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Abstract—The difficulty of task planning for robotic agents
arises from the stochastic nature of their environment and
the high cost of a failure during execution meaning frequent
replanning is required. One way to address this problem is to
make use of a pre-defined plan library. In this paper, we present
work that combines a plan library with task planning. Initial
results show that such an approach alleviates the computational
burden of synthesising plans, while providing the same level of
autonomy as using a planner that starts from scratch.

Index Terms—Task Planning, BDI, Case-Based Reasoning,
Plan Library, ROSPlan

I. INTRODUCTION

In order for robots to become helpful in dynamic and
stochastic environments, their reasoning about their actions
must combine two qualities: autonomy and speed. Autonomy
to decide for themselves how to achieve their goals, regardless
of the situation they are placed in [1] and speedy reasoning
so that they can perform in dynamic environments where
plans can become unusable if a robot takes too long to
synthesise them. One way to ensure that the robot has a high
degree of autonomy is by reasoning directly about the state
of the environment. Most systems that do this are based on
STRIPS [2], and help the robot to come up with a sequence
of actions (i.e. plans), from a set of available operators that
would satisfy a set of explicit goals given in a planning task.
The downside of this approach is that it is PSPACE-complete
in the simplest versions (propositional planning), and becomes
more difficult the more expressive the models become [3].

One approach to deal with this computational complexity
is to make use of pre-defined plans that a robot then looks
up rather than having to plan from scratch. Several examples
within this paradigm have been based on the Belief-Desire-
Intention (BDI) model [4], such as Jason [5], which has a
predefined Plan Library. The downside to this approach is
that the robot is limited to the prescribed behaviours, trading
some autonomy for computational efficiency. Meneguzzi [6]
describes the approaches that try to combine BDI with state
based planning, but in a limited manner as plans are not added
into the Library.

Here we describe a complementary approach. It starts with
no plan library, carries out task planning to achieve goals,
stores the plans that are generated, and reuses them where
possible. We implemented this idea by introducing a Plan
Library node in ROSPlan [7], a middle-ware layer between

task planners and the Robot Operating System (ROS). This
Plan Library node checks if the current planning task has
already been solved. If it has, rather than invoking the planner,
the previous plan is sent to the acting component.

II. PLAN LIBRARY FOR ROSPLAN

The Plan Library is a proxy for the Planner Interface from
the default ROSPlan framework. Previously solved problems
together with their plans (stored on in YAML format), are
loaded as a dictionary during initialisation.

When the node receives a planning task as a PDDL file from
ROSPlan’s Problem Interface, it parses it into three parts: types
indicating the types of instances involved in the problem, init
defining the predicates in the initial state, and goal integrating
the variables from the goal state. Next, the node iterates over
the Plan Library, matching its initial state and goal elements
with those of the problem it needs to solve. If there is a match,
the iteration is interrupted and the plan from that Plan Library
element is sent to the Parsing Interface.

If no problem from the Plan Library is found to match, then
the problem is sent to the planner via the Planner Interface
node. If it returns a solution to the problem, then it will
be added as a new entry to the Plan Library along with
the tasks types, init, and goal. The proposed methodology is
PDDL agnostic, accepting all planning languages available in
ROSPlan.

III. EMPIRICAL EVALUATION

We used the temporal domain Office, consisting of a robot-
assistant operating in a dynamic office setting. The robot is
tasked with navigating the environment and bringing different
office resources (e.g.: mugs, post or papers) to the people
in it, asking humans for help when needed. We created 10
problems, increasing in planning difficulty — taking from 3
to 20 seconds to compute, and varying in length between 40
and 140 actions. Each of these problems was then solved
and its robot execution simulated. Each action had varying
probabilities of failing during execution (between between 0.5
and 0.9). When an action failed, a new plan was computed
from that state. We ran each problem 40 times sequentially,
meaning that the plan library was not cleared between these
iterations, allowing the robot to learn through additions to the
plan library. We compare our method with a standard version
of ROSPlan without a Plan Library. We used the POPF planner
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Fig. 1: Summary plots averaged across all action failure probabilities on (a) Total planning time in seconds; (b) Number of
plan in the plan library. Average values in blue, with ±1 std deviation (red).

[8] with a timeout of 30 seconds to compute the plans. The
overall system was given 500 seconds for each problem to be
solved and reach the goal.

Over the course of our experiments, the modified version of
ROSPlan reached the goal 1403 times out of the 2000 problem
instances it faced (timing out the remaining times). The system
spent an average of 0.022 seconds (7.2% of the total planning
time) searching for plans in the Plan Library. The problem
requested from the system was found in the Plan Library
64.6% of the times in total. In comparison, the standard version
of ROSPlan managed to reach the goal 1645 times, performing
better than the Plan Library version in the problems with more
actions (100+). This is due to the fact that the Plan Library
was being used blindly, exploiting only the plans it had solved
already, with no exploration, meaning that if it got a poor plan
in a prior run, it had a higher chance of getting stuck in it. This,
together with higher action probability, would lead the agent
into states that would need more than the allocated planning
time (30 seconds) to solve, causing it to fail to reach the goal.

In Figure 1, we can see how the plan library performed
overall. In short, across all the problems and probabilities of
action failure, the plan library works effectively. Figure 1a
shows that, over successive runs, the cost of planning falls,
while Figure 1b exhibits that the plan library grows, but
showing signs that the size of the library will plateau. The
second of these is exactly what we would expect, and the first
is exactly what we would hope.

IV. CONCLUSION & FUTURE WORK

Our results show that for a dynamic environment and
medium length tasks, our approach manages, after a short
number of runs, to gain enough experience for a considerable
speed-up in deliberation to emerge.

Our experiments make the big assumption that all actions
fail with the same probability. Once Covid allows, we will run
experiments in real world environments, where action failure
is a property of the world instead of it being defined in our
simulation. This will give us a better idea of how often a Plan
Library can be used, and how fast it can accumulate knowledge
about the environment. Seeing if we can balance exploitation

of past plans with exploration to discover new plans would be
complementary to this work.

Knowing that the time spent searching for a plan is short
(7.2% of all planning time), we will investigate if it is
possible to add planners [9] that search for better quality plans.
Comparisons between different types of heuristics [10] will tell
us if using a Plan Library, makes it possible to use classical
optimal planners in planning for robotics.

Finally, we are investigating if having a library of the robot’s
abilities would increase the explainability of its reasoning
process. Given such a library, the robot would be able to keep
track of its executions, giving a more in-depth explanation for
its decision based on its experiences.
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