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Ab initio prediction of thermomagnetic and thermoelectric transport phenomena
in 3d and 2d materials

by Francesco Macheda

In this work we study the thermomagnetic and thermoelectric transport phenomena in
3d and 2d crystals. We first present the general theory for transport in presence of elec-
tric and magnetic external fields. In this context, we introduce the linearised Boltzmann
Transport Equation and the Kubo formalism, with a focus on their derivation from first-
principles and on the ab-initio evaluation of their main ingredients. Here, a particular
emphasis is given to the development of an efficient approach to determine magneto-
transport coefficients, that firmly relies on our highly scalable and strongly optimized
computational implementation. Then, we apply the theory to three different systems:
bulk p-doped diamond, graphene and the tetrahedrite compound Cu12Sb4S13. Each
one of these systems, beside being of interest for technological applications, poses its
own challenge to the calculation of transport properties. p-doped diamond presents a
complex interplay between the electronic and vibrational properties, that has prevented
detailed experimental investigation to extract the true value of transport observables;
in graphene, the electrons near the Dirac cone have very large momenta that generate
non-trivial trends and values of the transport properties, that are in sharp contrast with
known behaviours of traditional semiconductors; finally, the tetrahedrite system dis-
plays a complex crystal structure stabilized by temperature so that the description of
its transport properties requires a proper sampling of the electron-ion dynamics of the
system. In this perspective, the theoretical study of these systems and the comparison
with experimental data serve both purposes of increasing the knowledge of specific
material properties and of testing the theory on challenging cases.
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Introduction

Electronic and thermal transport properties are central quantities in order to charac-
terize a material; it is well known that these properties are not independent one from
another because small electrical fields and thermal gradients generate interdependent
currents which are governed by the Onsager relations [1, 2]. The detailed understand-
ing of these phenomena is at the hearth of the development and the optimization of new
electronic and thermoelectric devices, that can outperform traditional silicon-based
technology and pave the way for a more sustainable and eco-friendly technological
progress. In recent years, electrical and thermal transport coefficients of some ele-
mental materials have been computed by means of the linearised Boltzmann Transport
Equation (BTE) [3, 4, 5, 6]. The Boltzmann formalism was developed by L. E. Boltz-
mann in 1872 to describe the microscopical behaviour of classical diluted gases formed
by weakly interacting particles [7]; in particular, the Boltzmann equation describes the
evolution of the statistical one-particle density f in the phase space of momentum and
position, equating diffusion-force processes and collision mechanisms. It was only
later in 1929 that R. Peierls pioneered the use of the Boltzmann equation to study the
transport properties of crystals in presence of small external fields [8]. Here, the clas-
sical motion observables such as the momentum or the velocity are identified with the
expectation values of the corresponding quantum-mechanical operators and the col-
lisional integral is written using the Fermi golden rule. It might surprise that such a
seemingly heuristic approach still represents one of the most successful framework in
order to study transport in materials. Actually, it has be shown that more advanced
methods such as the non-equilibrium Green’s function formalism, in appropriate sim-
plifying hypotheses, have the same structure of the Boltzmann scheme [9, 10, 11]. In
particular, the Boltzmann equation is recovered in the limit of the quasiparticles ap-
proximation [12] (with some additional features that we will highlight in the body of
this thesis). Also, a generalized Boltzmann equation can be derived starting from the
Kubo formula for the conductivity [13]. It is thus at last not so surprising that for
weakly interacting particles the Boltzmann framework is so successful in predicting
the non equilibrium linear response of a system to external fields within a very good
precision.
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In this work we mainly specialize to the study of electron and phonons and their
mutual interaction—defects, doping, finite size effects, isotopic scattering etc. are in-
cluded only when necessary—in presence of small external perturbing fields (electric
and magnetic fields and/or thermal gradients). In this case electrons and phonons pos-
sess two BTEs that are coupled through their mutual interaction; these equations have
to be solved, in principle, at the same time. In practice, they can most often be treated
separately. When this is possible, we will focus on the electronic BTE and calcu-
late the electronic transport properties. When this is not possible, phenomena like the
phonon-drag of electrons show up from the coupling between electron and phonons
populations [14] that can be particularly strong, so that we will have to deal with both
equations.

The theory of the solution of the BTE of simple models in simplifying assumption
is well studied [15]. Nonetheless, such approximations are most often not suitable
for an accurate reproduction of the experimental data. For that reason, in the last
years there has been a huge effort to solve the BTE equation exactly, using ab-initio

techniques to calculate the one-particle quantities and the particle interactions (see for
example Refs. [4, 16, 3, 17, 18, 19, 20, 21, 22, 23] for the electronic BTE and Refs.
[24, 25, 26, 27, 28] for the phonon BTE). The difficulty of solving the BTE equations
from first principles is mainly related to the huge number of quantities that have to
be computed starting from Density Functional Theory (DFT) and Density Functional
Perturbation Theory (DFPT).

For the phonon BTE the main ingredients are the phonon dispersions, the phonon
velocities and all the possible scattering processes that can influence heat transport in
a crystal. The main computational bottleneck here is represented by the calculation
of the matrix of the third order derivatives of the total energy with respect to phonon
eigendisplacement [27]. This matrix is related to the three-phonons anharmonic scat-
tering processes, which are the principal intrinsic mechanism that limit the heat trans-
port in crystals. The three-phonon processes involve summation over the whole Bril-
louin Zone (BZ) on uniform q-point grids and over the complete phonon frequency
spectrum (phonon branches); in many materials, such as diamond or graphene, there
is no valid simplifying assumption that can reduce the portion of the BZ considered
because the thermal conductivity gets a non-negligible contribution for each of the al-
lowed processes. Energetically, at low temperatures one could exclude high frequency
optical phonons from the summations; this improvement would be significant for com-
pounds with many atoms per unit cell, but here the calculation of the phonons alone is
already a complicate task. Moreover, if one is interested in the asymptotic behaviour of
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the out of equilibrium phonon populations near the center of the BZ, then the computa-
tional cost becomes prohibitive due to the grid sizes—unless one can find an accurate
simplifying assumption to calculate the populations in this region. Such asymptotic
behaviours are of interest because, as we will show later, they determine the strength
of the phonon-drag contribution to the Seebeck coefficient. In this work we find that in
diamond the Single Mode Approximation (SMA) is appropriate to describe the out of
equilibrium populations near the BZ center, and therefore we can access the asymptotic
behaviours without extreme efforts.

For the electron BTE the main ingredients are the electronic band structure, the
electronic velocity and the possible scattering between electrons and other particles.
In particular one can count many scattering sources: phonons, plasmons, polarons,
impurities, boundaries and possibly other collective modes. In this work we will con-
centrate on the effects of the electron-phonon coupling scattering and we will consider
scattering with impurities only when necessary. Scattering with collective modes are
usually important at very high doping concentrations, which are never accessed in this
work. The electronic transport, in contraposition to what happens in the case of the
phonon transport, gets contributions from a well defined region of the BZ. This region
corresponds to the neighbourhood of the Fermi Surface (FS) because, as we will see,
only those states give a significant contribution to the electron and heat flows. When
dealing with doped semiconductors, which may not possess a well-defined FS because
of the electronic band gap, the particles that contribute to the transport properties are
the ones that are energetically nearer to the Fermi Level (EF ), which is instead al-
ways well defined through the charge neutrality condition. To understand which states
around EF are active for transport we can look at the physical scales: the electronic
energies usually vary on the scale of the eV, while the phonons energies are usually in
the range 0−200 meV; the electron-phonon coupling too is of the meV order, while the
room-temperature thermal energy–which is the scale for the Fermi Dirac distribution–
is around 25 meV. Since in this work we mainly consider electron-phonon coupling, we
expect—and we find—that the out of equilibrium populations used to find the trans-
port observables vary on the meV scale. This basically means on one side that the
portions of the electronic band structure that really contribute to transport are distant
some meV from EF (or from the band extrema if EF falls in the gap); on the other side
it means that this small energy window has to be sampled very accurately in order to
describe the variation of the momentum resolved transport quantities. This implies the
use of very dense homogeneous electronic k and phonon q-point grids, unless some
simplifying assumption can be made. As we will see, some approximation such as the
Self Energy Relaxation Time Approximation (SERTA) do not need the solution of the
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Boltzmann equation on homogeneous grids, but the accuracy of this approximation is
not always sufficient.

Since for the electronic BTE we need to sample a tiny energetic window but with
high precision, the calculation of the ab-initio quantities needs to be performed with
great accuracy. The effort it would take to calculate all the quantities directly from first
principles is overwhelming. Luckily, it has been shown that the electronic quantities
and the electron-phonon coupling matrix elements are prone to be interpolated via the
use of Maximally Localized Wannier Functions (MLWFs) [29, 30, 31] with several
computational infrastructures [32, 33, 34, 35]. MLWFs are obtained as a unitary trans-
formation of the Bloch states; the transformation is built in a way that the elements of
the arrival basis set are as much localized in real space as possible. In the MLWFs ba-
sis set the crystal Hamiltonian is no more diagonal; the idea is to trade the localization
in the quasi-momentum/energy with localization in space, so that when we express
an operator in the MLWF basis set we can justify the truncation of the basis set with
real space arguments. We can understand the usefulness of MLWFs with a practical
example: let’s suppose that we are able to calculate the eigenvalues of a crystal Hamil-
tonian from first-principles on a certain given k-point grid of dimensions n1×n2×n3.
We now consider the restriction of the Hamiltonian to a set of nb eigenvalues (energy
bands) that are relevant for our problem, so that we have nb × n1 × n1 × n3 Bloch
functions. From these Bloch functions we generate our set of MLWF and express the
Hamiltonian in this basis set; if—and this usually happens for reasonable dimensions
of the electronic grids—the Hamiltonian displays a localization in real space then we
can use the inverse transformation and back-interpolate the Hamiltonian safely on a
generic k-point of the BZ. This process is called Wannier interpolation and is, as we
will see, of primary importance in order to access the transport quantities on grids of
(almost) arbitrary dimensions.

The techniques outlined above have given the possibility to perform accurate calcu-
lations for the transport properties that have developed unprecedented insights on the
processes involved in electronic and thermal transport. These promise to provide use-
ful guidelines for experimental investigation and for material engineering. Amongst
the most promising bulk materials for a new generation of energy-efficient, high-
performance and tough electronic devices, diamond surely assumes a leading role for
applications ranging from power electronics to bio-sensors and high-energy-physics
detectors [36, 37]. The reason is that diamond has some extreme physical properties
which make it suitable for a broad range of applications [38]: it is very hard, chemi-
cally inert and heat tolerant, and it has extraordinary high values of breakdown voltage,
thermal conductivity and carrier mobility, as well as one of the largest known energy
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gaps of all semiconductors. In particular, the hole mobility of p-doped diamond is of
great interest in modelling new electronic devices [37, 39]. Despite several experimen-
tal and theoretical investigations, the value for the hole mobility vary significantly in
literature, ranging from 2000 to 3800 cm2V−1s−1 at room temperature [40, 41, 42, 43,
44, 45]. In the same fashion, the link between hole drift and Hall mobility is still not
completely clear [46] and the comparison between experimental data and theoretical
calculations is often difficult. In addition, the relation between the charge carriers flow
and phonon out of equilibrium populations (both exceptionally high in diamond), that
leads to a strikingly large Seebeck coefficient at low temperatures [47] (as large as
five times the value for Silicon [3]), has not yet been precisely characterized. In this
work, we will determine the transport properties of p-doped diamond and determine
how these can be affected or controlled by doping, temperature and magnetic fields.

When talking about potential materials for electronic device applications, it is im-
possible not to mention graphene. Since its discovery in 2004 [48], graphene has drawn
attention from all the scientific community for its incredible and peculiar properties.
The possibility of reducing the dimensionality of a working device in conjunction with
the formidable transport phenomena that arise in graphene has generated unique ex-
pectations around this material. Of course, at the basis of all the possible applications
lies the precise understanding of electronic transport in graphene. A lot of work has
already been done in order to quantify the temperature dependence and predict the
value of the electronic resistivity and mobility of graphene (see for example Refs. [49,
50, 51, 52, 16, 53]. The previous works—together with experimental evidence such as
Ref. [54]—showed that the electrical resistivity ρ in graphene follows two temperature
trends. At low temperatures ρ ∝ T 4 while at high temperatures ρ ∝ T ; the change in
behaviour is due to the fact that at high enough temperatures the thermal energy scale
kBT "hides" the presence of low frequency phonons while at low temperatures this
does not happen. Nonetheless, even with the most advanced types of calculations the
numerical agreement with experiments is still arguable [16], especially at high temper-
atures. An hypothesis that is put forward in Ref. [16] is that the value of the coupling
between electrons near the Dirac cone and phonons with wave-vectors around the K

special point is underestimated by a factor 3 in the theoretical calculations. On the
other side, what is always implicitly assumed when doing comparison between theory
and experiments is that the carrier concentrations are well estimated with Hall mea-
surements. In fact, the estimate of the carrier density relies on the assumption that the
Hall Scattering Factor (HSF) r [55], defined as the ratio between Hall and drift mobili-
ties, can be taken as 1. In this work we show that this assumption for low dopings does
not hold in graphene as a consequence of the linear band dispersion and the particular
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form of coupling between electron and acoustic phonons. Therefore the comparison
with experimental data has to be performed carefully. Moreover, we will show that at
a given carrier density r is highly sensitive to the value of the Fermi velocity vF , which
can be highly dependent on the substrate on which graphene is grown [56]. The whole
of these aspect are usually not taken in account in experiments.

Thus far we have considered transport properties in systems where we have well-
defined quasi-particles that weakly interact and generate charge and heat fluxes when
small external fields are turned on. Though, it is not always guaranteed that we have
well defined excitation of the electronic or of the nuclear systems. In fact, for a system
it may happen that the Fermi liquid picture does not hold—but we don’t consider this
case in this work—or that the DFT phonon dispersions at zero temperature shows neg-
ative phonons for a given geometrical structure which is known to be stable at another
temperature. This is usually the mark of low temperature structural instabilities that
are renormalized by the temperature dependence of the free energy. If one wants to
study the transport phenomena in such a system with the Boltzmann formalism, one
should consider the temperature effect on the phonon dispersions (as done for example
in Refs. [57]). This approach is very difficult because every quantity in the Boltzmann
equation should be calculated ab-initio for each temperature (whereas usually temper-
ature enters just in the statistical factors). In alternative, another possible approach is
to study transport phenomena with the Kubo-Greenwood (K-G) formalism [58, 59]
applied to crystals [60]. There exist a wide number of systems that show phonon in-
stabilities and that are actually of great technological interest because they show very
good thermoelectric properties in connection with their very low thermal conductivity.
This is linked to the previously mentioned renormalization of phonon frequencies that
ultimately leads to very low phonon group velocities—and then low heat transport—
in the temperatures of interest. In this work we will study the tetrahedrite compound
Cu12Sb4S13, that in its pristine form posseses a remarkably high figure of merit value,
zT ∼ 0.6 at 700K, due to a very low thermal conductivity (below 1 Wm−1K−1 from
300 to 700K) and a very high power factor. At room temperature this system crystal-
lizes in a cubic structure (I 4̄3m) while at around 70K there are hints of a structural
transition [61, 62]; coherently, DFT calculations show several soft phonons modes at
zero temperature for the cubic structure. Since we want to study the high tempera-
ture thermoelectric properties of this compound, we adopt here the K-G formula for
transport and estimate the intrinsic lowest bound for the electrical conductivity and the
value for the Seebeck coefficient. In particular, we will perform an ab-initio Molecular
Dynamics (MD) to simulate the electronic and atomic systems at a given tempera-
ture, where the phonons are well defined, and then extract snapshots on which we will
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apply the K-G formulas (as done in Ref. [63]). Moreover, we will show that a sim-
plified Boltzmann formalism with arbitrary scattering rates—even though not formally
justified—can reproduce the temperature trends (but not the values) of the electrical
conductivity and the values of the Seebeck coefficient. The result is not very surpris-
ing for the Seebeck coefficient because it is quite known that its value is almost entirely
determined by the electronic band structure while it is almost insensitive to the scatter-
ing type. The parallelism with the Boltzmann formalism also allows us to extract an
"effective" scattering rate by matching the two electrical resistivity results.

In summary, in this thesis we will study transport phenomena in systems with dif-
ferent dimensionality, electronic and atomic structure, and for each of those we will
use the appropriate tools in order to grasp the physical mechanisms at the basis of
transport. The outline of this thesis is as follows:

• In Chapter 1 we present the theoretical framework of this thesis, with a brief
introduction to the electronic ground state calculations via DFT, the description
of vibrational properties via DFPT, the Wannier interpolation with MLWFs, the
BTE formalism, the transport coefficients and the Kubo formula.;

• In Chapter 2 we give a theoretical derivation of the electronic BTE from first-
principles using the theory of NEGFs;

• In Chapter 3 we study the magneto-transport properties of bulk p-doped diamond—
part of this work has been published in: Francesco Macheda and Nicola Bonini.
“Magnetotransport phenomena in p-doped diamond from first principles”. In:
Phys. Rev. B 98 (20 2018), p. 201201. DOI: 10.1103/PhysRevB.98.
201201. URL: https://link.aps.org/doi/10.1103/PhysRevB.
98.201201 (Ref. [4] in the text);

• In Chapter 4 we calculate the Hall scattering factor for 2d graphene—part of
this work has been published in: Francesco Macheda, Samuel Poncé, Feliciano
Giustino, and Nicola Bonini. “Theory and Computation of Hall Scattering Fac-
tor in Graphene”. In: Nano Letters 20.12 (2020), pp. 8861–8865. ISSN: 1530-
6984. DOI: 10.1021/acs.nanolett.0c03874. URL: https://doi.
org/10.1021/acs.nanolett.0c03874 (Ref. [64] in the text);

• In Chapter 5 we compute the thermoelectric coefficient for the high-temperature
phase of the Cu12Sb4S13 compound—part of this work has been published in:
Cono Di Paola, Francesco Macheda, Savio Laricchia, Cedric Weber, and Nicola
Bonini. “First-principles study of electronic transport and structural properties

https://doi.org/10.1103/PhysRevB.98.201201
https://doi.org/10.1103/PhysRevB.98.201201
https://link.aps.org/doi/10.1103/PhysRevB.98.201201
https://link.aps.org/doi/10.1103/PhysRevB.98.201201
https://doi.org/10.1021/acs.nanolett.0c03874
https://doi.org/10.1021/acs.nanolett.0c03874
https://doi.org/10.1021/acs.nanolett.0c03874
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of Cu12Sb4S13 in its high-temperature phase”. In: Phys. Rev. Research 2 (3
2020), p. 033055. DOI: 10.1103/PhysRevResearch.2.033055. URL:
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033055 (Ref. [65] in the text).

We also summarize the computational infrastructures used for the calculations, with a
particular focus on the ones developed by the authors of the present work:

• QUANTUM ESPRESSO [66] for DFT and DFPT calculations;

• WANNIER90 [32, 33] for MLWFs determination;

• D3Q [27] and THERMAL2 [25], together with in-house built post-processing
tools, in order to study thermal conductivity and phonon out of equilibrium pop-
ulations;

• An in-house built code which contains solvers of the BTE in absence or pres-
ence of a magnetic field, used to determine the magneto-transport coefficients of
diamond in Chapter 3;

• A private, highly scalable and strongly optimized version of EPW [30, 34] used
to solve the BTE in absence or presence of magnetic field and calculate transport
coefficients for graphene in Chapter 4;

• VASP [67, 68] which is used, in conjunction with in-house built post-processing
tools, to simulate the ab-initio molecular dynamics and compute the Kubo-
Greenwood formula for tetrahedrite in Chapter 5.

Most of the technical details and proofs are postponed in the Appendices in order
to facilitate readability.
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https://link.aps.org/doi/10.1103/PhysRevResearch.2.033055
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Chapter 1

Theoretical framework

In this chapter we introduce the theoretical framework of this thesis. In the first section
we present the main tools to calculate from first principles the electronic and vibra-
tional properties of a material, and their mutual interaction. In the second section,
we present the general physical problem of the non equilibrium response of a system
to external perturbations; from here, we start analysing the two different methods to
study non equilibrium that are used in this thesis, namely the Boltzmann formalism
and the KG formula. We start presenting the coupled linearised Boltzmann equations
for phonons and electrons and discuss the conditions for their decoupling. Once we
have decoupled equations, we show how to efficiently calculate the ingredients needed
to approach their solution. In particular, we discuss the one-particle quantities and the
collision terms that are considered in this work, and in which way they can be interpo-
lated. In the last section we present the general theory for transport in linear response
introducing the KG formula in crystals and describing its use in conjunction with MD
simulations. A work-flow and a flowchart of the practical implementation of the tech-
niques described in this chapter and used throughout all this work is given in App.
A.

1.1 Electronic and vibrational properties and electron-
phonon coupling

Solids are composed by mutually interacting electrons and nuclei. The total non-
relativistic Hamiltonian of a system of electrons (of coordinates ri, momenta pi, and
charge -e) and nuclei (of coordinates RI , momenta PI , and charge +zIe) in mutual in-
teraction via Coulomb forces and in absence of external perturbations, can be written
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as:

Ĥ =
∑
i

p̂2
i

2me

+
∑
I

P̂2
I

2mI

−
∑
iI

zIe
2

|̂ri − R̂I |
+
1

2

∑
i ̸=j

e2

|̂ri − r̂j|
+
1

2

∑
I ̸=J

zIzJe
2

|R̂I − R̂J |
(1.1)

where we will call:
Vnucl(r̂) := −

∑
I

zIe
2

|̂r− R̂I |
(1.2)

The solution of the Schrödinger equation for this Hamiltonian is impossible to be ap-
proached consistently from first principles because the typical number of particles in a
solid is N ∼ 1023. Luckily, for most of the practical purposes one is mostly interested
in physical quantities that can be computed in simplifying assumptions. The start-
ing one is based on the large mass difference between electrons and nuclei; in common
practice, this allows to decouple the fast dynamics of electrons from the slow dynamics
of nuclei and think at the nuclei as moving on an adiabatic potential surface generated
by electrons [69] (even though in some cases, when the energy of the nuclear motion
is much larger than their coupling with electrons, this is not entirely possible [70]). It
is therefore in general frequent to study first the electronic problem at fixed (clamped)
nuclei and then determine the nuclear dynamics in a second step; this procedure is
known as the Born-Oppenheimer approximation [71].

1.1.1 DFT for electronic properties

In crystals, DFT studies the ground state properties of a system of electrons in presence
of an external potential generated by the nuclei considered as fixed in certain clamped
positions Rcl, where with R we indicate the set of multidimensional nuclear positions.
The nuclear coordinates of Eq. 1.1 become then classical parameters and we can dis-
regard the nuclear kinetic term; such assumption is justified by the large difference
between nuclear and electronic masses. Moreover, the total inter-nuclear Coulomb in-
teraction becomes a constant and we can neglect it if we are interested in the difference
of energies of the electronic states in the rigid lattice approximation. At last, we are
left with an Hamiltonian depending only on the electronic set of coordinates {r1, r2, ..}
with an external potential due to the nuclei.

According to the theorems of Hohenberg-Kohn (HK) [72], for a system of inter-
acting electrons in an external potential Vext(r), the potential Vext(r) is in a one-to-
one correspondence, except for constants, with the Ground State (GS) density nGS(r).
Moreover, there exists a functional for the energy, E[n], that has a global minimum
for n = nGS(r). The minimization is subjected to the constraint that

∫
n(r)dr = N
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where N is the total number of electrons in the system. At the end of the minimization
procedure, we obtain the ground state energy EGS = E[nGS(r)]. The fundamental
aspect of this approach is that, except for the part involving the external potential, the
energy functional is universal. In fact, we can write:

E[n] = Te[n] + Ve−e[n] +

∫
Vnucl(r)n(r)dr = F [n] +

∫
Vnucl(r)n(r)dr (1.3)

where F [n] is an universal functional including both the kinetic and the interaction
contributions (respectively, Te[n] and Ve−e[n]). Therefore, the focus of the ground
state property calculations is completely moved from the wave-function to the density,
greatly reducing the number of degrees of freedom.

The implementation of the theory is not straightforward, especially because the
form of the functional F [n] is not known practically since the theorems only guar-
antee its existence. The fundamental practical calculation scheme has been intro-
duced by Kohn and Sham [73]. The Kohn-Sham (KS) ansatz states that for each
non-uniform ground-state density n(r) of N interacting electrons there exists a non-
interactingN -electron system with the same non-uniform ground-state density. There-
fore, the density of the interacting system can be written as n(r) =

∑
i ϕ

∗
i (r)ϕi(r)

where ϕi(r)(i = 1, 2, ...N ) are orthonormal orbitals to be determined consistently. The
Hamiltonian of the Kohn-Sham system is:

ĤKS = TKS(p̂) + VKS(r̂) =
∑
i

p̂2
i

2m
+ VKS(r̂) (1.4)

where VKS is an appropriate potential to be determined. The Kohn-Sham ansatz is used
performing a variational minimization of the energy functional of Eq. 1.3. One of the
fundamental points of this approach is that, before doing the variation, the functional
of equation 1.3 is recast in the following form:

E[n] = TKS[n] + VH [n] +

∫
Vnucl(r)n(r)dr+ Exc[n] (1.5)

where TKS[n] is the kinetic term density functional for the non interacting system, and:

VH [n] =
1

2

∫
n(r)

e2

|r− r′|
n(r′)drdr′

Exc[n] ≡ Te[n]− TKS[n] + Ve−e[n]− VH [n] (1.6)
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If now the variation is performed the Kohn-Sham equations are obtained:

HKS(−∇r, r)ϕi(r) =

(
−∇2

r

2m
+ VKS(r)

)
ϕi(r) =

=

(
−∇2

r

2m
+ Vnucl(r) + VCoul(r) + Vxc(r)

)
ϕi(r) = ϵiϕi(r) (1.7)

where we have the non-interacting kinetic energy term −∇2
r

2m
, the external potential

Vnucl(r), the Hartree potential VCoul(r) =
δVH [n(r)]

δn(r)
, and the exchange-correlation term

Vxc(r) =
δExc[n(r)]

δn(r)
which contains statistical and dynamical correlations.

In principle, the KS equations describe a fictitious system that enables us to cal-
culate the ground state charge density of our real system. The eigenvalues ϵi and the
eigenfunctions ϕi(r) of Eq. 1.7 do not have in general a direct physical meaning.
Nonetheless, it is common practice to use the KS equations to deduce the band energy
structure of crystals and to consider the Slater determinant of the lowest N eigenfunc-
tions of Eq. 1.7 |ϕ1(r1)..ϕN(rN)⟩ as the total wave-function for the electrons. The
rational behind this approach is that we can interpret the KS equations as an approx-
imation to the quasi-particle equations coming from the many-body Green’s function
formalism [74]:(

−∇2
r

2m
+ V (r)

)
ψi(r) +

∫
dr′Σ(r, r′;Ei)ψi(r

′) = Eiψi(r) (1.8)

where V denotes a one body external potential and Σ is the non-local, energy-dependent,
complex self energy that determines the Green’s function via the Dyson equation. Eq.
1.8 describes the physical quasi-particle energies and wave-functions Ei and ψi(r) that
have a well defined meaning in many-body theory.

Therefore, the identification ϵi → Ei and ϕi → ψi is just an approximation and
may lead to severe errors, such as the well known band-gap underestimation typical of
DFT. Nonetheless, the simplicity of the KS equations makes them a fundamental tool
to study the crystal band structures for weakly interacting systems within a reasonable
precision.

1.1.2 DFPT for the theory of lattice vibrations

Once that we are able to describe the electronic properties of a crystal at a given set
of nuclear positions Rcl, we can try to study the dynamics of the nuclei. As already
mentioned at the beginning of this section, Eq. 1.1 governs the coupled dynamics of
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electrons and nuclei. We can schematically rewrite the various terms as [69]:

Ĥ = TN(R̂) + Te(r̂) + V (r̂, R̂) = TN(R̂) +He(r̂, R̂) (1.9)

where we have indicated with r̂ and R̂ the multidimensional sets of electronic and
nuclear momentum and spatial variables, and we have regrouped all the terms that de-
pends on different sets of variables. In the previous subsection we have learnt how
to solve HeΨ

GS(r, R) = EGS(R)ΨGS(r, R) for fixed R. As we vary R, EGS(R) de-
scribes the so called adiabatic ground-state potential-energy surface (PES). Our central
assumption is that we can now consider the nuclei as moving onEGS(R) following the
classical equation of motion:

MIR̈I = −∂E0(R)

RI

(1.10)

This is of course an approximation because the nuclei are not strictly confined on
EGS(R) but they couple also to the other adiabatic surfaces/sheets that are obtained
from the spectrum of He [69]. Nonetheless, for most practical purposes this approx-
imation is usually good. Often one is interested in the behaviour of the ground-state
adiabatic surface near its absolute minimum at R0, i.e. around the nuclear equilib-
rium positions. In this case we can expand the energy as a function of the nuclear
displacements uI = RI −R0:

EGS(R) = EGS(R0) +
1

2

∑
IJ

(
∂2EGS(R)

∂RI∂RJ

)
uIuJ + o(R3) (1.11)

and define the inter-atomic force constant square matrix as:

D(RI ,RJ) =
∂2EGS(R)

∂RI∂RJ

(1.12)

For translational symmetry it holds that D(RI ,RJ) = D(RI − RJ) := Dαi,βj(R)

where now αi and βj are indexes that run over the Cartesian coordinates and the num-
ber of atoms in the unit cell respectively [75], and R is a lattice vector. We can also
perform the Fourier transform of Eq. 1.12 and define the dynamical matrix:

D̃αi,βj(q) =
∑
R

eiq·R
Dαi,βj(R)
√
mImJ

(1.13)

where we are neglecting the time dependence of the atomic positions, following the
adiabatic approximation, so that the dynamical matrix is frequency independent (this
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is not always possible, see for example Ref. [76]). The phonon eigenvalues ω2
λq and

eigenvectors eλ(q) are defined as the quantities that diagonalize the dynamical matrix:∑
βj

D̃αi,βj(q)e
λ
βj(q) = ω2

λqe
λ
αi(q) (1.14)

where λ—called the phonon branch index—can assume as many values as the num-
ber of rows/columns of the dynamical matrix. In order to practically solve Eq. 1.14
for a certain q we first have to know the dynamical matrix at that same wave-vector.
Two main approaches are possible: the first one, known as frozen-phonon, consists
in calculating the interatomic-force constant numerically on a supercell in real space
and then use Eq. 1.13. The second approach is to use perturbation theory within the
DFT framework in order to calculate the response of the electron system to an external
perturbation directly in reciprocal space and then link it to the dynamical matrix. This
approach is known as DFPT [77] and is the one used in this work.

The DFPT starting point is represented by the variation of the ground-state density
(we drop the GS superscript from now on):

∆n(r) = 4Re
N/2∑
n=1

ϕ∗
n(r)∆ϕn(r) (1.15)

where N is the total number of electrons in the system and spin degeneracy is assumed
for sake of simplicity. The variation of the KS orbitals can be calculated from:

(HKS(−∇r, r)− ϵn) |∆ϕn(r)⟩ = −(∆VKS(r)−∆ϵn) |ϕn(r)⟩ (1.16)

where:

∆VKS(r) = ∆Vext + e2
∫

∆n(r′)

|r− r′|
dr′ +

dvxc(n)

dn
|n=n(r)∆n(r) (1.17)

∆ϵn = ⟨ψn(r)|∆VKS |ψn(r)⟩ (1.18)

One of the greatest advantages of Eq. 1.16 is that the variations can be done with
respect to monochromatic external perturbations for any arbitrary q wave-vector. The
dynamical matrix is then recovered using:

D̃αi,βj(q) =

∫
∂2Vnucl(r, R)

∂uαi(q)∂uβj(q)
n(r)dr+

∫
∂Vnucl(r, R)

∂uαi(q)

∂n(r)

∂uβj(q)
dr+

∂2Eion−ion(R)

∂uαi(q)∂uβj(q)
(1.19)
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where uαi(q) is a generic perturbation of the atomic positions of wave-vector q and
Eion−ion(R) is the part of the ground state energy that depends only on the nuclear
positions. A complete expression of this second piece can be found in Ref. [75].

1.1.3 Electron-phonon coupling using DFT and DFPT

Once that we have introduced the theoretical framework to compute the electronic
properties at fixed nuclear positions and the nuclear dynamics, we now study the inter-
action between the electronic and vibrational systems. The approximation of neglect-
ing the coupling between different adiabatic PESs is adequate in order to reproduce the
experimental phonon frequencies, but has the major drawback of decoupling entirely
the nuclear motion from the electronic excitations. This approximation is quite rough
and, for example, would imply the absence of any intrinsic resistivity in the electron
conduction in metals. In particular, it is the nuclear kinetic term TN(R) that induces a
coupling between electrons and phonons.

We can deduce the electron-phonon coupling even with a more intuitive approach.
We consider the electronic Hamiltonian of Eq. 1.7; if we move the nuclear coordinates,
the potential felt by the electrons change and we can treat it perturbatively for small
nuclear displacements. Indeed, at the first order in the nuclear displacements u, we can
write:

VKS(r̂, R̂) = VKS(r̂, R̂0) +
∑
καp

∂VKS(r̂, R̂)

∂ûκαp
∆ûκαp (1.20)

where the index κ runs on the number of atoms of the unit cell, α is the Cartesian index
and p is the index indicating the cell of the crystal that we are considering. Eq. 1.20
can also be rewritten in the basis of the phonon perturbation and of phonons creation
and annihilation operators â, â† using [78]:

∆ûκαp =

(
h̄

NpMκ

)1/2∑
λq

1√
2ωλq

eiq·Rpeλκα(q)(âλq + â†λ−q) (1.21)

where Np is the number of real space cells included in the summation. We can now
express the change of the potential in the Khon-Sham electron basis set and obtain
the perturbing potential Ĥe−ph as a function of the electronic creation and annihilation
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operators ĉ, ĉ† :

Ĥe−ph =
1√
Np

∑
kq
mnλ

gλmk+q,nkĉ
†
mk+qĉnk(âλq + â†λ−q)

gλmk+q,nk =

√
h̄

2M0ωλq

⟨umk+q| ∂λqvKS |unk⟩uc (1.22)

where vKS = e−iq·rVKS , ∂νqvKS is the derivative of the Khon-Sham potential with
respect to the (λq) phonon displacement , M0 is a reference mass and ⟨un′k+q| and
|unk⟩ are the cell periodic part of the Bloch functions in Dirac’s notation for a given
band and quasi-momentum index and uc indicates that the scalar product has to be
taken in the unit cell. The ingredients to evaluate Eq. 1.22 are obtained using Eqs. 1.7
and 1.16, which give access to the eigenfunctions and the variation of the potential.

To conclude the discussion on the EPC, we shall point out some remarks. First of
all, the expansion of Eq. 1.20 at first order is enough for the purposes of calculating
scattering between well defined quasi-particles without including energy renormaliza-
tion effects. Renormalization effects indeed need a coherent expansion of the potential
VKS to the second order in u (Debye-Waller term)[79]. Secondly, Eq. 1.22 can be
understood from a many-body point of view as an approximation to the Fan-Migdal
self-energy where [78]:

1. the vertex corrections are neglected;

2. the fully interacting Green’s function is replaced by the Khon-Sham Green’s
function at clamped nuclei;

3. the fully interacting phonon propagator is replaced by the adiabatic phonon prop-
agator;

4. the screened electron-phonon vertex is evaluated using the RPA+xc electronic
screening from a DFT calculation;

5. the phonon frequency of the EPC is neglected.

Once that we have access to the basic electronic and vibrational quantities of a crystal
in equilibrium, we can wonder what happens when we apply external perturbations
such as electromagnetic fields or thermal gradients. This is matter of the next sections.
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1.2 Non equilibrium and Onsager relations

The macroscopic extension of thermodynamics to non equilibrium phenomena can be
done in the linear regime for external fields following Ref. [80]. The assumption is
that, given a set of N thermodynamic variables, their fluctuation around the equilib-
rium state {x1, .., xN} completely determines the out of equilibrium state. In particular,
we can express their time evolution as:

ẋi = ẋi(x1..xN) (1.23)

and, if we are near enough to the equilibrium, we can expand the above relation as:

ẋi = −
∑
k

λikxk (1.24)

where λik are constant coefficients. If we express Eq. 1.24 as a function of the con-
jugate variables Xi = −∂S(x1..xN )

∂xi
and in the hypothesis of microscopic reversible

processes, we have [1]:

ẋi = −
∑
k

γikXk (1.25)

γik = γki (1.26)

where γ are known as kinetic coefficients, X as driving forces and x as flux variables.
To correctly identify conjugate variables, we require that the entropy production Ṡ =∑

iXixi is unchanged for any possible set of legitimate variables.
Following the above general principles, we can study the case where non equilib-

rium is induced by an electrical field E, a concentration gradient ∇rµ and a tempera-
ture gradient ∇rT ; in this case the entropy production reads [81]:

Ṡ =
1

T

{(
E+

∇rµ

e

)
· Je −

(
∇rT

T

)
· JQ

}
(1.27)

where Je and JQ are the electric and heat current densities respectively. The identifi-
cation of the driving forces and flux variables is immediate. Therefore, we can write
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immediately:

Je = L11

(
E+

∇rµ

e

)
+ L12

(
−∇rT

T

)
(1.28)

JQ = L21

(
E+

∇rµ

e

)
+ L22

(
−∇rT

T

)
(1.29)

where L are in general tensors of dimension 3 × 3 (whose independent components
may be reduced by symmetry arguments) and:

L11 = LT
11 L22 = LT

22 L12 = LT
21 (1.30)

where T is the transposition symbol [82, 83]. The relations between the L tensors
usually go under the name of Onager relations.

In case the microscopic reversibility is not respected, the relation between the coef-
ficients does not hold. Anyway, in presence of a uniform magnetic field B, the Onsager
relations can be generalized to [84, 85]:

L11(B) = LT
11(−B) L22(B) = LT

22(−B) L12(B) = LT
21(−B) (1.31)

The physical electronic transport coefficients that we will study in this work relate
to the L tensors trough the following expressions, in absence of magnetic field [86,
87]:

σ = L11 (1.32)

κe =
1

T

(
L22 − L12L

−1
11 L12

)
(1.33)

S =
1

T
L−1
11 L12 (1.34)

Π = L−1
11 L21 (1.35)

where σ is the electrical conductivity tensor, κe is the electronic thermal conductivity, S
is the Seebeck coefficient and Π is the Peltier coefficient. We refer to Ref. [86] for the
discussion of the tensor symmetries in the Boltzmann formalism. In particular, it can be
shown that the L12 (and therefore the Seebeck coefficient) is symmetric in absence of
magnetic field, whereas it may present asymmetries in presence of a magnetic field in
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a general direction [88]. When a magnetic field is present, the above relations become:

σ = L11(B) (1.36)

κe =
1

T

(
L22(B)− L21(B)L−1

11 (B)L12(B)
)

(1.37)

S =
1

T
L−1
11 (B)L12(B) (1.38)

Π = L−1
11 (B)L21(B) (1.39)

The lattice thermal conductivity in presence of a thermal gradient is instead simply
defined by

Jlatt.
Q = −kth∇rT (1.40)

where Jlatt.
Q is the heat current density due only to lattice dynamics. In order to compute

the kinetic coefficients described in this sections, we can resort to different theoretical
frameworks. In this thesis, we make use of the Boltzmann formalism and of the Kubo
approach, which are matter of the next sections.

1.3 Coupled Boltzmann equations

When external fields are applied to a crystal otherwise in equilibrium, the balance of
its microscopic components (nuclei and electrons) changes; these components evolve
dynamically according to the laws of quantum mechanics. The exact description of
this dynamics is highly non-trivial; it is thus necessary to resort to a single-particle
approximation where the dynamics of the system is representable by the interaction of
well-defined particles (electrons and phonons in our case). This semi-classical approx-
imation is valid under the assumptions that the particles’ wave-packets width is narrow
if compared to the external field variation and that such a field is of sufficiently small
intensity [89] (see Chap. 2 for a much more detailed discussion). In this case, the
dynamics can be described by wave-packets possessing a group velocity and subject
to external forces that weakly interact amongst themselves via the Fermi golden rule.
Moreover, the wave-packets’ physical quantities (energy and velocity) are calculated
in absence of external perturbations, enabling us to use the theory developed in section
1.1.

Within this picture, we can introduce single-particle statistical distribution func-
tions in the space-momentum phase space (f for electrons and n for phonons— f 0 is
the Fermi-Dirac distribution and n0 is the Bose-Einstein distribution) to represent all
the particles of the system. In crystals, Bloch’s theorem allows us to label electronic
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states with a couple of number {nk} that identify band and quasi-momentum indexes
[69]. Analogously, we can label phonon states with the branch and momentum in-
dexes {λq}. The particle statistical weights are thereby written as fnk := f(ϵmk) and
nλq := n(ωλq). Their time-space evolution is described by the coupled BTE equations,
which read as: 

∂fnk

∂t
+ vnk · ∇rfnk +

F
h̄
· ∇kfnk =

(
∂fnk

∂t

)
coll.

∂nλq

∂t
+ vλq · ∇rnλq =

(
∂nλq

∂t

)
coll.

(1.41)

where vmk and vλq are the semi-classical electronic and phonon group velocities, F
is an external electrochemical-magnetic force [90], and the right hand side members
represent the collisional terms that include all the possible interactions between the par-
ticle and the surrounding environment. In particular, it is the collisional term contain-
ing the mutual electron-phonon scattering interaction that couples the two equations in
1.41. The real-space dependence of the statistical functions stems from the assumption
of a local thermodynamic equilibrium characterized by a temperature T = T (r). As
long as in this work we are interested in steady state conditions, equation 1.41 reduces
to: vnk · ∇rT

∂fnk

∂T
+ F

h̄
· ∇kfnk =

(
∂fnk

∂t

)
coll.

vλq · ∇rT
∂nλq

∂T
=
(

∂nλq

∂t

)
coll.

. (1.42)

Since the Eq. 1.42 is valid only in the assumption of small external fields, we can
without losing generality expand the electronic and phonon populations around the
thermal equilibrium values f 0

nk and n0
λq:

fnk = f 0
nk −

∂f 0
nk

∂ϵnk
χnk (1.43)

nλq = n0
λq −

∂n0
λq

∂ωλq

Ψλq (1.44)

where χnk and Ψλq depends linearly on all the external fields. Even with this expan-
sion, finding an exact solution to the coupled equations1.42 is very demanding. We
therefore need a systematic way to decouple the equations or retain only the leading
terms stemming from the coupling. In order to do so, we first need to look at the
expressions of

(
∂fnk

∂t

)
coll.

and
(

∂nλq

∂t

)
coll.

in terms of the Electron-Phonon Coupling
(EPC).
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1.3.1 Decoupling of equations

For the moment we limit our attention to the part of the collisional terms that depend
on the EPC. As seen in section 1.1.3, the electron phonon vertex is described by the
function gλnk,n′k′ =

√
h̄

2Mωλq
⟨nk| ∂λk−k′V |nk′⟩. Using the Fermi golden rule the elec-

tronic collisional term reads as:(
∂fnk
∂t

)e−ph.

coll.

=
1

Nk

∑
n′k′

{fn′k′Wn′k′→nk[1− fnk]− fnkWnk→n′k′ [1− fn′k′ ]} (1.45)

where we define the scattering rate:

Wnk→n′k+q =
2π

h̄

∑
λ

|gλn′k+q,nk|2{nλqδ(ϵn′k+q − ϵnk − h̄ωλq)+

[nλ−q + 1]δ(ϵn′k+q − ϵnk + h̄ωλq)} (1.46)

In Eq. 1.46 we have supposed time reversal symmetry to write ωλq = ωλ−q. The signs
in Eq. 1.45 show that the processes where the final state is {nk} contributes positively
to the collisional term (they tend to increase fnk over time); vice versa, when {nk} is
the initial state that scatters, the collisional term gets a negative contribution. With the
same rational we can deduce the collisional term for the phonons:(

∂nλq

∂t

)e−ph.

coll.

=
1

Nk

∑
nn′k

|gλn′k+q,nk|2{[nλq + 1]fn′k+q[1− fnk]−

nλqfnk[1− fn′k+q])}δ(ϵn′k+q − ϵnk − h̄ωλq) (1.47)

As a check for the previous expressions, we notice that both the electron and phonon
collisional terms are coherently zero if evaluated inserting the equilibrium populations
f 0
nk and n0

λq. This is a consequence of the detailed balance relations :

{f 0
n′k+q[1− f 0

nk]n
0
λq − f 0

nk[1− f 0
n′k+q][n

0
λq + 1]}δ(ϵn′k+q − ϵnk + h̄ωλq) = 0

{f 0
n′k+q[1− f 0

nk][n
0
λq + 1]− f 0

nk[1− f 0
n′k+q]n

0
λq}δ(ϵn′k+q − ϵnk − h̄ωλq) = 0

(1.48)

and confirms that without any external field all the information on the thermodynamic
is contained in f 0

nk and n0
λq.

The terms of Eqs. 1.45 and 1.47 couple the electron and phonon BTE as they de-
pend on both the out of equilibrium populations. While the effect of the EPC on the
electron transport has been widely studied and has become almost a textbook topic, its



Chapter 1. Theoretical framework 22

effects on phonon transport has remained largely unexplored. This is mostly because
the impact of the EPC on phonon transport is important for bulk doped semiconduc-
tors only at very high doping [91] and for metals at very low temperatures [15]. In the
typical treatment therefore the collisional term of Eq. 1.47 is neglected. Only recently
there has been a self-consistent solution of the coupling induced by Eqs. 1.45 and 1.47
in the case of n-doped GaAs for different doping concentrations [92]. The simulta-
neous solutions of both equations at linear order in the perturbing fields shows that
[92]: 1) the phonon thermal conductivity is unaffected by the EPC collisional term;
2) the mobility of a semiconductor, provided that scattering with impurities may be
made weak, can gain a substantial contribution by mutual drag effects at high doping;
3) there is a strong enhancement of the Seebeck coefficient at low temperatures which
is clearly visible also in experiments.

Given the previous considerations, in this thesis we will safely work in a regime
where the collisional term of Eq. 1.47 can be safely neglected, so that the phonon
transport is dominated by the anharmonic three-phonon processes. Our assumption
implies that Ψλq of Eq. 1.44 is non-zero only in presence of a thermal gradient. If we
now insert the expressions of Eqs. 1.43 and 1.44 inside Eq. 1.45 and retain only the
linear terms in the out of equilibrium populations, we can separate the contributions
coming from the pieces containing only in equilibrium phonon or electron populations
(denoted respectively with the superscript n = n0 and f = f 0):

(
∂fnk
∂t

)e−ph.

coll.

=

(
∂fnk
∂t

)n=n0

coll.

+

(
∂fnk
∂t

)f=f0

coll.

(1.49)(
∂fnk
∂t

)n=n0

coll.

=
1

kBT

∑
n′k′

f 0
n′k′ [1− f 0

nk]W
n=n0

n′k′→nk [χn′k′ − χnk] (1.50)

(
∂fnk
∂t

)f=f0

coll.

= −2π

h̄

∑
λ

|gλnk,n′k+q|2{
∂n0

λq

∂ωλq

Ψλqδ(ϵn′k+q − ϵnk − h̄ωλq)+

∂n0
λq

∂ωλq

Ψλ−qδ(ϵn′k+q − ϵnk + h̄ωλq)} × [f 0
n′k′ − f 0

nk] (1.51)

In the term 1.50 the scattering rate is evaluated using the equilibrium phonon popula-
tion; therefore its value is independent from the presence of a thermal gradient. On
the contrary, the term 1.51—the so called phonon-drag—arises only when the phonon
populations are brought out of equilibrium. In our approximation, this drag term is non
zero only in presence of a thermal gradient. The term 1.51 is of particular importance
at low temperatures to determine the Seebeck coefficient for materials that have a very
high thermal lattice conductivity, such as diamond.
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Figure 1.1: Scattering processes that enters the phonon BTE of Eq.
1.53. Reprinted from Ref. [25].

1.4 BTE for phonons

As discussed in the previous section, in this work we consider the BTE for phonons
in steady state disregarding the EPC contribution to the collisional term. We start
rewriting Eq. 1.44 supposing—without losing generality for the aims of this thesis—
that the thermal gradient is along the x̂ direction, in the following form:

nλq = n0
λq +

n0
λq(n

0
λq + 1)

kBT 2

∂T

∂x
f̃λq. (1.52)

where we have made the dependence on the external field explicit. In terms of f̃ the
phonon BTE is written as:

∑
λ′q′,λ′′q′′

[
P λ′′q′′

λq,λ′q′(f̃λq + f̃λ′q′ − f̃λ′′q′′) +
1

2
P λ′q′,λ′′q′′

λq (f̃λq − f̃λ′q′ − f̃λ′′q′′)

]
+

∑
λ′q′

P isot
λq,λ′q′(f̃λq − f̃λ′q′) + P be

λqf̃λq = −vλq

∂n0
λq

∂T
(1.53)

where the P -matrices represent the scattering rate for phonon due to anharmonic phonon-
phonon scattering, isotope scattering (isot) and boundary-elastic (be) scattering [25].
The graphical description of the scatterings is given in Fig. 1.1.
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P isot and P be are usually described by models, while the anharmonic processes can
be evaluated ab initio. In particular,

P λ′′q′′

λq,λ′q′ =
2π

Nh̄2

∑
G

|V (3)(λq, λ′q′, λ′′ − q′′)|2n0
λqn

0
λ′q′(n0

λ′′q′′ + 1)×

δq+q′−q′′,Gδ(h̄ωλq + h̄ωλ′q′ − h̄ωλ′′q′′)

(1.54)

P λ′q′,λ′′q′′

λq =
2π

Nh̄2

∑
G

|V (3)(λq, λ′−q′, λ′′−q′′)|2n0
λq(n

0
λ′q′ + 1)(n0

λ′′q′′ + 1)×

δq−q′−q′′,Gδ(h̄ωλq − h̄ωλ′q′ − h̄ωλ′′q′′)

(1.55)

where N is the number of vectors that enter the sum, G are reciprocal lattice vectors
and V (3) is the Fourier transform of the third order derivative of the energy with respect
to the atomic displacements. The G vectors different from 0 are the origin of the U-
processes that contribute to a non-zero thermal conductivity (while N-processes do not
contribute [15]). V (3) can be calculated directly in real space, as done in Refs. [93,
94] for q ̸= 0, or in reciprocal space, following the recipe of Ref. [27] within the DFT
formalism. Such calculations can be done on relatively coarse grids with respect to the
grids needed to solve the BTE. Therefore, usually V (3) is Fourier interpolated on fine
grids.

Eq. 1.53 is in the form of a linear system where the unknown is the phonon out
of equilibrium population. Incidentally, we notice that the populations change sign
under the transformation q → −q; this means that the mean number of phonons is
conserved when the crystal is in slightly out of equilibrium conditions and therefore
there is no increment in the internal energy u(T ) over time due to heat accumulation.
A variational approach, derived from consideration over the entropy production [15],
may be used to calculate the lattice thermal conductivity kth. Otherwise, the expression
of kth as a function of f̃ is:

kth = − h̄

NkΩkBT 2

∑
λq

vλqωλqn
0
λq(n

0
λq + 1)f̃λq (1.56)

where Ω is the volume of the primitive crystal cell. An useful approximation to de-
scribe the out of equilibrium populations is the Single Mode Approximation (SMA),
in which only the off-diagonal entries of the collisional matrix are put to 0. The va-
lidity of this approximation depends on the material and on the dimensionality of the
system[95], and should always be investigated carefully.
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1.5 BTE for electrons

As already seen in Sec. 1.3, the electron BTE intrinsic collisional term can be written
by considering the scattering with equilibrium vibrations via Eq. 1.50 and the drag
exercised by out of equilibrium phonons via Eq. 1.51. The ingredients to calculate
these terms can be computed via ab initio techniques. The extrinsic collisional terms,
such as scattering with impurities, are usually are treated via simplified models—see
Sec. 1.5.1.

The electron BTE can be rewritten formally as a linear system where the unknown
is the out of equilibrium population χ; we define:

Π0
n′k′,nk := f 0

n′k′(1− f 0
nk)
[
W n=n0

n′k′→nk +W imp.
n′k′→nk

]
(1.57)

where W imp. includes the scattering of electrons from impurities. Then we can write
the BTE in a form b = Ax where:

x = χnk

b = −∂f
0
nk

∂ϵnk
vnk ·

[
eE+

∇rT

T
(ϵnk − µ)

]
−
(
∂fnk
∂t

)f=f0

coll.

+

+
e

h̄

∂f 0
nk

∂ϵnk
(vnk ∧B) · ∇kχnk

An′k′,nk =
1

NkkBT

[
Π0

n′k′,nk − δn′k′,nk

∑
n′′k′′

Π0
n′′k′′,nk

]
(1.58)

where E and B are the external electro-magnetic fields and µ is the electronic chem-
ical potential. In absence of magnetic field the b term is completely determined by
equilibrium electronic quantities and out of equilibrium phonon populations; on the
contrary, in presence of a magnetic field, it depends on the derivative of the solution.
Therefore, the electronic BTE becomes an integro-differential equation. When B = 0

the BTE can be solved exactly and efficiently using a Conjugate Gradient (CG) algo-
rithm since A is a semi-definite positive matrix [15]. Care has to be taken to avoid
overlap between the solution and the kernel of A, which is represented by the vectorial
space spanned by xKer = (1, 1, .., 1); physically, we have to restrict to all the vectors
orthogonal to xKer because they have the properties that

∑
nk χnk = 0, which means

that the total number of electrons is conserved. When B ̸= 0, at first sight we could
try to include the magnetic term inside the collisional term; in this case, we would end
up with a not definite positive matrix [15] and therefore the conjugate gradient method
would be unsuitable. Hence, the strategy used here will be to solve the BTE iteratively:
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at the i-th iteration the magnetic term is calculated from the output population of the
i − 1-th iteration and then included in b; then the equation is solved by means of the
CG scheme and the output of the i-th iteration is produced. The procedure is iterated
until convergence. We can thus reduce the complex problem of an integro-differential
BTE to the collection of linear systems solvable by the CG method; the number of
such linear systems is equal to the number of iterations Nit needed to converge the
solution—i.e. to obtain a population that changes less than a predetermined threshold
between two consecutive iterations. Different iterative schemes based on the mixing
of the input and the output of the N -th iteration can be used when convergence is hard
to achieve. Another possible approach is to replace the CG scheme with an iterative
procedure, which is less efficient but easier to implement [21].

In particular cases, the electron BTE can be solved using simplifying expressions
for the collisional term. Two of the most known are the Energy Relaxation Time
Approximation (ERTA)—also known as Self Energy Relaxation Time Approximation
(SERTA)—and the Momentum Relaxation Time Approximation (MRTA). For A these
approximations read as:

ASERTA
mk,m′k′ = − 1

kBTNk

∑
m′′,k′′

δm′k′,mkΠ
0
mk,m′′k′′ (1.59)

AMRTA
mk,m′k′ = − 1

kBTNk

∑
m′′,k′′

δm′k′,mkΠ
0
mk,m′′k′′

vmk · vm′′k′′

|vmk||vm′′k′′ |
. (1.60)

The SERTA approximations takes in account only the diagonal components of the A
matrix, that represent the rate at which a certain electronic state {nk} is depopulating
due to scattering; we thus neglect the scatterings that have {nk} as final asymptotic
product. Physically, this rate is coincident with the quasi-particle inverse lifetime. This
approximation can never be exact, but it is very efficient when any diagonal element
of A is much larger than any single out diagonal element. The MRTA approximation
instead is exact for a system where the band structure is isotropic and the scatter-
ing is purely elastic [15]. Therefore, we expect it to be especially good for materials
with spherical or circular Fermi surfaces when the scattering with low energy acous-
tic phonon may be considered elastic (at intermediate-low temperatures) or when the
elastic impurity scattering is dominant (high doping regime).

1.5.1 Scattering with doping impurities

Elastic interaction between electrons and ionized or neutral impurities (by means of the
medium-shielded Coulomb potential) is a scattering channel which can dominate the
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value of the electronic transport properties at high doping. In 3 dimensional materials,
ionized scattering is dealt with the Brooks and Herring formula [96]:

W ion
mk,m′k+q =

2πZ2nIe
4

h̄ΩBZ(ϵrϵ0)2
1

(β2
s + q2)2

(1.61)

where Ze is the charge of the impurity, nI the impurity density, ΩBZ is the BZ volume,
ϵr and ϵ0 are the relative and vacuum permittivity. βs is the reciprocal of the Debye
screening length given as:

βs =

√
e2nI

ϵrϵ0kBT
. (1.62)

For 3 dimensional zincblend materials neutral scattering can be added, as in Ref. [97],
as a lifetime, i.e. as a diagonal element to the total scattering amplitude:

W neu
mk,mk = A(w)

h̄3nnϵrϵ0
m2

h,dose
2

(1.63)

A(w) =
35.2

w1/2

(1 + e−50w)(1 + 80.6w + 23.7w2)

1 + 41.3w + 133w2

×
[
1

w
ln(1 + w)− 1 + 0.5w − 0.17w2

(1 + w)3

]
(1.64)

where w = ϵmk−ϵvtb
Ea

, ϵvtb is the highest valence band electronic energy, Ea is the dopant
activation energy, nn the neutral impurity concentration andmh,dos is the doss effective
mass for the top valence band. The total impurity scattering is therefore W imp. =

W ion +W neu.

1.5.2 Transport coefficients

We conclude the section giving the expression of the transport coefficients for the BTE
formalism. We first notice that Eq. 1.58 can be solved turning on E and ∇rT one
at a time, obtaining χE

nk and χ∇rT
nk . The total solution is then χnk = χE

nk + χ∇rT
nk .

Moreover, we can solve Eq. 1.58 independently for all the three Cartesian orientations
of the electric field/thermal gradient. We can thus introduce a vector χα

nk, where α is a
Cartesian index, such that χα

nk = χEα
nk + χ∇αT

nk . The solution of the BTE for a generic
{E,∇rT} is then obtained as χ{E,∇rT}

nk =
∑

αEαχ
Eα
nk +∇αTχ

∇αT
nk .
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For a generic electric field and in presence of an additional magnetic field, we can
write the electronic and heat current densities as:

Je =
2e

ΩNk

∑
nk

vnk
∂f 0

nk

∂ϵnk
χ
{E,∇rT}
nk (B) (1.65)

JQ = − 2

ΩNk

∑
nk

vnk(ϵnk − µ)
∂f 0

nk

∂ϵnk
χ
{E,∇rT}
nk (B) (1.66)

JQ can be interpreted as the heat exchanged by the particles with a reservoir at a chem-
ical potential µ. In order to obtain the values of the kinetic coefficients, it is convenient
to rewrite:

χα
nk = −vαnk

[
eEατ

e
nk(B) +

∇αT

T
(ϵnk − µ)τ tnk(B)

]
(1.67)

where τ enk and τ tnk are determined from χE
nk and χ∇rT

nk and are independent of field
orientation. Therefore the expressions for the currents become:

Jα
e = − 2e

ΩNk

∑
nkβ

vαnkv
β
nk

∂f 0
nk

∂ϵnk

[
eEβτ

e
nk(B) +

∇βT

T
(ϵnk − µ)τ tnk(B)

]
(1.68)

Jα
Q =

2

ΩNk

∑
nkβ

vαnkv
β
nk(ϵnk − µ)

∂f 0
nk

∂ϵnk

[
eEβτ

e
nk(B) +

∇βT

T
(ϵnk − µ)τ tnk(B)

]
(1.69)

so that now we can identify the expression for the kinetic coefficients:

L11αβ = − 2e2

ΩNk

∑
n

vαnkv
β
nk

∂f 0
nk

∂ϵnk
τ enk(B) (1.70)

L12αβ =
2e

ΩNk

∑
n

vαnkv
β
nk

∂f 0
nk

∂ϵnk
(ϵnk − µ)τ tnk(B) (1.71)

L21αβ =
2e

ΩNk

∑
n

vαnkv
β
nk

∂f 0
nk

∂ϵnk
(ϵnk − µ)τ enk(B) (1.72)

L22αβ = − 2

ΩNk

∑
n

vαnkv
β
nk

∂f 0
nk

∂ϵnk
(ϵnk − µ)2τ tnk(B) (1.73)

where the Onsager relations discussed in Sec. 1.2 must be respected.
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1.6 Wannier interpolation of electronic properties

The electronic transport properties depend relevantly on a well defined region of states
in the BZ with energies near the Fermi level EF . It is usually found that the electron-
phonon coupling induces out of equilibrium populations that vary on the meV scale.
This means that the set of the states that contribute significantly to transport includes
only electronic energies distant some meV from EF (or from the band extrema if EF

falls in the gap); at the same time this small energy window has to be sampled very
accurately in order to describe the variation of the momentum resolved transport quan-
tities. Therefore, the solution of the electronic BTE has to be performed on very dense
homogeneous electronic k and phonon q-point grids; the main bottleneck of the cal-
culation is here represented by the ab initio calculation of the EPC elements. It turns
out that it is practically impossible to calculate directly all the scattering rates on the
needed grids. Therefore, an accurate and sufficiently fast interpolation method for the
EPC needs to be introduced. This method relies on the use of Wannier functions, which
are defined as the Fourier transform of the Bloch functions |nk⟩ of the crystal:

|nR⟩ = Ω

(2π)3

∑
k

e−ik·R
if∑

m=ii

Umn(k) |mk⟩ (1.74)

where R is a real-space lattice vector and Umn(k) is a unitary gauge matrix mixing
if − ii + 1 Bloch functions at the same wave-vector, with smoothness properties as a
function of k. The U matrices can be chosen in a way such that the Wannier function
basis set is the most localized possible in real space [29]. The procedure consists in
finding the U matrices that minimize the spread functional Ω defined as:

Ω =
∑
ν

⟨ν0| r2 |ν0⟩ − [⟨ν0| r |ν0⟩]2 (1.75)

The resulting Wannier functions are known as Maximally Localized Wannier Func-
tions (MLWF). The relevance of the procedure lies on the fact that components of a
generic localized operator between different MLWFs have the least possible overlap;
therefore, we have control over the basis set truncation to represent short range opera-
tors. As an example, the electronic energies may be written as:

ϵnk =
∑
νν′p

e−ik·RpUnν′(k) ⟨ν ′0|HKS |νRe⟩U †
νn(k) (1.76)
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where the relation is exact on the k grid of points where HKS has been resolved.
Otherwise, we can interpret Eq. 1.76 as a way to interpolate ϵnk on an arbitrary point
in the BZ, if ⟨ν ′0|HKS |νRp⟩ is small enough for large Rp; in order to use Eq. 1.76
we would need the matrices U at any arbitrary point. A practical calculation scheme is
obtained considering the Wannier transform of the Hamiltonian operator:

H̃KS =
∑
p

e−ik·Rp ⟨ν ′0|HKS |νRp⟩ (1.77)

Diagonalizing H̃KS we find the interpolated electronic energies and the U matrices,
which may be now used to interpolate one electron operators in the same spirit of
Eq. 1.76. To sum up the procedure, one calculates the matrix elements of a certain
spatially localized operator on the Bloch basis set, on a relatively coarse grid; then,
one switches to the MLWFs representation; finally, one back interpolates into the k-
space on arbitrary points. The interpolation is good when the decay of the operators in
the Wannier basis set is fast. This interpolation method has be applied successfully to
electronic properties such as the velocities and Berry curvature [31, 98].

We have now a method to interpolate the electronic quantities entering in the elec-
tronic BTE. As regards the phonon properties, the Wannier interpolation reduces to the
standard Fourier interpolation:

ω2
λq =

∑
αiβj
p′

e−iq·Rp′eλαi(q)
† ⟨αi0|D |βjRp′⟩ eλβj(q) (1.78)

where with the notation ⟨αi0| we indicate the displacement of the i-th atom along the
α-th crystal coordinate in the primitive cell located at Rp′ = 0 (same for |βjRp′⟩).

Now, the only quantity left to be interpolated is the EPC matrix element. In that
case we can apply both the procedures for electronic and phonon interpolation to write:

gλn′k+q,nk =
∑
νν′p
αip′

e−i(k·Rp+q·Rp′)×

× Un′ν′(k+ q) ⟨ν ′0| ∂VKS

∂uαip
|νRp′⟩U †

νm(k)e
λ
αi(q)

(
h̄

2Miωλq

)1/2

(1.79)

Eq. 1.79 is an efficient way to interpolate the EPC when ⟨ν ′0| ∂αipVKS |νRp′⟩ is analyt-
ical and short ranged; in insulators and semiconductors, one has to single out possible
non analytical terms due to dipolar and quadrupolar contributions that originates from
singularities of the dielectric function [99, 100, 101, 22].
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A successful software infrastructure that study the Wannier interpolation is imple-
mented in WANNIER90 as described in Refs. [32, 33]. The Wannier interpolation
method for the EPC has been implemented for the first time in EPW as described in
Refs. [30, 34]. Such infrastructures, in conjunction with first-principle codes that give
access to the electronic and vibrational properties of materials, are fundamental in or-
der to calculate the physical quantities on very fine grids and converge the transport
properties accurately.

1.7 Kubo-Greenwood formula

As discussed in the introduction to this thesis, the use of the Boltzmann formalism
is not always justified. When the components of a system do not behave as quasi-
classical particles with well defined dispersion relations and sufficiently long lifetimes,
we have to resort to a more general formalism that correlates the response of a system
to external perturbations to in equilibrium properties. Such properties need now to be
expressed as averages over the whole system rather than on a defined subset of it.

One of the most important results regarding systems described by statistical me-
chanics is the relation between the thermal fluctuations and the response to external
perturbations. This argument dates back to Einstein relations, even though the com-
plete formal description of the connections is due to two seminal papers of Kubo [58,
59].

In general, we consider a time-independent Hamiltonian Ĥ subjected to a time-
dependent perturbation F (t) which couples to some observable B̂ of the system [102].
We define:

ĤF (t) = Ĥ + F (t)B̂ (1.80)

as the total Hamiltonian of the system. We suppose that for t ≤ t0 the external per-
turbation is absent and that the system is in thermal equilibrium with a reservoir. In
the Schrödinger picture, the time evolution operator between t0 and a generic time t,
at first order in the external perturbation, is:

Û(t, t0) = e−
i
h̄
Ĥ(t−t0)

[
1̂− i

h̄

∫ t

t0

B̂(t′ − t0)F (t
′)dt′

]
(1.81)

Now we would like to understand how the average values of a system observable
change with time; in particular we consider an operator Â with thermal equilibrium
average ⟨Â⟩0 at t0 and we want to evaluate its average at a generic time ⟨Â⟩F (t). We
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can write:
⟨Â⟩0 =

∑
N

PN ⟨N | Â |N⟩ (1.82)

where |N⟩ is a set of eigenstates of the time-independent Hamiltonian Ĥ and PN is
the Boltzmann weight Pn = e−βEN

Z
where Z is the partition function, EN are the

eigenenergies of the eigenstates |N⟩ and β = 1
kBT

. We can now define the expectation
value at later times as [102]:

⟨Â⟩F (t) =
∑
N

PN ⟨N(t)| Â |N(t)⟩ (1.83)

where the states are evolved in time with the time operator of Eq. 1.81. Using the
previous results one can write:

⟨Â⟩F (t)− ⟨Â⟩0 = − i

h̄

∫ t

t0

⟨[Â(t− t′), B̂]⟩0F (t′)dt′ (1.84)

where [, ] is the commutator operator and we have used the time independence of the
unperturbed Hamiltonian to write the time dependence with the variable t− t′ > 0; we
can let t0 → −∞ without losing generality. The same result can be obtained studying
the time evolution of the density matrix operator ρ̂ that determines the probabilities
PN and defining the variation of the expectation value as Tr [(ρ̂F (t)− ρ̂0)A][58] where
Tr is the trace operation. The importance of Eq. 1.84 is evident: the out of equilib-
rium response of the operator Â is governed by an expectation value performed on the
equilibrium distribution.

From Eq. 1.84 we can define the retarded adiabatic response function of the system
as:

χAB(t− t′) = − i

h̄
θ(t− t′)⟨[Â(t− t′), B]⟩0 (1.85)

where θ(t) is the Heaviside step functions—the difference between adiabatic and isother-
mal responses is presented in App. B. In usual calculations, one is interested in the
response of a system to periodic perturbations of the form:

F (t) = Fωe
−i(ω+iη)t + c.c. (1.86)

where c.c. means complex conjugate. In order for the system to have a thermal equi-
librium at t0 = −∞, we have introduced a small η in Eq. 1.86 to switch on the
perturbation adiabatically; we can take the limit η → 0 at the end on the calculation.
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Inserting Eq. 1.86 inside Eq. 1.84 we obtain:

⟨Â⟩(ω) := ⟨Â⟩F (ω)− ⟨Â⟩0 = χAB(ω)Fω (1.87)

χAB(ω) = − i

h̄
lim
η→0

∫ ∞

0

⟨[Â(τ), B̂]⟩0e−i(ω+iη)τdτ (1.88)

where χAB and F are contracted on all the indexes that are not the frequency. To
our aims, we are interested in the response of a system to an external electromagnetic
field. In this case, we can consider the following Hamiltonian of N electrons in mutual
interaction:

ĤA(t) =
1

2me

∑
i

(
p̂i +

e

c
A(r̂i, t)

)2
+ U(r̂1, .., r̂N) (1.89)

where A is the vector potential in the Weyl gauge. Linearising the Hamiltonian with
respect to the vector potential we obtain:

ĤA = Ĥ +
e

c

∫
ĵp(r) ·A(r, t)dr (1.90)

where:
Ĵp(r) =

1

2me

∑
i

[p̂iδ(r− r̂i) + δ(r− r̂i)p̂i] (1.91)

is the total paramagnetic density current, which is not gauge invariant1. Its expectation
values is:

⟨Jpα⟩(q, ω) =
e

c

∑
q′β

χJpαJpβ
(q,q′, ω)Apβ(q

′, ω) (1.92)

where here χ is the response function in the Fourier transform of:

χJpαJpβ
(r, r′, t) = − i

h̄
θ(t)⟨[Ĵpα(r, t), Ĵpβ(r

′)]⟩0 (1.93)

One is then interested in the expectation value of the physical current, which is the sum
of the total paramagnetic and diamagnetic currents (and whose operator is proportional
to v̂i and not p̂i):

Ĵ(r) = Ĵp(r) +
e

mec
n̂(r)A(r) (1.94)

The related response function is:

χJ
αβ(q,q

′, ω) =
n(q, ω)

me

δ(q− q′)δαβ + χJpαJpβ
(q,q′, ω) (1.95)

1The current should be written Ĵp = 1
2

∑
i [v̂iδ(r− r̂i) + δ(r− r̂i)v̂i]. We can substitute v̂i → p̂i

me

to obtain the paramagnetic component of the current only if we assume velocity-independent interac-
tions amongst particles [103, 104]
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We now consider the response to an uniform electric field E(t), that can be de-
scribed by a vector potential of the form A(ω) = − ic

ω
E(ω). In this case, Eq. 1.84

becomes:
− eJα(0, ω) =

ie2

ω

∑
β

χJ
αβ(0,0, ω)Eβ(ω) (1.96)

where we can identify immediately the complex conductivity tensor S :

Sαβ(ω) =
ie2

ω
χJ
αβ(0,0, ω) (1.97)

From the previous equation, the complex conductivity tensor can be rewritten in the
spectral representation in two equivalent ways [105]:

Sαβ(ω) =
in(0, ω)

mω
δαβ +

i

ωΩ

∑
MN

e−βEN − e−βEM

Z

⟨N | Ĵpα |M⟩ ⟨M | Ĵpβ |N⟩
h̄(ω + iη)− (EM − EN)

(1.98)

Sαβ(ω) =
ih̄

Ω

∑
MN

e−βEN − e−βEM

Z(EM − EN)

⟨N | Ĵpβ |M⟩ ⟨M | Ĵpα |N⟩
h̄(ω + iη)− (EM − EN)

(1.99)

Assuming now that our system is formed by a collection of electrons following a
one particle Hamiltonian, as in the case of DFT, we can recast Eq. 1.99 as a function
of one particle quantities and operators [60]:

Sαβ(ω) = i
2e2h̄3

m2
eΩ

∑
mm′

f 0(ϵm′)− f 0(ϵm)

ϵm − ϵm′

⟨m| ĵpα |m′⟩ ⟨m′| ĵpβ |m⟩
ϵm − ϵm′ − h̄ω + iδ/2

(1.100)

where ĵ is now the one particle paramagnetic current operator, proportional to the ve-
locity operator v̂ = [Ĥ, r̂] 2. To obtain the response to a static perturbation, one should
perform the limit ω → 0 in the above expressions. If the system is composed by
atoms and electrons, as in crystals, Eq. 1.100 is justified in the adiabatic approxima-
tion picture; nonetheless, if calculated for one single atomic configuration, Eq. 1.100
only contains the response to an external perturbation in the form of an electromag-
netic field. Indeed, for a DFT system another source of perturbation is the vibrational
motion of nuclei; in the semi-classical approximation, this can be taken in account by
averaging Eq. 1.100 over a set of nuclear configurations extracted from a MD simu-
lation at temperature T . To our knowledge, only recently the limits of this procedure

2In the limit m′ → m we have f0(ϵm′ )−f0(ϵm)
ϵm−ϵm′ → − ∂f0

∂ϵm
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have been formally discussed [106], but a complete investigation is still lacking.
Up to now we have considered the response of a system to a mechanical external

perturbation, i.e. to an F (t) which couple to some observable B̂ of the system. When
the external perturbation is a thermal gradient instead, the same picture does not hold.
Nonetheless, in this case the coefficients that enter the Onsager relations may still be
calculated as an expectation value of appropriate current operators [59]. In particular,
referring to the notations of Sec. 1.2, we have:

L11αβ(ω) =

∫ ∞

0

dteiωt
∫ β

0

dλ⟨ĴαĴβ(t+ ih̄λ)⟩ (1.101)

L12αβ(ω) =

∫ ∞

0

dteiωt
∫ β

0

dλ⟨ĴαQ̂β(t+ ih̄λ)⟩ (1.102)

L21αβ(ω) =

∫ ∞

0

dteiωt
∫ β

0

dλ⟨Q̂αĴβ(t+ ih̄λ)⟩ (1.103)

L22αβ(ω) =

∫ ∞

0

dteiωt
∫ β

0

dλ⟨Q̂αQ̂β(t+ ih̄λ)⟩ (1.104)

(1.105)

where Q̂ is the total quantum-mechanical operator associated to an heat flow current
(analogously as Ĵ is the total operator representing charge density current), and care to
limits is implicit. As shown in Ref. [107], the real Onsager coefficient for independent
electrons can be brought in the following form [103]:

Lijαβ = lim
ω→0

(−1)i+j 2πe
2h̄3

m2
eΩ

∑
mm′

f 0(ϵm′)− f 0(ϵm)

ϵm − ϵm′
(ϵm′ − µ)i−1(ϵm − µ)j−1×

⟨m| ∇α |m′⟩ ⟨m′| ∇β |m⟩ δ(ϵm − ϵm′ − h̄ω)

(1.106)

In the above formula the electronic states are all-electron wavefunctions; in the PAW
formalism [108]—that we will use when performing calculations in Chapter 5— the
matrix elements involving the gradients can be conveniently treated as in Ref. [103].

As mentioned above, to include the atomic degrees of freedom we average Eq.
1.106 over the nuclear thermal configurations, where we consider the electronic quan-
tities as a function of the classical nuclear coordinates R, without time dependence in
the adiabatic approximation.

As we have learnt in this and the previous sections, we can compute the conductiv-
ity of a system (and the other transport coefficients) within two seemingly different pic-
tures. The first one relies on the existence of well-defined quasi-particles that weakly
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interact and whose thermodynamics is governed by the Boltzmann master equation.
The second one is based on the general theory for the response of a system to a small
external perturbation expressed via the Kubo formula. To bridge the two approaches—
at least for normal metals—we refer to Ref. [13]. Here, the current-current correlation
function is calculated via a diagrammatic approach to equilibrium expectation values
that includes the leading order approximation to the electron-phonon self-energy. This
is different from the approximated approached used to write down Eq. 1.100. It is in
general shown that the Kubo formula can be expressed in function of a quantity χnk(ω)

that satisfies a generalized BTE equation, which reduces to Eq. 1.58 in the limit of van-
ishing ω (the result is even more general and provides separate BTEs for phonons and
electrons; nonetheless, the phonons may be considered at equilibrium as explained
previously in this chapter). Also, in the same limit the conductivity formula reduces to
Eq. 1.70. We can therefore state that the calculation of the dc conductivity tensor by
means of Eq. 1.70, where χnk is the solution of the BTE with the collisional integral
written using the Fermi golden rule, is equivalent to calculate the Kubo formula in the
perturbative approach using the leading order approximation to the electron-phonon
self-energy (and therefore including an infinite subset of diagrams in the calculation
of the electron propagator). This generalized BTE derived in Ref. [13] can be used in
order to correct the results coming from the first order perturbation theory calculation
of the infrared absorption of normal metals, as done in Ref. [109]. This correction is
expected to be relevant when the EPC coupling cannot be considered very small.
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Chapter 2

Boltzmann equation from non
equilibrium Green’s functions

In this chapter, after having discussed the BTE and its solution from a phenomeno-
logical perspective in Chap. 1, we give a detailed and formal derivation of Eq. 1.58
from the Non Equilibrium Green’s Functions (NEGF) theory. Despite Kadanoff and
Baym [110] and Mahan [111] discussed the derivation for the homogeneous gas case,
and Kita [11] extended the discussion to metallic one band models with the inclusion
of impurity scattering only, a general approach that keeps in account a more realistic
description of materials and scattering mechanisms is missing. For this reason in this
chapter, on the footsteps of what already done in the literature, we give a derivation
which avoid strong assumptions on the system under consideration as much as possi-
ble.

This chapter is intended to be technical, and one may jump directly to the last
section where a generalized BTE is derived in the semiclassical limit and its reduction
to the form of Eq. 1.58 is discussed. Nonetheless, we find interesting to highlight the
fact that the BTE is profoundly well-founded and it naturally stems from physically
sound approximations of the NEGFs. In particular, this sheds a different light over the
results that will be presented in the following chapters on specific materials, as we will
exactly know in which hypotesis they are valid and what degree of accuracy they have.
A rather basic knowledge of the non equilibrium theory is needed to derive the BTE
from first principles, so that a very brief introduction to the methodology is given in
the first section of this chapter; for details we refer to the abundant literature [112, 113,
110].

Also, we want to mention that in this chapter we will adopt a notation where the
variables on which a function depends are kept in paranthesis instead of subscripts
as much as possible, in order to facilitate readibility of the (sometimes) very long
expressions. The dependence of Green’s function upon external field will always be



Chapter 2. Boltzmann equation from non equilibrium Green’s functions 38

implicit, if not stated otherwise. Also, f and n without any apex will be used to
indicate the statistical Fermi-Dirac and Bose-Einstein statistics, while the apexes 0 will
be reserved to equilibrium quantities of non-interacting systems and 0̇ to equilibrium
quantities of interacting systems.

2.1 Keldysh-Contour formalism and Dyson’s equations

It is very common to evaluate thermal averages of a physical observable Ô. For an iso-
lated system with Hamiltonian Ĥ , this task can be performed by doing ⟨Ô⟩ = Tr{ρ̂Ô}
where Tr is the trace operation and ρ̂ is the density matrix operator, which in the canon-
ical ensamble is identified by ρ̂ = e−βĤ

Tr{e−βĤ}
. In the case of an isolated system, at the

thermodynamical equilibrium we have that ⟨Ô⟩ is independent of time.
Things change when a system is isolated before t < t0 but then a perturbation is

turned on at t = t0, so that its Hamiltonian becomes Ĥ(t) for t ≥ t0. In the Heisenberg
picture for the time evolution of operators, we can write for the expectation value for
t > t0:

O(t) := ⟨ÔH(t)⟩ = Tr{ρ̂ÔH(t)} (2.1)

where ÔH(t) = Û(t0, t)ÔÛ(t, t0) and the time evolution operator satisfies:

i
∂

∂t
Û(t, t′) = Ĥ(t)Û(t, t′)

i
∂

∂t′
Û(t, t′) = −Û(t, t′)Ĥ(t′) (2.2)

with boundary condition Û(t, t) = 1. The above equation is solved formally by:

Û(t, t′) =

T̂ e−
∫ t
t′ dt̄Ĥ(t̄) t > t′

ˆ̄Te−
∫ t
t′ dt̄Ĥ(t̄) t < t′

(2.3)

where T̂ is the time-ordering operator while ˆ̄T is the anti-time-ordering operator. If
one extends the definition of the time evolution operator to immaginary times then one
can rewrite Eq. 2.1 as:

O(t) =
Tr{Û(−iβ, t0)Û(t0, t)ÔÛ(t, t0)}

Tr{Û(−iβ, t0)}
(2.4)

A compact expression for Eq. 2.4 can be obtained if we define a time variable z living
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Figure 2.1: Keldysh contour γ (reprinted from Ref. [112]) with t0 = 0
and extendend to real infinite times.

on the contour of Fig. 2.1:

O(z) =
Tr{T̂ce−i

∫
γ dz̄Ĥ(z̄)Ô(z)}

Tr{T̂ce−i
∫
γ dz̄Ĥ(z̄)}

(2.5)

where the contour ordering operator T̂c moves operators with later contour variable
to the left. In summary, we have introduced a formalism in order to calculate non
equilibrium expectation values of physical observables on the contour represented in
Fig. 2.1. The difference between this formalism and equilibrium theory is that the
Keldysh contour explicitly avoids to deal with transition probabilities between dif-
ferent states [114]. In other words, non equilibrium theory cannot be expressed via
expectation values of the fields between asymptotic states in the far past and in the far
future as usually done in equilibrium theory. Here, at zero temperature in fact one can
adopt the "adiabatic switching" technique and show, using the Gell-Mann-Low theo-
rem, that asymptotic ground states are related via |t = −∞⟩ = eiϕ |t = +∞⟩ where ϕ
is a generic phase [115]. Out of equilibrium, this supposition may not hold, expecially
if dissipative processes take place. Therefore the expectation values are to be done be-
tween asymptotic states at equal times, i.e. at infinite past; the immediate consequence
is that the theory cannot be expressed as a function of a single type of Green’s function
(or two, if we consider also the analyitic continuation to immaginary times in case of
finite-temperature averages).

To be practical, we now consider the following Hamiltonian:

Ĥ = Ĥ0 + Ĥ i + Ĥ ′(t) := Ĥ 0̇ + Ĥ ′(t) (2.6)

where Ĥ0 represents the Hamiltonian of a system composed by free particles, Ĥ i is
their mutual interaction and Ĥ ′(t) is an external perturbing potential which has the
property that is switched on at t0; Ĥ 0̇ is the hamiltonian of the interacting system in
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absence of external perturbations. We now define the following correlation functions
[111]:

G<(r1t1, r2t2) = i⟨Ψ†(r2t2)Ψ(r1t1)⟩ (2.7)

G>(r1t1, r2t2) = −i⟨Ψ(r1t1)Ψ
†(r2t2)⟩ (2.8)

Gt(r1t1, r2t2) = θ(t1 − t2)G
>(r1t1, r2t2) + θ(t2 − t1)G

<(r1t1, r2t2) (2.9)

Gt̄(r1t1, r2t2) = θ(t2 − t1)G
>(r1t1, r2t2) + θ(t1 − t2)G

<(r1t1, r2t2) (2.10)

Gr(r1t1, r2t2) = Gt(r1t1, r2t2)−G<(r1t1, r2t2) (2.11)

Ga(r1t1, r2t2) = Gt(r1t1, r2t2)−G>(r1t1, r2t2) (2.12)

where Ψ†(rt) and Ψ(rt) are the electronic field operators in the Heisenberg representa-
tion and the six Green’s functions are denoted respectively as "lesser", "greater","time-
ordered","anti-time-ordered","retarded" and "advanced". The Heisenberg representa-
tion picture is switched to the interaction representation picture when perturbation
theory is used. In the following we neglect initial correlations on the contour in the
interaction representation [116], i.e. we neglect the perturbation expansion of the den-
sity matrix along the imaginary axis [117], and thus let t0 = −∞; this supposition
can be justified only if we look at times which are very distant from external field
appearance—even though this may be not a sufficient condition.

In equilibrium theory, for a non interacting DFT system with hamiltonian H0, the
expression for the lesser and greater Green’s functions in momentum and frequency
space are:

G<,0(nk, ω) = 2πifnkδ(ω − ϵ0nk) (2.13)

G>,0(nk, ω) = 2πi(1− fnk)δ(ω − ϵ0nk) (2.14)

so that, when integrated over ω, the lesser and greater Green’s functions contain the
information on the particle statistics. G< and G> can therefore be seen as a general-
ization of the one particle Fermi-Dirac statistic, in the momentum and frequency phase
space, when the system is perturbed (the same considerations apply to bosonic fields
and Bose-Einstein statistic). With this in mind and wanting to derive the analogous of
the BTE, one is eager to obtain an evolution equation for the lesser and greater Green’s
functions. The best way to do it is to start from the Dyson equation and derive it with
respect to time. In non equilibrium theory the Dyson equation involve all the four
independent different Green’s functions listed in Eq. 2.12. Indeed, we consider the
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matrix:

G̃ =

[
Gt −G<

G> −Gt̄

]
(2.15)

and the matrix:

Σ̃ =

[
Σt −Σ<

Σ> −Σt̄

]
. (2.16)

It can be shown that we can obtain a Dyson equation for G̃ in the form of (see Mahan
[111]):

G̃(r1t1, r2t2) = G̃0(r1t1, r2t2)+∫ +∞

−∞
dr3dt3

∫ +∞

−∞
dr4dt4G̃

0(r1t1, r3t3)Σ̃(r3t3, r4t4)G̃(r4t4, r2t2) (2.17)

or in the alternative but equivalent form:

G̃(r1t1, r2t2) = G̃0(r1t1, r2t2)+∫ +∞

−∞
dr3dt3

∫ +∞

−∞
dr4dt4G̃(r1t1, r3t3)Σ̃(r3t3, r4t4)G̃

0(r4t4, r2t2) (2.18)

The above equations involve all the various Green’s functions at the same time. Their
coordinate dependence can be simplified in certain conditions; in fact, in crystals the
Green’s functions are usually not homogeneous in space, but they are homogeneous
in time far from transients due to the switch on of the external perturbation. In this
condition we can say that:

G̃0(r1t1, r2t2) = G̃0(r1, r2, t1 − t2). (2.19)

Also, it is interesting to note that in crystals a certain degree of spatial homogeneity is
reached. For example at thermal equilibrium, the value of the observables depending
on the coordinates is the same when evaluated at r and r + t, where t is a generic
combination of lattice vectors. This suggests to express the correlation functions on a
basis set which keeps track of this invariance; this basis set is built with the Wannier
functions generated by the Bloch functions of the crystal, that are introduced in Chap.
1. This will be of central importance for the approximations done in the following.

In this context we are interested mainly in two quantities: the one particle density
for hole and electrons and the electronic current. The expectation values for the density,
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starting from its form in second quantization, is:

ne(r1, t1) = ⟨Ψ̂†(r1, t1)Ψ̂(r1, t1)⟩ = −iG<(r1t1, r1t1) (2.20)

For the electronic current we have the following expression for the paramagnetic current—
or simply the component in absence of external fields:

Ĵp(r,t) =
e

2

∑
i

(v̂iδ(r− ri) + δ(r− ri)v̂i) (2.21)

where v̂i = [Ĥ, r̂i]. The above expression can be simplified if we assume particle
interactions that are independent of the velocity (such as for the case of one particle
Hamiltonians with local pseudopotentials) by sending v̂i → p̂i

me
[104, 113]. In this

case we obtain [116]:

Jp(r, t) = − e

2me

{[
∇̂r1 − ∇̂r2

]
G<(r1, t1, r2, t2)

}
r1=r2=r
t1=t2=t

(2.22)

The total current operator in presence of a vector potential A(r, t) is instead:

Je(r, t) = − e

2me

{[
∇̂r1 − ∇̂r2 − ie (A(r1, t1) +A(r2, t2))

]
G<(r1, t1, r2, t2)

}
r1=r2=r
t1=t2=t

(2.23)
If we express the electric field as gradient of a scalar potential, the paramagnetic is the
only formal component of the total current; of course, the diamagnatic term will be
contained in the Green’s function by gauge invariance [see App. D and App. E for
more details]. We finally remark that for both density and density-current operators,
if spin degeneracy is broken, the above equations hold for each separate spin chan-
nel. It is evident from the above equations that the naive expectations raised by Eqs.
2.13 and 2.14 about the lesser Green’s function centrality in transport theory find their
justification in the second quantization expression for the current operator.

2.2 Retarded kinetic equation in the Wannier repre-
sentation

To show the general procedure to find the kinetic equations for all the Green’s functions
in the Wannier representation, we focus on Gr and study the time evolution of its
Dyson’s equation. This is obtained applying the operator i∂/∂t1 − H0(r1,−i∇r1) to
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both members of equation 2.17, for the component involving Gr:

[i
∂

∂t1
−H0(r1,−i∇r1)]G

r(r1t1, r2t2) =

δ(r1 − r2)δ(t1 − t2) +

∫ +∞

−∞
dr3dt3Σ

r(r1t1, r3t3)G
r(r3t3, r2t2) (2.24)

where we used that at equilibrium:[
i
∂

∂t1
−H0(r1,−i∇r1)

]
G̃0(r1t1, r2t2) = δ(r1 − r2)δ(t1 − t2)Ĩ (2.25)

where Ĩ is the 2× 2 identity matrix.
The Feynmann rules for the diagrammatic expansion in the non equilibrium formal-

ism are well explained by Rammer in Ref. [113]; the generalized features of Feynman
diagrams with respect to equilibrium theory is that now they contain also product and
summations over the matrix indexes that identify the Green’s functions. We can extract
from the self-energy the contribution given by H ′(r1t1) = U(r1t1). In fact, as showed
in [113], its contribution to the Dyson equation may be written as:∫ +∞

−∞
dr3dt3G̃

0(r1t1, r3t3)U(r3t3)ĨG̃(r3t3, r2t2) (2.26)

so that for Eq. 2.24 we get:

[i
∂

∂t1
−H0(r1,−i∇r1)− U(r1t1)]G

r(r1t1, r2t2)

= δ(r1 − r2)δ(t1 − t2) +

∫ +∞

−∞
dr3dt3Σ

r(r1t1, r3t3)G
r(r3t3, r2t2) (2.27)

where Σ now contains only terms which are formally equal to the equilibrium Feynman
diagrams. At this point we express Gr in the Wannier function basis set as defined in
Eq. 1.74, but by setting Umn = δmn. In this way we have a univoque identification
between each Wannier function and the band energy to which it is referred—we will
discuss later how different choices may be made. The result is:

Gr(Rn,R′n′, t1, t2) :=

∫ +∞

−∞
dr′1

∫ +∞

−∞
dr′2 ⟨Rn|r′1⟩Gr(r′1t1, r

′
2t2) ⟨r′2|R′n′⟩

Gr(r1t1, r2t2) =
∑
Rn
R′n′

⟨r1|Rn⟩Gr(Rn,R′n′, t1, t2) ⟨R′n′|r2⟩

(2.28)
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We use the expansion on Wannier functions for every operator and function in Eq 2.27:

δ(r1 − r2)δ(t1 − t2) → δRn,R′n′δ(t1 − t2) (2.29)

H0(r1) → H0(Rn,R′n′) (2.30)

U(r1, t1) → U(Rn,R′n′, t1) (2.31)

Gr(r1r2, t1, t2) → Gr(Rn,R′n′, t1, t2) (2.32)

Σr(r1r2, t1, t2) → Σr(Rn,R′n′, t1, t2) (2.33)

The explicit form for U(r1, t1) that we consider is:

U(r1, t1) = −eE · r1, (2.34)

and its matrix elements in Wannier functions are:

U(Rn,R′n′, t1) = −eE · ⟨Rn|̂r1|R′n′⟩ =

− eE · ⟨(R−R′)n|̂r1|0n′⟩ − eE ·R′δRn,R′n′ (2.35)

where the chain of equalities comes from the following translational property of the
Wannier functions:

⟨r+ t|Rn⟩ = V

(2π)3

∑
k

e−ik·R ⟨r+ t|kn⟩ = V

(2π)3

∑
k

e−ik·R ⟨r|kn⟩ eik·t =

V

(2π)3

∑
k

e−ik·(R−t) ⟨r|kn⟩ = ⟨r|R− tn⟩ (2.36)

where t is a generic direct-space lattice vector; with the above formula and a change of
variable in integration, Eq. 2.35 is obtained. It is to notice that Eq. 2.35 is valid even if
the system is periodic in less than 3 dimensions. In such case, the above equalities are
fully working only if the electric field is in a direction where periodicity is preserved,
in order to use Bloch’s functions properties in Eq. 2.36.

Eq. 2.27 in Wannier representation then becomes:

∑
R1n1

[i
∂

∂t1
δRn,R1n1 −H0(Rn,R1n1)δnn1 + eE · ⟨(R−R1)n|̂r1|0n1⟩+

+ eE ·R1δRn,R1n1 ]Gr(R1n1,R′n′, t1, t2) = δRn,R′n′δ(t1 − t2)+∑
R1n1

∫ +∞

−∞
dt3Σ

r(Rn,R1n1, t1, t3)G
r(R1n1,R′n′, t3, t2) (2.37)
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The same equation but derived in the t2 variable can be obtained applying the same
procedure used to arrive to Eq. 2.37, but starting from Eq. 2.18. In this case one first
uses that:[

−i ∂
∂t2

−H0(r2, i∇r2)

]
G̃0(r1t1, r2t2) = δ(r1 − r2)δ(t1 − t2)Ĩ (2.38)

In this case one should be more careful with matrix indexes when passing to the Wan-
nier basis set (see App. F). One obtains:

∑
R1n1

Gr(Rn,R1n1, t1, t2)[−i
∂

∂t2
δR1n1,R′n′ −H0(R1n1,R′n′)δn1n′+

eE · ⟨(R1 −R′)n1|̂r2|0n⟩+ eE ·R1δR1n1,R′n′ ] = δRn,R′n′δ(t1 − t2)+∑
R1n1

∫ +∞

−∞
dt3G

r(Rn,R1n1, t1, t3)Σ
r(R1n1,R′n′, t3, t2) (2.39)

where the time derivative operator is just simbolically on the right but it acts as ∂
∂t2
Gr

(see App. F).
We now rewrite the correlation functions with the following change of variables:

Gr(Rn,R′n′, t1, t2) = Gr(
R+R′

2
,R−R′, n, n′,

t1 + t2
2

, t1 − t2) (2.40)

Our assumption will be that the dependence of the Green’s function over R+R′ is
just due to the presence of the electric field, whereas other types of inhomogeneity
are not present. In other words, we imagine a spatially homogeneous sample whose
translational symmetry is broken only by the presence of an electric potential. We
also define the following change of coordinate, analogous to what is know as Wigner
transformation [111] (see App. C and E for a more detailed discussion over the Wigner
transformation):

Gr(Rn,R′n′, t, t′) =
∑
k

∫ ∞

−∞
dωeik·(R−R′)e−iω(t1−t2)Gr(k,

R+R′

2
, n, n′,

t1 + t2
2

, ω).

(2.41)
The same definition applies also to the self-energy. As long as Σ and G will appear
as contracted over coordinates, we have to understand how to deal with the Wigner
transform of products of the type:

∑
R1,n1

∫ ∞

−∞
dt′A(Rn,R1n1, t1, t

′)B(R1n1,R′n′, t′, t2) (2.42)
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This is done with a procedure known as gradient expansion, and is presented in App.
C.

We now sum Eqs. 2.37 and 2.39 member by member, multiply by 1
2

and apply the
Wigner transform to both members of the obtained equation. We then make use of the
results of App. C, where the change of variables Ω = ω + eE · R+R′

2
is implemented

in order to obtain gauge invariant quantities—see App. E—to obtain:

∑
n1

[
Ωδnn1 − ϵ0nkδnn1

]
Gr(k, n1, n′,Ω) +

ieE

4
· ∇kϵ

0
nkδnn1

∂

∂Ω
Gr,0̇(k, n1, n′,Ω)+

− ieE

4

∂

∂Ω
Gr,0̇(k, n, n1,Ω) · ∇kϵ

0
n′kδn1n′+

+
e

2
E ·A(k, n, n1)Gr,0̇(k, n1, n′,Ω) +

e

2
Gr,0̇(k, n, n1,Ω)E ·A(k, n1, n′)+

− 1

2
Gr(k, n, n1)Σr(k, n1, n′)− 1

2
Σr(k, n, n1)Gr(k, n, n1)+

− ieE

4

[
∇kG

r,0̇(k, n, n1,Ω)
∂

∂Ω
Σr,0̇(k, n1, n′,Ω)− ∂

∂Ω
Gr,0̇(k, n, n1,Ω)∇kΣ

r,0̇(k, n1, n′,Ω)+

+∇kΣ
r,0̇(k, n, n1,Ω)

∂

∂Ω
Gr,0̇(k, n1, n′,Ω)− ∂

∂Ω
Σr,0̇(k, n, n1,Ω)∇kG

r,0̇(k, n1, n′,Ω)
]
= 1

(2.43)

where:

A(k, n, n1) =
∑
R

e−ik·R < Rn|r|0n1 > (2.44)

and we have only retained first order terms in E in the gradient expansion of App. C.1

Coherently, we keep/evaluate all the term at first order in the electric field. The above
expression is clearly formidable, but it can be simplified. If indeed we assume that the
Green’s function is diagonal in the band index, so that different states are not mixed,
and neglect the term in A we can simplify Eq. 2.43 into a much nicer expression:

[
Ω− ϵ0nk − Σr(k, n,Ω)

]
Gr(k, n,Ω) = 1 (2.45)

where we have condensed the notation (.., n, n, ..) → (.., n, ..). The imposition of n =

n1 = n′ corresponds to neglect the terms in A, since in their absence Gr and Σr are
diagonal; coherently, we neglected the terms in A to reach Eq. 2.45. In principle, one

1Actually, we have kept only first orders in the expansion of the Green’s function in the spatial and
temporal center of mass. Since such expansion generates corrections in the electric field of the same
order, we are in turn only keeping term which are first order in the electric field—see App. C and E for
more details.
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could find a basis set where the QBTE is diagonal (since all pieces are Hermitian—in
particular, it holds that A(k, n, n′) = A∗(k, n′, n) as a consequence of ⟨Rn| r |0n′⟩ =
⟨0n| r |−Rn′⟩); one could try to understand if the U matrices that determine the gauge
of the Wannier basis may be chosen so that they diagonalize Eq. 2.43. This will be
attempted in future investigations. 2

An analogous diagonal equation can be obtained by subtracting Eqs. 2.37 and 2.39:

i
e

2
E ·
[(

1− ∂

∂Ω
Σr,0̇(k, n,Ω)

)
∇k +

(
∇kϵ

0
nk +∇kΣ

r,0̇(k, n,Ω)
) ∂

∂Ω

]
Gr,0̇(k, n,Ω) = 0

(2.46)

The dependence on physical quantities of both expressions 2.45 and 2.46 is the same
as obtained by Mahan in Ref. [111] for the case of the homogeneous electron gas,
even though the quantities are calculated in a different way and we have had to neglect
additional terms in A. At first order in the electric field we simply obtain:

Gr(k, n,Ω) =
1

Ω− ϵ0nk − Σr(k, n,Ω)
(2.47)

Eq. 2.47 consistently solves also Eq. 2.46. In the next subsection we will take care of
the expression of the self-energy.

2.3 Self Energy

The formalism for Feynmann diagrams in non-equilibrium theory is the same as the
equilibrium one, with an additional summation over matrix indexes (see Rammer
[116]). The matrix elements of specific Green’s functions can be recovered with the
Langreth rules. At equilibrium, the Fan-Migdal self energy can be expressed in the
space-time coordinates as [78]:

ΣFM(12) =

∫
d(34)G(13)Γ(324)Wph(41

+) (2.48)

where 3 = (r3, t3) and so on; the expression for Wph is, in the static approximation for
the dielectric response function:

Wph(12) =
∑
λ,λ′,q

g∗(r2,q, λ)D(q, λ, λ′, t1, t2)g(r2,q, λ) (2.49)

2This task may be attempted in form of a power expansion in the U matrices, and this may lead to a
BTE including quantum corrections in terms of Berry curvature (see Ref. [118]).



Chapter 2. Boltzmann equation from non equilibrium Green’s functions 48

where g(r,q, ν) is defined as in [78] and D is the phonon propagator. We will also
assume that the phonon propagator is the adiabatic one, to have:

Wph(12) =
∑
λ,q

g∗(r2,q, λ)D(q, λ, t1 − t2)g(r2,q, λ). (2.50)

We will consider the case where no vertex approximations are present, so that Γ(324) =
δ(32)δ(24). In non equilibrium theory, we apply the Langreth rules [119] to obtain:

ΣFM,r(12) = iGr(12)W<
ph(21) + iG<(12)W a

ph(21) =

= iGr(12)W>
ph(12) + iG<(12)W r

ph(12) (2.51)

ΣFM,<(12) = iG<(12)W>
ph(21) = iG<(12)W<

ph(21) (2.52)

ΣFM,>(12) = iG>(12)W<
ph(21) = iG>(12)W>

ph(21) (2.53)

The expression for the phonon adiabatic propagators are usually taken in the non in-
teracting approximation (also the phonon population will always be considered the
equilibrium one):

D<(q, λ, t) = −i
[
(nλq + 1)eiωλqt + nλqe

−iωλqt
]

(2.54)

D>(q, λ, t) = −i
[
(nλq + 1)e−iωλqt + nλqe

iωλqt
]

(2.55)

Dr(q, λ, t) = −i
{
θ(t)[e−iωλqt − eiωλqt]

}
(2.56)

Using the above expression and Eq. 2.53 and transforming into the frequency domain
we obtain:

ΣFM,<(r, r′, ω) =
∑
λ,q

[G<(r, r′, ω + ωλq)(nλq + 1) +G<(r, r′, ω − ωλq)nλq]×

× g∗(r2,q, λ)g(r1,q, λ) (2.57)

Taking matrix elements between Bloch functions we have:

ΣFM,<(k, n, ω) =
∑
λq
n1

|gλn1k+q,nk|2×

×
[
G<(k+ q, n1, ω + ωλq)(nλq + 1) +G<(k+ q, n1, ω − ωλq)nλq

]
. (2.58)
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where we have used that:

gnn1(k,k1,q, λ) =

∫ +∞

−∞
dr1Ψk,n(r1)Ψ

∗
k1,n1(r1)g(r1,q, λ) =∫ +∞

−∞
dr1Ψk,n(r1)Ψ

∗
k+q,n1(r1)g(r1,q, λ) = gλn1k+q,nk (2.59)

g∗nn1(k,k2,q, λ) =

∫ +∞

−∞
dr1Ψ

∗
k,n(r2)Ψk2,n1(r2)g

∗(r2,q, λ) =∫ +∞

−∞
dr1Ψ

∗
k,n(r2)Ψk+q,n1(r2)g

∗(r2,q, λ) = gλ,∗n1k+q,nk (2.60)

We have therefore used momentum selection rules and the fact that the Green’s func-
tion is assumed diagonal in the band index, so that n1 = n2. A similar expression is
obtained for Σ>:

ΣFM,>(k, n, ω) =
∑
λq
n1

|gλn1k+q,nk|2×

×
[
G>(k+ q, n1, ω − ωλq)(nλq + 1) +G>(k+ q, n1, ω + ωλq)nλq

]
. (2.61)

We can perform the same procedures for Σr; using the following formula:

θ(t)f(t) → f(ω)

2
+

i

2π

∫ ∞

−∞

f(ω − ω′)

ω′ dω′ (2.62)

which is valid when the time transform has the sign as in Eq. 2.41, one can show that:

ΣFM,r
nn1 (k, n, ω) =∑
λq
n1

|gλn1k+q,nk|2
{ [
Gr(k+ q, n1, ω − ωλq)(nλq + 1) +Gr(k+ q, n1, ω + ωλq)nλq

]
+

+
1

2

[
G<(k+ q, n1, ω − ωλq)−G<(k+ q, n1, ω + ωλq)

]
+

+
i

2π

∫ ∞

−∞
dω′
[
G<(k+ q, n1, ω′)

ω′ − ω + ωλq

− G<(k+ q, n1, ω′)

ω′ − ω − ωλq

]}
(2.63)

We can check how Eq. 2.63 is evaluated at equilibrium. Using:

1

x− x0 + iη
= P

1

x− x0
− iπδ(x− x0) (2.64)
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where P is the Cauchy principal value, and the expression for the Green’s functions
for non interacting particles we obtain:

ΣFM,r
nn1 (k, n, ω) =

∑
λq
n1

|gλn1k+q,nk|2
[

(nλq + 1− fn1k+q)

ω − ϵ0n1k+q − ωλq + iη
+

(nλq + fn1k+q)

ω − ϵ0n1k+q + ωλq + iη

]

(2.65)

which is formally equal to Eq. (55) of Ref. [111] and Eq. (157) of Ref. [78].

2.4 Lesser Green’s function kinetic equation

We have the first two set of equations 2.45 and 2.63, which are equation to be solved
coherently at first order in the electric field. These equations involve r and < quantities;
our hope is that also the equation for G< involve only r and < quantities, so that this
system of equation can be solved consistently.

As done for Gr we can try to start from equations Eq. 2.17 and Eq. 2.18 to obtain
the evolution equation for the lesser Green’s function. With the same kind of manip-
ulations it can be shown that the equation for the G< in the momentum space can be
written as:

ieE ·

[
(1− ∂ReΣr,0̇(k, n,Ω)

∂Ω
)∇k +∇k(ϵ

0
nk + ReΣr,0̇(k, n,Ω))

∂

∂Ω

]
G<,0̇(k, n,Ω)+

− ieE ·

[
∂Σ<,0̇(k, n,Ω)

∂Ω
∇kReGr,0̇(k, n,Ω)− ∂ReGr,0̇(k, n,Ω)

∂Ω
∇kΣ

<,0̇(k, n,Ω)

]
=

Σ>(k, n,Ω)G<(k, n,Ω)− Σ<(k, n,Ω)G>(k, n,Ω) (2.66)

where we have used Gt −Gt̄ = 2ReGr, Σt − Σt̄ = 2ReΣr, Gt +Gt̄ = G< +G> and
Σt +Σt̄ = Σ< +Σ> to obtain the above formula. No terms have been neglected other
then ∇R+R′

2
, ∂

∂ t+t′
2

and second order terms in the electric field as done for the retarded
equation; we further supposed that the Green’s functions are always diagonal in the
band index and coherently neglected terms in A. We see that in order to solve for G<

at first order in E we just need the equilibrium retarded Green’s function given by the
field independent term of Eq. 2.47. Substituting all the quantities with the correct field
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order we obtain:

− A0̇(k, n,Ω)
∂f(Ω)

∂Ω
eE ·

{[
∇k

(
ϵ0nk + ReΣr,0̇(k, n,Ω)

)]
Γ0̇(k, n,Ω)+

+
(
Ω− ϵ0kn − ReΣr,0̇(k, n,Ω)

)
∇kΓ

0̇(k, n,Ω)
}
=

Σ>(k, n,Ω)G<(k, n,Ω)− Σ<(k, n,Ω)G>(k, n,Ω) (2.67)

where we have used that G<,0̇(k, n,Ω) = iA0̇(k, n,Ω)f(Ω) where A0̇(k, n,Ω) :=

i(G>,0̇ − G<,0̇) = −2ImGr,0̇(k, n,Ω) is the spectral functions and Γ0̇(k, n,Ω) :=
i
2
(Σ>,0̇ − Σ<,0̇) = −ImΣr,0̇(k, n,Ω) is the linewidth. The following relations hold

between the spectral function and the relaxation time (it is worthwhile to stress that
they are correct only at equilibrium and when vertex corrections are neglected):

A0̇(k, n,Ω) =
2Γ0̇(k, n,Ω)

Γ0̇,2(k, n,Ω) +
(
Ω− ϵ0nk − ReΣr,0̇(k, n,Ω)

)2 (2.68)

Γ0̇(k, n,Ω) =
1

2

∑
λq
n1

|gλn1k+q,nk|2
[
(nλq + 1− f(Ω− ωλq))A

0̇(k+ q, n1,Ω− ωλq)+

(nλq + f(Ω + ωλq))A
0̇(k+ q, n1,Ω + ωλq)

]
(2.69)

where Eq. 2.68 follows from the definitions of A and Γ whereas Eq. 2.69 follows from
Eq. 2.63.

We now expand the lesser Green’s functions around the equilibrium value as:

G<(k, n,Ω) = iA0̇(k, n,Ω)

[
f(Ω)− ∂f(Ω)

∂Ω
Λ(k, n,Ω)

]
(2.70)

where Λ is linear in the external electric field. The expression for G> can be deduced
from:

G>(k, n,Ω)−G<(k, n,Ω) = 2iImGr(k, n,Ω) = −iA(k, n,Ω) (2.71)
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We finally obtain the Quantum Boltzmann Transport Equation (QBTE):

EA0̇(k, n,Ω) ·Φ∂f(Ω)
∂Ω

= 2
∂f(Ω)

∂Ω
Γ0̇(k, n,Ω)Λ(k, n,Ω)−

∑
λq
n1

|gνn1k+q,nk|2
∂f(Ω)

∂Ω
×

×
[
(nλq + 1− f(Ω− ωλq))A

0̇(k+ q, n1,Ω− ωλq)Λ(k+ q, n1,Ω− ωλq)+

(nλq + f(Ω + ωλq))A
0̇(k+ q, n1,Ω + ωλq)Λ(k+ q, n1,Ω + ωλq)

]
Φ(k, n,Ω) = v0̇(k, n,Ω)Γ0̇(k, n,Ω) +

(
Ω− ϵ0nk − ReΣr,0̇(k, n,Ω)

)
∇kΓ

0̇(k, n,Ω))

(2.72)

v0̇(k, n,Ω) = ∇k

(
ϵ0nk + ReΣr,0̇(k, n,Ω)

)
(2.73)

where we have simplified a term A0̇ from both sides of the equation and used the
following relations:

∂f(Ω + ωνq)

∂Ω
[nνq + 1− f(Ω)] =

∂f(Ω)

∂Ω
[nνq + f(Ω + ωνq)]

∂f(Ω− ωνq)

∂Ω
[nνq + f(Ω)] =

∂f(Ω)

∂Ω
[nνq + 1− f(Ω− ωνq)] (2.74)

To solve Eq. 2.72, one has to find the spectral function from the retarded Green’s
function at equilibrium; then one solves the equation with respect to Λ and reconstruct
G<, from which the current may be expressed as explained in App. D.

2.5 Semi-classical limit and BTE

In the previous sections we have derived the evolution equations for the Green’s func-
tions in presence of a small dc electric field, at leading order in the electron phonon
coupling. These equations, under some simplifying hypotheses, give birth to the full
QBTE of Eq. 2.72, which is an equation in the unknown Λ(k, n,Ω); its basic in-
gredients are the DFT and DFTP electronic energies and vibrational frequencies, the
interacting spectral function, linewidth and self-energy, and the statistical weights of
electrons and phonons. In principle, Eq. 2.72 can be solved for each (k, n,Ω). In
practice, this is too hard to be done. In this section, we try to find the semi-classical
limit to Eq. 2.72, i.e. the BTE presented in Chap. 1, which is less complicated to
solve. The semi-classical limit consists in taking Γ0̇ → 0 (i.e. in the case of particle
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with long enough lifetimes), for which we have:

A0̇(k, n,Ω) ≈ 2πδ(ϵ0nk +ReΣr,0̇(k, n,Ω)− Ω) (2.75)

Γ0̇(k, n,Ω) ≈ π
∑
λq
n1

|gλn1k+q,nk|2
[
(nλq + 1− f(Ω− ωλq)) δ(ϵ

0
n1k+q − (Ω− ωλq))+

(nλq + f(Ω + ωλq)) δ(ϵ
0
n1k+q − (Ω + ωλq,))

]
(2.76)

Of course, the above equations are inconsistent, since the Γ0̇ coming from Eq. 2.76
is clearly finite. Nonetheless, they can be used whenever the dependence on Ω of the
quantities entering the QBTE is smooth on a scale larger than Γ0̇.

The semi-classical limit of the QBTE of Eq. 2.72 is:

E ·Φ = 2Γ0̇(k, n,Ω)Λ(k, n,Ω)−
∑
λq
n1

|gλn1k+q,nk|2×

[
(nλq + 1− f(Ω− ωλq)) δ

−Λ(k+ q, n1,Ω− ωλq)+

(nλq + f(Ω + ωλq)) δ
+Λ(k+ q, n1,Ω + ωλq)

]
(2.77)

δ− = δ(ϵ0n1k+q + ReΣr,0̇(k+ q, n1,Ω− ωλq))− (Ω− ωλq)) (2.78)

δ+ = δ(ϵ0n1k+q + ReΣr,0̇(k+ q, n1,Ω + ωλq))− (Ω + ωλq)) (2.79)

Φ(k, n,Ω) = v0̇(k, n,Ω)δ(ϵ0nk + ReΣr,0̇(k, n,Ω)− Ω). (2.80)

Now we integrate both members with respect to Ω. The conditions to have non trivial
solutions are:

ϵ0nk + ReΣr,0̇(k, n,Ω)− Ω = 0 (2.81)

ϵ0n1k+q + ReΣr,0̇(k+ q, n1,Ω− ωλq)− (Ω− ωλq) = 0 (2.82)

ϵ0n1k+q + ReΣr,0̇(k+ q, n1,Ω + ωλq)− (Ω + ωλq) = 0 (2.83)

where the first condition can be used to isolate Ω and insert it in the other conditions.
After this integration, an expression equivalent to Eq. 1.58 is reached, if one further
discards the real part of the retarded self energy. In order to get the equivalence, one
has to use that 1

τ0
:= 1

τSERTA = −2ImΣr,0̇ = 2Γ0̇, to identify Λ(k, n, ϵ0nk) = χnk, to
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multiply both members by −∂fnk

∂ϵ0nk
and use:

(1 + nλq − fmk+q)fnk(1− fmk)δ(ϵ
0
nk − ϵ0mk+q − h̄ωλq) = (2.84)

= fnk(1− fmk+q)(nλq + 1)δ(ϵ0nk − ϵ0mk+q − h̄ωλq) (2.85)

(nλq + fmk+q)fnk(1− fnk)δ(ϵ
0
nk − ϵ0mk+q + h̄ωλq) = (2.86)

= fnk(1− fnk+q)nλqδ(ϵ
0
nk − ϵ0mk+q + h̄ωλq) (2.87)

and finally use the symmetry of the Π matrix of Eq. 1.58.
If one does not want to disregard ReΣr,0̇, one has to remember the following prop-

erty:

δ(ϵ0nk + ReΣr,0̇(k, n,Ω)− Ω) =
∑
i

δ(Ω− Ωi)

|1− ∂ReΣr,0̇(k,n,Ω)
∂Ω

|Ωi

=∑
i

Ziδ(Ω− Ωi) (2.88)

where Ωi are the solutions of Eq. 2.81, and Zi are the so-called quasi-particle weights,
which determine to which extent the quasi-particles are behaving as true particles. The
same relation holds for Eqs. 2.82 and 2.83. This is a new feature coming from the semi-
classical limit of the QBTE that enriches the kinetic picture of the BTE, and may be
needed to describe conductivity in materials where the EPC interaction is particularly
strong, so that Zi is less than 1 by a significant amount.

Disregarding the real part of the self-energy we can write:

G<(k, n,Ω) = iδ(ϵ0nk − Ω)
[
f(Ω)− ∂f(Ω)

∂Ω
Λ(k, n,Ω)

]
(2.89)

For homogeneous gas, the expression for the current following from transforming the
electronic coordinates of Eq. 2.23 in Wigner coordinates would be [111]:

Je =
∑
n

∫
d3k

k

me

∫
dΩG<(k, n,Ω) (2.90)

Since for crystals the Wigner transformation has been done with respect to Wannier
coordinates instead of electron ones, the generalization of the current expression from
which we can then determine the conductivity tensor is:

Je =
∑
n

∫
d3kvnk

∫
dΩG<(k, n,Ω) (2.91)
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Eq. 2.91 is more formally justified in App. D.
Up to now we have just considered the case of a dc electric field. For a more

generalized treatment of the case with an electromagnetic field, we refer to Ref. [11],
where it is shown how gauge invariance can be treated via the introduction of modified
Wannier functions that keep track of the Peierl’s phase; the final BTE equation is still
in the form of Eq. 1.58.

Finally, we compare the method presented in this chapter with the K-G approach
presented in Chap. 1. The main difference between these two methods is that the K-G
formula only deals with equilibrium quantities. Nonetheless, since we neglected initial
correlations for NEGFs and we considered only times in the far future with respect
to the external field appearance (and therefore we cannot access transients), the two
approaches should be equivalent. Indeed, both of them bring to the same semi-classical
Boltzmann equation.
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Chapter 3

Magnetotransport phenomena in
p-doped diamond

The first system that we investigate in this thesis is bulk p-doped diamond. As men-
tioned in the introduction, the theoretical interest on this system arises from the lack of
a detailed understanding of its electrical transport properties. In particular, the value
of its hole mobility is not known in details, neither experimentally nor theoretically; a
broad range of values is present in literature and there is no consensus on the value of
the intrinsically phonon-limited mobility. Moreover, the understanding of the precise
contributions of different scattering mechanisms to transport properties in different
temperature and doping regimes is missing. Another source of uncertainty is given
by the relation between the drift and Hall mobilities; here, the knowledge of the Hall
scattering factor is of crucial importance. The theoretical interest to study p-doped
diamond also steams from the very large increase of the Seebeck coefficient value at
low temperatures; this effect, which is way larger than in silicon, is due to the excep-
tional phonon-drag effect arising from the coupling of the electronic and vibrational
systems. This is a consequence of the extraordinarily high thermal conductivity of
diamond, which in turn follows from the very large out of equilibrium phonon popu-
lations. These populations couple to the electronic degrees of freedom and generate a
drag effect which enhances the response of the compound to a thermal gradient.

In this chapter we will first start from the solution of the phonon BTE, which can be
studied independently from the electronic BTE as the electron-phonon coupling term
of Eq. 1.47 can be neglected (the low doping concentrations studied in this work allows
us to do so). We will here compute the out of equilibrium phonon populations and the
related thermal conductivity via the use of pre-existing codes (as explained below),
and compare with experiments. Then, we will solve the complete electron BTE of
Eq. 1.58, via the use of a massively parallelized in-house built code, in absence and
presence of a magnetic field to deduce the conductivity tensor (and the related carrier
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(a) (b)

Figure 3.1: (a) Electronic structure and (b) phonon dispersion of diamond crystal along high-
symmetry lines; the grey dots are experimental neutron scattering data [120] .

mobility), the Seebeck coefficient, the Hall scattering factor, the magnetoresistance
and the magneto-Seebeck coefficient. This will give us a complete description of the
thermomagnetic phenomena in p-doped diamond.

3.1 Thermal conductivity

Diamond is a cubic crystal with a lattice parameter a = 3.52 Ang. To simulate its
properties, we use DFT as implemented in QUANTUM ESPRESSO [66] within the
local density approximation (LDA) [121]. We use a norm-conserving pseudopotential,
a plane-wave expansion up to a 60 Ry cutoff and a BZ sampling with a 24 × 24 × 24

Monkhorst-Pack mesh. The primitive cell of the crystal is described via the direct lat-
tice vectors v1 = (a/2)(−1, 0, 1), v2 = (a/2)(0, 1, 1) and v3 = (a/2)(−1, 1, 0). The
electronic and phonon properties are summarized in Figs. 3.1a and 3.1b.
For cubic systems the thermal conductivity tensor kthij is diagonal and can thus be rep-
resented by a single scalar quantity kth. If we suppose that the thermal gradient in
the medium is along the x̂ direction, its expression reads as in Eq. 1.56. In order
to calculate kth we thus need to solve equation 1.53 to determine the out of equilib-
rium populations f̃λq. To do this, we use the codes D3Q [27] (for the calculation of
the P-scattering matrices) and THERMAL2 [25] (for the solution of the Boltzmann
equation) that are part of QUANTUM ESPRESSO [66], together with in-house built
post-processing tools; THERMAL2 implements a CG algorithm for the exact solution
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Figure 3.2: (a) Thermal conductivity for diamond crystal considering anharmonic phonon-
phonon scattering only (blue diamonds) and phonon-phonon and isotopic scattering (black
circles), compared with experimental data from [122] (violet squares); (b) Cumulative con-
tribution of phonons at different frequencies to the diamond thermal conductivity, at different
temperatures, when phonon-phonon scattering is the only source of scattering.

of equation 1.53; an exact solution is necessary for diamond because the SMA approx-
imation leads to severely underestimated values of the thermal conductivity [25]. We
obtain the out of equilibrium phonon populations f̃λq on a 30 × 30 × 30 uniform q-
point mesh, for a range of temperatures going from 200K to 700K, and then calculate
the thermal conductivity kth. For all the calculation we use a Gaussian broadening of
10cm−1. The calculation takes, per each temperature, around 48 hours on 600 proces-
sors on a Tier-1 supercomputing facility as ARCHER.

The calculated values of the thermal conductivity at different temperatures are pre-
sented in Fig. 3.2a. We first consider the phonon-phonon interaction as the only source
of scattering, and see that the thermal conductivity is overestimated especially at low
temperatures. Then, we take in account also isotopic scattering (with a natural con-
centration of impurities), modelled as in Ref. [25]. This inclusion reduces the thermal
conductivity by a substantial factor at low temperatures, bringing it nearer to the ex-
perimental values.

It is interesting to analyse the cumulative contributions of different phonon fre-
quencies to the thermal conductivity, at different temperatures, by means of Eq. 1.56.
The result is given in Fig. 3.2b for the case where phonon-phonon scattering is the only
source of scattering. Here we notice that, especially for higher temperatures, great part
of the contribution comes from phonons with frequencies above 300cm−1. This effect
can be understood if we consider the exact numerical solution of Eq. 1.53, f̃λq, for
the first acoustic mode λ = 1 as a function of distance from the BZ center (λ = 2, 3

modes show the same behaviour); this is shown in Fig. 3.3a. Here we notice that the
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Figure 3.3: (a) f̃1q at 300K, as a function of the distance of the q-points from Γ (alat units),
in case of exact solution (black circles) or SMA approximation (orange boxes) to Eq. 1.53; (b)
Cumulative contribution of different phonons to the diamond thermal conductivity in absence
(same values of Fig. 3.2b) and presence of phonon-impurity scattering.

absolute value of the solution decreases to a plateau. Since the q-points number in-
stead increases as ∝ q3, this causes the peripheral part of the BZ zone (corresponding
to higher phonon frequencies) to dominate the contribution to the thermal conductivity.
In Fig. 3.3b we show that when isotopic scattering is taken into account, the contri-
bution to the thermal conductivity given by higher phonon-frequencies become less
important, especially at low temperatures. This also means that the out of equilibrium
populations relative to low frequency phonons are less sensitive to impurity presence
and therefore their value is practically unchanged with respect to the phonon-phonon
case.

As mentioned in the introduction of this thesis and in Chap. 1, the out of equilib-
rium populations of lattice vibrations have a crucial impact on the Seebeck coefficient
of a semiconductor, especially at low temperatures. Indeed, they enter in the calcula-
tion of the phonon-drag scattering term of the electronic BTE. This term is a critical
contribution to the electronic current in a crystal in presence of an external temperature
gradient and thus needs to be computed very accurately. For this reason, we have to
know the phonon populations on very fine q-point meshes (up to 100 × 100 × 100).
Obtaining the exact solution of Eq. 1.53 on such a fine mesh is too demanding. Hence,
the strategy here is to generate the exact values for the populations on a 30× 30× 30

q-points mesh and then linearly interpolate such values on the needed finer grid.
The major drawback of this strategy is that the diverging behaviour of the popula-

tions near Γ— evident from Fig. 3.3a—cannot be interpolated with a linear scheme;
hence, we may lose some relevant information. Indeed, as we will see, the phonon-
drag contribution to the Seebeck coefficient at sufficiently low temperatures (less than
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350K) is highly dependent on the asymptotic behaviour of the phonon populations. To
overcome this precision limit, we decide to use for the phonon population near Γ the
values obtained with the SMA approximation. Our choice is motivated by the observa-
tion that, for sufficiently small q-points, SMA or exact CG methods give very similar
results near Γ— as seen from Fig. 3.3a. Our final interpolating scheme is shown in
detail in Fig. 3.4a for the temperature of 200K.

To complete the discussion, we show in Fig. 3.4b the lifetimes used to calculate
the SMA phonon population of Fig. 3.4a. We can clearly see the ω2 dependence of the
first acoustic branch lifetime at low frequencies. To obtain this result, it is crucial to
apply the acoustic sum rules for the third order energy derivatives to the P-matrices of
Eq. 1.53 in the following form [93]:∑

ml

V
(3)
αβγ(0n,Mm,Ll) = 0 (3.1)

where V (3) is the third derivative of the total energy with respect to displacement of
atoms n(l,m) in the cells 0(M,L) along the Cartesian coordinates α(β, γ). The ω2

behaviour is coherent with the prediction of elastic theory [123] and thus indicates that
our calculation contains the true asymptotic behaviour of f̃λq.
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Figure 3.4: (a) Phonon out of equilibrium population at 200K on a chosen line for small q-
points, obtained by CG solution on a 30× 30× 30 grid (black circles) linearly interpolated on
a finer 100 × 100 × 100 mesh (white circles) and by SMA calculation (orange squares). (b)
Acoustic phonon linewidth (HWHM) as a function of phonon frequency, at different tempera-
tures, for the first acoustic branch.
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Figure 3.5: (a) Temperature dependence of hole drift mobility in p-doped diamond and com-
parison with approximations (ERTA and MRTA). Experimental values are from Ref. [41]
(black diamonds), [45] (black squares) and [124] (white squares); (b) Doping dependence of
µd and µH in p-doped diamond at 300K. Experimental data for Hall mobility taken from Ref.
[125] (circles), [126] (left triangles), [127] (up triangles), [128] (diamonds), [129] (down tri-
angles), [130] (squares). Inset: Hall scattering factor as function of temperature for Boron
concentrations of 1015cm−3 (blue circles), 1016cm−3 (light blue circles) and 1017cm−3 (green
circles). Squares and diamonds refer to data obtained from µH in Refs. [131] and [132], re-
spectively; in both cases µd is from Ref. [45]. An uncertainty of ±15% was estimated. [46]

3.2 Resistivity and mobility

Similarly to the case of thermal properties, the electric coefficients of a crystal are de-
termined by the out of equilibrium thermodynamics of electrons or holes. For p-doped
diamond, the presence of a certain density of acceptors NA induces the presence of a
well defined density of hole carriers n, which are effective carriers of positive charge
that are responsible for the current flow. Amongst the electrical transport coefficients,
the resistivity ρij = σ−1

ij and the drift mobility µd
ij =

σij

ne
are of crucial importance to

engineer and design efficient electronic devices. In this section we will focus on these
two material parameters for p-doped diamond crystal, in the framework of the exact
numerical solution of the linearised BTE of Eq. 1.58; the evaluation of the Onsager
coefficients follows from Eqs. 1.70, 1.71, 1.72 and 1.73. For diamond, the cubic sym-
metry implies that the transport tensors are diagonal in absence of magnetic fields and
therefore we can fully describe the conductivity (and consequently the resistivity and
the mobility) with just one scalar number σ (ρ and µd).

We start considering ρ and µd for the diamond crystal in absence of magnetic field,
considering both electron-phonon and impurity scattering as described in Chap. 1. The
values of the mobility are obtained solving Eq. 1.58 on a k-points grid of dimensions
100 × 100 × 100, including in the calculation states that lie down to 0.32eV below
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the top valence band energy. The electron-phonon coupling elements are obtained
from first principles on a 5 × 5 × 5 coarse k and q-grid and then interpolated on
100 × 100 × 100 fine meshes with Wannier interpolation—as explained in Chap. 1;
the value of the Gaussian smearing used to approximate the Dirac δ function with
via finite-width Gaussian is 5meV. Spin orbit coupling has been neglected since the
small split of the valence bands is not expected to dramatically change the value of the
mobility.

We first solve Eq. 1.58 and compute the values of the drift mobility at a fixed
acceptor density of NA = 1015cm−3 in a range of temperatures going from 200K to
700K. This is the range of temperatures which is interesting for technological applica-
tions and generally investigated in experiments and theoretical works [132, 45]. The
lower boundary of 200K on the temperature is due to the numerical precision involved
in the calculation of the mobility. In fact, at low temperatures a very low percentage of
electrons can reach the acceptor level and thus the number of holes in the valence band
is, for the same reason, very small. This scenario poses a severe problem in the calcu-
lation of the mobility, because we both need very large k-points grids to appropriately
describe the bands energy near Γ and a very accurate numerical precision on the value
of the chemical potential, to which the mobility is very sensitive especially at low tem-
peratures. The result of the calculations is shown in Fig. 3.5a; here, we can see that
the hole drift mobility for diamond at room temperature is around 2500cm2V−1s−1.
Moreover, we can see that the mobility exhibits two different behaviours at low and
high temperatures. At high temperature, the drift mobility is proportional to T−2.96

whereas at low temperatures it is proportional to T−1.70. Our results are in good agree-
ment with the experimental result obtained by Gabrysch et al. [124] and Reggiani et al.
[45]. At low temperatures the behaviour of our theoretical mobility is steeper than the
traditional T− 3

2 , deduced for crystals with spherical energy bands; this may be due to
non-elasticity of scattering processes [133]. Microscopically, the T-dependence of the
mobility at low and high temperatures can be lead back to the onset of high-frequency
phonon scattering, which happens between 250K and 400K, as we will see later. As a
final remark, we notice that from Fig. 3.5a that both the solutions of Eq. 1.58 within
the ERTA or MRTA approximations gives results that are in good agreement with the
full solution of the BTE, as it happens in the case of silicon [3]. The goodness of these
approximations seems to be in general severely reduced in the case of polar materials
[20].

Once we have studied the mobility as a function of temperature at a fixed dopant
concentration, we can try to solve Eq. 1.58 keeping the temperature fixed and varying
the dopant density. We shown in Fig. 3.5b the values of the hole drift mobility µd
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Figure 3.6: (a) Contribution of impurity scattering to total resistivity calculated via the vari-
ational formula of Eq. 3.4. (b) Phonon frequency cumulative contribution to total resistivity,
for a doping of 1015cm−3. The frequency-axis is in logarithmic scale up to 1000cm−1 and in
exponential scale for higher values.

for a fixed temperature of 300K and acceptor-impurities concentrations ranging from
1015cm−3 to 1020cm−3. In particular, Fig. 3.5b shows that for low doping concen-
trations the mobility tends to an upper bound: this is the intrinsic value of the mo-
bility obtained including only the electron-phonon interaction in the collisional term
of the Boltzmann equation. In any case, our mobility results for concentration values
above 1016cm−3 should be taken with care because our electron-impurity interaction
model may be unsuitable at high doping concentrations and because other scattering
channels—such as electron-plasmons—may become important in the electric conduc-
tion mechanisms for p-diamond crystal.

From Fig. 3.5b we notice that the comparison with experiments is not straightfor-
ward. Indeed, the experimental mobilities can be spread out over one order of magni-
tude at a given boron content. This is a consequence of compensation effects due to
deep level impurities. These effects can greatly affect electrical transport as they tend
both to decrease the carrier concentration and increase the density of ionised impuri-
ties that can scatter charge carriers. Another difficulty comes from the fact that most
experiments measure the Hall mobility µH , and not the drift mobility µd. Assuming
an electric field along the x̂ direction, these two quantities are related via the following
relation:

µH = µd ne

Bz

σxy(Bz)

(σ)2
= rµd (3.2)

where Bz is a vanishingly small magnetic field in the ẑ direction, and r is known
as the Hall scattering factor (or Hall coefficient factor). Therefore, to compare with
experiment we need to solve Eq. 1.58 is presence of magnetic field; this will be matter
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of the next section, but here we anticipate that in our calculations we find r ≈ 0.8 with
a weak dependence on doping and temperature, as can be seen in the inset of Fig. 3.5b.
Therefore, we can rescale the drift mobility and obtain µH significantly lower than µd

and closer to the higher experimental mobilities, as shown in Fig. 3.5b.
Once we have described the macroscopic dependence of electrical transport on

temperature and doping, it is interesting to analyse its microscopical dependence on
the scattering mechanisms; in order to do so, it is convenient to consider the resistivity
ρ. This is because the resistivity can be expressed by means of a variational formula
[15]:

ρ =
4e2m2

e

V kBT

∑
mk,m′k′ (χmk − χm′k′)2Πmk,m′k′(∑

mk vmk · Eχmk
∂f0

∂ϵmk

)2 . (3.3)

We can solve the BTE to find and then insert the exact solution χmk in the variational
formula 3.3; we can thus separate the scattering amplitudes:

ρ =
4e2m2

e

V kBT

∑
mk,m′k′ (χmk − χm′k′)2

[
Πph +Πimp

]
mk,m′k′(∑

mk vmk · Eχmk
∂f0

∂ϵmk

)2 (3.4)

and obtain ρ = ρph + ρimp. Unfortunately, ρph and ρimp are not the resistivity due to
electron-phonon or electron-impurity scattering separately, because in both cases they
are calculated by means of the exact solution χmk which contains information on all
the scatterings; this separation is anyway a good index of the relative impact of the
interactions on the electrical conduction. The result of this analysis is shown in figure
3.6a, where we can see that with a doping level of 1015cm−3 phonon scattering is the
main source of resistivity for p-doped diamond, at all temperatures.

We can go further in the analysis of the microscopic contribution to the resistivity
by considering the following expression for the variational formula:

ρ(ω) =
4e2m2

e

V β

∑
mk,m′k′ (χmk − χm′k′)2Πph

mk,m′k′(ω)(∑
mk vmk · Eχmk

∂f0
mk

∂ϵmk

)2 . (3.5)

where Πph
mk,m′k′(ω) is the scattering term that includes only phonons of frequency lower

than ω. The relative weight ρ(ω)
ρ

against ω is plotted in figure 3.6b. It is here evident that
with increasing temperature the frequency window relevant for the determination of re-
sistivity widens. In particular, for temperatures below 300K the relative contribution of
acoustic phonons (up to 300cm−1) saturates the resistivity’s value up to 90%, whereas
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Figure 3.7: (a) Temperature dependence of the total (diffusive+phonon-drag) Seebeck coef-
ficient (red circles) and of the diffusive contribution (orange diamond). Experimental values
are taken from [47]. Inset: phonon drag component (Sp) times mobility as function of the
temperature. (b) Phonon frequency cumulative analysis of the phonon drag contribution to the
Seebeck coefficient.

for higher temperatures the onset of optical phonons (at around 1300cm−1) gains im-
portance for the total resistivity value. Phonons between 300cm−1 to 1300cm−1 seem
to have no relevance for the resistivity values. Following this argument, we have a
strong indication that the different mobility behaviour for high and low temperatures
shown in figure 3.5a is discriminated by the onset of optical phonon scattering.

3.3 Seebeck coefficient

In this section we investigate the Seebeck coefficient S of p-doped diamond, defined
via Eqs. 1.38, 1.70 and 1.71.

The relevant electronic states to be included for convergence are fewer than in the
mobility case; indeed, all the needed information is contained in states lying down
to 0.14eV under the highest valence electronic energy, which roughly correspond to
the energy of the lowest optical phonon. The k-points mesh used to converge the
Seebeck is 100× 100× 100. All the calculations have been performed with the same
ab-initio matrix elements used for the mobility and the resistivity. We tested that no
relevant temperature dependent corrections come from the computation of the ab-initio
electron-phonon coupling on a denser coarse k-grid.

The value of the Seebeck coefficient is presented in Fig. 3.7a, where we separately
plot the diffusive component (i.e. without the phonon drag contribution) and the total
value of the Seebeck coefficient in comparison with experimental data. The phonon
out of equilibrium populations to insert in the phonon drag term have been calculated
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exactly on a 30× 30× 30 grid and then interpolated on a 100× 100× 100 mesh with
the procedure explained in Sec. 3.1 .

It is evident from Fig. 3.7a that the diffusive part of the Seebeck coefficient is
relevant only for high temperatures (above 400K), whereas at low temperatures the
phonon-drag component is dominating. This means that the diffusive model fails at
low temperatures and that the electron-phonon interaction has to be taken in account to
rightly compute the Seebeck coefficient. Overall, our calculation of the total Seebeck
coefficient is in good agreement with the experimental findings; in particular, the T−3/2

behaviour at low temperatures, which is the fingerprint of the scattering between elec-
trons and phonon out of equilibrium populations, is well reproduced. The deviation
at 200K from the experimental value could be related both to the experimental uncer-
tainty and to the interpolation method of the phonon out of equilibrium populations.

As the thermal conductivity is significantly smaller in presence of isotopic scatter-
ing of lattice vibrations (Fig. 3.2a), as well as the phonon out of equilibrium popula-
tions, it is interesting to understand if the Seebeck change consistently in presence of
lattice impurities. In our calculations we find that the Seebeck coefficient is practically
unaffected by inclusion of isotopic scattering for lattice vibrations (the change of the
value is of order 1%); the reason is that isotopic scattering affects almost only the be-
haviour of high-frequency phonons, as explained in Sec. 3.1, that have no significant
impact on the Seebeck coefficient. In fact, the cumulative contribution of different
phonon frequencies to the phonon drag fraction of the Seebeck coefficient is presented
in Fig. 3.7b. The calculation is performed introducing a cutoff frequency ω̃ such that
for larger frequencies the out of equilibrium phonon population is put to 0. From Fig.
3.7b it is evident that the phonon drag portion of the Seebeck coefficient is mainly
determined by phonons with frequencies below 300cm−1, with a little contribution
coming from higher frequencies and only at high temperature. Incidentally, this is also
the proof that the phonon drag contribution of the Seebeck coefficient is particularly
sensitive to the value of the acoustic phonon out of equilibrium populations near Γ.
Therefore, the interpolation method of Sec. 3.1 of the phonon populations for suffi-
ciently small q-points is necessary to rightly reproduce the experimental value of the
Seebeck coefficient.
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3.4 Hall scattering factor, magnetoresistance and magneto-
Seebeck

In the semi-classical picture, in presence of both and electric and a magnetic field,
carriers are deflected from their straight trajectory. The current direction will depend
on the direction of the magnetic field and on the symmetry of the crystal. For this
reason, the relation between current and fields in the linear regime for the electric
field and in presence of magnetic field is tensorial and we cannot use scalar quantities
anymore to describe the transport properties of a material. From the point of view of
the direct space symmetries of the crystal, this is due to the introduction of a privileged
direction by the magnetic field. Microscopically, it follows from the loss of symmetry
properties of the term τmk(B) when a magnetic field is applied.

The Hall scattering factor, introduced in Eq. 3.2, is a quantity that connects the
diagonal and out of diagonal components of the conductivity tensor. As mentioned in
the introduction and in previous sections, the precise estimate of the Hall scattering
factor is of fundamental importance to bridge experimental measurements and theo-
retical calculations of mobility and resistivity. In the inset of Fig. 3.5b we show the
result of the calculation for the Hall scattering factor following from the solution of
Eq. 1.58 in the linear regime for the magnetic field. We use a k-points mesh of dimen-
sions 85× 85× 85 and consider electronic states lying down to 0.24eV below the top
valence band energy. In our calculations we find that the Hall scattering factor falls be-
low unity and is of around r ≈ 0.8 for the range of temperature studied, in agreement
with reported experimental estimates [46]. The experimental data indicate a possible
decrease of the Hall scattering factor at low temperatures; our calculations show that
this behaviour might be due to electron-impurity scattering, which is the mechanism
that mostly affects the Hall scattering factor in this temperature range. Ref. [46] pre-
dicted two possible theoretical values of the Hall scattering factor, one lower and one
greater than unity. These values were obtained in the relaxation time approximation
using a parametrized parabolic electronic band structure around Γ. The lower values
are smaller than ours but have a similar temperature dependence, with a minimum at
around 350K.

The electronic BTE equation can also be solved in the non linear regime for the
magnetic field1; this is important to calculate the variation of the diagonal resistivity
components under the application of a generic magnetic field. A detailed comparison

1This is typically done in the study of the magnetoresistance—see, for instance, Ref. [90]. However,
we are not aware of a theoretical justification for this procedure that follows from the arguments of
Chap. 2. This will be matter of future investigations.
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Figure 3.8: (a) Transversal magnetoresistance (TM) and longitudinal magnetoresistance (LM)
for diamond crystal as a function of magnetic field strength, at 300K; experimental data are
taken from Ref. [134] (orange squares) and Ref. [135] (black squares and circles); inset:
Hall angle divided by π

2 , as a function of the magnetic field. (b) Trasversal magnetoresistance
(TM) and transversal magneto-Seebeck coefficient (TMSC) for diamond crystal as a function
of magnetic field strength, at 200K and 300K. Inset: Hall angle divided by π

2 for the electric
and thermal gradient contributions to the total electronic current, as a function of the magnetic
field, at 200K and 300K.

between theory and experiments can be done by focussing on the magnetoresistance
([ρij(Bl) − ρij(0)]/ρij(0)). Fig. 3.8a shows the values of the transversal and longitu-
dinal magnetoresistance ([ρxx(Bz)− ρxx(0)]/ρxx(0) and [ρzz(Bz)− ρzz(0)]/ρzz(0)) as
a function of the magnetic field B, which is taken along the ẑ axis in our calculations.
At low fields the values are proportional to the square of the magnetic field modulus
|B|2, as expected from symmetry considerations [90]; at higher fields the behaviour
strongly differs from the quadratic law. For all the magnetic fields considered in this
work we find that the longitudinal magnetoresistance is smaller than the transversal
one, in agreement with experimental data. It is to notice anyway that the available
experimental data have been taken with respect to various different orientations of B;
this fact and the uncertain doping content of the samples may explain the difference
between our calculation and the experimental data. As a measure of the strength of the
magnetic fields considered here, in the inset of Fig. 3.8a (3.8b) we show the values for
the Hall angle, i.e. the angle between E and Je (∇rT and JQ), as a function of the
magnetic field strength. This quantity is expected to reach π

2
at very large magnetic

fields when the magnetoresistance saturates [136].
When a temperature gradient is applied to the crystal in presence of a magnetic

field, we will have a tensorial response also from the Seebeck coefficient S(B). To
understand the Seebeck response to the magnetic field, we start noticing that, when
the phonon drag is the dominant driving force in Eq. 1.58, the Seebeck coefficient is
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expected to be proportional to the mobility. This can be seen in the inset of Fig. 3.7a
where we plot the product of the phonon drag component of the Seebeck coefficient
and the mobility. The resultant curve is proportional to ∼ T−5.5 for low temperatures
whereas the exponent increases a little for higher temperatures. This proportionality is
consistent with previous simplified model previsions [137]. This interrelation between
the two quantities can be exploited to further increase the Seebeck coefficient of dia-
mond. This can be achieved when a temperature gradient is combined with a magnetic
field that, as shown previously, tends to increase the resistivity—and therefore, reduce
the mobility and increase the Seebeck.

In order to quantify the extent of this effect in diamond we computed the transver-
sal magneto-Seebeck coefficient, shown in Fig.3.8b alongside the magnetoresistance,
as a function of the intensity of the magnetic field. As expected, the behaviour of the
two quantities is very similar, especially at low fields. While this has been observed
in other semiconductors, such as germanium [138, 88], the interesting result here is
the magnitude of the enhancement of the Seebeck coefficient at relatively high tem-
peratures in presence of a magnetic field. For instance, we predict a relative change in
the Seebeck coefficient at 200K and 10KOe that is about 4 times larger than in n-type
germanium at the same temperature and magnetic field[138]. The enhancement goes
up to about 30% in a magnetic field of 40KOe already at room temperature.
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Chapter 4

Theory and computation of Hall
scattering factor in graphene

The second system studied in this thesis is graphene. Since the discovery of its excep-
tional room-temperature mobility [48], graphene has attracted unprecedented interest
and efforts to study its superior electrical properties and use them for advanced tech-
nological applications. Also, graphene represents a fundamental playground to study
the impact of dimensionality on specific physical properties, and the possibility of ex-
ploiting them in electronic devices [139].

One of the defining properties of graphene is the linear energy-momentum disper-
sion with the conduction and valence bands intersecting at two special point k = K

and k = K′, called the Dirac points [140]. The Fermi velocity vF , which character-
izes the slopes of the conic energy bands, is around 106 m

s . The consequences of this
peculiar band dispersion on the electronic transport properties are remarkable [53]. In
particular, the form of the allowed electron-phonon scattering times are different from
the 3d counterparts both in scaling and amplitude; as a consequence, the value of the
electric transport properties shows a temperature and carrier concentration dependence
which is typical of graphene alone. Another distinguishing feature is the possibility to
gate graphene by inducing a surplus of hole or electron carriers adjusting an external
gate voltage. This allows to move the Fermi level EF from the Charge Neutrality Point
(CNP) at the intersection of the conic bands to the valence or conduction bands. This
is one of the greatest achievements since it permits to directly control the carrier den-
sity and its charge, and therefore study in detail the electric transport properties. In
particular, one can assess the hole and electron mobilities of the same sample.

Nonetheless, the experimental determination of mobility is not straightforward
[141] and passes through the determination of the gate capacitance. In the general
gate set-up for a 2d material, it is not uncommon to use the Hall effect in order to
deduce the carrier density induced by the gate voltage and consequently calculate the
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gate capacitance, or to directly study the Hall mobility [142, 143, 48, 144, 145]. When
a gate set-up is not used, but graphene is grown on some support, it is common to
evaluate the Hall mobility of the sample [146, 147, 148, 149, 150, 151, 152, 153, 154].
It is then of crucial importance to know the exact relations between the Hall factor
and the carrier density and between the drift and Hall mobilities; both of these rela-
tions contain the value of the Hall scattering factor r, which is most often assumed
to be unity (see, for instance, Refs. [48, 155]), but this assumption is based on stud-
ies performed on bulk semiconductors with quasi-parabolic band dispersion, where r
commonly shows a weak dependence on temperature and scattering mechanisms. On
the contrary in graphene, as we will show in this chapter, the intrinsic r follows non-
trivial trends as a function of carrier concentration and temperature, with values that
can be far greater or smaller than unity; this is due to the peculiar band structure and
electron-phonon scattering mechanisms. For low carrier concentrations and temper-
atures below ∼ 300 K, we evaluate r using an analytical model that is derived from
the Boltzmann Transport Equation (BTE) in the hypothesis of isotropic band energies
and that depends on the density of states, vF and the electron-phonon scattering rates,
that can in turn be evaluated via simplified models. Above room temperature or at
high carrier concentrations, the accuracy of the model has to be questioned. Indeed,
here previous works have shown the necessity to exactly solve the BTE to accurately
quantify the resistivity [16]. Therefore in these regimes we compute r via the full so-
lution of the BTE, obtained by means of the most recent developments regarding the
first-principles calculation of transport properties [3, 4, 21, 5], as explained in Chap.
1. The calculations are performed using a private version of EPW [34]—which is part
of the QUANTUM ESPRESSO [66] package—where we implemented an highly scal-
able and strongly optimized numerical solution of the BTE, in presence or absence of
external magnetic field.

In this chapter, before presenting our results for the Hall scattering factor, we
present a numerical study of the electron-phonon coupling, the inverse scattering times
and the drift mobility of graphene; all these ingredients are important in light of a
comparison with existing model and known results. Once shown that the comparison
is satisfactory, we will proceed to the prediction of the Hall scattering factor value in
different regimes.
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(a) (b)

Figure 4.1: (a) Electronic structure and (b) phonon branches of graphene along high-symmetry
lines. The band structure displays the typical characteristic linear dispersion around the K high-
symmetry point. As regards phonons, the linear behaviour of acoustic modes and the quadratic
behaviour of flexural modes at small wave-vectors is clearly visible.

4.1 Computational details for an accurate electron-phonon
coupling calculation

We follow here the procedure explained in App. A; the primitive cell is described via
the lattice vectors v1 = a(1, 0, 0), v2 = a(−1/2,

√
3/2, 0), v3 = a(0, 0, c) where

a = 2.46 Ang and c = 5.0 (even though the stability of the transport coefficients has
been tested against increases of the c parameter up to 10.0). Since we will compare
with previous known results and analytical models, it is important to have very well
converged values of the computational parameters. We work in the DFT framework
using the QUANTUM ESPRESSO code [66] within the local density approximation
(LDA) [121]. For the SCF calculation, we use a non-relativistic Norm-Conserving
(NC) pseudopotential compatible with the PZ exchange-correlation functional [156,
121], a plane wave cutoff of 100Ry and a k-point grid of dimensions 96 × 96 × 1, to
accurately compute the ground state of graphene. For the NSCF calculation, we use the
same pseudopotential and cutoff, but we use a k-point grid of dimensions 24× 24× 1

(we will show in the next section that this is sufficient). The presence of a carrier
density in graphene has been simulated within the rigid band approximation. In the
case that the carrier density is generated by extrinsic impurities, this is the same tech-
nique used in similar transport calculations on bulk materials; otherwise, if graphene
is studied in a gate configuration, such approximation is not appropriate for flexural
phonons and for the "deformation potential" terms of the EPC, but luckily those terms
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n (cm−2) k/q-points grids window (meV) σ (meV)

5× 1011 − 9× 1011 1404× 1404× 1 500 5

1× 1012 − 4× 1012 1080× 1080× 1 500 5

5× 1012 − 1× 1013 1080× 1080× 1 700 5

Table 4.1: Converged parameters for transport properties

do not contribute relevantly to transport properties [157]. For the DFPT calculations,
we use a q-point grid of dimensions 24 × 24 × 1 and a strict threshold for conver-
gence of the calculation (using a self-consistent threshold of 10−20 for the solution of
the Sternheimer linear equation presented in Chap. 1). The electronic and vibrational
properties obtained with the above methodologies are displayed in Figs.4.1a and 4.1b.
The Wannier interpolation is performed with 5 basis functions, consisting in 3 sp2-like
orbitals centred on the bonds between a graphene atom and its first neighbours, and
two pz-like orbitals centred on each of the graphene atoms in the primitive cell. The
resulting MLWFs have spreads ranging from 0.6098Ang2 to 2.7183Ang2. Finally, we
report in Tab. 4.1 the safe values for the fine grids, energy window from the Dirac cone
energy and Gaussian smearing to obtain converged transport calculations with EPW.
Convergence graphs are given in the next section.

In this section we study the convergence of the interpolated EPC matrix elements
with respect to the ab initio values. Also, we compare the results with pre-existing
models of the interaction. We put ourself at a momentum near K, at a k-point with
Cartesian coordinates k1 = (0.3437500, 0.5953925, 0) (in units of 2π

a
, k1 belongs to

the 48 × 48 × 1 SCF grid and is on the line that connects the K and Γ points) and
consider q-points of the form q = λk1 with very small λ. q runs on the Γ − K

line. We compute the ab initio EPC ⟨n = 4, 5;k1 + q|∂λqV |m = 4, 5;k1⟩ (4 is the
index for the π band, 5 is the index for the π∗ band) and compare it with its Wannier
interpolation obtained for different NSCF and DFPT grids in Panel 1. Since the Γ−K

line is a special line we have some symmetry constraints on the EPC matrix element
values (as explained in Ref [158]); in particular, some elements need to be null on
whole sectors of the line. Those elements are a clear indicator of the interpolation
convergence: from Panel 1 we see that a NSCF k-point grid of 24 × 24 × 1 and a
DPT q-point grid of 24 × 24 × 1 catch very well the behaviour of the ab initio EPC.
We also mention that we tested the ab initio results under change of SCF grid (up to
144×144×1) and of Gaussian smearing during the SCF cycle, finding no appreciable
differences. In passing by, we notice that not all EPC matrix elements go to 0 when
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|q| → 0, in opposition of what predicted in Ref. [158]; the reason is that the Hellmann-
Feynman applied to Γ acoustic phonons (which are free of non-analyticity in graphene)
reads:

⟨k+ qn|∂λTA/LAqV |kn⟩q=0 ∝
∂ϵnk
∂q

(q = 0) = 0 (4.1)

but this relation does not hold true in the case of different initial and final band indexes;
in this case, we should instead use the Epstein formula [69] in order to deduce the
values of the matrix elements, which result in general different from 0. Moreover,
we also notice that the hole-electron symmetry for the modulus of the EPC matrix
elements, which is usually assumed to hold in graphene (see for example Ref [52, 16]),
results broken from our ab initio calculations; this is because the response function in
a DFPT calculations depend on the ground state density, which in turn depends only
on the occupied/valence states. A part from the above mentioned discrepancies, if
we compare our results with models (such as the one in Ref [16]), we find an overall
good agreement for the angular dependency of the EPC for the acoustic modes; for the
optical phonons we find that the behaviour predicted from the models is oversimplified.

4.2 Convergence of transport quantities

In this section we present the convergence of transport quantities with respect to com-
putational parameters. Referring to Panel 2 (a), we first notice the quadratic scaling of
the relevant (active) q-pointsNact.

q contributing to the transport coefficient calculations
inside the active energy window, consistent with the 2d dimensionality of the system;
the time of the calculation increases with the k/q-point grids as t ∝ N irr.

k × Nact.
q

where N irr.
k is the number of irreducible points for a given grid. To explain this, we

start noticing that the value of the EPC on a generic couple of q and k points can be
obtained by using the relation [4]:

|gλnk,mk+q|2 = |gλnSk,mS(k+q)|2 (4.2)

where S is one of the symmetry operations associated with the star of k. Therefore, we
can reduce the calculation of the EPC elements choosing k ∈ IW (Irreducible Wedge
of the BZ) and q ∈ BZ. Eq. 4.2 holds for non-degenerate states, while for degenerate
bands/phonons we just know that:∑

mnλ

|gλnk,mk+q|2 =
∑
mnλ

|gλnSk,mS(k+q)|2 (4.3)
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PANEL 1: Comparison between ab initio EPC and Wannier-interpolated EPC
[< n = 4, 5;k1 + q|∂λqV |m = 4, 5;k1 >]—4 and 5 represents the π and pi∗ bands
respectively. We compare different NSCF k-point and DFPT q-point grids for differ-
ent λ modes, with q running on the Γ −K line and k1 = (0.3437500, 0.5953925, 0).
From top to bottom: TA mode, LA mode, TO mode, LO mode. First column: NSCF
24 × 24 × 1 and DFPT 12 × 12 × 1. Second column: NSCF 48 × 48 × 1 and DFPT
12× 12× 1. Third column: NSCF 24× 24× 1 and DFPT 24× 24× 1.

because of the gauge freedom within degenerate subspaces. A proper modification of
the BTE where vnk is substituted by the matrix elements vnk,mk′ (defined as in [31])
and fnk by fnk,mk should be implemented to make the Eq. 1.58 properly gauge in-
variant in degenerate subspaces (see for example [159] for an homogeneous system).
Nonetheless, the set of degenerate points in a crystal is usually of null measure and
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therefore for practical reasons this is never done. We also remind that the gauge free-
dom for degenerate vibrational modes does not affect the final results even using Eq.
1.58 because the phonon branches are always summed over. Therefore, practically, our
procedure is to treat |g|2 for degeneracy points in the same way as for non-degenerate
ones, and then check that our grid dimensions are large enough to leave the results
unaffected by the gauge choice. For v, we adopt the gauge such that at each point the
velocity matrix is diagonal and respects the lattice symmetry, so that transport quan-
tities are recovered in the correct symmetrical form. In graphene, there is just one
degeneracy point which is the Dirac cone center, so the observables are almost imme-
diately gauge invariant. In passing by, we also mention that the property of Eq. 4.2 for
symmetric operations belonging to the small group of k becomes:

|gλnk,mk+q|2 = |gλnSk,mSk+q|2 = |gλnk,mSk+q|2 (4.4)

and this property usually needs to be enforced numerically—and it is important to
obtain transport tensors with the correct symmetries.

In Panel 2 we also show the convergence of (b) Fermi energy, (c) drift mobility
and (d) Hall coefficient tensor components against the increase of the k/q-point grids,
while keeping a fixed smearing of 5meV. The calculations are done for a carrier density
of 1012cm−2 and an active energy window extending 500meV below and above the
Dirac cone center. The Fermi level at a given temperature converges to a precision
of 10−3eV at grids of dimensions 1080 × 1080 × 1, whereas the difference between
Fermi levels at 600K and 300K converges to a precision of 3 × 10−4eV at the same
grid. Regarding the mobility, we have two different behaviour for 300K and 600K
that highlight the difficulty of converging the result at lower temperatures, where in
general a smaller energy window around the Fermi level contributes to transport. At
300K we have a change of the mobility of 0.1% ( 240 cm2

Vs ) at grids of dimensions
1080 × 1080 × 1. As regards the Hall scattering factor, since graphene doesn’t have
rational ratios between Cartesian reciprocal lattice vectors, the Cartesian derivatives of
the out of equilibrium populations in Eq. 1.58 cannot be done using a uniform k-point
grid; in this case, we take directional derivatives along the reciprocal lattice vectors
and then rotate the resulting gradient to transform it into Cartesian coordinates. This
operation is properly justified in the limit where the distance between grid points tends
to 0; the symmetries of the physical quantities are recovered in such limit. We can
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notice that at grids of dimensions 1080 × 1080 × 1 the Hall scattering factor rxy 1 is
converged up to 3 × 10−2 and 5 × 10−3 for 300K and 600K respectively; the sum
rxy + ryx, which should be 0 when the physical symmetries are recovered, is in this
case 5×10−3 and 5×10−4 respectively. This is a good indicator that the grid points are
close enough to evaluate the derivatives with the procedure described above. In Panel
2 we also show the convergence of e) the mobility and of f) Hall scattering factor with
respect to smearing at fixed k/q-point grids of dimensions 1080×1080×1. The carrier
density considered here is 1012cm−2. In this case, we notice that for smearing values
ranging from 2meV to 20meV the transport quantities are quite stable.

Other convergence tests, that we do not report, have been done for different carrier
densities. The final converged parameters used in this work, as already mentioned in
the previous section, are reported in Tab. 4.1.
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PANEL 2: (a) Number of active q-points within the active energy window against the
size of the k/q-point grids. Convergence of (b) Fermi energy, (c) drift mobility and (d)
Hall scattering tensor components against the size of the k/q-point grids with a fixed
smearing of 5meV. Convergence of (e) drift mobility and (f) Hall scattering tensor
components against the smearing value used at a fixed 1080 × 1080 × 1 k/q-point
grid.

1In Chap. 3 we introduced the Hall scattering factor for the particular case of an electric field along
the x̂ direction and a magnetic field along the ẑ direction. Of course, the generalization of r to a tensorial
form reads as rij = ne

|B|

[
σ(B)

(
σ−1(0)

)2]
ij
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4.3 Drift mobility

Since the Hall scattering factor is a ratio of two components of the conductivity tensor,
we start computing the intrinsic drift mobility of graphene and compare our results to
the ones present in literature. The largest available experimental values estimates an
intrinsic mobility of graphene of around ∼ 200 000 cm2

Vs [160, 155, 161]. These val-
ues are much higher than for the traditional semiconductors with quasi-parabolic band
dispersion such as silicon, germanium or gallium-arsenide. Theoretical investigations
of the mobility for graphene, done both via models or ab initio investigations [49, 51,
17, 162], also predict remarkably large values. In this work we study both the electron
and the hole mobility. We have previously pointed out that the electron-hole symmetry
is not fully respected by the electron-phonon coupling matrix elements. Moreover, the
electron-hole symmetry is respected by the energy band structure only in the imme-
diate proximity of the Dirac cone center. We show in Panel 3 that, nonetheless, the
differences of the transport quantities between holes and electrons are quantitatively
very small (for the Hall scattering factor, the sign change is expected because of the
sign change of the carriers; the absolute value instead is very similar). Since the differ-
ence between the two is very small (with the hole mobility being higher of 7% at room
temperature), we can concentrate just on the hole transport quantities.
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PANEL 3: Temperature dependence, for different values of carrier concentra-
tion, of (a) hole and electron mobility; (b) ratio of hole and electron Hall scattering
factors.

The behaviour of the hole mobility as a function of the carrier density is shown in
Panel 4 (a). For low carrier concentrations, the mobility roughly behaves as µ ∝ n−0.85,
in general agreement with previous predictions [49]. The temperature behaviour of the
hole mobility for different doping concentrations is shown in Panel 4 (b). We witness
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to a monotonic decrease of the mobility with increasing temperature, as it qualitatively
happens also for traditional semiconductors; for low doping concentrations and around
room temperature, we roughly have µ ∝ T−2.2. The value obtained for a carrier den-
sity of 1012cm−2 at room temperature is of ∼ 140 000 cm2

Vs , in very good agreement with
previous ab initio calculations and experimental results. In Panel 4 (c) we also show
that the slope of the curve changes from µ ∝ T−2.2 to µ ∝ T−0.85 upon removal of
the scattering between electrons and phonons with frequencies higher that 60meV, at
a carrier density of 1012cm−2. This well reproduces the prediction of models that in-
clude only acoustic phonons [16]. We also check that the imposition of the quasielastic
scattering condition (i.e. the neglect of the phonon frequencies inside the Dirac delta
functions) still leads to the same temperature power µ ∝ T−0.85. We conclude there-
fore that optical phonons at room temperature are important in graphene to correctly
describe the temperature behaviour of the mobility; on the contrary, optical phonons
become less and less important as the temperature decreases, and already at 300K the
acoustic scattering alone gives a mobility only 30% different from the value obtained
considering full interactions. We will see in the following that, on the contrary, the
determination of the Hall scattering factor includes the optical phonon scattering as a
fundamental ingredient even at room temperature.

As regards technical details of the numerical solution of the BTE, Panel 5 shows a)
the difference between the approximated SERTA approach and the full exact solution
on the mobility and b) [c)] the convergence of the diagonal [off-diagonal] components
of the conductivity tensor with respect to the iterations of the solving method. We can
see that for the mobility the mismatch between the SERTA and the exact solution can
reach up to 10% in the studied ranges; nonetheless, it is not as large as in other materials
(such as GaAs [20] and GaN [163]). The plot of the iterations instead show a quick
convergence of all the components of the conductivity tensor with the implemented
method.

4.4 Hall scattering factor

4.4.1 Analytical model

As mentioned in the introduction, the Hall scattering factor is a fundamental quantity
in order to bridge experimental results and theoretical calculations. In this section we
present an analytical model that can be used at low carrier concentrations, where one
could take advantage of several approximations to solve the BTE while maintaining an
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ture. In (c), we plot the temperature dependence of mobility at a carrier density of
1012cm−2 when all scattering mechanism are present and when just phonons below
60meV are considered.
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PANEL 5: (a) Temperature dependence of the ratio between the solution in the
SERTA approximation and the exact solution, for different carrier concentrations;
convergence with respect to the iterations of (b) mobility and (c) non-zero out of
diagonal component of the mobility tensor when a magnetic field is present; the carrier
concentration is 1012cm−2 and computational parameter as in Tab. 4.1

high accuracy level. We then confirm and extends the results to different regimes using
ab initio calculations.

To introduce the analytical model for r we start from the BTE of Eq. 1.58. If
we were able to diagonalize the real symmetric scattering matrix Ank,mk+q we could
rewrite the Boltzmann equation in a basis {nk} defined by (Einstein notation is used):

Dnk,mk′ = Unk,lpAlp,jbU
†
jb,mk′ (4.5)

where D is a diagonal matrix and U is the matrix of basis change between the basis
{nk} and {nk}. The Boltzmann equation would then be exactly solved at linear order
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in B by:

χnk = −
(
U †D−1U

)
nk,mk′

∂f 0
mk′

∂ϵmk′
vmk′ · E−

(
U †D−1U

)
nk,mk′

∂f 0
mk′

∂ϵmk′
(vmk′ ∧B) ·

[
∇k′

{(
U †D−1U

)
mk′,lp

∂f 0
lp

∂ϵlp
vlp · E

}]
.

(4.6)

The above result is equivalent to exactly solve the BTE; we can try to simplify it in
order to describe some physical properties without having to go through all the numer-
ics. In particular, we have already seen in Chap. 1 that some common approximations
are based on the substitution:

(
U †D−1U

)
nk,mk′ → 1/

(
∂f 0

nk

∂ϵnk

)
δnk,mk′τnk (4.7)

Although in general the above replacement is an approximation, it can be shown that
under the assumption of perfectly isotropic bands energies and a quasielastic scattering,
Eq. 4.7 is exact provided that the scattering time is calculated as in Refs. [164, 16].
Instead, if one uses the SERTA approximation as presented in Eq. 1.59, the expression
for the relaxation time is:

1

τSERTA
nk

= 2π
∑
mλ

∫
dq

ΩBZ

|gλnk,mk+q|2×[
(1 + n0

λq − f 0
mk+q)δ(ϵnk − ϵmk+q − ωλq)+

(n0
λq + f 0

mk+q)δ(ϵnk − ϵmk+q + ωλq)
]
. (4.8)

Using Eq. 4.7 the BTE becomes (e = h̄ = 1):

− vnk · E+ (vnk ∧B) · ∇kχnk = τ−1
nk χnk (4.9)

and to first order in the B field it is solved by:

χnk = −vnk · Eτnk − (vnk ∧B) · [∇k (vnk · Eτnk)] τnk (4.10)

To eliminate the electric field, we notice that even with the magnetic field each term
in the BTE is coherently linear in E, so that the equation must be satisfied for every
possible value and orientation of the electric field. Therefore we define χnk = Φnk ·E
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and have, for each vectorial component:

Φnk = −vnkτnk − (vnk ∧B) · ∇k (vnkτnk) τnk (4.11)

For graphene, it is convenient to rewrite the above vectorial relation in cylindrical
components around the special point K [we indicate the cylindrical components along
k̂ρ and k̂θ with ρ and θ]:

Φρ
nkρ̂+Φθ

nkθ̂ = −
(
vρnkρ̂+ vθnkθ̂

)
τnk−

∑
LMN

ϵLMNv
L
nkB

M∇N
k

[
(vρnkρ̂+ vθnkθ̂)τnk

]
τnk

(4.12)
where the LMN components of the vectors are intended to be cylindrical, all the
vectors are functions of (ρ, θ) and ϵLMN is the Levi-Civita tensor. Now we work in
the hypothesis that we can write ϵnk = ϵn(ρ) = (−1)nvFρ with n = {0, 1}, i.e. we
reduce the problem to only the π and π∗ electronic bands (this is valid in the immediate
proximity of the Dirac cone). It follows that the electronic velocity is only radial. In
this way also τnk is a function of ρ alone because the scattering time has the same
symmetries of the energy states [4]. Moreover, we are interested in the case of a
magnetic field along the ẑ direction. It follows that the only term which is retained
from the vector product of Eq. 4.12 corresponds to L = 1,M = 3, N = 2:

Φρ
nkρ̂+ Φθ

nkθ̂ = − ((−1)nvF ρ̂) τnk + vFB
z∇θ

k (vF ρ̂τnk) τnk (4.13)

which becomes:

Φρ
nkρ̂+ Φθ

nkθ̂ = − ((−1)nvF ρ̂) τnk + vFB
z 1

ρ

∂

∂θ
(vF ρ̂τnk) τnk (4.14)

Using the fact that ∂
∂θ
ρ̂ = θ̂ we obtain to first order in the B field:

Φρ
nk = −(−1)nvF τnk (4.15)

Φθ
nk = v2FB

z 1

ρ
τ 2nk (4.16)

Now we define the quantity Spol.
ij = viΦj (dropping for the moment {nk}), which,

when integrated, gives the conductivity. We transform this quantity in the Cartesian
components via:

Scart.
ij =

∑
k,l

U †
ikS

pol.
kl Ulj (4.17)
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where the S on the left is expressed in Cartesian indexes, while on the right in polar.
The matrix U is the matrix of basis change:

U =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
(4.18)

and therefore obtain:

Scart. = vρ

(
Φρ cos2(θ)− Φθ sin(θ) cos(θ) Φρ cos(θ) sin(θ) + Φθ cos2(θ)

Φρ sin(θ) cos(θ)− Φθ sin2(θ) Φρ sin2(θ) + Φθ sin(θ) cos(θ)

)
(4.19)

We now express the conductivity tensor:

σcart. = − 2

ΩΩBZ

∑
n

∫ ∞

0

∫ 2π

0

ρdρdθvρn
∂f 0

n

∂ϵ
(ϵn(ρ))× (4.20)

×

(
Φρ

n cos
2(θ)− Φθ

n sin(θ) cos(θ) Φρ
n cos(θ) sin(θ) + Φθ

n cos
2(θ)

Φρ
n sin(θ) cos(θ)− Φθ

n sin
2(θ) Φρ

n sin
2(θ) + Φθ

n sin(θ) cos(θ)

)
(4.21)

Integrating the angular dependence (and remembering that Φρ,θ and ∂f0
n

∂ϵ
do not have

angular dependence, and putting vρn ∼ (−1)nvF ) we have:

σcart. = −(2π)−1vF
∑
n

(−1)n
∫ ∞

0

ρdρ
∂f 0

n

∂ϵ
(ϵn(ρ))

(
Φρ

n Φθ
n

−Φθ
n Φρ

n

)
(4.22)

We notice that in absence of a magnetic field, the conductivity tensor is diagonal as
expected for symmetry reasons, while in presence of a magnetic field the off diagonal
components are opposite in sign. We now use Eq. 4.16 and find :

σxx = (2π)−1v2F
∑
n

∫ ∞

0

ρdρ
∂f 0

n

∂ϵ
(ϵn(ρ))τn(ϵn(ρ)) (4.23)

σxy = −(2π)−1v3FBz

∑
n

(−1)n
∫ ∞

0

ρdρ
∂f 0

n

∂ϵ
(ϵn(ρ))

1

ρ
τ 2n(ϵn(ρ)) (4.24)

where the scattering time depends only on the energy through the radial coordinate. It
follows, using ϵn(ρ) = (−1)nvFρ (restoring e and h̄):

r =
ne|e|
Bz

σ12
σ2
11

= −2πv2F h̄
2ne

∑
n(−1)n

∫∞
−∞ dϵ∂f

0
n

∂ϵ
τ 2n(ϵ)(∑

n(−1)n
∫∞
−∞ dϵϵ∂f

0
n

∂ϵ
τn(ϵ)

)2 (4.25)

where all the quantities under integration sign are to be intended as functions of the
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integration variable ϵ only. The (−1)n in the denominator compensates for the negative
sign coming from the area element when ϵ < 0, so that the contributions to the diagonal
components are always positive. On the contrary, in the numerator it subtracts the
contributions between hole and electron carriers; in condition of perfect hole-electron
symmetry of the band structure (i.e., in the limit of low temperatures and low carrier
concentrations) the two contributions tends to cancel out and r becomes very small. If
the Fermi level is slightly different from the Dirac cone energy ED, then one carrier
type contribution will dominate and r will be non zero; since the hole and electron
mobilities in graphene are practically the same, the value of r is expected to have a
different sign when EF is greater or lower than ED.

As mentioned above, Eq. 4.25 is an exact expression for r for a system with per-
fectly isotropic band energies and in presence of quasi-elastic scattering. It can though
be used as an approximated formula in conjunction with ab initio calculations if one
identify τnk = τSERTA

nk ; in this case, we have to find an expression for τSERTA
nk as a

function of energy alone. This is done by writing:

τ(kρ(ϵ)) =
1

2π

∫ 2π

0

dk′θτn(k
ρ(ϵ), k′θ) = (4.26)

1

2πkρ(ϵ)

∫ ∞

−∞

∫ ∞

−∞
dk′xdk′yδ(

ϵ′(k′x, k′y)

vF
− kρ(ϵ))τSERTA

n (k′x, k′y) (4.27)

where ϵ′(kx, ky) is the linear expression of the energy bands around the Dirac cone as
a function of k. Now, as long as we know τ for energies which are given by the ab

initio calculations, we substitute the true energies in the expression above to obtain:

τ(kρ(ϵ)) =
1

2πkρ(ϵ)

∫ ∞

−∞

∫ ∞

−∞
dk′xdk′yδ(

ϵFP (k′x, k′y)

vF
− kρ(ϵ))τSERTA

n (k′x, k′y)

(4.28)
where FP stands for First Principles. Bringing everything in energy (and restoring h̄):

τn(ϵ) = (−1)n
v2FΩBZh̄

2

2πϵNk

∑
k

δ(ϵFP
nk − ϵ)τSERTA

nk (4.29)

where we note that the minus sign compensates the negative contributions coming from
ϵ < 0 for n = 1.

We conclude by saying that the use of the SERTA relaxation times to evaluate r is
very instructive because, as we will see, it qualitatively catches the relevant behaviours
of the Hall scattering factor; therefore, one can relate the behaviour of r to the scaling
of the physical quasi-particles lifetimes.
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4.4.2 Scaling and results

Using Eq. 4.25 we can predict the behaviour of r in different temperature regimes by
considering the energy and temperature scaling laws of τn(ϵ). In the Bloch-Gruneisen

(BG) regime (T < TBG = 2h̄vTA/LAkF/kB where vTA/LA is the transverse/longitudinal
acoustic sound velocity and kF is the Fermi quasi-momentum) a close expression of
τn as a function of energy is non-trivial [16, 165]; nonetheless, we can evaluate it
at EF as τn(EF ) ∝ (kBT )4

EF
[49]; all the other quantities in Eq. 4.25 can be conve-

niently evaluated at ϵ = EF since ∂f0
n

∂ϵ
≈ −δ(ϵ − EF ). Thanks to these considera-

tions we expect that in this regime r behaves as a constant r ∝ ne/D(EF )
2, where

D(EF ) is the density of states at the Fermi level and at low temperatures it holds that
ne ∝ ±

∫ ED=0

EF
EdE = ±E2

F/2. In the equipartition (EP) regime (TBG < T < 270K,
where the upper bound is determined by the temperature at which the population of the
A′

1 phonon mode becomes non-negligible [16]) we have that h̄ωλTA/LAq << kBT , that
the EPC scattering is quasielastic and that the change of the electronic populations is
not appreciable over a length h̄ωλTA/LAq aroundEF ; the expression for the inverse scat-
tering time is then found to scale as |ϵ|kBT . However, note that, at ϵ = 0, the true total
scattering rate 1/τn(ϵ) cannot be exactly zero because of non-vanishing contributions
due to scattering with optical phonons, higher order scatterings or possible scattering
with defects or boundaries. We give estimates for such additional scattering channels,
that can give an idea of the validity of the scaling of the scattering time, in App. G. The
validity of the scaling of 1/τn(ϵ) is assumed to be dominated by the finite size effects
and hold true up to 1meV below/above ED. It is thus clear that in the BG regime the
numerator of Eq. 4.25 can reach large numerical values while the denominator quickly
converges thanks to the ϵ in the integrand. In the BG regime we thus expect unusually
large values of r, especially for low carrier concentrations.

We can verify the previous scaling considerations by inputting the scattering mod-
els for acoustic phonons of Refs. [16, 49] inside Eq. 4.25. The scattering parameters
are evaluated at a DFT level. In the EP regime, for completeness, we include also in-
elastic scattering with the A′

1 and Γ phonon modes as modelled in Ref. [16] and using
Matthiessen’s rule. While the inclusion of inelastic terms makes Eq. 4.25 never exact,
since Γ phonons scattering is here totally negligible and the scattering fromA′

1 phonons
is very weak (although non-zero), we expect Eq. 4.25 to be accurate. We show in Fig.
4.2 that r increases in the EP regime with decreasing doping, with values reaching ∼ 4

at ∼ 30meV below the Dirac cone and ∼ 150K (around 1.5 × 1011cm−2). At higher
temperatures and at low carrier concentrations we witness instead to low values of r
(∼ 0.5) because EF is very near ED; the spread of the Fermi-Dirac distribution is large
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Figure 4.2: Hall scattering factor r as a function of temperature and Fermi level (corresponding
carrier concentrations are indicated with dashed lines) obtained using Eq. 4.25 with τ0nk from
Ref. [49, 16]. We used a cutoff of 1 meV around the Dirac cone. The white line separates the
Bloch-Gruneisen (BG) and the equipartition (EP) regimes.

and therefore both electrons and holes carriers contribute to the value of r substantially
but with different signs, or in other words we have a cancellation of the scattering times
at the numerator of Eq. 4.25 which is not challenged by a sharp variation of ∂f0

nk

ϵnk
. The

temperature and carrier density dependence of r is instead very mild in the BG regime;
its value is around unity when using the DFT parameters. To test the robustness of
these results, we can also evaluate Eq. 4.25 using the ab initio GW parameters given
in Ref. [16] for both the EPC parameters and vF ; in this case we obtain very similar
values for r holding the Fermi level fixed. The Hall scattering factor value is instead
increased by ∼ 30% over the whole range of considered temperatures if we compare
the calculations at equal carrier concentrations. These changes are mostly due to vF ,
not to the EPC parameters. Indeed, if we evaluate Eq. 4.25 at equal carrier densities
using the GW EPC parameters but we keep vF at its DFT value, the Hall scattering
factor is very similar to rDFT . This result is very interesting because it opens up the
possibility to engineer r through Fermi velocity modification, which is experimentally
possible as shown in Ref. [56]).

We can now proceed to study the high-temperature regime (T > 270 K) for a broad
range of carrier concentrations. As mentioned above, in this regime the validity of
Eq. 4.25 and of simplified models for τnk is not given straight away. In particular, one
would expect the importance of ab initio calculations in this regime as a consequence
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Figure 4.3: Hall scattering factor r obtained from the full ab initio solution of the BTE as a
function of carrier concentrations, at different temperatures.

of i) the grown relevance of inelastic scattering, ii) the lack of an accurate and simple
model for the optical EPC at Γ, iii) the inaccuracy of Matthiesen’s rule and iv) the
limited validity of the symmetry-based models for the EPC to the specific region of k
points that are very close to the Dirac cone. We thus need to rely on the full ab initio

solution of the BTE equation; the result for r is shown in Fig. 4.3. We notice that
there is a cross-over in the temperature dependence of r at concentrations 1012cm−2 <

n < 2 × 1012cm−2. The low carrier concentrations regime shows that r decreases
with temperature, a trend consistent with the one of Fig. 4.2. In the second regime
(n > 2× 1012cm−2) r instead has gentle dependences on T and n.

Surprisingly, the ab initio values of r (Fig. 4.3) can be well reproduced in an ex-
tended range of temperatures and carrier concentrations by using the analytical model
of Eq. 4.25, with the inclusion of both the acoustic and optical scattering rates of
Ref. [16] using the Matthiesen’s Rule. This agreement is shown in Fig. 4.4 where, as
an example, we show the behaviour of r at 5× 1011cm−2 and at 1.2× 1012cm−2 (one
of the carrier densities where r displays the cross-over in the temperature dependence
observed in Fig. 4.3) It is crucial to point out than such an outstanding agreement
happens despite the inaccuracy of the models in describing the resistivity at high tem-
peratures and carrier densities [16]. The analytical model turning out to be a valid tool
to compute r is due to compensation of scaling effects between the numerator and the
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denominator of Eq. 4.25. A similar argument is also given for other transport quanti-
ties that are expressed as ratios, as the Seebeck coefficient (see, for instance, Refs. [3,
166, 65] where different computational approaches are analysed in various materials).
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In Fig. 4.4 we also plot the temperature dependence of r in the SERTA approxi-
mation. It is interesting to notice that this approximation is slightly less precise than
using the exact scattering times for isotropic band structures and quasi-elastic scatter-
ing, especially at low temperatures; nonetheless, it still captures the physical trends of
the exact solution. Therefore the SERTA approximation can be conveniently used to
analyse and understand the microscopic mechanisms that are at the basis of behaviour
of r at high carrier concentrations. Indeed, in Fig. 4.5 we present the SERTA inverse
scattering times for different carrier concentrations (5× 1011cm−2, 5× 1012cm−2 and
1013cm−2) at 300K. We can see that the (almost) linear behaviour of 1/τSERTA

k around
ED, which is the distinguishing mark of acoustic phonon scattering, is evident for
the lowest carrier concentrations; instead, it tends to disappear with increasing n. In
addition, the fingerprint of optical phonon emission, i.e. the peak situated at around
200 meV aboveED, translates to lower energies while maintaining its energy at around
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200 meV above EF (indicated in the picture by vertical dashed lines for each concen-
tration). This implies that at large carrier concentration the numerator of Eq. 4.25
does not present singular behaviours. We thus expect r to be much less sensitive to the
form/nature of the scattering (in general, the denominator of Eq. 4.25, closely related
to µd, is in this regime smoothly behaved). The final result is that the spread of the
values of the Hall scattering factor as a function of temperature is strongly reduced.

In conclusion, we have determined from first principles the intrinsic behaviour of
the Hall scattering factor in graphene for a wide range of carrier densities and temper-
atures. Our results show that at large carrier densities the strong coupling with optical
phonons makes r weakly temperature dependent with values around unity. On the con-
trary, at low doping, the same quantity presents a strong temperature dependence with
values much larger than unity below room temperature; this is a consequence of the
nature of the acoustic scattering close to the Dirac cone and of the two-dimensional
conic geometry of the bands. Therefore, the common practice of assuming r = 1 in
Hall measurements should require careful examination in two-dimensional materials
with non-parabolic band dispersion. As a final remark, we stress that our results also
show that, even though for generic transport quantities a precise solution of the BTE is
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needed in order to accurately determine their value and trends, for the Hall scattering
factor the expression of Eq. 4.25 with analytic scattering models is an accurate and
simple tool to compute the qualitative and quantitative values of r in a wide range of
temperatures and carrier densities.
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Chapter 5

First-principles study of electronic
transport and structural properties of
Cu12Sb4S13 in its high-temperature
phase

The Cu-Sb-S system has generated great interest amongst the family of copper-based
semiconductors because of its appealing structural, electronic and thermal transport
properties. In particular, Cu-Sb-S compounds display a large range of band gaps and
extremely low thermal conductivities. Non-toxicity and abundance of the constituent
elements are also key advantages that make the Cu-Sb-S system an ideal playground
to design new materials for sustainable thermoelectric devices. In this perspective, the
tetrahedrite Cu12Sb4S13 is of particular interest since it shows a remarkably high zT
value, approximately 0.6 at 700 K, which comes from a very low thermal conductivity
(below 1 Wm−1K−1 from 300 to 700 K) and a high power factor [61].

In spite of a large effort in characterising the material (see, for instance, Refs. [61,
167, 168, 169, 170]), a detailed understanding of the transport coefficients is still miss-
ing. This can possibly prevent further optimisations of the compound and related ther-
moelectric devices. In particular, the relative electronic and lattice contributions to the
very low thermal conductivity is not clear. In addition, the temperature dependence
of the electrical resistivity appears to vary considerably in the available experimental
data and a full ab initio theoretical approach that investigates the scattering mecha-
nisms is still missing. In this, of particular interest is the effect on the carriers of a very
peculiar lattice dynamics, that shows soft phonons at zero temperature, strong anhar-
monicity and unusually large anisotropic atomic displacement parameters as shown in
diffraction studies [171].

In order to address all these issues we have initially carried out an extensive study
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Figure 5.1: Tetrahedrite cubic conventional cell. S atoms are yellow, Cu atoms are blue and
Sb atoms are orange.

of the structural stability of the high-temperature phase of tetrahedrite. In particular,
this is done by analysing the structural relationship between the tetrahedrite and the
simpler fematinite structure (Cu3SbS4), which under optimal doping shows compa-
rably good thermoelectric properties [172, 173]. As it will be clear, tetrahedrite can
be seen as a fematinite-based structure with an ordered arrangement of S-vacancies.
Beside shedding new light on the caged nature of tetrahedrite and on its anharmonic
structure [171], that are at the origin of the low lattice thermal conductivity, this also
shows that S-vacancies are the natural doping mechanism for the Cu-Sb-S compound;
indeed, the starting Cu3SbS4 structure is a semiconducting material with a gap of about
0.8 eV and it shows a zT of 0.6 at 600 K under Ge or Sn doping.

We have then investigated the temperature dependence of the electronic trans-
port properties of the compound. In order to do this, we have averaged the Kubo-
Greenwood (K-G) formula for independent particles on snapshots of ab-initio molecular-
dynamics (AIMD) simulations at different temperatures, as successfully done in other
systems (see for instance Ref. [63]). The calculations have been performed using
VASP [67, 68] together with a in-house built post-processing tool 1. The need for
this approach, instead of a Boltzmann transport formalism, is justified principally by
the inherent incorporation of the interaction between electrons and classical lattice vi-
brations as well as classical anharmonicity effects. These are supposed to stabilise
the high-temperature phase of the tetrahedrite structure, that instead displays unstable
soft phonons at zero-temperature [61]. This kind of calculation evaluates the intrinsic
transport properties of the material and their temperature dependence: we find that the

1Publicly available at https://github.com/conodipaola/kg4vasp

https://github.com/conodipaola/kg4vasp
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Seebeck coefficient is in very good agreement with experiments and that the phonon-
limited resistivity shows a fairly temperature independent behaviour, with remarkably
low values that are not too far from the lowest experimental values [168]. Finally, the
Lorenz number is significantly lower than the free electron value; this is an important
result in the perspective of grasping the relative importance of the lattice and electronic
contributions to the thermal conductivity.

5.1 Computational details

The DFT calculations were performed using the projector augmented wave method
(PAW) [108] as implemented in the Vienna ab initio simulation package (VASP) [67,
68]. We used the Perdew, Burke and Ernzerhof (PBE) exchange-correlation func-
tional [174] for all the calculations with a plane wave energy cutoff of 550 eV and a
3 × 3 × 3 grid of k-points to sample the Brillouin zone of the conventional unit cell.
Lattice parameters and internal positions were fully relaxed (but constraining the cell
to be tetragonal). Formation energies are calculated as Eform. =

E0−
∑Nt

i=1 niEi

Na
where

E0 is the ground state total energy of the system with Na atoms in the unit cell, Nt is
the number of different types of atoms in the unit cell, and ni and Ei are the number
of atoms of type i and their ground state total energy in a bulk configuration. We com-
pute the Onsager coefficients Lij(ω) in the static dc limit for the electronic field for
each ionic configuration in the supercell according to the K-G formula of Eq. 1.106.
The temperature dependence of the transport coefficients (defined as in Eq. 1.35) is
obtained by a simple average over snapshots extracted from a molecular dynamics
simulation [63]. We used simulation cells of 232 atoms (2×2×1 supercells). Initially
we performed NPT runs with the Parrinello-Rahman scheme in the Nosé -Poincaré
approach for isothermal sampling [175]; we set the time-step to 1 fs and the thermostat
period to 1.11 ps; the barostat is used with fictitious masses of 10−3 amu. These AIMD
simulations were run for a time span of 5 ps, which was enough to calculate the aver-
aged cell parameters at different temperatures. As a second step, we performed NVT
runs using a Langevin thermostat. We used a drift parameter of 1.0 ps−1 and performed
simulations of about 8.5 ps with a time-step of 1 fs; the first 4.5 ps have been used to
safely reach thermal equilibration. After equilibration we extracted snapshots of nu-
clear positions every 500 AIMD steps. For every snapshot we have performed static
electronic DFT calculations and used the output to evaluate the Kubo formula. While
in the AIMD simulations we used a k-points grid of 1 × 1 × 3, for every snapshot we
used a denser grid of 3×3×6; for the smearing we used the Fermi-Dirac function with
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Figure 5.2: Lattice parameter as a function of temperature. Experimental data are from the
supplementary material of Ref. [177] and obtained from cooling (empty squares) and heating
(full squares).

the electronic temperature corresponding to the temperature of the system. The chem-
ical potential obtained from the ab initio calculation was then consequently used in the
Kubo formula. The Dirac delta functions have been approximated with Gaussians of
spread 40 meV. One method to choose the broadening is to impose the removal of all
the small oscillations in the optical conductivity that are due to the discretization of
band structure [176]. The stability with respect to changes of the Gaussian broadening
is checked by increasing its value and estimating the changes in the transport coeffi-
cients. For instance, at 300K the resistivity changes by less than 5% when we change
the smearing from 20 meV to 70 meV. It is also worth to stress that we used a cell of
232 atoms that is a tetragonal supercell; nonetheless, the conductivity tensor is diag-
onal with the proper symmetry for a cubic system. We intend this to be a quite clear
indication of convergence of the transport coefficients with respect to the cell size.

The electronic transport parameters were also computed via the BTE within the
Constant Relaxation Time (CRT) approximation, using the BoltzWann code [33] on
the DFT band structure of the symmetric high-temperature phase of tetrahedrite.

5.2 Crystal structure

Above room temperature tetrahedrite possess a cubic structure (I 4̄3m). The con-
ventional cell is made of 58 atoms and is shown in Fig. 5.1, with an experimen-
tal lattice parameter of aexp = 10.32Ang [178, 179]. Our DFT calculations predict
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Figure 5.3: (a) 2× 2× 1 supercell of fematinite, Cu3SbS4; (b) structure obtained by swapping
Cu and Sb atoms within the green (001) plane; (c) structure in which 6 S atoms are removed
(white atoms); (d) Relaxed structure obtained starting from (c). Color scheme for the atoms
are as in Fig. 5.1.

aDFT = 10.40Ang, in agreement with results reported in literature [61]. The temper-
ature dependence of the lattice parameter, deduced from AIMD NPT simulations, is
shown in Fig. 5.2 together with a comparison to experimental data. In this high tem-
perature phase there are five distinct crystallographic sites, namely, Cu(1): 12d, Cu(2):
12e, Sb: 8c, S(1): 24g, and S(2): 2a. The Cu(1) atoms are four-fold coordinated at the
centre of tetrahedrons of S(1) atoms, whereas the Cu(2) atoms are three-fold coordi-
nated at the vertices of octahedrons at the centre of which there are S(2) atoms. The Sb
atoms are on [001] planes at the apex of trigonal pyramids with S(1) atoms. In order
to better understand the structure of this complex compound, it is useful to establish a
connection between the structures of the tetrahedrite and of the simpler fematinite. In
order to do so we consider a 2× 2× 1 supercell of the fematinite structure, containing
64 atoms (Fig. 5.3a). This supercell is almost cubic since the primitive cell of the fe-
matinite phase is tetragonal (I 4̄2m) with experimental cell parameters of 5.39Ang and
c = 10.75Ang[173]; moreover, the average of the supercell lattice parameters is close
to the tetrahedrite one. At this point, the link between the tetrahedrite and the femati-
nite structures is established in the following two-step procedure: i) swap Cu and Sb
atoms in the highlighted (001) plane as shown in Fig. 5.3 (b) (or, equivalently, slip the
highlighted plane in the < 110 > direction), and then ii) remove 6 S atoms from the
supercell [see Fig. 5.3 (c)], thus recovering the tetrahedrite stoichiometry. If the system
is now relaxed, the resulting structure (Fig. 5.3 (d)) is cubic (with a lattice parameter
of 10.39Ang) and quite similar to the tetrahedrite. The only main difference is a small
distortion of the octahedral pattern that is not observed in the high-T phase of tetra-
hedrite (see Fig. 5.1). This result is not very surprising because at low temperatures
in tetrahedrite there are hints of a first order structural transition happening around
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Figure 5.4: Band structure and DOS of Cu12Sb4S13, reprinted from Ref. [61].

70 K; this transition modifies the size of the cell and introduces distortions in the local
symmetry for T < 70 K (this transition is still object of an active experimental inves-
tigation [167, 180, 181, 182, 62]). In addition, the instability at low temperatures is
evident also from zero temperature calculations of the phonon spectrum of the high-T
symmetric phase [61], as we will see in the next section.

To conclude the discussion about the connection between tetrahedrite and femati-
nite, it is interesting to compare the stability of the structures suggested in Fig. 5.3.
Our calculations show that the formation energies of the initial and final structures in
Fig. 5.3 are the same to a good precision, their values being -0.241 eV. The formation
energy of the high-T symmetric phase (Fig. 5.1) is instead 2 meV higher. It is also
interesting to observe that the formation energy of the intermediate step (b) of Fig. 5.3,
where Cu and Sb are exchanged, is only 6 meV higher than the fematinite one. These
structure calculations show that the clustering of sulphur vacancies in neighbouring
positions turns out to be very convenient. These results, beside highlighting the link
between tetrahedrite and fematinite, also directly show that the Cu-Sb-S crystalline
compounds can be quite flexible and open to a variety of energetically competitive
structures, with sulphur vacancies playing a very active role in this process.

5.3 Electronic and vibrational properties

Our calculation of the electronic structure of the high-temperature phase of Cu12Sb4S13

is in good agreement with results already reported in literature (shown in Fig. 5.4). The
density of states (DOS) in Figs. 5.4 and 5.5 clearly shows that the compound is metal-
lic but it can be interpreted as an heavily doped p-type semiconductor. This is because
the Fermi level lies near the top valence bands formed by sulphur 3p and copper 3d
hybridised states; the bottom of the conduction band lies at about 1.25 eV from the
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Figure 5.5: Comparison between the DOS of the symmetric structure in Fig. 5.1 (solid blue
line) and the snapshot averaged DOS at 300 K (orange dashed line) and at 600 K (red dotted
line). EF is the Fermi level.

Fermi level. This large band gap is in agreement with other theoretical results [61], but
it is lower than the experimental gaps reported in literature that vary between 1.7 eV
and 1.9 eV. [183, 184] The electronic structure of tetrahedrite is very different from
the one of fematinite. Indeed, as discussed in Refs. [172, 173], fematinite is a semi-
conductor with a smaller band gap of around 0.6 eV; here, the DOS at the top of the
valence band can be easily fitted with a proper DOS effective mass that can be used in
a parabolic band model to predict the thermoelectric properties of the compound under
hole doping. The tetrahedrite displays instead a rather complex and spiky DOS around
the Fermi level, far from being compatible with a parabolic model able to predict the
transport properties behaviours. In Fig. 5.5 we show the effect of thermal motion of
atoms on the electronic DOS of the compound, at 300 K and 600 K, obtained by av-
eraging snapshots of the AIMD simulations. Our results clearly show that thermal
motion leads to a visible flattening of the DOS peaks obtained at zero-T for the sym-
metric structure; also, we witness to a sensible decrease of the energy gap between the
Fermi level and the bottom of the conduction band.

Finally, we show in Fig. 5.6 the phonon dispersion of the high-T phase of Cu12Sb4S13

at zero-T. As already anticipated, several soft modes (negative phonons) are present
over all the wave-vector spectrum. This means that the structure is highly unstable at
low temperature and undergoes a reconstruction process, and anharmonic effects are
of fundamental importance to stabilize the structure above 70K.
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Figure 5.6: Phonon dispersion of Cu12Sb4S13 ,reprinted from Ref. [61].

5.4 Thermoelectric transport coefficients

In this section we discuss the thermoelectric transport properties of the tetrahedrite
compound and their temperature dependence. In Fig. 5.7 we compare the intrinsic
phonon-limited resistivity ρ = 1/σ computed with the K-G approach and the exper-
imental results. Most of the experimental data show a metallic-kind increase of the
resistivity as a function of temperature and this trend is in good agreement with our
theoretical results. Nonetheless, the experimental points have a quite sensitive spread
as a result of extrinsic effects (e.g. defects, impurities and polycrystallinity) that in
different samples can be of different importance. Our values for the phonon-limited
resistivity (about 0.5 × 10−5 Ω m at 600 K) are intended as an inferior limit for the
ideal pure sample and are not too far from the lowest experimental values reported in
literature [168, 170], which are about 1 × 10−5 Ω m. These values are quite low for
an undoped mineral in the Cu-Sb-S family. Indeed, for instance, nano structured Sn
doped fematinite at optimal doping for thermoelectric efficiency (a carrier concentra-
tion of about 5 × 1020 cm−3 ) has a resistivity between 1 × 10−5 Ω m and 1.8 × 10−5

Ω m, respectively at 300K and 600K [173].
It is now very interesting to notice that the temperature dependence of our the-

oretical results and of the experimental results with the lowest resistivity [168, 170]
can be reproduced also by tuning the carrier lifetime τ in the CRT approach for the
Boltzmann formalism, that uses only the DFT band structure of the symmetric high-
temperature phase of tetrahedrite. For instance, as shown in Fig. 5.7, the experimental
data in Ref. [168] can be fitted in a broad temperature range using an empirical carrier
lifetime of 5.6 fs. The same fitting can be done on our theoretical result and in this
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Figure 5.7: Resistivity as a function of temperature. The blue squares (green circles) are the
K-G (BTE-CRT) results. The black symbols are the experimental data: the down triangles are
from Ref. [167], the up triangles from Ref. [61], the diamonds from Ref. [168], the stars from
Ref. [169], and the plus symbols from Ref. [170]. The error bars in the K-G results are smaller
than the symbols used.

case the phonon-limited carrier lifetime is 16 fs, which has to be considered the upper
bound of the carrier lifetime in pristine tetrahedrite.

The fact that the temperature dependence of the resistivity is so well captured by
the Boltzmann approach in a very simple approximation as the CRT suggests that
the temperature dependence of the carrier scattering time due to the electron-phonon
coupling is not of fundamental importance in this material.

In Fig. 5.8 we show our results for the Seebeck coefficient as a function of temper-
ature. The theoretical data are in very good agreement with experiments, both in the
K-G and the BTE-CRT formalisms. This agreement between different approximate
theoretical approaches is not novel for the Seebeck coefficient (for instance, see the
analysis done for simple semiconductors [3, 4]) even when the scattering time has a
well defined temperature dependence; a fortiori, as we discussed above, for this ma-
terial where the resistivity can be reproduced in a wide range of temperatures using
the equilibrium band structure of the symmetric phase and a carrier relaxation time
independent of temperature, it is reasonable to expect a good agreement between the
different approaches. The values of the Seebeck coefficient are appreciably high in this
pristine system. For instance, the predicted value at 600 K, about 100 µV/K, is almost
as high as the values found in fematinite at optimal Sn doping, about 130 µV/K [173].
These values of S and ρ lead to an undoped compound with a quite high power fac-
tor, S2/ρ. The highest reported experimental values of the power factor at 600 K are
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Figure 5.8: Seebeck coefficient as a function of temperature. The symbols are as in Fig. 5.7.

between 1.2 and 1.4 mW/(K2m) [168, 170, 185], but our calculations suggest the pos-
sibility of further improvement to about 2 mW/(K2m).

In Fig. 5.9 we show the results for the Lorenz number, L = κe/(σT ). This quan-
tity is important to isolate the electronic contribution κe to the thermal conductivity
using the experimental values of the electrical conductivity. In this way, it is possible
to extract the lattice thermal conductivity κL from experiments using κL = κexp − κe.
Our calculations show that even if tetrahedrite displays a transport metallic behaviour
above room temperature, the values of L obtained with the K-G formalism are al-
most temperature-independent but substantially lower than the free-electron value in
the Wiedemann-Franz law (L0 = 2.44 × 10−8WΩ K−2). In addition, contrary to
what observed for the Seebeck coefficient, the BTE-CRT approach gives values for L
slightly higher than the K-G ones, with a slightly different temperature trend. Here,
the difference between the approaches is not surprising because, as shown in other
models [186] and ab initio [3] calculations, the Lorenz number is tendentially more
sensitive to the details of the carrier scattering mechanisms.

These predictions for L are interesting as they show that the electronic contribution
to the thermal conductivity extracted using the free-electron value for L (as done, for
instance, in Refs. [168, 61]) can be significantly overestimated, up to about 50%; this
can lead to a severe underestimation of the intrinsic lattice thermal conductivity of
tetrahedrite. For instance, in Ref. [61] the reported value of the experimental thermal
conductivity is of about 1.45 W/(m K) at 600 K and the lattice contribution is estimated
using an L0 of about 0.4 W/(m K); if the estimation is instead done using L from
our calculations within the K-G approach, the value for κL is of about 0.8 W/(m K)
(κL ≈ 0.6 W/(m K) using L from the BTE-CRT approach), suggesting that the lattice
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Figure 5.9: Lorenz number as a function of temperature. The blue squares (green circles) are
the K-G (BTE-CRT) results; the red dashed line is free-electron value in the Wiedemann-Franz
law (L0 = 2.44× 10−8WΩ K−2).

thermal conductivity of the compound is certainly low, but it can be very similar to the
electronic contribution.
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Conclusion

In this work we addressed the theory and computation of transport properties of crys-
tals in presence of external fields (thermal gradients and electromagnetic fields) via the
solution of the linearised BTE or using the Kubo response formalism. In the theoret-
ical section, we have given a detailed description of both methods, with a particular
attention on the derivation of the BTE from NEGFs. Indeed, we showed that the BTE
for the electronic statistical distribution is obtained as the semi-classical limit of the
evolution equation for the lesser Green’s function, integrated over the frequency do-
main. We also showed how the various transport observables in this limit coincide with
their intuitive microscopic definitions; we discussed their gauge invariance and how in
solids this is tightly connected to the use of Wannier functions basis sets. The whole of
these arguments serves as a proof of the general validity and precision of the methods
and of the results of this work. Successively, we have validated the theory reproducing
experimental data and used it to predict behaviours of transport quantities on mate-
rials of interest. Firstly, we have explored from first-principles the intrinsic limits of
the thermoelectric properties of p-doped diamond and their dependence upon dopant
concentration, temperature and magnetic field. We found that the phonon-limited drift
mobility is around 2500 cm2/V−1s−1 at room temperature, which is in agreement with
the most recent experiments but not compatible with some extraordinary high values
(around 3800 cm2/V−1s−1) reported in the literature. The temperature dependence
of this quantity is remarkable since we can identify two regimes where the power
law is very different as a consequence of different scattering mechanisms (acoustic
phonons at low temperatures, high phonons at high temperatures). As regards the See-
beck coefficient, the diffusive component is not remarkable in value or trends, but the
phonon-drag component—whose description requires the numerical solution of the
phonon BTE—presents unique features at low temperatures. We also predicted that
the Seebeck coefficient can be enhanced at room temperature in presence of an exter-
nal magnetic field by as much as 30% at 40kOe, in line with the magnetoresistivity
behaviour. On a more general footing, our results give a detailed microscopic char-
acterisation of the carrier dynamics in diamond and are intended to provide a useful
reference for the analysis and simulation of diamond-based electronic devices. Also,
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the use and validation of our theoretical modelization here turns out to be a promising
tool to calculate magneto-transport coefficients in doped semiconductors as well as in
metallic systems.

We have then focused on two dimensional materials and, in particular, graphene.
Here, we have determined from both first principles and models the intrinsic behaviour
of the Hall scattering factor in a wide range of doping and temperatures. This quan-
tity is very important in extracting the carrier density and the drift mobility from ex-
periments. We find that at large dopings r is weakly temperature dependent, with
values around unity, due to the coupling with optical phonons. At low doping, r
presents a sharp temperature dependence with values much larger/lower than unity be-
low 300K; this is due to the acoustic electron-phonon scattering rate close to the Dirac
cone and to the two-dimensional conic geometry of the bands. This suggests that in
two-dimensional materials with non-parabolic band dispersion the common practice of
assuming r = 1 in experiments or theoretical calculations should require careful exam-
ination. Finally, it is worth pointing out that, even though the careful ab-initio descrip-
tion of r is very demanding, simple models which contain the basic physical ingredient
can predict the value of the Hall scattering factor within a great accuracy. Practically,
a better understanding of the Hall scattering factor in graphene—and a simple tool to
calculate it—can be of great importance to explore and optimise graphene-based de-
vices. For instance, a direction of particular interest is the current research on graphene
Hall sensors, that have the potential to outperform traditional magnetic sensors based
on semiconductors [187, 188, 189, 190].

When our BTE approach cannot be applied, such as in materials with soft phonons
modes, we switch to the Kubo formalism. The case study that we considered here is
the tetrahedrite Cu12Sb4S13, a compound of potential technological applications. We
have shown that the structural variety of the Cu-Sb-S network allows a description
of tetrahedrite in terms of a semiconductor modified by an ordered arrangement of
S-vacancies. The Kubo-Greenwood approach has allowed us to predict two important
thermoelectric quantities, the phonon-limited electrical resistivity and the Lorenz num-
ber. The predicted resistivity turns out to be quite low for an undoped compound in
the Cu-Sb-S system. The lowest experimental data reported in literature are not too far
from the predicted intrinsic values: this clearly shows that the quality of the samples
studied in experiments is high, but it also suggests the possibility of further improve-
ments of the electronic transport properties. The Lorenz number has turned out to be
substantially lower than what expected for the free-electron value, often used to esti-
mate the electronic and lattice contributions to the thermal conductivity in experiments.
Thus our result provides a more accurate reference to analyse thermal transport in this
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compound. Finally, it is important to stress that the K-G approach has been key to
predict transport properties in this system. Nonetheless, our analysis has also allowed
us to show that the use of a less computationally demanding BTE-CRT approach is
quite effective to reproduce the temperature trends of transport quantities such as the
resistivity and the Seebeck coefficient in this complex compound.

In conclusion, in this work I developed theoretical tools and computational infras-
tructures in order to study the trends of transport quantities in 3d and 2d materials.
In particular, I focused on the development and on the implementation of a new and
reliable solver for the BTE in presence of a magnetic field; I also extensively worked
on the systematic optimization of the existing solvers for the BTE in presence of elec-
tric field alone. In the cases that have been studied, my predictions are in line with
theoretical expectations and, more importantly, they are in general good agreement
with experimental data. The developments of this work will be available in the offi-
cial repository of the EPW code at https://gitlab.com/QEF/q-e/-/tree/
develop/EPW. With more than 30,000 lines of FORTRAN90 code written, the scal-
able and optimized tools developed here allow to obtain the exact numerical solution
of the BTE equation on extremely dense grids for increasingly complex systems; to-
gether with the current exciting perspective of exascale computing, I believe that these
advances will be of fundamental importance in the investigation of the ab-initio trans-
port properties of crystals in the next years.

https://gitlab.com/QEF/q-e/-/tree/develop/EPW
https://gitlab.com/QEF/q-e/-/tree/develop/EPW
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Appendix A

Work-flow/Flowchart of transport
calculation from first principles

In this Appendix we present the work-flow of the practical calculations that are based
on the theory presented in Chap. 1. Our practical procedure for the calculation of
the transport quantities in crystals consists in various steps. For the BTE approach, as
explained in Refs. [4, 3, 5, 64], we proceed in line with the following steps:

1. Self-Consistent-Field (SCF) calculation of the ground state density of the system
by the means of standard ab-initio DFT techniques;

2. Non-Self-Consistent-Field (NSCF) calculation of the wave-functions Ψnk and
band structure ϵnk of the system using the SCF ground state density;

3. Density Functional Perturbation Theory (DFPT) calculation of the phonon spec-
trum of the system and variation of the electronic self consistent Khon-Sham
potential ∂λqV SCF with respect to a phonon mode {λq} of frequency ωλq;

4. Calculation of the Electron Phonon Coupling (EPC) matrix gλnk,mk+q using DFPT
∂λqV

SCF and NSCF Ψnk;

5. Wannier-scheme interpolation of the band structure energies, band velocities,
phonon energies and EPC elements on very fine grids;

6. Solution of the BTE equation to obtain the out of equilibrium population fnk;

7. Calculation of the transport properties tensors by means of Eqs. 1.73.

The previous steps are graphically represented in the flowchart of Fig. A.1. For the
first 4 steps we have used the Quantum Espresso (QE) code [66] and for the last 2 we
have used a pre-release version of the EPW code [34, 35].

For the calculations involving the Kubo-Greenwood formalism, we work with the
following steps, as explained in Ref. [65]:
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1. Ab initio NPT Molecular Dynamics (MD) to equilibrate the volume of the sys-
tem;

2. Ab initio NVT MD to simulate the thermal motion of the atoms;

3. SCF calculation on snapshots of the MD simulation;

4. NSCF and calculation of optical matrix elements (expectation values of the nabla
operator);

5. Calculation of the conductivity by means of the Kubo-Formula of Eq. 1.106.
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Figure A.1: Logical procedure followed in the implementation of the
theory presented in Chap. 1
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Appendix B

Difference between adiabatic and
isothermal responses

Eq. 1.83 is valid when the states of a system follow a unitary dynamics. This is true if
the system is totally isolated from the sorrounding environment or, more realistically, if
it can be evolved so slowly that transistions between orthogonal states are not allowed.
In this case, the PN are constant in time and therefore can be put equal to the in-
equilibrium ones. By the way, when one approaches the limit ω → 0, the adiabatic
approximation is doomed to fail because the system will inevitably interact with the
sorrounding environment on long time scales. It follows that such probabilities cannot
be constant in such limit.

Before looking at how the linear response changes if we take in account the cou-
pling to the external bath, let us introduce the Lehmann representation for the adiabatic
susceptibility. Starting from Eq. 1.85, we can write the commutator in a basis set of
eigenstates and obtain in the frequency domain:

χAB(ω) =
∑
mn

Pm − Pn

ω − (En − Em) + iη
AmnBnm (B.1)

where η → 0+. The isothermal response is defined for zero frequency as [102] (com-
pare with Eq. 1.87):

χisoth.
AB = lim

F→0

Tr[Âρ̂F ]− Tr[Âρ̂F=0]

F
(B.2)

ρ̂F =
e−βĤF

ZF

(B.3)
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With few manipulations one can show that the Lehmann representation of the isother-
mal response function becomes:

χisoth.
AB =

∑
n̸=m

Pm − Pn

Em − En

AmnBnm − β

(∑
n

PnAnnBnn − ⟨Â⟩0⟨B̂⟩0

)
(B.4)

where we recognize that the first piece is Eq. B.1 evaulated at null frequency. If we
now define the operators

[
Â0

]
nm

= Ânnδnm and
[
B̂0

]
nm

= B̂nnδnm as done in Ref.
[102], the previous expression becomes:

χisoth.
AB = lim

ω→0

∑
n̸=m

Pm − Pn

Em − En

AmnBnm − β
(
⟨Â0B̂0⟩0 − ⟨Â0⟩0⟨B̂0⟩0

)
(B.5)

so that the two responses are equal whenever we can neglect the correlations between
the diagonal elements of Â and B̂ at initial times. The difference between the two
responses is not limited to the Kubo formalisms, but it is in general intrinsic in the
study of non equilibrium systems1.

1For example, the study of the expectation value of Eq. 2.1 with a unitary dynamics is the analogue
of the adiabatic response of the Kubo formalism



110

Appendix C

Gradient expansion

The transform of Eq. 2.42 is:

∑
R−R′

R1n1

∫ ∞

−∞
d(t− t′)dt1e−ik·(R−R′)eiω(t−t′)A(Rn,R1n1, t, t1)B(R1n1,R′n′, t1, t′) =

∑
R−R′

R1n1

∫ ∞

−∞
d(t− t′)dt1e−ik·(R−R′)eiω(t−t′)A(R−R1,

R+R1

2
, n, n1, t− t1,

t+ t1

2
)×

×B(R1 −R′,
R1 +R′

2
, n1, n′, t1 − t′,

t1 + t′

2
). (C.1)

Now we change the sum index R1 → R−R1 = R̃1, and the transform is:

∑
R−R′

R̃1,n1

∫ ∞

−∞
d(t− t′)dt1e−ik·(R−R′)eiω(t−t′)A(R̃1,R− R̃1

2
, n, n1, t− t1,

t+ t1

2
)×

×B(R− R̃1 −R′,
R− R̃1 +R′

2
, n1, n′, t1 − t′,

t1 + t′

2
) (C.2)

I express the variables as functions of R+R′

2
= R′

† and R−R′ = R̃′ :

∑
R̃′R̃1

n1

∫ ∞

−∞
d(t− t′)dt1e−ik·R̃′

eiω(t−t′)A(R̃1,R′
† +

R̃′ − R̃1

2
, n, n1, t− t1,

t+ t1

2
)×

×B(R̃′ − R̃1,R′
† −

R̃1

2
, n1, n′, t1 − t′,

t1 + t′

2
) (C.3)
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I repeat the same operation for the time variables, with t − t1 = t̃1, t+t′

2
= t′† and

t− t′ = t̃′:

−
∑
R̃′,R̃1

n1

∫ ∞

−∞
dt̃′dt̃1e−ik·R̃′

eiωt̃
′
A(R̃1,R′

† +
R̃′ − R̃1

2
, n, n1, t̃1, t′† +

t̃′ − t̃1

2
)×

×B(R̃′ − R̃1,R′
† −

R̃1

2
, n1, n′, t̃′ − t̃1, t′† −

t̃1

2
) (C.4)

Now we perform the last change of variables, calling R̃z = R̃′ − R̃1 and t̃z = t̃′ − t̃1:

∑
R̃z,R̃1,n1

∫ ∞

−∞
dt̃1dt̃ze

−ik·(R̃z+R̃1)eiω(t̃z+t̃1)A(R̃1,R′
† +

R̃z

2
, n, n1, t̃1, t′† +

t̃z
2
)×

B(R̃z,R
′
† −

R̃1

2
, n1, n′, t̃z, t

′
† −

t̃1

2
) (C.5)

The gradient expansion is performed at this point. The sum over all the cells of the
crystal is intended to be extended over the whole dimension of the crystal; the time
integral is from −∞ to +∞; nonetheless we suppose that our functions have a big but
finite support where their variation with respect to the coordinate is smooth.1 With this
in mind, we expand A and B in the following way:

A(R̃1,R′
† +

R̃z

2
, n, n1, t̃1, t′† +

t̃z
2
) = A(R̃1,R′

†, n, n
1, t̃1, t′†)+

+
∆

∆R′
†
A(R̃1,R′

†, n, n
1, t̃1, t′†) ·

R̃z

2
+

∂

∂t′†
A(R̃1,R′

†, n, n
1, t̃1, t′†)

t̃z
2

(C.6)

B(R̃z,R
′
† −

R̃1

2
, n1, n′, t̃z, t

′
† −

t̃1

2
) = B(R̃z,R

′
†, n

1, n′, t̃z, t
′
†)+

− ∆

∆R̃1
B(R̃z,R

′
†, n

1, n′, t̃z, t
′
†) ·

R̃1

2
− ∂

∂t̃1
B(R̃z,R

′
†, n

1, n′, t̃z, t
′
†)
t̃1

2
(C.7)

where ∆ is referred to the fact that it is a finite difference derivative because the
distance between Wannier functions is not infinitesimal; if the functions are varying
enough smoothly we treat the finite differences as proper derivatives and the sums as

1Experimentally, there is a bound on the time of observation of a system and the dimension of a
crystal.
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proper integrals. With this expansion equation C.5 becomes:

A(⋆)B(⋆′) +
i

2
∇R′

†
A(⋆) · ∇kB(⋆′)− i

2
∇kA(⋆) · ∇R′

†
B(⋆′)+

− i

2

∂

∂t′†
A(⋆) · ∂

∂ω
B(⋆′) +

i

2

∂

∂ω
A(⋆) · ∂

∂t′†
B(⋆′) (C.8)

⋆ = k,R′
†, n, n

1, ω, t′† (C.9)

⋆′ = k,R′
†, n

1, n′, ω, t′† (C.10)

where the sum over n1 is implicit. In this passage we do not need to suppose that
the system is periodical in all the 3 spatial directions; in fact, the vectors k and R are
d-dimensional where d is the number of periodical dimensions. It follows that the gra-
dients are to be thought as d-dimensional gradients. More specifically, the functions A
and B will not bring additional dependence on the non periodical coordinates because
these coordinates have been integrated out in equation 2.28.

Now we want to single out the dependence of A and B with respect to the electric
field. To this aim, we change the functional forms to A = A(k,R′

†, n, n
1,Ω, t′†) and

B = B(k,R′
†, n

1, n′,Ω, t′†) where Ω = ω + eE · R′
†; this same kind of change of

variables is adopted in Ref. [191] for the electron gas. The most important reason
behind this is the insurance of the gauge invariance of the physical observables that are
expressed via the Green’s functions. In particular, the Green’s function expressed as a
function of Ω instead of ω is gauge invariant, and so are its evolution equations. For
the interested reader, this is shown in details in App. E. With this change of variable
we have that:

∂

∂ω
A(k,R′

†, n, n
1, ω, t′†) =

∂

∂Ω
A(k,R′

†, n, n
1,Ω, t′†)

∇R′
†
A(k,R′

†, n, n
1, ω, t′†) = ∇R′

†
A(k,R′

†, n, n
1,Ω, t′†) + eE

∂

∂Ω
A(k,R′

†, n, n
1,Ω, t′†)

(C.11)

and the same for B. We obtain at the end:

A(⋆)B(⋆′) +
i

2
∇R′

†
A(⋆) · ∇kB(⋆′) +

ieE

2

∂

∂Ω
A(⋆) · ∇kB(⋆′)− i

2
∇kA(⋆) · ∇R′

†
B(⋆′)+

− ieE

2
∇kA(⋆) ·

∂

∂Ω
B(⋆′)− i

2

∂

∂t′†
A(⋆) · ∂

∂Ω
B(⋆′) +

i

2

∂

∂Ω
A(⋆) · ∂

∂t′†
B(⋆′) (C.12)

⋆ = k,R′
†, n, n

1,Ω, t′† (C.13)

⋆′ = k,R′
†, n

1, n′,Ω, t′† (C.14)
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where the sum over n1 is implicit. It is worth noticing again that for these passages we
do not need to assume that the system is periodical in all the 3 directions, given that
the electric field can be expressed as a d-dimensional vector (i.e. it has to be zero in
the non periodical directions).

We suppose now that all the spatial dependence has been included in the Ω variable.
We therefore neglect all the spatial gradient. Moreover, we suppose to be studying the
steady state situation. This is coherent with our choice of neglecting initial correlation
(we could nonetheless study some time-dependent phenomena, but not the initial tran-
sient when the external fields are turned on). In this case expression C.12 simplifies
to:

A(k, n, n1,Ω)B(k, n1, n′,Ω) +
ieE

2

∂

∂Ω
A(k, n, n1,Ω) · ∇kB(k, n1, n′,Ω)+

− ieE

2
∇kA(k, n, n

1,Ω) · ∂

∂Ω
B(k, n1, n′,Ω) (C.15)

where the sum over n1 is implicit.
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Appendix D

Current expression

We start from the operatorial definition of the paramagnetic current in absence of ex-
ternal fields:

Ĵp(rt) =
e

2

∑
i

[v̂iδ(r− r̂i) + δ(r− r̂i)v̂i] (D.1)

Using the second quantization rules for the expression of the one-particle operator
matrix elements we have:

Ĵp(rt) =
e

2

∑
kn,k′n′

⟨kn| Ĵp(r) |k′n′⟩ ĉ†kn(t)ĉk′n′(t) (D.2)

where ĉ†kn and ĉk′n′ are creation and destruction operators in the Bloch basis set in
the Heisenberg picture. ĉ†kn(−∞) and ĉk′n′(−∞) are referred to the Bloch basis that
diagonalize the free Hamiltonian. This is always possible because we can always adia-
batically switch on the interaction long time before the external perturbation is applied;
when evaluating their average we are still in the assumption that we can disregard the
perturbative expansion of the immaginary portion of the interaction contour. The ma-
trix elements are expressed as (remembering that the velocity operator is diagonal in k

[192]):

⟨kn| Ĵp(r) |k′n′⟩ =
∑
m

[
⟨kn| v̂ |km⟩ ⟨km| δ(r− r̂1) |k′n′⟩+

⟨kn| δ(r− r̂1) |k′m⟩ ⟨k′m| v̂ |k′n′⟩
]

(D.3)

and inserting the completeness relation
∫
dr′ ⟨r′|r′⟩ = 1 and using δ(r − r̂1) |r′⟩ =

δ(r− r′) |r′⟩ we have:

⟨kn| Ĵp(r) |k′n′⟩ =
∑
km

[
⟨kn| v̂ |km⟩ϕkm(r)ϕ

∗
k′n′(r)+

ϕkn(r)ϕ
∗
k′m(r) ⟨k′m| v̂ |k′n′⟩

]
(D.4)
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Therefore we have:

⟨Ĵp(rt)⟩ =
e

2

∑
knk′n′m

[
⟨kn| v̂ |km⟩ϕkm(r)ϕ

∗
k′n′(r)+

ϕkn(r)ϕ
∗
k′m(r) ⟨k′m| v̂ |k′n′⟩

]
⟨ĉ†kn(t)ĉk′n′(t)⟩ (D.5)

Now we can express:

⟨ĉ†kn(t)ĉk′n′(t)⟩ =
∑
RR′

⟨ŵ†
Rn(t)ŵR′n′(t)⟩e−ik·R+ik′·R′

=∑
RR′

G<(R,R′, n, n′, t, t)e−ik·R+ik′·R′
(D.6)

where ŵ†
Rn(t) and ŵR′n′(t) are creation and destruction operator in the Wannier basis

set. If we were able to identify k = k′ then the r.h.s. of the above expression is exactly
the quantity that obeys the BTE, with all the procedure explained in the main text. Now
the expression for the current is:

⟨Ĵp(rt)⟩ =
e

2

∑
knk′n′mRR′

[
⟨kn| v̂ |km⟩ϕkm(r)ϕ

∗
k′n′(r)+

ϕkn(r)ϕ
∗
k′m(r) ⟨k′m| v̂ |k′n′⟩

]
G<(R,R′, n, n′, t, t)e−ik·R+ik′·R′

(D.7)

Our coarse graining operation now will be to average the current over the whole crystal,
and use the orthogonality relations for Bloch functions:

⟨ĴTOT
p (t)⟩ = e

∑
knn′RR′

⟨kn| v̂ |kn⟩G<(R,R′, n, n′, t, t)e−ik·(R−R′) = (D.8)

e

∫
dω

∑
knR+

⟨kn| v̂ |kn⟩G<(k,R+, n, ω) (D.9)

where we have introduced the variables R+ = R+R′

2
and R− = R−R′, we have used

the assumption that the Green’s function is diagonal in band indexes1 and passed to
integration over frequency using that G< depends only on the difference of the times.
Therefore the total current is the average of currents that can be considered as the
coarse graining of the current in the unit cell at R+. Therefore, the cell-dependent
current is:

⟨Jp(R
+)⟩ = e

∑
kn

∫
dω ⟨kn| v̂ |kn⟩G<(k,R+, n, ω) (D.10)

1As in Chap. 2, we are supposing that we are neglecting terms in A; this is a coherent approximation
also for the velocity, whose out of diagonal components in the band indexes are proportional to A.
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which is in the same form of 2.91, with the difference that the expression is valid in
absence of external fields.

In order to derive the expression of the total current Je in presence of external fields,
we use the procedure of App. E to express the current as a function of a gauge inde-
pendent Green’s function. This procedure consists in introducing the Peierl’s phase in
Eq. D.6 (see App. E) to remove the gauge dependence of the Green’s function in the
Wannier basis set. Repeating the same passages, in the case of a dc electric field Eq.
D.9 becomes:

⟨ĴTOT
e (R+)⟩ = e

∫
dΩ

∑
knR+

⟨kn| v̂ |kn⟩G<(k,R+, n,Ω) (D.11)

where the important difference is the substitution ω → Ω = ω + eE · R+ (see App.
E). Thus, it is important that Eq. 2.91 is applied to the solution of the QBTE where the
change of variables of App. C has been performed.
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Appendix E

Gauge invariance of the lesser Green’s
function

In this appendix we show more details of what anticipated in Chap. 2 and App. C as
regards the gauge invariance of the Green’s functions. In particular, we will provide
a general receipt to express the Green’s functions in coordinates that ensure gauge
invariance in presence of electromagnetic fields. In the particular case of a dc electric
field, we will show the equivalence with the change of variables introduced in C. In the
following, we will drop band indexes since they are not necessary for the derivation.

We start considering the Green’s function G<(r1t1, r2t2) for the homogeneous
electron gas. As done by Mahan in Ref. [191], one goes in the Wigner representa-
tion introducing the variables:

r+ =
r1 + r2

2

r− = r1 − r2

t+ =
t1 + t2

2

t− = t1 − t2 (E.1)

We first consider the Dyson equation for the non equilibrium Green’s functions in the
form of Eq. 2.17. It can be easily be shown that upon a gauge transformation in the
form:

A(rt) → A(r, t) +∇rχ(r, t)

ϕ(r, t) → ϕ(r, t)− ∂χ(r, t)

∂t
(E.2)
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the Green’s functions transform in the following way[11]:

G̃(r1t1, r2t2) → ei[χ(r1,t1)−χ(r2,t2)]G̃(r1t1, r2t2) (E.3)

Now we can define, for each Green’s function, the appropriate gauge invariant expres-
sion in the Wigner representation as :

G̃(r1t1, r2t2) = e
i
∫ r̄1
r̄2

Ā(r̄)·dr̄
∫
dkeik·r

−
e−iΩt−G̃(k,Ω, r+, t+) (E.4)

where r̄1 = r1t1, r̄2 = r2t2, Ā(r̄) = (A(rt),−ϕ(rt)), I(r̄1, r̄2) = e
i
∫ r̄1
r̄2

Ā(r̄)·dr̄ and the
integration is done on the straight line that connect r̄1 to r̄2. Now, if one performs a
gauge transformation following Eq. E.2, we have:

I(r̄1, r̄2) → I(r̄1, r̄2)e
i[χ(r1,t1)−χ(r2,t2)] (E.5)

because we are integrating a 4-dimensional gradient over a line, and therefore all the
gauge information is manifestly included in I(r̄1, r̄2). The conclusion is that with this
definition G̃(k,Ω, r+, t+) is manifestly gauge invariant, with gauge invariant evolution
equations. An example of application of E.4 is for a dc electric field expressed only
via the potential ϕ(r, t) = −eE · r. The line integral has to be evaluated on the path :

r̄(s) = (1− s)(r2, t2) + s(r1, t1) (E.6)

so that it becomes:∫ r̄1

r̄2

Ā(r̄) · dr̄ =
∫ 1

0

Ā(s) · ∂r̄(s)
∂s

ds =

∫ 1

0

eE · [(1− s)r2 + sr1] (t1 − t2)ds =

E · r+t−

(E.7)

For example, for the lesser Green’s function:

G<(r1t1, r2t2) = eiE·r+t−
∫
dkdΩeik·r

−
e−iΩt−G<(k,Ω, r+, t+) (E.8)

The above equation defines the Wigner transformation for which we are sure that
G<(k,Ω, r+, t+) is a gauge invariant quantity. If in our definition of Wigner transfor-
mation we do not put the prefactor dependent on the electric field, then we must rescale
the Wigner coordinates accordingly, in order to rightly identify the gauge invariant
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Green’s function. Indeed, this is what has been done by Mahan in Ref. [111]—even if
there the change of variable is introduced from another point of view. The above pro-
cedure is nonetheless more general and can be applied to any kind of electromagnetic
field.

In crystals the situation is a bit different, because we do not deal directly with r+

and r−, but with:

R+ =
R1 +R2

2

R− = R1 −R2 (E.9)

where R1 and R2 are direct lattice vectors (or Wannier functions indexes). In this case
the most convenient basis set where to expand the Green’s functions is a generalization
of the Wannier functions obtained via the Peierl’s substitution:

|R̃⟩ = ei
e
h̄

∫ r
R A(r′t′)dr′ |R⟩ (E.10)

where r′ runs along the direct line that connects r and R [193]. In this case the right
gauge invariant Wigner transformation of the Green’s function is [194]:

G̃(R1, t1,R2, t2) = e
i
∫ R̄1
R̄2

Ā(R̄)·dR̄
∫
dkdωeik·R

−
e−iΩt−G̃(k,Ω,R+, t+) (E.11)

where R̄1 = R1t1, R̄2 = R2t2, Ā(R̄) = (A(Rt),−ϕ(Rt)), I(R̄1, R̄2) = e
i
∫ R̄1
R̄2

Ā(R̄)·dR̄

and the integration is done on the straight line that connect R̄1 to R̄2. Notice that
the gauge invariance has been shifted from the r space coordinate to the R lattice
coordinates.

With the same exact procedure as for the homogeneous gas case, we have that for
the dc electric field expressed via a scalar potential the gauge invariant lesser Green’s
functions expressed in the generalized Wannier basis is:

G<(R1t1,R2t2) = eiE·R+t−
∫
dkdωeik·R

−
e−iΩt−G<(k,Ω,R+, t+) (E.12)

Again, if the prefactor is not taken in account correctly in the Wigner transformation—
as in Eq. 2.41—then one has to adopt an appropriate change of variable—as in App.
C—to make the Green’s function gauge invariant. The inverse transform of Eq. E.12
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is:

G<(k,Ω,R+, t+) =

∫
dR−dt−e−ik·R−

ei(Ω−E·R+)t−G<(R1t1,R2t2) (E.13)

To sum up, if one transforms the appropriate Green’s functions evolution equations in
presence of a dc electric field from the direct space to the reciprocal space using Eq.
E.13, then one obtains gauge invariant equations—that are the same that we obtained in
Chap 2 with the trick of the variable change. Also, with this transform one obtains Eq.
C.12 directly from the transform of Eq. C.5,C.6 and C.7. Again, we stress that the pro-
cedure described in this chapter is general and can be extended to any electromagnetic
field.
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Appendix F

Field operators and equations of
motion

Let’s consider a one particle Hamiltonian that may be written in second quantization
on a general basis as:

Ĥ0 =
∑
ij

hij ĉ
†
i ĉj (F.1)

then the evolution equations for the annihilation e creation operator are:

i
∂

∂t
ĉI(t) = −[Ĥ0, ĉI(t)] = −

∑
ij

hij[ĉ
†
i (t)ĉj(t), ĉI(t)] =

∑
j

hIj ĉj(t)

i
∂

∂t
ĉ†I(t) = −[Ĥ0, ĉ†I(t)] = −

∑
ij

hij[ĉ
†
i (t)ĉj(t), ĉ

†
I(t)] = −

∑
i

hiI ĉ
†
i (t) (F.2)

where we used that for fermions:

[ÂB̂, Ĉ] = Â{B̂, Ĉ} − {Â, Ĉ}B̂

{Â(x, t), Â(x′, t)} = {Â(x′, t), Â(x, t)} = δ(x− x′) (F.3)

where {, } is the anticommumator operator for fermionic fields. Let’s see the implica-
tion of the above rules on the time evolution of the Green’s functions. Let’s define for
example the lesser Green’s function on the Bloch basis set:

G<,0(nk, t1, t2) = i⟨ĉ†kn(t2)ĉkn(t1)⟩ (F.4)

We now see that:

i
∂

∂t1
G<,0(nk, t1, t2) = iϵ0nk⟨ĉ

†
kn(t2)ĉkn(t1)⟩ (F.5)

i
∂

∂t2
G<,0(nk, t1, t2) = −iϵ0nk⟨ĉ

†
kn(t2)ĉkn(t1)⟩ (F.6)
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that can be rewritten as: [
i
∂

∂t1
− ϵ0nk

]
G<,0(nk, t1, t2) = 0 (F.7)[

−i ∂
∂t2

− ϵ0nk

]
G<,0(nk, t1, t2) = 0 (F.8)

that are the same expression that can obtained taking the matrix elements of Eqs. 2.25
and 2.38 between Bloch functions. In the Wannier basis set instead, we have:

G<,0(Rn,R′n′, t1, t2) = i⟨ŵ†
R′n′(t2)ŵRn(t1)⟩ (F.9)

where ŵ and ŵ† are defined as in App. D and:

i
∂

∂t1
G<,0(Rn,R′n′, t1, t2) =

∑
R1n1

iH0
Rn,R1n1⟨ŵ†

R′n′(t2)ŵR1n1(t1)⟩ (F.10)

i
∂

∂t2
G<,0(Rn,R′n′, t1, t2) = −

∑
R1n1

iH0
R1n1,Rn⟨ŵ

†
R1n1(t2)ŵRn(t1)⟩ (F.11)

which become:∑
R1n1

[i
∂

∂t1
δRn,R1n1 −H0

Rn,R1n1 ]G<,0(R1n1,R′n′, t1, t2) = 0 (F.12)

∑
R1n1

(−i ∂
∂t2

δR1n1,R′n′)G<,0(Rn,R1n1, t1, t2)−G<,0(Rn,R1n1, t1, t2)H
0
R1n1,R′n′ = 0

(F.13)

Eq. F.13 may be rewritten formally as:

∑
R1n1

G<,0(Rn,R1n1, t1, t2)[−i
∂

∂t2
δR1n1,R′n′ −H0

R1n1,R′n′ ] = 0 (F.14)

where the time derivative operator is intended to act on the Green’s function. We can
generalize also Eq. 2.25 and 2.38 to:

∑
k

[
i
∂

∂t1
δik −H0

ik

]
G̃0

kj(t1, t2) = δijδ(t1 − t2)Ĩ

∑
k

G̃0
ik(t1, t2)

[
−i ∂
∂t2

δkj −H0
kj

]
= δijδ(t1 − t2)Ĩ (F.15)

It is worth mentioning also that the transformation between second quantized oper-
ators also determines the sign of the k exponent of the Wigner transform of Eq. 2.41.
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Indeed, using Eq. 1.74 we have:

ŵ†
R′n′ =

∑
k

e−ik·R′
ĉ†kn (F.16)

ŵR′n′ =
∑
k

eik·R
′
ĉ†kn (F.17)

which implies:

G<(Rn,R′n) = i⟨ŵ†
R′n′ŵRn⟩ = i

∑
k

eik·(R−R′)⟨ĉ†k′n′ ĉkn⟩ =
∑
k

eik·(R−R′)G<(k, n)

(F.18)
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Appendix G

Dirac cone integration cutoff

In this appendix we give some estimates for effects that limit the validity of the scaling
of the scattering time.

1. Finite size effects: graphene flakes have finite size and therefore the size of the samples
puts a cutoff for the minimum k vector (and consequently energy states) available in
the system. In particular, if we consider a graphene flake of dimensions 1µm2, then we
expect that we cannot get nearer than approximatively 1 meV to the Dirac cone. Of
course, for graphene flakes of larger dimensions we can implement smaller cutoffs and
expect slightly larger peak values for r.

2. Optical phonon scattering: the scattering time of the optical phonons in the EP regime
is not completely 0, but at ϵ = 0 for the lowest optical modeA′

1 at q = K it is expected
to evaluate to [16]:

1

τA′
1
(ϵ = 0)

=
β2
K

µS

1

(h̄vF )2
h̄/2

1− f 0(0)
×
[
3n0

A′
1
(1− f 0(h̄ωA′

1
)) + (n0

A′
1
+ 1)(1− f 0(−h̄ωA′

1
))
]

(G.1)
where βK is the optical gauge field, ωA′

1
is the frequency and n0

A′
1

the occupation of the
A′

1 mode and µS is the graphene sheet mass density. In this case, the inverse scattering
time depends both on T and on EF ; since below room temperature nA′

1
< 0.004 ≪ 1

we can simplify the previous expression in:

1

τA′
1
(ϵ = 0)

=
β2
K

µS

1

(h̄vF )2
h̄/2

1− f 0(0)

[
3n0

A′
1
(1− f 0(h̄ωA′

1
)) + (1− f 0(−h̄ωA′

1
))
]
.

(G.2)
If we now take |EF | << ωA′

1
(withEF referred to ED), which is true in the low doping

regime (n << 1013cm−2), we have that the expression can be simplified as:

1

τA′
1
(ϵ = 0)

=
β2
K

µS

1

(h̄vF )2
h̄

[
3n0

A′
1

e
h̄ωA′

1
/kBT

e
h̄ωA′

1
/kBT

+ 1
+

e
−h̄ωA′

1
/kBT

e
−h̄ωA′

1
/kBT

+ 1

]
(G.3)
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which evaluates to 1
τ
≈ 7× 1010s−1 at room temperature.

3. Many-body effects: there exist an all-order relation between the many-body linewidths
and the spectral function if we disregard vertex corrections to the self-energy. This
relation is given by Eqs. 2.68 and 2.69. These two relations may not be satisfied
at the same time when Γ and A are evaluated at the leading order. In general, one
assumes that the linewidths are small enough to treat the spectral function as a delta
function, and then one evaluates Γnk(Ω) for Ω = ϵnk to find the scattering time in the
SERTA approximation, i.e. Eq. 4.8. If one instead substitutes again the linewidths
in the expression to evaluate finite-width correction to the spectral function, also the
expression for the linewidth will be modified consequently, in a self-consistent loop.
Usually one assumes that the first step is indeed sufficient to give a good evaluation of
the linewidth. This is true for example if one wants to evaluate the diagonal component
of the conductivity tensor: the integral at the denominator of Eq. 4.25 is well behaved
even when τ−1

n (ϵ) ∝ |ϵ|kBT . For the Hall factor instead, one have to re-evaluate the
linewidth at least with two iterations of the described procedure in order to obtain a
non-diverging Hall factor. This procedure of course considers only a subset of all the
diagrams which may contribute to corrections, but we assume that the self-consistent
solution of Eqs. 2.68 and 2.69 gives a reasonable estimate of the many-body effect on
the linewidths; in other words, we assume that this iteration can give us a reasonable
order of magnitude of the linewidth value at the Dirac cone, which cannot be zero
since a diverging Hall factor is unphysical. The second iteration of the evaluation of
the linewidths reads (we always neglect the real part of the self-energy):

An1k+q(ϵnk − ωλq) =
2αϵn1k+q

(αϵn1k+q)2 + (ϵnk − ωλq − ϵn1k+q)
2

An1k+q(ϵnk + ωλq) =
αϵn1k+q

(αϵn1k+q)2 + (ϵnk + ωλq − ϵn1k+q)
2

Γnk(ϵnk) =
1

2

∑
qλn1

|gnn1λ(k,q)|2
[ (
n0
λq + 1− f 0(ϵnk − ωλq)

)
An1k+q(ϵnk − ωλq)+

(
n0
λq + f 0(ϵnk + ωλq)

)
An1k+q(ϵnk + ωλq)

]
≈

1

2

∑
qλn1

|gnn1λ(k,q)|2
[ (

2n0
λq + 1

)
An1k+q(ϵnk)

]
∝

α(h̄vF )
2
∑
qn1

αϵn1k+q

(αϵn1k+q)2 + (ϵnk − ϵn1k+q)
2 ∝ α

∫ Λ

0

dϵ′
αϵ′2

(αϵ′)2 + (ϵ− ϵ′)2

(G.4)
where we have used the approximation of quasi-elastic scattering and we have indi-
cated with Λ the cutoff due to acoustic phonon scattering (Λ <= 60meV, which is
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the portion of phonons which give linear dispersion of the inverse scattering time; in
principle, the cutoff has a temperature dependence due to the fact that the approxima-
tion f 0(ϵnk + h̄ωλq) = f 0(ϵnk − h̄ωλq) is valid for a subset of phonons in dependence
of T) and α ≪ 1 so that the quasi-particle picture is qualitatively still valid (we in-
deed know that the 0-th iteration of the linewidth calculations gives α ≈

2β2
TA/LA

kBT

µSv
2
TA/LA

(h̄v2F )

where βTA/LA is the acoustic gauge field and vTA/LA is the phonon velocity [16], so
that α ≈ 10−3 at room temperature). It follows that:

1

τ(ϵ)
∝ α

α

(1 + α2)2
[
ϵ′ + α2ϵ′ + (

ϵ

α
− αϵ) arctan(

−ϵ+ ϵ′ + α2ϵ′

αϵ
)+ (G.5)

ϵ log(ϵ2 − 2ϵϵ′ + (1 + α2)ϵ′2)
]ϵ′=Λ

ϵ′=0
ϵ < Λ (G.6)

which is always positive and has the finite limit 1
τ(ϵ=0)

∝ 1
h̄

α2Λ
1+α2 which is, at room

temperature, 1
τ(ϵ=0)

≈ 4 × 108s−1 and has a quadratic dependence on the temperature
( 1
τ(ϵ=0)

≈ 108s−1 at 200K and 1
τ(ϵ=0)

≈ 5 × 107s−1 at 100K). Even though this is not
reproduced by the usual Fermi golden rule, if α is small enough the change to the τ in
shape for ϵ > αΛ ≈ 0.06meV is negligible, but for ϵ < αΛ it is fundamental in order
to get convergence of the numerator of Eq. 4.25 at any finite temperature. Since the
previous choice of Λ suppose that the contributes of higher phonons do not count, we
nonetheless notice that an increase of the cutoff impact linearly on the inverse of the
scattering time, so that the previous estimates for the order of magnitude hold true for
every Λ < ωph.

MAX ; moreover, we do not expect that the expansion of 1
τ

in powers of Λ
is strongly dependent on the non-linear terms.
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