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Optimal stopping without Snell envelopes

Teemu Pennanen Ari-Pekka Perkkiö

August 23, 2021

Abstract

This paper proves the existence of optimal stopping times via elemen-
tary functional analytic arguments. The problem is first relaxed into a
convex optimization problem over a closed convex subset of the unit ball
of the dual of a Banach space. The existence of optimal solutions then
follows from the Banach–Alaoglu compactness theorem and the Krein–
Milman theorem on extreme points of convex sets. This approach seems
to give the most general existence results known to date. Applying convex
duality to the relaxed problem gives a new dual problem and optimality
conditions in terms of martingales that dominate the reward process.

Keywords. optimal stopping, Banach spaces, duality

AMS subject classification codes. 46N30, 60G40, 49N15

1 Introduction

Given a complete filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the
usual hypotheses, let R be an optional process of class (D), and consider the
optimal stopping problem

maximize ERτ over τ ∈ T , (OS)

where T is the set of stopping times with values in [0, T ]∪{T+}. When T =∞,
the interval [0, T ] is interpreted as the one-point compactification of the positive
reals. Unless specified otherwise, all processes in this paper are assigned the
value zero at T+, so the role of T+ is to allow not to stop at all. This essentially
means that R is assumed nonnegative. This does not restrict generality since,
when R is of class (D), (OS) can be written in terms of a positive reward
process. Indeed, by [15], there exists a closed martingale M that minorizes R,
so ERτ = E(R−M)τ + EM0.

Optimal stopping times are rarely unique and, without further conditions,
they need not exist (take any deterministic process R whose supremum is not
attained). Theorem II.2 of Bismut and Skalli [8] establishes the existence for
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bounded reward processes R such that R ≥
�

R and
�

R ≤ pR, where for t ∈ [0, T ],
�

RT := 0 and

�

Rt := lim
s↗ t

sup
r∈(s,t)

Rr and
�

Rt := lim
s↘ t

sup
r∈(t,s)

Rs,

the left- and right-upper limits of R, respectively, and pR is the predictable
projection of R.

In order to extend the above, we follow Bismut [7] and first consider the
“optimal quasi-stopping problem”

maximize E[Rτ +
�

Rτ̃ ] over (τ, τ̃) ∈ T̂ , (OQS)

where T̂ is the set of quasi-stopping times (“split stopping time” in Dellacherie
and Meyer [12, page 409]) defined by

T̂ := {(τ, τ̃) ∈ T × Tp | τ̃ > 0, τ ∨ τ̃ = T+},

where Tp is the set of predictable times. When R is cádlág ,
�

R coincides with the
left limit R− of R, and our formulation of the quasi-optimal stopping coincides
with that of Bismut [7]. An advantage of (OQS) is that it may admit solutions
even when (OS) does not. It also provides an indirect way of proving existence
of solutions for (OS); see Theorem 13 below. Existence results for (OQS) has
applications also in the theory of Markov processes; see [7, Section 3]. Assuming
that R is a bounded cádlág process, Bismut [7] shows that the optimum values
of (OS) and (OQS) coincide and that (OQS) admits solutions.

This paper generalizes the existence results of [8] and [7] by employing simple
functional analytic arguments building on Banach spaces of stochastic processes
from [18]. For (OQS), we relax the assumption of [7] that the paths of the reward
process R are cádlág . We prove existence under the much weaker assumption

that the paths of R are right-upper semicontinuous in the sense that R ≥
�

R. As

a corollary, we obtain the existence for (OS) when, in addition,
�

R ≤ pR. This
generalizes the existence result [8, Theorem II.2] by relaxing the boundedness
assumption on R as suggested already on page 301 of [8].

Our existence proofs are based on functional analytical arguments that avoid
the use of Snell envelopes which are used in most analyses of optimal stopping.
Our strategy is to first look at a convex relaxation of the problem. This turns out
be a linear optimization problem over a compact convex set of random measures
whose extremal points can be identified with (quasi-)stopping times. As soon
as the objective function is upper semicontinuous on this set, Krein-Milman
theorem gives the existence of (quasi-)stopping times. Sufficient conditions for
upper semicontinuity are obtained as a simple application of the main result of
Perkkiö and Trevino [19]. The overall approach was suggested already on page
287 of Bismut [6] in the case of optimal stopping. We extended the strategy (and
provide explicit derivations) to quasi-optimal stopping for a merely right-upper
semicontinuous reward process.
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The last section of the paper develops a dual problem and optimality condi-
tions for (OS) and (OQS). We find that the optimum values of (OS) and (OQS)
coincide without any path properties, thus extending [7, Proposition 1.2]. The
dual variables turn out to be martingales that dominate R. As a simple con-
sequence, we generalize the duality result of Davis and Karatzas [10] to reward
processes that are merely of class (D) without any path properties.

2 Regular processes

In this section, the reward process R is assumed to be regular, i.e. an optional
cádlág process of class (D) such that the left limit R− and the predictable pro-
jection pR of R are indistinguishable; see e.g. [5] or [12, Remark 50.d]. Recall
that a measurable process y is of class (D) if the set {yτ | τ ∈ T } is uniformly
integrable. The predictable projection of such a y is the unique (up to indistin-
guishability) predictable process py such that

E[yτ | Fτ−] = pyτ P -a.s.

for all predictable times τ . Here both y and py are assigned the value zero at T+
and Fτ− := F0 ∨ σ({A ∩ {t < τ} | A ∈ Ft−, t ∈ [0, T ]}); see [12, Section VI.2]
for further details. Our analysis will be based on the fact that the space of
regular processes is a Banach space whose dual can be identified with optional
measures of essentially bounded variation; see Theorem 1 below. The class of
regular processes is quite general as it includes e.g. all continuous, Levy and
Feller processes as soon as they are of class (D); see [17, Remark 1].

The space M of Radon measures on [0, T ] may be identified with the space
X0 of left-continuous functions of bounded variation on [0, T ]∪{T+} such that
x0 = 0. Indeed, for every x ∈ X0, there exists a unique Dx ∈ M such that
xt = Dx([0, t)) for all t ∈ [0, T ] ∪ {T+}. Here [0, T+) := [0, T ]. Thus x 7→ Dx
defines a linear isomorphism between X0 and M . Similarly, the space M∞
of optional random measures with essentially bounded total variation may be
identified with the space N∞0 of adapted processes x with x ∈ X0 almost surely
and Dx ∈M∞.

The space C of continuous functions on [0, T ] is a Banach space under the
supremum norm ‖ · ‖. Its dual can be identified with the space M and the
dual norm is the total variation norm ‖ · ‖TV . Let L1(C) be the space of
(not necessarily adapted) continuous processes y with E‖y‖ < ∞. The norm
E‖y‖ makes L1(C) into a Banach space whose dual can be identified with the
space L∞(M) of random measures whose pathwise total variation is essentially
bounded. The following result is essentially from [5]; see [17, Theorem 8] or
[18, Corollary 16]. It provides the functional analytic setting for analyzing
optimal stopping with regular processes. Recall that the optional projection oy
of a measurable process y of class (D) is the unique (up to indistinguishability)
optional process such that

E[yτ | Fτ ] = oyτ P -a.s.
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for all stopping times τ . Here both y and oy are assigned the value zero at T+
and Fτ := {A ∈ F | A ∩ {τ ≤ t} ∈ Ft ∀t ∈ [0, T ]}; see [12, Section VI.2] for
further details.

Theorem 1. The space R1 of regular processes equipped with the norm

‖y‖R1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with M∞ through the bilinear form

〈y, u〉 = E

∫
[0,T ]

ydu.

The optional projection is a continuous surjection of L1(C) to R1 and its adjoint
is the embedding of M∞ to L∞(M). The norm of R1 is equivalent to

p(y) := inf
z∈L1(C)

{E‖z‖ | oz = y}

which has the dual representation

p(y) = sup{〈y, u〉 | ess sup(‖u‖TV ) ≤ 1}.

We first write the optimal stopping problem (OS) as

maximize 〈R,Dx〉 over x ∈ Ce,

where
Ce := {x ∈ N∞0+ |xt ∈ {0, 1}},

where N∞0+ denotes the nondecreasing processes of N∞0 . The equation τ(ω) =
inf{t ∈ [0, T ] | xt+(ω) ≥ 1}, where the infimum over the empty set is defined
as T+, gives a one-to-one correspondence between the elements of T and Ce.
Consider also the convex relaxation of minimizing 〈R,Dx〉 over the set

C := {x ∈ N∞0+ |xT+ ≤ 1}.

The relaxation can be written as

maximize E[

∫
[0,T ]

Rdx] over x ∈ C, (ROS)

which makes sense for any reward process R regular or not.
Clearly, Ce ⊂ C so the optimum value of optimal stopping is dominated by

the optimum value of the relaxation. Given x ∈ C with xT+ = 1, the function
S : Ω× [0, 1]→ [0, T ] given by S(ω, α) := inf{t ∈ [0, T ] | xt(ω) ≥ α} is adapted,
nondecreasing and left-continuous in α, so it is a randomized stopping time in
the sense of Baxter and Chacon [2, Section 2]. Edgar, Millet and Sucheston [13]
employed the approach of [2] in stopping of Banach space-valued processes.
Recent applications of randomized stopping times can be found in Belomestny
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and Krätschmer [4] who studied optimal stopping under model uncertainty. Our
formulation in terms of increasing processes on [0, T ] ∪ {T+} is closer to those
of Bismut [7] and Touzi and Vieille [24] who identified randomized stopping
times with right-continuous increasing processes but the corresponding optional
measures are the same as ours. As we will see, the analysis of optimal stopping
via Theorem 1 is very simple.

Recall that x ∈ C is an extreme point of C if it cannot be expressed as a
convex combination of two points of C different from x.

Lemma 2. The set C is convex, σ(N∞0 ,R1)-compact and Ce is the set of its
extreme points.

Proof. The set C is a closed convex subset of the unit ball that N∞0 has as
the dual of the Banach space R1. The compactness thus follows from Banach-
Alaoglu. It is easily shown that the elements of Ce are extreme points of C. On
the other hand, if x ∈ C \ Ce there exists an s̄ ∈ (0, 1) such that the processes

x1
t :=

1

s̄
[xt ∧ s̄] and x2

t :=
1

1− s̄
[(xt − s̄) ∨ 0]

are different elements of C. Since x = s̄x1 + (1− s̄)x2, it is not an extreme point
of C.

Since the function x 7→ 〈R,Dx〉 is continuous, the compactness of C in
Lemma 2 implies that the maximum in (ROS) is attained. The fact that the
maximum is attained at a genuine stopping time follows from the characteriza-
tion of the extreme points in Lemma 2 and the classical Krein-Milman theorem
or the following variant of it; see e.g. [9, Theorem 25.9].

Theorem 3 (Bauer’s maximum principle). In a locally convex Hausdorff topo-
logical vector space, an upper semicontinuous (usc) convex function on a com-
pact convex set K attains its maximum at an extremal point of K.

Combining Lemma 2 and Theorem 3 gives the following.

Theorem 4. An optimal stopping time in (OS) exists for every R ∈ R1.

The above seems to have been first proved in Bismut and Skalli [8, Theo-
rem I.3], which says that a stopping time defined in terms of the Snell envelope
of the regular process R is optimal. Their proof assumes bounded reward R but
they note on page 301 that it actually suffices that R be of class (D). The proof
of Bismut and Skalli builds on the (nontrivial) existence of a Snell envelope and
further limiting arguments involving sequences of stopping times. In contrast,
our proof is based on elementary functional analytic arguments in the Banach
space setting of Theorem 1, which is of independent interest.

Note that x solves the relaxed optimal stopping problem if and only if R is
normal to C at x, i.e. if R ∈ ∂δC(x) or equivalently x ∈ ∂σC(R), where

σC(R) = sup
x∈C
〈R,Dx〉.

5



Here, ∂ denotes the subdifferential of a function; see e.g. [21]. If R is nonnegative,
we have σC(R) = ‖R‖R1 (by Krein–Milman) and the optimal solutions of the
relaxed stopping problem are simply the subgradients of the R1-norm at R.

3 Càdlàg processes

While the class of regular processes is quite large it excludes e.g. semimartingales
whose BV-part is discontinuous; see [17, Remark 1]. This section extends the
previous section to optimal quasi-stopping problems when the reward process R
is merely cádlág and of class (D). In this case, optimal stopping times need not
exist (see the discussion on page 1) but we will prove the existence of a quasi-
stopping time by functional analytic arguments analogous to those in Section 2.

Even without any path properties, we have the following.

Lemma 5. If R is of class (D), then the optimum values of (OS) and (OQS)
coincide.

Proof. Let (τ, τ̃) ∈ T̂ and ε > 0. Let (τk) be as in Lemma 17 and M :=
p
(1

�

Rτ̃ ).

By [11, Theorem IV.90],
�

R is predictable, so

Mτ̃ = E[
�

Rτ̃ | Fτ̃−] =
�

Rτ̃ .

Moreover, M is left-continuous, so, by the definition of
�

R, the projection on Ω
of the optional set

{(ω, t) ∈ Ω× [0, T ] | t ∈ (τk(ω), τ̃(ω)), Rt(ω)−Mt(ω) + ε > 0}

has measure P ({τ̃ < T+}). By Lemma 16, there exists σk ∈ T with σk ∈ (τk, τ̃)
and Rσk > Mσk − ε on {σk < T+} and P (σk < T+) ≥ P (τ̃ < T+)− 1/k. Since
M is of class (D) and 1{σk<T+}Mσk → 1{τ̃<T+}Mτ̃ almost surely, we get

lim supE[Rσk ] = lim supE[1{σk<T+}Rσk ]

≥ lim supE[1{σk<T+}(Mσk − ε)]
≥ E[1{τ̃<T+}Mτ̃ ]− ε

= E[
�

Rτ̃ ]− ε,

where the second inequality follows from Fatou’s lemma. Defining σ̄k = σk ∧ τ ,
we get

lim supE[Rσ̄k ] ≥ E[Rτ +
�

Rτ̃ ]− ε.

Since (τ, τ̃) ∈ T̂ and ε > 0, this completes the proof.

The space D of cádlág functions on [0, T ] is a Banach space under the supre-
mum norm ‖ · ‖. The space of purely discontinuous Borel measures will be
denoted by M̃ . The dual of D can be identified with M × M̃ through the
bilinear form

〈y, (u, ũ)〉 :=

∫
[0,T ]

ydu+

∫
[0,T ]

y−dũ
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and the dual norm is given by

sup
y∈D

{∫
[0,T ]

ydu+

∫
[0,T ]

y−dũ

∣∣∣∣∣ ‖y‖ ≤ 1

}
= ‖u‖TV + ‖ũ‖TV .

This can be deduced from [20, Theorem 1] or seen as the deterministic special
case of [12, Theorem VII.65] combined with [12, Remark VII.4(a)].

The following result from [18] provides the functional analytic setting for
analyzing quasi-stopping problems with cádlág processes of class (D).

Theorem 6. The space D1 of optional cádlág processes of class (D) equipped
with the norm

‖y‖D1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with

M̂∞ := {(u, ũ) ∈ L∞(M × M̃) | u is optional, ũ is predictable}

through the bilinear form

〈y, (u, ũ)〉 = E

[∫
[0,T ]

ydu+

∫
[0,T ]

y−dũ

]
.

The optional projection is a continuous surjection of L1(D) to D1 and its adjoint
is the embedding of M̂∞ to L∞(M × M̃). The norm of D1 is equivalent to

p(y) := inf
z∈L1(D)

{E‖z‖ | oz = y},

which has the dual representation

p(y) = sup{〈y, (u, ũ)〉 | ess sup(‖u‖TV + ‖ũ‖TV ) ≤ 1}.

The space M × M̃ may be identified with the space X̂0 of (not necessarily
left-continuous) functions x : R+ → R of bounded variation which are constant
on (T,∞] and have x0 = 0. Indeed, every x ∈ X̂0 can be written uniquely as

xt = Dx([0, t)) + D̃x([0, t]),

where D̃x ∈ M̃ and Dx ∈ M are the measures associated with the functions
x̃t :=

∑
s≤t(xs−xs−) and x−x̃, respectively. The linear mapping x 7→ (Dx, D̃x)

defines an isomorphism between X̂0 and M × M̃ . The value of x for t > T will
be denoted by xT+. Similarly, the space M̂∞ may be identified with the space
N̂∞0 of predictable processes x with x ∈ X̂0 almost surely and (Dx, D̃x) ∈ M̂∞.

Problem (OQS) can be written as

maximize 〈R, (Dx, D̃x)〉 over x ∈ Ĉe,

7



where
Ĉe := {x ∈ N̂∞0+ |xt ∈ {0, 1}},

and N̂∞0+ denotes the nondecreasing processes of N̂∞0 . Indeed, the equations
τ(ω) = inf{t ∈ [0, T ] | xt+(ω) ≥ 1} and τ̃(ω) = inf{t ∈ [0, T ] | xt − xt−(ω) ≥ 1}
give a one-to-one correspondence between the elements of T̂ and Ĉe.

Consider also the convex relaxation of minimizing 〈R, (Dx, D̃x)〉 over the
set

Ĉ := {x ∈ N̂∞0+ |xT+ ≤ 1}.

The relaxation can be written as

maximize E[

∫
[0,T ]

Rdx+

∫
[0,T ]

�

Rd̃x] over x ∈ Ĉ, (ROQS)

where the second integral is that of
�

R with respect to the measure D̃x. Note
that problem (ROQS) makes sense for any reward process R cádlág or not.

Lemma 7. The set Ĉ is convex, σ(M̂∞,D1)-compact and the set of quasi-
stopping times Ĉe is its extreme points. Moreover, the set of stopping times is
σ(M̂∞,D1)-dense in Ĉe and, thus, C is σ(M̂∞,D1)-dense in Ĉ.

Proof. The set Ĉ is a closed convex set of the unit ball that N̂∞0 has as the dual
of the Banach space D1. The compactness thus follows from Banach-Alaoglu.
It is easily shown that the elements of Ĉe are extreme points of Ĉ.

If x /∈ Ĉe, there exist s̄ ∈ (0, 1) such that

x1
t :=

1

s̄
[xt ∧ s̄], x2

t :=
1

1− s̄
[(xt − s̄) ∨ 0]

are distinguishable processes that belong to Ĉ. Since x = s̄x1 + (1 − s̄)x2, x is
not an extremal in Ĉ.

To prove the last claim, let (τ, τ̃) be a quasi-stopping time and let (τν) be
as in Lemma 17. We then have

〈(δτ∧τν , 0), y〉 → 〈(δτ , δτ̃ ), y〉

for every y ∈ D1.

Just like in Section 2, a combination of Lemma 7 and Theorem 3 gives
the following existence result which was established in Bismut [7] using more
elaborate techniques based on the existence of Snell envelopes.

Theorem 8. If R ∈ D1, then an optimal quasi-stopping time in (OQS) exists
and the optimal values of (OS), (OQS), (ROS) and (ROQS) are all equal.

As another implication of Lemma 7 and Theorem 6, we recover the following
result of Bismut which says that the seminorms in Theorem 6 are not just
equivalent but equal.
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Theorem 9 ([5, Theorem 4]). For every y ∈ D1,

‖y‖D1 = inf
z∈L1(D)

{E‖z‖D | oz = y}.

Proof. The expression on the right is the seminorm p in Theorem 6 with the
dual representation

p(y) = p(|y|) = sup
x∈Ĉ
〈|y|, (Dx, D̃x)〉

which, by Theorem 8, equals the left side.

Combining Theorem 9 with Theorem 1 gives a simple proof of the following.

Theorem 10 ([5, Theorem 3]). For every y ∈ R1,

‖y‖R1 = inf
z∈L1(C)

{E‖z‖D | oz = y}.

Proof. By Jensen’s inequality, the left side is less than the right which is the
seminorm p in Theorem 1 with the dual representation

p(y) = sup{〈y, u〉 | ess sup(‖u‖TV ) ≤ 1}
≤ sup{〈y, (u, ũ)〉 | ess sup(‖u‖TV + ‖ũ‖TV ) ≤ 1}
= sup

x∈Ĉ
〈|y|, (Dx, D̃x)〉,

which, again by Theorem 8, equals the left side.

4 Non-cádlág processes

This section gives a further extension to cases where the reward process is not
necessarily cádlág but merely of class (D) and right-upper semicontinuous (right-

usc) in the sense that R ≥
�

R. In this case, the objective function of the relaxed
quasi-optimal stopping problem (ROQS) may be discontinuous. Lemma 11
below says that it is, nevertheless, upper semicontinuous, so Bauer’s maximum
principle, Theorem 3, still applies. Beyond cádlág processes, right-usc processes
include, e.g., pointwise infima of cádlág processes. Moreover, we get existence
of solutions of (OS) for processes of the form R = g(Z), where Z is regular
and g is a finite convex function; see Remark 1 below. Such processes are not
necessarily regular so the results of Section 2 do not apply.

Given any measurable process R,

Ĵ (u, ũ) :=

{
E
[∫

[0,T ]
Rdu+

∫
[0,T ]

�

Rdũ
]

if (u, ũ) ∈ M̂∞+
−∞ otherwise

defines an extended real-valued function on M̂∞. The relaxed optimal quasi
stopping problem (ROQS) can be written as

minimize Ĵ (Dx, D̃x) over x ∈ Ĉ.

9



Lemma 11. If R is right-usc and of class (D), then Ĵ is σ(M̂∞,D1)-usc.

Proof. By [15, Theorem 2], there exists a measurable process z such that R = oz
and supt zt ∈ L1. It follows that |R| ≤ M , where M ∈ D1 is the optional
projection of the pathwise constant process r = supt zt. Thus, the first example
in [19, Section 8] implies, with obvious changes of signs, that Ĵ is usc.

Combining Lemma 11 with Theorem 3 gives the existence of a relaxed quasi-
stopping time at an extreme point of C which, by Lemma 7, is a quasi-stopping
time. We thus obtain the following.

Theorem 12. If R is right-usc and of class (D), then (OQS) has a solution
and the optimum values of (OQS) and (ROQS) are equal.

We have not been able find the above result in the literature but it can
be derived from Theorem 2.39 of El Karoui [14] on “divided stopping times”
(temps d’arret divisés). A recent analysis of divided stopping times can be found
in Bank and Besslich [1]. These works extend Bismut’s approach on optimal
quasi-stopping by dropping the assumption of right-continuity and augmenting
quasi-stopping times with a third component that acts on the right limit of the
reward process. Much like Bismut’s approach, [14, 1] build on the existence of
a Snell envelope.

Theorem 12 yields the existence of an optimal stopping time when the reward

process R is subregular in the sense that it is right-usc, of class (D) and
�

R ≤ pR.

Theorem 13. If R is subregular, then (OS) has a solution and its optimum
value equals that of (OQS).

Proof. Clearly, the optimum value of (OQS) is at least that of (OS) while for
subregular R,

E[Rτ +
�

Rτ̃ ] ≤ E[Rτ + pRτ̃ ] = E[Rτ +Rτ̃ ] = ERτ∧τ̃ ,

where the first equality holds by the definition of predictable projection. The
claim now follows from Theorem 12.

The above seems to have been first established in Bismut and Skalli [8,
Section II] for bounded R (again, they mention on page 301 that, instead of
boundedness, it would suffice to assume that R is of class (D)).

Remark 1. Regularity properties are preserved under compositions with convex
functions much like martingale properties. Specifically, if R is regular and g is
a real-valued convex function on R then g(R) is subregular as soon as it is of
class (D). Indeed, for any τ ∈ Tp, conditional Jensen’s inequality gives

E[g(
�

Rτ )1τ<+∞] = E[g(pRτ )1τ<+∞] ≤ E[g(Rτ )1τ<+∞].

Similarly, if R is subregular and g is a real-valued increasing convex function,
then g(R) is subregular as soon as the composition is of class (D).
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5 Duality

We end this paper by giving optimality conditions and a dual problem for the
optimal stopping problems. The derivations are based on the duality framework
of [21] for convex optimization problems in general locally convex vector spaces.
The results below establish the existence of dual solutions without assuming
the existence of optimal (quasi-)stopping times. They hold without any path
properties as long as the reward process R is of class (D).

We denote the space of martingales of class (D) by R1
m.

Theorem 14. Let R be of class (D). Then the optimum values of (ROQS)
and (ROS) both equal that of

inf{EM0 |M ∈ R1
m, R ≤M}, (DOS)

where the infimum is finite and attained. An x ∈ Ĉ is optimal in (ROQS) if
and only if there exists M ∈ R1

m with R ≤M and∫
[0,T ]

(M −R)dx+

∫
[0,T ]

(M− −
�

R)dx̃ = 0, (1)

xT+ = 1 or MT = 0 (2)

almost surely. In particular, x ∈ C is optimal in (ROS) if and only if there
exists M ∈ R1

m with R ≤M and∫
[0,T ]

(M −R)dx = 0,

xT+ = 1 or MT = 0

almost surely.

Proof. By [15, Theorem 2], there exists a measurable process z such that R = oz
and E[supt zt] < ∞. Clearly, z is dominated by the pathwise constant process

r := supt zt, so R ≤ or and
�

R ≤ (or)−. By [18, Lemma 6], (or)− =
p
(r−) = pr.

It follows that

Ĵ (Du,Dũ) ≤ E

[∫
[0,T ]

rdu+

∫
[0,T ]

rdũ

]
= E[sup

t
zt(‖u‖TV + ‖ũ‖TV )]

for any (u, ũ) ∈ M̂∞+ so

Ĵ (Dx, D̃x) ≤ E[sup
t
ztxT+] (3)

for any x ∈ N̂∞0+.
The optimum value and optimal solutions of (ROQS) coincide with those of

maximize
x∈N̂∞0

E
[
Ĵ (Dx, D̃x)− ρ(xT+ − 1)+

]
, (4)
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where Ĵ is defined in Lemma 11 and ρ := supt zt + 1. Indeed, if x is feasible
in (ROQS), then the second term in (4) disappears and we get the objective of
(ROQS). On the other hand, if x is feasible in (4) then x̄ := x ∧ 1 is feasible in
(ROQS) and since x− x̄ is an increasing process with (x− x̄)T+ = (xT+ − 1)+,
we get

Ĵ (Dx̄, D̃x̄) = Ĵ (Dx, D̃x)− Ĵ (D(x− x̄), D̃(x− x̄))

≥ Ĵ (Dx, D̃x)− Eρ(xT+ − 1)+,

so infeasible solutions of (ROQS) are never optimal in (4). The upper bound
(3) implies that the optimum value in (4) is finite.

Problem (4) fits the general conjugate duality framework of [21] with U =
L∞, Y = L1 and

F (x,w) = −Ĵ (Dx, D̃x) + Eρ(xT+ + w − 1)+.

By [21, Theorem 22], w → F (0, w) is continuous on L∞ in the Mackey topology
that it has as the dual of L1. Thus, by [21, Theorem 17], the optimum value of
(4) coincides with the infimum of the dual objective function

g(y) := − inf
x∈N̂∞0

L(x, y),

where L(x, y) := infw∈L∞{F (x,w) − Ewy}, and moreover, the infimum of g is
attained. By the interchange rule [22, Theorem 14.60],

L(x, y) =

{
+∞ if x /∈ N̂∞0+,

−Ĵ (Dx, D̃x) + E [infw∈R{ρ(xT+ + w − 1)+ − wy}] otherwise

=

{
+∞ if x /∈ N̂∞0+,

−Ĵ (Dx, D̃x) + E
[
xT+y − y − δ[0,ρ](y)

]
otherwise.

By [18, Lemma 6],

E[xT+y] = E[

∫
[0,T ]

(y1)dx+

∫
[0,T ]

(y1)d̃x]

= E[

∫
[0,T ]

o
(y1)dx+

∫
[0,T ]

p
(y1)d̃x]

= E[

∫
[0,T ]

Mdx+

∫
[0,T ]

M−d̃x]

where M :=
o
(y1) ∈ R1

m. Thus, since y = MT ,

L(x, y) =


+∞ if x /∈ N̂∞0+,

E[
∫

[0,T ]
(M −R)dx+

∫
[0,T ]

(M− −
�

R)d̃x]− EMT if x ∈ N̂∞0+ and 0 ≤MT ≤ ρ,

−∞ otherwise.

12



If M ≥ R and 0 ≤ MT ≤ ρ, then M− ≥
�

R and infx L(x, y) = −EMT . If
M 6≥ R, Lemma 16 gives a τ ∈ T with E[Mτ − Rτ ] < 0. Taking x = λ(δτ , 0)
and letting λ↗∞ then gives infx L(x, y) = −∞, so the dual objective becomes

g(y) =

{
EM0 if 0 ≤MT ≤ ρ, M ≥ R,
+∞ otherwise.

In summary, the optimum value of (OQS) equals that of (DOS).
The dual problem of (OS) is obtained similarly by defining

F (x,w) = −J (Dx) + Eρ(xT+ + w − 1)+.

The function w → F (0, w) is again Mackey-continuous on L∞ and one finds
that the dual is again (DOS). Thus, the optimum value of (OS) equals that of
(DOS).

As to the optimality conditions, the equivalence of (e) and (f) in Theorem 15
of [21] says that x is optimal in (4) and y is optimal in the dual if and only if

0 ∈ ∂xL(x, y) and 0 ∈ ∂y[−L](x, y).

The first condition means that x minimizes L(·, y), or equivalently, x ∈ N̂∞0+,
M ≥ R and ∫

[0,T ]

(M −R)dx = 0,

∫
[0,T ]

(M− −
�

R)dx̃ = 0 P -a.s.

By the interchange rule for subdifferentials ([21, Theorem 21c]), the latter is
equivalent to (2).

Corollary 15. If R is of class (D), then the optimum values of (OS), (OQS),
(ROS) and (ROQS) are all equal. A quasi-stopping time (τ, τ̃) ∈ T̂ is optimal
in (OQS) if and only if there exists M ∈ R1

m with

R ≤M, Mτ = Rτ , Mτ̃− =
�

Rτ̃

and almost surely either τ ∧ τ̃ < T+ or MT = 0. In particular, a stopping time
τ ∈ T is optimal in (OS) if and only if there exists M ∈ R1

m with

R ≤M, Mτ = Rτ

and almost surely either τ < T+ or MT = 0.

Proof. It suffices to prove the first claim since then, the optimality conditions for
(OQS) and (OS) follow from Theorem 14. Note first that, since each M ∈ R1

m

is right-continuous, the optimum value of (DOS) is unaffected if we replace R
by its right-upper semicontinuous hull defined by R̄T+ := 0, R̄T := RT and

R̄t := lim
s↘ t

sup
r∈[t,s)

Rs ∀t < T.
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It is easily seen that R̄ is right-usc. By [11, Theorem IV.90], it is optional. Since
(DOS) is feasible, there exists an M ∈ R1

m with R ≤ M so R̄ is of class (D).
Thus, by Theorem 12, the optimum value of (DOS) equals the optimum value
of (OQS) for the reward process R̄. By Lemma 5, this equals the optimum value
of (OS) for R̄. It remains to show that the optimum value of (OS) not affected
when if we replace R by its right-upper semicontinuous hull.

Let τ ∈ T and ε > 0. Let ε′ > 0 be such that E[1AR̄τ ] < ε whenever
P (A) ≤ ε′. The random variable R̄τ is Fτ -measurable so the set

S = {(ω, t) ∈ Ω× [0, T ] | t ≥ τ(ω), Rt(ω) ≥ R̄τ(ω)(ω)− ε}

is optional. Indeed, it is the upper level set of the optional process Qt :=
1{t≥τ}(Rt − R̄τ + ε) − 1{t<τ}. By the optional section theorem (see e.g. [11,
Theorem IV.84]), there exists a τ ′ ∈ T such that (ω, τ ′(ω)) ∈ S when τ ′(ω) <
T+ and P (τ ′ < T+) ≥ P (τ < T+)− ε′. Since {τ ′ < T+} ⊂ {τ < T+}, we get
P ({τ < T+} \ {τ < T+}) ≤ ε′ and

ERτ ′ = E[1{τ ′<T+}Rτ ′ ]

≥ E[1{τ ′<T+}(R̄τ − ε)]
= E[R̄τ − 1{τ<T+}\{τ ′<T+}R̄τ − 1{τ ′<T+}ε]

≥ ER̄τ − 2ε.

Since τ ∈ T and ε > 0 arbitrary, this completes the proof.

Note that if Y is the Snell envelope of R (the smallest supermartingale that
dominates R), then the martingale part M in the Doob–Meyer decomposition
Y = M − A is dual optimal. Indeed, if M was not dual optimal, there would
exist a martingale M̄ ≥ R with EM̄0 < EM0 = EY0, so Y would not be the
smallest supermartingale dominating R.

Note also that for any martingale M ∈ R1
m,

sup
τ∈T

ERτ = sup
τ∈T

E(Rτ +MT −Mτ ) ≤ E sup
t∈[0,T ]

(Rt +MT −Mt),

where the last expression is dominated by EM0 if R ≤M . Thus,

sup
τ∈T

ERτ ≤ inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt)

≤ inf
M∈R1

m

{E sup
t∈[0,T ]

(Rt +MT −Mt) |R ≤M}

≤ inf
M∈R1

m

{EM0 |R ≤M},

where, by Theorem 8, the last expression equals the first one as soon as R is of
class (D). The optimum value of the stopping problem then equals

inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt). (5)
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This was obtained in [10] under the assumptions that the reward process is right-
continuous and that its pathwise supremum is integrable. We have relaxed both
conditions by dropping all path properties and relaxing the integrability to class
(D). Rogers [23], Haugh and Kogan [16] and Becker, Cheridito and Jentzen [3]
used (5) to numerically compute upper bounds for optimal stopping problems.

Appendix

Lemmas 16 and 17 below state the optional section theorem and the existence
of announcing sequences, respectively, for the compactified time interval [0, T ].
Let a : [0, 1] → [0, T ] be an increasing homeomorphism. Given y : [0, T ] → R,
let Φ(y) : [0,∞)→ R be defined by

Φ(y)t =

{
ya−1(t) if t ≤ 1

yT if t > 1.

We define a filtration (Gt) on [0,∞) by Gt := Fa(t) for t ∈ [0, 1] and Gt := FT for
t > 1. If y is a process on Ω× [0, T ], Φ(y) is a process on Ω× [0,∞). If y is right-
continuous (left-continuous), Φ(y) is right-continuous (left-continuous). By the
monotone class theorem, Φ(y) is (Gt)-optional (predictable) if y is (Ft)-optional
(predictable). In particular, Φ maps the optional (predictable) σ-algebra of
Ω× [0, T ] to the optional (predictable) σ-algebra of Ω× [0,∞).

On Ω× [0, T ], the optional section theorem takes the following form.

Lemma 16. Given optional A ⊆ Ω× [0, T ] and ε > 0, there exists τ ∈ T such
that (ω, τ(ω)) ∈ A on {τ < T+} and P (τ < T+) ≥ P ({ω | ∃t : (ω, t) ∈ A})− ε.
Proof. The set B := {(ω, t) ∈ Ω× [0, 1] | (ω, a(t)) ∈ A} is optional, since 1B =
Φ(1A) on Ω × [0, 1]. By the optional section theorem ([11, Theorem IV.84]),
there exists a (Gt)-stopping time σ such that (ω, σ(ω)) ∈ B on {σ < ∞} and
P (σ < ∞) ≥ P ({ω | ∃t : (ω, t) ∈ B}) − ε, so we may take τ := 1{σ≤1}a(σ) +
1{σ>1}T+.

Given a predictable τ̃ ∈ T , there exists (see, e.g., [11, Theorem IV.77]) a
sequence (τν) of stopping times with values in [0, T ) such that τν < τ and τν↗ τ
on {τ̃ < T+}. Such sequences cannot, however, distinguish between the sets
{τ̃ = T} and {τ̃ = T+}. Using the compactness of [0, T ], we get the following
characterization of general predictable τ̃ ∈ T .

Lemma 17. Given a predictable τ̃ ∈ T , there exists a nondecreasing (τk)∞ν=1 ⊂
T such that τk < τ̃ and τk↗ τ̃ on {τ̃ < T+} and P ({τk < T+})↘P ({τ̃ < T+}).
Proof. Defining

σ :=

{
a−1(τ̃) on {τ̃ < T+}
+∞ otherwise

we have 1[σ,∞) = Φ(1[τ̃ ,T ]), so σ is (Gt)-predictable time. By [11, Theo-
rem IV.77], there exists a (Gt)-announcing sequence σk of σ, so we may take
τk := 1{σk≤1}a(σk) + 1{σk>1}T+.
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