x2+

+eλ
2
Γ(N,λ2)(λ2((1−N)(x2 + x2

1)− x2ε
2) + (N − 1)(ε2(x2 + 1) +N(x2 + x2

1 + 1))+

+2ελ(N − 1)(x2 + 1)− 2λ3x2ε)
)
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Figure 1.1: Eq(1.75) (top) and Eq(1.76) (bottom) against simulations of the ensemble
GinOE indicated by markers forN = 6, ε = 0.1(blue), ε = 0.2(red) and ε = 0.3(green).
# Samples matrices=50000.

and

L(x1, x2) =
−ε2x2

1 − 2ελx2
1 + λ2(x2 + x2

1 + 2)

2(x2 + x2
1 + 1)

.

As it will be clear in the following chapters, averages of absolute values of determinants

of random matrices and operators is of fundamental importance in counting problems

by using the Kac-Rice method (see section 1.2.4 and [49, 50, 36, 51]). Eq(1.76),

although exact for any N , is unpleasant due to the double integration. The two

regimes can be obtained by rescaling λ→
√
Nλ and ε→

√
Nε and take N � 1, i.e.

• |λ| > 1

EGinOE
[∣∣∣∣det

(
λ1N + εe1 ⊗ eT1 −

1√
N

G

)∣∣∣∣] = |λ|N−1|ε+ λ|(1 + o(1)). (1.77)

• |λ| < 1

EGinOE
[∣∣∣∣det

(
λ1N + εe1 ⊗ eT1 −

1√
N

G

)∣∣∣∣] =
√

2e
N
2

(λ2−1)
√
ε2 + 2λε+ 1(1+o(1)).

(1.78)
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These results are consistent with the asymptotics for RR1 (x) with ε→ 0 in the equations

above. Remarkably, the case |λ| > 1 is equivalent, up to a function of N , to the

asymptotics of (EGinOE [det(λ1N + εe1 ⊗ eT1 − G)2])1/2. For completeness, we now

consider the edge of the spectrum, |λ| = 1. We further rescale λ → 1 + λ√
N

and

ε → 1 + ε√
N

. We assume that the new variables λ and ε are real and of order one.

Again by performing a saddle point approximation for eq(1.76),

• for λ < 0:

EGinOE
[∣∣∣∣det

(
λ1N + εe1 ⊗ eT1 −

1√
N

G

)∣∣∣∣] =
√

2e
√
Nλ+λ2

2 erfc(
√

2λ)(1 + o(1))

(1.79)

• for λ > 0:

EGinOE
[∣∣∣∣det

(
λ1N + εe1 ⊗ eT1 −

1√
N

G

)∣∣∣∣] = 2

(
1 +

λ√
N

)N−1

(1 + o(1))

(1.80)

1.3.3 New Results for Wishart Matrices

The examples in [13] and mentioned at the end of section 1.1.3 suggested the bound-

edness of the domain of dF
dx (x, α). We show now that this is not a universal behaviour.

Here and in section 3.1.5, we consider the ensemble of W in eq(1.30) generated by

wi = 1√
N

(wi,1, ..., wi,N ) where wij and Ti are real independent identically distributed

normal random variables of unitary variance. For this choice F (x, α) can not be ob-

tained analytically by inversion. The Stieltjes transform satisfies

z =
α− 1

m(z)
− iα

m2(z)
Ψ

(
i√

2m(z)

)
(1.81)

where Ψ(x) =
√

π
2 e

1
x (1 + erf(x)). The inversion of this equation is a hard task for

finite values of x and α. Nevertheless, it is enough to shed light on the behaviour of

ρα. We firstly show that ρα(x) does not have compact support. Given z = x + iy,

for x� 1 follows Re(m) ≈ − 1
x and Im(m) ∝ exp− 1

2 Re2(m)
. Since we expect ρα to be

symmetric and that can be obtained from ρ(x) = 1
π
d
dx limy→0+

∫
dx Imm(x + iy) we

have that

ρα(x) ∝ e−
x2

2 for |x| � 1. (1.82)
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Figure 1.2: Top: limit spectral density of eq(1.30) for Tj ∼ N (0, 1) obtained numeri-
cally by fixed point equation eq(1.81). Bottom: detail of the Gaussian tails.

where the constant depends on α. Therefore ρα(x) has Gaussian tails. Fig(1.2) shows

different regimes. At x = 0, ρα,0 = ρα(0) satisfies

1− e
1

2π2ρ2α,0

√
2πρα,0

erfc

(
1√

2πρα,0

)
=

1

α
(1.83)

Not surprising, for α = 1, ρα → +∞ for x → 0. This is present also in the

Marchenko–Pastur distribution. For α = 1 + ε with ε→ 0+, we have

ρ(x) ≈ 1

ε
√

2π
−
√
π

2

x2

ε5
+ o(x2)

For α � 1, ρα,0 ≈ 1
π
√
α−3

. From the expansion of the real and imaginary part of

eq(1.81) for |x| � 1 we have:

ρα(x) ≈ 1

π
√
α− 3

(
1− x2

2(α− 3)

)
+ o(x2) (1.84)
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The range of finite value for x is not easily accessible. Lastly, we see, from numerical

calculations of the first moments, defined by E[xn] =
∫
ρα(x)xndx, that6 E[x2] = α

and E[x4] = α(2α+ 3).

This example leaves us with the question: which properties of wi and Ti determine

the domain of the spectral limit density? In what follows we will try to shed some

light on this question.

1.3.3.1 Level Spacing

The tail of the distribution poses question regarding how the eigenvalues are arranged

on the real line. To investigate the correlation among the eigenvalues we numerically

evaluate the statistics of the mean separation of the latter. In fact the Gaussian tails

do not confine the eigenvalues within a bounded segment of the real line as the size of

the matrix grows. In particular we know that for bounded-support spectral densities,

as GβE and the Laguerre β-ensembles, in the bulk |λi − λj | ∼ 1
N . For W, we have

to abandon the strict notion of the spectral bulk. We investigated the level spacing

between the eigenvalues around zero by adopting the approach contained in [52] we

introduce

rj =
min{sj , sj+1}
max{sj , sj−1}

where sj = λj+1 − λj . Such choice has the advantage, respect to the simple spac-

ing sj to be less sensitive to sample fluctuations [52]. For N = 400, we consider

sequences 16 consecutive eigenvalues from the middle of the spectrum yielding a col-

lection of rj values for 20000 disorder realizations. The distribution of rj is show in

fig(1.3) and in table(1). As α grows the expectation of r increases and approaches

the expectation for GOE E[r] ' 0.53068 ± 0.00001 with N = 100. For GOE, in

fact, P (r) ∝ (r + r2)/(1 + r + r2)5/2 ([52]). The eigenvalues around the maximum

Table 1.1: Numerical evaluation of E[r] for N = 100, # Samples=200000.

α Ensemble eq(1.30) and Ti ∼ N (0, 1) Real Wishart Matrices

1 0.5201±0.0001 0.5304±0.0001
3 0.5304±0.0001 0.5306±0.0001
6 0.5306±0.0001 0.5306±0.0001

6The moments were numerically tested up to α = 15. The series were provided by the OEIS
Foundation http://oeis.org/
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of ρα(x) form spectral sequences similar to the known random matrix ensemble men-

tioned above. The extreme eigenvalues remain de-localized due to the presence of the

tails.

1.3.3.2 The Largest Eigenvalue

Another question left by ρα is the behaviour of the largest eigenvalue. The absence of

an explicit formula for the joint density of the eigenvalues of W prevents any analytical

consideration over the largest eigenvalue λmax. For the unscaled β ensembles presented

at the beginning of section 1.1.1, the latter behaves as

λmax ≈
√

2N +
cβ

N1/6
`

where ` is a random variable with Tracy-Widom distribution, i.e.

p(` < x) = Fβ(x)

For β = 2, F2(x) is equal to exp
(
−
∫ +∞
x (s− x)q2(s)ds

)
, where q(x) is the solution of

the Painlevé type II equation (see [19][20])

d2q

dx2
(x) = xq(x) + 2q3(x)

Without further details, from these results we get{
F1(x) = eE(x)F

1/2
2 (x)

F4 = cosh (E(x))F
1/2
2 (x)

(1.85)

with E(x) = −1/2
∫ +∞
x q(s)ds. If we consider the statistics of λmax − E[λmax], we

observe the matching with dF1
dx (x) around the peak (fig(1.3)). This is not a surprising

result, but interesting such observation is not obtained by a rescaling with N as it

happened for the GβE matrices. The distribution includes two asymmetric exponential

tails.

1.3.3.3 Characteristic Polynomials

Similarly to the investigations on Hermitian and non Hermitian random matrices of

the sections above, we want to investigate the correlations among characteristic poly-

nomials of W =
∑M

j=1 Tjwjw
†
j . We assume as in section 1.1.3, p(w) ∝ e−

βN
2
w†w. In

principle, we would like to compute (see section 3.1.5 for further details)

Ew [|det(λ1N −W)|]
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Figure 1.3: Top: Mean level spacing among eigenvalues surrounding zero. Bottom:
Empirical distribution of the (centered) largest eigenvalue for α = 1, N = 600, β = 1,
i.e λmax − E[λmax](markers), Tracy-Widom distribution(red), fitting of the left(blue)
and right (green) tails of the distribution. # Samples=200000.

for p(T ) ∝ e−T
2/2. This quantity is related to a counting problem in section 3.1.5.

However, this appeared to be an extremely hard task and any approach attempted in

this thesis was unsuccessful. Alternatively one can try to obtain the joint probability

density function of the (real) eigenvalues, xj , of W for β = 2. In order to obtain

the latter one can start by recalling the measure p(W)dW and apply the change of

variables in section 1.1.1.1, introduce residues and the Harish-Chandra identity([53]).

One arrives at

p(x) ∝
∫

K∈Herm(N)
eiTr KX

 N∑
j=1

e
N2

2ω2
j

|ωj |
∏
k 6=j

(
1− ωk

ωj

)Γ

(
1

2
,
N2

2ω2
j

)
M

where ωj are the eigenvalues of K and X = diag(x1, ..., xN ). It is not clear how to

simplify the integral above. Nevertheless, this ensemble is of interest on its own and
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Chapter 1. Random Matrix Theory

we follow an alternative route. Aiming to shed some light on this ensemble, in this

section we discuss the p-th correlation function of the characteristic polynomial:

Zβ,p(λ; T) = Ew

 p∏
j=1

det(λj1N −W)

 (1.86)

where Ew[...] is the average over allwj for j = 1, ...,M . For now we fix a finite sequence

T = (T1, ..., TM ). We will consider the average over Tjs later on. We emphasize that Tj

is not required to be necessarily strictly positive. Each term above in the expectation

can be written as Berezin integral by introducing p pairs of Grassmanian vectors. By

Bosonization (eq(1.62)), eq(1.86) can be reduced to evaluating the expectation over

the circular unitary ensembles by (see appendix A.2).

Zβ,p(λ; T) =

∫
C(4/β)E(p)(U

†dU) det U−
βN
2 e

β
2

Tr ΛU∏M
a=1 Θa(U)∫

C(4/β)E(p)(U
†dU) det U−

βN
2 e

β
2

Tr U
(1.87)

where Θa,β(U) = det(1(2/β)p − Ta
N U)β/2 and

Λ = 12/β ⊗


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp


If Λ is proportional to the identity matrix, i.e. λj = λ, the integrals in eq(1.87) are

unitary invariant and can be written in terms of the eigenvalues of U. In order to

present the results given below we introduce the hypergeometric function of a matrix

argument (see [26]). For any N ×N matrix M of eigenvalues x

pF
(β)
q (a, b; M) =

∞∑
k=0

∑
κ`k

∏p
j=1(aj)

(β)
κ

|k|!
∏q
j(bj)κ

C(β)
κ (x) (1.88)

where (aj)
(β)
κ is the generalized Pochhammer symbol, C

(β)
κ (x) is the C-normalized

Jack polynomial and κ ` k represents the sum over the partitions of k. For aj < 0, the

infinite sum over k is replaced by a finite order algebraic polynomial in the variables

x. If the latter is a scalar the hypergeometric function reduces to a more familiar:

pFq(a1, ..., ap; b1, ..., bq;x) =

+∞∑
k=0

∏p
j=1(aj)k∏q
j=1(bj)k

xk

k!

From the definition of Θa,β, for β = 1, we choose the branch cut of
√

(·) to be the

negative real semi-axis and, to simplify the calculations, we further assume that

Re

(
det

(
12p −

T

N
U

))
≥ 0. (1.89)
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For N sufficiently large and bounded T s this assumption is justified. However, for

N � 1, the results concerning the asymptotic behaviour of eq(1.86) presented below

are shown to be valid even for unbounded support of certain sufficiently nice probability

density function of T .

1.3.3.4 Fixed T

We first state the case of T being fixed, not necessarily real, and λj = λ. The integrands

above in eq(1.87) become unitary invariant. Therefore introducing the diagonalization

U = VeiΘV† and integrating out the unitary matrix V, those integrals only depend on

the distribution of the eigenvalues of U. If we consider λ 6= 0 the correlation acquires

a determinantal structure for the complex case (See appendix A.3)

Zβ=2,p(λ; T) =
det
[
gN (k − j)

]p
j,k=1

det
[
hN (k − j)

]p
j,k=1

(1.90)

and Pfaffian structure for the real case

Zβ=1,p(λ; T) =
Pf
[
(j − k)gN (2p+ 1− (k + j))

]2p

j,k=1

Pf
[
(j − k)hN (2p+ 1− (k + j))

]2p

j,k=1

(1.91)

where gN (x) = λN+x
N+x∑
u=0

(−1)u

(N+x−u)!eu( TNλ)

hN (x) = 1
(N+x)!

(1.92)

and eu(x) is the u-th elementary symmetric polynomial. Figs(1.4) provide an example

of the formulas above with

T(1) = (0.4339, 1.0562,−0.3710, 0.3090,−0.8655,−1.0482,−1.6036

,−0.7595, 1.1370,−1.0643)T (1.93)

and

T(2) = (0.4339, 1.0562,−0.3710, 0.3090,−0.8655,−1.0482,−1.6036

,−0.7595)T (1.94)

For λ = 0, a directly application of the Selberg integral and of the definition of Jack

and quaternion zonal polynomials leads to following formulas ([26]):

Zβ=2,p(0; T) = (−1)pN
2F

(1)
1

(
− p,N ;−(p− 1)− (1−N); T

N

)
1F

(1)
1 (−N, p−N ; 1)

(1.95)
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Figure 1.4: Top: Evaluation of Z2,2(λ,T) from eq(1.90) (dark line) with T(1)

(eq(1.93)), N = 5, α = 2 against numerical simulations (markers). Bottom: Eval-
uation of Z1,2(λ,T) from eq(1.91) (dark line) with T(2) (eq(1.94)),N = 4, α = 2
against numerical simulations (markers). For each figure, # Samples=100000.

Zβ=1,p(0; T) = (−1)pN
2F

(2)
1

(
− p, N2 ;−(p− 1)− 1/2(1−N); T

N )

1F
(1/2)
1 (−N,−N + 1 + 2(p− 1); 1)

(1.96)

We use these calculation for [3].

1.3.3.5 Random T

We now turn to the original case of T being a random diagonal matrix with i.i.d

main diagonal entries. We consider again N to be finite, with the hypothesis so far

introduced ET[Zβ,p] depends on the first p moments of T. This property results in a

certain ”universality”. Different distributions of T, continuous or discrete, with the

same first p centered moments result in ET[Zβ,p] being the same. In what follows we
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Figure 1.5: Evaluation of ET [Z1,2] from eq(1.98) dark line and numerical evaluation
(markers); α = 1(blue),α = 2(green), x = λ1λ2 E[T 2] = 0.5,E[T ] = 0, N = 6. For each
figure, # Samples=6000000.

give results for p = 1 and p = 2 therefore we will require E[|T |] < +∞ and E[T 2] < +∞.

• p = 1: in this case U is a 1 × 1 and a 2 × 2 diagonal matrix for β = 2 and

β = 1 respectively. For β = 1, we assume that |T/N | < 1 almost surely. The

only relevant moment of T is the mean ET [T ]. However, ET[Zβ,1(λ; T)] does not

depend on the choice of β:

ET[Zβ,1(λ; T)] =

(
E[T ]

N

)N
Ωα1F1

(
−N ; 1 + (α− 1)N ;

λN

E[T ]

)
(1.97)

with Ωα = (αN)!
((α−1)N)! . For E[T ] = 0 this simplifies to

ET[Zβ,1(λ; T)] = λN
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• p = 2: in this case the relevant moments of T are E[T ] and E[T 2]. We introduce

the vector λ = (λ1, λ2). Whenever the latter are distinct, eq(1.87) requires a

direct parametrization of the circular unitary and symplectic Us. For β = 1,

we further assume that 1 + T
N (cos θ1 + cos θ2) + T 2

N2 cos(θ1 + θ2) > 0 for θj=1,2 ∈

(−π,+π). This is necessary to guarantee that eq(1.89) is satisfied. Lastly,

assuming E[T ] = 0, the 2-point correlation function is given by:

ET[Zβ,2(λ; T)] =

(
E[T 2]

N2

)N
Γ

(
N +

2

β
+ 1

)
βΩα

2
×

1F2

(
−N ;

2

β
+ 1, 1 + (α− 1)N ;−λ1λ2N

2

E[T 2]

)
(1.98)

Here we would like to draw the attention to an unusual dependence of ET[Zβ,2(λ; T)]

on the spectral parameters λ = (λ1, λ2). In fact, for the well known GβE matrix

ensembles in the limit N � 1, ET[Zβ,2(λ; T)] becomes a function of the differ-

ence |λ1 − λ2| rather than their product (see [6]). Figs(1.5) provide numerical

evidence of this behaviour. This lays the ground for new investigations concern-

ing the associated kernel of ET[Zβ,2(λ; T)] and consequent scalings for N � 1.

1.3.3.6 Asymptotic of a Large Deviation Type

We now take the limit N → +∞ such that α = M/N is finite. Therefore we expect

that the following results also hold, for sufficiently nice and fast-decaying probability

density function of T , when Re
(
det(12p − Ta

N U)
)
> 0 is not satisfied pointwise for

β = 1. The objective is to extract the leading exponential behaviour of the moments

of ET[Zβ,p]. This reduces to saddle point approximations of the results above:

• p = 1: We introduce x = λ/E[T ] and define the intervals S1 = (−∞, (1 −
√
α)2), S2 = [(1 −

√
α)2, (1 +

√
α)2] and S3 = ((1 +

√
α)2,+∞), for x ∈ Sj we

have:

lim
N→+∞

1

N
log |ET[Zβ,1(λ,T)]| = log |E[T ]|+ fj(α, x)

2
− 1 (1.99)

where: 
f1(α, x) = −(α− 1) log(4x2)− logZ2

+ + Z+ + α logS2
−

f2(α, x) = −(α− 1)(log x+ 1) + α logα+ x

f3(α, x) = −(α− 1) log(4x2)− logZ2
− + Z− + α logS2

+
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Figure 1.6: Top: Large deviations for Zβ,1 of eq(1.97) for α = 1(blue),α = 2(red), and
numerical simulations (markers) for N = 20,E[T ] = 1. Bottom: Large deviations for
Zβ,2 (eq(1.98)) for α = 1(blue), α = 2(red), and numerical simulations (markers) for
N = 100,E[T ] = 0,E[T 2] = 1. For each figure, # Samples=107.

with S± = α±
√

∆+x−1, Z± = −α±
√

∆+x+1 and ∆ = (α−1−x)2−4x. For

α = 1 in S2, f2(α, x) simplifies to x becoming linear (see fig(1.6)). Interestingly,

the intervals of the different regimes are separated by the boundaries of the finite

support of the Marchenko-Pastur distribution, i.e. (1 ±
√
α)2, regardless of the

distribution of T . For |x| � 1, we have:

f1,3(α, x)

2
∼ −α

x
+ log |x|+ 1 (1.100)

Conversely, if E[T ] = 0, the result simplifies to:

lim
N→+∞

1

N
log |ET[Zβ,1(λ,T)]| = log |λ|
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• p = 2: In the limit N → +∞, assuming α ≥ 1, E[T ] = 0, E[T 2] = 1 and

x = |λ1λ2|, a saddle point approximation reveals (fig(1.6))

lim
N→+∞

1

N
log |ET[Zβ,2(λ; T)]| = L(η∗) (1.101)

where: 

η∗ = 1−α
3 −

3√2Θ

3
3
√

∆+
√

∆2+4Θ3
+

3
√

∆+
√

∆2+4Θ3

3 3√2

L(η) = α logα− (α+ η − 1) log(α+ η − 1) + η log x+

+(η − 1) log(1− η) + 2(η − η log η − 1)

∆ = −2α3 + 6α2 − 6α+ 9αx+ 18x+ 2

Θ = 3x− (α− 1)2

The asymptotic behaviour clearly depend on the absolute value of λ1λ2 and not

on their signs. It has to be noticed that such result does not depend on the choice

of β, i.e. of W. In particular for x → 0+, limN→+∞
1
N logET[Zβ,2(λ; T)] =

−2 + log(α− 1)−α log(α− 1) +α logα. Conversely, for x→ +∞, in analogy to

p = 1, limN→+∞
1
N logET[Zβ,2(λ; T)] ∼ α

x + log |x|.

We numerically investigated eq(1.101) for i.i.d. T s normal random variables and

β = 1. This breaks the condition in eq(1.89). As N increases, the average in eq(1.101)

requires an increased number of trials in order to control and suppress the sample

variance. However, even in this case, the exponential behaviour of eqs(1.99,1.101)

above is fulfilled.
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Wigner Reaction Matrix

2.1 Introduction

Firstly born to represent nuclear scattering, quantum chaotic scattering has become a

paradigm for describing large quantum systems. In particular, the chaotic resonance

scattering of quantum waves has been at the center of many investigations in literature

both theoretical and experimental for the last thirty years (to cite a few reviews [54, 55,

56, 57] and [58]). Before being able to describe this phenomenon we proceed by steps,

eventually introducing the RMT approach to the problem. We assume that the state

of a system is described by a superposition of vectors (indicated as |ϕ〉) in a Hilbert

space. Adopting the bra-ket notation for such vectors, for a given spectral parameter

(energy) λ, in the proximity of a scattering region, the system can be described by M

scattering open (incoming, outgoing and evanescent) channels (see fig(2.1)):

|ϕ〉 =
M∑
n=1

ψinn |ϕinn 〉+
M∑
n=1

ψoutn |ϕoutn 〉+
∑
n

ψen|ϕen〉 (2.1)

A linear and unitary transformation, the scattering matrix, S(λ) linearly couples the

states ψ•n on the r.h.s. in eq(2.1). Therefore, the most interesting object to inves-

tigate is S and its statistics. The conservation of probability of the states requires

S(λ ∈ R) to be unitary, i.e. S†(λ)S(λ) = 1M . Additionally, the causality forces the

resonances, i.e. the poles of S, at complex energies to have negative imaginary part.

We focus our attention to the statistics of the scattering observables for energy scales

of the same order as the mean separation among positions of neighbouring resonances.

The features concerning the scattering matrix can be dealt with many different tools.

Examples are the Green function and the wave matching approaches. However, under

our assumptions, the most suitable way to our goal is via the ’Heidelberg approach’.
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Figure 2.1: The system is described by M scattering channels and evanescent states.

Statistics of fluctuations of the scattering observables over an energy interval compa-

rable with a typical separation between resonances can be most successfully achieved

in the framework of the so called ’Heidelberg approach’. We refer the reader to the

seminal work [59],[60], [61] and [62] to cite a few. The main idea is to re-write and in-

vestigate the resonance part of the scattering matrix in terms of the Cayley transform

of the M ×M Wigner reaction matrix K. The latter contains W, i.e. the N ×M

matrix which couples the open channels with the closed part of the scattering system.

The latter is encoded in the resolvent of the Hamiltonian H. Abandoning for now the

bra-ket notations, one can show the validity of the following formulas

S(λ) =
1M − iK
1M + iK

, with K = W† 1

λ1N −HN
W, (2.2)

Within the Heidelberg approach, one can see that S(λ ∈ R) being unitary follows from

the Hermitian property of the Hamiltonian. Introducing at this point the RMT frame-

work with the aim of investigating the fluctuations arising for the chaotic wave scat-

tering, H can be chosen correspondingly as a N ×N self-adjoint random matrix HN .

The properties of HN are clearly inherited from the symmetries of the Hamiltonian

operator H which describes the quantum chaotic behaviour of the closed counterpart

of the scattering system. Hence, we assume that HN is a N×N random matrix drawn

from the Gaussian ensembles listed in section 1.1.1. Firstly, we will investigate systems

with broken time reversal invariance requiring HN to be a GUE(N) matrix (β = 2).

Later we re-introduce such time reversal symmetry and therefore we will draw HN

from the Gaussian Orthogonal Ensemble (GOE(N), β = 1). We assume the system

has no further geometric symmetries. To define the problem we still need to describe

the entries of the coupling matrix W. There are two main approaches in literature.
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Verbaarschot et al. ([59]) fixed its columns wa, a = 1, ..,M to be non-random (com-

plex for β = 2 or real for β = 1) orthogonal vectors. However, in the present thesis will

follow a different path. In line with [63], we require the entries of vectors wa to be i.i.d.

Gaussian random variables orthogonal on average. Regardless of the choice (i.e. fixed

vs random), the assumptions above lead to practically the same results whenever M

is sufficiently smaller than N , i.e. M � N →∞. For the last decades, the advantages

of this approach have been exploited in many works which make use of RMT and Su-

persymmetry (see [64, 65] and recent [66, 67, 35, 68, 69]). The power of these results

have shed light on several experiments involving chaotic electromagnetic resonators,

microcavities and acoustic reverberation cameras. It is worth mentioning their versa-

tility in predicting properties of numerical models for scattering in quantum chaotic

graphs [70] and the experimental counterpart with microwaves [71, 72, 73, 74, 4]. An

important feature of this approach is the fact that the statistics of the Wigner reaction

matrix can be determined experimentally as such matrix can be written in terms of

the entries of the impedance matrix [75, 76, 77]. Recently, our results presented in

section 2.2.1 has been observed experimentally by [4]. In general, a source of discrep-

ancy with the previously existing theory arises from the fact that the experiments on

the scattering face energy losses, i.e. absorption. This is given by imperfections or

by losses in the conducting walls of the resonator. We assume that such energy losses

are uniform and do not have a spatial dependency. The implication is the scattering

matrix being not unitary anymore. Moreover, this presents serious challenges to the

interpretation given above. The absorption has to be incorporated into the Heidelberg

approach. To do so λ is replaced in eq(2.2) by λ→ λ+ iα/N ∈ C for some α > 0 [65].

The consequences of this substitution are the following. The Wigner matrix K is no

longer Hermitian and it has complex entries even in the case of preserved time-reverse

invariance, i.e. for β = 1. The rescaling 1/N in λ is introduced to investigate the

regime in which absorption appears with the order of magnitude of the mean sepa-

ration between eigenvalues of H. The statistics of the main diagonal entries of K is

well understood thanks to several theoretical publications (see [78, 79, 80]). Many

experimental works have followed for both for β = 1, especially in microwave cavities

([81, 75, 76, 77]), and for β = 2 (see [82]). In this chapter, we want to investigate

the statistics of the off diagonal terms of K. This is a hard task which has not been

addressed before for β = 1 except for the limit of zero absorption ([35]) or for the mean

value and variance of |Kab|2 = (Im Ka6=b)
2 + (Re Ka6=b)

2 [83]. We want to address this
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problem and retrieve, particularly for β = 1, the joint distribution of Re Ka6=b and

Im Ka6=b with non-vanishing absorption where

Ka,b = Tr

{((
λ+ i

α

N

)
1N −HN

)−1
wb ⊗wT

a

}
(2.3)

for N → +∞. Before addressing the case β = 1, we consider the case of broken time

reversal invariance. The aim is to complete and generalize eqs.(11)-(13) in [84] for the

first statistics of |Kab|2 for a 6= b. In the latter work they derived the full distribution

of |Ka6=b|2 for β = 2. Additionally, we introduce the case of correlated channel vectors

(see eq(2.10)). This also represents an initial benchmark to attempt the case β = 1.

Before we provide the detail of our work, we point out that the case of correlated

channel vectors represents a violation of the orthogonality on average. This results in

a non diagonal mean scattering matrix S and shows the presence of “direct” scattering

[85]. For the “Heidelberg model” this case is essentially new in literature (see [86]).

In appendix B.3, we give particular emphasis on the “perfect coupling”, obtained by

either changing the strength of the channel couplings or increasing correlations between

channels.

2.2 Characteristic Function for Kab

We now investigate the statistics for Kab for the two choices of wa. Such choices will

lead to different results. In particular, we are able to present a closed form expression

only for β = 2 while leaving the result in a form of an integral representation for β = 1.

2.2.1 Systems with broken time-reversal invariance

In this case, the entries of HN are complex and the probability density function is

given by eq(1.1) for J = 1. Therefore, the expectation over this ensemble is given

by EGUE(N)[(...)] :=
∫

(...)dp(HN ) where dp(HN ) ∝ e−N/2 Tr HNH†NdHN . To complete

the description, firstly, we randomly choose the channel vectors wa and wb to be

uncorrelated and centered complex Gaussian random variables of variance 1/N . The

expectation over the realization of these vectors is indicated by the overbar. We will

eventually relax the assumption of independence: the correlation among channels is

introduced by a given 2 × 2 covariance matrix. In both cases, instead of directly
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addressing the distribution of Ka,b, we will investigate the characteristic function of

the real and imaginary parts, given by the Fourier transform

R(q, q∗) = EGUE(N)

[
exp

i

2

(
qK∗a,b + q∗Ka,b

)]
. (2.4)

The statistics are given by the derivative of eq(2.4) in q or q∗ and setting q, q∗ → 0. We

will present explicit expressions for the probability density functions when possible.

2.2.1.1 Uncorrelated channel vectors wa and wb.

The expectation over the complex components of the channel vectors wa in eq(2.4)

leads to a ratio of determinants involving a single realization of the Hamiltonian HN .

A subsequent average over the latter belonging to the Gaussian Unitary ensemble (see

appendix B.1 for details) leads to

R(q, q∗) = EGUE(N)

 det
(

(HN − λ1N )2 + α2

N2 1N

)
det
(

(HN − λ1N )2 + α2+|q/2|2
N2 1N

)
 (2.5)

We have encountered this quantity and its Dyson limit in the first chapter (see eq(1.20)

and it is of great significance in RMT ([31, 87, 33]). One can retrieve from the men-

tioned works the characteristic function R(q, q∗) ≡ R(|q|). Indeed, for N → +∞ and

a given spectral parameter λ ∈ (−2, 2), within the bulk regime of the GUE spectrum:

R(|q|) =
|q/2|4 exp (−2πρ(λ)

√
α2 + |q/2|2)

4α
√
α2 + |q/2|2

×

×

(
exp (2πρ(λ)α)

(
√
α2 + |q/2|2 − α)2

− exp (−2πρ(λ)α)

(
√
α2 + |q/2|2 + α)2

)
, (2.6)

with ρsc(λ) = 1/(2π)
√

4− λ2 defined in eq(1.18). Eq(2.6) is numerically checked

against Monte-Carlo simulations of eq(2.5) in fig(2.2). Eq(2.6) can be inverted to get

the joint probability density function of Ka,b and K∗a,b. In order to express the most

convenient form for the latter, we define the operator

D̂x = sinh(x)
(

1 +
d2

dx2

)
− 2 cosh(x)

d

dx

Then, the joint probability density function of (Kab,K
∗
ab) for systems with broken

time-reversal invariance and uncorrelated channel vectors is given by

p(Ka,b,K
∗
a,b) =

α2

π
lim

x→2πρ(λ)α
D̂x

exp (−
√
x2 + 4α2|Ka,b|2)√

x2 + 4α2|Ka,b|2
(2.7)
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Figure 2.2: Characteristic function given by eq(2.6) for systems with broken time-
reversal invariance for α = 1(blue), α = 5(red), α = 10(yellow) and λ = 0 (top),
λ = 1(bottom) versus direct numerical simulations (N = 100, # samples=50000,
circular markers).

From eq(2.7), we can recover the statistics in absence of absorption by taking α→ 0+,

namely p(Ka,b,K
∗
a,b) becomes

p (Re Ka,b, Im Ka,b) =
ρ(λ)

4

|Ka,b|2 + 4π2ρ2(λ)

(|Ka,b|2 + π2ρ2(λ))5/2

From the joint probability one can obtain the distribution of Re Ka,b and Im Ka,b

separately. Indicating the latter as u1 and u2 respectively, we have

p(ui) =
ρ(λ)

2

u2
i + 3π2ρ2(λ)

(u2
i + π2ρ2(λ))2

(2.8)

Due to the limit in eq(2.7), the results above could have been obtained assuming λ = 0

and then retrieving the entire bulk λ ∈ (−2, 2) by a further rescaling α → αη and

|q| → |q|η with the ratio η = ρ(λ)/ρ(0). In random matrix theory, this phenomenon is

well-known under the name of spectral universality property. We will then assume the
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Figure 2.3: From [4], experimental verification of eq(2.8) with α = 1.35 ± 0.05(left)
and α = 6.80± 0.23(right). Black circles represent the experiment, blue circles are the
corresponding Gaussian approximation and the red lines are given by eq(2.8).

same rescaling universality also holds for systems with preserved time-reversal invari-

ance. Indeed, the associated scattering problem is more challenging and it will require

a different approach. The results presented in this section, in particular eq(2.8), have

been experimentally tested in [4], for a 2 × 2 reaction matrix, by using microwave

networks graphs. The latter can be considered as a physical realizations of Quantum

graphs introduced by Pauling [88] since the Schrodinger equation and the telegraph

equation are essentially equivalent (see [71]). In [4], the experimental setup was as-

sembled connecting six microwave joints by coaxial cables and phase shifters. Lastly,

the time reversal symmetry is broken by the presence of circulators while absorption

is controlled by attenuators. In [4], they reported α = 1.35± 0.05 and α = 6.80± 0.23

(fig(2.3)).

2.2.1.2 Correlated channel vectors wa and wb.

We now turn our attention to the case of correlated channel vectors. Firstly, we assume

that each vector, wn, is independent from any other having a different energy level

index n. Correlations then occur among its entries for the same value of n, i.e. between

any pair wa,n and wb,n with a 6= b. Given the Gaussian nature of wn, it’s sufficient to

specify a correlation matrix C−1 whose entries are w∗a,nwb,n =
(
C−1

)
ab

. One can write

down the probability density function as

p (wa,n, wb,n) ∝ exp

(
−N

[
wa,n
wb,n

]†
C

[
wa,n
wb,n

])
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Once again, following the uncorrelated approach above, one averages over the channel

vectors and is left with a new ratio of characteristic polynomials, i.e.

R(q, q∗) = EGUE(N)

 det
(

(λ1N −HN )2 + α2

N2 1N

)
Πl=1,2 det

(
(λ1N −HN ) + i

2N (k̂ + (−1)l
√
k̂2 + 4ŝ)1N

)
 ,
(2.9)

For simplicity of notation, we introduce:

k̂ = Re

(
Cab

det(C)
q∗
)

ŝ = α2 − α Im

(
Cab

det(C)
q∗
)

+
|q|2

4 det(C)

We note that we have lost the spherical symmetry as R(q, q∗) is now not written in

terms of only |q|, as it was in eq(2.6). Additionally, a further simplification can be

introduced, namely, Cab
det C = −

(
C−1

)
ab

. Then, one can easily see that taking the

off-diagonal entry Cab → 0, eq(2.5) is retrieved. We now take the limit N → +∞

without rescaling the entries of C, i.e. the latter are assumed to be of order one

(Ci,j=a,b = O(1)). It is straightforward to perform the last expectation in eq(2.9),

again using eq(1.20), we finally obtain:

R(q, q∗) =
1

8(
√
k̂2 + 4ŝ)α

exp

(
−1

2
(ik̂λ)− πρ(λ)

(√
k̂2 + 4ŝ+ 2α

))
×(

(1− e4παρ(λ))k̂2 −
(√

k̂2 + 4s̃− 2α

)2

+ e4παρ(λ)

(√
k̂2 + 4ŝ+ 2α

)2
)

(2.10)

The inversion of this expression, in order to recover p(Ka,b,K
∗
a,b), is far from trivial and

can be achieved numerically. Our results for R(q, q∗) are plotted in figs(2.4,2.5,2.6).

There, we consider the fixed covariance matrix

C−1 =

[
2 −i
i 1

]
Unlike the case of uncorrelated channels, numerics reveals a slower convergence due

to finite size effects, to the asymptotics N → +∞. In fact, simulations show that, as

one increases the value for N , these discrepancies become less and less relevant. The

higher is the value for α the more noticeable are these effects.
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Figure 2.4: Real (blue) and imaginary (red) parts of the characteristic function
eq(2.10) for Ka,b in systems with broken time-reversal invariance and absorption α = 1
with q ∈ [0, 12] and the special choice of the channel covariance matrix, for λ = 0
(top),λ = 1 (bottom). Markers indicate numerical results involving # Samples=10000
for the matrix size N=100.

2.2.2 Systems with preserved time-reversal invariance

We now draw the random matrix HN from the Gaussian Orthognal ensemble of sec-

tion 1.1.1 with β = 1 and J = 1. Therefore, the probability density function is

dp(HN ) ∝ exp(−N
4 Tr H2

N )dHN . Within this framework, we only consider the case of

uncorrelated channel vectors. Hence, the vectors wn (and their entries) are assumed

to be independent for n 6= m. The components are real i.i.d. centered Gaussian

random variables of variance 1/N . We introduce the average over channel vectors

as [...] =
∫ ∫

[...]p(wn)p(wm)dwndwm. Again, we can only focus on the characteris-

tic function of Ka,b = Re Ka,b + i Im Ka,b. We introduce such characteristic function

R(k, s) by replacing q = k + is in eq(2.4) with k, s ∈ R and GOE average. We can

analytically compute the expectation over the channel vectors. Since the latter is a

real Gaussian integral, the result is given in terms of product of half integer power of
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Figure 2.5: Real (blue) and imaginary (red) parts of the characteristic function
eq(2.10) for Ka,b in systems with broken time-reversal invariance and absorption α = 5
with q ∈ [0, 12] and the special choice of the channel covariance matrix, for λ = 0
(top),λ = 1 (bottom). Markers indicate numerical results involving # Samples=10000
for the matrix size N=100.

determinants, i.e.

R(k, s) = EGOE(N)

 det
(

(λ1N −HN )2 + α2

N2 1N

)
Πl=1,2 det1/2

(
(λ1N −HN )2 + (−1)li kN (λ1N −HN ) +

ω2
l

N2 1N

)
 ,

(2.11)

with ω2
1 = α2 − iαs and ω2

2 = α2 + iαs. The evaluation of the ensemble average

over the GOE(N) matrices can not be performed similarly to the case of broken time-

reversal symmetry. The source of difficulties stems from the half-integer powers in the

denominator. An attempt is presented in [35]. A Supersymmetry approach with finite

N gives an integral representation, over 4 × 4 positive definite matrices, for eq(2.11)

(see appendix B.5). However the evaluation by saddle point for N � 1 is a hard task

and requires higher order expansions. Even neglecting correlations between the entries

ofwn does not help to get the rotational invariance with respect to the complex variable
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Figure 2.6: Real (blue) and imaginary (red) parts of the characteristic function
Eq.(2.10) for Ka,b in systems with broken time-reversal invariance and absorption
α = 10 with q ∈ [0, 12] and the special choice of the channel covariance matrix,
for λ = 0 (top),λ = 1 (bottom). Markers indicate numerical results involving #
Samples=10000 for the matrix size N=100.

q, in contrast to GUE(N) case. Indeed, R(k, s) cannot be written as a function of

|q| =
√
k2 + s2. All these new features prevent us from obtaining the joint probability

function and the joint characteristic function for the pair (Ka,b,K
∗
a,b). Therefore, we

abandon the idea of recovering the joint probability density and separately consider:

R(s, 0) = EGOE(N)[exp (is Im Ka,b)], R(0, k) = EGOE(N)[exp (ikRe Ka,b)] (2.12)

As the calculations for each of the latter requires to keep track of several terms, we

only consider the spectral centre, i.e. λ = 0. This is sufficient for recovering the results

for the entire spectrum (λ 6= 0) as one re-scales the absorption and the components

of q, similarly to the GUE(N) calculations, with η. This is a again a direct conse-

quence of the universality. Using the results presented in section 1.1.1.7 and [35], we

can summarise our calculations as follows (see appendix B.4). Firstly, we define the
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functions

C(q1, q2, α) = q2
2−4q3

2 +4q3
1(4q2−1)+2q1q2(1−4q2 +8q2

2)+ q2
1(1−8q2 +44q2

2) (2.13)

−4(q1 +q2)
(
−q3

2 + q2
1q2(4q2 − 5) + q1q

2
2(4q2 − 5) + q3

1(4q2 − 1)
)
α2 +16q2

1q
2
2(q1 +q2)2α4

and

D(q1, q2, α) = C(q1, q2, α)− 8(q1 + q2)2α2
(
q1 + q2 − 2q1q2 + 4q1q2(q1 + q2)α2

)
(2.14)

Then, in the limit N →∞, the characteristic function of the real and imaginary parts

of Kab for λ = 0 are

lim
N→∞

EGOE(N)

[
eikRe Ka,b

]
= −

∫
R+

dq1

∫
R+

dq1dq2|q1−q2|I0

(
k

√
k2

4
+ α2(q1 − q2)

)

× e−
1
4

(q1+q2)((q1q2)−1+2(k2+2α2)) D(q1, q2, α) sinh(2α)− 2αC(q1, q2, α) cosh(2α)

512
√
πq3

1q
3
2(q1 + q2)5/2α3

(2.15)

and

lim
N→∞

EGOE(N)

[
eis Im Ka,b

]
= −

∫
R+

dq1

∫
R+

dq2|q1 − q2|J0

(
sα(q1 − q2)

)
× e−

1
4

(q1+q2)((q1q2)−1+4α2) D(q1, q2, α) sinh(2α)− 2αC(q1, q2, α) cosh(2α)

512
√
πq3

1q
3
2(q1 + q2)5/2α3

(2.16)

with I0(x) and J0(x) being Bessel and modified Bessel functions, respectively. In

principle one can obtain the probability density function via the Fourier transform of

the quantities above. However, as previously reported, these can only be approached

numerically. A possible simplification can be made for the imaginary part. We can

introduce the new variable u = α−1 ImKab. From the definition of Bessel function

and denoting the integrand in eq(2.16) for s = 0 as f(q1, q2;α) one observes that the

probability density function of u, can be written as

p(u) =

∫ 1

0

∫ 1

0
dpdtf

( |u|
(2pt)

(t+ 1),
|u|

(2pt)
(1− t);α

) |u|
p2t2

√
1− p2

(2.17)

A similar formula for ReKab cannot be achieved due to the presence of I0(x) in

eq(2.15). We can now recover the results for the full spectrum, i.e. λ ∈ (−2, 2), for

characteristic functions EGOE(N)

[
eis Im Ka,b

]
and EGOE(N)

[
eikRe Ka,b

]
from the case

λ = 0 by rescalings α→ ηα, s→ ηs and k → ηk. Hence,

lim
N→∞

EGOE(N)

[
eis Im Ka,b

]
(α, λ) = lim

N→∞
EGOE(N)

[
eiηs Im Ka,b

]
(ηα, 0) (2.18)
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and

lim
N→∞

EGOE(N)

[
eikRe Ka,b

]
(α, λ) = lim

N→∞
EGOE(N)

[
eiηkRe Ka,b

]
(ηα, 0) (2.19)

This re-scale also applies to eq(2.17). If the latter is written as p(·;α, λ) then, for

λ 6= 0 and after rescaling ũ = η2u, one has p(ũ; ε, λ) = p(ũ; ηα, 0). Simulations show

good agreements between eq(2.16) and eq(2.11) (see figs(2.7,2.8)). The case λ 6= 0,

achieved by rescaling, is justified in [35] and in the appendix B.5. We can test the

probability density function of Im Ka,b. For α� 1, the probability density of Im Ka,b

approaches a Gaussian distribution. So it is sufficient to retrieve its variance. This

secondary task turns out to be extremely simple, despite eq(2.16) and it is summarized

in appendix B.6. We finally show this in fig(2.9) for λ = 0 and α = 50, 100. We

can push our analysis even forward. Clearly, we cannot recover the joint probability

density function of Re Ka,b and Im Ka,b. However, with the information so far acquired,

we can infer the behaviour of the cross-correlations between the real and imaginary

components of Kab with the help of eq(24) in [83]. We report here the latter:

EGOE
[
|Kab|4

]
=

(πρ(λ))4

α4

(
5 + 28α+ 7α2

)
− (πρ(λ))4

α4
e−2α

(
5 + 2α+ α2

)
+

+
(πρ(λ))4

α4
e−αE1(α)(10+10α+3α2 +α3)+

(πρ(λ))4

α4
eαE1(α)(−10+10α−3α2 +α3)

(2.20)

with E1(x) =
∫ +∞
x

e−s

s ds. Hence we can investigate the quantity (fig(2.10)):

τ(α) =
EGOE

[
(ImKa,b ReKa,b)

2
]

EGOE
[
(ImKa,b)

2
]
EGOE

[
(ReKa,b)

2
] − 1, (2.21)

The quantities at the denominator, EGOE
[
(ImKa,b)

2
]

and EGOE
[
(ReKa,b)

2
]

are

known and reported in appendix B.6. As α grows the correlation between the real

and imaginary parts decreases. One can also see that such correlation is stronger for

small λ.

58



Chapter 2. Wigner Reaction Matrix

0 1 2 3 4 5

s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E

[

e
is
ℑ
K

a
,b

]

0 1 2 3 4 5

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

E

[

e
is
ℑ
K

a
,b

]

Figure 2.7: Characteristic function of ImKa,b as given by eq(2.16) vs. numerical simu-
lations for systems with preserved time-reversal invariance at different level of absorp-
tion: α = 1(blue), 5(red), 10(yellow) (# Samples=80000, N=100, circular markers) for
λ = 0(Top), 1(Bottom).
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Figure 2.8: Characteristic function for ReKa,b as given by eq(2.15) vs. numerical
simulations for systems with preserved time-reversal invariance at different level of
absorption: α = 1(blue), 5(red), 10(yellow) (# Samples=50000, N = 300, circular
markers) for λ = 0 (Top), 1 (Bottom).
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Figure 2.9: Comparison between the probability density of ImKa,b (Eq(2.17)) for
large absorption α = 50(blue), 100(red), and the Gaussian distribution N (0, 1/(2α))
(circular markers) (λ = 0).
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Figure 2.10: Behaviour of τ(α) from eq(2.21) for λ = 0(blue), 1(red)
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Chapter 3

Beyond May-Wigner Instability

3.1 Evolution of Ecosystems

For many years the idea that Nature would operate as an infinitely precise entity

was predominant within the ecological communities. This perspective has produced

remarkable results and has focused the attention on the first order interactions (and

correlations) among species ([89, 90]). This intuitive idea of fine tuning behaviour finds

its root in the second half of the twentieth century and since then it has been challenged.

In fact, the ecological community has gradually abandoned the aforementioned idea

of Nature being ”infinitely” precise toward dynamical models of resilience. While the

works mentioned above clearly remain a milestones in understanding of our world,

they are clearly insufficient if one wants to investigate the dynamics behaviour of such

systems. We will show later in this chapter that the investigations concerning the

dynamics become more meaningful upon inclusion of the non-linear and multi-species

interaction into account. To the best author’s knowledge, such point of view is still at

a preliminary stage of development and its consequences are not yet fully understood.

The author believes that such inclusion would be necessary to tackle the new challenges

of our time. We are experiencing multiple fast evolving phenomena in our environment.

The most evident is climate change. The latter, due to human industrial activities, has

provoked an alteration on the seasonal temperature fluctuations increasing the mean

temperature by a few Celsius degrees. The second main ecological challenge is the loss

of ecological diversity. The latter corresponds to the disappearance of species in our

ecosystems. Due to several factors, many species have disappeared or are in danger of

extinction. This process is occurring at a rate never experienced before since the late

stages of the fossil era.
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3.1.1 Linear Analysis

The first attempt to mathematically investigate the stability of biological systems was

undertaken by Robert May in 1972 with his seminal and highly influential paper “Will

a large complex system be stable?”([16], see also [91]). He considered the linear stability

of ecosystems, around a fixed point placed at the origin, i.e.

dx

dt
= −µx+

σ√
N
Ξx+ o(|x2|), (3.1)

where the N dimensional vector x = (x1, . . . , xN )T contains the state of each species,

µ is the feedback relaxation parameter. This term is an inner feedback mechanism, i.e.

as σ = 0 the system evolves toward the origin with a characteristic timescale µ−1. In

what follows we assume, without loss of generality, µ = 1. The parameter σ is a pos-

itive constant measuring the strength of the interaction among species. The non-null

entries of the connectivity matrix Ξ = (ξnm)n,m, of connectance c, are i.i.d. random

variables with zero mean and unit variance1. The factor 1/
√
N has been introduced

to ensure that the first and second term are of the same order in a typical realization.

Additionally, the assumptions on higher moments are also required albeit not explic-

itly mentioned in May’s original paper to reach the conclusions below. According to

the signs of the entries, the interaction has a mutualistic effect if ξnm and ξmn are

positive. Conversely, if the latter are both negative the effect is competitive. Lastly,

there is a parasitic effect if ξnm and ξmn have opposite signs. Clearly, this model is

only qualitative as it does not take into account such meaningful and necessary ecolog-

ical super-structures as food-web, hierarchies, trophic levels [92], modularities[93] and

the choice of an equilibrium point [94][95] to cite a few. Despite these assumptions,

May’s work validated and corroborated the idea observed by early numerical simula-

tions that ecological systems, randomly assembled, abruptly become unstable when

either the connectivity c or the size of the system N reach a certain threshold. This

is a consequence of the circular law, at that time accepted although not fully proven.

In more details, the system is stable (unstable) almost surely if σ is greater (smaller)

than 1
Nc . This is a sharp transition which manifests itself in the limit N → +∞.

May also noticed that such large systems can be divided into classes. Given two

systems S1 and S2 with (σ1, c1) and (σ2, c2) respectively, if σ2
1c1 ' σ2

2c2 then S1 and

S2 belong to the same class. Namely, a system with a large number of interactions

1The connectance is the mean number of non-null terms in each column of the matrix Ξ, it takes
into account the sparsity of the interactions among species.
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occurring with small strength qualitatively behaves as, the opposite, a system with few

interactions and high strength. Some of these un-physical features have been recently

mitigated in [96] and investigated for more general models ([97, 98, 99] and [100]). We

can now move toward more complicated models.

3.1.2 Beyond the Linear Approximation: Previous Models

In order to shed light on the complexity of more general randomly assembled systems

one can exploit the Kac-Rice formula in eq(1.44). This has been investigated in

several contexts. In particular we want to mention, in the framework of neural network

dynamics, the work of Wainrib et al. [101]. In this context the components of x are the

firing rate of neurons and the interaction term with the community matrix in eq(3.1)

is replaced by

fi =

N∑
j=1

JijS(xj) (3.2)

where S(x) is an odd sigmoid function (synaptic nonlinearity) and Jij is synaptic

connectivity. The latter is chosen as i.i.d. centered Gaussian variables with variance

σ2. Similarly to the linear analysis, the fixed point at the origin is stable whenever

σ > 1 and no other fixed points are present in this case. For σ → 1+, the authors of

[101] computed the mean number of fixed points as

N (RN ) = eN(σ−1)2
(1 + o(1))

Most of those points are located within a ball centered around original equilibrium at

the origin, with the radius shrinking to zero as σ → 1+. Remarkably, the expression in

the exponent above, called topological complexity, is equal to the dynamical complex-

ity, i.e. the Lyapunov exponent λ ∼ (σ−1)2. This is also confirmed for σ → +∞, since

both the complexities scale as log(σ) for sufficiently large N . This behaviour poses a

natural question to investigate, whether it is shared by other random models. Further

generalizations were investigated by [50] and [5]. Again the linear interaction term in

eq(3.1) is replaced by an isotropic, centered and homogeneous random Gaussian field

fi(x) = −∂V
∂xi

(x) +
1√
N

N∑
j=1

∂Aij
∂xj

(x) (3.3)

with E[V (x)V (y)] = v2ΓV (|x − y|2), E[Aij(x)Anm(y)] = a2ΓA(|x − y|2)(δinδjm −

δimδjn) and Γ′′V,A(0) = 1. Considering v and a to be the ”strength” of the gradient
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Figure 3.1: From [5], nature of the fixed points as function of µ, τ for eq(3.4).

and solenoidal parts of f(x), it is useful to introduce the parameters τ = v2

a2+v2 and

m = µ

2
√
N
√
a2+v2

. With these assumptions, the first moment (the mean) of the number

of fixed points is given by

Neq(RN ) =


γ(τ)eNL(m) for 0 < m < 1,

1 for m > 1

γ(τ)ek
2 ∫ +∞
−∞ e−t

2/2ρ
(r)
edge

(
c(τ)t+ k γ(τ)√

2

)
dt for m→ 1 + k√

N
,

(3.4)

with k ∈ R,γ(τ) =
√

2(1+τ)
1−τ , c(τ) =

√
τ

1−τ and L(m) = (m2−1)
2 − logm > 0. The

different regimes trace back to the existence of bulk and edge regimes for the elliptic

law, similarly to eq(1.76). Very recently, the work [5] described the nature of the fixed

points. Indicating with Nst(RN ) ∝ eNΣst the mean number of stable fixed points,

the complexity function, Σst, changes its sign across the line given in the parameter

space by τ0(m) = −1
2

(1−m)2

1−m+logm (see fig(3.1)). In more details, for systems whose

dynamics is governed by the gradient of a stationary isotropic Gaussian Lyapunov

function V (x), the variance of such function triggers the exponential growth of the

number of local stable points. The introduction of solenoidal components of the field

reshapes the phase portrait: most of the (exponentially many) critical points become

unstable [5]. A fine tuning of the parameters reveals different phase transitions since

the phase space landscape abruptly changes from exponentially many to a unique fixed

point (topological trivialization). This results goes beyond the local analysis of May,

it describes a global topological picture. The point x = 0 is no longer a special point

in such a model as f(0) 6= 0 almost surely. We now want to investigate where most

of these points are located. To do so, we start from the Kac-Rice formula, namely,
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the mean number of fixed points with a ball of radius r centered at the origin (see

eq(1.50)),

Neq(r) =

∫
|x|<r

dxE[δ(N)(−µx+ f(x))| det(−µ1N + J(x))|] (3.5)

For simplicity we indicate the variance of f as E[f(x)fT (x)] = σ21N where σ2 =

2v2|Γ′V (0)|+ 2a2|Γ′A(0)|N−1
N . So we can isolate the dependency on x in the integrand

above: Neq(r) = 1
(2πσ2)N/2

∫
|x|<r dxe

− µ2

2σ2 |x|2E[| det(−µ1N + J)|]. We can introduce a

spherical change of variables and readily integrate over the ball of radius r obtaining

Neq(r) =

(
1−

Γ
(
N
2 ,

r2µ2

2σ2

)
Γ
(
N
2

) )
Neq(RN ) (3.6)

The presence of the incomplete gamma function reflects a sharp change in the radial

distribution of fixed points in RN . In fact, the radial distribution of fixed points is

proportional to rN−1e−
µ2

2σ2 r
2

. This means that the fixed points are mainly distributed

around the radius r∗ =
√
N σ

µ . Close to the origin (again N � 1) we have:

Neq(ε) = Neq(RN )
µN

σN
εN
( 2

2N/2Γ(N/2)

1

ε
+O(ε)

)
(3.7)

Given the success of these models we now want to move to infer some characteristic of

the dynamics by using the idea of the topological complexity.

3.1.3 Beyond the Linear Approximation: Full Taylor Expansion

In the last presented models there is a sort of universality. The tuning of the parameters

reveals a topological trivialization, i.e. the system exhibits globally either a unique or

exponentially many fixed points. We will question such a universality in section 3.1.5.

However, we now want to investigate the dynamics by the topological complexity. The

dynamics is likely to differ from model to model. The initial May’s linear model is

clearly unfeasible to this purpose as its analysis loses of significance once we leave a

small neighbourhood of the origin. To shed light on this we include nonlinearities

through higher-order interactions in eq(3.1). In this case f(x) := 1√
N
ϕ(x) replaces

the linear interacting terms in eq(3.1) ([2]):

ϕn(x) =
∞∑
k=1

σk

N∑
i1,...,ik=1

ξn,i1,...,ikxi1 · · ·xik (3.8)
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The terms σk > 0 are positive constants quantifying the strength of the k-order in-

teractions. The random ξ• are centered i.i.d. Gaussian variables with unit variance,

i.e.

E[ξn,i1,...,ik ] = 0 (3.9)

E[ξn,i1,...,ikξm,j1,...,j` ] = δnmδk`δi1j1 · · · δikjk . (3.10)

Each term in the expansion is clearly independently distributed. The above equalities

define the following spatial covariance structure for the random vector field ϕ:

E[ϕn(x)] = 0, E[ϕn(x)ϕm(y)] = δnmC(xTy) (3.11)

with the (scalar) correlation function given by

C(xTy) =

∞∑
k=1

σ2
k(x

Ty)k. (3.12)

This is completely different from the models above [50, 5] as we have lost the statis-

tical invariance by spatial translations. Moreover, each ϕn(x) is a multivariate Kac

polynomial. Therefore it inherits the following properties:

• if we consider k = 1 in eq(3.8) then ϕ(x) ≈ σ1Jx. Namely, we recover the

original linear model. To address the global behaviour we need to include all

the terms of the sequence. Therefore, for some choice of σk, we might need to

define the convergence radius of C, R. We will also include the case of truncated

summation with a cut off parameter Ω in the sum of eq(3.12).

• The fieldϕ(x) is statistically bi-rotational invariant, since the functions in eq(3.11)

are invariant under the transformation ϕ(x) 7→ V ϕ(Ux) for any rotationU ,V ∈

Orth(N). As we introduce the feedback mechanism term this symmetry is not

preserved and breaks down to the ordinary rotational symmetry, with V = U .

The Gaussian hypothesis is merely introduced for the tractability as any moment

simply depends on powers of the mean and variance. Despite this, we will show that

major considerations will qualitatively hold for more general models. We know that

when σ1 < µ then the origin is locally stable. So clearly we expect the existence

of a basin of attraction for it. Conversely, as the origin become unstable, i.e. the

system crosses in the parameter space the so called ‘tipping point’ (see [102, 103]), the

trajectories might become chaotic and have extreme sensitivity to initial conditions.
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Similarly to eq(3.6), to characterize such basin of attraction qualitatively, we will

compute the radial distribution of the mean number of fixed points. In this regard,

we start by observing that the mean number of fixed points contained in a volume

D ⊆ RN can be written, introducing its density ρµ(x), as

N (D) =

∫
D
dx ρµ(x). (3.13)

This time we use the form in eq(1.53) for the density of Nµ, i.e.

ρµ(x) =

∫
RN×N

dM p(µ
√
Nx,M)|det(M − µ

√
N1N )|, (3.14)

The function p(v,M) is the joint (Gaussian) probability density function for v = ϕ(x)

and its gradient M = ∇ϕ(x) (see appendix C.1). We notice that the origin is always

a fixed point of the dynamics. Excluding the latter, which contributes as a Dirac

delta function with unit mass, and obtaining an explicit form for ρµ(x) (see below),

eventually leads to

ρµ(x 6= 0) =
1

(2π)N/2

( ∆

CC ′

) 1
2
(C ′
C

)N
2
e−Nµ

2xTx/2CEGinOE

[
|det(Ξ − µ

√
ND)|

]
,

(3.15)

where we imply C = C(xTx) (similarly for its derivative),

∆ = CC ′ +
(
CC ′′ − (C ′)2

)
xTx (3.16)

and

D = diag

(√
C

∆

(
1− C ′

C
xTx

)
,

√
1

C ′
, . . . ,

√
1

C ′

)
(3.17)

is a diagonal matrix with two distinct eigenvalues. There are two considerations to

bear in mind. The first one is the fact that the bi-rotational invariance of ϕ(x) is

responsible for the rotational invariance of eq(3.15) as it is a scalar function of r2 =

xTx. The second consideration is that EGinOE[...] is taken over the realizations of Ξ

whose entries are i.i.d. standard real mean-zero Gaussian variables. Therefore we need

to compute the expectation of the absolute value of the characteristic polynomial of

Ginibre matrices perturbed by a rank-one term [6]. For finite N , we can use the formula

in eq(1.76). However, we are interested, in line with the results above, in large size

systems. Before giving the final form of ρµ(x 6= 0), we need to recall some properties

of the correlation function C(r2). One can easily see that C ′(r2) and C(r2)/r2 are
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continuous and strictly monotonically increasing for 0 < r < R. For r → 0+ and

r → R, they tend to σ2
1 > 0 and infinity, respectively. On the interval 0 < r < R, the

same hypothesis of continuity and monotonicity hold for

C ′(r2)r2/C(r2) and C ′(r2)− C(r2)/r2. (3.18)

So we are ready to introduce two characteristic radii r±(µ) ≥ 0. We will further assume

that r±(µ) are set to zero if µ ≤ σ1. Conversely, for µ > σ1, the two radii are identified

as the solutions of C ′(r2
−) = µ2 and C(r2

+) = µ2r2
+, respectively. One can show from

the properties above that r±(µ) are uniquely defined, continuous and monotonically

increasing functions of µ. Moreover, 0 < r−(µ) < r+(µ) for all µ > σ1; r±(µ)→ 0 for

µ → σ+
1 and r±(µ) → R for µ → ∞. We can now provide the final spherical form of

the mean density of fixed points:

ρ̂µ(r) :=
2πN/2rN−1

Γ(N/2)
ρµ(r). (3.19)

The ratio in the r.h.s. represents the surface of the hyper-sphere of dimension N − 1

of radius r. Once we plug the results of eqs(1.77,1.78) in eq(3.15), we have:

ρ̂µ(r) =

√
N

π

hI(r
2)

r
e+N

2
LI(r

2)(1 + o(1)) (3.20)

for 0 < r < r− and

ρ̂µ(r) =

√
N

π

hII(r
2)

r
e+N

2
LII(r

2)(1 + o(1)) (3.21)

for r− < r < R, where

hI(r
2) = C′

C r
2 − 1, (3.22)

hII(r
2) =

(
2∆
CC′

) 1
2
(
1 + µ2

(
C
∆h

2
I (r2)− 1

C′

)) 1
2 . (3.23)

and

LI(r
2) = −f

(µ2r2

C

)
, LII(r

2) = f
(µ2

C′

)
− f

(µ2r2

C

)
(3.24)

with f(x) = x − log x − 1 (x > 0). The sign of L•(r
2) determines the exponential

explosion or suppression of the number of fixed points. This occurs on three different

subsets 0 < r < r−, r− < r < r+, and r+ < r < R, namely:

• For r ∈ (0, r−): LI(r
2) is negative and monotonically increasing,
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• For r ∈ (r−, r+): LII changes its sign since LII(r
2
−) < 0 < LII(r

2
+).

From the monotonicity in eq(3.18), one can verify that such change of sign occurs

only once, in fact:

L′II(r
2) =

(C ′ − µ2)C ′′

(C ′)2
+ hI(r

2)
(
µ2 − C

r2

)
. (3.25)

The first term on the right-hand side in (3.25) is positive for r− < r < R and the

second term on the right-hand side in (3.25) is positive for 0 < r < r+. Thus,

LII(r
2) is strictly monotonically increasing for r− < r < r+ and there exists a

unique radius r∗ ∈ [r−, r+] such that LII(r
2) < 0 for r < r∗ and LII(r

2) > 0 for

r > r∗.

• For r+ < r < R, we can use the following properties of the function f : we

have f(x) − f(y) > 0 for x < y < 1 and f(x2) − f(y2) > f(x1) − f(y1) for

0 < y2 − x2 < y1 − x1 and x2/y2 < x1/y1 < 1. It follows that LII(r
2) is strictly

positive and monotonically increasing.

Therefore, we observe that, as we increase N , the number of fixed points surrounding

the origin within the radius r∗ is exponentially suppressed. Conversely there are expo-

nentially many of them as we consider any radius r > r∗. Interestingly, while the value

of r∗ where such transition occurs depends on the choice of C, its very existence is

universal. This must not be confused with the topological trivialization of the models

at the beginning of the chapter. Indeed, for finite µ, as one integrates over RN the

complexity function is positive or infinite. As we decided to ”sit” at the origin, what

we observe is rather a local topological trivialization. We can make these statements

more precise and estimate the mean number of fixed point with a ball of radius r,

Nµ(r) = 1 +
∫

0<r̃<r dr̃ ρ̂µ(r̃) as

Nµ(r) ≤ 1 + (Nπ )
1
2 c1(r)e−Nκ1(r) for r ∈ (0, r∗), (3.26)

Nµ(r) ≥ 1 + (Nπ )
1
2 c2(r)e+Nκ2(r) for r ∈ (r∗, R). (3.27)

for some positive and continuous real functions c1, c2, k1 and k2. With the functions
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Figure 3.2: Resilience radius r∗ as function of µ for eq(3.32)(top) and for
eq(3.33)(bottom). Notice the interval (r−(µ), r+(µ)). r−(µ) is the dotted curve and
r+(µ) is the dashed curve.

so far introduced the quantities entering eqs(3.26,3.27) are then given by

c1(r) =

{∫ r
0
dr̃
r̃ hI(r̃

2), r < r−∫ r−
0

dr̃
r̃ hI(r̃

2) +
∫ r
r−

dr̃
r̃ hII(r̃

2), r > r−
, (3.28)

c2(r) =

∫ r

r∗

dr̃

r̃
hII(r̃

2), (3.29)

κ1(r) =

{
−LI(r

2)/2, r < r−

−LII(r
2)/2, r > r−

, (3.30)

κ2(r) = +LII(r
2)/2. (3.31)

We would like now to illustrate these features for two examples of C(r2).

C(r2) =
r2

1− r2
= r2 + r4 + r6 + ... (3.32)

C(r2) = er
2 − 1 = r2/1! + r4/2! + r6/3! + ... (3.33)

The first coefficient of the expansion in both cases is σ1 = 1 while the radius of con-

vergence of the functions eq(3.32) and eq(3.33) are R = 1 and R = +∞, respectively.

71



Chapter 3. Beyond May-Wigner Instability

As confirmed by Fig(3.2), for µ < σ1 = 1 ,r−(µ), r+(µ) and r∗(µ) are identically zero.

Conversely beyond this threshold, r∗(µ) (blue solid curve) is monotonically increasing

and is located within the interval defined by r−(µ) (dotted line) and r+(µ) (dashed

line). Additionally, the latter bounds both converge to R. Keeping in mind these

choice for C, we choose µ = 3/2 in order to have x = 0 stable in the limit N → +∞.

From fig(3.2), we have r∗(µ = 3/2) ≈ 0.65 for eq(3.32) and r∗(µ = 3/2) ≈ 1.03 for

eq(3.33) respectively. We can substitute this value in the asymptotic formulae for the

spherical density eq(3.20) and eq(3.21) and range r between zero and R. Fig(3.3)

shows the mean number of fixed points within a ball of radius r(blue line) while the

markers represent the numerical evaluation of eq(3.15) for N = 100. The expectation

EGin

[
|det(Ξ −µ

√
ND)|

]
is evaluated by Monte Carlo method. As we vary r ∈ (0, r∗),

the fixed points are suppressed and the only (stable) fixed point is located at the origin.

As r exceeds r∗, Nµ(r) grows exponentially, eventually diverging for r → R for a fixed

and finite value of N . As we increase the size of the system such transition becomes

steeper and steeper. This divergence is not universal and depends on the choice we

made for C. In principle, we can replace the summation over k in eq(3.8) with a trun-

cated series expansion with cut-off Ω > 1, i.e. C(r2) = σ2
1r

2 + · · ·+σ2
Ωr

2Ω. Clearly, the

number of fixed points is bounded from above by ΩN with probability one. This upper

bound grows exponentially with N . In this case, the mean number of fixed points is

related to the real zeros of a set of multivariate Kac poynomials (see section 1.2.4).

Namely, we can complete this picture with the linear statistics Nµ, which for N � 1,

is (see appendix C.4)

Nµ(RN ) = e
N
2

log Ω(1 + o(1)) (3.34)

The concomitance of r∗ being strictly positive and the x = 0 being stable sug-

gests to investigate the dynamics for initial conditions sufficiently close to the origin.

More precisely, we want to check numerically whether r∗ can be, somehow, used as

a characteristics length of the basis of attraction of x = 0. Clearly the algebraic

polynomial in eq(3.8) makes the computation feasible only for small enough values

of N . We keep, once again, the same setting σ1 = 1 < 3/2 = µ and draw a single

realization of the random vector field ϕn(x) =
∑Ω

k=1
1√
k!

∑
i1,...,ik

ξn,i1,...,ikxi1 · · ·xik
with n = 1, . . . , N and ξ• i.i.d. standard Gaussian random variables. Secondly, we

discretize dx/dt = −µx + 1
2ϕ(x) for a sufficiently small dt. We are left with fixing

the initial condition. We consider the latter as an initial perturbation away from the
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Figure 3.3: Mean number of fixed points (N = 100, µ = 3/2) for eq(3.32)(top) and
eq(3.33)(bottom): the blue line represents eq(3.20) and eq(3.21), the circular markers
are the numerical solution of eq(3.15). The red line is r∗, the red region is the interval
(r−(µ), r+(µ)).

origin. We pick up (uniformly), from the unitary (N − 1)-sphere, p points. The j-th

point defines a normalised vector ej for j = 1, .., p. These are the directions of the

initial conditions, i.e. x1(0) = εe1, . . . ,x
p(0) = εep for a radial perturbation param-

eter ε > 0. According to our initial statements, we should observe that, for ε � r∗,

the trajectories are attracted back to the origin, regardless of the direction, i.e. of the

index p. In contrast to this, for ε� r∗, we expect the system to be extremely sensitive

to the initial direction: some trajectories might still converge to the origin, some other

might wander away. We show this is actually the case, by looking at the Euclidean

norm of x. In fig(3.4), we chose N = Ω = 4 and p = 10. The blue solid curves, in the

left plot, represent the trajectories whose initial norm are ε = 0.5 and ε = 5. The two

bunches of initial conditions are separated by r∗(µ) (solid red line) contained in the

interval (r−(µ), r+(µ)). All the initial trajectories with ε = 0.5 converge to the origin.

Conversely, for ε = 5, some trajectories are not attracted by x = 0 and eventually
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Figure 3.4: Top: numerical example of trajectories for a fixed realization of ϕ(x) with
σk = 1/

√
k! and µ = 3/2. For N = 4 and cut-off Ω = 4, we consider initial conditions

with norms |x(0)| smaller and greater than r∗(represented as dashed line). Bottom:
enhanced detail of the dotted box in the left figure.

depart from the latter as time increases. This is outlined in the plot of fig(3.4). We

repeated this procedure several time, taking into account different values of ε, µ, N , Ω

and realizations for ϕ(x). What reported above remains valid. Therefore, we come to

the conclusion that r∗ can be regarded as a resilience radius: an initial perturbation ε

is suppressed for ε� r∗. The large time behaviour of a perturbation ε� r∗ strongly

depends on the initial condition. Lastly, since we have set N = Ω = 4, we necessarily

have a constraint for the number of fixed points: Nµ ≤ ΩN = 64. Most of the lat-

ter (excluding the origin) are supposed to be unstable so their influence on the outer

trajectories (ε = 5) is stronger to push them away. The assumptions of independency

for the coefficient ξ• in the Taylor expansion in eq(3.8) are surely strong but essential

for the definition of C(r2) and clearly r∗. However, one might ask if such hypothesis

can be relaxed and whether the results above are still valid for some ecological mod-

els. Clearly to shed light on this statement we need to choose the model we want to
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investigate and perform the relative numerics. One can be tempted to check if this is

the case for the model in eq(3.2). If µ < σ, the origin is stable but it’s also the only

fixed point for the dynamics. The next possible (and succefull) choice is a generalized

Lotka-Volterra system

dxi
dt

= xi

−µ̃− xi +
σ̃√
N

N∑
j 6=i

ξijxj

 (3.35)

with parameters µ̃ > 0, σ̃ > 0. The entries of the community matrix, ξij , i.i.d. are

centred Gaussian variables of unit variance. One can easily check that, for a given

community matrix, the origin is a stable fix point and, therefore, it is surrounded by

its basin of attraction. Clearly r−, r+ don’t have meaning in the present model. Hence

the resilience radius, r∗, cannot be estimated. However, for some µ̃ and σ̃, the dynamics

of eq(3.35) is similar to fig(3.4). Recovering the notations introduced above, we chose

p = 10, ε = 1 and ε = 3/2. Trajectories with |x(0)| = 1 evolve to the origin while

only few trajectories with |x(0)| = 3/2 follow (qualitatively) the same route (fig(3.5)).

Although we can not provide a better mathematical consideration in this case, the

observed qualitative picture provides additional support to our interpretation of r∗ as

the resilience radius and its relevance beyond our original model.

3.1.3.1 A final Remark on the Resilience Radius

We have exposed several features and results, lets sum them up here. We introduced a

new class of nonlinear models generalizing the May’s linear model and investigated the

mean number of fixed points in their dynamics. We have unveiled a local topological

trivialization once one retains all terms in the Taylor expansion of the random field.

For µ > σ1, the origin is locally stable almost surely. Starting from this, we essentially

complemented the May’s model picture by showing the existence of a resilience radius

r∗(µ) > 0. The fixed points within such radius drastically reduce in numbers with

growing number of interacting species N . In contrast to that, beyond r∗, the phase is

again exponentially studded by saddle points. It is natural to expect that such change

results into an extreme sensitivity to initial conditions and displacements. This last

statement was tested numerically and lead to the conclusion that r∗(µ) can be regarded

as a resilience radius. We observed that the system recovers from sufficiently small

perturbations, with displacements compared to r∗. Such recovery occurs also for large

perturbations if one takes µ → ∞, then r∗ → R, namely the resilience of the system
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Figure 3.5: Top: numerical example of trajectories for a fixed realization of eq(3.35)
with µ̃ = 2 and σ̃ = 4 for random initial conditions with |x(0)| = 1 and |x(0)| = 1.5.
Bottom: enhanced detail of the dotted box in the left figure.

increases and so does its ability to recover. For finite µ, as we impose |x(0)| & r∗(µ)

the system might leave such neighbourhood and become chaotic. This last statement

remains a hypothesis which we need to test. This will be the subject of the next

sections. For µ < σ1, the origin is unstable almost surely: any finite ball containing

the origin contains, on average, an exponential number of fixed points and the system

experiences a loss of its resilience.

3.1.4 Chaos and Persistence for Correlations

What happen to those trajectories leaving the neighbourhood of the origin is an open

question which we will try to heuristically answer in this section. For large systems,

studying the dynamics still represents a challenging task. Moreover, such dynamical

behaviour is not universal. As the main diffculty is the high dimensionality of the

system, most of the available results in literature rely on numerics and crude approxi-

mations to decrease the size of the problem (see as an example [104]). We anticipate
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here the claim that such trajectories will become eventually chaotic as N increases. In

natural ecosystems, the appearance of chaos is hardly observable and mostly remains

observed in simulations and experiments. The main obstacles on such detection are

the timescales at which this process occurs, the lack of recorded data over an extended

period of time and the anthropogenic actions which alter the ecosystem. In the pre-

vious sections, we analyse the basin of attraction of x = 0 by topological complexity.

Conversely, to tackle the mentioned problem we need to introduce the notion of dy-

namical complexity. We set the feedback relaxation µ = 1 without loss of generality

and follow the approach in [105, 106, 107] and [108]. By introducing two auxiliary

fields b and b̂, the generating functional for dynamical correlation functions in eq(3.8)

is given by

Z[b, b̂] =

∫ x=x(t)

x=x(t0)
DxDx̂ exp

(
− i
∫
dt′ ˆx(t′)

T
(
∂tx(t′) + x(t′)− 1√

N
ϕ(x(t′))

))
×

(3.36)

exp

(
i

∫
dt′ ˆb(t′)

T
x(t′) + ˆx(t′)

T
b(t′)

)
Clearly, the external fields, b and b̂, allow the calculation of the correlation functions by

simply computing δZ
δbri b̂

s
j

∣∣
b,b̂=0

. However, we will follow a different direction. Firstly, as

the formulation above is valid for each single realization of ϕ, we need to evaluate the

average of Z over the latter which we will indicate with Z. From our work, Gaussianity

of ϕ implies E [ϕn(x)ϕm(y)] = δnmC(xTy). The entries of ϕ being independent, we

aim to compute:
N∏
n=1

Eϕ
[
exp

(
i√
N

∫
dtx̂nϕn(x(t))

)]
(3.37)

This is equivalent to

N∏
j=1

Eϕ
[
exp

(
i√
N

∫
x̂j(t)ϕj(x(t))

)]
= exp

(
−1

2N

∫
dtdt′C(x(t)Tx(t′))x̂(t)T x̂(t′)

)
(3.38)

To show this, we discretize
∫
dt →

∑
a and x(nδt) → xn with t = nδt and introduce

the matrices Φij = ϕj(x
i) and C(xa,Txb) = Cab, We know that∫

dp(vec[Φ]) exp

(
i√
N

vec[Φ]T vec[X̂]

)
= exp

(
− 1

2N
vec[X̂]TC vec[X̂]

)
(3.39)

Therefore

N∏
j=1

Eϕ

[
exp

(
i√
N

∑
a

x̂ajϕj(x
a)

)]
= exp

(
− 1

2N

∑
ab

C(xaTxb)x̂aT x̂b

)
(3.40)
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and one simply restores the continuous limit. Before restoring the continuous limit,

we take an additional step. In order to introduce a self-consistent formulation for

the correlation functions, indicating Cab = C(xaTxb), we introduce a set of auxiliary

variables pairs (yab, ŷab) and the identity,

exp

(
− 1

2N
C(x̂aT x̂b)

)
∝ lim

u→0+

∫
dyabdŷab exp

(
−y

ab

2
(x̂aTxb) + iŷab

(
yab − Cab

N

)
− u(ŷab)2

)
We can re-arrange the integration in eq(3.36) and write the generating function as

Z[b, b̂] =

∫
DyDŷeNL(y,ŷ)

with

L(y, ŷ) =
1

N
log

∫
DxDx̂ exp (S1(x, x̂) + S2(x, x̂))

and fields:

S1(x, x̂) =

∫ t

t0

dt′ − ix̂T (t′)(1 + ∂t′)x(t′) + ib̂T (t′)x(t′) + bT (t′)x̂(t′)

and

S2(x, x̂) =

∫ t

t0

dt′
∫ t

t0

dt′′iŷ(t′, t′′)

(
y(t′, t′′)− C(t′, t′′)

N

)
−y(t′, t′′)

2
(x̂(t′)T x̂(t′′))−u(ŷ(t′, t′′))2

We can now compute, by saddle point approximation, the large-N asymptotic be-

haviour of Z. The stationarity conditions δL
δyab

= 0 and δL
δŷab

= 0 with u → 0+ lead

to {
ycd = 1

NED[Ccd]

iŷcd = 1
2ED[(ix̂c)T (ix̂d)]

(3.41)

where ED[...] is the expectation taken over the system’s dynamical trajectories. The

condition ŷ = 0 is necessary to maintain the correct normalization. Therefore, the

partition function reads

Z[b̂, b] ∼
∫
DxDx̂ exp

(
S1(x, x̂) +

∫
dt′dt′′

ED[C(t′, t′′)]

2N
(ix̂(t′))T (ix̂(t′′))

)
(3.42)

The second term, in eq(3.42), can be written as Eη
[
exp

(
i
∫
dt(x̂(t))Tη(t)

)]
where

η is a centered Gaussian process with covariance Eη[ηk(t)ηj(t′)] =
δkj
N ED[C(t, t′)].

Therefore we arrive at the following path integral formulation

Z̄ ∼ Eη
[∫
DxDx̂ exp

(
i

∫
dt(x̂(t))Tb(t) + (b̂(t))Tx(t) + S3(x, x̂)

)]
(3.43)

with

S3(x, x̂) = −i
∫
dtx̂(t)T ((1 + ∂t)x(t)− η(t))
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The associated dynamics in the absence of external fields is equivalently described by

the following Langevin equation{
dxi
dt = −xi + ηi(t)

E[ηi(t)ηi(t
′)] = 1

NED[C(t, t′)]
(3.44)

From all these considerations, we have(
d

dt
+ 1

)(
d

dt′
+ 1

)
∆(t, t′) =

1

N
ED[C(t, t′)] (3.45)

with ∆(t, t′) = ED[xi(t)xi(t
′)]. To solve eq(3.45) we need an expression, in terms of ∆,

for the r.h.s. Namely, we are looking for a self-consistent formulation. For simplicity,

going back to the discrete formulation, the expectation reads as

ED[Cab] =

∫ N∏
i=1

dyie
−1/2yTi ∆−1

M yi

2π(det ∆M )1/2
C

(
N∑
i=1

yai y
b
i

)
(3.46)

with yi =

[
yai
ybi

]
and

∆M =

[
∆aa ∆ab

∆ab ∆bb

]
(3.47)

With new variables zi = ∆
−1/2
M yi, we have that

ED[Cab] = Ezai ∼N (0,1)

[
C

(
N∑
i=1

∆0z
a
i z
b
i +

∆

2

(
(zai )2 + (zbi )

2
))]

(3.48)

where ∆0 = ∆aa = ∆(t, t) and ∆ = ∆ab = ∆(t, t′). From the equations above

it is natural to re-scale xi → xi√
N

. This is equivalent to imposing ∆0 → ∆0
N and

∆→ ∆
N . We assume that the argument of C in eq(3.48), for N � 1, in virtue of the

central limit theorem, can be replaced by a Gaussian variable x̄ with E[x̄] = ∆ and

V ar[x̄] = ∆2 + ∆2
0. Namely,

E

[
C

(
∆ +

√
∆2 + ∆2

0√
N

z

)]
z∼N (0,1)

N → +∞−−−−−−→ C(∆) (3.49)

Therefore we have ED[Cab] ∼
∑

k≥1 σ
2
k(∆

ab)k. At the steady state we expect ∆ to

depend on times only via the difference |t − t′| = τ and to be independent from the

initial conditions. Under these assumptions, ∆(τ) can be shown to evolve according

to the Newtonian dynamics

∂2
τ∆ = −∂∆V (∆) (3.50)
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where V (∆) = −∆2

2 +
∫
d∆C(∆) = −∆2

2 +
∑+∞

k=1 σ
2
k

∆k+1

k+1 (see fig(3.6)) and with the

following conditions {
∂τ∆(0) = 0

|∆(τ)| ≤ ∆(0)
(3.51)

Solutions to eq(3.50) preserve the energy

V (∆0) =
1

2
|∂τ∆|2 + V (∆) (3.52)

The first boundary condition in eq(3.51) is introduced to preserve the symmetry of

∆(τ) while the second is necessary to have a well-defined correlation function. One

now may notice that our problem differs considerably from a similar one considered

originally in [109] by the same technique in the neural network framework. Namely,

in contrast to [109], in our case V does not parametrically depend on ∆(0). For our

purpose we will only focus on the locally stable fixed point regime, assuming σ1 < 1 (see

however section 3.1.4.2 below). For ∆ > 0, V (∆) forms a well, with a local maximum

in ∆ = 0 with d2V
d∆2 (0) < 0 and global minimum at ∆ = r2

+, i.e. d2V
d∆2 (r2

+) > 0. These two

points are fixed points for the single particle dynamics. Solutions with negative energy

lead to non-vanishing average cycles while solutions corresponding to positive potential

lead to centered oscillation. The potential V (∆) can be shown to have a unique point

where the second derivative ∂2
∆V (∆) changes its sign. This occurs at ∆ = r2

−. We

recall that 0 < r− < r+. Lastly, there is a unique point where the potential vanishes,

∆0 > r2
+. By stability analysis of replicated dynamical mean field equation eq(3.36)

(see [107] and section 3.1.4.3), this point corresponds to an exponentially time-decaying

∆(τ) and stable attractor.

3.1.4.1 Lyapunov Exponent

The sensitivity to initial conditions and the emergence of chaotic flows is fully charac-

terized by the maximal Lyapunov exponent λ. To define the latter we firstly introduce

the mean susceptibility ([106])

χ2(τ) = lim
t→+∞

1

N

∑
ij

ED[χ2
ij(t+ τ, t)]

where χji(t, t
′) = δxi(t)

δx0
j (t
′)

, with δx0
i (t
′) being the initial displacement. In the limit

t→ +∞, the Lyapunov exponent is given by

λ = lim
τ→+∞

logχ2(τ)

2τ
. (3.53)
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Figure 3.6: Example of profile for V (∆) for µ = 1.

The evolution of χ2(t) is retrieved by differentiating dxi(t)
dt with respect to a perturba-

tion δx0
j (t
′). The susceptibilities χij(t, t

′), for the dynamics generated by sum of the

feedback mechanism with µ = 1 and of eq(3.8), satisfy the following set of coupled

ODEs: (
1 +

d

dt

)
χij(t, t

′) =
1√
N

N∑
u=1

∂

∂xu
ϕi(x(t))χuj(t, t

′) + δijδ(t− t′) (3.54)

The mean susceptibility is obtained by multiplying eq(3.54) by itself (N � 1)(
1 +

d

dta

)(
1 +

d

dtb

)
1

N

∑
ij

ED [χij(ta, tc)χij(tb, td)] '

+C ′(x(ta)
Tx(tb))

1

N

∑
uj

ED [χuj(ta, tc)χuj(tb, td)]+δ(ta−tb−tc+td)δ(ta+tb−tc−td)

(3.55)

The r.h.s is obtained by observing that

E[∂uϕi(x(t))∂vϕi(x(t′))] = C ′′(x(t)Tx(t′))xu(t′)xv(t) + C ′(x(t)Tx(t′))δuv (3.56)

As in the previous section, we rescale xi → xi√
N

and we take the limit N → +∞.

With the hypothesis so far introduced, analogously to eq(3.49), we can assume that

C ′(x(t)Tx(t′)) in eq(3.56) is the leading term. A further change of variables, τ =

ta − tb, τ ′ = tc − td, T = ta + tb and T ′ = tc + td, leads to[(
1 +

∂

∂T

)2

− ∂2

∂τ2
− C ′(∆)

]
G(T, T ′, τ, τ ′) = 2δ(T − T ′)δ(τ − τ ′) (3.57)
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where G(T, T ′, τ, τ ′) = 1
N

∑
uj ED

[
χuj(

T+τ
2 , T

′+τ ′

2 )χuj(
T−τ

2 , T
′−τ ′
2 )

]
. Therefore, the

mean susceptibility can be written as G(2t, 0, 0, 0) and as a series

χ2(t) =
+∞∑
n=0

χn exp (2ωnt)

with ωn = −1 ± (1 − λn)1/2. The terms λn are the eigenvalues of the following one

dimensional Schrödinger-type equation:[
d2

dτ2
+ λn +

∂2V

∂∆2
(∆)

]
ψ(t) = 0 (3.58)

As the large-time behaviour is controlled by the lowest eigenvalue λ0, the maximal

Lyapunov exponent is given by λ = −1 + (1− λ0)1/2.

3.1.4.2 Stability of Fixed Points

If ∆ is constant, the Lyapunov exponent is simply λ = −1 +
√
C ′(∆). From the

sections above, C ′(∆) is a strictly monotone function such that C ′(∆) > 1 if and only

if ∆ > r2
−. For σ1 > 1, r− = 0 and all the fixed points are therefore unstable, including

x = 0 for which the Lyapunov exponent is σ1 − 1. Conversely, for σ1 < 1, x = 0

is stable. These two regimes for the origin are in agreement with the May-Wigner

instability obtained by linearization of the equations of motion. Any constant solution

∆ > r2
− is unstable, including the minimum of V at ∆ = r2

+ since r+ > r−.

3.1.4.3 Chaotic Trajectories at Criticality

To find the dependence of ∆ on τ requires the direct solution of eq(3.58). Close to

criticality, i.e. σ1 = 1 − ε with ε → 0+, we know that the basin of attraction of the

fixed point located at the origin shrinks to zero. We now want to show that, depending

on the initial condition, there exists a chaotic solution. Under these assumptions the

point where the potential vanishes ∆0 > r2
+ is sufficiently close to the origin that we

can expand V (∆) and keep the first two terms from the Taylor expansion, i.e.

V (∆0) ' 1

2
(σ2

1 − 1)∆2
0 +

σ2
2

3
∆3

0 + ... (3.59)

Therefore, ∆0 '
3(1−σ2

1)

2σ2
2

. The evolution of ∆(t) ≤ ∆0 satisfies

t =
1√

1− σ2
1

∫ ∆(t)

∆0

d∆
1

∆
√

1− ∆
∆0

(3.60)
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By inversion ∆(t) ' ∆0 cosh−2 (t
√

1− σ2
1/2). The characteristic time scale is given by

τ = (
√

1− σ2
1/2)−1. We can now compute λ0. The second derivative of the potential

is given by ∂2V
∂∆2 (∆) ' (σ2

1 − 1) + 2σ2
2∆. With the knowledge of ∆(t), the equation

eq(3.58) becomes (see [110])[
d2

dt2
+ λn − (1− σ2

1) + 3(1− σ2
1) cosh−2

(
t
√

1− σ2
1/2

)]
ψ(t) = 0 (3.61)

The term −(1 − σ2
1) + 3(1 − σ2

1) cosh−2
(
t
√

1− σ2
1/2
)

is, in turn, a potential with

minimum for t = 0 and ψ(t) = d∆
dt (t) is a eigenfunction with zero value for t = 0. The

equation above can be rewritten as a Legendre equation. Its solutions can be written

in terms of the generalized Legendre polynomials, with the eigenvalues given by

λn = −(1− σ2
1)

16
(7− (1 + 2n))2 + (1− σ2

1)

which allows to find Lyapunov exponent as λ ∼ −1 +
√

1 + 5
4(1− σ2

1). Re-introducing

ε → 0+, at criticality we finally observe that the zero-energy solution corresponds to

a chaotic dynamics since

λ ∼ 5

4
ε

This is completely different from neural networks. In the latter, for σ1 < 1, x = 0 is

the only fixed point and any trajectory is attracted by it. We again observe that:

• σ2 does not explicitly appear in ∂2V
∂∆2 (t), however, it is required to be non-

vanishing. Lastly, we notice that the two stable solutions ∆ = 0 and ∆0 are

separated by the unstable solution ∆ = r2
+ '

1−σ2
1

σ2
2

.

• This result is exact if we assume the cut-off Ω = 2

As all the results above have been obtained heuristically assuming validity of the mean-

field approximation they have to be further tested in accurate numerical simulations.

This will be the subject of future investigations, beyond the present thesis.

3.1.5 Is Topological Trivialization universal?

The results of this chapter have reflected the fact that the limiting spectral density of

Ginibre matrices has compact support. This created at least three different regimes,

within and out of the bulk of the spectrum, separated by a transitional edge scaling

regime. We now try to answer the question addressed in the title of this subsection.
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To this purpose, we suggest to consider an ad hoc conservative dynamics to prove that

this assertion can be violated. We assume the potential is written as

V(x) = −µ
2
|x|2 + V (x)

The first (quadratic) term confines the system into a well altered by the random

potential V (x). The latter modifies this simple surface of the Lyapunov function by

introducing local fixed points and attractors. The relative strength of the confining

term and the random functions controls the appearance of a complicate energy surface

featuring both stable and unstable equilibrium points. We assume V (x) to be the sum

of periodic potentials Va(x) , i.e. V (x) =
∑M

a=1 Va(x) with

Va(x) = u
(a)
1 cos(kTa x) + u

(a)
2 sin(kTa x) (3.62)

The vectors ka represent the wave numbers while u
(a)
1,2 are the amplitudes assumed to be

normal random variables, i.e. E[u
(a)
x u

(b)
y ] = δxyδab. We want to investigated the mean

number of the equilibrium points Nµ, by the Kac-Rice formalism (see eq(1.44)), for

the set of equations dxi
dt = − ∂V

∂xi
(x). Our assumptions imply the following covariance

structure:

E[V (x)V (x′)] =

M∑
a=1

cos (kTa (x− x′)), (3.63)

E[∂lV (x)V (x′)] = −
M∑
a=1

kai sin(kTa (x− x′)), (3.64)

E[∂iV (x)∂jV (x′)] =

M∑
a=1

kaikaj cos(kTa (x− x′)) (3.65)

For µ� 1, we expect the system’s dynamics to be mostly confined in the region close

to x = 0, however, as the potential V is added to the system, the origin is no longer a

fixed point of the dynamics as ∂xjV (0) 6= 0 almost surely. With the idea of analysing

the behaviour as the size of the system become large (N → +∞), we further assume

that the wave numbers ka are centered Gaussian random variable with variance 1/N

and we consider the number of modes M → +∞ such that 1 ≤ α = M/N < +∞.

The number of fixed points for such dynamics is given by the Kac-Rice formula (see

appendix C.4.1) as

Nµ(RN ) =
1

µN

∫ M∏
a=1

dTa√
2π
e−

1
2
T 2
a EW[|det(µ1N −WTWT )|] (3.66)
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Figure 3.7: Numerical evaluation for N = 30 of Υα(λ) = 1
N logNµ. # Samples for Nµ

=108.

where T = diag(T1, .., TM ), W is a N ×M real matrix whose columns, wa, are dis-

tributed as p(wa) ∝ e−N/2w
T
awa and EW[g(W )] =

(
N
2π

)NM
2 ∫

dWe−
N
2

Tr WWT
g(W)

for a sufficiently smooth function g(x). Eq(3.66) provides a new example of connec-

tions between the study of random energy landscapes and generalised Wishart random

matrices. Different examples of similar kind appeared very recently in the context of

random optimization problems (see [111] [112]). The experience gained in the previous

models suggests to expect Nµ ∝ eNΣ(µ) with Σ(µ) being the topological complexity.

As before, the positive (negative) sign of Σ(µ) determines the exponential proliferation

(suppression) of the number of fixed points. However, in contrast to the eqs(3.4,3.15)

obtaining asymptotics of Nµ explicitly is far from an easy task as none of the tech-

niques of the present thesis can be directly applied. Therefore, we can only bound Nµ
following the results in Chapter 1 and perform numerical simulations.

3.1.5.1 Absence of Self-Averaging

For classic real RMT ensembles and N � 1, the quantity 1
N log |det(1Nµ − G)| is

usually self-averaging with Gaussian fluctuation with variance of order O(1/N2) [49].

This is enough for evaluating, for large N , the complexity function since

Σ = lim
N→+∞

1

N
logNµ ≈ Σ̂ =

∫
dρ(z) log |µ− z| − logµ (3.67)

this fact underlies the equivalence between ”quenched” and ”annealed” complexity

of stationary points. In such a case the topological trivialization corresponds to the
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Figure 3.8: Average of Σ̂ by numerical integration(coloured curves) from ρα and
eq(3.69) (dashed curves).

change in sign (or vanishing) of the quantity above at some finite value of the control

parameter µ. For matrices discussed in section 1.1.2, one easily checks that

lim
N→+∞

1

N
logNµ =

{
1
2(µ2 − 1)− logµ for µ < 1

0 otherwise
(3.68)

However, for Nµ in eq(3.66), the density in the right-hand side of eq(3.67) is the

limiting mean spectral density for matrices of the form WTWT . Such density ρα(x)

is given by the inversion of eq(1.81). We remind here that such operation is non

trivial and we only have been able to reproduce analytically the Gaussian tails of

it. Namely, such limiting spectral density does not have compact support. This is

the first ingredient which should be mentioned in support of our claim that a sharp

trivialization transition in such a model does not occur. In the first chapter we gave

few terms of the expansion, for µ� 1, for eq(3.67), namely (see fig(3.8))

Σ̂ = − α

2µ2
− α(2α+ 3)

4µ4
+ o

(
1

µ4

)
(3.69)

This will reveal to be a meaningless estimation or boundary for Σ as for sufficiently

large µ, Σ̂ < 0 (see below). In principle, if confirmed this would correspond, on average

and for N � 1, to the absence of fixed points. This result indicates that the mean of the

number of equilibria may be not representative and the latter show big fluctuations

from one realization of the landscape to the other. More generally, understanding

complexity properly should require the control of higher moments. Those moments

would involve products of characteristic polynomials, which we briefly addressed in
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chapter 1. Unable to estimate the fluctuations, we nevertheless are able to provide

arguments that the complexity corresponding to the first moment, the mean number

of equilibria, in the present model remains always positive for sufficiently large µ. To

bound Σ for N � 1 and µ � 1, from below we can use the asymptotics for p = 1 in

section 1.3.3.6 considering :

lim
N→+∞

1

N
logE[det(1Nµ−WTWT )] = log µ (3.70)

Clearly x ≤ |x| for any real. If one identify x with det(1Nµ−WTWT ), then

ET[Z1,1]

µN
≤ Nµ (3.71)

which gives (for µ� 1)

0 ≤ lim
N→+∞

1

N
logNµ

So far the only rigorous results are eq(3.70) and eq(3.71). However, without more

details on Nµ, what said above is circumstantial. It remains to show that the first

inequality in eq(3.71) is strict. This implies Σ > 0 regardless of µ. To show this

is sufficent to prove that there exists an interval U ⊂ (−∞, 0) such that p(U) >

0 being p the probability density function of det(1Nµ −WTWT ). In order to do

this without worrying about N being large we investigate the first moment of S =

1
2

(
sign

(
det(1Nµ−WTWT )

)
+ 1
)
. For µ→ 0+, we expect E[S] ' 1

2 . Conversely for

µ� 1, we observe (see fig(3.9)) that log (log(E[S])) is linear suggesting (qualitatively)

that p(U) > 0 for U ⊂ (−∞, 0). As a final remark, our intent in this section was

not to fully describe this model rather to show a first example where the trivialization

transition is not seen at the level of annealed complexity extracted from the mean value

of equilibria, indicating towards absence of self-averaging. Clearly, more rigorous proofs

of the statements above are necessary to have the last word and we postpone further

investigations for the future, beyond this thesis.

3.2 Delays in May’s Model

We conclude this chapter considering the stability of the May’s model where the in-

teracting terms have a delayed response. More precisely, given a vector x ∈ RN

representing the state of the system, we want to address the local stability of x = 0

for the system [113][114]
dx

dt
=

∫ 0

−∞
dΠ(θ)x(t+ θ) (3.72)
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Figure 3.9: Numerical simulations of S = 1
2

(
sign

(
det(1Nµ−WTWT )

)
+ 1
)

for N =
80. # Samples=106.

Π(θ) is the memory kernel matrix while the integral ranges from −∞ to 0 to respect

causality. This generalises eq(3.1) which is retrieved considering

Π(θ)dθ = lim
ε→0+

2√
2πε

(
−µ1N +

σ√
N
Ξ

)
e−

θ2

2ε dθ

Similarly to the non-delayed case, to study the asymptotic stability of the origin one

can introduce a small perturbation of the form δxeλt in eq(3.72). The latter is solution

if and only if λ is a zero of the characteristic polynomial Z(λ) defined as:

Z(λ) = det

(
λ1N −

∫ 0

−∞
dΠ(θ)eλθ

)
(3.73)

The stability of x = 0 depends on the sign of the real part of λs such that Z(λ) = 0.

Adopting the terminology from [114], Z(λ) is said to be stable if {λ ∈ C|Reλ ≥

0,Z(λ) = 0} = ∅. Additionally, if ∃η > 0 such that
∫ 0
−∞ e

−ηθ|dΠij | < +∞ and Z(λ)

is stable then x = 0 in eq(3.72) is asymptotically stable. As we know, in absence

of delay, the latter implication is also an if and only if. Lastly, given a closed and

counter-clockwise oriented path γ in the complex plane, the number of zeroes of the

partition function in eq(3.73), over the size N , contained in the region bounded by γ

is given by:

Nγ =
1

2πiN

∮
γ

1

Z(λ)

dZ(λ)

dλ
dλ (3.74)

In what follows we will indicate the region of C with positive real part as the region

bounded by γ+. The latter is given (taking R → +∞) by the semicircle γ(R) from

−iR to iR oriented counter-clockwise from argument −π/2 to +π/2 and the segment
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on the imaginary axis connecting iR to −iR. Therefore, to address the stability of

eq(3.72) we will calculate EΠ[Nγ+ ]:

EΠ[Nγ+ ] =
1

2πiN
lim

R→+∞

∮
γ(R)

EΠ

[ 1

Z(λ)

dZ(λ)

dλ

]
dλ (3.75)

over the random realizations of Π(θ).

3.2.1 Uniform Memory Kernel

We now consider the case of uniform kernel, i.e.

Π(θ)dθ = −2µ1Nδ(θ)dθ +
1√
N

Wν(θ)dθ (3.76)

with Wij ∼ N (0, 1). The scalar function ν(θ) is a uniform delay. Lastly, we introduce

σ(λ) = L[ν](λ) =
∫ 0
−∞ ν(θ)eλθdθ, i.e. the Laplace transform of ν(−θ), a complex

function of λ, L : C→ C. With these premises, we have

Z(λ) = det

(
(λ+ µ)1N −

σ(λ)√
N

W

)
(3.77)

and its derivative is given by

dZ(λ)

dλ
= N

σ̇(λ)

σ(λ)
Z(λ) +

N∑
j=1

ρ̇(λ)

ρ(λ)− 1√
N
λj
Z(λ)

where ρ(λ) = (µ+ λ)/σ(λ) and λj is the eigenvalue of W. Hence, by taking the limit

N → +∞, one retrieves

lim
N→+∞

1

N
E
[

1

Z(λ)

dZ(λ)

dλ

]
=

(
σ̇(λ)

σ(λ)
+ ρ̇(λ)EX

[
1

ρ(λ)−X

])
whereX is distributed according to the circle law. Hence, E[ 1

ρ−X ] = 1
π

∫ +π
−π dθ

∫ 1
0 dr

r
ρ−reiθ .

The latter equals

EX
[

1

ρ−X

]
=

{
1
ρ if |ρ| ≥ 1
|ρ|2
ρ if |ρ| < 1

(3.78)

Therefore, the value of E[Nγ+ ] is given by (ω ∈ R):

E[Nγ+ ] =
1

2
− 1

2π
Im

(∫
|ρ(iω)|≥1

idω

µ+ iω
+

∫
|ρ(iω)|<1

(
(1− |ρ(iω)|2)

σ′(iω)

σ(iω)
+ i
|ρ(iω)|2

µ+ iω

)
dω

)
(3.79)

with σ′(iω) = d
dωσ(iω).
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3.2.1.1 Exponential Kernel

We now write eq(3.79) for an exponential kernel, i.e. ν(θ) = exp (θ/τ)
τ for a given

time of delay τ > 0. In neural networks, such delay is supposed to be inversely

proportional to the axonal diameter, usually drawn from an experimentally fitted

Gamma distribution (see as an example [115]). For this choice of ν, σ(iω) = i
i−τω ,

|ρ(iω)| =
√
ω2 + µ2

√
1 + τ2ω2. Clearly, |ρ(iω)| ≥ 1 for µ > 1, conversely for 0 < µ < 1

the same inequality holds whenever |ω| ≥ ω∗ defined as

ω∗ =

√
−1 + µ2τ2

2τ2
+

1

2

√
1 + 4τ2 − 2µ2τ2 + µ4τ4

τ4

Substituting these relations into eq(3.79), we obtain

E[Nγ+ ] =

{
0 if µ ≥ 1

− 1
πµω∗ −

1
3πµτ

2ω∗ + 1
π arctan

(
ω∗
µ

)
if 0 < µ < 1

(3.80)

We can recover May’s bound by taking τ → 0+, i.e. for 0 < µ < 1,

E[Nγ+ ] = −µ
π

√
1− µ2 +

1

π
arctan

(√
1− µ2

µ

)
(3.81)

One can easily prove that, for N � 1, eq(3.81) is equivalent to counting how many

eigenvalues of the Ginibre matrix 1√
N

W (on average) have real part greater than µ.

As we see in eq(3.80), the regimes depend only on the value of µ and not τ . That is

to say, that the stability of the origin is unchanged and May’s bound is respected. For

a sufficient condition to modify this by uniform memory kernels we could proceed as

follows. For a kernel ν(θ;ϕ) for some parameter ϕ, the condition |ρ(iω)| ≥ 1 has to be

satisfies by µ ∈ U(ϕ) where such interval is a function of ϕ.
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Chapter 4

Random Constrained
Optimization

4.1 Introduction

Constrained Optimization plays a significant role in several and different fields of re-

search. The problem of minimizing a cost function, H, over a feasible set X arise, for

example, in Finance [116][117], Physics [118][119] and Biology [120][121]. Therefore, it

is natural to identify a common paradigm of solutions and equivalence classes for such

problems. Frequently, regardless of the form of H, the number and the complexity of

the constraints prevent an explicit description of the feasibility space X and, therefore,

of minx∈X {H(x)}. As a particular example one may mention the financial portfolio

usually constrained by budget and transaction costs. Another example is given by the

folding process of proteins, from the unfolded to the native state within a thermal bath

[122]. In particular, the mechanism behind the formation of extra-molecular bonds,

mostly of hydrogen type among amino-acids, is still not completely understood. The

folding is associated to the minimisation of a potential function, usually consisting

of non-linear terms with respect to the distance between pairs of constituents. The

difficulties mainly stem from the high dimensionality of the problem and in modelling

such a potential. The hyper-dimensional surface given by the latter is usually studded

by critical points producing an extremely complicated topology. In ecological dynam-

ics it has been recently shown that, the dual formulation for quadratic programming

of certain convex problems leads to a one-to-one correspondence with the stationary

solution of the MacArthur model [121]. In the context of statistical mechanics such a

problem is associated to the jamming of hard spheres. By increasing the pressure of a

liquid, a glass phase appears and the space available for moving the spheres shrinks to
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zero, with an exponential number of metastable states and broken hergodicity [123].

The latter corresponds to disconnected clusters in the phase space. Further increase

of pressure reveals an additional transition (Gadner transition) with ultrametric struc-

tures forming in the configuration space and completely suppressing diffusion [124].

A first classification regarding the optimisation problems so far mentioned is based

on the definition of convexity. A problem is said to be convex if both H and X are

convex when defined as a function and, respectively, a set. These problems form a

large and well investigated class for which analytical results for existence and unique-

ness of arg min{H} are known (see [125]). However, required convexity is not always

present and, additionally, either H or X might be regarded as a source of random-

ness. Therefore, in order to have the most general mathematical framework, in the

present work, we consider multiple source of randomness: we assume H and X are

a random function and a random set respectively. Different level of randomness has

been introduced in literature. As an example, in neural networks, the cost function

has the form
∑

i,j Hijsisj with Hij being the random interaction matrix coupling spin

si and sj [126]. H gives rise to multiple metastable states si = sign
(∑

ij Hijsj

)
and

aging phenomena [127][126]. More simply, for H ∈ GOE(N) and the vector (s1, ..., sN )

being of a fixed unit length the minimisation problem reduces to finding the maximal

eigenvalue and therefore leads to the celebrated Tracy-Widom distributions [19]. In

this scenario there are 2N critical points in the cost function landscape. The inclusion

of an additional random linear term in the cost function, hTs, such that ‖h‖ � N−1/6

dramatically simplifies the set of critical points with only two (the maximum and the

minimum) remaining in the cost (energy) function hence the aging phenomena men-

tioned above disappear [128]. One can further impose additional constraints in the

form of inequalities and it was considered in modelling the perceptron [129]. The

initial feasible set is partitioned into two subsets S1 and S2 according to the sign of

aTs− T < 0 where the pair (a, T > 0) is given and s is a configuration of the system

[129]. By introducing M multiple constraints of this kind the problem can be satisfied

(sat) or unsatisfied (unsat) whenever the set X = ∅. The transition between the two

phases occurs with probability p → 1, in the thermodynamic limit N → +∞ with

α = M/N < ∞ [124][130]. The case T < 0 corresponds to the complete absence of

convexity for X as the latter is reduced to multiple and non-connected sub-domains.
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With these premises, in what follows, we introduce a general framework for investigat-

ing these systems. Therefore we consider a generic quadratic minimisation problem,

belonging to the NP-family, able to reproduce most of the features described above.

We assume that disorder appears in several quantities. However, this work is at an

early stage and it will be completed in the incoming future.

4.2 Work in Progress

We consider the following minimisation problem:{
minx∈X

{
1
2x

THx+ hTx
}

X = {x ∈ RN |‖x‖22 = N,Ax ≤ b}
(4.1)

Where H ∈ GOE(N) with probability dp(H) ∝ e−N/4J
2 Tr H2

dH from eq(1.1). The

matrix A is a M × N real Ginibre matrix, i.e. with independent and identically

distributed Gaussian entries: E[aij ] = 0 E[aikajl] = δklδijA
2. The M -dimensional

vector b has Gaussian entries with E[bibj ] = δijB
2, E[bi] = K. Lastly h is a N -

dimensional Gaussian vector with E[hihj ] = δijδ
2 and E[hi] = 0. We will perform the

limit N → +∞ and we will consider M/N = α < +∞. Taking the first limit is the

standard practice in the literature and allows to derive the closed form expressions

([131][132]). The second hypothesis is physical as, for the system mentioned above, α

can be intepreted as the packing fraction in jamming of granual materials [133][134].

Additionally, the form of the inequality constraints, again for N → +∞, is identical

to the Hopfield model presented in [135] considering the optimal storage of an infinite

number of patterns. Secondly, given the randomness of the triple (H,A, b) the problem

is not convex a priori. In order to tackle this problem we consider the cost function as

an effective energy and, given the positive parameter β, which we interpret as fictitious

inverse temperature, introduce the partition function Z over the sphere ‖x‖2 = N :

Z =

∫
‖x‖2=N

dxe−βH(x)
M∏
k=1

θ(bk − aTk x)

With H(x) = 1
2x

THx+ hTx. In the limit N → +∞, for β = 0, Z is proportional to

the volume of the feasible set, i.e. |X | within RN . From now on, with the replica trick

introduced in the first chapter, we consider E[logZ] = limn→0 logE[Zn]/n, i.e. we will

assume that such limit exists by analytic continuation (see section 1.1.1.2,[136] and

[27]). For B → 0, by employing the saddle point approximation, presented in some
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detail in appendix D, we retrieve the well known replica Gadner bound maximum

storage i.e.:

αmax,G(K) =
1√
2π

(∫ +∞

k
dte−

1
2
t2(t−K)2

)−1

In neural networks, this represents the upper limit of the storage capacity of patterns

of given magnetization. However in the case B 6= 0, i.e. of b being random, we

can’t simply average αmax,G above over b. Indeed, we are able to show that (see the

calculation outlined in appendix D)

αmax(K) = lim
q→1−

(
(1− q)

∫
dx
e−

1
2σ2 (x−µ)2

√
2πσ2

( d
dx

log
(

1 + erf
( x√

2

)))2
)−1

(4.2)

where µ = K/(C
√

1− q), σ2 = 1+d2q
d(1−q) , C =

√
NA and d = C/B. Similarly, to the def-

inition of αmax,G(K), αmax(K) defines an upper bound for M/N for which a replica

symmetry solution can be obtained. One can easily see that for B → 0+ it holds

αmax → αmax,G while in general αmax ≤ αmax,G (see fig(4.1)). The variable q is intro-

duced in the replica symmetric ansatz, i.e. as the off-diagonal entry of Qa,b = xTaxb.

From eq(4.2), αmax clearly does not depend on β.

The free energy f(β) = − limN→+∞,n→0
1
NβE [logZ] in this case is given by:

f(β) = −βJ
2

4
(1− q̃2)− βδ2

2
(1− q̃)− 1− α

2β
log(1− q̃)

Where q̃ solves:

β2J2

2
Qa,b(q̃) +

β2δ2

2
+

1

2
(Q−1)a,b(q̃) + α

∂

∂Qa,b
log In(Q)(q̃) = 0 (4.3)

with Qa,b(q) = q + (1− q)δa,b and In(Q) =
∫
Rn

du
(2π)n/2

E [
∏n
k=1 θ(b− uk)]

e
− 1

2C2 uTQ−1u

√
det Q

.

With the considerations above we can finally formulate our main result (See fig(4.2)):

Result: the average of the minimised function in eq(4.1), for B → 0+, is given by:

E
[
min
x∈X

{1

2
xTHx+ hTx

}]
= −

√
J2 + δ2

√
∆ (4.4)

with ∆ = 1− α
αmax
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Figure 4.1: Maximum storages αmax and αmax,G

4.3 Outline of the Calculation

The brief section above contains the early stage of my recent research. There are

several interesting features worth mentioning. The maximum storage decreases upon

introducing additional source of disorder in the selection of feasible points (i.e. B 6= 0).

Secondly, for B = 0, the value of the minimized function increases almost linearly

for sufficiently small α. As α increases even simulations fail to give reliable results

(fig(4.2)). To find a feasible point which does not violate any constraint is a hard task.

As one consider N � 1 the simulation time grows exponentially. An hypothesis to

explain this behaviour could be that the well surrounding the minimum of H shrinks as

either the dimensionality or the maximum storage increase. As shown in fig(4.2), this

phenomenon poses significant challenges for performing numerics which would deserve

a separate chapter. At present, the author is focusing on numerical evaluations of

eq(4.3) and eq(4.1). The latter is approached by the RALM algorithm developed in

[137]. Since eq(4.4) has been obtained in the replica symmetry ansatz, it’s necessary

to compute the eigenvalues of ∂2ϕn/∂Qa,b∂Qc,d to make sure q̃ is effectively a saddle

point. However, an explicit solution for q̃ is not available due to the presence of the

logarithmic term. Therefore the stability of q̃ will be performed by using the Almeida-

Thouless analysis for Sherrington-Kirkpatrick spin glass [138]. At present the main

difficulty is related to the amount of terms which need to be verified numerically and

numerical singularities.
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Figure 4.2: E[minx∈X

{
1
2x

THx+hTx
}

] as function of α, with B = 0, K = 0, αmax =

2, J2 + δ2 = 0.1. Vα is the average number of violated constraints in simulations(#
Samples= 107) with N = 70 and K = 0.
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Conclusions

In this thesis, through the lens of Random Matrix Theory, we explored several appli-

cations of characteristic polynomials and their asymptotics.

In chapter 2, we considered the characteristic function of the off-diagonal entries

of the Wigner reaction matrix Kab for quantum chaotic scattering. In presence of

random Gaussian coupling channels, this quantity can be written as average of ratio

of characteristic polynomials and was evaluated in the presence of absorption, rep-

resenting a significant extension of the earlier result from the work by A. Nock and

Y.Fyodorov [35]. For systems with broken time-reversal symmetry, the characteristic

function has a determinant structure and one is able to obtain an explicit formula for

the joint distribution of its real and imaginary part. In contrast, investigations of sys-

tems for which such symmetry is preserved represent a harder task. While it would be

natural to expect that the characteristic function of Kab can be expressed in a Pfaffian

form, we were able to obtain the latter only as a double integral. Despite this, the

second moment assumes a pretty simple form suggesting that an integrable form could

be, in principle, achieved. Beyond the numerical comparison provided, the importance

of these results found applications in very recent experiments with microwave networks.

In chapter 3, we described an application of Random Matrix Theory to dynamical

systems governed by random Gaussian fields. This work represents the core of this

thesis. The stability of randomly assembled systems, consisting of a large number of

interacting species, has attracted considerable attention in biology since May’s semi-

nal work in 1972 [16]. May revealed mechanisms of inherent local instability arising

when either the interaction strength or the number of constituents exceeds a certain

97



Chapter 5. Conclusions

threshold. The introduction of non-linear velocity functions reveals a rich and diverse

phase space landscape which abruptly changes from having exponentially many to a

unique fixed point (topology trivialization) [128]. Starting from these premises, we

were able to push forward the investigations concerning the resilience of such systems.

We estimated the characteristic length of the basin of attraction of a fixed point at

the origin by including all higher order terms of the Taylor expansion of the random

Gaussian velocity field. In particular, it was revealed that, for a large system, there

exists a (resilience) radius r∗ such that, as long as the origin is asymptotically stable,

all other fixed points are pushed away from it, beyond r∗. This work confirmed that

the ability for a random system to recover from a disturbance resides in the high order

correlations among the components. This represents a new challenge as most of the

investigations and available databases merely investigated the linear interactions.

It is generally believed that the time-independent analysis of the dynamical systems

above is universal. We challenged this statement in section 3.1.5. For a superposition

of random periodic potentials, we numerically showed that the topology trivialization

disappears whenever the amplitudes and the wave numbers are both Gaussian random

variables. Namely, there are always exponentially many fixed points regardless of the

relaxation-complexity ratio. We were not able to explicitly obtain the mean number of

fixed points. This, in fact, is a very hard task. The techniques developed for this thesis

were only able to scratch the surface of their complexity. The ensemble of matrices re-

lated to this problem reveals several interesting features, starting from the unbounded

support of the limit spectral density, absent in the classical ensembles. At the end of

these chapter, a digression on May’s model with delay is included.

We conclude this work with a preliminary investigation on the minimisation of a

quadratic function constrained to a set of random inequalities in chapter 4. We ob-

tained, in the replica symmetric approach, the value of the minimum of this cost

function as a function of α, i.e. the ratio between the number of constraints and the

size of the system. Even the simplest numerical comparison is made difficult by the

dimensionality of the problem and, as α increases, the simulations are not able to

satisfy all the constraints.
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5.1 Further Research

In this work we have investigated several aspects and applications of characteristic

polynomials of random matrices. For each chapter, there is plenty of questions that

need to be addressed in the future. This can be summarized as follow:

• In section 1.1.2, an interesting generalization of eq(1.76) is to replace λ with a

diagonal matrix containing (λ1, ..., λN ). This would be beneficial for addressing

more realistic models of randomly assembled dynamical systems. A possible

approach, at least for few independent λi, is to follow the steps in appendix A

up to eq(A.16). However, a more general form for the latter is needed.

• section 1.1.3 opens the question about the bounded support for generalized

Wishart matrices. Even keeping w as presented in [13], it would be interest-

ing to analyse which conditions for pT (t) lead to bounded spectral support for

N → +∞. This is likely to depend on the tail distribution of T .

• For the same ensemble mentioned above, correlations for characteristic polyno-

mials reveals new features on the de-correlation of the eigenvalues. A general

and explicit expression, even for β = 2 and any integer p, for eq(1.86) would

shed light on this behaviour. In fact the eigenvalues surrounding the center of

spectrum are ”packed” in the classic sense while the maximal eigenvalue follows

a un-rescaled Tracy-Widom distribution.

• For chapter 2, beyond the absence of a clear Pfaffian-determinant structures,

other questions involve the statistics for the Wigner reaction matrix at the values

of energy sufficiently close to the edge of the spectrum. Another completion

to the present work is undoubtedly the derivation of the joint distribution for

components of Kab for systems with time reversal symmetry. It is likely that one

has to devise an alternative route to what has been shown here.

This is due to the absence of ”orthogonal” Harish-Chandra integral. A further

possible extension of chapter 2 could include periodically driven disturbances.

To this onset one would introduce the circular ensembles given by eq(1.66).

• In section 3.1.3, we have used topological complexity to analyze the basin of

attraction of a randomly assembled dynamical system. The path to instability

for the fixed point is accompanied by the emergence of bifurcations. In particular,
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the Andronov-Hopf bifurcation depends on the correlations between left and right

eigenvectors of real Ginibre matrices. A possible way to address the dynamics

was presented although not complete.
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Appendix for Chapter 1

A.1 Derivation of Eq(1.75) and Eq(1.76)

In this section we prove the results stated in eq(1.75) and eq(1.76). The latter is

needed for evaluating the matrix expectation appearing in eq(3.15). We will first

recover the exact result for any N , λ and ε. Later, we will analyse the large N

behaviour. We will derive such results following the approach contained in [139, 140].

We want to investigate the following expectation

EGinOE[|det(λ1N + εh⊗ hT −Ξ)|] (A.1)

We assume that λ, ε ∈ R and h ∈ RN . The expectation above is with respect to real

Ginibre matrices, i.e. the entries of Ξ are i.i.d. standard Gaussian random variables.

The required expectation in eq(3.15) is simply obtained with the substitution:

λ = µ

√
N

C ′(r2)
, ε = µ

√
N
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)
− µ

√
N

C ′(r2)
, (A.2)

and

h = (1, 0, ..., 0)T .

To exploit the techniques of this thesis, we write the absolute value |x| as the ratio

x2/
√
x2. Hence eq(A.1) can be written as

EGinOE[|det(Λ−Ξ)|] ∝ EGinOE

[
det2(Λ−Ξ)√
det2(Λ−Ξ)

]
= EGinOE

[
det
(

0 i(Λ−Ξ)

i(Λ−Ξ)T 0

)
det
(

0 i(Λ−Ξ)

i(Λ−Ξ)T 0

)1/2

]
.

(A.3)

To simplify the notation we have introduced the matrix Λ = λ1N + εh⊗hT . Another

essential ingredient is to observe that the numerator in eq(A.3) can be written in terms
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of a Berezin integral. Namely, the characteristic polynomial of any N ×N matrix A

can be written as (see section 1.1.1.3)

detA =

∫
dψdψ̃ exp

(
ψ̃TAψ

)
(A.4)

The symbolic integral runs over the anti-commuting N -dimensional Grassmann vectors

ψ and ψ̃. The matrix appearing at the denominator of eq(A.3) is symmetric. Hence

its determinant, if the real part of the eigenvalues is positive, admits the representation

by Gaussian integral, i.e.

(detA)−1/2 =
1

(2π)
N
2

∫
RN

dx exp
(
− 1

2
xTAx

)
, (A.5)

The integral above, once applied to eq(A.3), requires the introduction of a regularizing

parameter p ∈ R+. With all these premises, we can finally introduce

D(λ, ε,h, p) = EGinOE

[
det2(Λ−Ξ)√

det(2p1N + (Λ−Ξ)T (Λ−Ξ))

]
∝

EGinOE

[ ∫
dψdψ̃e

−i

ψ̃1

ψ̃2

T 0N (Λ−Ξ)
(Λ−Ξ)T 0N

ψ1

ψ2



∫
R2N

dx1dx2e
− 1

2

x1

x2

T √2p1N i(Λ−Ξ)
i(Λ−Ξ)T

√
2p1N

x1

x2

]
. (A.6)

As in [141], from now on we will compute the r.h.s. of eq(A.6). Eq(A.1) is obtained

by imposing p → 0+. With this plan in mind, we start by combining the arguments

of the exponentials. This is a sum of traces, linear in Ξ and equivalent to

−
√

2p

2
Tr(x1x

T
1 + x2x

T
2 )− ixT2 Λx1 + iTr Λ(ψ2ψ̃

T
1 +ψ1ψ̃

T
2 )+

+ iTrΞT

(
1

2
x1x

T
2 −ψ1ψ̃

T
2

)
+ iTrΞ

(
1

2
x2x

T
1 −ψ2ψ̃

T
1

)
. (A.7)

The last two traces involve the random matrix Ξ. We now evaluate the expectation

over such random matricrs, by employing the real Ginibre matrices with the identity

EGinOE

[
e−Tr(ΞA+ΞTB)

]
= e

1
2

Tr(ATA+BTB+2AB) (A.8)

This identity gives rise to nonlinearities which can be circumvent by introducing a new

complex integration variables, q and its complex conjugate q̄. This allows to manage
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the product (ψ̃1
T
ψ1)(ψ̃2

T
ψ2) and integrate out the anti-commuting variables. These

manipulations lead to

D(λ, ε,h, p) ∝
∫
C
dqdq̄e−|q|

2

∫
R2N

dx1dx2

× exp

(
−
√

2p

2
(xT1 x1 + xT2 x2)− ixT2 Λx1 −

1

2
(xT1 x1)(xT2 x2)

)
×

× det

[
q1N iΛ + x1x

T
2

iΛ + x2x
T
1 q̄1N

]
(A.9)

Exploiting the Schur complement for block matrices, the determinant of the 2N × 2N

matrix above is given by det((|q|2+λ2)1N−(−2λhhT−(hTh)hhT+ix2x
T
1 Λ+iΛx1x

T
2 +

(xT1 x1)x2x
T
2 )). Since the matrix in the second parenthesis has rank 3, the determinant

reduces to compute (|q|2+λ2)N−3((|q|2+λ2)3−e1(RN )(|q|2+λ2)2+e2(RN )(|q|2+λ2)−

e3(RN )) where ej is the j-th elementary symmetric polynomial, function of the 3 non-

null eigenvalues of RN = −2λhhT −(hTh)hhT + ix2x
T
1 Λ+ iΛx1x

T
2 +(xT1 x1)x2x

T
2 . In

particular, by recalling ej(x) =
∑

kS+1>kS
xk1 . . . xkj and by making use of the Newton

identities we have: e1(RN ) = TrRN , e2(RN ) = (TrRN )2 − TrR2
N and e3(RN ) =

1
2(TrRN )3 − 3

2(TrRN )(TrR2
N ) + TrR3

N . Hence:

det

[
q1N iΛ + x1x

T
2

iΛ + x2x
T
1 q̄1N

]
= (|q|2 + λ2)N−3((|q|2 + λ2)3 − a2(|q|2 + λ2)2+

+ a1(|q|2 + λ2) + a0) (A.10)

with

a2 =((xT1 x1)(xT2 x2) + 2iε(xT1 h)(xT2 h)− ε2(hTh)2 + 2iλ(xT1 x2)− 2ελ(hTh)) (A.11)

a1 =− ε2((xT1 h)2 − (hTh)(xT1 x1))((xT2 h)2 − (hTh)(xT2 x2)) + 2ελ(−(xT1 h)(xT2 h)(xT1 x2)

+ (xT1 x1)(xT2 h)2 + (xT2 x2)(xT1 h)2 − (hTh)(xT1 x1)(xT2 x2) + iε(hTh)((xT1 h)(xT2 h)

− (hTh)(xT1 x2))) + λ2((xT1 x1)(xT2 x2)− (xT1 x2)2 − 4iε(hTh)(xT1 x2) + 4iε(xT1 h)(xT2 h)
(A.12)

a0 =ε(−2(xT1 h)(xT1 x2)(xT2 h) + (xT1 x1)(xT2 h)2 + (xT2 x2)(xT1 h)2 + (hTh)((xT1 x2)2

− (xT1 x1)(xT2 x2)))(−ε(hTh)λ2 − 2λ3) (A.13)

Eq(A.10) is a polynomial in |q|. This represents a major simplification as the integral

over the complex pair (q, q̄) can be solved explicitly in terms of the incomplete gamma

function 1
4π

∫
d2qe−|q|

2
(|q|2+λ2)n = eλ

2
Γ(n+1, λ2) for n ≥ 0. In addition, the integrand

in eq(A.9) is a function of a 2× 2 positive definite matrix Q and vector t given by

Q =

[
Q1 Q
Q Q2

]
=

[
xT1 x1 xT1 x2

xT1 x2 xT2 x2

]
, and t =

[
xT1 h
xT2 h

]
. (A.14)
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We temporarily chose to rename such integrand with F , so that

D(λ, ε,h, p) ∝
∫
R2N

dx1dx2F(Q, t) (A.15)

The r.h.s. can be re-written, up to a known proportionality constant, as (see [140])∫
R2

∫
Q�0
F(Q+ ttT , ht)(detQ)

N−4
2 dQdt (A.16)

where
√
hTh = h. The integral in Q runs over all the real 2 × 2 positive definite

symmetric matrices. The term F(Q+ ttT , ht)(detQ)
N−4

2 in eq(A.16) is proportional

to

(Q1Q2 −Q2)
N−4

2

(
− h2λ2ε(h2ε+ 2λ)Γ(N − 2, λ2)(Q2 −Q1Q2)−

Γ(N,λ2)(2iλ(ih2ε+Q+t1t2)+(t1t2+ih2ε)2+Q1(Q2+t22)+Q2t
2
1)−Γ(n−1, λ2)(h4ε2(Q1Q2+2iλQ)

+2h2λε(2iλQ+Qt1t2 +Q1Q2)+λ2(Q2 +2Qt1t2−Q2(Q1 + t21)−Q1t
2
2))+Γ(n+1, λ2)

)
× exp

[
λ2 +

1

2
(−2it1t2(h2ε+ λ)− 1

2
t21t

2
2 −

√
2p(Q1 +Q2 + t21 + t22)+

− 2iλQ−Q1(Q2 + t22)−Q2t
2
1)
]

(A.17)

Before addressing the integrals in Q and t, we need to introduce an additional manip-

ulation. The bi-quadratic term in the exponent can be replaced, with the help of the

Hubbard-Stratonovich transformation by

e−t
2
1t

2
2/2 ∝

∫
dye−y

2/2−iyt1t2 .

This simplifies our calculation as the integration over the entries of t can be computed

as derivatives of a one dimensional Gaussian integral. We are therefore left with the

integral over Q. We chose to represent the latter as[
Q1 Q

Q r2+Q2

Q1

]
(A.18)

with r = det1/2(Q) and measure dQ = 2dQ1

Q1
rdrdQ with r > 0, Q1 > 0, Q ∈ R. Let

introduce the rescaling Q1 →
√

2pQ1 and t1,2 → (2p)1/4t1,2 and integrate out r,Q, t2

and y. At this stage D(λ, ε,h, p) is a double integral in t1 and Q1, i.e.

D(λ, ε,h, p) ∝ 2
N−1

2 π
3
2

∫
R+

dQ1

∫
R
dt1 exp

[−h4ε2t21 − 2h2ελt21 + λ2(Q1 + t21 + 2)

2(Q1 + t21 + 1)
−p(Q1+t21)

]
1

(1 +Q1)2
Q

N−3
2

1 (Q1 + t21 + 1)−
N
2
−4(b0(Q1 + t21 + 1)2 − b1t21(Q1 + t21 + 1)(h2ε+ λ)+

+ b2(t41(h2ε+ λ)2 +Q2
1 +Q1(t21 + 2) + t21 + 1)) (A.19)
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where

s = 1 +Q1 + t21

u = λ2Q1Γ(N − 1, λ2)− (Q1 + t21)Γ(N,λ2)

v = λ2Q1Γ(N − 1, λ2)− sΓ(N,λ2)

b2 = −t21s2Γ

(
N

2
− 1

)
(λ2Q1Γ(N − 1, λ2)− (Q1 + t21)Γ(N,λ2))

b1 = −2t21sΓ

(
N

2
− 1

)
(h2ε+ λ)(λ2Q1t

2
1Γ(N − 1, λ2)− (t21 − 1)sΓ(N,λ2))

b0 = −h4s2t21uε
2Γ

(
N

2
− 1

)
+ 2h2s(Q1 + 1)t21vεΓ

(
N

2
− 1

)
(h2ε+ λ)+

2λ(Q1 + 1)st21vΓ

(
N

2
− 1

)
(h2ε+ λ)− 2h2λs2t21uεΓ

(
N

2
− 1

)
+ (Q1 + 1)2

(
Γ

(
N

2
− 1

)
(Γ(N,λ2)(s2(h4sε2 +Ns−Q1 − t21)+

+ 2h2λs2ε− λ2Q1(s+ 1))− Γ(N − 1, λ2)(h4Q1ε
2(λ2(s+ 1) + s) + 2h2λQ1ε(λ

2(s+ 1)

+ s)− λ2t21(s− λ2Q1)) + e−λ
2
s2λ2N ) + 2sΓ

(
N

2

)
(h2λ2Q1ε(h

2ε+ 2λ)Γ(N − 2, λ2)

+ Γ(N − 1, λ2)(−h4Q1ε
2 − 2h2λQ1ε+ λ2(Q1 + t21))− (Q1 + t21)Γ(N,λ2))

)
+Q1s

2uΓ

(
N

2
− 1

)
− λ2s2t21uΓ

(
N

2
− 1

)
+ s2uΓ

(
N

2
− 1

)
.

To obtain the quantities above we made use of the following identities

Γ(N + 1, λ2) = e−λ
2
λ2N +NΓ(N,λ2)

and we used the cancellation of the formally divergent integrals by noticing that

Γ(N + 1, λ2)− (N + λ2)Γ(N,λ2) + λ2(N − 1)Γ(N − 1, λ2) = 0.

One can proceed now with the remaining integrations. However, although we will re-

port the most simplified form for D(λ, ε,h, p), to the purpose of this thesis, it’s more

suitable to retrieve the large N behaviour from eq(A.19). The only remaining step be-

fore doing so is the constant of proportionality in eq(A.6) which we left (intentionally)

unspecified. To this end we consider the limit p→ +∞ in order to observe:

lim
p→+∞

(2p)N/2D(λ, ε,h, p) = EGinOE[det(λ1N + εhhT −Ξ)2] (A.20)

The r.h.s is obtained by introducing two Berezin integrals and follows the same proce-

dure as outlined earlier. This time, one necessarily needs to keep track of the constants

105



Appendix A. Appendix for Chapter 1

of proportionality in order to obtain

EGinOE[det(λ1N + εhhT −Ξ)2] = λ2N + (N + h4ε2 + 2λh2ε)eλ
2
Γ(N,λ2) (A.21)

In eq(A.19), if we take p → +∞, necessarily the most relevant contribution to the

double integral is given by Q1 → 0+ and t1 → 0.

For these limits, the integrand eq(A.19) is proportional to EGinOE [det(λ1N +

εhhT −Ξ)2]e−λ
2
Γ(N2 − 1). Therefore, for p→ +∞, it holds

CNΓ
(N

2
− 1
)

2
N−1

2 π
3
2×

lim
p→+∞

(
√

2p)N
∫
R
dt1

∫
R+

dQ1 exp
[
− p(Q1 + t21)− 1

2
(ε2h4 + 2ελh2)t21

]
Q

N−3
2

1 = 1

(A.22)

Then

CN = (4
√

2π
5
2 Γ(N − 2))−1.

Eq(A.1) is finally given, setting the limit p→ 0+, namely by

EGinOE [| det(λ1N + εhhT −Ξ)|] =

2−
N
2
−1e−λ

2

√
πΓ(N+1

2 )

∫
R
dt1

∫
R+

dQ1 exp
[−h4ε2t21 − 2h2ελt21 + λ2(Q1 + t21 + 2)

2(Q1 + t21 + 1)

]
×Q

N−3
2

1 (Q1 + t21 + 1)−
N
2
−2
(

+ λ2N (h4ε2Q1 + (N − 1)(Q1 + t21 + 1)) + 2h2ελ2N+1Q1

+ eλ
2
Γ(N,λ2)(λ2((1−N)(Q1 + t21)− h4Q1ε

2) + (N − 1)(h4ε2(Q1 + 1)

+N(Q1 + t21 + 1)) + 2h2ελ(N − 1)(Q1 + 1)− 2h2λ3Q1ε)
)

(A.23)

The result above is valid for any finite N ,λ, ε ∈ C and h ∈ RN . For completeness we

observe that the integrand above is even for t1 therefore we can reduce eq(A.23) to a

single integral by introducing y = Q1 + t21 and integrating out |t1| <
√
y in order to

obtain:

EGinOE [| det(λ1N + εhhT −Ξ)|] =
2−

N
2

(N − 1)Γ(N2 )

∫
R+

dy exp
(
− λ2y

2(1 + y)

)
y
N
2
−1

× (1 + y)−
N
2
−2
(

(eλ
2
Γ(N,λ2)(((N − 1)(y + 1)− λ2y)(h2ε(h2ε+ 2λ) +N) + λ2y)+

+ λ2N (h4yε2 + 2h2λyε+ (N − 1)(y + 1)))F1(y)− 1

N
h2yε(h2ε+ 2λ)(λ2N+

+ eλ
2
(−λ2 +N − 1)Γ(N,λ2))F2(y)

)
(A.24)
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where F1(y) and F2(y) are given by the confluent hypergeometric functions

1F1

(
1

2
;
N

2
;−h

2yε(εh2 + 2λ)

2(y + 1)

)
and

1F1

(
3

2
;
N + 2

2
;−h

2yε(εh2 + 2λ)

2(y + 1)

)
respectively.

A.1.1 Asymptotic for the Absolute Value in Eq(1.76)

We are now able to investigate the large-N asymptotic behaviour of eq(A.23). We

remark here that the limiting spectral distribution of the eigenvalues of Ξ/
√
N , con-

verges almost surely to the circular law, i.e. to the uniform distribution over the disc of

unit radius as N → +∞. Since we want to address N →∞, this suggests, as it will be

clear later, to rescale λ and ε, as λ→
√
Nλ and ε→

√
Nε. Without loss of generality

we also impose h = |h| = 1. With the application we have in mind for eq(1.48) in

section 1.2.4 and eq(A.23) in section 3.1.3, this scaling arises in the parameter choice

eq(A.2). Let consider for a moment ε = 0. We expect, from what stated above and

[37], that |λ| being greater or smaller than one defines different regimes for eq(A.23).

In fact, |λ| = 1 corresponds to an evaluation at the edge discontinuity for the global

spectral density and it will require an additional (edge) scaling. Setting ε 6= 0 intro-

duces a rank-1 perturbation to the random matrix Ξ. This can create spectral outlier

(see section 1.1.2) but, given its finite nature, it does not lead to further sub-regimes

within and at the edge of the spectrum. The integrand in eq(A.23) can be re-casted

in two factors. The exponential terms and the first two terms in the second line with

power N of eq(A.23) are collected by

L(q, t) =
−ε2t2 − 2λt2ε+ λ2 + λ2(q + t2 + 1)

2(q + t2 + 1)
− 1

2
log(q + t2 + 1) +

1

2
log(q) (A.25)

The (sub-leading) terms appearing in eq(A.23) can be presented in a form of the

following function

g(q, t) = q−
3
2 (q + t2 + 1)−2(λ2NNN (Nqε2 + (N − 1)(q + t2 + 1)) + 2λ2N+1NN+1qε

+eλ
2NΓ(N,Nλ2)(λ2N((1−N)(q+ t2)−Nqε2)+(N −1)(N(q+1)ε2 +N(q+ t2 +1))+

− 2λ3N2qε+ 2λN(N − 1)(q + 1)ε) (A.26)
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In order to simplify the notation we replaced Q1 and t1 with q and t respectively. For

N � 1, the main contribution to the integrals in eq(A.23) is given by the neighborhood

of the saddle points of L(q, t). It turns out that the only feasible solution to ∇L(q, t) =

0 is given by q = 1
λ2−1

and t = 0 since we need to further impose 1 + q + t2 = 0 for

convergence. At this point

L
(

1

λ2 − 1
, 0

)
= −1

2
+ λ2 − 1

2
log λ2

while the Hessian of L(q, t), indicated by H(q, t), is diagonal, namely

H
( 1

λ2 − 1
, 0
)

=

[
− (λ2−1)4

2λ4 0

0 − (ε+λ)2(λ2−1)
λ2

]

One can easily check that the Hessian H is negative definite only for |λ| > 1. This de-

fines two regimes we need to investigate separately. As anticipated ε does not intervene

in defining these regimes:

• We fix |λ| > 1. In this case, the point ( 1
λ2−1

, 0) belongs to the domain of inte-

gration in eq(A.23). Hence, for N � 1, we can expand in Taylor series around

such point L(q, t) and g(q, t), namely

L(q, t) ≈ L
( 1

λ2 − 1
, 0
)

+
1

2

[
q − 1

λ2−1

t

]T
H
( 1

λ2 − 1
, 0
)[q − 1

λ2−1

t

]
(A.27)

and

g(q, t) ≈ g
( 1

λ2 − 1
, 0
)

(A.28)

After replacing the quantities above in eq(A.23), one can analytically perform

the integrals. By retaining the leading terms of this operations, the Laplace

approximation gives

EGinOE[| det(λ1N + εhhT −Ξ)|] ∼ N
N
2 |λ|N−1|ε+ λ|(1 + o(1)). (A.29)

• For |λ| < 1, one easily sees that

(
1

λ2 − 1
, 0) = arg maxL(q, t) /∈ R+ × R (A.30)

The saddle point of L(q, t) does not belong to the domain of integration in

eq(A.23). To perform the asymptotics N � 1 we proceed by steps. Firstly,

we restrict such domain to the subset U(R) ⊂ R+×R contained within the semi-

circle of radius R and center (0, 0) in the first and fourth quadrants and the line
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connecting (0, R) to (0,−R), oriented counterclockwise. The original domain is

restored by the limit R→ +∞. From eq(A.30), the saddle point ( 1
λ2−1

, 0) does

not belong to U(R). therefore L(q, t) hits its maximal value in correspondence of

an accumulation point of U(R). From eq(A.25) and from the parametrization of

the boundary of U(R), i.e. ∂U(R), L(q, t) reaches its maximum at (R, 0) where

L(R, 0) = 1/2((R+ 2)λ2/(1 +R) + log(R/(R+ 1))).

The curve ∂U(R) is smooth and differentiable with curvature R−1 in (R, 0). The

outward normal vector is simply n = (1, 0). Therefore with the help of the

divergence theorem, it holds (see [40])

EGinOE [| det(λ1N + εhhT −Ξ)|] = (A.31)

CN,λ lim
R→+∞

∮
∂U(R)

d`eNL(`)

N

g(`)

|∇L|2
∇L(`) · n(`) +O(eNL(R,0)N−2)

where CN,λ = 2−
N
2 −1e−λ

2

π
1
2 Γ(N+1

2
)

. Once again, if we can retain the leading terms around

the point (R, 0), we get

EGinOE[| det(λ1N + εhhT −Ξ)|] ≈ (A.32)

CN,λ lim
R→+∞

√
2π

N3
eNL(R,0)g(R, 0)

(√∣∣f(R, 0) +R−1w(R, 0))
∣∣)−1

where: w(q, t) =
∣∣∇L(q, t)

∣∣3 and f(q, t) = ∂2L(q,t)
∂q∂t (∂L(q,t)

∂t )2−2∂
2L(q,t)
∂q∂t (∂L(q,t)

∂t
∂L(q,t)
∂q )+

∂2L(q,t)
∂q∂t (∂L(q,t)

∂q )2. We observe that f is the leading term in the r.h.s. under the

square root of eq(A.32). Once can easily sees that f(R, 0) = O(R−5) whereas

w(R, 0) = O(R−6). For N � 1 and |λ| < 1, one can approximate1

Γ(N,Nλ2) ≈ NNe−N
∫ +∞

λ2

due−
N
2

(u−1)2

and

erfc

(√
N(λ2 − 1)√

2

)
≈ 2

If we carefully keep only the leading order terms from eq(A.32), we are finally

left with

EGinOE [|det(λ1N + εhhT −Ξ)|] ∼
√

2N
N
2 e

N
2

(λ2−1)
√
ε2 + 2λε+ 1(1 + o(1)).

(A.33)

1See also the asymptotics in section 1.1.2.
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• For completeness2, it remains to address the edge of the spectrum for which

|λ| = 1. To observe this regime we rescale λ → 1 + λ√
N

and ε → 1 + ε√
N

. Now

λ and ε are of order one. One can follow what done above and use the result in

eq(A.31) with N � 1. This leads to:

– for λ < 0:

EGinOE [| det(λ1N + εhhT −Ξ)|] ∼
√

2N
N
2 e
√
Nλ+λ2

2 erfc(
√

2λ)(1 + o(1))

(A.34)

– for λ > 0:

EGinOE [|det(λ1N + εhhT −Ξ)|] ∼ 2
√
N(
√
N + λ)N−1(1 + o(1)) (A.35)

A.2 Derivation of Eq(1.87)

In order to compute the Zβ,p(λ; T), we rewrite the determinants as product of Berezin

integrals using the Superbosonization approach. We start by rewriting the deter-

minants by using p grassmanian pairs of N × 1 vectors {ψ̃j ,ψj}pj=1. The latter

symbolically satisfy the following relations (see section 1.1.1.3): ψ1ψ2 = −ψ2ψ1,∫
1dψ = 0,

∫
ψdψ = 1. Therefore, given a N × N matrix A, its determinant is

det A =
∫
Dψ exp

(
ψ̃TAψ

)
. After some manipulations, for β = 1, we obtain:

EW

[ p∏
j=1

det(λj1N −WTWT )
]

=

∫
Dψe−

∑p
j=1 λj Trψjψ̃

T
j

m∏
a=1

Ewa [e
Ta
2

TrQ(s)wawT
a ]

(A.36)

where Q(s) is the symmetric part of Q =
∑p

j=1ψjψ̃
T
j , defined as Q + QT . The

expectation in eq(A.36) is equal to 1/ det(1N−Ta/NQ(s))1/2. In analogy with log(1+

x) =
∑+∞

n=1(−1)n+1xn/n, the finite Taylor expansion of Tr log(1N − Ta/NQ
(s))1/2

allows to rewrite the integrand in eq(A.36) in terms of the 2p× 2p matrix Q̂:

Q̂ =

[
ψ̃Ti ψj ψ̃Ti ψ̃j
−ψTi ψj −ψTi ψ̃j

]
(A.37)

Since Tr Q̂k = −TrQ(s)k , it follows that −Tr log(1N − Ta/NQ
(s)) = Tr log(12p −

Ta/NQ̂). We replace the integration with Grassmanian variables with the integra-

tion over the group of 2p × 2p unitary matrices U with skew symmetric sub-blocks,

2This regime does not play any role in eq(3.14) as it has a null measure for the spherical mean
density.
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satisfying:

P−1UP = UT

where we introduce:

P =

[
0p −1p
1p 0p

]
Therefore U has the following block form:

U =

[
U11 U12

U21 UT
11

]
with U12,U21 ∈ Skew(Cp×p). This group corresponds to the unitary matrix of the

circular symplectic ensemble (CSE(p)). In a similar way one can treat the complex

case (β = 2). In this case the integrand can be written as a function of Q̂ which only

consists of the p × p left upper block of eq(A.37). The Berezin integral is namely

replaced by an integral over group of the p × p unitary matrices (CUE(p)). We can

now represent Zβ,p(λ; T) for both the cases, namely:

Zβ,p(λ; T) =

∫
C(4/β)E(p) dU det(U)−

βN
2 e

β
2

Tr ΛU∏M
a=1 det(1(2/β)p − Ta

N U)β/2∫
C(4/β)E(p) dU det(U)−

βN
2 e

β
2

Tr U
(A.38)

where Λ = 12/β ⊗


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

. While the denominator of the integral form

of Zβ,p(λ; T) is unitary invariant, the numerator does not share the same invariance

due to presence of the exponential term. Therefore, for λj 6= λi, it’s not possible

to write such integrals in term of eiθj with θj ∈ (0, 2π), i.e. the eigenvalues of U.

Such simplification only holds for λj = λ for any j = 1, ..., p where the numerator of

eq(A.38) becomes a Siegel-like integral.

A.3 Derivation of Eq(1.90) and Eq(1.91)

Formulas in eqs(1.95,1.96) come from ratios of Selberg integrals (see [26]) which, after

some manipulations, take the form:∫
[0,2π]p

dθpj=1

p∏
j=1

e−iNθjee
iθj
∏
j<k

|eiθk − eiθj |β =

(2π)2e−iπpNMp(−N,N, β/2)1F
(2/β)
1 (−N,−N + 1 + β/2(p− 1); 1)
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And ∫
[0,2π]p

dθpj=1

p∏
j=1

e−iNθj
M∏
a=1

(1− Taeiθj )
∏
j<k

|eiθk − eiθj |β =

(2π)pe−iπpNMp(−N,N, β/2)2F
(β/2)
1 (−p, 2/βN ; (1− p) + 2/β(N − 1); T)

The resulst simply follow from the ratio of the latter. The case β = 2 admits a

determinantal form (see [142]), i.e.:

EW[det(WTW†)p] = (−1)pN
det
[
(Ti/N)M−k2 F

(1)
1 (ak;N − p− k + 1;Ti/N)

]αN
i,k=1

∆(T)1F
(1)
1 (−N, p−N ; 1)

with the vandermonde determinant ∆(T) =
∏
j<k(Tj − Tk) and a(k) = (−p + 1 −

k,N + 1− k). The case λ 6= 0 is addressed without using Jack polynomials as above.

We assume that λ = (λ, ..., λ), for β = 2, the numerator in eq(A.38) is proportional

to: ∫
[0,2π]p

dθpj=1

p∏
j=1

h(θj)
∏
k<j

(eiθj − eiθk)
∏
k<j

(e−iθj − e−iθk) (A.39)

with h(θ) = e−iNθ+λe
iθ∏M

a=1(1 − Ta
N e

iθ). We then recast the Vandermonde terms in

determinantal form, i.e.
∏
j<k |eiθj−eiθk |2 = det([(eiθj )k−1]pk,j=1) det([(e−iθj )k−1]pk,j=1).

Eventually, after some manipulation and introducing the Andreief identity, eq(A.39)

becomes the determinant of a Toeplitz matrix:

p! det

[
1

i

∮
dz

zN−j+k+1
eλz

M∏
a=1

(
1− Ta

N
z

)]p
j,k=1

.

As the contour encircles the origin counterclockwise, for Ta 6= 0, the Cauchy integral

formula returns

p! det
[
2πλN−j+k

N−j+k∑
u=0

(−1)u

(N − j + k − u)!
eu

(T
λ

)]p
j,k=1

where eu is the elementary symmetric function of order u, i.e. eu(T) =
∑

iS<iS+1
Ti1 ...Tiu .

Replicating the same steps for the denominator of eq(A.38):

Zβ=2,p(λ; T) =
det
[
2πλN−j+k

∑N−j+k
u=0

(−1)u

(N−j+k−u)!eu

(
T
λ

)]p
j,k=1

det
[

2π
(N−j+k)!

]p
j,k=1

For β = 1, the reference ensemble in eq(A.38) is given by the circular symplectic

matrices, the joint probability density function of the eigenvalues can be re-written

with the de Brujin indentity [12] as∏
j<k

|eiθj − eiθk |4 =

p∏
j=1

e−2i(p−1)θj det
[
ei(k−1)θj ; (k − 1)ei(k−2)θj

]
1≤k≤2p,1≤j≤p

.
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Therefore the numerator of eq(A.38) is now proportional to:∫
[0,2π]p

dθpj=1

p∏
j=1

h(θj)
∏
k<j

|eiθj − eiθk |4

and it can be written as the Pfaffian of a skew-symmetric Hankel matrix:

(2p)! Pf
[
(j − k)

∫ 2π

0
dθh(θ)ei(k+j−2p−1)θ

]2p

j,k=1

which is equivalent to the following Pfaffian:

(2p)! Pf
[
(j−k)2πλN+2p+1−(k+j)

N+2p+1−(k+j)∑
u=0

(−1)u

(N + 2p+ 1− (k + j)− u)!
eu

(T

λ

)]2p

j,k=1

Again repeating the same procedure for the denominator of eq(A.38), we finally arrive

at

Zβ=4,p(λ; T) =
Pf
[
(j − k)2πλN+2p+1−(k+j)

∑N+2p+1−(k+j)
u=0

(−1)u

(N+2p+1−(k+j)−u)!eu

(
T
λ

)]2p

j,k=1

Pf
[
2π (j−k)

(N+2p+1−(k+j))!

]2p

j,k=1

A.4 Derivation of Eq(1.97) and Eq(1.98)

Proof p=1 : We fix p = 1. For β = 2 the result directly follows from eq(A.38)

considering p = 1 as the only eigenvalue of U can be written as eiθ with θ ∈ (0, 2π).

For β = 1, the single eigenvalue z = eiθ has multiplicity two and U =

[
z 0
0 z

]
. The

CSE normalized Haar measure is simply given by 1/(2π). The numerator of eq(A.38)

is therefore ∮
|z|=1

dz

2πi

eλz

zN+1

(
1− E[T ]

N
z
)αN

(A.40)

The contour encircles the origin counterclockwise. The only pole in the integrand above

being at the origin, by applying the Cauchy’s integral formula, the integral above be-

comes limz→0
1
N !

dN

dzN
eλz(1− E[T ]

N z)αN . Similarly, the denominator in eq(A.38) is simply

given by 1
N ! . Therefore ET[Zβ,1(λ; T)] = (αN)!

∑
k=0

(
N
k

)
λN−k

(αN−k)!

(
− E[T ]

N

)k
. The com-

plex case β = 2 is similar and leads to the same result. The case E[T ] = 0 follows from

eq(A.40).

We fix now p = 2 and we first consider β = 2. In this case Λ = diag(λ1, λ2) and

we need to introduce 4 variables ψij ,with i ≤ j and i, j = 1, 2, and ϕ such that
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0 ≤ ψij ≤ 2π and 0 ≤ ϕ ≤ π/2. Therefore a possible parametrization of U is the

following [47]:

U =

[
ei(ψ11+ψ12) cosϕ eiψ12 sinϕ

−ei(ψ11+ψ22) sinϕ eiψ22 cosϕ

]
The Eucledean line element (ds)2 =

∑
i,j |dUij |2:

(ds)2 = (dψ11)2+(dψ12)2+(dψ22)2+2(dϕ)2+2(cosϕ)2(dψ11)(dψ12)+2(sinϕ)2(dψ11)(dψ22)

The associated Jacobian is given by
√

2 det M where:

M =

 1 (cosϕ)2 (sinϕ)2

(cosϕ)2 1 0
(sinϕ)2 0 1


The normalised Haar measure comes from the evaluation of

∫ √
det Mdψ11dψ12dψ22dϕ

and reads dU = 1
4π3 cosϕ sinϕdψ11dψ12dψ22dϕ. With this parametrization and assum-

ing E[T ] = 0 follows that

det U = ei(ψ11+ψ12+ψ22), (A.41)

Tr ΛU = cosϕ(ei(ψ11+ψ12)λ1 + ei(ψ22)λ2) (A.42)

and

E[det(12 −
Ta
N

U)] = 1 +
E[T 2]

N2
ei(ψ11+ψ12+ψ22). (A.43)

The denominator of eq(A.38) is given by:

1

4π3

∫ 2π

0
dψ11

∫ 2π

0
dψ12

∫ 2π

0
dψ22dϕ cosϕ sinϕecosϕ(ei(ψ11+ψ12)+eiψ22 )e−iN(ψ11+ψ12+ψ22) =

=
2

(N !)2

∫ π
2

0
dϕ(cosϕ)2N+1 sinϕ =

1

(N !)2

1

N + 1
(A.44)

While the numerator is:

1

4π3

∫ 2π

0
dψ11

∫ 2π

0
dψ12

∫ 2π

0
dψ22dϕ cosϕ sinϕecosϕ(ei(ψ11+ψ12)λ1+ei(ψ22)λ2)e−iN(ψ11+ψ12+ψ22)×

(
1 +

E[T 2]

N2
ei(ψ11+ψ12+ψ22)

)αN
= 2

N∑
k=0

1

k!(N − k!)!

(λ1λ2)k

(N − k)!

αN !

(αN − k)!

(E[T 2]

N2

)k 1

2− 2k + 2N
(A.45)

Lastly, the final result follows with the ratio of eq(A.45) and eq(A.44).

For β = 4, to simplify the calculation and without loss of generality we additionally fix

E[T 2] = 1. The general case is simply obtained by multiplying the result by (E[T 2])N
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and rescale λ1,2 → λ1,2√
E[T 2]

. In this case Λ = diag(λ1, λ2, λ1, λ2). The parametrization

of U is a 4× 4 block matrix given by 6 variables: h, d ∈ (0, 1) and ϕ11, ϕ21, ϕ22, ϕ14 ∈

(0, 2π). Namely:

U =

[
U11 U12

−U12e
i(ϕ12+ϕ21−2ϕ14) Ut

11

]
where

U11 =

[
eiϕ11h eiϕ22d

√
1− h2

eiϕ21d
√

1− h2 −e−i(ϕ11−ϕ21−ϕ22)h

]
and

U12 = eiϕ14
√

1− h2
√

1− d2

[
0 −1
1 0

]
In order to determine the Haar measure we start again by considering the Eucledean

line element (ds)2 =
∑

i,j |dUij |2 = 2
∑

i,j |dU11;i,j |2+
∑

i,j |dU12;i,j |2+
∑

i,j |dU21;i,j |2.

In details we have that:

(ds)2 = 2((dh)2 + h2(dϕ11)2 + 2(1− h2)(dd)2 − 4dh(dh)(dd) +
2(dh)2

(1− h2)
(dh)2

+d2(1− h2)(dϕ22)2 + d2(1− h2)(dϕ21)2 + (dh)2 + h2(dϕ22 + dϕ21 − dϕ11)2+

2

(1− d2)(1− h2)
(d(1− h2)(dd) + h(1− d2)(dh))2 + (1− d2)(1− h2)(dϕ14)2+

+(1− d2)(1− h2)(dϕ22 + dϕ21 − dϕ14)2)

We can re-arrange the differential of the linear and angular variables such that the

Jacobian of the change of variables is given by the square root of the determinant of

the product of M1 and M2 defined as:

M1 = 4

[
1 + h2(1−d2)+d2h2

(1−h2)
0

0 (1− h2) + d2(1−h2)
(1−d2)

]
And:

M2 =


4h2 −2h2 −2h2 0
−2h2 2 2− 2d2 + 2d2h2 −2(1− d2)(1− h2)
−2h2 2− 2d2 + 2d2h2 2 −2(1− d2)(1− h2)

0 −2(1− d2)(1− h2) −2(1− d2)(1− h2) 4(1− d2 − h2 + d2h2)


The normalized Haar measure is obtained by evaluating∫ √

det(M1) det(M2)dhdddϕ11dϕ21dϕ22dϕ14,

with det(M1) = 16
1−d2 and det(M2) = 64d2(1 − d2)h2(1 − h2)2. It follows that dU =

1
2π4hd(1− h2)(dhdddϕ11dϕ21dϕ22dϕ14). The denominator of eq(A.38) becomes:

1

2π3

∫ 1

0
dh

∫ 2π

0
dϕ11

∫ 2π

0
dϕ21

∫ 2π

0
dϕ22e

he−iϕ11 (e2iϕ11−ei(ϕ21+ϕ22))e−iN(ϕ21+ϕ22) =
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=
4

(N !)2

∫ 1

0
dhh2n+1(1− h2) =

2

(N !)2

1

(2 + 3N +N2)

The numerator of eq(A.38) is given by:

1

2π3

∫ 1

0
dh

∫ 2π

0
dϕ11

∫ 2π

0
dϕ21

∫ 2π

0
dϕ22h(1−h2)e−iN(ϕ22+ϕ21)e

h

(
λ1eiϕ11−λ2ei(ϕ22+ϕ21−ϕ11)

)
×

(
1− ei(ϕ22+ϕ21)

N2

)αN
by introducing and integrating out ϕ = ϕ22 + ϕ21 the integral becomes:

2(αN !)

πN2αN

N∑
k=0

N2(αN−k)

k!(N − k)!(αN − k)!

∫ 1

0
dhh(1−h2)(hλ2)N−k

∫ 2π

0
dϕ11e

hλ1eiϕ11−i(N−k)ϕ11

Lastly,

= 2(αN !)(λ1λ2)N
N∑
k=0

(
(k!(λ1λ2N

2)k)((N−k)!)2(αN−k)(2+3(N−k)+(N−k)2)!
)−1

The result is simply obtained by re-arranging the terms and introducing the definition

of hypergeometric function.

A.5 Derivation of Eq(1.99) and Eq(1.101)

• Firstly, we address the asymptotics for the denominator of eq(A.38). We start

by writing the denominator such that, for N � 1, the latter is proportional to

terms of the form eNL. We consider the denominator of eq(A.38) for β = 1,

which, after diagonalizing the unitary matrices, becomes:

D =
2p

(2π)p
e−Np logN

Γ(2p+ 1)ip

∮ p∏
j=1

dzj

z
2(p−1)+1
j

∏
j<k

(zj − zk)4
p∏
j=1

eN logL(zj)

with L(z) = − log z+z. Making use of the saddle point approximation: dL
dz (zsd) =

0 ⇒ zsd = 1 and d2L
dz2

∣∣∣
zsd

> 0. Therefore the directions of steepest descent are

θ = π
2 ,

3π
2 . We expand in Taylor series L around zj = 1 + iηj , i.e. L(1 + iη) =

1− η2

2 +O(η3). Knowing that:∫ +∞

−∞

p∏
j=1

dηje
−η2

j /2
∏
j<k

(ηj − ηk)4 =

p−1∏
j=0

Γ(1 + 2(j + 1))

Γ(3)

Finally, we arrive at

D ≈ e−Np logN+pN

(2π)p/2Γ(2p+ 1)Np2−p/2

p−1∏
j=0

Γ(1 + 2(j + 1))
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• For p = 1, from the sections above, the numerator of eq(A.38) is

N =

∮
|z|=1

dz

2πi

eλz

zN+1

(
1− E[T ]

N
z
)αN

This suggests to rescale and introduce E[T ]/Nz = w and x = λ/E[T ] so that:

N =
(E[T ]

N

)N 1

2πi

∮
dw

wN+1
eNL(w)

where L(w) = xw + α log(1 − w) − logw. The saddle points of L(w) are given

by w± = 1/(2x)(1−α+x±
√

(α− 1− x)2 − 4x). The contribution of the latter

depends on the sign of ∆ = (α−1−x)2−4x. ∆ > 0 correspond to x < (1−
√
α)2

and x > (1 +
√
α)2 while w± lie on the real line. In particular w− and w+ are

positive for x > (1 +
√
α)2. Additionally, for x < 0 we have w− > 0. Lastly, for

x ∈ ((1−
√
α)2, (1 +

√
α)2), d2L

dw2 (w±) is purely imaginary and changes its sign at

1−2α+α2

α+1 . Hence, crossing the saddle points leads to the following contributions:

I(w±)'ie
NL(w±)

w±

(
2π

N d2L
dw2 (w±)

)1/2

Conversely for ∆ < 0, w± are complex conjugate complex numbers and both

contribute in encircling the pole at the origin. Therefore, for N � 1:

N '
(E[T ]

N

)N 1

2πi


I(w+), if x < (1−

√
α)2

−I(w+)− I(w−), if 1− 2
√
α+ α < x < (α−1)2

α+1

I(w+) + I(w−), if (α−1)2

α+1 < x < (1 +
√
α)2

I(w−), if x > (1 +
√
α)2

For x = 1±
√
α+ α, the saddle points are of second order:

(i) For x = 1+
√
α+α, wsd = 1

1+
√
α

, d2L
dw2 (wsd) = 0 and d3L

dw3 (wsd) = −2 (1+
√
α)4

√
α

.

Therefore, the steepest descent direction at wsd are θ = {2/3π, 4/3π, 0}.

We deform the contour by parametrizing the path, approching and leaving

wsd with w = ei4/3πt+ wsd and w = ei2/3πt+ wsd respectively, i.e.:

I(wsd) '
eNL(wsd)

wsd

(
ei2/3π

∫ +∞

0
dte
−N 2(1+

√
α)4

3!
√
α

t3
+ei4/3π

∫ 0

+∞
dte
−N 2(1+

√
α)4

3!
√
α

t3
)

Therefore:

I(wsd) ' iΓ(1/3)

(
1− 1

1+
√
α

)αN
(1 +

√
α)N+1eN+

√
αN

31/6
(
N (1+

√
α)4

√
α

)1/3
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(ii) Similarly, for x = 1 −
√
α + α, wsd = 1

1−
√
α

, d2L
dw2 (wsd) = 0 and d3L

dw3 (wsd) =

2 (−1+
√
α)4

√
α

. Therefore, the steepest descent direction at wsd are θ = {1/3π, π, 5/3π}.

We deform the contour by parametrizing the path, approching and leaving

wsd with w = ei1/3πt+ wsd and w = ei5/3πt+ wsd respectively. Hence,

I(wsd) '
eNL(wsd)

wsd

(
ei1/3π

∫ 0

+∞
dte
−N 2(−1+

√
α)4

3!
√
α

t3
+ei5/3π

∫ +∞

0
dte
−N 2(−1+

√
α)4

3!
√
α

t3
)

Therefore:

I(wsd) ' iΓ(1/3)
(1 + 1

−1+
√
α

)αN (−1)N (−1 +
√
α)N+1eN−

√
αN

31/6
(
N (−1+

√
α)4

√
α

)1/3
We can combine the results above to obtain:

lim
N→+∞

1

N
logET[Zβ,1(λ,T)] = L(wsd) + log |µ| − 1

• For p = 2, we restrict our attention to the case E[T ] = 0 and we start from the

result of eq(1.98), for simplicity we impose E[T 2] = 1 and x = λ1λ2. From the

definition of hypergeometric function we have:

ET[Zβ,2(λ; T)] =

N∑
k=0

β

2N2N

(N − k + 1)kΓ(αN + 1)Γ(N + 2
β + 1)(

2
β + 1

)
k

Γ((α− 1)N + 1)((α− 1)N + 1)k

(
N2x

)k
k!

(A.46)

:=
N∑
k=0

a(k)

where (b)k = Γ(b+k)
Γ(b) is the Pochhammer symbol. We replace the summation

above with an integral, by rescaling k = Nη with η ∈ [0, 1]. Therefore, expanding

for N sufficiently large:

a(Nη) ∼
β
√

2
πΓ
(

2
β + 1

)
η
− 2
β
−1√

α

4
√
N
√

1− η
√

(α+ η − 1)
eNL(η) (A.47)

with:

L(η) = α log(α)−(α+η−1) log(α+η−1)+η log(x−ηx)+2η−2η log(η)−log(1−η)−2

(A.48)

The maximum of L is located in η∗ ∈ [0, 1] which is given by the solution of

dL
dη (η) = 0, i.e.:

log(x− η∗x)− log(α+ η∗ − 1)− 2 log(η∗) = 0 (A.49)
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Therefore, we want to study the roots of p(η) = η2(α−1 +η)−x(1−η). Clearly

limη→±∞ p(η) = ±∞ and p(0) = −x. On the interval η > 0, p(η) is strictly

increasing since η2 + 2η(α + η − 1) + x > 0. For x→ 0+, the zero of p tends to

0, while for x→ +∞ it tends to 1. Using Cardano’s formulas we have that such

root is given by (∆ = −2α3 + 6α2 − 6α+ 9αx+ 18x+ 2,Θ = 3x− (α− 1)2):

η∗ =
1− α

3
−

3
√

2Θ

3
3
√

∆ +
√

∆2 + 4Θ3
+

3
√

∆ +
√

∆2 + 4Θ3

3 3
√

2

To see that η∗ is actually a maximum it is sufficient to notice that:

d2L
dη2

(η) = −2

η
+

α

(η − 1)(η + α− 1)
< 0

on η ∈ (0, 1). To complete:

ET[Zβ,2(λ; T)] ∼
β
√

2
πΓ
(

2
β + 1

)
η∗
− 2
β
−1√

αN

4
√

1− η∗
√

(α+ η∗ − 1)
eNL(η∗)

∫ +∞

−∞
dηe

N
2
d2L
dη2 (η∗)(η−η∗)2

(A.50)

The case x < 0 is less trivial as the function to maximise for N → +∞ has

alternating sign near the saddle point. The hypergeometric function is given by∑N
k=0

(−1)k(N−k+1)k
(1+ 2

β
)k((α−1)N+1)k

(−N2x)k

k! , let’s replace x → −x such that, from now on,

x > 0. We can separate the sum over even and odd ks so we can tackle the

alternating sign terms, i.e.:

=

N/2∑
k=0

(N − 2k + 1)2k+1

(1 + 2
β )2k((α− 1)N + 1)2k

(N2x)2k

(2k)!
+

−
N/2−1∑
k=0

(N − 2k)2k+1

(1 + 2
β )2k+1((α− 1)N + 1)2k+1

(N2x)2k+1

(2k + 1)!
(A.51)

Here we can, again, replace the sum over k with an integral and N/2− 1 ≈ N/2,

k = N/2η with η ∈ [0, 1]. Performing now a series expansion the terms in the

first and second summation above read (N � 1):

ET[Zβ,2(λ; T)] ∝ eNL(η∗) (A.52)

This completes the result given in the large deviations section. As it is not

essential for our goals, we did not address the subleading terms.
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Appendix for Chapter 2

B.1 Statistics of Kab with broken time-reversal invariance

To obtain the statistics of Ka,b, we write the latter by introducing the diagonalization

of HN . Denoting (λn, |n〉) the eigenpairs (in bra/ket notations) of HN we have:

Ka,b =

N∑
n=1

wa,nw
∗
n,b

λ− λn + iα/N

At the numerator wn,a = 〈wa|n〉 , w∗n,b = 〈n|wb〉 are projection of the channel vectors

on the eigenvectors of HN . The assumptions of the channel vectors being independent

Gaussian random vectors are preserved for their projections. Therefore, the charac-

teristic function of Ka,b can be written as

R̃(q, q∗) = EGUE(N)

exp i

(
N∑
n=1

q∗
wa,nw∗b,n

λ− λn + iα/N
+ q

w∗a,nwb,n

λ− λn − iα/N

) (B.1)

For convenience of notation, we report here

EGUE(N)[(...)] :=

∫
(...)dP(HN )

and

[...] =

∫ ∫
[...]P(wa)P(wb)dwadwb

We can integrate out these last integrals over wa,n and wb,n to obtain

R̃(q, q∗) = EGUE(N)

[
N∏
n=1

(λ− λn)2 + α2/N2

(λ− λn)2 + α2/N2 + |q|2/N2

]
(B.2)

= EGUE(N)

[
det((HN − λ1N )2 + α2/N21N )

det((HN − λ1N )2 + (|q|2/N + α2/N2)1N )

]
:= R̃(|q|)
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Such a quantity has been investigated in [87] for N → ∞ in terms of the following

two-point kernel S

S(x− y) =

{
eiπ(x−y)

x−y , if Imx > 0
e−iπ(x−y)

x−y , if Imx < 0

Back in eq(B.2), the characteristic function becomes:

R̃(|q|) =
ρ2(λ)|q|4

4α
√
α2 + |q|2

det[e−ϕ(λ)(ξi−ηj)S(ξi − ηj)]i,j=1,2,

with ξ1 = iρ(λ)
√
α2 + |q|2, ξ2 = −iρ(λ)

√
α2 + |q|2, η1 = iρ(λ)α and η2 = iρ(λ)α.

Introducing R(|q|) = R̃(|q/2|), from the definition of characteristic function, the prob-

ability density function of Kab is retrieved by its Fourier-transform, namely

p(Ka,b,K
∗
a,b) =

∫
e−i(Re q(Ka,b+K∗a,b)/2+Im q(Ka,b−K∗a,b)/2)R(|q|)dRe q d Im q

(2π)2

The form of the integrand above suggests to switch to polar coordinates. After sim-

plifying the integral above and integrating out angular the variable we can rewrite

p(Ka,b,K
∗
a,b) as

p(Ka,b,K
∗
a,b) =

α2

π
lim

x→2απρ(λ)

∫ ∞
0

dr
r√

1 + r2
J0(2α|Ka,b|r)

×
(

sinh(x)
(

1 +
d2

dx2

)
− 2 cosh(x)

d

dx

)
exp (−x

√
1 + r2).

The remaining integration over r can be re-written with the help of y =
√

1 + r2

and K1/2(u) =
√

π
2ue
−u, where Kν(u) is the Bessel-Macdonald function of order ν.

Therefore, it is sufficient to observe (see [41])∫ +∞

0
dr
J0(2α|Ka,b|r)r√

1 + r2
exp (−x

√
1 + r2) =

e−
√
x2+4α2|Ka,b|2√

x2 + 4α2|Ka,b|2
.

This completes the proof for eq(2.7).

B.2 Statistics of Kab with broken time-reversal invariance
and correlated channels.

We can now relax the request of the channels being uncorrelated and introduce the

2× 2 complex correlation matrix C−1. In this case, the characteristic function

EGUE(N)[exp
i

2
(qK∗ab + qK∗ab)]

121



Appendix B. Appendix for Chapter 2

has the following expression

EGUE(N)

[
N∏
n=1

N2 det C

π2

∫
C

∏
j=a,b

dwj,ndw
∗
j,n exp

(
−N

[
wa,n
wb,n

]†
C

[
wa,n
wb,n

]
+

+
i

2

(
q
w∗a,nwb,n

δ∗n
+ q∗

wa,nw
∗
b,n

δn

))]
(B.3)

where to simplify the notation we introduced δn = λ − λn − iα/N . The N Gaussian

integrals above are readily solved yielding the characteristic function to be written as

EGUE(N)

[
N∏
n=1

N2 det C

N2C11C22 − (NC12 − i q
2δ∗n

)(NC∗12 − i
q

2δn
)

]
Replacing the definition of δn = λ − λn − iα/N , the characteristic function can be

expressed as an average of the ratio of determinants over the GUE(N) ensemble:

EGUE(N)

 det((λ− iα/N)1N −H) det((λ+ iα/N)1N −H)∏
j=1,2 det((λ1N −H) + i

2N (k̃ + (−1)j
√
k̃2 + 4s̃)1N )


with k̃ = 1

2

(
C∗12

det Cq + C12
det Cq

∗
)

s̃ = α2 + α
2

(
C∗12

det Cq −
C12

det Cq
∗
)

+ |q|2
4 det C

Similarly to the case of un-coupled channels we are interested in the Dyson limit. To

this purpose, we recall once again eq.(4.9) in [31] so that the characteristic function is

R(q, q∗) = −(ε1 − µ1)(ε1 − µ2)(ε2 − µ1)(ε2 − µ2)

(ε1 − ε2)(µ1 − µ2)
(Nρ(λ))2 det

[
e
− λ

2ρ(λ)
(ξi−ηj)S(ξi−ηj)

]
i,j=1,2

with the following terms (j = 1, 2)
εj = λ+

ξj
Nρ(λ)

µj = λ+
ηj

Nρ(λ)

ξj = ρ(λ)
(

(−1)j 1
2 Im

√
k̃2 + 4s̃+ i

2(k̃ + (−1)j+1 Re
√
k̃2 + 4s̃

)
ηj = i(−1)jαρ(λ)

With few manipulations of the equalities above we obtain eq(2.10).

B.3 Mean S−matrix for non-orthogonal channels and the
perfect coupling.

From [59], each entry of the M ×M scattering matrix Sab(λ) in eq(2.2) admits the

following representation:

Sab(λ) = δab − 2iw∗a

(
1

λ1N −Heff

)
wb, (B.4)
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where we introduced the effective non-Hermitian Hamiltonian as

Heff = HN − iΓ, Γ := WW† =
M∑
c=1

wc ⊗w∗c ≥ 0 (B.5)

The eigenvalues of the latter are complex and of the form λn = En − iΓn. This

corresponds to the poles in the complex energy plane of the scattering matrix and are

usually called resonances. One can easily check that for M < N , the matrix Γ is not

full rank, having exactly M positive eigenvalues γc for c = 1, . . . ,M . The remaining

eigenvalue is zero with multiplicity N −M . With this in mind, we can perform the

expectation over the GOE matrices keeping fixed the channel coupling vectors wc for

c = 1, . . . ,M . As we are interested in the limit N → +∞, we obtain

lim
N→∞

EGUE(N)

[
1

(λ+ i0)1N −Heff

]
=

g0(λ)

1N + ig0(λ)Γ
, (B.6)

with g0(λ) = λ−i
√

4−λ2

2 for |λ| < 2. We can now plug this result in the definition for

the scattering matrix to obtain its mean, namely

S(λ) = 1M − 2ig0(λ) W† 1

1N + ig0(λ)Γ
W ≡ 1M − ig0(λ)W†W

1M + ig0(λ)W†W
(B.7)

One can now introduce the non-orthogonality condition of the channels in the following

manner. Let’s fix the scalar products w∗1w1 = w∗2w2 =: γ while w∗1w2 = c with |c| < γ.

In this case

W†W =

[
γ c
c∗ γ

]
The eigenvalues of the matix above are γ1 = γ+ |c| and γ2 = γ−|c|, with γ1 > γ2. This

case can be identified with the random Gaussian correlated channels in section 2.2.1.2

if one introduce the correlation matrix C−1 = W†W. If now, we set λ = 0, one clearly

has ig0(0) = 1 and the S(λ) becomes

S (λ = 0) =
1

(1 + γ)2 − |c|2

[
1− γ2 + |c|2 −2c
−2c∗ 1− γ2 + |c|2

]
.

The spectrum of the latter is

s1 =
1− (γ + |c|)
1 + (γ + |c|)

≡ 1− γ1

1 + γ1
, s2 =

1− (γ − |c|)
1 + (γ − |c|)

≡ 1− γ2

1 + γ2

Therefore, if we take some γ ∈ (1/2, 1) and we sufficiently increase the parameter |c|

the eigenvalue s1 vanish for |c| = 1− γ. This behaviour is connected with the “perfect
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coupling”. To describe this phenomenon in full detail we start from the determinant

of eq(B.7). The latter admits the form

det
(
S(λ)

)
=

det
(
1M − ig0(λ)W†W

)
det (1M + ig0(λ)W†W)

, (B.8)

The eigenvalues of W†W correspond to the nonvanishing eigenvalues of Γ indicated as

γc for c = 1, . . . ,M . Therefore, the modulus of the ratio of characteristic polynomials

considered above is∣∣∣det
(
S(λ)

)∣∣∣ =
M∏
c=1

√
gc − 1

gc + 1
, gc =

1

2πρ(λ)

(
γc +

1

γc

)
(B.9)

Finally, one can easily check that by increasing parameters γc → 1− the quantity

gc becomes 1 for λ = 0. In this onset, an eigenvalue of S(λ) vanishes. Therefore,

the determinant in eq(B.8) becomes equal to zero. This phenomenon is referred in

literature as “perfect coupling”. One of the features is worth to mention for perfect

coupling is the formation of widely distributed chaotic resonances. This is described

by a characteristic powerlaw tail in the density of the resonance widths [143].

B.4 Statistics of Kab for the case of preserved time-reversal
invariance

With time-reversal invariance, we need a new approach to find the characteristic func-

tion of Ka,b. We start by observing that, in this case, the characteristic function of

Ka,b can be written as

R(q, q∗) = EGOE(N)

[
ei/2(q∗Kab+qK

∗
ab)
]

with q = k + is ∈ C. Similarly to eq(B.1), the sum at the exponent can be re-casted

with the help of the eigenvectors of H and is equivalent to

q∗Kab + qK∗ab =
N∑
n=1

wa,nwb,n

(q∗(λ− λn − iα/N) + q(λ− λn + iα/N)

(λ− λn)2 + α2/N2

)
.

We can easily perform the integration over the coupling variables wa,n, wb,n. The result

of this integral is shown in eq(2.11). To simplify the derivation we fix λ = 0. We will

recover the case for λ finite in the next section by universality arguments. Following

[35], the matrix HN can be divided in sub-blocks as

HN =

H11 H12 hT1
H12 H22 hT2
h1 h2 HN−2

 , (B.10)
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where HN−2 is the (N −2)× (N −2) square block obtained from HN by removing the

first two columns and two rows. The remaining terms h1 and h2 are (N−2) dimensional

vectors. With the help of the Schur complement, the numerator in eq(2.11), as we set

λ = 0, is simply

det

(
H2
N +

α2

N2
1N

)
= det

(
H2
N−2 +

α2

N2
1N

)
|∆|2

where:

∆ = det

([
H1,1 − i αN H1,2

H1,2 H2,2 − i αN

]
−
[
hT1
hT2

]
1

HN−2 − i αN

[
h1 h2

])
.

The characteristic polynomials at the denominator in eq(2.11) are equivalently written

as Gaussian integrals, namely∫
RN

dx exp
(
−xTAx

)
∝ 1√

det A

for Re A � 0. If we collect all the considerations above, the characteristic function for

the imaginary part1 of Kab for λ = 0 is proportional to

EGOE(N)

[
eis Im Ka,b

]
∝ EGOE(N)

[∫
R2N

dx1dx2 exp

(
−Tr

{
H2
NQ+

∑
j=1,2

ω2
j

N2
1N

(
xj⊗xTj

)})
(B.11)

×det
(
H2
N−2 +

α2

N2
1N

)
|∆|2

]
We don’t need to keep track of all the constant factors, but rather recover the overall

factor in the end of this section using a normalization condition. In eq(B.11) we

introduced the rank-2 symmetric matrix Q = x1 ⊗ xT1 + x2 ⊗ xT2 . Such matrix has

clearly two positive eigenvalues {q1 > 0, q2 > 0}. Therefore, it can be represented as

Q = O diag(q1, q2, 0, . . . , 0)OT with O ∈ Orth(N). The integrand introduced above

in x1 and x2 can be written as function of the full rank symmetric matrix

Q̃ =

[
|x1|2 xT1 x2

xT1 x2 |x2|2
]

Indeed, one can easily check that its eigenvalues are q1, q2. We can use the result in

eq(1.35) for n = 2 so that:

EGOE(N)

[
eis Im Ka,b

]
∝
∫ ∞

0

∫ ∞
0

dq1 dq2(q1q2)
N−3

2 |q1 − q2|Φ(q1, q2;α)× (B.12)

1The statistics for real part of Kab follows a similar path (see the next section).

125



Appendix B. Appendix for Chapter 2

×
∫
O(2)

dµ(O) exp
(
− 1

N2
Tr

[
ω2

1 0
0 ω2

2

]
O

[
q1 0
0 q2

]
OT
)
,

with

Φ(q1, q2, α) = EGOE(N)[det(H2
N + α2/N2) exp (−Tr H2

NQ)]. (B.13)

for the purpose of this calculation O can be described by a real parameter ϕ ∈ (0, π/2)

as

[
cosϕ sinϕ
− sinϕ cosϕ

]
. Hence the last integral in eq(B.12) can be performed by ob-

serving∫ π/2

0
dϕ ecos2 ϕ(ω2

1q1+ω2
2q2)+sin2 ϕ(ω2

1q2+ω2
2q1) =

π

2
e−

α2

N2 (q1+q2)J0

(αS
N2

(q1 − q2)
)
, (B.14)

where J0(x) is the Bessel function of the first kind of order 0. We still need to integrate

over q1 and q2. We anticipate here that this is a challenging task and remains unsolved.

Nevertheless we can explicitly calculate the expectation over Gaussian Orthogonal

ensemble in eq(B.13). Re-introducing the block structure of eq(B.10) and the inverse

matrices M = (HN−2 − i αN )−1 and M∗ = (HN−2 + i αN )−1 one can re-cast Φ(q1, q2;α)

as

Φ(q1, q2;α) =
∑
m,n,p

um,n,p(q1, q2, α)EGOE(N−2)

[(
Tr(M)m(M∗)n

)p]
(B.15)

For some coefficients um,n,p(q1, q2, α) with 0 ≤ m,n ≤ 2, 0 ≤ p ≤ 4. To perform the

average over GOE(N) we need the following expressions. Firstly, Tr
(
H2
N (Q+ N

4 1N )
)

is a quadratic polynomial in the entries of HN , namely,

Tr

(
H2
N (Q+

N

4
1N )

)
= α1H

2
11 +α2H

2
22 +α12H

2
12 +β1|h1|2 +β2|h2|2 +

N

4
Tr
(
H2
N−2

)
with 

α1 = q1 + N
4

α2 = q2 + N
4

β1 = q1 + N
2

β2 = q2 + N
2

α12 = α1 + α2

(B.16)

Secondly,

∆∆∗ = |H11H22 − Z11H22 −H11Z22 + Z11Z22 −H2
12 − Z2

12 + 2H12Z12|2,

where Zij = iδij
α
N + Tr(M(hj ⊗ hTi )). We can now start calculating the expectation

over the Gaussian variables H11, H12, H22 since we know∫ +∞

−∞
e−ax

2 |cx2 + bx+ d|2dx =

√
π

4a5/2
(3|c|2 + 2a|b|2 + 2a(dc∗ + d∗c) + 4a2|d|2) (B.17)
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with a > 0, b, c, d ∈ C. First we integrate out H11, i.e.∫
e−α1H2

11 |∆|2dH11 =

√
π

2α
3/2
1

(
|H22 − Z22|2 + 2α1| − Z11H22 + Z11Z22 −H2

12 − Z2
12 + 2H12Z12|2

)
A similar path allows one to integrate overH22 andH12, so that, exploiting the integrals

above we are left with

Φ(q1, q2;α) ∝
∫

dh1dh2dHN−2 e
−β1|h1|2−β2|h2|2−N4 Tr H2

N−2 det

(
H2
N−2 +

α2

N2
1N−2

)
×
(
a1+a2|Z11|2+a3|Z22|2+a4|Z12|2+2a5 Re(Z11Z22−Z2

12)+a6|Z11Z22−Z2
12|2
)
, (B.18)

where

a1 =
1

α
1/2
12

+ 3
α1α2

α
5/2
12

, a2 =
2α1

α
1/2
12

, a3 =
2α2

α
1/2
12

a4 =
8α1α2

α
5/2
12

, a5 = −2
α1α2

α
3/2
12

, a6 = 4
α1α2

α
1/2
12

The integration over the vectors h1 and h2 in eq(B.18) need the following results for

β1, β2 > 0: ∫
RN−2

(hT1 Mh1)e−β1h2
1dh1 =

( π
β1

)(N−2)/2 1

2β1
Tr M

and∫
RN−2

e−β1h2
1
(
hT1 M1h1

) (
hT1 M2h1

)
dh1 =

1

4

π(N−2)/2

β
(N−2)/2
1

1

β2
1

(Tr M1 Tr M2 +2 Tr M1M2),

as well as∫
R2(N−2)

e−β1h2
1−β2h2

2
(
hT1 M1h2

) (
hT1 M2h2

)
dh1dh2 =

( π2

β1β2

)(N−2)/2 1

4β1β2
Tr M1M2,

and ∫
R2(N−2)

e−β1h2
1−β2h2

2
(
hT1 M1h2

)2 (
hT1 M2h2

)2
dh1dh2

=
1

16

( π2

β1β2

)(N−2)/2 1

β2
1β

2
2

(Tr M2
1 Tr M2

2 + 4 Tr M2
1M

2
2 + 2 Tr2 M1M2 + 2 Tr(M1M2)2),

and finally ∫
R2(N−2)

e−β1h2
1−β2h2

2
(
hT1 Mh2

)2 (
hT1 M∗h1

)
dh1dh2

=
1

8

( π2

β1β2

)(N−2)/2 1

β2
1β2

(Tr M2 Tr M∗ + 2 Tr(M2M∗))

and ∫
R2(N−2)

e−β1h2
1−β2h2

2
(
hT1 Mh2

)2 (
hT1 M∗h1

) (
hT2 M∗h2

)
dh1dh2
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=
1

16

( π2

β1β2

)(N−2)/2 1

β2
1β

2
2

(Tr M2 Tr2 M∗ + 4 Tr M2M∗Tr M∗ + 4 Tr(MM∗)2).

Using these equalities, up to a constant factor, Φ(q1, q2;α) is given by

Φ(q1, q2;α) ∝
( π2

β1β2

)(N−2)/2
∫
dHN−2e

− N
4J2 Tr H2

N−2 det(H2
N−2 +

α2

N2
1N−2)

×
{
u1 + u2 Tr(M−M∗) + u3 Tr MM∗ + 2u4 Re(Tr2 M− Tr M2) + u5 Tr M Tr M∗

+u6

(
Tr(M−M∗)(Tr M Tr M∗ + 2 Tr MM∗)

+ Tr M2 Tr M∗ + 2 Tr M2M∗ − (Tr M∗2 Tr M + 2 Tr M∗2M)
)

+u7

(
(Tr M Tr M∗ + 2 Tr MM∗)2 + Tr M2 Tr M∗2 + 6 Tr(MM)2

+2(Tr MM∗)2 − 2 Re(Tr M2(Tr M∗)2 + 4 Tr M2M∗Tr M∗ + 4 Tr(MM∗)2)
)}

,

with:

u1 = a1 +
α2

N2
a2 +

α2

N2
a3 − 2

α2

N2
a5 +

α4

N4
a6,

u2 = −i α
N

a2

2β1
− i α

N

a3

2β2
+ i

αa5

(2N)

( 1

β1
+

1

β2

)
− i α

3a6

(2N3)

( 1

β1
+

1

β2

)
,

u3 =
a2

2β2
1

+
a3

2β2
2

+
a4

4β1β2
+
a6α

2

2N2

( 1

β2
1

+
1

β2
2

)
,

u4 =
a5

4β1β2
− α2

4N2

a6

β1β2
;u5 =

a2

4β2
1

+
a3

4β2
2

+
α2a6

4N2

( 1

β2
1

+
1

β2
2

)
+

α2

2N2

a6

β1β2
,

u6 =
iα

8N
a6

( 1

β2
1β2

+
1

β1β2
2

)
; u7 =

a6

16β2
1β

2
2

.

We have obtained the coefficients of the sum in eq(B.15). We are left with the evalua-

tion of the average over GOE(N−2) of polynomials of traces for M =
(
HN−2 − i αN

)−1

and its complex conjugate. Since M−M∗ = 2i αNMM∗, each monomial can be rewrit-

ten as a combination of derivatives of characteristic polynomials, i.e. ∂mξ det(HN−2 −

(ξ ± iα/N))|ξ=0 for some m > 0. This leave us with the expectation of characteristic

polynomials over the realizations of HN−2. For this purpose, we exploit the correlation

function of the product of two characteristic polynomials, for N � 1, see e.g. [34]:

EGOE(N−2)

[
det
(
HN−2 − i

α

N
− ξ+

)
det
(
HN−2 + i

α

N
− ξ−

)]

∝
−f(ξ+ − ξ−) cos

(
f(ξ+ − ξ−)

)
+ sin

(
f(ξ+ − ξ−)

)
f3(ξ+ − ξ−)

:= CSP (ξ+ − ξ−) (B.19)

with f(ξ) = 2iα+Nξ. The set of identities
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d

dξ
det(HN−2−(ξ±iα/N)1N ) = −Tr

(
HN−2−(ξ±iα/N)1N

)−1
det(HN−2−(ξ±iα/N)1N )

and

d

dξ
Tr
(
HN−2 − (ξ ± iα/N)1N

)−k
= kTr

(
HN−2 − (ξ ± iα/N)1N

)−(k+1)

allow one to re-write Φ as:

Φ(q1, q2;α) ∝ lim
δ→0

4∑
j=0

bj(q1, q2, α) D̂jCSP (δ) (B.20)

where the coefficients bj are given by the following expressions:

b0 =
1
√
α12

+ 3
α1α2

α
5/2
12

+ 2
α2

N2

α1 + α2√
α12

+ 4
α2

N2

α1α2

α
3/2
12

+ 4
α4

N4

α1α2√
α12

,

b1 = − i
√
α12

α

N

(α1

β1
+
α2

β2

)
− i α

N

α1α2

α
3/2
12

( 1

β1
+

1

β2

)
− i2 α

3

N3

α1α2√
α12

( 1

β1
+

1

β2

)
+

− iN
2α

( 1
√
α12

(α1

β2
1

+
α2

β2
2

)
+ 2

α1α2

α
3/2
12 β1β2

+ 2
α2

N2

α1α2√
α12

( 1

β2
1

+
1

β2
2

))
,

b2 = − α1α2

α
3/2
12 β1β2

−2
α2

N2

α1α2√
α12β1β2

−
( α1

2
√
α12β2

1

+
α2

2
√
α12β2

2

+
α2

N2

α1α2√
α12

( 1

β2
1

+
1

β2
2

+
2

β1β2

))
and

b3 = i
α

2N

α1α2√
α12

( 1

β1β2
2

+
1

β2β2
1

)
and b4 =

α1α2

4
√
α12β2

1β
2
2

,

We also need a list of differential operators D̂j :

D̂0 = 1, D̂1 = −2∂δ, D̂2 = ∂2
δ , D̂3 = −2∂3

δ +
4Ni

α
∂2
δ −

2N2

α2
∂δ

and

D̂4 = ∂4
δ −

N2

α2

(
2∂2

δ +
iN

α
∂δ −

4Ni

α
∂3
δ

)
where ∂kδ := ∂k

∂δk
. As we were interested in N → +∞, we can obtain meaningful

asymptotic rescaling q1,2 → N2q1,2 so that

(β1β2)N/2β1β2 ≈ e−1/4(q−1
1 +q−1

2 )(q1q2)1−N/2,

and α1 ≈ N2q1, α2 ≈ N2q2. We can plug all these results back into eq(B.20) and

retrieve the proportionality constant ”lost” in eq(B.11) by imposing

EGOE(N)

[
eis Im Ka,b

]
= 1
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for either α = 0 or s = 0. Since in eq(B.12) the limit α → 0+ and the integrals over

q1,2 do not commute, the constant of proportionality is necessarily dependent on the

value taken by α. One can recover, from all the steps above, the missing terms apart

from the factor in eq(B.19). The latter can be obtained as follows. We take, in order,

N to be odd for simplicity, ξ± → 0 and α→ 0. Following [144], one verifies that

EGOE(N−2)

[
|det HN−2|r−1

]
= N

(N−2)(r−1)
2 2r−1 Γ(r/2)

Γ(1/2)

(N−3)/2∏
j=1

2r−1 Γ(r + j − 1/2)

Γ(j + 1/2)

(B.21)

with r > 1. This is sufficient to replace the symbol∝ with the equality in eq(B.11) and,

therefore, to obtain the characteristic function as in eq(2.16). By inverting the Fourier

transform we obtain the probability density function of Im Ka,b. This is possible as

F−1
[
J0

(
αs(q1 − q2)

)]
:=

1

2π

∫ +∞

−∞
dse−is Im KabJ0

(
αs(q1 − q2)

)
=

1

π

1(Ω)√
α2(q1 − q2)2 − Im2 Ka,b

,

where 1(Ω) is the indicator function of the set Ω = {(q1, q2) ∈ R2
+|α2(q1 − q2)2 >

Im2Ka,b}. To obtain eq(2.17), one simply introduce u = α−1 ImKa,b as implicitly

suggested by Ω.

B.4.1 Derivation of Eq(2.15)

What stated above can be adapted to obtain the characteristic function for Re Ka,b.

Since this follows almost identically starting again by fixing λ = 0, we only report a

few comments. Firstly, one need to consider

EGOE(N)

[
eikRe Ka,b

]
= EGOE(N)

 det
(
H2
N + α2

N2 1N

)
Πl=1,2 det1/2

(
H2
N + (−1)l i kNHN + α2

N2 1N

)
 .

(B.22)

The product of determinants appearing at the denominator is

det(H2
N + ω̃2

1)−1/2 det(H2
N + ω̃2

2)−1/2

with {
ω̃2

1 = (k/2 +
√
α2 + k2/4)2/N2

ω̃2
1 = (k/2−

√
α2 + k2/4)2/N2

(B.23)
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It is sufficient to explicitly obtain eq(B.22), to replace ω1,2 appearing in eq(B.11) with

ω̃1,2 given above. Firstly, the integration over O in eq(B.14) has to be replaced with

I =
π

2
exp

(
− 1

2N2
(k2 + 2α2)(q1 + q2)

)
J0

(
i
k

N2

√
α2 +

k2

4
(q1 − q2)

)
.

Secondly, recovering the probability density function for Re Ka,b is a much more chal-

lenging task in comparison with its imaginary counterpart since for

1

2π

∫ ∞
−∞

e−ikRe Kab exp
(
− (q1 + q2)

2N2
k2
)
I0

( k

N2

√
α2 +

k2

4
(q1 − q2)

)
dk

a known closed form is not available and one can only perform numerical evaluations.

B.5 Universality for Eq(2.18) and Eq(2.19)

To show universality and prove that the result in appendix B.4 for EGOE(N)

[
eis Im Ka,b

]
holds for λ 6= 0 (after opportune re-scaling) we introduce an integral representation

for the characteristic function(see [35]):

EGOE(N)

[
eis Im Ka,b

]
∝
∫

Q�0
dQ(det Q)(N−5)/2 exp

(
− N

4
Tr(QL)2 + i

N

2
Tr(QLM)

)

×
∫
R
dr1

∫
R
dr2 exp

(
− N

2
(r2

1 + r2
2 − i2λ(r1 + r2))

)(r1r2)N−4

(2iα)3

×
4∏
j=1

(r1 + λj)(r2 + λj) exp

(
N(λ2 − α2/N2)

)
(B.24)

×

(
2iα

N(r1 − r2)
cos
(2iα(r1 − r2)

2J2

)
− 2

N
sin
(2iα(r1 − r2)

2

))
.

The matrix Q is a 4×4 positive definite real symmetric matrix, L = diag(+1,+1,−1,−1)

and M = diag(λ+ i
N

√
α2 + iαs, λ+ i

N

√
α2 − iαs, λ− i

N

√
α2 + iαs, λ− i

N

√
α2 − iαs).

One can perform a saddle point approximation in r1,2. Such points occur at r1,2 =

1/2(iλ± 2πρ). However one needs to expand the integral in eq(B.24) and include the

Gaussian fluctuations as integrand vanishes once evaluated at the saddle-point . More

in detail, keeping track and control of the higher orders is a non trivial task. However,

here it is sufficient to observe that such integral satisfy the re-scaling introduced in

eq(2.18).
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B.6 Second Moment for Kab.

While recovering the probability density function proved to be a challenging task, inter-

estingly, one can easily address the second moment for the components of Ka,b. Hence,

we report here the explicit expressions for EGOE(N)[(Re Ka,b)2] and EGOE(N)[(Im Ka,b)2].

As in the sections above, Kab can be written in terms of the eigenvalues and eigenvec-

tors of HN = OΛOT as

Kab =
N∑
n=1

∑N
i,j=1wa,i(O)in(O)njwb,j

λ− λn + iα/N
. (B.25)

We can multiply real and imaginary parts in eq(B.25) by itself and average over the

Gaussian channel vectors, obtaining after simple manipulations

lim
N→∞

EGOE(N)[(Im Ka,b)2] = − lim
N→∞

α

2N

d

dα

(
ImEGOE(N)

[
Tr

1/α

(λ− iα/N)1N −HN

])
(B.26)

and:

lim
N→∞

EGOE(N)[(Re Ka,b)2] = lim
N→∞

1

2Nα

d

dα

(
ImEGOE(N)

[
Tr

α

(λ− iα/N)1N −HN

])
(B.27)

From now on we consider valid the exchange of the limit N →∞ with the derivative

in α. If this is the case, the traces above can be written by introducing the Stieltjes

transform of the semicircle law:

lim
N→∞

EGOE(N)

[
1

N
Tr

1

HN − z

]
=

1

2π

∫ 2

−2

√
4− x2

x− z
dx

=
λ− iα/N

2

(
−1 +

√
1 +

4

(α/N + iλ)2

)
The imaginary parts are computed by noticing

√
a+ ib = x+ iy where (see [23])

x = 1/
√

2

√√
a2 + b2 + a

and

y = sign(b)/
√

2

√√
a2 + b2 − a

One can see that the derivatives in eq(B.26) and eq(B.27) in terms of α gives:

EGOE(N)[(Re Ka,b)2] =

√
4− λ2

4α
,

This result also holds for EGOE(N)[(Im Ka,b)2].
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Appendix for Chapter 3

C.1 Joint probability density function Eq(3.14)

We want to recover, starting from eq(3.8), the joint probability density function for

the random vector ϕ(x) and the random matrix ∇ϕ(x). Since ξ• are i.i.d normal

random variables, the random vector field that ϕ(x) and ∇ϕ(x) are jointly Gaussian.

For the field ϕ(x) this assertion is trivial. For the gradient this result follows from the

linearity of the derivative operator (in the mean square sense). While the first moment

is zero, the second moment of the latter can be obtained from the derivatives of the

correlation function C(xTy). With these premises, one obtains

E[ϕn(x)ϕm(x)] = δnmC(xTx), (C.1)

E[∂kϕn(x)ϕm(x)] = δnmxkC
′(xTx), (C.2)

E[∂kϕn(x)∂`ϕm(x)] = δnmδk`C
′(xTx) + δnmxkx`C

′′(xTx). (C.3)

Fixing x ∈ RN , we can write the joint distribution of ϕ(x) and the random matrix

∇ϕ(x) as

p(v,M) =
P[ϕ(x) ∈ (v,v + dv),∇ϕ(x) ∈ (M ,M + dM)]

dv dM
. (C.4)

This is equivalent to

p(v,M) =
1

(2π)N(N+1)/2(det Σ(x))1/2
exp

(
− 1

2
vec[v,M ]TΣ−1(x) vec[v,M ]

)
,

(C.5)

The vectorization vec reshapes a matrix into a column vector by stacking its columns

on top of each other, i.e. vec[v,M ] is an N(N + 1) column vector. The covariance

matrix Σ(x) is an N(N + 1)×N(N + 1) real and symmetric matrix, i.e.

Σ(x) = E[vec[v,M ] vec[v,M ]T ] (C.6)
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If we use the equalities in eqs(C.1,C.2) and eq(C.3) this can be simplified to

Σ(x) = σ(x)⊗ 1N , (C.7)

where ⊗ indicates the Kronecker (tensor) product, and

σ(x) =

[
C(xTx) C ′(xTx)xT

C ′(xTx)x C ′(xTx)1N + C ′′(xTx)xxT

]
(C.8)

which is an (N+1)×(N+1) matrix. This is enough to explicitly obtain the probability

density function eq(C.5). However we need to make few checks before proceeding.

Firstly, we need to prove that the covariance Σ(x) is invertible. To this purpose it is

clearly sufficient to compute its characteristic polynomial, i.e.

det (Σ(x)) = det (σ(x)⊗ 1N ) = det (σ(x))N , (C.9)

Hence, we need to prove that det (σ(x)) is non-vanishing. The latter is a block matrix.

Therefore we can make use of the Schur decomposition

det

[
A B
C D

]
= det (A) det

(
D −CA−1B

)
(C.10)

For any invertible n × n matrix A and any matrices B,C,D of sizes n ×m, m × n,

m×m respectively. If we apply this result to eq(C.9), we obtain

det (σ(x)) = C(xTx)C ′(xTx)N det

(
1N +

C(xTx)C ′′(xTx)− C ′(xTx)2

C(xTx)C ′(xTx)
xxT

)
.

(C.11)

The last determinant appearing above is readily computed by exploiting a second

identity, i.e.

det (1n +AB) = det (1m +BA) (C.12)

for rectangular matrices A and B of size n×m and m×n, respectively. Hence eq(C.9)

is equal to

det (σ(x)) = ∆(xTx)C ′(xTx)N−1. (C.13)

where

∆(xTx) = C(xTx)C ′(xTx) +
(
C(xTx)C ′′(xTx)− C ′(xTx)2

)
xTx, (C.14)

is a scalar function, introduced for convenience of notation. Due to the rotational

invariance of the covariance function (see section 3.1.3 and eq(3.11)), the determinant

in eq(C.13) is a function of the squared norm in RN , namely, of r2 = xTx ≥ 0. If
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we set x = 0, the determinant of σ(x) is zero. Therefore, the latter is not invertible.

However, this is not ”pathological” and corresponds to the fact that ϕ(0) = 0 as the

origin is a non random fixed point of the dynamics, i.e. regardless of any realization

for ϕ(x). For x 6= 0, the entries of the field ϕ are purely random. The functions

C ′(r2) and ∆(r2) appearing in eq(C.13) are positive and finite for 0 < r < R while for

r → R they diverge. This implies that det (σ(x)) is finite and positive. Therefore the

covariance matrix Σ(x) is invertible and the probability function in eq(C.5) is defined

for all 0 ≤ |x| ≤ R. After this check, we can invert the convariance matrix Σ(x) for

x 6= 0. We start by observing

Σ(x)−1 = σ(x)−1 ⊗ 1N (C.15)

again for x 6= 0. The inverse of block matrix can be calculated with the help of the

Schur complement, i.e.[
A B
C D

]−1

=

[
A−1 +A−1B(D −CA−1B)−1CA−1 −A−1B(D −CA−1B)−1

−(D −CA−1B)−1CA−1 (D −CA−1B)−1

]
(C.16)

where A,B,C,D are n×n, n×m, m×n, m×m matrices with A and (D−CA−1B)

invertible. It is sufficient to use this result on σ(x)−1. After some calculations one

gets

σ(x)−1 =
1

∆(xTx)C ′(xTx)

[
C ′(xTx)2 + C ′(xTx)C ′′(xTx)xTx −C ′(xTx)2xT

−C ′(xTx)2x S(x)

]
(C.17)

where ∆(xTx) was introduced in eq(C.14) and

S(x) = ∆(xTx)1N − (C(xTx)C ′′(xTx)− C ′(xTx)2)xxT (C.18)

is a symmetric matrix-valued function. We can now write down in full detail the final

expression for eq(C.5). For exploiting the results of section 1.1.2, we prefer to write

the probability density function eq(C.5) as a matrix Gaussian distribution and not

with the standard multivariate form. To do so, we make use of

A⊗B vec[X] = vec[BXAT ] (C.19)

for matrices A,B,X of size k×m, n×m, `× n. We can apply this identity to Σ(x).

Bearing in mind that σ(x) is symmetric, the argument at the exponent in eq(C.5) can
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be re-written as

vec[v,M ]TΣ(x)−1 vec[v,M ] = vec[v,M ]T (σ(x)−1 ⊗ 1N ) vec[v,M ] =

Tr[v,M ]σ(x)−1[v,M ]T , (C.20)

where [v,M ] is an N × (N + 1) matrix. Therefore, substituting in eq(C.5), we obtain

p(v,M) =
1

(2π)N(N+1)/2(detσ(x))N/2
exp

(
− 1

2
Tr[v,M ]σ(x)−1[v,M ]T

)
. (C.21)

We can further expand in terms of v and M while completing the square, i.e.

p(v,M) =
1

(2π)N(N+1)/2∆(xTx)N/2C ′(xTx)N(N−1)/2

×exp

[
− vTv

2C(xTx)
− 1

2∆(xTx)C ′(xTx)
Tr
(
M−C

′(xTx)

C(xTx)
vxT

)
S(x)

(
M−C

′(xTx)

C(xTx)
vxT

)T]
,

(C.22)

C.2 Mean Number of fixed Points

With the results of the previous section and of section 1.1.2 we replace λ and ε with

µ√
C′(r2)

and µ
√

C(r2)
∆(r2)

(1−C′(r2)
C(r2)

r2) in EGinOE [| det(λ1N+εhhT−Ξ)|] in order to obtain

the spherical density ρ̂µ(r > 0). Since C(r2) is a monotonically increasing function,

the edge regimes (see eqs(1.79,1.80)) can be discarded as they correspond to the sets

of zero measure in RN . Hence we can replace, in the large N limit, EGin[|det(Ξ −

µ
√
ND)|] with

(i) for |µ/
√
C ′(r2)| < 1:

√
2NN/2e

N
2

(
µ2

C′(r2)
−1
)√

µ2 C(r2)
∆(r2)

(
1− C′(r2)

C(r2)
r2
)2 − µ2

C′(r2)
+ 1

(ii) for |µ/
√
C ′(r2)| > 1: NN/2| µ√

C′(r2)
|N−1|µ

√
C(r2)
∆(r2)

(1− C′(r2)
C(r2)

r2)|

Hence, the choice of the two results above depends on the ratio µ/σ1:

• For µ < σ1, after collecting all the terms for ρ̂µ(r > 0), we have, for 0 < r < R,

ρ̂µ(r) '
√

2N√
π

e
N
2
LII(r)

r

∆1/2(r2)√
C(r2)C ′(r2)

√
µ2
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)2
− µ2

C ′(r2)
+ 1

(C.23)

with LII(r) = log r2 − µ2r2

C(r2)
+ log C′(r2)

C(r2)
+ µ2

C′(r2)
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• Conversely for µ > σ1, we need to collect the two contributions of EGin[| det(Ξ−

µ
√
ND)|]. We recall here the definition of the characteristic radius r−, i.e. r− is

the solution of C ′(r2) = µ2, and we introduce the function LI(r) = +1+logµ2 +

log r2 − µ2r2

C(r2)
− logC(r2). Hence, for N � 1:

ρ̂µ(r) '
√
N√
π

e
N
2
LI(r)

r

∣∣∣1− C ′(r2)

C(r2)
r2
∣∣∣1(0 < r < r−) +

√
2N√
π

e
N
2
LII(r)

r
×

× ∆1/2(r2)√
C(r2)C ′(r2)

(√
µ2
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)2
− µ2

C ′(r2)
+ 1

)
1(r− < r < R)

(C.24)

The function 1(x) is the indicator function with value 1 if the condition x is true.

For r > r− and N � 1, the second term in eq(C.39) is of leading order with

respect to the first one as µ2

C′(r2)
− log µ2

C′(r2)
− 1 > 0.

C.3 Local behaviour of fixed points around x = 0

For µ < σ1, we have an exponential growth of fixed points around the origin. To show

this, for N � 1, we consider the mean number of fixed points within a ball of radius

r, i.e.

Nµ(r) '
√

2N√
π

∫ r

0
dr′eNL(r′) ∆1/2(r′2)

r
√
C(r′2)C ′(r′2)

√
µ2
C(r′2)

∆(r′2)

(
1− C ′(r′2)

C(r′2)
r′2
)2
− µ2

C ′(r′2)
+ 1

(C.25)

where L(r) = log(r)− µ2r2

2C(r2)
+1

2 log C′(r2)
C(r2)

+ µ2

2C′(r2)
. We first observe that limr→0+ L(r) =

0. For sufficiently smooth C, the Taylor expansion around this point is given by:

L(r) =
σ2

2

σ4
1

(σ2
1 − µ2)r +O(r3) (C.26)

Hence, L(r) is a monotonically increasing function in a neighborhood U of x = 0.

Therefore, the number of fixed points in U increases exponentially with N . In fact,

let’s consider a sufficiently small radius ε > 0 and a fixed N � 1. From the formulas

above we have:

Nµ(ε) '
∫ ε

0
dreNL(r)g(r) (C.27)

where g(r) collects the subleading terms. The maximum of L is achieved at ε. There-

fore, around such point L(r) = L(ε) + L′(ε)(r − ε) + O((r − ε)2). Substituting the

latter in eq(C.39) and performing the integration we obtain:

Nµ(ε) ' (1− e−εNL′(ε))
NL′(ε)

eNL(ε)g(ε) for ε� 1 (C.28)
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This poses a question: How does Nµ(r) approach 0 as r → 0?(we recall thatNµ does

not include the contribution from the trivial fixed point x = 0). A Taylor expansion

around the origin of g(r) shows that, for ε� 1:

Nµ(ε) '
√

2N

π

σ2

σ2
1

(√
σ2

1 − µ2
)
ε+O(ε3) (C.29)

C.4 Mean Number of Fixed Points for Truncated Corre-
lation Function

In this section, we want to obtain the mean number of real zeros for the set of equations

−µxn +

Ω∑
k=1

σk

N∑
i1,..,ik=1

ξn,i1,...,ikxi1 · · ·xik = 0 (C.30)

for n = 1, ..., N . As in the sections above, from eq(C.30), we can define the truncated

correlation function, i.e.

C(r2) =

Ω∑
k=1

σ2
kr

2k (C.31)

for some cut-off Ω > 0. In this case, C is a finite order algebraic polynomial. The

mean number of fixed points, for the dynamics generated by eq(3.8), corresponds to

the mean number of zeros of a set of N multivariate Kac polynomials.

• If 0 < µ < σ1, from eq(C.25) we have (N � 1):

Nµ(RN ) '
√

2N√
π

∫ +∞

0
dreNL2(r) ∆1/2(r2)

r
√
C(r2)C ′(r2)

×

×

√
µ2
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)2
− µ2

C ′(r2)
+ 1 (C.32)

where L2(r) = log(r)− µ2r2

2C(r2)
+ 1

2 log C′(r2)
C(r2)

+ µ2

2C′(r2)
. As we increase the size of

the system N � 1, the main contribution to integration over r is given by the

saddle point of L2(r). We have reported in section 1.2.2 the conditions for the

latter, namely, one needs to find the solutions of dL2
dr (r) = 0 and to modify the

integration path such that these points are ”appropriately” crossed. However,

the form of L2(r) suggests to approach such problem differently. In fact, the

difficulties behind the calculation of such roots depend on the value of the cut-off

Ω and on σks. We notice that:{
limr→0+ L2(r) = 0

limr→+∞ L2(r) = 1
2 log Ω

(C.33)
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As we are looking for non trivial results, we focus on the case Ω > 1. For such

choice clearly, L2(r → 0+) < L2(r → +∞). We now want to show that the

r.h.s. of this inequality defines an upper bound for L2(r), i.e. limr→+∞ L2(r) =

supr∈R+ L2(r). To see this, we fix µ 6= 0 and impose r > 0 so that we can define

the new variables σ̃k = σk/µ. The function L2(r) is then given by

L2(r) =
1

2

(
log C̃ ′(r2) +

1

C̃ ′(r2)
− log C̃(r2)− 1

C̃(r2)

)
(C.34)

with C̃ ′(r2) = r−2
∑Ω

k=1 σ̃
2
kkr

2k and C̃(r2) = r−2
∑Ω

k=1 σ̃
2
kr

2k. From these defi-

nitions one can see that C̃ ′(r2) > C̃(r2). Therefore, for r ≥ 0 it holds:

L2(r) ≤ 1

2

(
log C̃ ′(r2)− log C̃(r2)

)
, (C.35)

From what stated above, the r.h.s is bounded by 1
2 log Ω as C̃ ′(r2) ≤ ΩC̃(r2) as

in eq(C.33). The leading contribution to the integral in eq(C.32) is obtained

for r → +∞. Moreover, one observes that dL2
dr (r)→ 0 for r → +∞. With these

consideration on L2(r), the saddle point approximation is easily performed with

a change of variable, i.e. r = 1
x in eq(C.32). Hence, now the leading contribution

to the integral arises from the neighbourhood defined by x→ 0+. An expansion

of the subleading terms shows (for r � 1)

∆1/2(r2)

r
√
C(r2)C ′(r2)

' σΩ−1

r2σΩ

√
Ω

and √
µ2
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)2
− µ2

C ′(r2)
+ 1 = O(1)

In particular, the appearance of C ′′′(1/x2) in d2L
dx2 suggests to treat Ω = 2 and

Ω ≥ 3 separately.

(i) For Ω = 2, one can see that

lim
x→0+

dL2
2

dx2
(x) = −µ

2 + σ2
1

2σ2
2

(C.36)

and

lim
x→0+

√
µ2
C(1/x2)

∆(1/x2)

(
1− C ′(1/x2)

x2C(1/x2)

)2
− µ2

C ′(1/x2)
+ 1 =

√
1 +

µ2

σ2
1

(C.37)
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(ii) Conversely, for Ω ≥ 3, the limit in eq(C.37) is equal 1 while terms contain-

ing µ2 in L2 are negligible for the calculation of d2L2
dx2 (x). Hence, the limit

in (i) above is replaced by

lim
x→0+

d2L2

dx2
(x) = −

σ2
Ω−1

Ωσ2
Ω

< 0

One can sum up the results above so that for Ω ≥ 1:

Nµ(RN ) = e
N
2

log Ω(1 + o(1)) (C.38)

• We now turn our attention to the case 0 < σ1 < µ. In this regime the spherical

density, ρ̂µ, consists of two contribution for EGin[| det(Ξ−µ
√
ND)|] which have

to be addressed separately. To do so, we introduce (for N � 1)

L1(r) = +
1

2
+ logµ+ log r − µ2r2

2C(r2)
− 1

2
logC(r2)

and

L2(r) = log(r)− µ2r2

2C(r2)
+

1

2
log

C ′(r2)

C(r2)
+

µ2

2C ′(r2)

Therefore, the mean number of roots for eq(C.30) reads

Nµ(RN ) '
√
N√
π

∫ r−

0
dr
eNL1(r)

r

∣∣∣1− C ′(r2)

C(r2)
r2
∣∣∣+ (C.39)

+

√
2N√
π

∫ +∞

r−

dr
eNL(r)∆1/2(r2)

r
√
C(r2)C ′(r2)

√
µ2
C(r2)

∆(r2)

(
1− C ′(r2)

C(r2)
r2
)2
− µ2

C ′(r2)
+ 1

From the case investigated above (i.e. µ < σ1), the function L2(r) is bounded

and reaches its maximum only for r → +∞. The new function L1(r) reaches its

maximum for finite value of r. The point r = 0 represents a local minimum for

L1(r), in particular

lim
r→0+

L1(r) =
1

2
+ logµ− log σ1 −

µ2

2σ2
1

Indeed, one can observe that dL1
dr → 0 and d2L1

dr2 → (µ2−σ2
1)σ2

2/σ
4
1 > 0 as r → 0+.

For r � 1, instead, L1(r) ' +1
2 + logµ + (1 − Ω) log r − log σΩ. If we define a

new variable x =
∑Ω
k=1 σ

2
kr

2k

r2 , L1 reaches its maximum at x+ = µ2 and it equals

0. The latter corresponds to r+ since C(r2
+) = µ2r2

+. Since from the definitions

for r− and r+ it necessarily follows that r+ > r− the leading term for Nµ(RN )

gives

Nµ(RN ) = e
N
2

log Ω(1 + o(1)) (C.40)
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C.4.1 Kac-Rice Formula For Sum of Random Periodic Potentials

In this section we obtain eq(3.66). To do so we make use of the Kac-Rice formula

stated in eq(1.50). Differently from the results given by eq(3.11), here the random

field is not equipped with rotational invariance. Therefore, we proceed as follows.

From the definition of V (x) and from identities in eqs(3.63) we have that:

∂2V

∂xi∂xj
(x) = −

M∑
a=1

kaikaj(u
(a)
1 cos(kTa x) + u

(a)
2 sin(kTa x))

is a centered random field whose variance is given by

E
[ ∂2V

∂xi∂xj
(x)

∂2V

∂xl∂xm
(x)
]

=
M∑
a=1

kaikajkalkam

Therefore, the mean number of fixed points in RN , given the set of wave numbers ka,

is given by the Kac-Rice formula (see eq(1.50))

Ntot|{k1, ..,kM} =

∫
RN

dxE
[ N∏
i=1

δ
(
λxi −

∂V

∂xi
(x)
)∣∣∣det

(
λδij −

∂2V

∂xixj
(x)
)N
i,j=1

∣∣∣]
The expectation E[...] is performed over the set u

(a)
1 , u

(a)
2 for a = 1, ...,M . The product

of Dirac delta functions can be replaced by the products of their Fourier transform,

i.e.
1

2π

∫
dqie

iλxiqi−iqi ∂V∂xi (x)
(C.41)

Instead of averaging directly over the realizations of u
(a)
1 , u

(a)
2 , we introduce the follow-

ing change of variables:{
−(u

(a)
1 cos(kTa x) + u

(a)
2 sin(kTa x)) = Ta

(−u(a)
1 sin(kTa x) + u

(a)
2 cos(kTa x)) = Ga

(C.42)

The new variables Ga can be easily integrated out, therefore, the expectation above

can be re-formuated as:

E
[
e
−i

∑N
i=1 qi

∂V
∂xi

(x)
∣∣∣ det

(
λδij −

∂2V

∂xi∂xj
(x)
)∣∣∣] =

=

M∏
a=1

e−
1
2

(qTka)2

∫ M∏
a=1

dTa√
2π
e−

1
2
T 2
a

∣∣∣det
(
λδij −

M∑
a=1

Takaikaj

)∣∣∣
As the second term does not depend on x we can integrate out x and q and finally

obtain:

Ntot|{k1, ..,kM} =
1

λN

∫ M∏
a=1

dTa√
2π
e−

1
2
T 2
a

∣∣∣ det
(
λδij −

M∑
a=1

Takaikaj

)∣∣∣ (C.43)
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D.1 Derivation of E[Zn]

We started by computing the expectations of the n-th power of the partition function,

E [Zn], given by:

E[Zn] = E

[
n∏
i=1

∫
SN
dxi exp (−βH(xi)

M∏
k=1

θ(bk − aTk x)

]

We make use of the following identities:

EH,h

[
e−

β
2

(Tr(Hxa⊗xTa )+hTx)
]

= e
β2J2

4N

∑
a,b(x

T
a xb)

2+β2δ2

2

∑
a,b(x

T
b xa)

and

E

[
n∏
a=1

θ(b− aTxa)

]
b,a

=

∫ +∞

−∞

db√
2πB

e−(b−k)2/2B2

∫
du1...dun

n∏
α=1

θ(b− uα)E

[
n∏

α=1

δ(uα − aTxα)

]
a

The expectation over a is computed by introducing the Fourier transform of the Dirac

delta, i.e.:

Ea

[
n∏

α=1

δ(uα − aTxα)

]
=

∫ n∏
α=1

dkα
2π

eikαuα−
1
2
Ea[(aT

∑n
i=1 kixi)

2]

The exponential can be simplified to Ea
[
(
∑n

i=1 ki(a
Txi))

2
]

=
∑

i,j kikjEa[(aTxi)(a
Txj)]

and Ea[(aTxi)(a
Txj)]a = A2xTi xj . We also introduce the overlap matrix Qab = xTaxb

in order to obtain:

E [Zn] =

∫
(SN )n

n∏
i=1

dxie
β2J2

4N
Tr Q2+β2δ2

2

∑
a,b Qab×
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×
∫ +∞

−∞

db√
2πB

e−(b−k)2/(2B2)

∫ n∏
i=1

dui

n∏
α=1

θ(b− uα)
e−1/(2A2)uTQ−1u

(2πA2)n/2
√

det Q

Since the integrand is a function of the spectrum of Q, E[Zn] can be rewritten by

rescaling Q→ NQ and A2N = C2 = O(1) as:∫
(SN )n

n∏
i=1

dxie
β2J2

4N
Tr Q2+β2δ2

2

∑
ab Qab(In(Q))M =

=
CN,n
Nn

∫
Q�0

e
β2J2

4N
Tr Q2+β2δ2

2

∑
ab Qab(det Q)(N−n−1)/2IMn (NQ)

n∏
i=1

δ(qii − 1)dQ

With CN,n > 0 and:

In(Q) =

∫ n∏
a=1

dua√
2π

Eb

[∏
b=1

θ(b− ub)

]
F (u)

And:

F (u) =
e−1/(2C2)uTQ−1u

√
det Q

Therefore, collecting all the terms above, we obtain:

E [Zn] ∝
∫

Q�0
eNϕn(Q)(det Q)−

n+1
2

n∏
a=1

δ(Qaa − 1)dQ

With:

ϕn(Q) =
β2J2

4
Tr Q2 +

β2δ2

2

∑
a,b

Qab +
1

2
log det Q + α log In(Q)

In the limit N → +∞, the integration over Q is substituted by a saddle point approx-

imation. Therefore we computed ∂ϕn(Q)/∂Qab = 0 with a 6= b as follows. Firstly, we

rewrite In(Q) as:

In(Q) =

∫ n∏
k=1

duk√
2π

Eb

[
n∏
k=1

θ(b− uk)

]∫ n∏
i=1

dki√
2π
eik

Tu−1/2C2kTQk

Therefore:

∂In(Q)

∂Qa,b
=
C2

2

∫ n∏
k=1

duk√
2π

Eb

[
n∏
k=1

θ(b− uk)

]
∂2

∂ua∂ub
F (u)

Since:
∂F (u)

∂Qa,b
= F (u)

( 1

2C2

∑
i,j

uiuj(Q
−1)a,j(Q

−1)b,i − (Q−1)a,b

)
The derivatives lead to:

∂In(Q)

∂Qa,b
= −1

2
(Q−1)ab+

1

2C2

n∑
v,r=1

(Q−1)av(Q
−1)br

∫ n∏
k=1

duk√
2π

Eb

[
n∏
k=1

θ(b− uk)

]
F (u)uvur
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And therefore to:

∂ϕn(Q)

∂Qa,b
=
β2J2

2
Qa,b +

β2δ2

2
+

(
1

2
− α

2

)
(Q−1)a,b +

α

2C2

n∑
v,r=1

(Q−1)av(Q
−1)br〈〈uvur〉〉

(D.1)

With:

〈〈uvur〉〉 =
1

In(Q)

∫ n∏
k=1

duk√
2π

Eb

[
n∏
k=1

θ(b− uk)

]
F (u)uvur

D.1.1 Replica Symmetry Solution

In order to find the Qsd which satisfies eq(D.1) an ansatz for Q is introduced, the

simplest is given by the symmetry replica solution, i.e. Qab = δa,b + (1 − δa,b)q to

which correspond (Q−1)aa = (1+q(n−1))
(1−q)(1+q(n−1)) and (Q−1)ab = − q

(1−q)(1+q(n−1)) for a 6= b.

For n→ 0 it follows In(Q)→ 1, det Q→ 1 and:

〈〈u2
v〉〉 =

∫
Dt,b

(∫ b

−∞

du√
2π
e−u

2/(2C2(1−q))+utRu2
)(∫ b

−∞

du√
2π
e−u

2/(2C2(1−q))+utR
)−1

(D.2)

while, for v 6= r instead:

〈〈uvur〉〉 =

∫
Dt,b

(∫ b

−∞

du√
2π
e−u

2/(2C2(1−q))+utRu
)2(∫ b

−∞

du√
2π
e−u

2/(2C2(1−q))+utR
)−2

(D.3)

with:

Dt,b =
e−

t2

2

√
2π

e−
(b−k)2

2B2

√
2πB

dtdb

and:

R =

√
q

C(1− q)
〈〈uvur〉〉s, in the limit n → 0, don’t depend directly on indices u and v. This implies

that the last term in eq(D.1) can be written as:

n∑
v,r=1

(Q−1)av(Q
−1)br〈〈uvur〉〉 =

1

(1− q)3

(
− 2q〈〈u2

1〉〉+ (1 + q)〈〈u1u2〉〉
)

By rescaling u → uC
√

1− q, t → t
√

1− q/√q and b → bC
√

1− q, the integrals in

eqs(D.2,D.3) can be simplified up to a single integration:

〈〈u2
1〉〉 = C2 − C2 (1− q)

(1 + d2q)

〈
(ψ(x)

(
2d2qµ+ (1− d2q)x

)〉
And:

〈〈u1u2〉〉 = C2q +
2C2

π
(1− q)〈ψ2(x)〉+ 2C2d2q

(1− q)
(1 + d2q)

〈ψ(x)(x− µ)〉
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Where ψ(x) = d
dx log(1 + erf(x/

√
2)) and 〈...〉 is the expectation of a Gaussian random

variable N (µ, σ2) with µ = k/(C
√

1− q) and σ2 = (1 + d2q)/(d2(1− q)).

D.1.2 Stability of the Replica Symmetry Solution

Knowing that ∂Qa,b/∂Qr,s = δa,rδb,s, ∂(Qab)
−1/∂Qr,s = −(Q−1)ar(Q

−1)s,b, and using

the results in the previous section it holds:

∂〈〈uvur〉〉
∂Qc,d

=
1

2C2

∑
i,j

(Q−1)c,j(Q
−1)d,i

(
〈〈uvuruiuj〉〉 − 〈〈uiuj〉〉〈〈uvur〉〉

)
The Hessian of ϕn(Q), with a < b and c < d, is given by:

∂2ϕn(Q)

∂Qa,b∂Qc,d
=
β2J2

2
δa,cδb,d +

α− 1

2
(Q−1)a,c(Q

−1)d,b+ (D.4)

− α

2C2

∑
v,r

(
(Q−1)ac(Q

−1)dv(Q
−1)br − (Q−1)av(Q

−1)bc(Q
−1)dr

)
〈〈uvur〉〉+

+
α

4C4

∑
v,r,i,j

(Q−1)av(Q
−1)br(Q

−1)cj(Q
−1)di(〈〈uvuruiuj〉〉 − 〈〈uiuj〉〉〈〈uvur〉〉)

We need to evaluate 5 terms for 〈〈uvuruiuj〉〉, i.e.: 〈〈u4
1〉〉, 〈〈u3

1u2〉〉, 〈〈u2
1u2u3〉〉, 〈〈u2

1u
2
2〉〉

and 〈〈u1u2u3u4〉〉. We also have 4 different values for ∂2ϕn(Q)
∂Qa,b∂Qc,d

according to the indices

a, b, c and d:

∂2ϕn(Q)

∂Qa,b∂Qc,d
=


A1, a = c and b = d

A2, (a = c and b 6= d) or (a 6= c and b = d)

A3, a 6= c and b 6= d

(D.5)

Following the idea of [138] the eigenvalues of ∂2ϕn(Q)
∂Qa,b∂Qc,d

are given by λ1 = A1−4A2+3A3

and λ2 = A1 − 2A2 +A3. We proceeded by writing a numerical scheme for evaluating

λ1,2s and relating them to the free parameters of the model.
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