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Abstract

Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a powerful and sen-
sitive technique for the analysis of protein dynamics in solution. HDX-MS reports on the transient
uptake of deuterium by a protein in bulk deuterated solvent due to the phenomenon of hydro-
gen exchange, whereby labile hydrogen atoms can spontaneously exchange for other hydrogens or
deuterium in solution. HDX-MS is typically used to inform about the location of binding interfaces
between proteins and other proteins/small molecules by comparing exchange pro�les of a protein
in its bound and unbound states, where regions of comparatively reduced deuterium uptake are
indicative of a binding surface. HDX-MS is however not typically used to inform on the structure
of proteins by itself due to a lack of understanding about the factors that cause changes in exchange
rate.

In this thesis, we set out to develop a method that could accurately discriminate between native
and non-native protein structures using nothing but the protein’s experimental HDX-MS pro�les.
�is was achieved by coupling state of the art mass spectrometry to computational chemistry tech-
niques in order to develop a method that could accurately calculate HDX-MS pro�les from in silico
three-dimensional structures and compare these calculated pro�les to experimental data in order to
classify the structures as being either native or non-native. We achieved reasonable classi�cation
accuracy using this method over the course of this thesis with the potential for much greater ac-
curacy with subsequent research and development. We also took the �rst steps towards modifying
this methodology to work on classifying binary complex structures as well as individual protein
structures.

In addition to our primary focus on structure classi�cation, we also undertook a more tradi-
tional HDX-MS side project involving the determination of the location of the binding interface
between the enzyme dUTPase and its inhibitor Stl. We successfully characterised this interaction
and helped develop a model of the mechanism of inhibition based on our data.

�e work presented in this thesis is extensive in its breadth and variety, incorporating a diverse
range of di�erent techniques spanning multiple scienti�c disciplines. From classical biochemical
approaches such as the manipulation of DNA, cell culture and the production of proteins to analyt-
ical chemistry in the form of HDX and native mass spectrometry and computational chemistry and
computer science techniques such as Molecular Dynamics, protein docking and Python program-
ming.
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1 Introduction

1.1 Statement of the problem and the need for this study

Since the discovery of the �rst protein structure, that of myoglobin in 1958 by John Kendrew [1],
scientists have understood that knowledge of three-dimensional fold is of vital importance to the un-
derstanding of the function and behaviour of proteins. Indeed it is not an understatement to assert that
the three-dimensional structure is the single most important piece of information a researcher can have
about their particular protein of choice. �is importance derives from the fact that a protein’s function
is almost entirely dependent on the three-dimensional fold and therefore investigating researchers will
want to obtain knowledge of the structure if at all possible. Unfortunately, due to the large amount of
time and e�ort required to solve structures experimentally, such as gold-standard techniques like x-ray
crystallography, NMR and, increasingly, cryo-electron microscopy, the vast majority of discovered pro-
teins do not have structures associated with them [2]. �is problem is exacerbated even further when
one considers the realm of protein-protein complexes, of which there are an estimated 500,000 binary
complexes in humans alone [3], where even if structures of the individual component proteins have
been solved, the likelihood is that the complex as a whole has not been. �is wholesale lack of structural
data is due to the inverse relationship between throughput and resolution, namely that higher resolu-
tion methods such as x-ray crystallography have lower throughput but relatively higher throughput
methods such as cryo-electron microscopy have lower resolution. �erefore, the development of high
resolution, high throughout methods for determining protein structures are of great interest to the sci-
enti�c community.

Hydrogen Deuterium Exchange monitored by Mass Spectrometry (HDX-MS) is one such technique
that has the potential to �ll this desirable niche thanks to recent advances in methodology that demon-
strate the ability of HDX-MS pro�les to be calculated from three-dimensional structures [4]. In this the-
sis, we present a body of work that builds upon this new method in order to enable native monomeric
structures to be selected from a background of decoys. Work was also undertaken to adapt the method
for use with binary protein-protein interactions (PPI). Techniques employed in the development of
this novel approach fall into three broad categories: Molecular Biology, involving cell culture, pro-
tein production and puri�cation; Analytical Chemistry, involving HDX and native mass spectrometry;
and Computational Chemistry, involving programming, molecular dynamics simulations and protein-
protein docking.

1.2 Overview of Mass Spectrometry

Mass spectrometry is a powerful analytical technique involving the de�ection of charged ions by
a magnetic �eld. Identi�cation of the �rst principles which would go to become mass spectrometry
began in 1886 by Eugen Goldstein [5] with his discovery of positive ion beams he termed “canal rays”.
Subsequent experimentation with these rays resulted in the development of a much more recognisable
form of mass spectrometry by J. J. �omson in 1912 [6] in which isotopes of neon with di�erent mass to
charge ratios (m/z) were separated from each other and correctly identi�ed. In all types of mass spec-
trometry, ions are generated by some type of ion source, whereupon they enter the mass spectrometer
under a vacuum. In classical sector mass spectrometry [7–10], the ions then encounter an orthogonal
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magnetic �eld which causes the path of the ion to bend, with the degree of bending being proportional
to the ion’s m/z. �ose ions with higher ratios are in�uenced by the magnetic �eld less and so bend a
lesser degree compared to ions with lower ratios. �e ions subsequently collide with a detector, with
higher m/z ions making contact at one end and lower m/z ions making contact at the other. In this
way, the detector can ascertain the m/z’s of all the ions in the original sample and present the data as
a function of m/z and signal intensity in counts per second.

Instead of the position of impact on the detector being employed to determine the ion’s m/z, the
mass spectrometer utilised in the experiments presented in this thesis uses the time between when the
ions enter the mass analyser and when they strike the detector at a known distance. �is is known
as Time of Flight (ToF) MS [11]. �is separation according to time instead of distance is achieved by
trapping packets of ions and accelerating them at the same time in a direction that is orthogonal to their
original trajectory, a�er which they are pushed into a re�ectron which corrects minor �uctuations in
kinetic energy and reverses their direction of travel [12], se�ing the ions on a collision path with the
detector. Ions with a lower m/z are imparted greater initial velocity by the pusher and so penetrate fur-
ther into the re�ectron, increasing the amount of time they take to reach the detector and vice versa.
In this way, an ion’s m/z can be correlated to its time of �ight. �e di�erences between sector and ToF
mass spectrometers are illustrated in Figure 1.1.

Our mass spectrometer utilises the Electrospray Ionisation (ESI) [13–15] technique in order to gen-
erate ions. In this method, a high voltage is applied to the liquid sample in order to create an ionized
aerosol. �is aerosol is then dispersed as a �ne spray of charged droplets, whereupon solvent evapora-
tion and subsequent ejection of the contained ions occurs [16]. ESI is considered to be a “so�” ionisation
technique because relatively li�le energy is transferred to the analyte and so limited fragmentation oc-
curs. �is makes ESI an ideal technique for studying proteins in their native state as liquid-phase
information is retained in the gas-phase. Additionally, ESI’s propensity to produce multiply charged
ions enables even very large proteins to be detected by relatively low-range mass analysers [17].

1.3 Hydrogen Deuterium Exchange Mass Spectrometry

1.3.1 �eory of HDX-MS

HDX-MS is a technique �rst developed in 1991 by Viswanatham Ka�a & Brian T. Chait [18] which
leverages the phenomenon of hydrogen exchange, whereby labile hydrogens covalently bound to amino
acids can spontaneously exchange out with other hydrogens in the surrounding solution. In addition,
exchange can also occur between hydrogen and its isotopes: deuterium (2H or D) [19] and even tritium
(3H or T) [20], which have molecular weights approximately 2x and 3x greater than that of hydrogen
respectively. �e increased molecular weights of deuterium and tritium means their presence (or ab-
sence) within a protein can be measured by a mass spectrometer of su�cient resolution, allowing these
isotopes to be utilised as transient labels. Tritium is radioactive and so rarely used, hence making deu-
terium the most common isotope employed in modern exchange experiments. �ese typically involve
the dissolution of a protein in an excess of deuterated bu�er and the measurement of deuterium uptake
by MS over a variety of time points (Figure 1.2).
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Figure 1.1: Di�erences between Sector and ToF MS. Simpli�ed illustration of a Sector MS (le�)
and a ToF MS (right). Di�erent colours represent various components: red – ion source, black – ion
path, green – method by which ions with di�ering m/z’s are separated, blue – detector. In Sector MS,
ions with di�erent m/z’s are separated by a magnet bending their path. Ions with higher m/z ratios
are in�uenced by the magnetic �eld less and so experience less path bending compared to ions with
lower ratios. �e position of impact on the detector is interpreted and correlated to their m/z. In ToF
MS, position of impact on the detector is the same for all ions regardless of m/z. Ions are released
simultaneously as a packet and pushed into a re�ectron which reverses their direction of travel and
sets them on a collision course with the detector. Ions with lower m/z ratios are imparted greater initial
velocity by the pusher and so penetrate further into the re�ectron, increasing the amount of time they
take to reach the detector and vice versa. �erefore the time taken between the release of a packet and
the arrival of an ion can be correlated to its m/z.
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Figure 1.2: Basic principle of HDX. A protonated protein (blue) is dissolved in an excess of deuter-
ated bu�er. Over a variety of labelling time points (t1-t5), HDX will occur with exchangeable protons
swapped for deuterons, causing certain residues of the protein to become deuterated (red). �e amount
of HDX increases with longer labelling time points.
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For any given amino acid, there are three di�erent types of hydrogens which can exchange: α -
carbon, side chain and backbone amide. �e exchange rate of α -carbon hydrogens is extremely slow
and so no measurable exchange occurs within the time frame of a typical experiment. �e exact op-
posite phenomena occurs in the case of side chain hydrogens, whereby because their optimal quench
conditions (explained later in this section) are di�erent from those typically used in a HDX experiment,
any side chain deuterium uptake will have fully back-exchanged for hydrogen by the time of measure-
ment [21]. �e extreme timescales of these two di�erent hydrogen positions make them impractical
for use in experiments, as in both cases the net measurable amount of deuterium incorporation will be
zero. By comparison, backbone amide hydrogens are perfect for deuterium uptake measurements as
they are sensitive to changes in their environment and are also highly quenchable, enabling their use
as probes of protein conformation and dynamics. As only one amide hydrogen is present per residue
in polypeptide chains, there is therefore conveniently one measurable hydrogen exchange location per
amino acid, with the exception of proline which has no amide hydrogen when part of a polypeptide.
One additional caveat is that the N-terminal amino acid generally cannot be measured due to rapid
back-exchange and there is debate as to whether this caveat should be applied to additional (i.e. N+1
etc.) residues as well [22].

�e speci�c amount of HDX that a folded protein will undergo in any given timeframe is given by
the observed exchange rate constant, kHX which is in�uenced by the intrinsic chemical exchange rate
of an unstructured polypeptide, kch, as well as the protection factor, PF (Equation 1.1).

kHX =
kch
PF

(1.1)

PF cannot be calculated directly and must instead be calculated by rearranging Equation 1.1 to
give Equation 1.2:

PF =
kch
kHX

(1.2)

kch can be calculated using Equation. 1.3 [23]:

kch = kH+(Aleft ·Aright)[H
+] + kOH−(Bleft ·Bright)[OH

−] (1.3)

Where Aleft, Aright and Bleft, Bright refer to side-chain-speci�c acid or base factors respectively.
�e various factors in�uencing both kch and PF are described in Figure 1.3. HDX is highly pH de-
pendant with rate constants determined for both acid and base catalysed HDX for an unstructured
polypeptide showing that base catalysis is by far the more important of the two. Plo�ing the log of kch
vs. pH results in a distinctive v-shaped curve (Figure 1.4 A) with a characteristic minima around pH
2.5-3.0, the point at which rates of acid and base catalysed HDX are equal. HDX is also dependant to
a lesser degree on temperature [24]. Increasing the temperature alters the water ionisation constant,
KW , which increases the concentration of OH−, thus increasing the amount of base catalysed ex-
change. When plo�ing the exchange rate vs. temperature, an exponential curve is produced (Figure
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1.4 B).

For a folded protein dissolved in bulk D2O solvent, HDX occurs by way of transient unfolding
events which break internal H-bonds and allow for H-bonding to the solvent instead. �erefore the
protein is in a constant state of �ux between a closed exchange-prohibited state and an open exchange-
capable state. �e mechanism by which hydrogen is exchanged for deuterium in this way is described
in Equation 1.4 [25]:

cl(H)
kop−−⇀↽−−
kcl

op(H)
kch−−−→
D2O

op(D)
kcl−−⇀↽−−
kop

cl(D) (1.4)

Where cl and op denote the protein in its closed and open state respectively, H and D denote
the protein in its protonated and deuterated state respectively and kcl and kop denote the closing and
opening rate constants respectively. Unfolding can occur either locally (termed “breathing motions”)
or globally with di�erent modes of HDX occurring depending on which type of unfolding event occurs.
If it is local unfolding of speci�c subsections of the protein, kcl is typically much faster than kch and
therefore the rate of HDX occurs according to Equation 1.5:

kHX =
kop
kcl
· kch (1.5)

�is is referred to as “EX2” kinetics and is the most common mode of HDX as the native state of
most proteins is quite stable at physiological conditions. An alternative path may be taken however
if global unfolding of the protein occurs. In this situation, kcl is typically much slower than kch and
therefore the rate of HDX occurs according to Equation 1.6:

kHX = kop (1.6)

�is is referred to as “EX1” kinetics [26]. �ese two di�erent exchange pathways can be detected
by HDX-MS as they produce characteristically di�erent spectra when comparing samples with vary-
ing degrees of deuteration. For EX2 kinetics, the spectra appear to migrate to higher m/z values with
increasing deuteration as a unimodal distribution whereas for EX1 kinetics, the spectra form a bimodal
distribution with one mode equal to the lowest amount of deuterium incorporation and a second mode
equal to the maximum amount of deuterium incorporation. �e relative populations of these two modes
in any given sample depends on its degree of deuteration. EX1 and EX2 kinetics are summarised in Fig-
ure 1.5.

Measuring the deuterium uptake of a protein as a whole returns global-level data which has only
limited use for clarifying most conformation and dynamics questions. HDX-MS becomes a much more
powerful tool when the protein in question is digested into peptides using an appropriate protease such
as pepsin, as was �rst achieved in 1993 by Zhongqi Zhang & David Smith [27]. Pepsin is commonly
used because it has high activity around typical HDX quench pH values (approx. 2.5) and is also active
around experimental temperature values (approx. 20 ◦C). Pepsin also bene�ts from being a relatively
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Figure 1.3: Factors in�uencing exchange rates in a folded protein. Blue highlights designate
factors with a relatively greater degree of in�uence compared to green highlights which designate
factors with a relatively lesser degree of in�uence. �e importance of these factors as highlighted is
con�ned (in the case of (A)) to be relative to other factors contained within the same do�ed boundary
and not across boundaries. (A) �e exchange rate (kHX ) of an amino acid is in�uenced by two overall
factors: the chemical exchange rate (kch) and the protection factor (PF ). Primary factors that a�ect
PF include: hydrogen bonding, solvent accessibility & local primary sequence. Primary factors that
a�ect kch include: solution pH, temperature & local primary sequence. (B) kch can be calculated by
determining the rates of acid and base catalysed exchange. �e ways in which the various factors
described in (A) in�uence the rates of exchange are indicated. (C) PF cannot be determined directly
and must instead be calculated from kch

kHX
.
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Figure 1.4: In�uence of pH/temperature on intrinsic chemical exchange. (A) Graph showing
how kch is a�ected by sample pH, displaying a characteristic minima around pH 2.5-3.0, the point
at which rates of acid and base catalysis are equal. (B) Graph showing how kch is a�ected by sample
temperature with a minima at 0 ◦C and an exponential rise with increasing temperature values. Graphs
taken from [21].
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Figure 1.5: EX1 & EX2 kinetics. (A) Equation describing the mechanism by which HDX takes place.
Diagrams describe the state of the protein: closed (helix), open (random coil), protonated (blue), deuter-
ated (red) above the corresponding place in the equation. (B) Example mass spectra showing how EX1
& EX2 kinetics can be visually distinguished. EX2 kinetics produces a unimodal distribution that ad-
vances to higher m/z values with labelling time whereas EX1 kinetics produces a bimodal distribution,
the relative populations of which tend towards the higher m/z local maxima with labelling time.
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non-speci�c cleaver, although with a preference for large aromatics, allowing for a diverse range of
overlapping peptides to be generated regardless of the protein’s sequence [28]. A�er digestion, deu-
terium uptake data can then be calculated for the individual peptides instead of the protein as a whole,
enabling local-level data to be obtained which allows information to be narrowed down from the pro-
tein level to the peptide level (and with some additional data processing, the pseudo-residue level by
averaging exchange values across multiple overlapping peptides). Having peptide or potentially residue
level uptake data allows the localisation of any observed di�erences to the speci�c sites within the pro-
tein which gave rise to them, as opposed to global HDX which is unable to provide such information.

When HDX-MS is employed as a di�erence method, it can be used to elucidate the conformation
and dynamics of the protein, in particular it has the capacity to reveal interfacial information. When
measured as part of a protein-ligand “bound” data set, peptides located at the interface between the
protein and its ligand tend to have increased protection due to an increase in hydrogen bonding and/or
a reduction in solvent accessibility. �e result of this is that these peptides will have a reduced kHX

and so will uptake less deuterium compared to these same peptides when measured as part of a free
“unbound” data set. Constructing a bound vs. unbound di�erence plot for all peptides (Figure 1.6)
highlights those regions of the protein that experience an uptake decrease, which can be indicative of
a binding interface.

1.3.2 Typical HDX-MS work�ow

In a typical HDX-MS experiment, a small amount of the protonated protein sample is diluted into
a large excess of deuterated labelling bu�er at around ambient temperature and a pH value appro-
priate for the protein, typically around pH 7, initiating the HDX process. Labelling then occurs for
a set amount of time before the sample is transferred into a quench bu�er which retards subsequent
exchange. HDX is very sensitive to pH and sensitive to a lesser extent to temperature and thus the
quench bu�er is designed in order to slow HDX rates as much as possible during protein digestion
and subsequent chromatography. �is is done by reducing the pH of the reaction down to a value of
approx. 2.5, the point at which the rate of HDX is lowest, reducing the overall exchange rate by approx.
4 orders of magnitude compared to the rate at pH 7. In addition, the temperature of the reaction is
lowered to 1 ◦C, reducing the overall exchange rate by approximately 14-fold compared to the rate at
25 ◦C. When these pH and temperature changes are combined, the HDX rate is slowed by more than 5
orders of magnitude [21] which allows su�cient time for subsequent processing steps to occur before
the deuterium labels completely back exchange for hydrogen.

A�er quenching, the sample is digested on-line by an immobilised protease (typically pepsin) with
the resultant peptides separated by liquid chromatography (LC) before being transferred into the gas
phase by ESI. All of the experiments in this thesis were performed using a Waters Synapt G2Si HDMS
coupled to an Acquity UPLC M-Class system with HDX and automation. �e Synapt allows for the re-
moval of neutral contaminants by an ion transfer device and m/z �ltering by quadrupole as well as two
di�erent primary forms of separation to be used in series: the �rst is Ion Mobility Spectrometry (IMS)
which separates ions based on their Collisional Cross Section (CCS) & m/z using a dri� tube. �e second
(and principal) separation type is ToF whereby ions are separated by their m/z using an electric �eld of
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Figure 1.6: Elucidation of the location of protein binding sites using HDX-MS. Two proteins
(green & yellow) are known to bind together but the location of the binding interface is unknown. HDX-
MS can determine this by collecting 3 data sets: a bound data set with the proteins mixed together (A),
and 2 unbound data sets with just the individual proteins on their own (B & C). In these 3 data sets,
the proteins are incubated in bu�er containing bulk D2O solvent for a certain amount of time, causing
hydrogens (blue “H”) to be exchanged for deuterium (red “D”). In the bound data set, an increased PF
at the binding interface prevents the same degree of deuterium uptake from occurring in this region vs.
the same regions in the unbound data set. �e proteins in all data sets are then digested into peptides
and characterised by MS, enabling isotope uptake to be localised to the peptide level. HDX pro�les
(D) are then generated by subtracting the level of deuterium uptake for each peptide in the bound data
set vs. the appropriate unbound data set in order to determine its degree of uptake di�erence. Regions
which show a deuterium uptake di�erence exceeding a certain threshold (yellow highlights) can be used
as evidence for the location of the binding interface, although allosteric e�ects must also be considered.
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known strength propelling them towards the detector, with the arrival time of the ions corresponding
to their m/z. A�er data has been collected for the analyte in both the bound and unbound states at
multiple time points, the data is analysed in order to determine the amount of deuterium incorporation
that has occurred (vs. an un-deuterated reference) for each peptide. Any uptake di�erences between
the states can then be visualised and further data processing carried out.

During an experiment, back exchange of deuterium for hydrogen occurs because all subsequent
liquid phase steps a�er incubation occur in protonated solvent. Even with the rate of exchange slowed
to its minimum practical value, a substantial amount of back exchange can occur during this time.
�erefore, it is usually worthwhile running a back exchange control (BEX) during an experiment which
consists of a sample that has been fully deuterated, usually by incubation in D2O for a period of several
days/weeks. As all the peptides in this sample should have a Relative Fractional Uptake (RFU) of 1 i.e.
all theoretically exchangeable sites should have exchanged, any that are missing can be used to correct
the normal labelling samples for back exchange using Equation 1.7 [27]:

Dcorr =
mexpt −mref

m100 −mref
·N (1.7)

Where Dcorr is deuterium uptake of the peptide corrected for back exchange, mexpt is mass of the
peptide,mref is the mass of the peptide in the non-deuterated reference,m100 is the mass of the peptide
in the BEX andN is the theoretical number of exchangeable sites in the peptide. Back exchange correc-
tion is not technically required if the experiment is only concerned with the acquisition of di�erence
data, as both the bound and unbound states should experience the same level of back exchange. How-
ever, if researchers are interested in obtaining absolute values of RFU, then back exchange correction is
the minimum that must be carried out. An additional step that can be taken is to correct for in exchange
as well. In exchange controls (IEX) test the ability of the quench to retard further exchange and consist
of an un-deuterated sample being immersed in a deuterated quench. If the quench completely pre-
vented any additional exchange from occurring, the mass of IEX peptides should be identical to those
of the non-deuterated reference samples. �erefore, any di�erence between the reference masses and
the IEX masses can be a�ributed to the quench not fully preventing further exchange from happening.
Data from the BEX and the IEX can be combined in order to correct for any extraneous exchange using
Equation 1.8:

Dcorr =
mexpt −m0

m100 −m0
·N (1.8)

Where m0 is the mass of the peptide in the IEX. When working with RFU values instead of mass
values, Equation 1.8 can be simpli�ed slightly to from Equation 1.9:

RFUcorr =
RFUexpt −RFU0

RFU100 −RFU0
(1.9)

Where RFUcorr is deuterium uptake of the peptide corrected for back exchange, RFUexpt is RFU
of the peptide, RFU0 is the RFU of the peptide in the IEX, RFU100 is the RFU of the peptide in the

23



BEX.

1.4 Work undertaken in this thesis

1.4.1 Overview

�e ability to highlight binding interfaces is one of the great applications of HDX-MS: it can pro-
vide evidence of the location of interfaces between a protein and a ligand for which there is no complex
structure available. It should be noted however that HDX-MS is not typically used to determine the
speci�c three-dimensional fold of a protein or protein-protein complex, merely to localise where along
the amino acid sequence binding is suspected to take place. �is weakness is what we are a�empting
to remedy with this thesis. HDX-MS is very high throughput compared to techniques such as x-ray
crystallography, with experiments and data analysis able to be completed in days instead of months or
years and, thanks to aforementioned recent advances in methodology, also has the potential to be used
for structure determination as well.

�e potential to calculate HDX pro�les from three-dimensional structures, including from mod-
els such as docking poses has been demonstrated previously [4]. �e capacity to calculate HDX-MS
data from structures is useful as it facilitates varying models to be di�erentiated on the basis of their
comparison to experimental HDX-MS data. �is method also permits the generation of a quantitative
metric which can be used to evaluate whether a given structure (especially in silico models such as
decoys and docking poses) are native or not. �is ability to assess HDX data quantitatively rather than
the usual qualitative appraisal is a marked advantage of this new technique as it reduces user interpre-
tation as a potential source of error. However, while the foundation stones for using this approach to
assess native structures have been described, a signi�cant amount of development is still required for
approaches such as these to become mainstream. �e primary focus of this PhD has therefore been on
the continued development of the methodology presented in [4] to allow the characterisation of in silico
native protein structures for ab initio applications. In order to accomplish this, we had the following
aims and objectives:

• To develop a quantitative metric in order to allow the classi�cation of protein structures as either
native or non-native

• �e acquisition of additional protein data sets in order to properly benchmark subsequent method-
ological developments

• �e development of several computational tools with which we could automate the processing
and analysis of data sets

• To accurately classify monomeric protein decoys as being either native or non-native in nature

• To accurately classify binary PPI docking poses as being either native or non-native in nature

As part of a wholly separate project, we also conducted HDX-MS analysis on the interaction of two
proteins: dUTPase & Stl, in order to determine the location of their binding site for the purposes of
developing a mechanism by which they interact.
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1.4.2 Development of a quantitative metric to enable structure classi�cation

First, we developed a method to quantify the ability of HDX-MS to discriminate between native
and non-native protein conformations based on the approach of Vendruscolo & Paci et al. [29] and Best
& Vendruscolo [30] to estimate protection factors from decoy sets. �is was accomplished primarily
using Equation 1.10:

lnP sim
i = NC

i βC +NH
i βH (1.10)

Where lnP sim
i is the natural logarithm of the simulated protection factor of residue i, NC

i is the
number of heavy atoms, NH

i is the number of hydrogen bond acceptors within certain distance cut-
o�s from the backbone amide and β is an empirically determined scaling factor that is independently
applied to both NC

i and NH
i . �e capabilities of this method were evaluated on the peptide level using

the simulated protection factors to calculate HDX-MS outputs of proteins and their assemblies and then
compare these calculations to experimental data obtained in-house to generate Root Mean Square Error
(RMSE) values for each structure in a decoy set. Each decoy was then compared to the native struc-
ture to generate Root Mean Square Deviation (RMSD) values. �e ability of HDX-MS to identify native
structures (de�ned as those with an RMSD value of ≤ 2.5 Å) from a background of decoys was anal-
ysed quantitatively based on their performance in a binary classi�cation system via the construction
of Receiver Operating Characteristic (ROC) curves in order to provide insight into the use of HDX-MS
for protein modelling. Our intentions for this work were to develop the method to correctly classify
the input structures at a rate signi�cantly above that of random chance. �is work is detailed in Harris
et al. 2018 [31], included in full in Appendix L.

In this paper, we demonstrated that HDX-MS data simulated directly from atomic structures can be
highly diagnostic of a protein’s native fold, even if the PFs underpinning this data are poorly de�ned.
Interestingly, this diagnostic capacity was actually higher for data calculated from crystal structures
then for data calculated from an ensemble. While perhaps surprising, this observation underpins much
of our work going forward due to the substantial throughput increase gained by not having to generate
an ensemble for every protein we wanted to analyse. Data generated for the analytes alpha lactalbumin
and barnase indicated that high peptide redundancy was arguably one of the most important factors
for accurate determination of fold; proposed to be due to the extra constraints such redundancy places
on lnP calculations. However despite our success at identifying the native fold for alpha lactalbumin
and (to a lesser extent) barnase, we found that when the same technique was applied to homo-protein
assemblies such as enolase it did not fare as well. We proposed that this could be due to signi�cant di�er-
ences in the HDX behaviour of protein complexes and the fact that Equation 1.10 was never optimised
for use with large multi-chain proteins. Additionally, for homo-protein assemblies, knowledge of pep-
tide redundancy and coverage in the native interface can only be had with the aid of a high-resolution
structure. �is is not a challenge for hetero-proteins however, as the degree of peptide sampling in the
native interface can be inferred directly from associated HDX-MS di�erence data without the need for
any structural reference. �e production and puri�cation of barnase as well as experimental HDX data
acquisition and analysis and related writings were all done by the author.
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1.4.3 Acquisition of additional protein data sets

�e second step undertaken in this thesis was in response to a limitation identi�ed in our paper,
namely that more protein data sets were required in order to properly evaluate the technique. �ere-
fore, we set about producing/acquiring a number of additional proteins with which we could generate
additional data sets for testing purposes, with the goal being to acquire enough to thoroughly test sub-
sequent methodological advances. �ese proteins were barnase (Bn), barstar (Bs), Green Fluorescent
Protein (GFP), GFP-nanobody (GFP-nb) & GFP-nanobody minimiser (GFP-nbmin); all of which had the
additional property of being involved in a binary PPI (Bn:Bs, GFP:GFP-nb & GFP:GFP-nbmin), a feature
that was necessary for additional work we would carry out adapting our method to work on binary
PPIs.

1.4.4 Development of computational tools for process automation

In order to improve upon the techniques detailed in the paper, Ramin Salmas from the Borysik
group developed two tools that would be fundamental to our work. �e �rst was HDXmodeller which
takes experimental peptide-level RFU data and returns residue-resolved protection factors [32,33]. �e
second tool was HDXsimulator which predicts the veracity of protein models by calculating RFU as
well as lnP data and comparing them to experimental/modelled values, RFU produced by HDX-MS and
lnP produced by HDXmodeller, allowing for discrimination between native and non-native structures
using both RFU and lnP as metrics.

HDXmodeller was developed primarily by Ramin Salmas and Antoni Borysik with limited test-
ing undertaken by the author, however HDXsimulator was co-developed as part of the work carried
out in this thesis. �e third step undertaken was therefore as part of the process of mapping out the
boundaries of modelling protein conformation by HDX-MS using HDXsimulator. In order to do this,
we conducted a comprehensive study where we sought to determine HDXsimulator’s capabilities and
limitations, a process which involved the comparison of calculated data against data with errors delib-
erately introduced in order to test how the binary classi�cation system would respond. Our goal was to
try and determine the relationship between the degree of error and the data set’s eventual classi�cation
score, as this understanding would be essential to making improvements to the program in the future.
�is goal was expedited by the development of an automation pipeline involving numerous Python and
Bash scripts which greatly sped up the collection of data sets.

1.4.5 Classifying monomeric protein decoy structures

�e last step in this process was therefore using HDXsimulator to select for native structures against
a backdrop of decoys for each of the protein data sets mentioned previously. �is process used part
of the same pipeline that was developed for the aforementioned mapping step and substituted out
deliberately error-laden RFU and lnP values for experimental/modelled ones produced earlier. RFU and
lnP values calculated for the decoys were then compared against these experimental/modelled values
in order to determine which among the decoys could be considered a native structure and which a non-
native one, with con�dence being judged by the binary classi�cation system. In doing this we hoped
to see the method correctly classifying the input decoy structures of the various di�erent proteins at a
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Figure 1.7: Pipeline for the prediction of protein structure. A set of decoys (yellow-red) are �rst
generated using a method such as Rose�a or 3DRobot. lnP values for each decoy are then calculated
from the unbound (dark blue line graph) HDX data set using the procedure outlined in [4]. RFU values
can then be calculated for each decoy (multi-coloured line graphs) from the simulated lnPs and the
experimental HDX peptide list for the same protein. Comparing the simulated lnPs and RFU values to
experimental values allows the calculation of RMSE metrics. Technique validation is accomplished by
also calculating RMSD values between each decoy and the crystal structure (blue-purple) and visual-
ising each docking pose’s RMSE vs. RMSD values in a sca�er plot where those decoys with the low
RMSE values should also have low RMSD values. Test performance can be quanti�ed by performing
ROC curve analysis and generating an Area Under Curve (AUC, green shading).
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rate signi�cantly above that of random chance. �is pipeline is illustrated in Figure 1.7.

1.4.6 Classifying binary PPI docking structures

As a natural progression to this primary focus on determining an individual protein’s fold, we also
began, but did not �nish, developing a pipeline to do the same for protein complexes. �is is the reason
why all of the additional proteins used in this work form part of a binary PPI: Bn:Bs, GFP:GFPnb &
GFP:GFPnbmin; so that their data could pull double duty for both methods. HDX pro�les of the two
proteins in both their bound and unbound forms were collected previously. Next, Molecular Dynamics
(MD) simulations were carried out in order to relax the individual crystal structures of the proteins that
would serve as the starting points for the pipeline, followed by protein-protein docking to generate the
range of potential complex structures. �ese docking poses would then be treated as described in Figure
1.8 in order to quantitatively assess their accuracy. In doing this we hoped to see the method correctly
classifying the input docking poses of the various di�erent binary PPIs at a rate signi�cantly above that
of random chance.

1.4.7 Investigating the interaction of dUTPase with Stl

In addition to method development, we also carried out a substantial amount of work on a com-
pletely unrelated project: analysing the interaction between the proteins dUTPase and Stl. �is was a
collaborative project between the Borysik group and the Vértessy group from the Budapest University
of Technology and Economics and revolved around the much more traditional application of HDX-MS:
identifying interaction surfaces. Our aim with this project was to use this information to develop a
mechanism by which the interaction of dUTPase with Stl could occur.

A visual summary of all the work undertaken in this thesis is available in Figure 1.9 and the various
constituent parts will now be explained in detail.

1.5 HDXsite: tools for the analysis of HDX-MS data

HDXsite (https://hdxsite.nms.kcl.ac.uk/) is website hosting a suite of webserver-
based tools developed by the Borysik group for the analysis of HDX-MS data. It contains two major
programs: HDXmodeller & HDXsimulator as well as a collection of ancillary tools under the banner of
HDXutilities that can be useful for the submission of data to and analysis of data from the two main
programs.

1.5.1 HDXmodeller

HDXmodeller is a tool for generating high-resolution information from low-resolution HDX data.
�e program accepts peptide-level RFU data typical of proteolytically cleaved HDX-MS experiments
and returns residue-resolved modelled lnPs along with a range of statistical outputs for validation. �e
primary validation metric is a co-variance matrix which calculates pair-wise correlation coe�cients
for each replicate performed across the entire run and outputs the mean of these values as an R-matrix
score. Such a score can be used to inform on the predicted accuracy of the modelled data, with values
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Figure 1.8: Prediction of protein-protein complex structure using docking and HDX-MS. �e
crystal structures of the two proteins involved in the binary PPI under investigation (blue-purple R
& I) are �rst relaxed by MD (Figure 1.10) to ensure no bias is introduced into subsequent steps. �e
proteins are then docked together (as in Figure 1.11) using Ambiguous Interaction Restraints (AIRs)
generated by HDX data (yellow-red R & I). lnP values are then calculated for both the bound (light blue
line graph) and unbound (dark blue line graph) forms of each pose of the docked complex from atomic
coordinates using the procedure outlined in [4]. Simulated lnP values are then combined with exper-
imental HDX peptide lists for the same proteins in order to generate simulated HDX data for both
the bound (light blue bar graph) and unbound (dark blue bar graph) forms of both proteins. Bound
simulated data is then subtracted from unbound simulated data in order to construct a simulated di�er-
ence plot. Comparing the simulated (yellow bar graph) di�erence plots to an experimental (orange bar
graph) di�erence plot allows the calculation of RMSE values, the metric that will be used to score the
docking poses. Technique validation is accomplished by also calculating RMSD values between each
docked pose and the crystal structure (blue-purple I & R) and visualizing each docking pose’s RMSE
vs. RMSD values in a sca�er plot where those poses with the low RMSE values should also have low
RMSD values. Test performance can be quanti�ed by performing ROC curve analysis and generating
an AUC (green shading).
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Figure 1.9: Schematic overview of work undertaken in this thesis. Diagram detailing the various
di�erent stages of this PhD and how they relate to one another. Stages represented in green were
undertaken by the author, stages represented in blue were undertaken by others. �e blue-green stage
represents a collaborative e�ort. �e incomplete arrow represents the future work that was not able to
be completed during this thesis.
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≥ 0.7 considered to be of high accuracy, values 0.5-0.69 considered to be of fair accuracy and values <
0.5 considered to be of low accuracy.

1.5.2 HDXsimulator

HDXsimulator is a tool for predicting the veracity of protein models by calculating HDX data and
comparing it to experimental values, allowing for discrimination between native and non-native struc-
tures. �e program accepts a number of three-dimensional models such as decoys and returns calcu-
lated lnP and RFU values for each structure. HDXsimulator compares calculated lnP values with those
reported by HDXmodeller and calculated RFU values with those experimentally determined by the
original HDX-MS experiments to generate RMSE metrics for each model. For the purposes of testing
the e�cacy of HDXsimulator, it also compares the three-dimensional coordinates of the models them-
selves with a native structure to generate an RMSD metric for each model. �eoretically, if lnP and RFU
calculation are accurate, models with the lowest RMSE values should be closest to the native structure.
Having an RMSD value for each model allows for quantitative validation via the construction of a ROC
plot, which tests the diagnostic ability of a binary classi�er system i.e. whether a pose is native or
non-native. ROC plots graph the True Positive Rate (TPR or “sensitivity”) vs. the False Positive Rate
(FPR or “1-speci�city”) with the scoring metric being the Area Under the Curve (AUC). An AUC value
above 0.5 classi�es the test as being be�er than a random guess with values of 0.7-0.8 considered to
be acceptable, values of 0.8-0.9 considered to be excellent and values > 0.9 considered to be outstand-
ing [34]. Values below 0.5 indicate that the method assigns the classi�cation incorrectly, i.e. a value of
0.1 suggests that native structures are almost always being classi�ed as non-native etc.

1.6 Using Python to accelerate the acquisition of data

Using HDXsimulator to model residue-level lnPs from three-dimensional structures requires a large
amount of data processing steps and is very time consuming to run manually, with an average time-
per-data set of over a day. As this tool was still in development, it was known that a large number of
data sets would need to be run and so would bene�t greatly from as much automation as was feasible
in order to reduce the time required to produce each data set. In order to accomplish this, we used the
programming language Python as well as Bash shell scripts to facilitate intermediary data processing
steps and so reduce both time and human error.

Python is powerful and readable object-orientated programming language �rst released in 1991 by
Guido van Rossum that is comparable to Perl and Java. Object-orientated means that the language is
organised around manipulating data objects which can have unique a�ributes and behaviours as op-
posed to being organised around the functions and logic required to manipulate those objects. Python
is notable in the realm of programming languages in that its syntax is comparatively easy to read, mak-
ing it an excellent �rst language to learn for those without a computer science background. Python
can be run on any operating system, making it a very portable language and also features the abil-
ity to extend its functionality by adding new modules which can even be coded in another language.
�ese a�ributes, combined with a large standard library that supports many common programming
tasks has led to Python becoming the de facto language of choice for scientists interested in applying
computational strategies to natural science problems.
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1.7 Generating protein structure decoys

1.7.1 Rosetta

Rose�a is an extensive so�ware suite that includes many algorithms for computational modelling
and analysis of protein structures. Of particular note for the work we conducted on decoy generation
are the “Abinitio” and “Relax” tools [35–40] which we used in combination with each other in order to
generate decoy sets for all the individual proteins presented in this thesis.

Abinitio is a tool for de novo structure prediction that consists of a coarse-grained, fragment-
based search through conformational space using a knowledge-based ”centroid” score function that
favours protein-like features. It takes as input the protein’s sequence and two fragment �les con-
taining short 3-mer & 9-mer backbone fragments that are randomly inserted at all positions during
the calculation. �ese fragments �les were created using Robe�a’s Fragment Libraries tool (http:
//old.robetta.org/fragmentsubmit.jsp) [40, 41]. Optionally, the crystal structure of
the protein can be included to generate additional scoring information from the decoys. Abinitio was
used to generate the vast bulk of the decoys for each protein system, however a problem we found (as is
common to de novo methods) was that few of the structures it generated were native, even with a high
number of decoys. In order to enrich the supply of native structures to be approx. 2 % of the total, we
employed “Relax” which is an all-atom re�nement tool using Rose�a’s full-atom force-�eld. We took
the most native-like of the Abinitio structures and used Relax to generate additional conformers which
formed the bulk of our native structures.

1.7.2 3DRobot

In order to see the e�ects that di�erent types of decoy generation would have on our eventual out-
put, we also created protein decoy sets using the tool ”3DRobot” (https://zhanglab.ccmb.
med.umich.edu/3DRobot/) [42], a program devoted to automated generation of diverse and
well-packed protein structure decoys. 3DRobot takes a crystal structure as input and then identi�es
diverse structural sca�olds from a non-redundant PDB library, followed by restraint-free fragment re-
assembly simulations in order to construct a series of diverse full-length models. Finally, the models
are further re�ned at the atomic level by a two-step iterative energy minimisation procedure in order
to improve the hydrogen bonding networks and steric overlaps within the decoys. 3DRobot has several
theoretical advantages over de novo-based approaches such as Rose�a. One is that 3DRobot allows the
user to de�ne a custom range of RMSDs over which the decoys can deviate from the original structure,
as opposed to Rose�a in which the RMSDs of the decoys vs. the original is mostly random. Another ad-
vantage of 3DRobot is that the generated decoys are spread over a much more linear range of RMSDs,
whereas those generated by Rose�a tend to cluster around certain values. �is can make sampling
certain RMSD values di�cult with Rose�a but with 3DRobot, every one is equally populated.
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1.8 Molecular Dynamics simulations

1.8.1 �eory of Molecular Dynamics

MD simulations are a computational method for the prediction and analysis of the movements of
atoms over time, achieved by solving the physical equations governing inter-atomic interactions [43].
MD has found uses all over the scienti�c spectrum but particularly in the realm of structural biology
because of its ability to elucidate important biochemical mechanisms such as protein folding, conforma-
tional change upon ligand binding, perturbations induced by mutation/post-translational modi�cation
etc. [44]. �e movement, or trajectory, of each individual atom in the simulation is calculated over a
typical time-step of a few femtoseconds, allowing extremely high temporal resolution models of pro-
tein motions to be generated. As a consequence, MD simulations are very computationally expensive,
requiring the throughput of a workstation or High Performance Computing (HPC) cluster to be viable.
Indeed, the modern zeitgeist of macromolecular MD simulations comprising many tens of thousands of
atoms has only been brought about by the vast increase in computational power since their origins. �e
�rst simulations of a few hundred gas atoms were performed in the late 1950s [45] and it would take
another 20 years before technology advanced to a su�cient degree to allow the �rst MD simulation of
a small protein (58 residues) for a short time (8.8 ps) [46]. Modern simulations can, by comparison, cal-
culate the trajectories of many hundreds of amino acids over many hundreds of nanoseconds, enabling
their current use cases.

�e interactions that atoms in a simulation will experience are de�ned and calculated using a math-
ematical model known as a “force �eld”. �ey typically contain information regarding factors such as
ideal bond length, bond angle, electrostatic and van der Waals interactions etc. Force �elds are typically
created by a mixture of theoretical calculations and experimental data and so are inherently approxi-
mate in nature with di�erent force �elds being specialised for speci�c purposes. As our knowledge of
the various factors that in�uence inter-atomic interactions has improved over time, so too have force
�elds become be�er at modelling them, with substantial improvement seen over the last decade [47].

Running simulations on proteins in silico instead of experiments in vivo or in vitro o�ers a number
of distinct advantages. One is that MD simulations record the exact position and velocity of every atom
at every time-step, an impossible task for any experimental technique. Another is that because the
whole process is entirely arti�cial, every aspect of the simulation can be exactly controlled, from the
components that make up the simulation to the conditions under which it is run. �is is in compari-
son to experimental techniques where there is always an element of doubt as it is impossible to know
for certain the exact make up of a sample (ligands/mutations/post-translational modi�cations etc.) or
maintain conditions perfectly.

In order to run MD simulations, a number of steps need to be taken. �e �rst is modelling in
any missing residues/atoms (including hydrogens) that may not be present in the original structure.
Next the system is solvated by adding a waterbox of appropriate size around the protein. �irdly,
periodic boundary conditions are set up which allows the �nite waterbox to act like an in�nite system
whereby anything that exits the waterbox through one side enters it again from the opposite side.
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Lastly, decisions need to be made about various parameters used to run the simulations such as which
force �eld to use and system temperature, as well as which physical parameters are allowed to vary
over the simulation’s duration and those that must be kept constant. Once these set up steps have been
completed, the MD simulation can begin, usually with an Equilibration run which is carried out to
remove the e�ects of adding water, ions etc. around the protein. �is is achieved over a number of time
steps in order to prevent simulation instability. Once equilibrium has been reached, the Production run
(the main MD simulation) can begin, usually lasting tens or hundreds of nanoseconds depending on
the research question being asked. �e steps involved in se�ing up and running an MD simulation are
illustrated in Figure 1.10.

1.8.2 Solution Builder & NAMD

Two programs were used to run the MD simulations: CHARMM-GUI’s Solution Builder tool (http:
//www.charmm-gui.org/?doc=input/solution) was used to generate input �les and
NAMD then took those �les and ran the simulations. CHARMM-GUI [48] is a web server allowing the
user to interactively build complex systems and prepare their inputs with established simulation pro-
tocols for biomolecular simulations. �e Solution Builder tool [49] is specialised to generate input �les
for MD simulations of proteins in aqueous solvent environments. Solution Builder was used to model
missing residues and add hydrogens to structures, solvate them in a waterbox of appropriate size, de-
termine periodic boundary conditions and lastly to set the force �eld as well as other simulation se�ing
such as temperature. �ese input �les were then accepted by a local install of NAMD. NAMD [50] is
a parallel MD program designed for high-performance simulation of large biomolecular systems. �is
program was used for equilibration of the system and also for the main production run.

1.9 Protein-protein docking

1.9.1 �eory of protein-protein docking

Protein-protein docking is the prediction of the structure of a complex from the structures of the
individual proteins [51]. �e process of docking involves taking two or more proteins and/or small
molecules and orientating them together into a realistic approximation of the native complex. �ere are
many di�erent docking programs available such as PatchDock/FiberDock [52–54], Rose�aDock [55,56]
& HADDOCK [57,58] etc., all of which work in subtly di�erent ways but which usually share the same
general steps. �ese comprise a global search, followed by a local search and �nally evaluation and
analysis. �e �rst step is a coarse-grain rigid-body docking simulation in which one protein is kept
static and the other rotated around it with 6 degrees of freedom (translations and rotations around the
x, y & z axes) in order to generate a range of approximate orientations or poses. �e second phase in-
volves �exible re�nement whereby the poses generated by the rigid-body docking have their side chain
orientations perturbed in order to simulate the conformational changes that typically occur upon bind-
ing. Once docking has been completed, various analysis and evaluation steps can be taken involving a
range of both automated and manual methods (Figure 1.11).

One of the great challenges facing all docking protocols is how to score the various poses they
generate at various stages i.e. which are the most native-like and which are the least. Scoring functions
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Figure 1.10: Molecular Dynamics simulation set up. �e structure in question has any missing
atoms modelled in and is then solvated in a water box of appropriate size and periodic boundary condi-
tions put in place in order for the �nite box to be treated like one of in�nite size. An Equilibration run
is then carried out to remove the e�ects of adding water, ions etc. around the protein. �is is done over
a number of time steps in order to prevent simulation instability. A�er equilibration, the Production
run is then carried out for a length of time appropriate to the biological question, typically in the order
of nanoseconds. In the case of obtaining a relaxed structure, the average RMSD of all the frames vs the
starting frame is calculated and the frame with the lowest value extracted as the relaxed structure.
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Figure 1.11: Overview of docking methodology. Docking programs a�empt to orientate two (or
more) unbound proteins, termed the receptor (blue, R) and the inhibitor (red, I), into their native com-
plex conformation. Coarse-grained rigid body docking is �rst carried out by immobilising the receptor
and manoeuvring the inhibitor around it in order to generate a large number of possible orientations
(translucent representations). If any binding interface location information is already known (e.g. HDX-
MS or other biochemical techniques), some docking programs can be biased towards the native struc-
ture by marking the surfaces predicted to interact (do�ed circle). Flexible re�nement is then carried
out on a subset of the highest scoring rigid body docking poses. �is involves perturbing side chain
orientations in order to approximate the movements that occur in proteins upon binding. Each re�ned
pose is then given a score with those with the highest score being theoretically the most native-like.
�e scoring metric is the area of greatest weakness within the �eld of docking.
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generally take into account a number of di�erent parameters such as steric complementarity, van der
Waals interactions, electrostatic interactions, hydrogen bonds etc. �eoretically, those docking poses
with the highest scores should be the most native-like and vice versa. However, if one compares these
highest scoring poses with experimentally determined structures using RMSD as a metric, there is o�en
li�le agreement between those with the highest score and those with the lowest RMSD. �erefore we
can see that the scoring of docking poses is a critical weakness within the �eld, one that is being
constantly improved upon through the testing of new methodologies using blind trials in the Critical
Assessment of Predicted Interactions (CAPRI) meetings [59].

1.9.2 HADDOCK

�e docking program used for this study was HADDOCK (High Ambiguity Driven protein-protein
DOCKing) [57], an information-driven program that distinguishes itself from ab initio docking methods
in that it encodes information from identi�ed or predicted protein interfaces in the form of Ambiguous
Interaction Restraints (AIRs) to drive the docking process. AIRs are a list of residues that have been
identi�ed as being part of the interaction surface which are then incorporated into HADDOCKs scoring
method, thereby biasing generated poses towards those where the “marked” surfaces come together.
Marked residues are de�ned as being either “active” or “passive”. Active residues are those experimen-
tally identi�ed to be involved in the interaction between the two proteins and are also determined to be
solvent accessible. Passive residues are all solvent accessible surface neighbours of the active residues.
An AIR is de�ned as an ambiguous intermolecular distance between the two proteins where an active
residue of one comes within a certain distance cut o� of an active or a passive residue of the other.
Using this system, passive residues can satisfy the restraints of the partner protein but cannot originate
restraints themselves. Experimental HDX-MS data was used to de�ne the AIRs for each protein-protein
interaction, however it should be noted that the current implementation of AIRs within HADDOCK is
a binary “on-o�” classi�cation, meaning that the complex shape of the HDX di�erence plot is lost.

HADDOCK’s docking protocol consists of three stages. First is rigid body docking, followed by
semi-�exible simulated annealing where the interface is perturbed, and �nally re�nement in an ex-
plicit solvent layer to improve energetics and therefore scoring. �e build of HADDOCK used in
this thesis was the webserver version of HADDOCK2.2 (http://haddock.science.uu.nl/
services/HADDOCK2.2/) [58].

1.10 Methodological pipelines

1.10.1 Pipeline process for the prediction of protein structure

Now that individual component parts have been explained, an in-depth description of the pipeline
as a whole will be given, as carried out on a single protein of a binary PPI. First, a candidate binary
PPI with a solved complex structure must be selected, sourced and, if necessary, produced in-house.
HDX-MS experiments for both the bound and unbound states are then carried out on each protein at
a variety of time points and with appropriate controls to correct for extraneous exchange. Once these
experiments have been deemed to have acquired data of su�cient quality, the computational steps can
begin.
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A set of decoy structures are generated using a tool such as Rose�a or 3DRobot and lnPs/RFU
data is then simulated for each residue/peptide in each decoy in the data set in the unbound state
using HDXsimulator. �is data is then compared against the experimentally modelled lnPs calculated
by HDXmodeller as well as the experimental RFU data determined by HDX-MS in order to generate
residue-level as well as peptide-level RMSE metrics for that decoy. �e three-dimensional coordinates
of the atoms in the decoy itself can then be compared to the three-dimensional coordinates of the atoms
in the protein’s structure in order to generate an RMSD metric for that decoy. �ese two metrics can
be visualised in a sca�er plot of RMSE vs. RMSD (on both the lnP and RFU levels), where those poses
with low RMSE values should also have low RMSD values. In a real-life application, the RMSD metric
will not exist and poses will need to be ranked by RMSE alone. �e purpose of having RMSD at this
juncture is to allow the ability of RMSE to correctly distinguish between poses to be assessed and the
underlying methodology behind the RMSE metric to be improved until it can correctly rank poses. �e
performance of RMSE can be judged through the construction of ROC curves which allow quantitative
testing of how well RMSE can distinguish between native and non-native structures.

1.10.2 Pipeline process for the prediction of protein-protein complex structure

Complex selection and analysis by HDX-MS is as stated previously, a�er which the computational
phase begins. �e �rst stage is MD simulations to separate and relax the individual protein chains of the
solved complex to generate pseudo-unbound structures. �is is to prevent the complex structure from
in�uencing subsequent steps, as when this methodology is applied to a real-life scenario, the structure
of the complex will not exist. However, the structures of the individual monomers will need to exist,
either solved experimentally or determined by the process described above. A�er relaxation, docking
is then performed with surfaces identi�ed to be involved in binding by HDX-MS marked so as to ini-
tially bias the docking towards the native structure using AIRs; initially rigid-body docking, followed
by �exible re�nement on the top scoring subset of poses. �is is the extent to which we have devel-
oped this pipeline thus far. Future developments will see a similar approach to the one developed for
individual protein’s structures applied to the complexes in order to enable native complex structures
to be distinguished from a background of non-native poses. �ese comparisons will make use of simu-
lated vs. experimental di�erence plots in order to distinguish between poses, instead of lnP/RFU values.

Clearly the veracity of both these pipelines relies primarily on our ability to accurately calculate
lnPs from structures. �e current methodology, as described in the aforementioned paper [4], provides
evidence that utilising RMSE values in this way has considerable merit, however there is room for
signi�cant improvement, which is in part as a result of the limited data set of proteins the method
was initially trained against, as well as being bound by low resolution peptide-level data. �erefore, a
broader depth and variety of training data sets and increased resolution to the residue-level enabled by
HDXmodeller should accordingly increase its accuracy. Binary PPIs were chosen as the training data
sets because of their ability to pull double duty for both pipelines as well as their high importance to
cellular life as well as the comparative level of di�culty in benchmarking a new technique vs. relatively
simple heterodimers compared to much more intricate multi-meric complexes. �e principal binary PPI
employed in this study was the barnase-barstar system with additional data sets collected for the GFP-
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GFP nanobody system. It should be noted that, while the increased number of data sets presented here
are a good start in the process of benchmarking this technique, it is likely that far more data sets than
can be collected by one group will be required for this method to achieve its true potential. �erefore
a long term goal is to open up the submission of test data sets to the HDX-MS research community at
large and so allow benchmarking to occur with potentially hundreds of proteins.

1.11 Protein interactions investigated in this study

1.11.1 Barnase:Barstar

Barnase and barstar are two small proteins (12.4 kDa & 10.2 kDa respectively) that have been studied
extensively since the 1960s as model proteins for folding studies. Produced by Bacillus amyloliquefa-

ciens, barnase is an extracellular ribonuclease which functions as a weapon against competing bacteria
in the local environment while barstar acts as its intracellular inhibitor [60]. As a ribonuclease, barnase
catalyses the degradation of RNA and would therefore be lethal to the producing cell if not paci�ed
in some way before secretion occurs. �us in order to prevent apoptosis, B. amyloliquefaciens also
produces barstar which binds extremely tightly (Kd = 1 × 10−14 M [61]) to barnase to form a het-
erodimer [62] that competitively inhibits barnase’s RNase activity until it is safely secreted from the
cell. �is system was chosen to be the basis of our work because it has been extensively characterised
in the literature, including a substantial amount of kinetics data covering both the wild type proteins as
well as various mutant-wild type and mutant-mutant interactions which shows that signi�cant kinetics
changes are seen when key residues are mutated [61]. Furthermore, neither protein has any disulphide
bonds which allows for easier digestion by proteases (and so greater peptide coverage), the overall fold
of both proteins have been shown to be very resistant to mutations, nor does the interaction require
any additional ligands [60].

For these reasons, we decided to test two di�erent barnase-barstar HDX interaction pro�les, the
BnWT:BspWT interaction and the BnH102A:BsY29F mutant interaction. �is provided two bench-
marking data sets while enabling us to use essentially the same production, puri�cation and mass
spectrometry protocols for both. Kinetics of the interactions of barnase, barstar and several di�erent
mutants are thoroughly described in the literature [61], with the BnH102A:BsY29F interaction display-
ing a substantially higherKd (3.1× 10−9 M) than the BnWT:BspWT interaction. It was for this reason
that these mutants were chosen for study because they could be used to report on the e�ects of Kd on
the shape/magnitude of the HDX pro�les generated for the barnase:barstar system.

1.11.2 GFP:GFP-nanobody/minimizer

Green Fluorescent Protein is perhaps one of the most famous proteins ever discovered. �anks to
its alluring glow, GFP has found uses all over the domain of biochemistry, particularly in the �eld of
�uorescence microscopy [63] but also as a marker in reporter assays [64] as well as purely commercial
applications such as the creation of glow-in-the-dark pets. GFP is a 26.9 kDa protein produced by the
jelly�sh Aequorea victoria and was discovered by Osamu Shimomura et al. in 1962 [65]; earning him
and two collaborators the 2008 Nobel Prize in Chemistry. GFP-nanobody is a 13.8 kDa protein that
forms a tightly bound (Kd = 1.4× 10−9 M) 1:1 complex with GFP [66]. Nanobodies are antibody frag-
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ments (also called single-domain antibodies) consisting of a single variable domain (VHH) cloned and
isolated from heavy-chain only antibodies found in members of the camelidae family [67]. Nanobodies
retain the full antigen binding capacity and speci�city of their primogenitors as well as their stability;
additionally they also bene�t from the advantages of being relatively small in size such as easier trans-
formation into bacterial cells for bulk production and (in a clinical se�ing) be�er permeability in tissues.

In addition to GFP-nb, the interaction of a second nanobody with GFP: GFP-nanobody minimizer
was also investigated. GFP-nbmin is so called because upon binding it reduces the �uorescence of the
GFP protein by approx. 75 % [68], and it also binds in a completely di�erent orientation to the regular
nanobody (although with some regional overlap) with a comparable Kd (4.5 × 10−9 M ). �us it was
reasoned that the HDX pro�le of the GFP:GFP-nbmin interaction would show signi�cant di�erences
compared to the GFP:GFP-nb interaction and so make it a worthy addition to the benchmarking data
set.

1.12 Studying the interaction of dUTPase with Stl

1.12.1 Overview

In addition to utilising HDX-MS for the unorthodox purpose of determining protein structure, HDX-
MS was also used during this PhD for the far more traditional goal of informing on the location of a
protein-ligand interaction in a biological system and so allowing inferences to be made about the sys-
tem through analysis of the data. �is system was the interaction of Stl with dUTPases from various
di�erent species and was a collaborative project between the Borysik group and the Vértessy group
from the Budapest University of Technology and Economics.

Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is an enzyme involved in DNA synthe-
sis where it acts to prevent the misincorporation of uracil into DNA [69]. Uracilation can cause various
types of DNA damage such as double-strand breaks, deletion and chromosomal breaks [70] and so in
healthy cells is prevented through the constant hydrolysis of deoxyuridine triphosphate (dUTP) (which
can be readily incorporated into DNA by DNA polymerase) into deoxyuridine monophosphate (dUMP)
via the enzyme dUTPase (Figure 1.12). dUMP can be further processed into deoxythymidine triphos-
phate (dTTP), allowing for the correct incorporation of thymine into DNA by DNA polymerase [71].
�erefore, dUTPase has a dual role both in keeping the dUTP pool low and the dTTP pool high in order
to facilitate the correct functioning of DNA.

Staphylococcus pathogenicity island repressor protein (StlSaPIbov1 or simply Stl) is the master re-
pressor of the highly mobile Staphylococcus aureus pathogenicity islands (SaPI), which play an impor-
tant role in S. aureus toxicity [72]. Stl has previously been shown to interact with dUTPases from the
ϕ11, 80α and ϕNM1 helper phage where complexation results in the disruption of the Stl-DNA interac-
tion, allowing for the transcription of repressed SaPI genes [73]. Fortuitously, the binding of dUTPase
with Stl also causes inhibition of dUTPase’s enzymatic activity, with the dUTP substrate being unable
to bind dUTPase in the presence of Stl. Interestingly, neither Stl nor dUTP can bind to dUTPase if the
other is present �rst, indicating the involvement of the dUTPase active site in dUTPase:Stl complexa-
tion [74], where it is hypothesized that Stl can only bind when dUTPase is in an “open”, substrate-free
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Figure 1.12: Role of dUTPase in preventing uracil misincorporation into DNA. Simpli�ed di-
agram showing the steps involved in dTTP production from UDP, allowing for correct incorporation
of thymine into DNA. Ancillary steps represented as square boxes, while steps impacted by dUTPase
represented as ovals with a yellow highlight. Arrows represent chemical reactions; associated enzymes
are named next to them. �e enzyme dUTPase itself is highlighted in yellow. Do�ed line represents
the misincorporation of uracil into DNA which is prevented by the action of dUTPase converting dUTP
into dUMP.
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conformation. Stl has been shown to have quite substantial functional plasticity, with an inhibitory
e�ect being documented on dUTPases from multiple di�erent species, even those that share relatively
li�le sequence or structural homology [73, 75–77].

�e interaction between dUTPase and Stl is of particular interest to the scienti�c community be-
cause both proteins are involved in mechanisms which mediate disease. dUTPase participates both in
terms of disease in humans, i.e. cancer, and disease-causing organisms, as its correct function is vital
for their survival, [70] and Stl is directly responsible for the expression of toxic S. aureus genes as well
as being involved in S. aureus resistance by playing a key role in horizontal gene transfer [78].

�ere are currently no crystal structures available for any dUTPase:Stl complex, hence the study of
the interaction between these two proteins could bene�t signi�cantly from analysis by a technique that
can provide information on where binding occurs, in terms of the peptides involved on both sides. �e
goal of this collaboration with the Vértessy group was therefore to study the interaction of Stl from S.

aureus with dUTPases from a variety of di�erent species using HDX-MS in order to be�er understand
how the inhibition of dUTPase’s catalytic function by Stl is mediated. �e use of a technique that
provides location data enabled the collection of hitherto unavailable information about the various
dUTPase:Stl interactions and thus will contribute a substantial amount towards our understanding of
this unusual system. For the purpose of this thesis, we will describe the two di�erent facets of our
collaboration with the Vértessy group that lead to published works: the �rst being the interaction of
human dUTPase with Stl [79] and the second being the functional plasticity of Stl interacting with both
homotrimeric and homodimeric dUTPases [77].

1.12.2 Using HDX-MS to investigate the human dUTPase:Stl interaction

Human dUTPase has for some time now been of interest to scientists because it acts as a survival
factor for tumor cells and so has become a target for cancer chemotherapies [80]. In addition to small-
molecule based approaches, biologics present an appealing way forward due to potential bene�ts such
as increased selectivity and consequently a reduction in intracellular o�-target e�ects. �erefore the
discovery of Stl as a potent cross-species inhibitor of dUTPase has raised important questions about its
potential viability as an anti-cancer drug. With the Vértessy group establishing that Stl could indeed
bind to human dUTPase, our role in the collaboration became one of localisation: we ran standard HDX
di�erence methodology to determine the regions responsible for the binding interaction, both in terms
of human dUTPase and Stl. From this and a combination of additional biophysical techniques from
other collaborators, such as size-exclusion chromatography in line with small-angle X-ray sca�ering
(SEC-SAXS) restrained by HDX-MS data, a schematic model for human dUTPase:Stl complex assembly
and Stl-DNA interaction was proposed. �is model forms part of the bedrock of knowledge about this
system that will be necessary if a biologic based on Stl is ever to be developed.

1.12.3 Using HDX-MS to investigate the functional plasticity of Stl

It has been found that Stl has the ability to inhibit enzymatic function of dUTPases from multi-
ple species, even when those dUTPases share relatively li�le amounts of sequence and even structural
homology, as explained previously. For example, Stl has been shown to inhibit representatives of both
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distinct classes of dUTPases: the β-pleated homotrimeric and the all-α homodimeric dUTPases, despite
these classes sharing essentially no structural similarity with only the ability to bind dUTP in common
between them. �e goal of this collaboration with the Vértessy group was to investigate the mech-
anism by which Stl can bind to and inhibit the function of these drastically dissimilar dUTPases by
running HDX-MS di�erence experiments on a representative of each dUTPase class bound to Stl and
then analyzing the data in order to accrue evidence for how this functional plasticity of Stl occurs. �e
proteins investigated in this study were: ϕ11 dUTPase from S. aureus phage representing the β-pleated
homotrimeric dUTPases and ϕNM1 dUTPase from S. aureus phage representing the all-α homodimeric
dUTPases, both in complex with Stl from S. aureus.
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2 Methods

Unless otherwise stated, all reagents were purchased from Sigma-Aldrich or �ermo Fisher Scien-
ti�c .

2.1 Production & puri�cation of barnase and barstar

�e plasmid of wild type barnase was provided by the Ikura group (Tokyo Medical and Dentistry
University, Japan) in the pTZ416 vector under the control of the alkaline phosphatase promotor with a
resistance to ampicillin. A plasmid for a barstar triple mutant (C40A, C82A & D39A) was also provided,
however a�er numerous a�empts to produce and purify a reasonable amount of protein from this plas-
mid resulted in failure (detailed in chapter 4.1), this plasmid was abandoned and a new plasmid was
synthesised by Gene Universal (Newark, Delaware, USA). �is plasmid (in pET-28a(+)) also contained
the C40A & C82A mutations as well as an N-terminal 6His-tag with a TEV cleavage site to aid puri�ca-
tion and was under the control of the lac promotor with a resistance to kanamycin. �e C40A & C82A
mutations are to eliminate a disulphide bond and the resultant structure is termed ”pseudo-Wild Type”
due to its near-identical nature to the true Wild Type structure.

2.1.1 Barnase production & puri�cation

Transformation of plasmid DNA into BL21-AI competent E. coli cells (Invitrogen, Inchinnan, UK)
was carried out according to the “E. coli Competent Cells” protocol by Promega (Southampton, UK)
(Appendix A). In order to amplify the amount of DNA in stock, single colonies were inoculated into 5
ml LB + 50 µg/ml ampicillin and incubated overnight at 37 ◦C with agitation at 220 rpm before being
centrifuged at 4,400 rpm for 15 minutes. Cells were miniprepped according to the standard protocol for
a Qiagen miniprep kit (Manchester, UK) (Appendix B). Resultant extracted DNA was �ash frozen in liq-
uid N2 and stored at -20 ◦C. In order to make glycerol stocks out of the transformed cells for long term
storage, single colonies were inoculated into 50 ml LB + 50 µg/ml ampicillin and incubated overnight
at 37 ◦C with agitation at 220 rpm. Glycerol stocks were made by taking 500 µl of the overnight culture
and adding it to 500 µl 50 % glycerol solution. �e sample was mixed thoroughly, le� to stand for 15
minutes and then �ash frozen in liquid N2 and stored at -70 ◦C.

For overexpression, the barnase glycerol stock was removed from the -70 ◦C freezer and placed on
ice. �e top was scrapped with an inoculating loop which was streaked onto an LB-agar plate contain-
ing 50 µg/ml ampicillin which was le� in an incubator overnight at 37 ◦C. A single colony from the
resultant grow was transferred via inoculating loop into 10 ml LB + 50 µg/ml ampicillin and le� in an
incubator overnight at 37 ◦C with agitation at 220 rpm. 6 ml of pre-culture was transferred into 1 L of
minimal phosphate media (Appendix C) + 50 µg/ml ampicillin and incubated over night at 37 ◦C with
agitation at 220 rpm. �e expression culture was centrifuged at 4,200 rpm for 20 mins at 4 ◦C and the
supernatant discarded. �e cell pellet was re-suspended in 10 ml 50 mM Tris HCl pH 8 (�nal volume:
12.5 ml). 687 µl of glacial acetic acid was added and the solution le� spinning in a rotator at 4 ◦C for 20
mins. �e solution was then centrifuged at 4,000 rpm for 20 mins at 4 ◦C and the supernatant removed
into a 3 kDa MWCO spin concentrator (Cytiva, Marlborough, MA, USA). �e sample was centrifuged
at 4,000 rpm at 4 ◦C until its volume reached approx. 5 ml. Sample removed from spin concentrator
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and dialysed using a 3 kDa MWCO Slide-A-Lyzer dialysis casse�e (�ermo Scienti�c, Waltham, MA,
USA) vs. 500 ml 50 mM Tris HCl pH 8 at 4 ◦C with gentle stirring for 4 hours. �e dialysis bu�er was
changed out for 500 ml fresh 50 mM Tris HCl pH 8 and le� stirring overnight.

�e sample was removed from the dialysis casse�e and �ltered through a 0.22 µm �lter. Puri�ca-
tion was undertaken on an ÄKTA Pure (Cytiva, Marlborough, MA, USA). A 5 ml HiTrap SP HP ion
exchange column (Cytiva, Marlborough, MA, USA) was washed with 3 CVs dH2O then 3 CVs 500 mM
NaOH then 2 CVs 2 M NaCl then 3 CVs 50 mM Tris HCl pH 8. �e sample was loaded into a 5ml loop
and washed over the column with 3 CVs 50 mM Tris HCl pH 8 and a substantial peak at A280 nm was
seen. �e sample was eluted from the column using a linear gradient of 0-1 M NaCl over 10 mins at
a �ow rate of 1 ml/min and a fraction size of 1 ml. A very substantial peak at A280 nm was seen in
fractions 8, 9 & 10, corresponding to a NaCl concentration of 0.8-1 M.

In order to test for purity, 7.5 µl of each fraction was combined with 2.5 µl gel loading dye and
incubated in a dry bath for 10 mins at 70 ◦C. �e samples were then loaded into a pre-cast NuPAGE 10
% Bis-Tris 1 mm gel (Invitrogen, Inchinnan, UK) and run at 200 V for 50 mins using 1 x MES SDS run-
ning bu�er. �e ladder used was PageRuler Plus (�ermo Scienti�c, Waltham, MA, USA). �e gel was
removed from the casse�e and stained using InstantBlue (Sigma-Aldrich, Gillingham, UK) for approx.
1 hour before being imaged.

With sample purity con�rmed, fractions 8-10 were combined and loaded into a 3 kDa MWCO Slide-
A-Lyzer dialysis casse�e and dialysed vs. 500 ml bu�er E (5 mM potassium phosphate dibasic + 5 mM
potassium phosphate monobasic, pH 7) overnight. �e dialysis bu�er was changed out for fresh 500 ml
bu�er E and le� dialysing for 5 hours. �e sample was extracted from the casse�e and its concentration
determined vs. a bu�er E blank, following which its concentration was lowered to 40 µM by diluting
with bu�er E. Barnase sample aliquoted, �ash frozen in liquid N2 and stored at -70 ◦C.

In order to manufacture the barnase H102A mutant, forward and reverse primers were synthesised
by Invitrogen (Inchinnan, UK ) with the following sequences:
Forward – TGGCTGATTTACAAAACAACGGACGCTTATCAGACCTTTACAAAAATCAG
Reverse – CTGATTTTTGTAAAGGTCTGATAAGCGTCCGTTGTTTTGTAAATCAGCCA
Upon arrival, lyophilized DNA was solubilised in 1 ml H2O, their concentration determined and then
appropriately diluted with H2O to reach approx. 125 ng/µl. Mutagenesis was carried out as stated
in the “�ikChange II Site-Directed Mutagenesis Kit” protocol by Promega (Southampton, UK) (Ap-
pendix. D). Resultant BnH102A colonies were pre-cultured, miniprepped, transformed into BL21-AI,
overexpressed, puri�ed and stored as stated previously for the WT barnase. �e only di�erence to the
above is that only 100 ml of minimal phosphate media was used for the overexpression because the
yield of BnH102A was found to be far greater than that of the WT.

2.1.2 Barstar production & puri�cation

Transformation of plasmid DNA into BL21-DE3(pLysS) competent E. coli cells was carried out ac-
cording to the “E. coli Competent Cells” protocol by Promega (Appendix A) (Southampton, UK). In
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order to amplify the amount of DNA in stock, single colonies were inoculated into 5 ml LB + 50 µg/ml
kanamycin & 34 µg/ml chloramphenicol and incubated overnight at 37 ◦C with agitation at 220 rpm
before being centrifuged at 4,400 rpm for 15 minutes. Cells were miniprepped according to the standard
protocol for a Qiagen miniprep kit (Appendix B) (Manchester, UK). Resultant extracted DNA was �ash
frozen in liquid N2 and stored at -20 ◦C. In order to make glycerol stocks of the transformed cells for
long term storage, single colonies were inoculated into 50 ml LB + 50 µg/ml kanamycin & 34 µg/ml
chloramphenicol and incubated overnight at 37 ◦C with agitation at 220 rpm. Glycerol stocks were
made by taking 500 µl of the overnight culture and adding it to 500 µl 50 % glycerol solution. �e sam-
ple was mixed thoroughly, le� to stand for 15 minutes and then �ash frozen in liquid N2 and stored at
-70 ◦C.

For overexpression, the barstar glycerol stock was removed from the -70 ◦C freezer and placed on
ice. �e top was scrapped with an inoculating loop which was streaked onto an LB-agar plate contain-
ing 50 µg/ml kanamycin & 34 µg/ml chloramphenicol which was le� in an incubator overnight at 37 ◦C.
A single colony from the resultant grow was transferred via inoculating loop into 10 ml LB + 50 µg/ml
kanamycin & 34 µg/ml chloramphenicol and le� in an incubator overnight at 37 ◦C with agitation at
220 rpm. 200 µl of the pre-culture was inoculated into 200 ml 2xYT media + 50 µg/ml kanamycin & 34
µg/ml chloramphenicol and incubated at 37 ◦C with agitation at 220 rpm until the OD reached approx.
0.6. Protein expression was induced with 1 mM IPTG and the culture was incubated overnight at 37 ◦C
with agitation at 220 rpm.

�e overnight culture was decanted into centrifuge tubes and centrifuged at 4,000 rpm for 20 mins
at 4 ◦C. �e supernatant was discarded and the cell pellet re-suspended in 20 ml of lysis bu�er (50 ml
PBS 1x, 35 µl β-Mercaptoethanol (10 mM), 1 EDTA-free protease inhibitor tablet & 2 µl benzonase)
a�er which the cells were lysed using a cell disruptor at 25 kPsi for 1 cycle. Cell lysate was clari�ed
by centrifugation at 20,000 rpm for 30 mins at 4 ◦C. �e supernatant was collected and spiked with 4
M NaCl and 1 M imidazole in order to bring their concentration in the supernatant up to 300 mM & 25
mM respectively. Puri�cation was undertaken on an ÄKTA Pure. �e supernatant was �ltered through
a 0.22 µm syringe �lter and loaded into a 50 ml Superloop. A 1 ml HisTrap (Cytiva, Marlborough, MA,
USA) column was equilibrated with 5 CVs Equilibration bu�er (50 mM Tris-HCl pH 8, 300 mM NaCl
& 25 mM imidazole) and the clari�ed cell lysate washed over it at 1 ml/min until the Superloop was
empty. A substantial peak at A280 nm was seen at this time, representing the non-binding proteins.
�e barstar was eluted with Elution bu�er (50 mM Tris-HCl pH 8, 300 mM NaCl & 300 mM imidazole)
using a linear gradient from 0-100 % over 10 mins at 1 ml/min with a fraction size of 1 ml. A substantial
peak was seen at A280 nm in fractions 6-10 (barstar and any other binding proteins). Fractions 6-10
were combined and concentrated down to 2.5 ml using a 3 kDa MWCO spin concentrator at 4,000 rpm
at 4 ◦C. A PD-10 desalting column (Cytiva, Marlborough, MA, USA) was equilibrated with 25 ml 50
mM Tris-HCl pH 8, a�er which the combined puri�ed fractions were added and centrifuged at 1,000 x
g for 2 mins at 4 ◦C. Eluent removed into a fresh 3 kDa MWCO spin concentrator and centrifuged at
4,000 rpm at 4 ◦C until the total sample volume was approx. 750 µl. �e His-tag cleavage reaction using
AcTEV protease (Invitrogen, Inchinnan, UK) was set up as stated in Appendix E. �e cleavage reaction
was le� at room temperature for 40 hours with gentle mixing on a rotator.
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�e cleavage reaction was recovered and diluted with Equilibration bu�er to a total volume of 5 ml
and �ltered through a 0.22 µm syringe �lter, a�er which it was loaded into a 5 ml loop. �e 1 ml HisTrap
column was re-equilibrated with 5 CVs Equilibration bu�er and the sample washed over it with 15 ml
Equilibration bu�er at 1 ml/min with 1 ml fractions collected. A substantial peak at A280 nm was seen
at this time (cleaved barstar and any other non-binding proteins). �e remainder of un-cleaved barstar
as well as AcTEV protease and any other binding proteins was eluted isocratically with 5 CVs Elution
bu�er. �e �ow through containing cleaved barstar and other non-binding proteins was concentrated
down to 500 µl using a 3kDa MWCO spin concentrator at 4,000 rpm and 4 ◦C, whereupon it was �ltered
through a 0.22 µm syringe �lter and loaded into a 500 µl loop. A Superdex 75/300 GL Size Exclusion
(SEC) column (Cytiva, Marlborough, MA, USA) was equilibrated with 2 CVs 50 mM Tris-HCl pH 8 at a
�ow rate of 0.8 ml/min, a�er which the sample was run over the column with 1.5 CVs 50 mM Tris-HCl
pH 8 at 0.8 ml/min with the eluent being collected in 1 ml fraction sizes. �e �rst 0.3 CVs of eluent
were not collected and a peak at A280 nm corresponding to barstar was seen in fraction 7. A gel to
determine identity and purity of the barstar sample was carried out as described previously. Barstar’s
yield was determined as previously described with its concentration subsequently adjusted to 40 µM,
aliquoted, snap frozen in liquid N2 and stored at -70 ◦C.

Using this protocol, the majority of the barstar was un-cleaved by AcTEV and it was clear that a
substantial amount of work would be needed in order to boost yields to acceptable levels. At this point
time was starting to run out and so it was decided to contract out the remaining barstar production to
Ruth Rose of the Protein Production Facility at �een Mary University of London while we focused on
collecting HDX data. �e plasmid as well as the production and puri�cation protocols we had developed
up until this point would be used as a starting point for the Protein Production Facility to iterate upon
until a large amount of cleaved barstar could be produced

2.2 HDX-MS experiments

2.2.1 Overview of generic experimental and analytical HDX-MS setup

HDX-MS experiments were all performed on a Synapt G2Si HDMS in tandem with an Acquity
UPLC M-Class system with HDX and automation (Waters Corporation, Manchester, UK) and a LEAP
PAL autosampler (Trajan Scienti�c Europe Ltd, Milton Keynes, UK) for sample management. �e mass
spectrometer was calibrated against NaI and sample data acquired with lock-mass correction using
Leu-enkephalin every 30 seconds.
�e basic experimental procedure is as follows:
5 µl of protein sample at 10-20 µM is mixed with 95 µl equilibration bu�er/labelling bu�er for reference
�les/labelling �les respectively at 20 ◦C. A�er the appropriate incubation time has elapsed, 70 µl of
sample is transferred into 70 µl quench at 1 ◦C to retard further deuteration. 50 µl of the sample is
then digested on-line by a Waters Enzymate BEH pepsin column at 20 ◦C and the subsequent peptides
immobilised on a Waters BEH C18 VanGuard pre-column for 3 minutes at a �ow rate of 200 µl/min
in bu�er A (H2O + 0.1 % formic acid, pH 2.5). Peptides are then eluted by use of a linear gradient of
organic solvent, bu�er B (acetonitrile + 0.1 % formic acid, pH 2.5), from 8-40 % over 6 minutes and then
separated by UPLC using a Waters BEH C-18 analytical column before being transferred into the mass
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spectrometer by ESI. All trapping and chromatography is performed at 0 ◦C to minimise back exchange
of deuterium for hydrogen. Within the mass spectrometer, the sample �rst encounters a Step Wave ion
guide to remove any neutral contaminants, a quadrupole to (in our experimental procedure) focus the
ion beam and an IMS cell to gather dri� time data. Lastly, the sample enters the ToF mass analyser
for m/z separation and determination. Each sample is run with an 11 minute acquisition time with the
majority of peptides eluting between 2 and 8 minutes. �is experimental set up can be visualized in
Figure 2.1.
Following on from each sample run is a clean blank which runs a saw-tooth gradient of bu�er B from
8-85 % and back again over 4 minutes and repeated a second time in order to eliminate carry-over into
the next sample run.

Peptides contained within the reference �les were assigned using the ProteinLynx Global Server
(PLGS) v3.0.2 (Waters Corporation, Manchester, UK) so�ware in order to generate ion accounting �les
containing a list of all the peptides that could be found in the sample run. �e deuterium uptake (∆D) of
each peptide at each time point in each state was subsequently determined with DynamX v3.0.0 (Waters
Corporation, Manchester, UK) by calculating the di�erence between the centroids of the mass spectral
envelopes of the labelled samples and the reference samples (Figure 2.2). Centroids were calculated
using Equation 2.1:

centroid =
ΣmiIi

ΣIi
(2.1)

Where mi denotes the m/z of peak i and Ii denotes the intensity of peak i.

In order to calculate the uptake di�erence between states, data for all time points in the bound state
were summed and subtracted from the summed data of all the time points in the unbound state to form
a peptide-level di�erence plot. �is peptide-level data was further processed using a custom MATLAB
script in order to display the total mass shi� of each peptide plo�ed against the residue position to
generate “Woods plots” showing the ∆mass of each peptide on the residue scale comparing the bound
to the unbound states. An overview of this methodology can be seen in Figure. 2.3.

�ose residues which displayed a signi�cant amount of deuterium uptake di�erence were deter-
mined by calculating Con�dence Interval (CI) values. First, the Mean Squared Deviation (MSD) of the
uptake was calculated across all peptides for each time point using Equation 2.2:

MSDt = 〈SDi,t〉2 (2.2)

Where MSDt denotes the Mean Squared Deviation at time point t and SDi,t denotes the uptake
Standard Deviation for peptide i at time point t. �en, the Standard Error of the Mean (SEM) was
calculated from the MSD values using Equation 2.3:

SEM =

√
ΣMSDt√

N
(2.3)
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Figure 2.1: Overview of the experimental set up for the mass spectrometer. Flow path of the
sample is represented as a solid black line; other solid coloured lines represent the �ow of di�erent
solvents. Do�ed lines represent the �ow of gasses. Dashed lines encompass an environment with a
particular controlled temperature (displayed as a number with the same colour). Solvents are repre-
sented as coloured vials, gasses as coloured gas cylinders. �e mass spectrometer is represented as a
cross section to show the �ow path as well as constituent parts. All other parts of the experimental set
up are displayed as a labelled diagrammatic facsimile of the real objects. (1) Samples are incubated with
either bu�er E (blue, E) or bu�er L (red, L) as appropriate for a set amount of time. (2) Samples are then
quenched with bu�er Q (purple, Q) to retard further exchange. (3) Transfer into the pepsin column via
valve 1 (V1) then occurs to digest the samples into peptides. (4) Peptides move through valve 2 (V2)
and are immobilised on the trap column until they are eluted by an increasing percentage of organic
solvent (brown, B) vs. inorganic solvent (brown, A). (5) Eluted peptides are separated by UPLC and
enter into the mass spectrometer by ESI. (6) �e ionized sample passes through a Step Wave ion guide
to remove neutral contaminants, a quadrupole to (in our experimental procedure) focus the ion beam
and an IMS cell to gather dri� time data. m/z information for the ions is then determined by the ToF
mass analyser. LockMass correction is obtained using LockSpray (yellow, LS).
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Figure 2.2: Calculation of deuterium uptake from centroids. Visual representation of how the
change in deuterium uptake (∆D) can be determined by calculating the di�erence between the centroids
of two isotopic envelopes.
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Figure 2.3: Overview of HDX-MS data collection & analysis pipeline. In all individual elements,
blue represents a state of protonation and red represents a state of deuteration. In the experimental
portion, a protein suspended in aqueous bu�er is diluted for varying time points (t1-5) in deuterated
bu�er, causing deuteration to occur according to each residue’s kHX . �e sample is quenched in ice-cold
bu�er Q to retard further in/back-exchange and then digested into peptides on-line with immobilised
pepsin. Peptides are separated by LC and MS data is then collected for each peptide at each time point,
typically causing the peptide’s Gaussian distribution to shi� to higher m/z values as deuteration time
increases. In the analytical portion, each peptide’s uptake “�ngerprint” is determined by graphing its
deuterium uptake as a function of labelling time. Plots for all peptides are then combined into a single
“bu�er�y” plot graphing each peptide’s RFU at each time point in both the bound and the unbound
states. Bound RFU values are subtracted from unbound RFU values to construct a “di�erence” plot
which is then averaged per residue to form a “Woods” plot. �e advantage of Woods plots vs. di�erence
plots is that they allow HDX di�erences to be seen on the residue level instead of just the peptide level
and so allow for higher resolution data interpretation.
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Where N denotes the number of replicates in the experimental data set. In the case of all our
experiments, this number was 3.
Finally, the con�dence interval values in Da were calculated by multiplying the SEM value by the
appropriate value for the CI t-test at 2 degrees of freedom using Equation 2.4:

CIp = SEM · zp (2.4)

Where CIp denotes the Con�dence Interval at percent threshold p and zp denotes the critical value
at percent threshold p e.g. 9.925 for 99 % CI, 4.303 for 95 % CI etc. �ese calculations generate a
threshold value in Da, everything above which (positive or negative) was thought of as “signi�cant”
uptake di�erence and everything below which was thought of as “not signi�cant”.

2.2.2 HDX-MS experiments on proteins involved in binary PPIs

Samples of GFP, GFP-nb & GFP-nb min were provided by Rebecca Beavil from the Randall Division
of Cell and Molecular Biophysics, King’s College London. Samples of barstar were provided by Ruth
Rose from the School of Biological and Chemical Sciences, �een Mary University of London. Barnase
was produced in-house. All protein samples were diluted to 40 µM using the bu�er they were provided
in, aliquoted, snap frozen in liquid N2 and stored at -70 ◦C. BEX were set up for each protein by loading
a single aliquot (<1 ml) into a 3 kDa MWCO Slide-A-Lyzer dialysis casse�e and then dialysing it against
100 ml bu�er L (4.5 mM K2HPO4, 4.5 mM KH2PO4 in D2O, pD 7) overnight at room temperature with
gentle stirring. Samples were extracted from the casse�e, �ltered through a 0.22 µm syringe �lter and
incubated at 37 ◦C for between 2-3 weeks. Samples were removed from the incubator, aliquoted, snap
frozen in liquid N2 and stored at -70 ◦C.

Four unique binary PPIs were investigated in this thesis: BnWT:BspWT, BnH102A:BsY29F, GFP:GFP-
nb & GFP:GFP-nbmin. Reference �les with a 1:1 mixture of the two proteins were gathered for each
interaction in sextuplicate along with six labelling time points: 15 seconds, 1 minute, 5 minutes, 25
minutes, 2 hours & 8 hours collected in triplicate for both the bound and unbound states. �ese speci�c
time points were chosen so that uptake data could be gathered over an (approximately) logarithmic
timescale. BEX and IEX were also gathered in triplicate. IEX are set up exactly the same as a reference
�le except the quench is made up in D2O.

HDX-MS data was collected replicate-by-replicate i.e. an entire single data set including references,
labelling time points and controls is collected before looping back to the start and collecting the next
set of replicates. �e experiments were set up like this in order to account for any changes which might
occur during the 36 hours it took to run all the data sets as each reference, time point and control would
have one of its replicates taken in the �rst 12 hours, one in the second 12 hours and one in the �nal 12
hours. In order to collect data for a single interaction, two of these 36 hour runs needed to be completed;
one in which protein A was the unbound data set and one in which protein B was the unbound data
set.
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2.3 Native MS experiments

Native MS experiments were carried out on the Synapt G2Si HDMS calibrated against CsI with sam-
ples introduced via a NanoLockSpray Exact Mass Ionization Source (Waters Corporation, Manchester,
UK). �e instrument was run with positive polarity in sensitivity mode. Desalting of samples took place
before native MS was carried out in order to reduce background noise. Two di�erent desalting methods
were used: Bio-spin desalting columns (Bio-Rad, Watford, UK) and Vivaspin desalting columns (Cytiva,
Marlborough, MA, USA).
For Bio-spins, each were primed prior to an experiment by �rst centrifuging them for 2 mins at 1,000 x g
to remove storage solution, followed by 5x 1 min centrifugations at 1,000 x g with 500 µl of appropriate
bu�er each time and discarding the �ow through. Desalting was achieved by applying 50 µl of sample
to the centre of the Bio-spin and centrifuging for 4 mins at 1,000 x g, a�er which the �ow though was
collected.
For Vivaspins, a column with an appropriate MWCO was chosen and then washed with 100 µl of ap-
propriate bu�er for 2 mins at 15,000 x g. 50 µl of sample was then added and the column topped up
with 300 µl appropriate bu�er before being centrifuged at 15,000 x g until approximately half of the
initial volume remained. �is step was repeated at least 4 more times. On the last desalting cycle, the
column was centrifuged until the remaining volume was equal to that of the initial starting volume, at
which point the sample was recovered.

Capillaries were made in-house with a Flaming/Brown P-97 micropipe�e puller (Su�er Instruments,
Novato, CA, USA) and coated with Au:Pd (80:20) using a �orum Q150RS spu�er coater (Lewes, UK).
Before use, each needle had its sealed tip snapped o� using tweezers in order to allow sample �ow
through it. 3 µl sample was loaded into the needle and placed into the ion source with a high initial
pusher gas �ow in order to encourage initial sample �ow, which was subsequently reduced as low as
possible while still maintaining spectra intensity. Exact machine parameters used for data acquisition
were tailored on a sample-by-sample basis depending on the behaviour of the spectra. Peak iden-
tity was con�rmed using the webserver version of ESIprot (https://www.bioprocess.org/
esiprot/esiprotform.php) [81].

2.4 Production of protein-protein complex poses

2.4.1 Molecular Dynamics simulations

Initial bound structures were downloaded from the Protein Data Bank (PDB) [82] (http://
www.rcsb.org/) database with the following accession codes: BnWT:BspWT (1BRS), GFP:GFP-nb
(3OGO), GFP:GFP-nbmin (3G9A). Missing atoms were modelled in using Prime [83, 84] and the pro-
tein preparation wizard interface in Maestro (Schrödinger LLC, New York, USA). Structures were then
submi�ed as individual chains and as a complex to CHARMM-GUI’s Solution Builder tool (http:
//www.charmm-gui.org/?doc=input/solution) in order to generate a series of input
�les for relaxational MD simulations of the proteins in both their bound and unbound conformations.
Input �les were generated using the following parameters:
Step 1 – Protein Solution System: using the structures downloaded and modelled previously.
Step 2 – Waterbox Size Options: �t waterbox size to protein size, waterbox type = rectangular, enter
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edge distance = 10.0; Add Ions: 0.15 M KCl, ion placing method = Monte-Carlo.
Step 3 – Periodic Boundary Condition Options: generate grid information for PME FFT automatically.
Step 4 – Force Field Options: CHARMM36m, Input Generation Options: NAMD, Equilibration Input
Generation Options: NVT ensemble, Dynamics Input Generation Options: NPT ensemble, temperature
= 300 ◦K.

Input �les for each structure to be simulated were prepared in the above manner and downloaded
from CHARMM-GUI. Equilibration and Production runs were then prepared and executed from the
input �les using a CUDA-enabled NAMD v2.13 module installed on the research computing facility
at King’s College London, Rosalind (https://rosalind.kcl.ac.uk), utilising a Tesla V100
GPU (NVIDIA, Santa Clara, CA, USA).
Equilibration simulations were run with the following parameters:
Temperature = 300 ◦K;
Energy output = 125 steps;
Trajectory output = 1,000 steps;
Force Field Parameters – non-bonded exclusion policy = scaled1-4, 1-4scaling = 1.0, cuto� = 12.0 Å,
switch distance = 10.0 Å, pair list distance = 16.0 Å, steps per cycle = 20, pair lists per cycle = 2;
Integrator Parameters – timestep = 2.0 fs, rigid bonds = all, non bonded frequency = 1, full electrostatic
frequency = 1;
Constant Temperature Control – reassign frequency = 500 steps, reassign temperature = 300 ◦K;
Periodic Boundary Conditions – wrap water = on, wrap all = on, wrap nearest = o�;
Particle Mesh Ewald – PME = yes, PME interpolation order = 6, PME grid spacing = 1.0;
Pressure and Volume Control – use group pressure = yes, use �exible cell = no, use constant ratio = no,
langevin = on, langevin damping = 1.0, langevin temperature = 300 ◦K, langevin hydrogen = o�;
Constant Pressure – langevin piston = on, langevin piston target = 1.01325, langevin piston period =
50.0, langevin piston decay = 25.0, langevin piston temperature = 300 ◦K;
Minimize = 10,000 steps; Run = 25,000 steps.
�e system was Equilibrated for 50 ps to remove the e�ects of adding water, ions etc. around the protein.

Production simulations were run with the following parameters:
Temperature = 300 ◦K;
Energy output = 50,000 steps;
Trajectory output = 5,000 steps;
Force Field Parameters – non-bonded exclusion policy = scaled1-4, 1-4scaling = 1.0, cuto� = 12.0 Å,
switch distance = 10.0 Å, pair list distance = 16.0 Å, steps per cycle = 20, pair lists per cycle = 2;
Integrator Parameters – timestep = 2.0 fs, rigid bonds = all; non bonded frequency = 1, full electrostatic
frequency = 1;
Periodic Boundary Conditions – wrap water = on, wrap all = on, wrap nearest = o�;
Particle Mesh Ewald – PME = yes, PME interpolation order = 6, PME grid spacing = 1.0;
Constant Pressure Control – use group pressure = yes, use �exible cell = no, use constant ratio = no,
langevin piston = on, langevin piston target = 1.01325, langevin piston period = 50.0, langevin piston
decay = 25.0, langevin piston temperature = 300 ◦K;
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Constant Temperature Control – langevin = on, langevin damping = 1.0, langevin temperature = 300
◦K, langevin hydrogen = o�; Run = (5,000,000 – 25,000,000 steps).
�e main Production step to produce a relaxed structure ran for between 10-50 ns, depending on how
long it took before it was qualitatively judged that the system in question had reached equilibrium.

Upon completion of the Production run, trajectories were imported into VMD v1.9.3 [85] (�eoret-
ical and Computational Biophysics Group at the Beckman Institute for Advanced Science and Technol-
ogy of the University of Illinois at Urbana-Champaign) and the RMSDs of each frame (as compared to
the �rst frame, backbone only) determined using the RMSD Trajectory Tool. Once it was qualitatively
judged that the RMSDs had plateaued o�, the system was considered to have reached equilibrium and
the average frame (as determined by the RMSD Trajectory Tool, backbone only) was extracted to be
used as the relaxed structure.

2.4.2 Protein-protein docking

Relaxed MD structures were used as the starting point for docking using the webserver version of
HADDOCK. �e Expert interface (https://milou.science.uu.nl/services/HADDOCK2.
2/haddockserver-expert.html) was used as it provided a balance between customizability
and ease of use.
Parameters selected for the docking procedures were as follows:
First Molecule – Structure De�nition: relaxed chain A of complex; Restraint De�nition: active residues
= all those residues identi�ed by HDX-MS to have a level of uptake decrease surpassing the 99 % CI,
passive residues = de�ne passive residues automatically around the active residues; Histidine Protona-
tion States = automatically guess histidine protonation states using molprobity; Semi-�exible Segments
= automatic.
Second Molecule – Structure De�nition: relaxed chain B of complex; Restraint De�nition: active residues
= all those residues identi�ed by HDX-MS to have a level of uptake decrease surpassing the 99 % CI,
passive residues = de�ne passive residues automatically around the active residues; Histidine Protona-
tion States = automatically guess histidine protonation states using molprobity; Semi-�exible Segments
= automatic.
Distance Restraints – radius (in Å) around active residues to automatically de�ne passive residues = 6.5,
remove non-polar hydrogens? = yes, randomly exclude a fraction of the ambiguous restraints (AIRs) =
yes, number of partitions for random exclusion (%excluded=100/number of partitions) = 2.0.
Sampling Parameters – number of structures for rigid body docking = varied between 1,000-5,000, num-
ber of trials for rigid body minimisation = 5, sample 180 degrees rotated solutions during rigid body
EM = yes, number of structures for semi-�exible re�nement = varied between 200-1,000, solvent to use
for the last iteration = water, number of structures for the explicit solvent re�nement = varied between
200-1,000, epsilon constant for the electrostatic energy term = 10.0.
Parameters for Clustering – clustering method = RMSD, RMSD cut o� = 7.5 Å, minimum cluster size = 4.

�e RMSDs of the resultant docking poses vs. the crystal structure was then determined using a
custom RMSD-calculating script based on the Kabsch algorithm method [86] that compared the atom-
to-atom RMSDs of each pose vs. the crystal structure, allowing an RMSD to be assigned to each pose.
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Given that the original crystal structures had undergone several processing steps in a variety of di�erent
programs in order to produce the docked complexes, the atom number and order no longer matched
up exactly with the crystal structure and so several steps were needed to achieve parity again. First,
the crystal structure and the top scoring docking pose were opened in UCSF Chimera [87] (Resource
for Biocomputing, Visualization and Informatics, University of California, USA) and the models spilt
into their respective individual chains. Next, the Matchmaker tool was used to align chain A of the
docking pose with chain A of the crystal structure and chain B of the docking pose with chain B of
the crystal structure. �is then created a pseudo-crystal structure out of the top scoring docking pose
with an almost identical fold to the crystal structure but with the atom ordering the same as the rest
of the docking poses. �e individual chains of the pseudo-crystal structure were then combined and
exported as a .pdb �le. Unfortunately, exporting .pdb �les from UCSF Chimera causes a number of
changes to the �le which would need to be corrected or else the RMSD-calculating script would not
work. �ese were accomplished using the tool PDBEditor (http://www.bioinformatics.
org/pdbeditor/wiki/) which enabled us to reset the atom numbering from 1. One �nal edit
that needed to be made was to delete any “TER” lines that had appeared as they contained duplicate
atom numberings to the preceding atom. With these edits made, the pseudo-crystal structure now had
the identical atom orderings and numberings as the rest of the docking poses. Poses with an RMSD
value of ≤ 2.5 Å were considered to be native.

2.5 Obtaining residue-resolved lnPs using HDXmodeller

Experimental RFU data obtained by HDX-MS was used to calculate residue-resolved lnPs using
HDXmodeller (https://hdxsite.nms.kcl.ac.uk/Modeller). First, we used the tool ”k-
intrinsic” (https://hdxsite.nms.kcl.ac.uk/kintrinsic) to calculate kint values for
each residue in the amino acid sequence of our proteins, using a temperature value of 293.15 K and
a pD value of 7.0. Next, we calculated residue-resolved lnP values using HDXmodeller. Experimental
RFUs determined by HDX-MS along with calculated kint values were used as input �les and ran us-
ing 50 replications, 1,000 iterations, an accuracy of 1e−6, a temperature of 293.15 K and a pD of 7.0
as input parameters. With residue-level lnPs calculated for all amino acids in the data set, we then
used the tool ”Occupier” (https://hdxsite.nms.kcl.ac.uk/Occupier) to calculate the
occupancy of all peptides within our experimental HDX data sets in order to identify likely weakly
constrained peptides. We then used this information to enable subsections within each data set to be
created by deleting certain weakly constrained peptides, therefore creating distinct boarders between
subsections of the proteins which had no bridging peptides and so no in�uence from other subsections.
�is information was combined with the residue-resolved lnPs to evaluate our con�dence in the lnPs’
accuracy using the tool ”R-evaluator” (https://hdxsite.nms.kcl.ac.uk/Revaluator)
to generate auto-validation R-matrix scores for the demarcated subsections as well as the protein as
a whole. To generate a score for individual subsections, the start and end residue numbers of that
subsection were used as input parameters.
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2.6 Using HDXsimulator to classify protein structures

2.6.1 Generating protein decoy sets

Two di�erent ab initio folding methods were used to generate decoys for use by HDXsimulator.
�e �rst was to use Rose�a’s Abinitio protein folding program and the second was to use 3DRobot. For
Rose�a, Robe�a’s Fragment Server (http://old.robetta.org/fragmentsubmit.jsp)
was �rst used in order to generate 3-mer and 9-mer fragment �les from the protein sequences. �ese
were then combined with the original FASTA �le and the native structure as input �les upon which
Rose�a’s Abinitio program was run. 1,000 structures were generated by Rose�a, each of which had an
RMS score comparing it to the original native structure. As this method of structure generation was
ab initio, there were few native structures present and so the proportion of native structures needed
to be enriched in order for HDXsimulator to work e�ectively. �is was achieved using Rose�a’s Relax
application which allows for all-atom re�nement of structures. �e Abinitio structure with the lowest
RMS score was selected and considered as the “pseudo-crystal” structure from this point onwards. �is
pseudo-crystal structure was run through Relax and 100 re�nements generated, each di�ering from the
pseudo-crystal structure by no more than 2 Å. �ese 100 structures were then ranked by using the same
custom RMSD-calculating script described previously. Because this script compared atom-to-atom, the
reference structure and the comparison structure had to have the exact same number of atoms in the
exact same order, hence the need for “pseudo-crystal” structures as the actual crystal structures di�ered
substantially in both respects and so would not work, even with substantial modi�cation. �e highest
20 structures by RMSD were selected for use as the native data set. �erefore, using these two methods,
1,000 mostly non-native and 20 native structures were generated.

In comparison to Rose�a, 3DRobot generates decoys from the input native structure itself. �e
web server version of 3DRobot (https://zhanglab.ccmb.med.umich.edu/3DRobot/)
was used to generate 1,000 decoys with an RMSD cut-o� of 20 Å. Again, the structure with the lowest
RMSD score compared to the native structure was considered the “pseudo-crystal” structure for the
rest of the pipeline. �e primary di�erence between the decoys sets generated by these two methods
is one of distribution: those generated by Rose�a have 20 near-native structures and then a large gap
between them and the non-native structures, whereas those decoy sets generated by 3DRobot have a
constant distribution between the pseudo-crystal and the least native structure. �ese decoys also had
their RMSDs vs. the pseudo-crystal structure determined as previously described.

2.6.2 Exploring the boundaries of modelling protein conformation using HDXsimulator

�e �rst implementation of the HDXsimulator pipeline was done mostly manually and, as we knew
the process of testing and producing data sets would require lots of repetition, we would need a certain
degree of automation. �erefore, in order to expedite the process of running multiple experiments in
quick succession, a pipeline process was developed on a local Linux workstation involving the use of
multiple Python programs and Bash scripts. �e pipeline is described in depth here and illustrated in
Figure 2.4. Select code is available in appendices. �e �rst step was to calculate the RMSD of each
decoy vs. the pseudo-crystal structure as described previously. Next, HDXsimulator was run on the
pseudo-crystal structure, generating lnP values for each residue except prolines and the N-terminal
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residue and RFU values for each peptide (as de�ned by an experimental peptide list). �e residue-level
pseudo-crystal lnP values were extracted and used as input for later programs. HDXsimulator was then
run on all the decoys in the data set with the exception of the pseudo-crystal structure with the data
stored for later use.

Next came the generation of synthetic lnP errors with which the e�cacy of the HDXsimulator
pipeline could be tested. �is was done by using HDXsimulator itself to generate erroneous lnPs from
the pseudo-crystal structure by varying the scaling factors βC and βH (Equation 1.10) to be di�erent
than the optimal values as determined by Best & Vendruscolo [30]. �ese scaling factors determined the
cut-o� distances for contacts and hydrogen bonds respectively to be considered for any given residue
with its neighbouring residues. We generated these erroneous data sets by assigning a range within
which the values of βC (default: 0.35) and βH (default: 2) could vary of 0.2-0.5 & 1-3 respectively and
then used a pseudo-random number generator to assign a value to use for each repetition of the calcu-
lation. With these new varying scaling factors, HDXsimulator was run on the pseudo-crystal structure
1,000 times in order to produce a full suite of lnP error �les for use in the pipeline. �is code is available
in Appendix F. A�er error generation, the RMSE as well as the R̂2 of each synthetic error lnP replicate
vs. the original pseudo-crystal lnP using default parameters was calculated and the values stored for
subsequent analysis.

Each synthetic error lnP replicate was then used to calculate a theoretical kobs value for each residue
using Equation 2.5:

kobs =
kint

exp(lnP )
(2.5)

Where kobs is the theoretical observed rate constant for each residue, kint is the intrinsic exchange
rate for each residue as calculated by the tool k-intrinsic and lnP is the protection factor for each
residue. �is code is available in Appendix G. �ese kobs values were then combined with the experi-
mental peptide list and kint values in order to calculate theoretical RFU values for each of the original
synthetic error lnP replicates. �is process was under the control of a Bash script which feeds each kobs
�le in turn into the RFU-calculating program before running it and saving the output.

A�er all RFU values have been calculated, the last step of the pipeline was to generate ROC curves
in order to calculate AUC values for each set of erroneous data, for both peptide-level RFU and residue-
level lnP. �is was accompanied by the automated construction of histograms & sca�er plots in order
to allow data analysis. �e histograms enabled the spread of AUC values produced by a dataset to be
visualised more easily, as well as the construction of sca�er plots comparing AUC values with both
RMSE and R̂2 values on both the RFU as well as lnP levels.

2.6.3 Classifying native structures using HDXsimulator

Appropriate elements of the aforementioned pipeline were reused in order to automate the acqui-
sition of experimental data as much as possible. All decoy sets used here were the same as those used
previously. RMSD values of the decoys vs. the pseudo-crystal structure were calculated as previously
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Figure 2.4: Steps involved in the exploration of HDXsimulator. Schematic diagram detailing
the various steps and calculations involved in the HDXsimulator exploration pipeline, as coded and
controlled by Python and Bash scripts. Orange hexagons represent input �les generated outside the
pipeline, blue trapeziums represent steps developed by others, green rectangles represent steps devel-
oped by the author, purple circles represent major outputs of various branches of the pipeline that go
on to serve as inputs for the �nal step, red star, the generation of ROC curves detailing the sensitivity
of HDXsimulator to error. Grey arrows detail the movement of the pipeline from one stage to the next.
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described and HDXsimulator was run on the decoy sets (using default parameters) in order to gen-
erate calculated lnP/RFU values for each residue/peptide of each decoy. �ese calculated values were
then compared against experimental lnP from HDXmodeller and experimental RFU from our HDX-MS
experiments in order to generate an RMSE metric on the residue/peptide-level for each decoy. �ese
RMSE values were compared against the decoy’s RMSD to generate a sca�er plot. ROC plots were then
generated based on these sca�er plots, assuming a native cut o� RMSD of≤ 2.5 Å, in order to evaluate
how e�ective RMSE was at correctly estimating native vs. non-native decoys. High AUC values indi-
cated that structures were able to be accurately classi�ed as either native or non-native. Conversely, low
AUC values indicated structures were not able to be accurately classi�ed as either native or non-native.

2.7 Experimental HDX-MS methods used for the dUTPase:Stl system

All dUTPase and Stl samples were obtained from the Vértessy group from the Budapest University
of Technology and Economics. Samples were received frozen in dry ice and transferred to a -70 ◦C
freezer for long term storage. Samples had the following stock concentrations: ϕ11 dUTPase (ϕ11DUT)
– 277 µM, human dUTPase (hDUT) – 882 µM, ϕNM1 dUTPase (ϕNM1DUT) – 241 µM, Stl – 33 µM. All
proteins were solubilised in a bu�er containing 20 mM HEPES, 300 mM NaCl, 5 mM MgCl2, pH 7.5.

2.7.1 HDX-MS experimental set up for dUTPase:Stl

Each interaction of one dUTPase with Stl was broken down into two separate experimental runs.
�e �rst was to collect bound and unbound data for the dUTPase being studied, the second was to collect
bound and unbound data for Stl. Each experimental run was set up identically, with un-deuterated
reference �les collected on a 1:1 mixture of the dUTPase and Stl in sextuplicate and 3 di�erent labelling
time points (1, 10 & 100 minutes) collected for both the bound and unbound protein states in triplicate.
Bound data sets were collected with the relative concentration ratios of 1.2:1 in favour of the protein not
currently being investigated. �is was to ensure that the protein under investigation was fully saturated
with substrate and so unbound species should be eliminated. Unbound data sets were collected on a 1:1
mixture of the protein currently being investigated and its bu�er in order to make the concentration
of the protein in the unbound data set approximately match that of the protein in the bound data
set. Acquisitions were run consecutively in blocks i.e. all 6 reference �les collected followed by all 3
unbound 1 minute �les etc.

2.7.2 HDX-MS experimental and analytical procedure for dUTPase:Stl

HDX-MS experiments were performed and analysed as described in chapter 2.2. Bu�er E contained
20 mM HEPES, 300 mM NaCl, 5 mM MgCl2, pH 7.5 in H2O, bu�er L contained 20 mM HEPES, 300 mM
NaCl, 5 mM MgCl2, pD 7.5 in D2O and the quench contained 2.4 % formic acid. Residues with mass
di�erence values greater than the 99 % CI threshold (95 % CI for the hDUT data set) were marked and
carried forward into the �nal analytical step: superimposing uptake di�erence data upon the three-
dimensional structures of the proteins in order to elucidate binding and allosteric information. Data
visualisation was achieved using the “De�ne A�ributes” tool in UCSF Chimera with residues showing
signi�cant negative uptake di�erence values assigned a colour gradient from green (less signi�cant) to
blue (more signi�cant). Signi�cant positive uptake di�erence values were assigned a colour gradient
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from orange (less signi�cant) to red (more signi�cant). Residues which showed no signi�cance were
represented as grey.
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3 Results of the investigation into the interaction of dUTPase with
Stl

In addition to utilising HDX-MS for the unorthodox purpose of determining protein structure, HDX-
MS was also used during the course of this PhD for the far more traditional goal of informing on the
location of a protein-ligand interaction in a biological system and so allowing inferences to be made
about the system through analysis of the data. �is system was the interaction of the proteinaceous
inhibitor Stl with dUTPases from various di�erent species and was a collaborative project between the
Borysik group and the Vértessy group from the Budapest University of Technology and Economics. In
the course of this project, we investigated two di�erent aspects of the interaction: that of hDUT with
Stl and the di�erences between trimeric and dimeric dUTPases from S. aureus with Stl. �e goal of this
work was, in the case of hDUT:Stl, to provide key novel structural insights that pave the way for further
applications of the �rst discovered potent proteinaceous inhibitor of hDUT, which acts as a survival
factor for tumour cells and is therefore a target for cancer chemotherapy. In the case of dimeric/trimeric
dUTPase:Stl, the goal was to characterise the interactions between these proteins based on a range of
biochemical and biophysical methods (particularly HDX) and shed light on the binding mechanism of
the dimeric ϕNM1DUT and Stl.

3.1 �e human dUTPase:Stl interaction

Our part in this collaborative e�ort to characterise the interaction of hDUT with Stl was to gather
evidence on the location of the interaction. Sequence coverage for both proteins a�er digestion was
high at 95.7 % & 94.0 % for hDUT and Stl respectively with an average peptide-per-amino acid redun-
dancy of>2 in both cases. Peptide-level di�erence plots show a clear negative mass shi� characteristic
of a binding interface in both proteins, with a sum maxima of approx. -2 Da in the case of hDUT and
approx. -14 Da in the case of Stl, localised to speci�c peptide regions. Woods plots were generated
from this peptide-level data in which the location and mass shi� of each peptide was presented on the
primary sequence of the protein in question, enabling insights at the residue level to be made. In the
case of hDUT, the largest negative ∆mass can be found in the region of H34-L50 with other signi�cant
∆mass seen in the region of the C-terminus. However, these C-terminal mass di�erences converge
more rapidly then those at the N-terminus, implying a weaker interaction. In addition, residues A89-
G110 also show modest negative ∆mass, suggesting a role in the interaction.

In the case of Stl, the di�erence plots show a very signi�cant negative ∆mass localised to a limited
number of peptides with more minor changes seen across the whole of the protein. Peptides 21-24
display the most signi�cant mass shi�s with a clear delineation on either side. When mapped out over
the amino acid sequence of Stl, these peptides correspond to residues Y98-Y113. In addition, minor
di�erences in isotope uptake can be seen in most other peptides, indicating that Stl may undergo a
global decrease in dynamics upon binding to hDUT. �ese results indicate that although binding in Stl
is localised to a very speci�c region, the interaction is propagated across the entire rest of the protein.
When these results are mapped onto the three-dimensional structures of hDUT and Stl, we can start to
visualise the interaction much more easily. All these results can be seen in Figure 3.1.

68



Figure 3.1: Representation of the hDUT:Stl HDX-MS results. (a & b) Sequence of hDUT and Stl
proteins respectively. Numbering starts at the �rst residue of the Uniprot sequences of the proteins
(Uniprot IDs: P33316-2 and Q9F0J8 respectively). Extension compared to Uniprot sequence is in italics.
Active site residues in case of hDUT and the DNA binding motif of Stl are boxed. Sequence is coloured
according to HDX data (∆mass accumulated across all labelling times) applying the colour-scheme
displayed in (g). (c–f) HDX-MS di�erence data (c & e) and associate Woods plots (d & f) for hDUT (c &
d) and Stl (e & f) showing the change in isotope uptake upon complexation of the proteins. Labelling
time points are indicated by di�erent colours and the dashed lines in (c) and (e) represent the 95 %
con�dence bands. (g) Representation of the HDX-MS di�erence data on the surface of the hDUT and
Stl. In case of hDUT, an apo state structure is shown (PDB ID: 1Q5U), the C-terminal 13 residues are
omi�ed from the representation since the position of these residues were not resolved in the crystal
structure presumably because of �exibility. Position of the substrate analogue is shown based on the
structural alignment of the apo and ligand-bound structures (3EHW). In case of Stl, a Phyre2 generated
model is shown, which was compatible with synchrotron radiation circular dichroism and mutagenesis
results obtained for the protein. Colouring is according to the scale at the bo�om of the panel. Figure
taken from [79].
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In the course of this research, HDX-MS experiments were conducted on the individual proteins of
hDUT and Stl as well as the two proteins mixed together. When combined with the other biophysical
data presented in [79], our experiments provided additional and conclusive evidence for the formation
of a complex between hDUT and Stl. Additionally, our data also reveals the location on each protein
where the interaction takes place, information which is unique to our technique. For hDUT, the most
signi�cant isotope uptake di�erences were found in those peptides covering residues H34-L50 as well
as A89-G110. �ese regions overlap with the �rst three of the �ve conserved motifs found within
trimeric dUTPases, providing evidence for how Stl can bind to and inhibit di�erent trimeric dUTPases
which share comparatively li�le sequence homology. �e C-terminal region of hDUT, which includes
the ��h conserved motif, also shows a signi�cant amount of deuterium uptake decrease upon com-
plexation, however �uctuations of the HDX rates indicate the interactions involving this segment are
weaker and more transient compared to those of other regions.

Trimeric dUTPases such as hDUT contain three distinct active sites for the hydrolysis of dUTP to
dUMP, built up from residues of the �ve conserved motifs from all three subunits arranged in a speci�c
pa�ern. Each singular active site is comprised of: motifs 1, 2 & 4 from one subunit along with motif 3
from another and the �exible motif 5 from the �nal subunit. Motifs 1, 2, 3 & 4 form the dUTP binding
pocket between their two respective subunits while motif 5 acts as a lid, closing o� the pocket upon
substrate binding and locking the conserved residues in a catalytically competent arrangement [88–90].
We have shown that four of the �ve conserved motifs in hDUT are involved in the interaction with Stl
which, in combination with the other biophysical data gathered by our collaborators, allows us to elu-
cidate a potential method of inhibition.

It had been shown previously [74,75] and recon�rmed in this study by the Vértessy group that the
binding of dUTP and Stl to hDUT are mutually exclusive i.e. one can bind only if the other is not already
present. A mechanistic model is therefore proposed in which Stl is only allowed to manoeuvre into the
substrate binding pocket of hDUT if access is not hindered by either dUTP or the closed conformation
of the �exible motif 5. �e complex of hDUT and Stl may be further stabilised by motif 5 which is con-
sistent with the decrease in ∆mass observed in this motif upon complex formation. However, a caveat
to this proposal is that, in accordance with our results, the stabilising e�ect is likely to be transient in
nature. �is proposal is supported by previously obtained results in which the Vértessy group found
that a ϕ11 dUTPase mutant which lacked motif 5 did not see Stl binding perturbed [74].

When considering Stl, the HDX-MS experiments conducted in this study show that by far the largest
amount of isotope uptake decrease occurred in the tyrosine-rich region from Y98-Y113 upon complexa-
tion to hDUT, indicating its involvement in the interaction. �is �nding is also consistent with previous
results obtained by the Vértessy group in which they found that the removal of an N-terminal segment
of Stl comprising residues 1-85 did not in�uence its ability to bind to and inhibit dUTPase [78]. We
postulate that the global decrease in deuterium uptake seen in almost all peptides across the entire Stl
sequence could be due to a decrease in �exibility that occurs upon complexation with hDUT. Previous
experiments by the Vértessy group as well of those of collaborators in this study have led to the the-
ory that the Stl dimer falls apart upon complexation with hDUT, however we see almost no positive
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∆mass shi�s in the Stl di�erence plot which would support this idea. �erefore we propose that the
answer to this paradox is that the dimer interface of Stl might overlap with the Stl:hDUT interaction
surface and hence any positive ∆mass signals are supressed due to the presence of hDUT in the same
location. �is idea was previously theorised by the Vértessy group [78] and is given more credence by
our data as well as a collaborator’s SEC-SAXS data which utilised our HDX-MS results as restraints.
SAXS is a technique with a variety of use cases such as enabling the low-resolution determination of
the size and shape of macromolecules such as proteins. It is o�en used in place of traditional x-ray
crystallography in situations where the protein under investigation cannot be crystallised, such as is
the case for hDUT:Stl. With our results as a guide, SEC-SAXS has produced a model of the hDUT:Stl
complex showing a stoichiometry of hDUT3Stl3 as well as hDUT3Stl2. A schematic model of hDUT:Stl
complex assembly and Stl-DNA interaction is therefore proposed ( [79] Figure 6 in paper) which ex-
plains the data this collaborative e�ort has gathered. It posits that while the complexation of hDUT
to its substrate dUTP prevents Stl binding and inhibition, the complexation of Stl to its substrate DNA
does not prevent hDUT binding, causing Stl dimer dissociation and the formation of hDUT3Stl3 as well
as hDUT3Stl2 complexes.

3.2 �e interaction of trimeric and dimeric dUTPases with Stl

Full results are detailed in Nyiri & Harris et al. 2019, which can be found in Appendix M. In this
paper, we explored the functional plasticity of Stl and revealed new details for a be�er understanding of
the di�erent binding mechanisms of Stl for the two di�erent classes of phage dUTPases. HDX-MS re-
sults point to the involvement of highly di�erent Stl interaction surfaces when paired with a trimeric or
a dimeric dUTPase. Based on these HDX results, as well as native MS results from previous studies, we
put forward a schematic model which a�empts to explain the mechanism of action of dUTPase inhibi-
tion by Stl, taking into account the di�erences between dUTPase classes. In this model (Scheme 1 in the
paper), Stl dimerizes in solution and binds to DNA. Upon interaction with with either dUTPase, dimer
dissociation (and therefore DNA binding dissociation) occurs and the Stl monomers instead bind to the
dUTPase. For the trimeric dUTPases, a DUT3Stl2 or DUT3Stl3 complex forms, whereas for the dimeric
dUTPases, the dUTPase dissociates as well and a DUT-Stl heterodimer forms. �is leads to competitive
inhibition of timeric dUTPases by Stl due to binding to the enzyme’s active site and non-competitive
inhibition of dimeric dUTPases by Stl due to perturbation of the enzyme’s active site. Experimental
HDX data acquisition and analysis as well as all related writings were done by the author.

3.3 Summary

In this chapter, we investigated the interaction of the proteinaceous inhibitor Stl with several di�er-
ent dUTPases in order to advance our understanding of this novel interaction. We speci�cally looked at
the binding of Stl with the timeric dUTPase hDUT in order to increase the breadth of our knowledge of
this potentially therapeutic interaction, as well as the binding of Stl with the timeric dUTPase ϕ11DUT
and the dimeric dUTPase ϕNM1DUT in order to try and be�er understand the functional plasticity of
Stl.

hDUT has been designated as a target for onco-therapies due to its role in maintaining genome
integrity via the removal of dUTP from the nucleotide pool, with several small molecule phase 1 trials
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in progress [80]. In this study, we described the discovery of Stl as a novel potent proteinaceous in-
hibitor of hDUT. �e hDUT:Stl interaction was characterised with a number of biophysical techniques,
including HDX-MS, and a structural model of the interaction was obtained based on this data. Our HDX
results were able to clearly delineate peptide segments around the hDUT active site that are involved
in binding to Stl and this data is in line with the observed inhibition of the dUTPase enzymatic function
and competition between Stl and dUTP for binding to dUTPase. Importantly, the entrance to the dUTP
accommodating β-hairpin (i.e. the conserved Motif 3) as well as the interaction surface for the β-γ
phosphate chain of the substrate (i.e. the conserved Motif 2) are both identi�ed in the study as involved
in Stl binding. Our evidence-based structural model o�ers insights into the mechanism of hDUT:Stl
complexation in general and, additionally, the delineation of the peptide segments of Stl involved in
interaction of hDUT, alluding to the possibility of development of peptide based inhibitors.

�e previously unreported functional plasticity of Stl was also investigated by HDX-MS, which re-
vealed details about the previously reported di�ering binding mechanisms of Stl for two di�erent phage
dUTPases [74, 76, 79], with HDX-MS experiments suggesting highly di�erent interaction surfaces be-
tween Stl and the dimeric ϕNM1DUT and trimeric ϕ11DUT dUTPases. �e study of this functional
plasticity is important because Staphylococcal phages encode dUTPase representatives from both the
trimeric and dimeric dUTPase families [74, 91] and so the investigation of Stl as a multi-purpose in-
hibitor has potential clinical relevance. Based on our HDX results, as well as native MS, a schematic
model is proposed to explain this phenomena. Stl dimerises in solution and binds to DNA as dimers.
Interaction of Stl monomers with dUTPases perturbs the dimerisation of the repressor, hence leading to
the dissociation of the Stl-DNA complex. Trimeric ϕ11DUT dUTPase can form DUT3Stl2 or DUT3Stl3
complexes with Stl, while for the dimeric ϕNM1DUT, the complex is a DUT-Stl heterodimer. Based on
our results, Stl binds directly to the active site of trimeric dUTPases and acts as a competitive inhibitor
while for dimeric dUTPases it is a non-competitive inhibitor.
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4 Results of experiments carried out for the purpose of optimisation

Numerous optimisation experiments were carried out over the course of this PhD in order to arrive
at the �nal protocols stated in the Methods chapter. �ose aspects of this work that required substantial
amounts of optimisation are detailed below. �e methods used for these optimisation experiments are
included here rather than in the Methods chapter in order to aid understanding due to this chapter
containing many small experiments, the details of which are necessary for understanding subsequent
experiments. �e aspects of the thesis which shall be covered in this chapter are: the experiments
undertaken to improve the yields of both barstar and barnase, as neither initial protocol produced
nearly enough for our needs. Optimising the hardware utilisation of our MD simulations in order to
maximise the e�ciency of their production. Improving native structure generation by protein-protein
docking by varying the program/parameters used as well as the input HDX restraints data. Finally the
exploration of the boundaries of modelling protein conformations using HDXsimulator in order to map
and analyse the programs capabilities.

4.1 Improving barstar yield

Initial yields of BspWT using the protocol supplied by the Ikura group were too low to conduct
meaningful experiments on. In order to remedy this, an extensive set of optimisation experiments were
conducted in order to improve yields both at the initial production stage as well as the puri�cation stage.
�e original protocol, as outlined by the Ikura group, can be found in Appendix H in order to allow a
frame of reference.

4.1.1 Initial plasmid development

�e impetus to start carrying out optimisation experiments on barstar came about due to our sud-
den inability to re-transform the DNA in our stocks into new competent cells. Despite nothing in
our protocols changing and the DNA itself being stored at -70 ◦C, this sudden impotence forced us
to seek an alternative source of barstar plasmid and thus prompted a more in-depth discussion about
how to improve yields. An alternative source of BspWT DNA that closely matched what we already
had was supplied by Addgene (Watertown, MA, USA) in the form of plasmid pMT643 (vector backbone:
pUC19), a barstar plasmid with a resistance to ampicillin originally deposited by the Hartley group, that
also contained the C40A & C82A mutations necessary for the elimination of disulphide bonds. Plas-
mid pMT643 was transformed into BL21(DE3)pLysS cells (Invitrogen, Inchinnan, UK) using the “E. coli
Competent Cells” protocol by Promega (Southampton, UK) (Appendix A) with the resultant reaction
spread on LB agar plates containing 50 µg/ml ampicillin & 34 µg/ml chloramphenicol and incubated
overnight at 37 ◦C. A single colony was inoculated into 10 ml LB containing 50 µg/ml ampicillin & 34
µg/ml chloramphenicol and incubated overnight at 37 ◦C with agitation at 220 rpm.

�e �rst parameter we decided to optimise was the induction time as the Ikura protocol merely
states “4 h-o/n”. 10 µl preculture was inoculated into each of 4x 200 ml 2xYT media containing 50
µg/ml ampicillin & 34 µg/ml chloramphenicol and incubated at 37 ◦C with agitation at 110 rpm until an
OD of 0.6 was reached, whereupon expression was induced with 1 mM IPTG. Induced test expression
cultures incubated for 4, 8, 19 and 24 hours at 37 ◦C with agitation at 110 rpm. A�er each induction time

74



had elapsed, the culture was removed from the incubator, centrifuged at 4,000 rpm for 10 minutes and
the pellets frozen at -70 ◦C until they could be analysed. SDS-PAGE gel analysis carried out as stated
in chapter 2.1.1. Results show similar levels of expression of BspWT between the 8, 19 and 24 hour
time points with the 4 hour time point trailing behind (Figure 4.1 A). �is result is important because it
indicates that BspWT is not degraded over time which was a potential reason why the induction time
as stated in the Ikura protocol was so variable, allowing us the convenience of an overnight induction.

Previous a�empts at puri�cation of BspWT with the original plasmid supplied by the Ikura group
were inconsistent and resulted in a low protein yield. In order to test whether the BspWT from this
new plasmid responded to the protocol any be�er, we carried out subsequent steps of cell lysis and
puri�cation as stated in Appendix H. Results indicated that initial ion exchange and subsequent SEC
failed to purify the limited quantity on BspWT present in the sample, with contamination with several
low yield proteins as well as a large amount of an unknown approx. 20 kDa protein (Figure 4.1 B).
�is unknown protein could in fact be a complex of barnase and barstar as the MW is approximately
correct, however if this were the case it would require numerous further steps to unfold and re-purify
the proteins individually and it was judged to not be worth the e�ort to a�empt given that it might
be a di�erent protein altogether. Regardless, it was clear that the problems with puri�cation had not
been solved by changing to the new Addgene plasmid and, as BspWT production was still quite low,
we decided to explore alternative options to try and solve both problems at the same time.

To do this, we contracted out with the company Gene Universal (Newark, Delaware, USA) to syn-
thesise the BspWT gene de novo and insert it into the pET-28a vector with a C-terminal His-tag and
kanamycin resistance instead of ampicillin. �e resultant construct featured the BspWT gene seam-
lessly inserted downstream of the T7 promotor, lac operator and a ribosome binding site to aid ex-
pression, with no additional N-terminal residues. �e gene then a�aches seamlessly to a C-terminal
6x His-tag with no linker in between and a stop codon immediately a�er. �is new BspWT construct
was transformed into BL21(DE3)pLysS cells as stated previously with the resultant reaction spread on
LB agar plates containing 50 µg/ml kanamycin & 34 µg/ml chloramphenicol and incubated overnight
at 37 ◦C. A single colony was inoculated into 10 ml LB containing 50 µg/ml kanamycin & 34 µg/ml
chloramphenicol and incubated overnight at 37 ◦C with agitation at 220 rpm. A test culture was set up
in order to test the expression levels of this new construct. 1.2 ml of the overnight culture was inocu-
lated into 200 ml 2xYT media and incubated at 37 ◦C with agitation at 110 rpm until an OD of 0.6 was
reached, whereupon expression was induced with 1 mM IPTG. �e expression culture was incubated
overnight at 37 ◦C with agitation at 110 rpm. Gel analysis was then performed as previously described.
�e results show that this BspWT construct has far higher levels of protein expression than either the
original construct or the Addgene construct using the same production conditions (Figure 4.1 C). �e
only problem was that the vast majority of the expressed protein is sequestered in inclusion bodies in
the insoluble fraction which required some additional processing steps in order to access.

4.1.2 Initial puri�cation tests

Inclusion body puri�cation involves unfolding the protein using a chaotropic agent such as GnHCl
in order to disrupt the aggregates, followed by refolding of the protein into its native conformation.
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Figure 4.1: Barstar optimisation gels. A set of SDS-PAGE gels documenting the barstar optimisation
process. �e ladder (L) was PageRuler Plus Prestained Protein Ladder; the MWs (in kDa) of the marker
proteins used are noted to the side. (A) 1 – 4 hour soluble, 2 – 4 hour insoluble, 3 – 8 hour soluble, 4 –
8 hour insoluble, 5 – 19 hour soluble, 6 – 19 hour insoluble, 7 – 24 hour soluble, 8 – 24 hour insoluble.
(B) 1 – fraction 26, 2 – fraction 31, 3 – fraction 37, 4 – fraction 40, 5 – fraction 42, 6 – fraction 48. (C) 1
– soluble, 2 – insoluble. (D) 1 – whole cell lysate, 2 – soluble fraction, 3 – solubilised inclusion bodies,
4 – crashed pellet. (E) 1 – puri�ed BspWT-His. (F) 1 – cleaved BspWT, 2 – fraction 5, 3 – fraction 6, 4
– fraction 7, 5 – fraction 8, 6 – fraction 9. (G) 1 – fraction 1, 2 – fraction 2, 3 – fraction 6, 4 – fraction
7, 5 – fraction 13, 6 – �ow through (un-cleaved).
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Refolding proteins correctly can be di�cult, however we knew that theoretically barstar refolds easily
from the literature as its initial interest to scientists was as a model system in folding studies. Cell pellet
from the previous test culture was resuspended in lysis bu�er containing 50 mM Tris HCl pH 8, 1 mM
PMSF, 1 mM EDTA, 1 mM DTT & 1 % v/v Triton x-100. �e solution was sonicated at 40 % amplitude
for 6 mins, 5 seconds on, 10 seconds o� to lyse the cells followed by centrifugation at 15,000 rpm for 20
mins at 4 ◦C. Resultant supernatant discarded and the pellet resuspended in more lysis bu�er followed
by another centrifugation at 15,000 rpm for 20 mins at 4 ◦C. Supernatant discarded and the pellet re-
suspended in the same lysis bu�er but without the Triton x-100 followed by another centrifugation at
15,000 rpm for 20 mins at 4 ◦C. Supernatant discarded and the remaining inclusion bodies resolubilised
in the same lysis bu�er but without Triton x-100 and with 6 M GnHCl. Sample le� mixing overnight
in a rotator at 4 ◦C. �e sample was centrifuged at 15,000 rpm for 20 mins at 4 ◦C and the supernatant
loaded into a 3.5 kDa MWCO Slide-A-Lyzer dialysis casse�e and dialysed vs. 100x volume of bu�er
containing 50 mM Tris HCl pH 8, 300 mM NaCl, 5 % v/v glycerol, 25 mM imidazole & 1 mM DTT in or-
der to refold the barstar by removing the chaotropic GnHCl. Dialysis bu�er was changed once. During
the second dialysis step, the sample in the casse�e was observed to have gone cloudy and it was clear
that the barstar had crashed out of solution when the concentration of GnHCl dropped low enough
for aggregation to re-occur. �e sample was extracted from the casse�e, centrifuged at 15,000 rpm
for 20 mins and samples of both the pellet and the supernatant taken for gel analysis. Results doubly
show that barstar production using this new prep is far greater than any other prep tried before and
also that the solubilisation of barstar aggregates is achieved using this method as can be seen by the
very prominent band in the soluble inclusion bodies fraction (Figure 4.1 D). However, there is clearly
a problem with refolding the protein a�er inclusion body solubilisation with 6 M GnHCl and this was
the problem we tackled next.

�e puri�cation column we intended to use in order to take advantage of the His-tag on this new
construct, a HisTrap HP, could tolerate 6 M GnHCl so it was decided to try and refold barstar on the
column instead of using a dialysis casse�e. �is method would also have the advantage of allowing
us to skip straight to puri�cation, avoiding lengthy dialysis steps. Puri�cation was carried out on an
ÄKTA Pure. �e pellet of the crashed protein was resolubilised in 4 ml equilibration bu�er (50 mM Tris
HCl pH 8, 300 mM NaCl, 25 mM imidazole & 6 M GnHCl) and loaded into a 5 ml loop. A 1 ml HisTrap
HP column was equilibrated with 5 CVs of equilibration bu�er and the solubilised sample washed over
it using more equilibration bu�er until the A280 nm baselined. �e His-tagged barstar immobilised
on the column was refolded by running a linear gradient of refolding bu�er (50 mM Tris HCl pH 8,
300 mM NaCl & 25 mM imidazole) over the column at 0.5 ml/min for 30 ml to gradually remove the
GnHCl. Pressure gauges on the ÄKTA Pure were closely monitored for signs of aggregation but no
particular increases were seen. Refolded barstar was eluted isocratically using 10 CVs of elution bu�er
(50 mM Tris HCl pH 8, 300 mM NaCl & 300 mM imidazole) at 1 ml/min with fractions collected in 2
ml increments. A large single peak at A280 nm seen at this time, indicating successful puri�cation.
�is was con�rmed by gel analysis which showed that a large yield of BspWT-His had been puri�ed
with a much lower amount of a single contaminating protein also present that was suspected to be
the barstar dimer (Figure 4.1 E). �e identity of this contaminating protein was investigated by Native
MS as described previously but proved inconclusive as no intense peaks could be found. �e barstar-
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containing fractions were dialysed vs. 100x volume 50 mM Tris HCl pH 8 in order to remove the high
salt concentrations found in the elution bu�er.

4.1.3 Final plasmid development

At this point, numerous HDX experiments were carried out on this puri�ed BspWT sample in com-
plex with BnWT. It was found that the results did not match up to a system that was fully bound and so
native MS experiments as well as native gel analysis were carried out in order to see whether binding
was fully occurring or not. We found that in fact a substantial amount of the complex sample was
dissociated into the individual monomers which indicated that something was disrupting binding. �is
was because, with a Kd in the order of femtomolar, at experimental concentrations in the order of mi-
comolar, full binding and no monomers should be seen. It was postulated that perhaps the un-cleaved
His-tag was disrupting the binding site and so we contracted out with Gene Universal again to produce
an identical version of the same BspWT plasmid with the exception of now having an N-terminal 6x
His-tag with a TEV cleavage site between it and the protein.

�is new BspWT plasmid was transformed and cultured using the same protocol as before, except
that agitation during the expression stage was increased to 220 rpm in order to try and increase cell
density. Gel analysis of a 200 ml test expression culture showed that on one hand this new plasmid
seemed to produce substantially less protein than the previous plasmid did, however on the other hand
the majority of the protein was now in the soluble fraction. It was suspected that the reason for the
la�er was because of the former. �is meant that, while our yields would be lower, the production
protocol would be simpler because we would not have to purify from inclusion bodies and this was
judged to be a worthy trade-o�.

Several improvements to the BspWT production protocol were made on the advice of the Booth
group in an e�ort to make the whole process more e�cient. �e pellet of the test expression culture
was resuspended in 50 ml PBS, 10 mM β-mercaptoethanol, 2 µl benzonase & 1 EDTA-free protease
inhibitor tablet and incubated at room temperature for 10 mins before the cells were lysed using a cell
disruptor at 25 kPsi for 2 cycles. �e whole cell lysate was clari�ed by centrifugation at 20,000 rpm for
30 mins at 4 ◦C and the resulting supernatant removed and concentrated down to approx. 15 ml using
3 kDa MWCO spin concentrators at 4,000 rpm. A 1 ml HisTrap HP column was equilibrated with 5 CVs
of equilibration bu�er (50 mM Tris HCl pH 8, 300 mM NaCl, 25 mM imidazole) and the concentrated
cell lysate spiked with 1125 µl 4 M NaCl & 400 µl 1 M imidazole in order to bring the concentrations of
both up to approx. the same as the equilibration bu�er. Cell lysate loaded into column via a 5 ml loop
(in 3 batches) with equilibration bu�er at 1 ml/min and then eluted using 10 CVs of elution bu�er (50
mM Tris HCl pH 8, 300 mM NaCl & 300 mM imidazole) over a linear gradient at 1 ml/min with fraction
sizes of 1 ml. A large peak at A280 nm was seen in fractions 4-10, corresponding to an imidazole
concentration of 120-300 mM. �ese fractions were combined and dialysed vs. 100x volume of 50 mM
Tris HCl pH 8 overnight at 4 ◦C using a 3 kDa MWCO Slide-A-Lyzer with gentle stirring.
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4.1.4 His-tag cleavage

�e goal now was to cleave o� the His-tag using TEV protease, an enzyme that recognises and
cleaves the sequence ENLYFQ/S where the “/” represents the cleaved peptide bond. AcTEV was ac-
quired from Invitrogen which has the advantage of containing a His tag itself, allowing for easy pu-
ri�cation a�er cleavage occurs (AcTEV and cleaved His tag will remain bound to the column whereas
barstar will now �ow straight through). �e reaction was set up according to Appendix E. Cleavage
reaction incubated at 16 ◦C for 20 hours. Reaction diluted with equilibration bu�er to a total volume
of 5 ml and loaded into a 5 ml loop before being washed over a 1 ml HisTrap HP column (equilibrated
with 5 CVs equilibration bu�er) with 10 ml equilibration bu�er. �e �ow through was collected as this
is the location of the cleaved BspWT protein. Proteins remaining on the column were eluted with a
linear gradient of elution bu�er for 10 CVs at 1 ml/min in 1 ml fractions. �e �ow though was dial-
ysed vs. 100x volume of 50 mM Tris HCl pH 8 overnight at 4 ◦C using a 3 kDa MWCO Slide-A-Lyzer
with gentle stirring. Gel analysis revealed the successful cleavage of BspWT, however with much less
e�ciency than hoped with the majority remaining un-cleaved (Figure 4.1 F). Additionally, puri�cation
had not been as successful as we had thought as a large number of contaminating proteins remained
in the cleaved barstar fraction.

Additional SEC puri�cation was carried out on the cleaved BspWT sample in order to clean it up.
�e sample was concentrated down to approx. 250 µl using a 3 kDa MWCO vivaspin concentrator
and loaded into a Superdex 75 10-300 GL SEC column pre-equilibrated with 2 CVs 50 mM Tris HCl
pH 8. Sample ran with 1.5 CVs 50 mM Tris HCl pH 8 at 1 ml/min with 1 ml fractions. Void volume
of the column was discarded and small A280 nm peaks seen in fractions 2, 7, 10, 15, 22 & 38. Gel
analysis indicates that the BspWT sample has been successfully puri�ed with the majority of the high
MW proteins visible in fraction 2 and the cleaved barstar in fraction 7. Several improvements to this
protocol were put into e�ect for subsequent a�empts:

• Resuspend the initial cell pellet in less PBS bu�er in order to make concentration faster

• Incubate protein in AcTEV at a higher temperature in order and with mixing to increase cleavage
e�ciency

• Use desalting columns in order to remove imidazole and so avoid extra dialysis.

�e barstar protocol was now optimised as far as we would take it and a �nal a�empt was made
using the protocol as described in chapter 2.1.2. Yield of cleaved protein was improved, however the
vast majority remained un-cleaved (Figure 4.1 G) and it was clear that a substantial amount of work
would be needed in order to boost yields to an acceptable level. Initial HDX tests on the small amount
of cleaved protein we had been able to produce indicated that the interaction between barnase and
barstar had been substantially improved by the new cleaved barstar and so we were sure this was the
protein we wanted to pursue. However, because running this protocol took almost the entire week,
there was very li�le time to be doing both HDX and protein production and so it was decided to con-
tract out barstar production to Ruth Rose of the Protein Production Facility at �een Mary University
of London while we focused on HDX of other systems. �e plasmid as well as the production and
puri�cation protocols we had developed up until this point would be used as a starting point for the
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Protein Production Facility to iterate upon until a large amount of cleaved barstar could be produced.

To summarise, we developed a new, modern plasmid to replace the outdated (and eventually ine�ec-
tive) original and, a�er several revisions, managed to successfully produce and purify protein using an
entirely new protocol. �e only problem that we le� un�nished was that of His-tag cleavage which had
proven to be far less e�cient than we had hoped and so, in order to remedy this issue, we commissioned
an outside source to help us �nish o� production using our developed protocols as a baseline.

4.2 Improving barnase yield

Initial yields of BnWT using the protocol supplied by the Ikura group were also too low to conduct
meaningful experiments on. In order to remedy this, an extensive set of optimisation experiments were
conducted in order to improve yields both at the initial production stage as well as the extraction and
puri�cation stages. �e original protocols, as outlined by the Ikura group, can be found in Appendix I
in order to allow a frame of reference.

4.2.1 Attempts to develop a new plasmid

Our �rst a�empt to boost BnWT yields took its cues from our successful experiments on barstar
where we had the gene synthesised in a modern, high-throughput plasmid. Like barstar, the plasmid
we received barnase in from our collaborator was extremely old and lacked many of the optimised
features that modern commercial plasmids contain. �erefore, we contracted with Gene Universal to
synthesise the BnWT gene (as well as the accompanying barstar gene for barnase inactivation) in the
pET-26b(+) containing a resistance gene for kanamycin, with a His-tag at the C-terminus. Desiccated
DNA was resuspended in 50 µl ddH2O and its concentration determined to be 300 ng/µl. A 50 ng/µl
solution was prepared by diluting 10 µl of the stock with 50 µl ddH2O. Diluted DNA transformed into
BL21(DE3)pLysS cells using the “E. coli Competent Cells” protocol by Promega (Appendix A) with the
resultant reaction spread on LB agar plates containing 50 µg/ml kanamycin & 34 µg/ml chlorampheni-
col and incubated overnight at 37 ◦C. A single colony was inoculated into 10 ml LB containing 50 µg/ml
kanamycin & 34 µg/ml chloramphenicol and incubated overnight at 37 ◦C with agitation at 220 rpm. 10
µl preculture inoculated into 10 ml 2xYT media containing 50 µg/ml kanamycin & 34 µg/ml chloram-
phenicol and incubated at 37 ◦C until an OD of 0.6 was reached, whereupon expression was induced
with 1 mM IPTG. A test expression culture was incubated overnight at 37 ◦C with agitation at 220 rpm.

550 µl acetic acid was then added to the test culture and le� mixing in a rotator at 4 ◦C for 20 mins
before being centrifuged at 13,000 rpm for 5 mins. Supernatant and pellet subsequently collected with
the pellet resuspended in 50 µl 50 mM Tris HCl pH 8 and then sonicated at 50 % amplitude for 2x2
second bursts. Lysed pellet samples were centrifuged at 13,000 rpm for 10 mins and the supernatant
and pellet collected. �e pellet was then resuspended in 100 µl 50 mM Tris HCl pH 8 + 4 % SDS and
centrifuged at 13,000 rpm for 10 mins. An SDS-PAGE gel was run using various samples from the above
procedures using the protocol described previously. Gel analysis revealed li�le visible production of
BnWT-His, theorised to be due to lack of barstar expression, leading to cell death. In order to test this,
another expression culture was set up as described previously but on a larger scale (100 ml) with OD
measurements taken every 30 mins for 7 hours post-inoculation of the starter culture. Aliquots for gel
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analysis were taken 1, 2, 4 & 20 hours post induction. Results indicated that cell death was not occurring
with steady growth seen throughout the experiment, capping out at and OD of approx. 6. Tellingly,
no lag phase is seen post-induction and the gel con�rms that that almost no production of BnWT-His
took place (Figure 4.2 A).

We decided to switch our bacterial cells from BL21(DE3)pLysS to BL21-AI which are speci�cally
designed for the expression of toxic proteins such as barnase. Transformation protocol is as previously
described with the exception of a heat shock of 30 seconds and the LB agar plates lacking chloram-
phenicol as BL21-AI has no inherent resistance to this antibiotic. A 100 ml test expression culture was
set up as before except for expression being induced with 1 mM IPTG + 0.1 % arabinose. OD mea-
surements were taken every 30 mins for 7 hours with additional measurements taken the next day.
Samples for gel analysis taken at 2, 4 & 20 hours post-induction. Results showed that in comparison
to BL21(DE3)pLysS, BL21-AI cells did in fact see a substantial amount of cell death starting at approx.
5.5 hours post induction. From a peak measurement of approx. 3, OD values very rapidly decreased
to a minimum of approx. 0.8 �ve hours a�er induction with only a slight recovery to approx. 1.2 a�er
22 hours post-induction. It was hoped that the cause of this cell death was the production of a large
amount of barnase, however SDS-PAGE gel analysis (Figure 4.2 B) indicated that to not be the case.
�is gel was extremely busy and so in order to be sure that no BnWT-His was produced; a Western blot
was carried out as follows:

An SDS-PAGE gel was run as previously described, however �xing stain was not added. Two
squares of triple-stacked �lter paper as well as the gel were soaked in transfer bu�er (25 mM Tris,
190 mM glycine, 10 % v/v MeOH & 1 mM SDS). A square of PVDF was cut to be the same size as the gel
and soaked brie�y in methanol before rinsing in dH2O and leaving to soak in transfer bu�er. A stack
consisting of �lter paper followed by PVDF followed by the gel followed by �lter paper was run on a
transfer blo�er at 45 mA for 1.5 hours. �e PVDF membrane was removed and soaked overnight in 20
ml of 5 % milk powder in PBS-T (0.05 % TWEEN 20) at 4 ◦C on a rocker. �e PVDF was rinsed thor-
oughly with PBS-T and before being soaked in 20 ml 5 % milk powder in PBS-T + 2 µl anti-His antibody
and le� on rocker for 1 hour. �e membrane was once again rinsed with PBS-T and then blo�ed with
horseradish peroxide before being imaged using chemiluminescence for 5 mins. �e resultant image
(Figure 4.2 C), while extremely unclear, does at least con�rm our suspicions that no BnWT-His was
produced as no strong bands are visible in any of the samples around the appropriate MW.

We believe this wholesale lack of barnase production to be due to the complex interaction between
the barnase and barstar genes that both need to be included in the plasmid due to barnase’s toxicity.
While the plasmid we made did include both genes and was made by a professional plasmid-designing
company, there was evidently some aspect of the original plasmid that we overlooked as our a�empts
resulted in cell death, no doubt due to uninhibited barnase production.

4.2.2 Production optimisation

With the failure of the BnWT-His construct to produce meaningful amounts of protein, our a�en-
tion once again turned to the original protocol supplied to us by the Ikura group and how it might be
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Figure 4.2: Barnase optimisation gels. A set of SDS-PAGE gels documenting the barnase optimi-
sation process. �e ladder (L) was PageRuler Plus Prestained Protein Ladder; the MWs (in kDa) of the
marker proteins used are noted to the side. (A) 1 – 1 hour soluble, 2 – 2 hour soluble, 3 – 4 hour soluble,
4 – 20 hour soluble, 5 – 1 hour insoluble, 6 – 2 hour insoluble, 7 – 4 hour insoluble, 8 – 20 hour insoluble.
(B) 1 – 2 hour soluble, 2 – 2 hour insoluble, 3 – 4 hour soluble, 4 – 4 hour insoluble, 5 – 20 hour soluble,
6 – 20 hour insoluble, 7 – 20 hour media. (C) 1 – 2 hour soluble, 2 – 2 hour insoluble, 3 – 4 hour soluble,
4 – 4 hour insoluble, 5 – 20 hour soluble, 6 – 20 hour insoluble, 7 – 20 hour media. (D) 1 – 30 ◦C 110
rpm soluble, 2 – 30 ◦C 110 rpm insoluble, 3 – 30 ◦C 110 rpm acetic acid, 4 – 30 ◦C 220 rpm soluble,
5 – 30 ◦C 220 rpm insoluble, 6 – 30 ◦C 220 rpm acetic acid, 7 – 37 ◦C 110 rpm soluble, 8 – 37 ◦C 110
rpm insoluble, 9 – 37 ◦C 110 rpm acetic acid, 10 – 37 ◦C 220 rpm soluble, 11 – 37 ◦C 220 rpm insoluble,
12 – 37 ◦C 220 rpm acetic acid. (E) 1 – 0 mM phosphate soluble, 2 – 0 mM phosphate insoluble, 3 –
0 mM phosphate supernatant, 4 – 0.01 mM phosphate soluble, 5 – 0.01 mM phosphate insoluble, 6 –
0.01 mM phosphate supernatant, 7 – 0.1 mM phosphate soluble, 8 – 0.1 mM phosphate insoluble, 9 –
0.1 mM phosphate supernatant, 10 – 1 mM phosphate soluble, 11 – 1 mM phosphate insoluble, 12 –
1 mM phosphate supernatant. (F) 1 – BL1-AI soluble, 2 – BL21-AI insoluble, 3 – BL21-AI media, 4 –
BL21-pLysS soluble, 5 – BL21-pLysS insoluble, 6 – BL21-pLysS media. (G) 1 – acetic acid (media), 2 –
acetic acid (pellet, supernatant), 3 – cold osmotic shock (pellet), 4 – chloroform (pellet). (H) 1 – Tris
HCl post acetic acid, 2 – Tris HCl post dialysis, 3 – Tris HCl fraction 5, 4 – Tris HCl fraction 6, 5 –
sodium acetate post acetic acid, 6 – sodium acetate post dialysis, 7 – sodium acetate fraction 5 , 8 –
sodium acetate fraction 6. (I) 1 – post acetic acid, 2 – fraction 8, 3 – fraction 9, 4 – fraction 10, 5 – �ow
through. (J) 1 – post dialysis, 2 – fraction 8, 3 – fraction 9, 4 – fraction 10, 5 – �ow through.
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improved. In the �rst stage of optimisation, we focused on adjusting the temperature and agitation
rate of the expression culture to maximise production as qualitatively judged by an SDS-PAGE gel. 600
µl preculture was inoculated into 100 ml ba�ed �asks of minimal phosphate media (Appendix C) +
50 µg/ml ampicillin, whereupon they were incubated overnight in 1 of 4 di�erent test conditions: 30
◦C, 110 rpm agitation (original stated conditions); 30 ◦C, 220 rpm agitation; 37 ◦C, 110 rpm agitation
& 37 ◦C, 220 rpm agitation. 15 ml of each culture was removed and 825 µl acetic acid added to release
barnase from the periplasm. Samples for gel analysis were taken at each stage and processed as stated
previously. �alitative results indicate that, perhaps unsurprisingly, the 37 ◦C & 220 rpm agitation
sample produced the most BnWT, followed by 37 ◦C, 110 rpm agitation then 30 ◦C, 220 rpm agitation
and �nally the original condition of 30 ◦C, 110 rpm agitation (Figure 4.2 D). From these results we can
see that temperature has a larger impact on production than agitation rate, presumably due to higher
cell growth.

�e next step was to vary the amount of phosphate contained within the minimal media to see if
it would in�uence the degree of BnWT expression (as the plasmid is under the control of the alkaline
phosphatase promotor). �is was done by varying the levels of Na2HPO4 & NaH2PO4 in the neutral
phosphate bu�er (Appendix C). �e original stated value of 0.1 mM phosphate (0.05 mM Na2HPO4 &
0.05 mM NaH2PO4) was tested as well as zero phosphate, 0.01 mM phosphate (0.0025 mM Na2HPO4 &
0.0025 mM NaH2PO4) and 1 mM phosphate (0.5 mM Na2HPO4 & 0.5 mM NaH2PO4). 600 µl preculture
inoculated into 100 ml minimal media + 50 µg/ml ampicillin and le� incubating overnight at 37 ◦C
with agitation at 220 rpm. 1 ml samples taken from each culture and treated with 55 µl acetic acid to
release the barnase. Samples for gel analysis were taken at each stage and processed as stated previ-
ously. �alitative results indicate that varying phosphate concentration seems to have li�le e�ect on
production of barnase until the concentration approaches 1 mM where production completely stops
(Figure 4.2 E). �is is probably due to there being too much phosphate to induce production via the
alkaline phosphatase promotor. Given that almost no noticeable di�erence could be seen in this gel, we
decided to stay with the original stated value of 0.1 mM phosphate throughout subsequent experiments.

A�er this we decided to test whether transforming the original BnWT plasmid into BL21-AI cells
would increase yields considering this cell line is specialised for toxic proteins. Transformation into
BL21-AI carried out as previously described. Two 100 ml expression cultures were set up, the �rst
containing BnWT plasmid in the original BL21(DE3)pLysS cells and the second containing the plas-
mid in BL21-AI cells. Both expression cultures were set up using the best conditions as optimised thus
far. A�er growth, samples from the cultures were taken and processed as previously described and
analysed via gel. �e gel showed that BnWT production was far higher in the BL21-AI cells, however
BL21(DE3)pLysS production did appear to be lower than it had been in previous experiments, although
this was possibly due to the gel imager auto-adjusting contrast against a much more intense band in the
BL21-AI lane (Figure 4.2 F). �erefore, we decided to switch over to BL21-AI cells as they certainly did
not decrease yields and had the potential to produce even more than the BL21(DE3)pLysS with further
optimisation.

With a new cell line established, we moved on to a�empting to optimise the release of the protein
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from the periplasm as previous results had suggested that not all protein produced made it into the
media following the osmotic shock protocol we had used thus far. �ree alternative techniques we
tested vs. the original: acetic acid on a pelleted and resuspended sample, cold osmotic shock using a
sucrose solution & chloroform extraction. Test expression cultures were set up as previously described.
A�er growth, 1 ml samples were taken from each of the 4 cultures in order to test the di�erent release
methods. One sample was treated as normal in order to serve as a baseline for comparison. For the
other sample treated with acetic acid, the culture was centrifuged at 13,000 rpm for 5 mins and the
supernatant discarded, a�er which the pellet was resuspended in 100 µl 50 mM Tris HCl pH 8 to which
5.5 µl acetic acid was added (proportionally the same amount as the larger sample). From this point on,
the sample was treated the same as the normal acetic acid sample. In order to test cold osmotic shock,
the culture was centrifuged as above and the pellet resuspended in 500 µl 20 % sucrose, 1 mm EDTA, 30
mM Tris HCl pH 8 and subjected to gentle mixing for 10 mins at room temperature. �e sample was
then centrifuged at 13,000 rpm for 10 mins at 4 ◦C and the supernatant discarded. �e pellet was then
rapidly resuspended in 500 µl ice cold dH2O and subjected to gentle mixing at 4 ◦C for 10 mins. Finally,
the sample was centrifuged at 13,000 rpm for 10 mins and the supernatant collected. Lastly, in order to
test chloroform release, a sample was pelleted as described previously, the supernatant discarded and
then the pellet resuspended in some residual supernatant. 10 µl chloroform was added and the cells
brie�y vortexed before being incubated at room temperature for 15 mins. 100 µl 10 mM Tris HCl pH 8
was added to the cells followed by centrifugation at 6,000 x g for 20 mins, a�er which the supernatant
was collected. All supernatant samples were �ltered through a 0.22 µm �lter and concentrated to a total
volume of 50 µl using a 5 kDa MWCO vivaspin at 15,000 x g. Samples were then run and analysed on
a gel as previously described.

Both the acetic acid samples showed similar high levels of expression with high purity, however the
samples treated with the sucrose solution as well as chloroform showed similar levels of protein release
but at the cost of much lower purity (Figure 4.2 G). �is is presumably because these two methods
actually lysed the cells despite only being intended to release protein from the periplasm. Interestingly,
for the �rst time we can see a band matching the MW of barstar in these two samples which has never
been visible before in any fraction of a barnase gel. �is experiment was important because it showed
that barnase yield could be maintained even if the expression culture was pelleted and resuspended,
against the guidance of the original protocol which called for acetic acid to be added directly to the
media. Up until now, barnase puri�cation had involved a very time-consuming step where the entire
expression culture was �ltered and run over an ion exchange column, a process which could take more
than a day if several litres of culture were involved. Now with this result in hand, we could cut the
amount of liquid requiring processing to a fraction of what it was before.

4.2.3 Puri�cation optimisation

With the optimisation of the production and release of BnWT brought to acceptable levels, our
a�ention turned to puri�cation. �is had always been a particularly weak part of the original protocol
with results varying substantially between batches both in terms of purity of sample as well as loca-
tion of sample (e.g. sometimes BnWT could be found within normal fractions but sometimes could be
found in �ow-through etc.). �e �rst stage of puri�cation tests involved testing two di�erent bu�ers:
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50 mM Tris HCl pH 8 and 50 mM sodium acetate pH 5. A 100 ml test expression culture was grown
using the optimised conditions as stated thus far and split in two a�er growth had concluded. A�er
centrifugation, the two pellets were resuspended, one with 5 ml 50 mM Tris HCl pH 8 and one with 5
ml 50 mM sodium acetate pH 5, to both of which was added 275 µl acetic acid. Samples were le� mixing
for 20 mins at 4 ◦C before being centrifuged at 4,000 rpm for 15 mins at 4 ◦C and the pellets discarded.
Samples were dialysed vs. 100x volume of 50 mM Tris HCl pH 8 or 50 mM sodium acetate respectively
using 3 kDa MWCO Side-A-Lyzer casse�es in order to remove the acetic acid and return the samples
to their bu�ered pH values. Dialysis occurred for 2 hours at 4 ◦C with gentle stirring with one round
being su�cient to increase the pH of the sodium acetate sample from 3.0 to 4.9, however the Tris HCl
samples required two rounds in order to bring its pH from 2.4 to 7.8.

Test puri�cations were carried out on an ÄKTA Pure using a 5 ml HiTrap SP HP cation column.
�e column was washed with 3 CVs dH2O followed by 3 CVs 0.5 M NaOH followed by 2 CVs 2 M
NaCl followed by 3 CVs 50 mM Tris HCl pH 8 or 50 mM sodium acetate pH 5 respectively. Samples
were �ltered with a 0.22 µm syringe �lter and loaded into a 5 ml loop before being washed over the
column with 3 CVs of the respective sample bu�er. For this �rst puri�cation test, samples were eluted
isocratically using 3 CVs 1 M NaCl in 50 mM Tris HCl pH 8 for the Tris HCl sample and 0.5 M NaCl
in 50 mM sodium acetate pH 5 for the sodium acetate sample with fraction sizes of 3 ml. Substantial
peaks at A280 nm were seen in fractions 5 + 6 in both samples and these fractions were analysed by
SDS-PAGE gel as previously described. �e gel showed that on one hand, BnWT is now seen in the
correct place (the fractions instead of the �ow-through), however it also shows that isocratic elution is
not su�cient to completely purify the samples (Figure 4.2 H). Fractions 5 + 6 of the Tris HCl sample
appeared to be slightly cleaner than the sodium acetate sample, therefore we decided to take the Tris
HCl method forward to further puri�cation trials using gradient elution.

Another test expression culture was set up and puri�cation carried out as stated previously, how-
ever instead of isocratic elution, a linear gradient of 0-1 M NaCl in 50 mM Tris HCl pH 8 at 1 ml/min
was used with 1 ml fraction sizes. Peaks at A280 nm were seen in fractions 8, 9 & 10, corresponding
to a NaCl concentration of 0.8-1 M. Gel analysis was carried out as stated previously and showed that
BnWT had indeed been puri�ed using gradient elution with strong bands matching BnWT in fractions
8, 9 & 10 with almost no contaminating bands visible (Figure 4.2 I). With the success of this optimisa-
tion, a 1 L expression culture was grown in order to make sure these procedures worked on upscaled
reagents. Procedure used is as stated in chapter 2.1.1. Gel analysis on these far more concentrated sam-
ples showed that some faint contaminating bands were now visible which were too low concentration
to be picked up by the previous gel, however it was determined that the concentration of these con-
taminants was so low compared to BnWT production as to not be worth further e�orts at puri�cation
(Figure 4.2 J).

With all these optimisations steps combined, the amount of BnWT that could be successfully pu-
ri�ed from a 1 L culture was approx. 3.08 mg/L, in comparison to approx. 0.5 mg/L using the original
protocol, a greater than 6-fold increase. In addition, changes to the pipeline protocols allowed for
much simpler and more consistent production and puri�cation, a bene�t unto its own. To summarise,
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we originally a�empted to ameliorate the yield problems we were having by replacing the original plas-
mid with one of more modern design, however these experiments proved unsuccessful. �erefore we
returned to and successfully optimised the conditions for the originally supplied plasmid, eventually
producing and purifying yields more than su�cient for our needs.

4.3 Improving Molecular Dynamics performance

MD simulations were performed using NAMD in order to relax the crystal structures of the pro-
teins so that their exact bound conformations did not in�uence subsequent docking simulations. MD is
famously a very computationally expensive technique and so a substantial amount of time was spent
optimising our simulations so they could be run as quickly as possible. �is was done primarily by com-
paring how quickly simulations would run on various di�erent CPU/GPU con�gurations and whether
it was more e�cient to devote resources to complete one simulation quickly or multiple simulations at
once but more slowly.

In order to properly benchmark each con�guration, a number of metrics were calculated. First, as
the size of the system heavily in�uences the time taken to run MD, the size of the simulation in terms
of the number of atoms was determined. Next, the time taken to run the simulation was established, as
reported by NAMD, and divided by the number of nanoseconds the simulation was run for in order to
determine the time taken to calculate 1 ns worth of trajectories (Equation 4.1):

T =
t/l

3.6× 103
(4.1)

Where T is the time per nanosecond in hours, t is the time taken to run the simulation in seconds
and l is the length of the simulation in nanoseconds. �e size of the simulation was then incorporated
into the calculation in order to determine the time per nanosecond per atom (Equation 4.2):

Ta =
T

s
· 3.6× 106 (4.2)

Where Ta is the time per nanosecond per atom in milliseconds and s is the size of the system in
atoms. Equation 4.2 helps us to benchmark how long it takes to run a given MD simulations regardless
of its size, however there is one more parameter we must take into account and that is the number of
simulations which can be run simultaneously on any given piece of computer hardware with a certain
amount of resources allocated to each simulation. �is is simply determined by dividing the result of
Equation 4.2 by the number of parallel simulations that can be run (Equation 4.3):

E =
Ta
p

(4.3)

WhereE is the e�ciency of the method in milliseconds and p is the number of parallel simulations
that can be run with a given resource allocation.

Our initial MD simulations were run on a local Linux workstation with 32 CPU cores available.
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NAMD is known to scale well with multiple CPU cores and so we wanted to test and see if it would be
more e�cient to run: 1 simulation with all 32 cores, 2 simulations in parallel each with 16 cores or 4
simulations in parallel each with 8 cores. �e e�ciency metric described earlier would help us evaluate
this by providing a score by which these three con�gurations could be judged, with the lower the score
the be�er. Additionally, the other metrics would allow us insight into how the size of the simulation
factored into this e�ciency score. Several simulations of varying size were run at each core count and
the data averaged to give a single �gure for each. Results (Figure 4.3) indicate that running all 32 cores
on one simulation is the least e�cient method with a value of 463 ms, while 16 cores on 2 simulations
and 8 cores on 4 simulations have similar e�ciency scores at an average of 308 & 299 ms respectively.
While NAMD is known for its scalability, this is not in evidence here, likely because our systems are
too small to fully take advantage of the extra cores and so compute power is going to waste. 16 and 8
cores had very similar e�ciency scores, indicating that our systems do scale at least up until 16 cores.
�is result also gave us �exibility in terms of whether we wanted to run 2 or 4 simulations depending
on if speed or throughput was our priority at that moment as li�le time would be lost regardless of
which method we used.

Simulations were run for a time using this set up, however there were a large number to do and we
knew that we would likely have to repeat many of them as new information emerged. �erefore, we
endeavoured to increase e�ciency even more by taking advantage of the King’s College London HPC
cluster Rosalind and the number of NVIDIA TESLA V100 GPUs they had installed. By making use of
these specialist data science GPUs, we were able to dramatically increase our e�ciency scores, with an
average of 35 ms being achieved over a large number of systems, despite the fact that due to university
limitations we could only use 1 GPU at a time (with 1 system running). �is massive e�ciency increase
of almost 10x clearly demonstrates the power of dedicated GPU acceleration over more traditional CPU
approaches and therefore all simulations were run in this way going forward.

4.4 Improving protein-protein docking

Optimisation experiments have so far been carried out on the BnWT:BspWT interaction in order
to increase the number of native poses (RMSD ≤ 2.5 Å from the crystal structure) generated. Initial
docking experiments conducted as part of a di�erent project had utilised local installs of PatchDock
and FibreDock and found them to be extremely user unfriendly; therefore the �rst thing we did was to
�nd an alternative docking program to use.

We �rst tried using a local install of Rose�aDock as the docking module features a constraint �ag
that we thought could be used to factor in our HDX data into the docking process. However, we soon
found that Rose�aDock is not optimised to run with a large amount of constraints and that above a
certain threshold number (well below the amount we needed) it would become unstable and error out.
We could have still used Rose�aDock for the un-constrained docking we planned to do alongside the
HDX-marked docking for comparison, however we decided that it would be be�er if these two di�er-
ent docking modes were done using the same program to allow the results they generated to be more
comparable.
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Figure 4.3: Optimisation of MD simulation e�ciency. Graph showing how the average e�ciency
of running MD simulations varies with di�erent hardware con�gurations; lower is be�er. CPU con�g-
urations run on a local Linux workstation, GPU con�guration run on an HPC cluster.
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�erefore, we needed to �nd a docking program that was explicitly set up with the use of con-
straints in mind. HADDOCK seemed the obvious choice here as the encoding of information from
identi�ed protein interfaces into AIRs is its main selling feature. HADDOCK also conveniently o�ers a
webserver-based version of its docking program which would simplify its use on our end immensely.
�erefore, with our new docking program selected, we turned to optimising the conditions under which
the program was run. �ere were 3 di�erent conditions we focused on during this phase: the CI cut o�
for the data that would be used to generate the AIRs, the number of structures that would be generated
during initial rigid body docking and lastly the number of those initial structures that would undergo
�exible re�nement and subsequent re�nement in explicit solvent.

Starting with the CI threshold, we varied using those residues surpassing the 99 %, 99.9 % & 99.95
% CI data in order to either broaden or narrow the number of residues that became AIRs, with the 99
% CI including most residues in the data set and 99.9 % CI and 99.95 % CI subsequently including only
those residues with the strongest uptake di�erence. All data sets were generated using 1,000 rigid body
structures with the top 200 by score selected for subsequent re�nement. Interestingly, we found an
inverse relationship between the strictness of the CI cut o� and the number of native poses generated.
Figure 4.4 A showed that the 99.95 % CI generated no native poses, with a large gap in RMSD between
two poses at 2.9 & 3.1 Å and the rest of the data set. �e 99.9 % CI (Figure 4.4 B) generated 1 native pose
with a distinct gap in RMSD between a more native-like cluster ending at 3.6 Å and the rest of the data
set. �e 99 % CI (Figure 4.4 C) performed by far the best with 6 native poses with a much smaller gap
in terms of RMSD between the more native-like cluster ending at 3.1 Å and the rest of the data set. We
believe that the reason for this inverse relationship between CI cut o� and number of native structures
is that the stricter cut o�s exclude certain residues that, despite having lower uptake, are nevertheless
important for the interaction and therefore HADDOCK is less able to correctly dock the proteins in the
correct orientation.

With a CI cut o� of 99 % se�led on, we next went about optimising the number of rigid body and
re�ned structures to be generated. All data sets so far had used a 1,000/200 split between these two
parameters, so our �rst a�empt involved increasing the number of structures that were re�ned from
only the top 200 to all 1,000. �is would enable us to test the e�cacy of HADDOCK’s score function by
seeing if any poses out of the top 200 were in fact native. Figure 4.4 D showed us that the score function
appears to be quite accurate as again, only 6 native poses are found. With increasing the number of
re�ned structures not generating any additional native poses, we moved on to increasing the number
of rigid body structures that are initially generated in order to increase the amount of sampling of the
conformation space of the complex. For this data set we used a 5,000/200 split and found that the actual
number of native poses generated went down (Figure 4.4 E) to only 3. �is shows that there is quite a
bit of variety in the poses that are generated by HADDOCK, even when using HDX data as AIRs and so
we may have to potentially run several replicates in order to get a true idea of the e�cacy of a certain
set of conditions.

Lastly, we a�empted to boost the number of native poses by going as high in terms of sampling as
was practical for a single data set with a 5,000/1,000 split (Figure 4.4 F). In this data set we saw our best
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Figure 4.4: HADDOCK docking optimisation. Plots showing the e�ect of various di�erent param-
eters on the ability of HADDOCK to successfully dock the BnWT:BspWT interaction. Dashed orange
lines show the 2.5 Å cut o� for a pose to be considered native. (A) AIRs constructed using all residues
exceeding the 99.95 % CI, 1,000 rigid body poses and 200 re�ned poses. (B) AIRs constructed using all
residues exceeding the 99.9 % CI, 1,000 rigid body poses and 200 re�ned poses. (C) AIRs constructed
using all residues exceeding the 99 % CI, 1,000 rigid body poses and 200 re�ned poses. (D) AIRs con-
structed using all residues exceeding the 99 % CI, 1,000 rigid body poses and 1,000 re�ned poses. (E)
AIRs constructed using all residues exceeding the 99 % CI, 5,000 rigid body poses and 200 re�ned poses.
(F) AIRs constructed using all residues exceeding the 99 % CI, 5,000 rigid body poses and 1,000 re�ned
poses.
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results yet with 10 native poses. It is perhaps not surprising that the number of native poses increased
with greater sampling, however why we saw this with the 5,000/1,000 split and not with the 5,000/200
split when previous results indicated that HADDOCK’s scoring function could accurately re�ect the top
rigid body poses is not fully understood. �e most likely explanation is simply that of the semi-random
nature of the docking, even with AIRs, and that were the data sets to be repeated we would likely get
slightly di�erent results. �e reason this was not done at this time was one of resource allocation: we
deemed it would be more bene�cial to start optimising and producing data sets for other interactions
rather than try and optimise BnWT:BspWT above what has already been presented. When looking
at the plots together, we can see a distinct double sigmoidal pa�ern emerging in most of the RMSD
distributions. �is indicates that, at least for this data set, HADDOCK has a preference for certain
RMSD ranges which may be the result of the AIRs used (e.g. we can see the �rst plateau around 5 Å
and the second plateau around 13 Å in the three data sets using the 99 % CI AIRs). It is likely that these
preferred ranges correspond to two stable conformers that are therefore more populated than other
less sterically favourable ones.

4.5 Exploring the boundaries of modelling protein conformation using HDXsimu-
lator

A large variety of di�erent methodologies were tested in order to map and analyse HDXsimula-
tor’s capabilities and limitations as to how it responded to lnP values that were arti�cially error-laden.
�is was done in order to determine the relationship between the deviation of the erroneous lnPs and
subsequent RFU values calculated for each decoy in a data set from their original values and the even-
tual AUC score assigned to that particular data set. Our goal in doing this was to help us improve
future versions of HDXsimulator by having a clear and logical understanding of the factors that in�u-
ence the relationship between AUC and the RMSE/R̂2 of the original reference compared to the error.
Our expectations were to see AUC values decrease as error between original and erroneous lnPs/RFUs
increased, as represented by an RMSE/R̂2 metric. �is would make sense as, if HDXsimulator was
calculating lnPs correctly, deviation from the originals should result in the ROC curves being less able
to accurately classify the structures the lnPs belong to as being native or not. Initially, we thought this
would be a relatively simple a�air, however we soon discovered that linking AUC to RMSE/R̂2 in the
manner we envisioned was not quite so straight forward.

4.5.1 Error generation through a Gaussian distribution

Our �rst method of error generation was to vary the true lnP values (as calculated by HDXsimu-
lator using optimised scaling factors from the pseudo-crystal structure) using a Gaussian distribution
around a certain level of standard deviation. �e standard deviations chosen were 1, 2, 3, 4, 5 & 6 and
three replicates at each standard deviation were calculated. �is code is available in Appendix J. �e
pipeline, as described in chapter 2.6.2, was run on 7 di�erent data sets: BnWT, BspWT, GFP, GFP-nb &
GFP-nbmin using Rose�a-generated decoys and BnWT & GFP using 3DRobot-generated decoys. We
found that lnP error generation using this method was not particularly e�ective in producing a wide
range of AUC values, with almost all standard deviations in the Rose�a data sets producing AUC val-
ues of approx. 1 on both the lnP and RFU levels despite a good distribution of R̂2 values from approx.
0.3-0.9 (Figure 4.5 A). AUC values for the two 3DRobot data sets were lower, however they also did
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not see any substantial variation with standard deviation, with all data points producing similar AUC
values regardless of R̂2 value on both the lnP and RFU levels (Figure 4.5 B).

If standard deviations of 1-6 were not su�cient to cause errors large enough to distinguish between
native and non-native conformations, our next step was to see if increasing those errors even further
might be. We therefore upped the standard deviations about which the error was calculated to include
6, 8, 10, 12, 14 & 16 and re-ran all of the previous data sets. While the frequency of AUC values sub-
stantially below 1 did increase using this method, particularly with the RFU-level data, there was no
discernible correlation between higher standard deviations (therefore lower R 2̂ scores) and lower AUC
on either the RFU or lnP level (Figure 4.5 C). �ose replicates that did display low AUC values appeared
to be almost random. It was postulated that a potential reason for this maybe that, because the value
of the errors are intrinsically related to the true values (as they are varied around them), the method
may retain a kind of “memory” of the true values and therefore be mostly unable to distinguish native
from non-native structures. �is idea was given more credence when, upon testing the method using
completely random values, we saw AUC values of approx. 0.5, exactly what we would expect (data not
shown).

4.5.2 Error generation through shu�ling

In order to test this theory, we decided to use a di�erent method of error generation, one that would
not retain as much “memory” of the true values. In this method, rather than changing the values them-
selves, we instead shu�ed the true values within certain limits. �is system was set up much like the
Gaussian error generation, except instead of standard deviations determining the severity of the error,
it was the number of places within which the value could be shu�ed. E.g. equivalent to a standard
deviation of 1, using this new methodology a value could be shu�ed up or down the list of lnPs by 1
position, equivalent to bestowing the lnP of a residue upon its neighbour. �is would lead to �les where
the true values were almost in the correct position but not quite. On the other end of the spectrum, a
value could be shu�ed up to 12 positions from its original place, leading to �les with values that were
in very di�erent places from the original. �is code is available in Appendix K.

To evaluate this method, we tested two data sets, shu�ing 1-6 positions as well as 2-12 positions (in
2 position increments) on the BspWT Rose�a data set. In addition to R̂2, we also started measuring
the RMSE of the error values vs. the true values for all subsequent data sets, in order to see if any
di�erences between these two popular methods could be determined. �e 1-6 position shu�e data set
was the �rst to see AUC values substantially below 1 and correlated to decreasing R̂2 (and increasing
RMSE), but only for data on the lnP-level. A line of best �t showed a general decrease in AUC as the
degree of shu�ing increased on the lnP-level with AUC values decreasing to approx. 0.85 in those
�les that had been shu�ed 6 times (Figure 4.5 D). Data on the RFU-level showed almost no changes at
all with increasing error. Interestingly, the 2-12 position shu�e data set (Figure 4.5 E), while showing
similar performance in terms RFU/lnP-level data, did not show this same trend despite even greater
amounts of deviation from the original. Because the maximum values for R̂2 and RMSE were very
similar between both these data sets despite one being shu�ed to a far greater extent than the other, it
was clear that once a certain amount of shu�ing had occurred (e.g. approx. 6 places), the data set was
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Figure 4.5: Exploring the capabilities of HDXsimulator part 1. Representative sca�er plots
demonstrating the e�ect of di�erent methods of lnP error generation on the ability of HDXsimula-
tor to di�erentiate between native and non-native structures. Each data point represents the average
value of 3 replicates, with error bars to show the standard deviation for both AUC and R̂ 2/RMSE values.
�e orange line represents the line of best �t. (A) E�ect of errors generated by a Gaussian distribution
about the true values with standard deviations of 1-6 on a decoy set generated by Rose�a. (B) E�ect
of errors generated by a Gaussian distribution about the true values with standard deviations of 1-6 on
a decoy set generated by 3DRobot. (C) E�ect of errors generated by a Gaussian distribution about the
true values with standard deviations of 6, 8, 10, 12, 14 & 16. (D) E�ect of errors generated by shu�ing
the true values 1-6 positions from their original locations. (E) E�ect of errors generated by shu�ing
the true values 2, 4, 6, 8, 10 & 12 positions from their original locations.
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already as di�erent from the original as it could get and further shu�ing did nothing, mathematically
speaking. We therefore concluded that the di�erences between the data sets came down to the random
chance of the shu�ing and that in order for us to perceive trends, we would need to increase our sample
size substantially.

We decided to make 2 changes in order to try and achieve this. �e �rst was to switch from semi-
random shu�ing within a range to completely random shu�ing in order to enable the full distribution
of possible errors. �is was done in conjunction with the second change which was to increase the
number of replicates we generated. Previous data sets included only 18 data points (3 replicates of 6
di�erent standard deviations/shu�ing), whereas now each data set would include 1,000 data points.
It was thought that these modi�cations would enable us to sample the full spectrum of possible lnP
errors and so allow a greater range of AUC values to be generated. Results indicated that this had been
achieved as for the �rst time we saw not only a considerable amount of AUC values substantially below
1, but also a correlation between AUC and both R̂2 and RMSE, but only on the lnP-level (Figure 4.6 A).
RFU data displayed some values considerably below 1 but no correlation between AUC and R̂2/RMSE.
�e histogram showed that on the lnP scale, while the majority of the AUC results remain high (approx.
650 are above 0.8), the rest tend towards 0.5, indicating that for these error �les HDXsimulator was not
able to distinguish native from non-native structures reliably, a �rst for this methodology. Furthermore,
in the sca�er plot, we also for the �rst time saw a correlation between the AUC value calculated for
each lnP error �le and its divergence from the true lnP values, as measured by both R̂2 and RMSE.

Now that we had had some success with error generation, we decided to try and increase the res-
olution of the data we were generating for each protein data set. �is would take a form similar to
how higher resolution data was produced by HDXmodeller by spli�ing the protein data set into dif-
ferent domains and running the pipeline on those domains individually rather than the protein as a
whole. �is was done because we wanted to have a be�er understanding of what parts contributed
towards producing a superior data set and which parts contributed to producing an inferior data set.
�erefore, we modi�ed the code of the pipeline to consider only residues within a certain range when
calculating both AUC and R̂2/RMSE e.g. residues 1-20 or 20-30 instead of the whole protein. Data
sets were then generated as before with each being focused on only one domain of the protein under
investigation, resulting in a much higher resolution view. In the case of BspWT Rose�a, we split the
protein up into 10 amino acid domains, from 1-10, 11-20 etc. and the results con�rmed that di�erent
domains of the protein did indeed react di�erently to the pipeline with termini seeing relatively li�le
variance in AUC values (Figure 4.6 B) and the central domains showing high variance (Figure 4.6 C).
Interestingly, whereas in previous data sets both R̂2 and RMSE metrics showed correlation to AUC
on the lnP level, for these domain data sets R̂2 was seemingly unable to di�erentiate between AUC
values. However, this is likely because a few results have very low R̂2 values (-2.5 and lower), which
is pulling the graphs to the le� and causing the data points to appear to not have correlation. �is can
be seen by comparing the x axis scales for the R̂2 values in Figure 4.6 B & 4.6 C.
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Figure 4.6: Exploring the capabilities of HDXsimulator part 2. Representative histograms and
sca�er plots demonstrating the e�ect of di�erent methods of lnP error generation on the ability of
HDXsimulator to di�erentiate between native and non-native structures. (A) E�ect of errors generated
by random shu�ing of the true values. (B) E�ect of errors generated by random shu�ing of the true
values. Data shown for a terminal region of the BspWT Rose�a data set. (C) E�ect of errors generated
by random shu�ing of the true values. Data shown for a central region of the BspWT Rose�a data
set. (D) E�ect of errors generated by varying the βC & βH scaling factors within HDXsimulator to
produce “incorrect” data sets.
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4.5.3 Error generation through HDXsimulator

We next decided to try and improve the degree of correlation seen between the AUC and R 2̂/RMSE
values. In all data sets thus far, while some correlation was present, there was still a wide range of po-
tential R 2̂/RMSE values that could give rise to any particular AUC value and we wanted to narrow this
as much as possible. In order to accomplish this, we a�empted a very di�erent form of error generation
than anything we had tried before. Instead of using HDXsimulator to generate a “true” lnP data set and
then a�empt to introduce errors into it, instead we modi�ed two scaling factors within HDXsimulator
and then used the program itself to generate “incorrect” data sets for comparison against data generated
using the default parameters determined by Best & Vendruscolo [30] to be optimal. �is was done as
stated in chapter 2.6.2. Using this methodology, we could �nally see a much stronger correlation on the
lnP-level between AUC and both R̂2 and RMSE with much less variation at any given value then had
been seen before (Figure 4.6 D). An odd trend we noticed however was the tendency for RMSE values
to have a “plateau” or “hook” at AUC values close to 1 that remained entirely separate from the rest of
the trend. Fortunately, the R̂2 values do not exhibit this character to nearly the same degree and so
we leaned towards using R̂2 as the metric of choice in the future.

Of all the error generation methods we tried, only using HDXsimulator itself produced the kind
of strong correlation between AUC and R̂2 that we were looking for. We believe that this method
of error generation succeeded where the others failed because it inherently altered the actual method
of lnP calculation whereas the others simply modi�ed true values that had already been calculated.
To explain, the two scaling factors within HDXsimulator we varied to introduce synthetic error into
the lnP values calculated for any given residue were βC , the distance in Å that contacts with other
residues were considered, and βH , the distance in Å that hydrogen bonds with other residues were
considered. By varying these values away from the defaults that Best & Vendruscolo calculated to be
optimal, we produced errors that nevertheless fundamentally considered the tertiary structure of the
decoy from which they were produced. As the tertiary structure of the protein is primarily responsible
for determining any given residues lnP, the errors we produced using this method can be considered an
authentic depiction of the decoy’s lnPs, only calculated using a suboptimal expression. �erefore it is
not surprising that such a method would be able to show a strong correlation between the AUC value
and R̂2 whereas other methods of error generation, which had no regard for the tertiary structure of
the decoys, could not.

To summarise, we intended to determine the relationship between the deviation of erroneous lnPs/-
subsequent RFU values and the eventual AUC score calculated for a particular data set, with our goal
being to chart HDXsimulator’s capabilities and limitations to enable us to improve future versions of
the program. We expected to quickly see a relationship between increasing RMSE/R̂2 and decreasing
AUC, however observing this relationship proved more challenging than originally anticipated. Our
initial plan was to use Gaussian error to vary the true lnP values, however we quickly found that no
ma�er how much error we introduced, the method retained a “memory” of the true values and would
still be able to distinguish between native and non-native structures. If judged by these results alone,
it would indicate that the lnPs generated by HDXsimulator were irrelevant to the overall success of
the method which couldn’t be true. Hence, we set about an extensive optimisation program in order
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to try and �nd a method of error generation that would show a di�erence in outcome based on the
disparity of the lnPs from the true values. A�er much trial and error, we found that optimal method for
error generation was using HDXsimulator itself utilising suboptimal scaling factors which produced
the correlated AUC and R̂2 values that we were looking for. �e results presented here tell us that the
relationship between AUC and RMSE/R̂2 is much more complicated than we had initially believed,
with hidden factors challenging our understanding of the boundaries of modelling protein conforma-
tion using HDXsimulator. With a suitable method for correlating AUC and error thus determined, we
proceeded with one �nal test to see how this method of error generation a�ected AUC on the subdo-
main level. �is work is detailed in chapter 5.6.

4.6 Summary

Over the course of this thesis, numerous di�erent aspects of the project required extensive optimi-
sation in order to bring them up to a standard that could report meaningful data. �ose aspects, detailed
above were: improving the yields of barstar and barnase, benchmarking MD simulation performance
on di�erent types of hardware, improving native structure output of protein-protein docking simula-
tions and �nally exploring the boundaries of modelling protein conformation using HDXsimulator.

Barstar and barnase were important for this project because the large amount of literature data
available for their interaction (and that of mutants) enabled us to gather two sets of data using the
same production/HDX protocols, thereby saving time. Unfortunately, neither of these proteins are
commercially available, necessitating their production and puri�cation in-house. While at one time
very popular to study [92–97], these two proteins have since fallen by the wayside of academic inter-
est and hence what protocols exist are optimised for production methods of many years ago. When
a�empting to replicate the protocol of the Ikura group (complete with gi�ed plasmids), we found it
impossible to produce comparable yields to what the protocol claimed. Hence we had to conduct ex-
tensive optimisation experiments in the case of barnase and outright abandon the provided plasmid in
favour of another in the case of barstar in order to produce enough protein for our needs.

�e optimisation steps carried out for barnase that led to an increase in yield included: increasing
the incubation temperature to 37 ◦C and agitation rate to 220 rpm, re-transforming the original plasmid
into BL21-AI cells (specialised for toxic proteins), pelleting the culture and treating with acetic acid in
order to release the protein from the periplasm and �nally puri�cation using a linear gradient of 0-1 M
NaCl in 50 mM Tris HCl pH 8 over a 5 ml HiTrap SP HP cation column. �ese optimisations increased
our yields from 0.5 mg/L to 3.08 mg/L, a 6-fold increase.

For barstar, the optimisation steps carried out that led to an increase in yield included: de novo

synthesis of the barstar gene and insertion into a pET-28a vector with a N-terimal cleavable His-tag,
increasing incubation temperature to 37 ◦C and agitation to 220 rpm, cell lysis by cell disruptor and
puri�cation using a linear gradient of 50mM Tris HCl pH 8, 300 mM NaCl & 300 mM imidazole. Our
a�empts to produce our own barstar ended with the optimisation of the cleavage of the His-tag using
TEV protease, in which we made good progress but not enough produce signi�cant amounts of cleaved
protein in the time we had remaining. �erefore we commissioned the protein production facility at
�een Mary’s University of London to �nish optimisation/production of cleaved barstar using the pro-
tocol we had developed thus far as a basis.
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Numerous MD simulations needed to be run during this thesis in order to relax bound PPI structures
for subsequent docking. �erefore we decided to optimise our hardware usage in order to maximise
the e�ciency of production in terms of simulation time per nanosecond per atom and so produce the
required simulations as quickly as possible. We found that, given the hardware we had access to, the
most e�cient means of production was to run simulations one by one using a NVIDIA TESLA V100
GPU. �is produced an E�ciency (Equation. 4.3) of 35 ms per nanosecond per atom, which was almost
10x greater then the E�ciencies of using various di�erent CPU con�gurations.

For the docking itself, optimisations were carried out in order to enrich the number of native poses
(RMSD ≤ 2.5 Å) generated by the simulations. Being able to produce a certain percentage of native
poses (approx. 2 % of total) was a requirement as otherwise we would not be able to identify whether
the method could correctly classify poses as being native or not. Initial a�empts were made to use
Rose�aDock, however we found that its constraints �ag feature was not suited for use with the large
number of constraints identi�ed using HDX and so we moved on to a program more suited for use with
constraints: HADDOCK. We found our best results using this program came when we used a CI cut o�
for the HDX data incorporated into the AIRs of 99 %, initial rigid body sampling of 5,000 poses and sub-
sequent �exible re�nement of the top scoring 1,000 structures. Using these parameters we were able to
generate 10 native structures out of those 1,000 re�ned poses, a rate of 1 %. Clearly more optimisations
will be required however this is a good start.

Finally, we explored the boundaries of modelling protein conformation using HDXsimulator. �is
was done to map and analyse how HDXsimulator responded to lnP values that were arti�cially error-
laden, in order to determine the relationship between the deviation of the erroneous lnPs and subse-
quent RFU and eventual AUC values calculated for each decoy. Our goal in doing this was to help us
improve future versions of HDXsimulator by having a clear and logical understanding of the factors
that in�uence the relationship between AUC and the RMSE/R̂2 of the original reference compared
to the error. We a�empted a number of di�erent methods in order to see the expected link between
RMSE/R̂2 and AUC:

�e �rst was varying the lnPs about a Gaussian distribution within de�ned standard deviation cut
o�s. �is method did not produce a meaningful decrease in AUC regardless of the amount of error
introduced (measured by R̂2 compared to the original values), counter to our expectations, especially
as when the experiment was repeated with completely random values the AUC was approx. 0.5 as
expected.

Next we tried not modifying the values themselves but instead shu�ing the true values randomly
a set number of places from their original location. �is produced the �rst correlated decrease between
RMSE/R̂2 and AUC with those lnPs shu�ed 6 places showing eventual AUC scores of 0.85. A further
change was implemented to this shu�ing methodology by changing to completely random shu�es (i.e.
no place limit) but also upping the sampling substantially from 18 repeats to 1,000. �is was done in
order to sample the full spectrum of possible lnP errors and so allow a greater range of AUC values to
be generated. �is change had a substantial e�ect on our results with for the �rst time the generation of
a large amount of AUC results below 0.8. It was also at this time that we modi�ed our code to be able to
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calculate values for individual protein subsections as opposed to just the whole protein as before. �is
technique allowed us to increase the resolution of our results, allowing for more detailed inferences.

Finally, we a�empted to improve the correlation between the RMSE/R̂2 and AUC values by over-
hauling our error generation methodology completely by switching to errors generated by HDXsim-
ulator itself rather than by post-processing its data. �is was accomplished by modifying two scaling
factors used by HDXsimulator from values previously found to be optimal, so that the results calculated
deviated while still fundamentally taking into account the tertiary structure of the decoy from which
they were produced. �is method produced the strongest correlation between RMSE/R̂2 and AUC of
all those tested, with much less variation at any given value then had been seen before. �erefore this
was the method of error generation that was brought forward into the next stage of the thesis.
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5 Results of experiments performed to enable the classi�cation of
protein structures

In this chapter, we will be examining the results of those aspects of the thesis which directly relate
to our stated goal of ascertaining HDXsimulator’s ability to classify protein structures as either native
or non-native. Our aim is to show how these results build upon each other in order to build up to a �nal
metric allowing us to quantify our technique’s ability. We shall cover: the yields of barnase and the
native MS validation experiments undertaken to demonstrate the character of this recombinant protein
and the complex between it and barnase. �e HDX-MS experiments conducted on all the binary PPIs
investigated in this work and how their results are a valid representation of their interaction together
for the purpose of bringing the data forward for use by our method. How we used the newly developed
HDXmodeller tool to model residue-resolved lnP values for each interaction, enabling us to compare
modelled lnPs with lnPs calculated from structures. �e relaxed outputs of the MD simulations that
will be used in future work to extend the methodology presented in this thesis on single proteins to
that of binary PPIs. �e docked protein-protein structures that take the relaxed MD structures as input
and provide the eventual native structures against which decoy structures will be compared when this
methodology is later extended. �e results of our investigation into the boundaries of modelling protein
conformation using HDXsimulator and �nally the results of our inquiry into HDXsimulator’s ability to
distinguish between native and non-native structures, the primary goal of this thesis.

5.1 Production of barnase and validation of barnase and barstar

�e improvements detailed in chapter 4.2 lead to an increase in BnWT yield to 3.08 mg/L culture.
BnH102A was also produced using the exact same procedure as the WT protein and had a yield of 34.2
mg/L culture.

Native MS experiments were carried out as described in chapter 2.3 in order to check for the correct
mass and therefore con�rm the identity of the proteins we produced, as well as the formation of the
complex. For BnWT (theoretical mass: 12,383 Da), intense peaks were seen in the native spectrum at
1,769.84 & 2,064.64 m/z, corresponding to an experimentally determined mass of 12,384 ± 0.55 Da. For
BnH102A (theoretical mass: 12,317 Da), intense peaks were seen in the native spectrum at 1,760.4 &
2,053.63 m/z, corresponding to an experimentally determined mass of 12,323.45 ± 5.44 Da (Figure 5.1
A). For the BnWT:BspWT complex (theoretical mass: 22,587 Da), intense peaks were seen in the native
spectrum at 2,510 & 2,824 m/z, corresponding to an experimentally determined mass of 22,587 ± 0.02
Da (Figure 5.1 B). �e identity and binding of proteins not produced during this study were con�rmed
during the course of HDX-MS experiments.

With these experiments, we demonstrated the ability of barnase and barstar to fully bind to each
other using native MS. �is was in contrast to previous experiments on di�erent constructs which in-
dicated incomplete binding. Both barnases and the barnase:barstar complex were found to have exper-
imental MWs that were almost identical to their theoretical MWs and complex displayed very intensive
binding peaks with li�le visible unbound protein remaining. At this stage we considered the protein
production stage of the project to have been completed successfully and could �nally move on to the
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Figure 5.1: Native MS spectra of barnase and the barnase:barstar complex. (A) Native spectra
for BnWT (dark blue) and BnH102A (light blue) displaying their experimental masses. Charge states
annotated next to relevant peaks. (B) Native spectra for the BnWT:BspWT complex displaying con-
stituent peaks for BnWT:BspWT (green triangle), BnWT (purple pentagon) and BspWT (yellow star).
Experimental masses and charge states are annotated.
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collection of novel data.

5.2 HDX-MS experiments on binary PPI protein complexes

�e HDX-MS experiments we carried out over the course of this thesis were a means to an end
rather than the end goal itself. All of the systems we used were, necessarily, already well characterised
with extensive empirical data including crystal structures and therefore the point of us conducting these
experiments was not to develop any new insight into the proteins or their binding interactions. Rather
our HDX data was used in order to provide an experimental “reality” that the calculated data produced
by HDXsimulator could be compared against in order to judge the veracity of the technique. �erefore,
while our experimental data did not need to o�er new insight, it did need to portray an accurate picture
of the individual proteins and their interactions as understood by the scienti�c community that study
them. If this standard was not met then any conclusions we drew about HDXsimulator, our main goal,
would be inherently �awed. In analysing our HDX data, our primary concern was therefore comparison
to the zeitgeist of the protein/system in general as well as our own knowledge of HDX outputs and how
they correspond to each other. Statistics relating to the analysis of each individual protein in DynamX
are available in Table 5.1.

5.2.1 �e BnWT : BspWT interaction

5.2.1.1 BnWT

In DynamX, BnWT displayed extremely high levels of digestion and data quality was extremely
good across the majority of the peptides with only a few that made it through the �ltering process
needing to be excluded from the �nal data set. On the peptide level (Figure 5.2 A) we could see that the
�rst 7 N-terminal residues displayed high levels of RFU, characteristic of termini which are typically
unprotected, however residues F7-Y13 saw a substantial drop in RFU which we a�ributed to being part
of an α-helix and therefore having increased protection. Peptides including residues L14-L42 show
behaviour typical of a well-protected region with the RFU values well spread out from the short to
the long time points and li�le variation in values across the whole region. Peptides including residues
A43-W94 display behaviour that is by comparison much more indicative of a less protected domain,
with a much narrower spread of RFU values from the short to the long time points. Peptides includ-
ing residues L95-K108 interestingly displayed the spread out RFU values characteristic of a protected
region despite being a terminus found on the outside of the structure.

�e exceptional coverage and redundancy with data quality to match of this data set lead us to be
extremely con�dent that our results were accurate. �is data set showed no symptoms of any unfolding
and, when corrected for back exchange, most of the peptides displayed a good spread of RFU values
with li�le overlapping at di�erent time points. However, even when corrected for back exchange, we
did not see RFU values approaching 1 in the majority of peptides, despite this being a relatively small
protein with li�le internal volume and our longest time point being 8 hours. �is was a common ob-
servance that we saw in the majority of the data sets collected for this thesis and did seem to have
a correlation with protein size (i.e. larger proteins having lower average corrected RFU). �erefore,
our explanation is that 8 hours was probably not su�cient in order to fully saturate the protein due
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Peptides Coverage (%) Redundancy BEX avg. (RFU) Back exchange (RFU)

BnWT 98 99.1 12.58 0.6 0.4
BnH102A 95 100 13.62 0.55 0.45
BspWT 49 88.6 7.26 0.65 0.35
BsY29F 47 90.9 6.67 0.6 0.4

GFP 151 94.9 8.77 0.45 0.55
GFP-nb 47 97.6 5.12 0.6 0.4

GFP-nbmin 57 99.3 6.53 0.6 0.4

Table 5.1: Statistics of protein data sets a�er analysis in DynamX. Table displaying various statis-
tics related to the 7 individual protein data sets a�er the completion of analysis in the program DynamX.
”Peptides” describes the total number of peptides in the whole data set, ”Coverage” describes the per-
centage of the amino acid sequence covered by those peptides, ”Redundancy” describes the average
number of peptides covering each amino acid, ”BEX avg.” describes the approximate average RFU of
the back exchange control across all the peptides & ”Back exchange” is derived from 1 minus the BEX
avg. and describes the approximate amount of RFU lost to back exchange across all peptides.
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Figure 5.2: RFU of individual proteins a�er HDX analysis. Plots describing how the degree of
deuterium uptake in individual peptides of a protein changes over varying deuteration times. RFU
values shown for proteins in the unbound state with results corrected for extraneous exchange. (A)
BnWT, (B) BnH102A, (C) BspWT, (D) BsY29F, (E) GFP, (F) GFP-nb, (G) GFP-nbmin. Deuteration times
displayed in the legend.
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to protection and that had a longer time point been used we would have likely seen saturation in the
majority of peptides. �e reason this was not done at the time is one of practicality; each experimental
run already took around 40 hours to complete assuming no machine faults (which were common) and
so the idea of having more and longer time points did not make practical sense.

From the perspective of BnWT, the interaction with BspWT brought about very signi�cant changes
across most of the protein (Figure 5.3 A). Woods plots revealed that the N-terminal region between
residues A1-D12 was the only region to see no di�erence at all between the states. �en starting from
residue Y13, the sum di�erence between the bound and unbound states began to increase to a local
maxima of -7.27 Da around residue G40 before seeing a slight drop o� to -4.89 Da around residue
V45. From here, the sum uptake di�erence again began to increase to a maximum value of -11.23
Da and, staying put near this value until in between residues N58-D75. Uptake di�erence then fell
back sharply to below -2 Da in the region around residues N84-D93 before seeing another equally
sharp rise to between -6 to -10 Da at the C-terminus. From these results we can see that binding to
BspWT causes very signi�cant di�erences across almost the entire length of the BnWT protein, though
especially concentrated in the central domain and the C-terminus. Due to the very high amount of
uptake di�erence, two di�erent signi�cance thresholds were calculated as described in chapter 2.2.1 in
order assess the interaction. For the 99 % CI, a value of 1.74 Da was found which included almost every
residue in the protein. �erefore in addition, the 99.9 % CI was also calculated and a value of 5.55 Da
was found which eliminated all but the central and C-terminal domains.

5.2.1.2 BspWT

In DynamX, BspWT displayed good levels of digestion and data quality was fairly good across most
of the peptides, however with a large number needing to be excluded from the �nal data set. On the
peptide level (Figure 5.2 C) we could see that up until approx. residue E52, BspWT displayed a wide
spread of RFU values which then became suddenly narrower approx. between residues E52-L71 be-
fore spreading out again. �is region of low RFU variance had been an issue in earlier HDX tests on
the barstar construct with an un-cleaved N-terminal His-tag. In those experiments, we noted that the
peptides in this domain had unusually high RFU values even at low time points and that the di�erence
between values at 15 seconds and 8 hours was virtually non-existent. �is type of behaviour is charac-
teristic of an unstructured random coil and was part of the reason we decided to abandon the original
barstar construct in favour of the current cleaved version. While the current cleaved construct does
display elements of this previous behaviour, it is to a much lesser degree as in this data set there is a
clear distinction between the RFU values of the various time points, despite them being close together.
We therefore decided that it was unlikely this region was unfolded and so this construct was acceptable
to use.

From the perspective of BspWT, the interaction with BnWT again saw very signi�cant changes
across most of the protein (Figure 5.3 C). No coverage was available for the �rst 7 residues and Woods
plots showed only a comparatively small amount of uptake di�erence was seen in the remainder of
the N-terminal residues from E8-D15 of around -2 Da. A�er this point however, BspWT sees a sudden
increase in uptake di�erence in the region from Q18-L34 with an average value of approx. -9 Da and
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Figure 5.3: ∆mass of individual proteins upon complexation with their binding partner.
Woods plots describing how the mass of individual residues of proteins changes when in the presence of
their binding partner in a binary PPI. Results are shown on the peptide level (experimental data, blue)
where every bar is a discrete peptide, and on the residue level (calculated data, orange) where each
data point is the average value of every peptide that covers that residue. (A) BnWT (BnWT:BspWT),
(B) BnH102A (BnH102A:BsY29F), (C) BspWT (BnWT:BspWT), (D) BsY29F (BnH102A:BsY29F), (E) GFP
(GFP:GFP-nb), (F)GFP (GFP:GFP-nbmin), (G)GFP-nb (GFP:GFP-nb), (H)GFP-nbmin (GFP:GFP-nbmin).
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a maximum of -11.92 Da seen in residue N33. Uptake di�erence then falls to sharply to an average of
approx. -4 Da in the region of residues D35-L71 before rising again in the C-terminal region of residues
Q72-T85 to an average of approx. -8 Da. Like with BnWT, these results show that binding causes highly
signi�cant di�erences across almost the entire protein though especially concentrated in the region of
Q18-L34 and the C-terminus. Like for BnWT, because the uptake di�erence values were so high, two
di�erent signi�cance thresholds were calculated as described in chapter 2.2.1 in order assess the inter-
action. For the 99 % CI, a value of 1.71 Da was found which included every residue in the protein for
which we had data for. �erefore in addition, the 99.9 % CI was also calculated and a value of 5.43 Da
was found which eliminated the N-terminus and the central domain.

BspWT was one of only two data sets (the other being BsY29F) which saw deuterium saturation
in the corrected RFU plots. �is makes sense considering it is the smallest protein we investigated in
this study at only 89 residues and therefore would have the least overall protection. While the data
in terms of redundancy and quality was not as strong as barnase, we nevertheless consider this to
be a perfectly viable data set, especially when compared to some of the problems we had faced with
barstar prior to acquiring it. As described previously, the original barstar construct with an un-cleaved
C-teriminal His-tag that we collected HDX data for displayed unusual RFU values around the region
of V50-V70 that were consistent with that region of the protein being unfolded. In these data sets,
peptides covering these residues had RFU vales that were very high and very close together at all time
points which is characteristic of a random coil and not a folded protein. However no other region of the
protein displayed this behaviour and circular dichroism analysis (data not shown) also indicated that
the protein was folded correctly. On the basis of these results we were prepared to let this inconsistency
slide, however upon running this barstar construct with barnase, we started to see problems indicative
of a lack of binding between the two in certain data sets. Considering the barnase-barstar interaction
is one of the strongest ever discovered (including most of the mutant interactions) [61], we knew that
something must be wrong and so we endeavoured to replace the original construct with the cleaved
N-terminal His-tag construct used in the �nal data sets. �ese data sets do not see the same problems
around V50-V70 that the previous construct did (they are still quite high but the time points are more
spread out) and upon complexation with barnase, the interactions were completely rescued, indicating
that something had indeed been wrong with the previous construct which had now been �xed. Whether
this problem was indeed a ma�er of unfolding or potentially something to do with the His-tag blocking
the interaction interface (unlikely considering the tag was on the reverse face of the protein from the
interface and should not have been able to get in the way) is unknown but regardless the issue has been
�xed and so we were con�dent that the BspWT data set would be useable for computational analysis
with HDXsimulator.

5.2.1.3 Visualisation of the interaction

Deuterium uptake di�erences exceeding the 99 % CI cut o� for both proteins were mapped onto the
structures of the proteins in their bound conformation (Figure 5.4 A). Data visualisation was achieved
using the “De�ne A�ributes” tool in UCSF Chimera with residues showing signi�cant negative uptake
di�erence values assigned a colour gradient from green (less signi�cant) to blue (more signi�cant).
Signi�cant positive uptake di�erence values (if any) were assigned a colour gradient from orange (less
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signi�cant) to red (more signi�cant). Residues which showed no signi�cance were represented as grey
and those for which there was no coverage were represented in white. �ese results broadly match up
with the crystal structure of the complex within the scope of peptide-resolution data, with those sur-
faces close to the interface between the proteins displaying higher levels of uptake di�erence whereas
those surfaces on the opposite side of the proteins from the interaction showing comparatively much
reduced uptake di�erence. Due to the small size of the proteins involved (especially barstar), it is not
surprising to see signi�cant levels of di�erence in areas not directly associated with the partner protein
as it is common for di�erences to propagate to nearby areas. Based on these results and of the individ-
ual RFU plots, we propose that the HDX data collected for these proteins is a legitimate representation
of the individual proteins and the complex as a whole and therefore is appropriate to take forward into
the computational stages of this project.

5.2.2 �e BnH102A : BsY29F interaction

5.2.2.1 BnH102A

In DynamX, BnH102A displayed excellent levels of digestion and data quality was very good across
the majority of the peptides with only a small number needing to be excluded from the �nal data set.
On the peptide level (Figure 5.2 B) we could see, unsurprisingly, a very similar picture to that painted
for BnWT, including over the peptides covering the A102 mutated residue.

Like with the WT barnase, for BnH102A we had exceptional coverage and redundancy with data
quality to match, leading us to be extremely con�dent that our results are accurate. �is data set also
showed no symptoms of any unfolding and, when corrected for back exchange, most of the peptides
displayed a good spread of RFU values with li�le overlapping at di�erent time points. Likewise, even
when corrected for back exchange, we did not see RFU values approaching 1 in the majority of peptides.

From the perspective of BnH102A, the interaction with BsY29F displayed signi�cant deuterium
uptake di�erence across most of the protein (Figure 5.3 B). Woods plots revealed within this data set 3
distinct regions that could be demarcated from each other. �e �rst could be found between residues
Q15-A46 with an average uptake di�erence of approx. -6 Da and a maximum uptake di�erence of -8.63
Da. �e second domain was between residues P47-S91 with an average uptake di�erence of approx. -6
Da and a maximum di�erence of -8.93 Da. �e �nal region was found between residues S92-T107 with
an average uptake di�erence of approx. -3.5 Da and a maximum uptake di�erence of -5.89 Da. Like
for the previous data set, because the uptake di�erence values were so high, two di�erent signi�cance
thresholds were calculated as described previously in order assess the interaction. For the 99 % CI,
a value of 1.74 Da was found which included almost every residue in the protein except for the N-
terminus and 3 residues near the C-terminus. �erefore in addition, the 99.9 % CI was also calculated
and a value of 5.54 Da was found which eliminated most of the residues at the termini.

5.2.2.2 BsY29F

In DynamX, BsY29F displayed good levels of digestion and data quality was fairly good across most
of the peptides, however with a large number needing to be excluded from the �nal data set. On the
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Figure 5.4: Barnase & barstar HDX-MS data mapped onto structures. Uptake di�erence data
surpassing the 99 % CI of the BnWT:BspWT and BnH102A:BsY29F interactions assigned to a colour
spectrum and mapped onto their respective three-dimensional structures. �e di�erence values rep-
resented by the colour gradient are assigned relative to the highest value in each individual protein’s
data set, hence colours are not necessarily comparable between structures. (A) �e BnWT:BspWT in-
teraction from the front (le�) and the top (right). (B) �e BnH102A:BsY29F interaction from the front
(le�) and the top (right).
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peptide level (Figure 5.2 D) we could see that again this mutant showed very similar levels of uptake as
the pWT protein did, including over the F29 mutated residue.

From the perspective of BsY29F, the interaction with BnH102A displayed signi�cant uptake di�er-
ence across the entire surface of the protein for which we had data for (Figure 5.3 D). Demarcating
di�erent regions was di�cult for this data set, however Woods plots suggested 3 potential separate do-
mains. �e �rst could be found between residues N6-D15 with an average uptake di�erence of approx.
-3 Da and a maximum uptake di�erence of -3.76 Da. �e second domain was between residues L16-W53
with an average uptake di�erence of approx. -3.5 Da and a maximum di�erence of -4.87 Da. �e �nal
region was found between residues E68-T85 with an average uptake di�erence of approx. -5 Da and a
maximum uptake di�erence of -7.37 Da. Like for the previous data set, because the uptake di�erence
values were so high, two di�erent signi�cance thresholds were calculated as described previously in
order assess the interaction. For the 99 % CI, a value of 1.46 Da was found which included every residue
in the protein which we had data for. �erefore in addition, the 99.9 % CI was also calculated and a
value of 4.66 Da was found which eliminated all but two regions in the centre and at the C-terminus.

BsY29F was the only other data set (along with BspWT) which saw deuterium saturation in the
corrected RFU plots. �is makes sense considering it is the smallest protein we investigated in this
study at only 89 residues and therefore would have the least overall protection. While the data in
terms of redundancy and quality was not as strong as barnase, we nevertheless consider this to be a
perfectly viable data set, especially when compared to some of the problems we had faced with barstar
prior to acquiring it. Like for BspWT, initial constructs of BsY29F displayed symptoms of unfolding,
however like with the new construct of BspWT, this new version of BsY29F does not see the same
problems around V50-V70 that the previous construct did. Likewise, upon complexation with barnase,
the interactions were completely rescued, indicating that something had indeed been wrong with the
previous construct which had now been �xed.

5.2.2.3 Visualisation of the interaction

Deuterium uptake di�erences exceeding the 99 % CI cut o� for both proteins were mapped onto
the structures of the proteins in their bound conformation (Figure 5.4 B) as described previously. �ese
results had a similar distribution to the WT:pWT interaction in terms of regions of signi�cance and
regions of insigni�cance. In terms of BnH102A, we do not see any changes around the H102A region
compared to the BnWT data set as a result of the interaction with BsY29F, however signi�cant di�er-
ences can be seen around residues Y24-A43 which do show comparatively more uptake di�erence in
this data set compared to BnWT. In terms of BsY29F, we did in fact see a change compared to BspWT
around the Y29F region, with these residues having substantially reduced uptake di�erence whereas
most of the other regions stayed largely the same. Like with the WT-pWT data set, it is di�cult to make
detailed inferences due to the small size of the proteins combined with the large surface area covered
by the interaction interface. However based on these results and the individual RFU plots, we propose
that the HDX data collected for these proteins is a legitimate representation of the individual proteins
and the complex as a whole and therefore is appropriate to take forward into the computational stages
of this project.
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5.2.3 �e GFP : GFP-nb interaction

5.2.3.1 GFP

In DynamX, GFP displayed good levels of digestion and data quality was very good across most of
the peptides with only a relatively small number needing to be excluded from the �nal data set. �e
BEX was surprisingly inconsistent, with considerable variation seen as well as a very low average RFU
across all peptides. On the peptide level (Figure 5.2 E) we could see that, similar to the BEX, RFU values
were quite variable and in general very low with a maximum value across the whole data set of <
0.45. Generally speaking, the N-terminal half of the protein displays a lower maximum RFU with time
points being more condensed together in comparison to the C-terminal half of the protein which shows
a slightly higher maximum RFU and an expanded set of time points.

From the perspective of GFP, the interaction with GFP-nb saw strong, localised uptake di�erences
in a number of domains (Figure 5.3 E). Woods plots revealed that the N-terminal region of the protein
showed no signi�cant uptake di�erences until residues in the range of V55-F71 which saw a compar-
atively small uptake di�erence of between approx. -2 to -3 Da. �e next area of the protein to see a
signi�cant uptake di�erence were residues between K131-A154 which displayed an average of approx.
-4.5 Da with a maximum of -5.4 Da. �is region was followed by a brief dip down to lower di�erence
values which then increased very sharply between residues K166-L178 to see the largest values in the
data set with an average of approx. -6.5 Da and a maximum of -8.46 Da. Only one more region showing
any signi�cance was found in the protein between residues L195-L207 with an average of -1.5 Da and
a maximum of -2 Da. Due to the far more localised nature of this data set when compared to barnase
and barstar, only the 99 % CI was calculated and a value of 1.82 Da was determined which included the
4 prominent regions outlined above.

5.2.3.2 GFP-nb

In DynamX, GFP-nb displayed acceptable levels of digestion and data quality was moderate across
most of the peptides with quite a large number needing to be excluded from the �nal data set. On the
peptide level (Figure 5.2 F) we could see that the �rst 47 N-terminal residues displayed a very widespread
RFU distribution between 0.1-0.5 which then narrowed substantially between approx. residues W48-
F69 to 0.3-0.55. Maximum RFU even at the longest time points then dropped considerably between
approx. residues T70-Y95 to around 0.2 despite BEX values for this region remaining high, implying
substantial protection in this region. C-terminal residues then return to a more spread out distribution
as seen in the N-terminus.

From the perspective of GFP-nb, the interaction with GFP saw more widespread uptake di�erences
similar to those seen in barnase and barstar (Figure 5.3 G). �is is likely due to the protein’s compar-
ative small size and so the majority of the surface being involved in some way with the interaction.
No coverage was available for the �rst 3 residues and residue Q4 showed a strong uptake di�erence of
-6.37 Da. However, looking at the peptide map we believe this to be an erroneous data point as only
one fairly long peptide covers this residue and this peptide also extends into a region of high uptake
di�erence, hence its high value. �e �rst legitimate region showing a signi�cant amount of uptake
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di�erence is in between residues R20-W37 with an average uptake di�erence of approx. -5 Da and a
maximum di�erence of -6.26 Da. �is is followed immediately by the only region of signi�cant positive
uptake di�erence (i.e. deuterium uptake increases upon binding) seen in all of the data sets recorded
for the binary PPIs, between residues Y38-E47 with an average uptake di�erence of approx. 5 Da and
a maximum of 6.45 Da. A�er this, two regions of signi�cant negative uptake di�erence once again
dominate the data set, with the �rst being between residues W48-S86 with an average uptake di�er-
ence of approx. -6 Da and a maximum of -10.15 Da and the second being between residues Y96-H123
with an average di�erence of approx. -4 Da and a maximum of -6.9 Da. Like with the previous barnase
and barstar data sets, because a large amount of the proteins sequence showed an uptake di�erence,
two CI values were calculated as described previously, a 99 % CI of 2.01 Da and a 99.9 % CI of 6.41 Da.
However, because the value of the 99.9 % CI was so high, it excluded several regions with nevertheless
high uptake completely and so it was decided to only use the 99 % CI for this data set.

�e GFP-nb data set was of lesser quality compared to the other proteins studied (with the possible
exception of GFP-nbmin & barstar), though still perfectly usable. Similarities can be seen to barnase and
barstar in terms of the majority of the protein being involved in the interaction in some way, although
this is not surprising considering they are of similar size. Despite this, certain degrees of localisation
could be seen with the reverse faces of the nanobody showing no signi�cant uptake and regions of
the highest uptake di�erence being located at the interface. GFP-nb was particularly interesting as it
was the only data set in this entire thesis (with the exception of the ϕNM1 data set, see chapter 3.2)
that displayed a region of signi�cant positive uptake di�erence. �is region, Y38-E47, is located at the
binding interface and is indeed, according to the literature [66], directly involved in the interaction. �is
is highly unusual as regions directly involved in binding almost always see a negative uptake di�erence
as the act of binding renders them more protected from hydrogen exchange thanks to a combination of
greater hydrogen bond interactions and lower solvent accessibility among others. Regions of positive
uptake di�erence are normally seen away from the binding interface and are usually allosteric changes
brought about by binding, such as the reverse face of a transmembrane transporter protein involved in
the rocker-switch mechanism of active transport [98]. �is region is covered by three separate peptides,
each of which display this behaviour so we are con�dent in its validity, however quite how a region
manages to be involved in binding and have a positive uptake di�erence is somewhat a mystery.

5.2.3.3 Visualisation of the interaction

Deuterium uptake di�erences exceeding the 99 % CI cut o� for both proteins were mapped onto
the structures of the proteins in their bound conformation (Figure 5.5 A) as described previously. �ese
results match up very well with what we would expect from the crystal structure, especially in the case
of GFP. In comparison to the smaller proteins, GFP displays good localisation of uptake di�erences to
those peptides at the interface, with almost all other regions showing no signi�cant uptake di�erence.
In terms of GFP-nb, the interaction is a li�le less clear cut, with uptake di�erence seen over most of the
protein’s surface, although with notably higher intensity at the interface compared to on the other side
of the protein, with the exception of the poly-His tag. Interestingly, GFP-nb gives us the only example
of signi�cant positive uptake di�erence seen in any data set, in the region between Y38-E47. Overall,
this data matches up well with what we would expect given the crystal structure, especially for GFP,
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and so we propose that the HDX data collected for these proteins is a legitimate representation of the
individual proteins and the complex as a whole and therefore is appropriate to take forward into the
computational stages of this project.

5.2.4 �e GFP : GFP-nbmin interaction

5.2.4.1 GFP

From the perspective of GFP, the interaction with GFP-nbmin again saw strong, localised uptake
di�erences in a number of domains (Figure 5.3 F). Woods plots revealed that the N-terminal residues
between G4-L7 showed a degree of signi�cance like that which was seen in GFP-nb, however like for
the nanobody we believe that these data points may be erroneous as they are the result of only a single
peptide that does not match up with either of the other 3 peptides covering that region. We believe
this to also be the reason for the single residue V61 showing a signi�cant uptake di�erence. �erefore
we believe that the �rst region showing signi�cant uptake di�erence is between residues V150-N170
with an average di�erence of approx. -3.5 Da and a maximum value of -5.07 Da. �is is followed by a
region containing residues between S175-Q204 with an average uptake di�erence of approx. -2 Da with
a maximum of -2.43 Da and lastly a small region between residues E222-I229 with an average uptake
of approx. -2.5 Da and a maximum of -2.69 Da. As with the previous GFP data set, only the 99 % CI was
needed due to its far more localised nature compared to what had been found in the smaller proteins.
A value of 1.64 Da was calculated which included the 3 prominent regions outlined above.

GFP data sets for both its interactions with GFP-nb & GFP-nbmin showed good data quality and
redundancy as well as the highest degree of speci�city of all the interactions studied in this thesis with
results being highly localized to the interface with very few exceptions. �is allowed us to clearly
demarcate between GFP:GFP-nb and GFP:GFP-nbmin despite the fact that both nanobodies bind on the
same side of GFP and have a considerable amount of overlapping residues. GFP-nb binds relatively
higher up GFP and in a horizontal orientation, with those regions of GFP showing the greatest uptake
di�erence being located higher up the protein’s side. In comparison, GFP-nbmin binds relatively lower
down and in a more vertical orientation and this change in position is represented on GFP with those
regions showing the greatest uptake di�erence being located lower down the protein’s side. GFP also
showed the lowest levels of corrected RFU, which �ts with our theory of 8 hours not being a long enough
time point to see deuterium saturation, but still with very limited overlapping of time points. While
unrelated to the strict implementation of these data sets being used in order to evaluate HDXsimulator,
the fact that the residues comprising the chromophore (a tripeptide consisting of S65, Y66 & G67)
displayed a signi�cant amount of uptake di�erence despite not being involved in the interface (at the
99 % CI for GFP:GFP-nb and at the 95 % CI for GFP:GFP-nbmin) is worthy of note and consideration.
In both data sets, the chromophore residues show an uptake decrease, despite the fact that only GFP-
nbmin causes a change in the �uorescence characteristics of GFP. It would be interesting to test the
GFP-enhancer nanobody [68], which causes the �uorescence of GFP to increase, to see if a positive
uptake di�erence could be seen in the chromophore or if all changes to the chromophore result in an
uptake decrease. Overall, we have very strong evidence that both of the GFP data sets are a legitimate
representation of the interaction and therefore appropriate for use in testing HDXsimulator.
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Figure 5.5: GFP & GFP nanobodies HDX-MS data mapped onto structures. Uptake di�erence
data surpassing the 99 % CI of the GFP:GFP-nb and GFP:GFP-nbmin interactions assigned to a colour
spectrum and mapped onto their respective three-dimensional structures. �e di�erence values repre-
sented by the colour gradient are assigned relative to the highest value in each individual protein’s data
set, hence colours are not necessarily comparable between structures. (A) �e GFP:GFP-nb interaction
from the front (le�) and the top (right). (B) �e GFP:GFP-nbmin interaction from the front (le�) and
the top (right).
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5.2.4.2 GFP-nbmin

In DynamX, GFP-nbmin displayed good levels of digestion and data quality was moderate across
most of the peptides with quite a large number needing to be excluded from the �nal data set. On the
peptide level (Figure 5.2 G) we could see that residues A2-F69 display a wide RFU distribution which
then tightens up considerably between residues T70-G112. �e C-terminal residues open the RFU dis-
tribution up again but interestingly have a much lower maximum RFU compared to the N-terminus,
implying a far greater level of protection.

From the perspective of GFP-nbmin, the interaction with GFP saw a signi�cant amount of uptake
di�erence across almost the entire primary sequence, as we have come to expect from proteins of small
size (Figure 5.3 H). Woods plots show that all of the residues between S23-Y122 display notable neg-
ative uptake di�erence with the only variation being in the magnitude. Demarcating distinct regions
is di�cult but it is possible to distinguish 3 from the background. �e �rst stretches between residues
S23-T79 with an average uptake value of approx. -4.5 Da and a maximum value of -5.64 Da. �e second
includes residues V80-Y95 with an average uptake di�erence of approx. -5 Da and a maximum value of
-6.82 Da and the last includes residues Y96-Y122 with an average of approx. -6 Da and a maximum of
-7.84 Da. Only residues at the N & C-termini show no signi�cant uptake di�erence. Like with previous
data sets, because a large amount of the proteins sequence showed an uptake di�erence, two CI values
were calculated as described previously, a 99 % CI of 2.21 Da and a 99.9 % CI of 7.05 Da. However, be-
cause the value of the 99.9 % CI was so high, it excluded almost every amino acid and so it was decided
to only use the 99 % CI for this data set as well.

Like GFP-nb, the GFP-nbmin data set was of lesser quality compared to the other proteins studied,
though still perfectly usable. Also like GFP-nb, the majority of the protein is involved in the interaction
in some way, although this is not surprising considering they are of similar size. Despite this, a certain
degree of localisation could be seen with the reverse faces of this nanobody showing no signi�cant
uptake and regions of the highest uptake di�erence being located at the interface.

5.2.4.3 Visualisation of the interaction

Deuterium uptake di�erences exceeding the 99 % CI cut o� for both proteins were mapped onto
the structures of the proteins in their bound conformation (Figure 5.5 B) as described previously. �ese
results align very closely with what we would expect to see from the conformation of the complex
crystal structure, with GFP again seeing uptake di�erences being highly localised to the interface and
li�le di�erence being seen in the rest of the protein. Unlike with the GFP:GFP-nb data set, the region
around the chromophore does not display much signi�cant uptake di�erence, with the exception of
V61, despite GFP-nbmin actually having a visual e�ect on it. However, when looking at this region
in the Woods plots, a distinctive protrusion can be seen in the region of the chromophore but at a
value below the threshold of the 99 % CI. If the CI threshold were lowered to 95 %, this region becomes
signi�cant, therefore it is debatable as to whether HDX-MS can detect the e�ect of GFP-nbmin on the
chromophore of GFP or not depending on where one sets the CI cut-o�. GFP-nbmin also saw more
localised di�erences compared to its counterpart nanobody, with both N & C-terminal regions located
on the reverse side of the protein from the interface seeing no signi�cant uptake di�erences, while
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those regions at the interface saw signi�cant uptake di�erence. Interestingly there was no sign of
the positive di�erence seen in the GFP-nb data set anywhere in this data set, although this may not
be surprising considering that the two nanobodies share relatively li�le sequence homology. Based on
these results and of the individual RFU plots, we propose that the HDX data collected for these proteins
is a legitimate representation of the individual proteins and the complex as a whole and therefore is
appropriate to take forward into the computational stages of this project.

5.3 Obtaining residue-resolved lnPs using HDXmodeller

In our previous work on classifying structures [31], we could only make use of calculated vs. ex-
perimental RFU data as there is no way to obtain experimental lnPs from HDX data in order to allow
comparison with calculated lnPs. HDXmodeller was developed by Ramin Salmas of the Borysik group
in order to �x this problem as it allows residue-resolved lnP values to be modelled from experimental
peptide-level HDX-MS data. An essential part of the program are auto-validation matrices that compare
various replicates against each other in a pair-wise manner in order to allow calculation of an R-matrix
value for each pair. �is value indicates the program’s con�dence in the lnPs it has modelled and these
values can be averaged across all of the pairs to give a single con�dence value for the entire data set.
R-matrix scores can be calculated for a protein as a whole as well as for speci�c subsections of the
protein, assuming no bridging peptides, in order to enable insight into which domains of the protein
contribute to greater modelling con�dence and which contribute to lesser modelling con�dence. �ese
scores can be used to inform users about the likely accuracy of the lnP values produced. �erefore,
rather than analyse the lnP outputs themselves, we shall analyse the R-matrix scores for each protein
data set as they take into account lots of di�erent factors related to the lnP values. Each protein was run
as a whole and also split into subsections to see which parts of the proteins contributed towards high
con�dence (high R-matrix scores) and which contributed towards low con�dence (low R-matrix scores).

Taking the whole protein into account (Figure 5.6), BnWT had an R-matrix score of 0.775 when
averaged over all 50 replicates (A), BnH102A had the lowest score of 0.640 (B), BspWT had 0.726 (C),
BsY29F had 0.655 (D), GFP had 0.671 (E), GFP-nb had 0.645 (F) and GFP-nbmin had the highest score of
0.795 (G). �erefore, of the whole protein data sets, BnWT, BspWT and GFP-nbmin fall into the “high”
(≥ 0.7) bin with regard to accuracy and BnH102A, BsY29F, GFP and GFP-nb fall into the “fair” (0.5-0.69)
bin with regard to data accuracy. None of these data sets are considered to have “low” (0-0.49) data
accuracy. Hence, we can judge that most of the modelled lnPs for these data sets are likely to be quite
accurate as a substantial number of the replicates converge to a small range of agreed upon values, es-
pecially those of BnWT, BspWT & GFP-nbmin. With the broad success of the whole protein data sets,
we wanted to obtain a higher resolution view of each protein to see if subsections were fairly consistent
across the protein or if there were di�erences between them which were being smoothed out in the
whole-protein score. �ese results are described below and are also summarised in Table 5.2.

On the level of demarcated domains (Figure 5.7), BnWT had subsections from residues A1-Y13,
Y13-A43, A43-F56, F56-D93 & W94-I109. Due to the N-terminal residue of each subsection not being
considered in the calculation, there was therefore no overlap in this or in any following data sets. �e
A1-Y13 subsection had an R-matrix score of 0.924 (A1), the highest of any subsection tested, the Y13-

120



Figure 5.6: Con�dence in the residue-level lnPs calculated for whole proteins. Auto-validation
matrices displaying the average R-matrix score of the 50 pair-wise replicates generated to determine
the residue-level lnP values for entire proteins. Score of each individual pair-wise replicate represented
by a coloured square within each plot where the colour relates to the R-matrix score according to the
colour bar to the side. (A) BnWT, (B) BnH102A, (C) BspWT, (D) BsY29F, (E) GFP, (F) GFP-nb, (G)
GFP-nbmin.
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Subsection 1 Subsection 2 Subsection 3 Subsection 4 Subsection 5 Subsection 6

BnWT A1-Y13 Y13-A43 A43-F56 F56-D93 W94-I109
0.924 0.699 0.421 0.891 0.635

BnH102A A1-L14 L14-A43 A43-Y78 Y78-W94 W94-R110
0.921 0.510 0.665 0.423 0.782

BspWT E8-L16 L16-L34 L34-E52 E52-L71 Q72-T85
0.362 0.892 0.594 0.360 0.306

BsY29F D15-N33 N33-E52 E52-L71 Q72-T85
0.552 0.463 0.763 0.099

GFP L7-F46 F46-F99 F100-F130 F130-F165 K166-L207 L207-T230
0.760 0.594 0.588 0.702 0.661 0.606

GFP-nb L5-L21 S22-W37 E48-F69 L82-Y95 Y95-F103
0.832 0.272 0.560 0.218 0.722

GFP-nbmin A2-L22 S23-E48 E48-T70 T70-C97 D121-H139
0.521 0.871 0.838 0.707 0.745

Table 5.2: R-matrix values of individual protein subsections. Table displaying R-matrix values of
the subsections of the 7 individual protein data sets a�er analysis by HDXmodeller. Residues covered by
each protein’s subsections are indicated along with the R-matrix value determined for that subsection
below.
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A43 subsection had 0.699 (A2), the A43-F56 subsection had 0.421 (A3), the F56-D93 subsection had 0.891
(A4) and the W94-I109 subsection had 0.635 (A5). �erefore, subsections A1-Y13 & F56-D93 fall into
the “high” data accuracy bin, subsections Y13-A43 and W94-I109 fall into the “fair” data accuracy bin
and subsection A43-F56 falls into the “low” data accuracy bin.
BnH102A had subsections from residues A1-L14, L14-A43, A43-Y78, Y78-W94 & W94-R110. �e A1-L14
subsection had an R-matrix score of 0.921 (B1), the L14-A43 subsection had 0.510 (B2), the A43-Y78 sub-
section had 0.665 (B3), the Y78-W94 subsection had 0.423 (B4) and the W94-R110 subsection had 0.782
(B5). �erefore, subsections A1-L14 and W94-R110 fall into the “high” data accuracy bin, subsections
L14-A43 and A43-Y78 fall into the “fair” data accuracy bin and subsection Y78-W94 falls into the “low”
data accuracy bin.
BspWT had subsections from residues E8-L16, L16-L34, L34-E52, E52-L71 & Q72-T85. �e E8-L16 sub-
section had an R-matrix score of 0.362 (C1), the L16-L34 subsection had 0.892 (C2), the L34-E52 subsec-
tion had 0.594 (C3), the E52-L71 subsection had 0.360 (C4) and the Q72-T85 subsection had 0.306 (C5).
�erefore, subsection L16-L34 falls into the “high” data accuracy bin, subsection L34-E52 falls into the
“fair” data accuracy bin and subsections E8-L16, E52-L71 & Q72-T85 fall into the “low” data accuracy
bin.
BsY29F had subsections from residues D15-N33, N33-E52, E52-L71 & Q72-T85. �e D15-N33 subsection
had an R-matrix score of 0.552 (D1), the N33-E52 subsection had 0.463 (D2), the E52-L71 subsection had
0.763 (D3) and the Q72-T85 subsection had 0.099 (D4), the lowest of any subsection tested. �erefore,
subsection E52-L71 falls into the “high” data accuracy bin, subsection D15-N33 falls into the “fair” data
accuracy bin and subsections N33-E52 & Q72-T85 fall into the “low” data accuracy bin.

On the level of demarcated domains (Figure 5.8), GFP had subsections from residues L7-F46, F46-
F99, F100-F130, F130-F165, K166-L207 & L207-T230. �e L7-F46 subsection had an R-matrix score of
0.760 (A1), the F46-F99 subsection had 0.594 (A2), the F100-F130 subsection had 0.588 (A3), the F130-
F165 subsection had 0.702 (A4), the K166-L207 subsection had 0.661 (A5) and the L207-T230 subsection
had 0.606 (A6). �erefore, subsections L7-F46 & F130-F165 fall into the “high” data accuracy bin and
subsections F46-F99, F100-F130, K166-L207 & L207-T230 fall into the “fair” data accuracy bin. None of
the subsections fall into the “low” data accuracy bin.
GFP-nb had subsections from residues L5-L21, S22-W37, E48-F69, L82-Y95 & Y95-F103. �e L5-L21
subsection had an R-matrix score of 0.832 (B1), the S22-W37 subsection had 0.272 (B2), the E48-F69
subsection had 0.560 (B3), the L82-Y95 subsection had 0.218 (B4) and the Y95-F103 subsection had 0.722
(B5). �erefore, subsections L5-L21 & Y95-F103 fall into the “high” data accuracy bin, subsection E48-
F69 falls into the “fair” data accuracy bin and subsections S22-W37 & L82-Y95 fall into the “low” data
accuracy bin.
GFP-nbmin had subsections from residues A2-L22, S23-E48, E48-T70, T70-C97 & D121-H139. �e A2-
L22 subsection had an R-matrix score of 0.521 (C1), the S23-E48 subsection had 0.871 (C2), the E48-T70
subsection had 0.838 (C3), the T70-C97 subsection had 0.707 (C4) and the D121-H139 subsection had
0.745 (C5). �erefore, subsections S23-E48, E48-T70, T70-C97 & D121-H139 fall into the “high” data
accuracy bin and subsection A2-L22 falls into the “fair” data accuracy bin. None of the subsections fall
into the “low” data accuracy bin.
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Figure 5.7: Con�dence in the residue-level lnPs calculated for barnase-barstar subsections.
Auto-validation matrices displaying the average R-matrix score of the 50 pair-wise replicates generated
to determine the residue-level lnP values for subsections of the barnase and barstar proteins. Score of
each individual pair-wise replicate represented by a coloured square within each plot where the colour
relates to the R-matrix score according to the colour bar to the side. (A1) BnWT subsection A1-Y13,
(A2) BnWT subsection Y13-A43, (A3) BnWT subsection A43-F56, (A4) BnWT subsection F56-D93,
(A5) BnWT subsection W94-I109. (B1) BnH102A subsection A1-L14, (B2) BnH102A subsection L14-
A43, (B3) BnH102A subsection A43-Y78, (B4) BnH102A subsection Y78-W94, (B5) BnH102A subsection
W94-R110. (C1) BspWT subsection E8-L16, (C2) BspWT subsection L16-L34, (C3) BspWT subsection
L34-E52, (C4) BspWT subsection E52-L71, (C5) BspWT subsection Q72-T85. (D1) BsY29F subsection
D15-N33, (D2) BsY29F subsection N33-E52, (D3) BsY29F subsection E52-L71, (D4) BSY29F subsection
Q72-T85.
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Figure 5.8: Con�dence in the residue-level lnPs calculated for GFP-GFPnbs subsections. Auto-
validation matrices displaying the average R-matrix score of the 50 pair-wise replicates generated to
determine the residue-level lnP values for subsections of the GFP, GFP-nb & GFP-nbmin proteins. Score
of each individual pair-wise replicate represented by a coloured square within each plot where the
colour relates to the R-matrix score according to the colour bar to the side. (A1) GFP subsection L7-
F46, (A2) GFP subsection F46-F99, (A3) GFP subsection F100-F130, (A4) GFP subsection F130-F165,
(A5) GFP subsection K166-L207, (A6) GFP subsection L207-T230. (B1) GFP-nb subsection L5-L21, (B2)
GFP-nb subsection S22-W37, (B3) GFP-nb subsection E48-F69, (B4) GFP-nb subsection L82-Y95, (B5)
GFP-nb subsection Y95-F103. (C1)GFP-nbmin subsection A2-L22, (C2)GFP-nbmin subsection S23-E48,
(C3)GFP-nbmin subsection E48-T70, (C4)GFP-nbmin subsection T70-C97, (C5)GFP-nbmin subsection
D121-H139.
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On the level of individual domains, we found that there were indeed considerable di�erences be-
tween subsections in all of the protein data sets, with some domains having extremely high R-matrix
scores and some with extremely low scores. In some proteins such as GFP these were fairly minor,
however with some such as GFP-nb they were extreme with certain subsections having excellent R-
matrix scores and others with terrible ones. It is also important to point out that the score assigned to
the protein as a whole is not a simple average of all the di�ering subsections. �is can be seen quite
clearly in the BsY29F data set where it has a whole-protein R-matrix score of 0.655 but the individual
subsections have scores of 0.552, 0.463, 0.763 & 0.099; a mean average of 0.469. �is seeming paradox
is explained by remembering that changing the precise shape of the peptide maps can have profound
changes on the R-matrix score, and therefore the residues comprising a speci�c subsection may per-
form di�erently when taken as a whole, with all the other peptides present, compared to when taken
individually. �erefore there is a certain degree of disconnect between the two di�erent resolutions
used by HDXmodeller which must be born in mind when evaluating data.

5.4 Molecular Dynamics simulations

With HDX data sets now generated for each protein and modelled residue-level lnPs determined,
we moved on to generating structure libraries which could be used to benchmark HDXsimulator. In
order to use HDXsimulator to classify the structures of binary complexes as well as individual proteins,
we needed to undertake some additional steps in order to prepare suitable structures for use as training
data sets. Decoy libraries of individual proteins could be generated immediately using a program such
as Rose�a or 3DRobot, however the generation of binary complexes was a li�le more involved. �e �rst
step in this process was to relax our input crystal structures using MD simulations. Relaxed starting
structures would be important for docking later on because we needed to ensure that the method was
capable of producing native complexes from HDX restraints and �exible re�nement alone. �ere is li�le
challenge to docking structures that are already in the perfect conformation and when this method is
tested out for real, it will be of course be on unbound structures. �erefore, as the crystal structures we
had were of bound complexes, we needed to relax them with MD in order to more accurately represent
an unbound conformation. NAMD was the obvious choice of so�ware for this work because members
of the group had previous experience with it, allowing for faster learning and swi�er error resolution.

Two di�erent types of simulations were carried out: “unbound” in which the individual proteins
were relaxed in a simulation without their binding partner and “bound” in which the relaxation was
carried out with the binding partner present. �e goal of having these two di�erent forms of simu-
lation was that it would enable us to see what e�ects, if any, the presence or absence of the binding
partner had on subsequent protein-protein docking. Unbound MD simulations were carried out on
BnWT, BnH102A, BspWT, BsY29F, GFP, GFP-nb & GFP-nbmin. Bound MD simulations were carried
out on BnWT:BspWT & GFP:GFP-nb. As the purpose of these MD simulations was to simply relax
the structures instead of make mechanistic insights, simulations were comparatively short and only
run until the RMSD of the later frames vs. the starting frame stabilised. MD trajectories were analysed
using VMDs RMSD Trajectory Tool (RMSDTT) and calculations were made using backbone atoms only.

BnWT (Figure 5.9 A) was run for a total of 10 ns with the RMSD stabilising relatively quickly a�er
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1 or 2 ns and the average RMSD across every frame being 1.09 Å. �e average structure was calculated
using the RMSDTT and the frame closest to this average structure determined to be frame 479. �ere-
fore this structure was carried forward into the docking stage as the representative structure of relaxed
BnWT.
BnH102A (Figure 5.9 B) was run for a total of 10 ns with the RMSD stabilising very quickly a�er about 1
ns and the average RMSD across every frame being 0.99 Å. �e average structure was calculated using
the RMSDTT and the frame closest to this average structure determined to be frame 197. �erefore
this structure was carried forward into the docking stage as the representative structure of relaxed
BnH102A.
BspWT (Figure 5.9 C) was run for a total of 10 ns with the RMSD stabilising relatively quickly a�er 1 or
2 ns and the average RMSD across every frame being 0.98 Å. �e average structure was calculated using
the RMSDTT and the frame closest to this average structure determined to be frame 431. �erefore this
structure was carried forward into the docking stage as the representative structure of relaxed BspWT.
BsY29F (Figure 5.9 D) was run for a total of 10 ns with the RMSD stabilising almost immediately a�er
less than 1 ns and the average RMSD across every frame being 0.8 Å. �e average structure was calcu-
lated using the RMSDTT and the frame closest to this average structure determined to be frame 477.
�erefore this structure was carried forward into the docking stage as the representative structure of
relaxed BsY29F.
GFP (Figure 5.9 E) was run for a total of 20 ns with the RMSD taking substantially longer to stabilise
compared to the other proteins studied, around 10 ns, likely because of its larger size. �e average
RMSD across every frame was 2.5 Å. �e average structure was calculated using the RMSDTT and the
frame closest to this average structure determined to be frame 505. �erefore this structure was carried
forward into the docking stage as the representative structure of relaxed GFP.
GFP-nb (Figure 5.9 F) was run for a total of 10 ns with the RMSD showing a distinctive wave pa�ern
that repeats every 3-4 ns or so and is likely the result of the poly-His tag �ailing about. �e average
RMSD across every frame was 2.73 Å. �e average structure was calculated using the RMSDTT and the
frame closest to this average structure determined to be frame 944. �erefore this structure was carried
forward into the docking stage as the representative structure of relaxed GFP-nb.
GFP-nbmin (Figure 5.9 G) was run for a total of 10 ns with the RMSD taking quite a long time to sta-
bilise. �is appears to be because the poly-His tag takes some time to extend out from its initial position
whereupon it stays in an extended state. �e average RMSD across every frame was 5.22 Å. �e average
structure was calculated using the RMSDTT and the frame closest to this average structure determined
to be frame 64. N.B. due to an input error, this trajectory only has 100 frames covering 10 ns instead of
the usual 1,000, hence the data for this system will be slightly less precise. Nevertheless, frame 64 was
carried forward into the docking stage as the representative structure of relaxed GFP-nb.

BnWT:BspWT (Figure 5.9 H) was run for a total of 10 ns with the RMSD stabilising very quickly
a�er about 1 ns and the average RMSD across every frame being 1.31 Å. �e average structure was
calculated using the RMSDTT and the frame closest to this average structure determined to be frame
111. �erefore this structure was carried forward into the docking stage as the representative structure
of the relaxed BnWT:BspWT complex.
GFP:GFP-nb (Figure 5.9 I) was run for a total of 20 ns due to the size of the complex with the RMSD
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Figure 5.9: Change in RMSD over the course of a relaxational MD simulation. Plots describing
how a structure’s RMSD changes vs. the initial starting frame over the course of a relaxational MD
simulation. Relaxation deemed to have fully occurred upon seeing a qualitative stabilization of RMSD
value over a prolonged period of frames. (A) BnWT, (B) BspWT, (C) BnH102A, (D) BsY29F, (E) GFP,
(F) GFP-nb, (G) GFP-nbmin, (H) BnWT:BspWT, (I) GFP:GFP-nb. MD simulations A-D & F-H were run
for 10 ns, MD simulations E & I were run for 20 ns.
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stabilizing a�er about 5 ns with the average RMSD across every frame being 2.82 Å. �e average struc-
ture was calculated using the RMSDTT and the frame closest to this average structure determined to
be frame 218. �erefore this structure was carried forward into the docking stage as the representative
structure of the relaxed GFP:GFP-nb complex.

As we were just relaxing the various structures and not looking for any mechanistic insight, the
results of the MD simulations were not too surprising. Most of the structures stabilised very quickly,
within a few nanoseconds, which makes sense considering most of the proteins used in this study are
quite small. In the same vein, it also makes sense that GFP took the longest to stabilise considering it is
more than twice the size of every other protein. �e most interesting results were those for GFP-nb and
the GFP:GFP-nb complex which saw a wave pa�ern in the RMSD trace over time. �is pa�ern in the
GFP-nb plot can be explained by the poly-His tag which is unstructured and so moves about randomly
as time progresses. As GFP-nb is small and otherwise very stable, the His tag makes up a substantial
amount of the deviation seen in this system and so its movement is represented prominently in the
RMSD plot. However this would not explain why this wave pa�ern is also seen in the GFP:GFP-nb plot
as now the His tag is only a very small part of the whole system. A potential answer to this question
lies in GFP itself which also has an unstructured N-terminal region (not a His tag) which sees similar
waving motions over time. Unlike with the nanobody, this is not as visible in the plot of GFP on its own
because of how much larger the structured region of GFP is compared to GFP-nb. However, when the
two proteins are combined in a complex, the cumulative deviation caused by two disordered regions is
now large enough to be visible in the RMSD plot.

5.5 Protein-protein docking

With most of the structures now relaxed, both in the unbound and bound conformations, the
next step was to generate libraries of protein-protein docking poses for eventual use in benchmark-
ing HDXsimulator’s ability to classify bound structures. �e process of docking relaxed MD structures
into complexed poses was chronologically the last part of the project we undertook before the com-
mencement of the writing-up process. �erefore, while we have established the methods that will be
used to take this project into its �nal stages (determining complex structure from HDX data), we did
not have time to complete all the necessary work and this will be something for future group mem-
bers to �nalise. Nevertheless, we have discovered some interesting aspects of those systems we did
have a chance to analyse. As of writing, only two data sets have been a�empted: BnWT:BspWT &
GFP:GFP-nb, both of which were produced using the unbound conformers of the constituent proteins.
Data sets were produced using the webserver version of HADDOCK and the RMSD of the produced
poses compared to the crystal structure as described previously.

�e number of ”native” structures produced by a docking method depends on where the RMSD cut
o� is set. For BnWT:BspWT, if the cut o� is set to 2.5 Å, 10 structures out of the 1,000 selected to un-
dergo �exible re�nement and subsequent re�nement in explicit solvent were found to be native. �is
number represents 1 % of the total re�ned structures and is about half of what we were ideally looking
for, based on our results for the Rose�a decoy sets where data sets of 1,000 decoys where enriched
with 20 native structures. However, if the cut o� is increased just slightly to 3 Å, 26 structures out of
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the 1,000 selected to undergo �exible re�nement and subsequent re�nement in explicit solvent were
found to be native. �is number represents 2.6 % of the total re�ned structures. �erefore we can see
that di�erent results can be obtained depending on where the cut o� is placed which will be a point of
optimisation in the future.

Figure 5.10 A displays all 1,000 docking poses superimposed on top of each other, using BnWT as
the anchor point. From this we can see that there is quite a large variety of di�erent orientations, which
makes sense considering that the majority of both proteins’ residues were marked as being signi�cant
for the purposes of constructing the AIRs. Additionally, the AIRs are a binary on/o�, meaning that
the complex shape of the interaction’s di�erence plot is lost. However despite this, poses are mostly
limited to a horizontal plane through the true binding site with no poses found with BspWT on “top”
or on “bo�om” of BnWT. Figure 5.10 B displays the exact same orientation of the poses but this time
only those poses deemed to be native (according to a cut o� of 2.5 Å) are shown. From this we can see
the location of the true binding site and, when comparing it to Figure 5.10 A, we can also see that the
majority of the 1,000 poses fall approximately within this location.

In comparison to BnWT:BspWT, the docked poses for GFP:GFP-nb showed no native structures,
with the closest pose having an RMSD of 7.2 Å. �is may be partially due to the lower sampling used
in this data set, only 1,000 rigid body structures followed by the top 200 selected to undergo �exible
re�nement and subsequent re�nement in explicit solvent; but this would not explain the complete lack
of anything approaching a native structure. When looking at the structures superimposed upon each
other using GFP as the anchor (Figure 5.10 C), we can see that, while mostly on the correct side, GFP-nb
poses are rotated at all sorts of angles compared to the crystal structure, giving rise to the high RMSD
values. �is is in comparison to BnWT:BspWT where the correct orientation was seen in almost all the
poses. We believe this to be caused by two factors. �e �rst is that the GFP:GFP-nb complex lacks the
“lock and key” geometry seen in the BnWT:BspWT complex. Instead, the binding surfaces are relatively
�at which no doubt caused HADDOCK to struggle as, like most docking programs, it relies to a certain
extent on cavities and protrusions in order to �t proteins together. �e second factor is that, while the
AIRs for GFP were highly localised, the AIRs for GFP-nb were not. �is means that HADDOCK likely
struggled to assign a proper orientation for GFP-nb, hence why it is found at so many di�erent angles.

While we are satis�ed with the BnWT:BspWT data set, the GFP:GFP-nb data set yet requires sub-
stantial optimisation before it can be brought forward to serve as a test for HDXsimulator. �ere are
several parameters that could be optimised, like with BnWT:BspWT, including the CI threshold to use
as AIRs, the number of initial structures for rigid body docking as well as the number that are then
taken forward for subsequent re�nement. �ere is also the possibility that 2.5 Å maybe an unnecessar-
ily strict cut o�.

With the data from these two simulations in mind, we assert that HDX data has the potential to
be very capable of guiding protein-protein docking simulations, however that capacity is diminished
the greater a protein’s surface is covered by the AIRs. In cases such as these, the docking program
can only rely on steric characteristics which explains why BnWT:BspWT produced a good number
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Figure 5.10: Docking poses simulated for the BnWT:BspWT & GFP:GFP-nb interactions.
HADDOCK-generated docking poses showing the spread of structures obtained when using AIRs con-
structed from residues with uptake di�erence values surpassing the 99 % CI. Barnase and GFP (tan,
surface view) were used as the anchor points in their respective sub-�gures with the partner protein
(multicoloured, wire view) rotated around it according to the docking pose. (A) BnWT:BspWT; all 1,000
re�ned poses viewed from the front (le�) and the top (right). (B) BnWT:BspWT; 10 native (RMSD ≤
2.5 Å) re�ned poses viewed from the front (le�) and the top (right). (C) GFP:GFP-nb; all 200 re�ned
poses viewed from the front (le�) and the top (right). �e native pose of GFP-nb is represented in red,
thick wire view.
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of native poses (easily discernible shape complementarity), whereas GFP:GFP-nb did not (poor shape
complementarity between the structures). �erefore we propose that the best docking simulations will
likely be gained from those interactions which have both speci�c HDX-generated AIRs and also show
good shape complementarity, although of course more data sets will be required to con�rm this.

5.6 Exploring the boundaries of modelling protein conformation using HDXsimu-
lator

Simultaneously to our work generating binary complex pose libraries, we began the process of test-
ing HDXsimulator using libraries of individual protein decoy structures we had previously produced.
HDXsimulator is a program developed by Ramin Salmas from the Borysik group to enable the cal-
culation of theoretical protection factors and RFU values from three-dimensional coordinates on the
residue level. �ese calculated lnP/RFU values can then be compared to modelled/experimentally de-
termined lnP/RFU values determined by HDXmodeller/experimental HDX-MS in order to generate an
RMSE metric which serves to rank the structures by how close to experimental values they are. In order
to test the program’s ability to distinguish between native and non-native structures, ROC curves were
constructed with the curve’s AUC being indicative of its e�cacy. In chapter 4.5, we began the process of
mapping the capabilities and limitations of HDXsimulator by introducing synthetic error into lnP data
sets and seeing how the AUC score of the data set responded. Our initial a�empts could not elucidate
a relationship between AUC and the RMSE/R̂2 of the synthetic error data, however a�er much trial
and error, we found that optimal method for error generation was using HDXsimulator itself utilising
suboptimal scaling factors which produced the correlated AUC and R̂2 values that we were looking
for. With our method of choice identi�ed, we then proceeded to generate a full data suite from the
BspWT Rose�a data set, split up into 10 residue domains, in order to see how AUC scores responded
to synthetic error on the level of individual subsections. �ese �ndings are displayed in Figure 5.11.

From this data we can see that there is a strong linear correlation between AUC and R̂2 in almost
all the di�erent domains of the BspWT Rose�a data set. Domains representing the central section of
the protein (C-G) display the strongest correlation with very tight grouping between AUC and R̂2
values, while domains closer to the termini (A, B, H, I) display weaker correlation but nevertheless
far greater than any of the other error generation methods a�empted previously. Almost all domains
display a degree of ambivalence at the higher R̂2 values were the correlation between AUC and R̂
2 is substantially worse. �is “plateau” was seen far more prevalently in test RFU-level data sets and
those using RMSE as the comparison metric but is seen to a lesser extent here as well. Plateauing is
especially extensive in data representing residues G31-A40 (D) and residues Q61-V70 (G), however it
does fall away and the correlation becomes linear again a�er R̂2 values drop slightly. �e range of
the R̂2 and AUC values also saw a considerable amount of variation over the di�ering domains of
the data set. Some domains, such as residues G31-A40 (D), saw a relatively small range from 0 to -2
while others, such as residues L71-E80 (H), saw a much larger range from 0 to -20. �ese di�ering
ranges of R̂2 values indicate that varying the scaling factors of HDXsimulator has a greater e�ect
on some domains compared to others, however this does not seem to translate into the pipeline being
more or less capable of di�erentiating between them as there is no obvious correlation between the
range of R̂2 values and the correlation to AUC. Similarly, the range of AUC values di�ered substan-
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Figure 5.11: Testing HDXsimulator’s ability to distinguish between erroneous lnPs. Plots
showing how the AUC value (HDXsimulator’s ability to distinguish between native and non-native
structures) changes depending on how di�erent erroneous input lnPs are from the “true” lnP values, as
measured by their R̂2 value. Plots generated for the BspWT Rose�a data set in 10 residue increments.
(A) Residues K1-I10, (B) residues R11-L20, (C) residues K21-Y30, (D) residues G31-A40, (E) residues
L41-V50, (F) residues L51-K60, (G) residues Q61-V70, (H) residues L71-E80, (I) residues G81-S89.
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tially between domains, such as residues K1-I10 (A) with a range of 0.9-0.6 and residues K21-Y30 (C)
with a range of 0.5-0.1. �is indicates that HDXsimulator’s capacity to distinguish between native and
non-native structures is in�uenced down to the level of a few residues and that as a consequence the
AUC value for any overall protein is likely somewhat of an average of the values of individual domains.

�e last point to consider when looking at the BspWT Rose�a data set is the characteristic “hook”
seen at the higher AUC/R̂2 values in most of the domains. �is could perhaps be the result of the in-
verse of the e�ect discussed above wherein similar structures, having similar AUC values, nevertheless
have slightly di�erent R̂2 values because of small di�erences in lnP as caused by the varying scaling
factors used in its creation. �e sharp demarcation between the two clusters of AUC values a given R̂2
can give rise to at the high end with no intermediary values could be due to speci�c conformers being
sterically favoured and so the resultant structures and AUCs being one or the other rather than a range
in between.

To summarise, we intended to determine the relationship between the deviation of erroneous lnPs/-
subsequent RFU values and the eventual AUC score calculated for a particular data set, with our goal
being to chart HDXsimulator’s capabilities and limitations to enable us to improve future versions of
the program. A�er much trial and error, we found that optimal method for error generation was using
HDXsimulator itself utilising suboptimal scaling factors which produced the correlated AUC and R̂
2 values that we were looking for. �e results of our optimisation work as well as the experiments
presented here tell us that the relationship between AUC and RMSE/R̂2 is much more complicated
than we had initially thought, with hidden factors challenging our understanding of the boundaries of
modelling protein conformation using HDXsimulator. �ese factors a�ect not only how data calculated
from protein decoys reacts to AUC on the whole protein level, but also on the level of distinct subsec-
tions as our experiments with the BspWT Rose�a data set demonstrate. �e subsections of this protein
have quite di�erent pro�les from each other, showing that, like with HDXmodeller, data generated for
a protein as a whole is not necessarily representative of its individual constituent parts. �is work is
still in its infancy and at present there is much we do not understand, including what these hidden
factors are and it is clear that more work will have to be undertaken if we are to fully understand this
relationship. However, the experiments presented here are a solid foundation upon which subsequent
research can be based.

5.7 Di�erentiating between native and non-native structures using HDXsimulator

�e HDXsimulator pipeline was developed as an extension of our earlier work [31] for the purpose
of enabling residue-level lnP data to be used, in addition to peptide-level RFU data, as a scoring metric
in the evaluation of native vs. non-native structures. In order to appraise the program’s ability to make
this distinction, we tested it on 7 unique protein decoy sets with its ability to distinguish native from
non-native determined by the construction of ROC curves and subsequent AUC values. Our previous
work had informed us that HDXsimulator reacted di�erently to di�erent proteins and it therefore fol-
lowed that it would also likely react di�erently to decoy sets produced by contrasting algorithms. In our
research, we found only two distinct methods for decoy generation that �t our criteria: Rose�a’s Abini-
tio/Relax applications and 3DRobot, therefore we initially endeavoured to have a Rose�a and 3DRobot
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decoy set for each protein. However, we unfortunately only managed to obtain two 3DRobot decoy
sets (for BnWT & GFP) before the webserver version of the program closed for the CASP14 season and
we did not have time to make use of the local install version before the writing of this thesis. Despite
this, the two data sets we did acquire have proven very informative to our overall conclusions and we
believe that similar results would have been seen had the we managed to obtain the others. �e data
sets tested were: BnWT Rose�a, BspWT Rose�a, GFP Rose�a, GFP-nb Rose�a, GFP-nbmin Rose�a,
BnWT 3DR & GFP 3DR.

5.7.1 Whole-protein data sets

We �rst looked at the AUC values of the 7 data sets taken as a whole using the RMSE of the calcu-
lated RFU compared to experimental HDX RFU as the scoring metric, similarly to our previous work.
In terms of RFU, the BnWT Rose�a data set produced an AUC score of 1, BspWT Rose�a had 0.0055,
GFP Rose�a had 0.3022, GFP-nb Rose�a had 0.6674, GFP-nbmin Rose�a had 0.7525, BnWT 3DR had
0.6006 and GFP 3DR had 0.8044 (Figure 5.12).
�ese data sets displayed a large amount of variety in terms of AUC score depending on the protein as
well as the decoy set. For example, the BnWT Rose�a decoy set produced an AUC of 1, indicating that
HDXsimulator was able to perfectly distinguish between native and non-native structures, however the
BnWT 3DR decoy set produced an AUC of 0.6006, despite being based on the exact same protein. A
similar result in the opposite direction could be seen for GFP where the Rose�a decoy set produced an
AUC of 0.3022 whereas the 3DRobot decoy set produced an AUC of 0.8044. �ese kinds of results were
found quite o�en in other data sets as we shall see, indicating a certain degree of decoy-dependence on
the part of HDXsimulator.

We next compared the whole protein data sets using the RMSE of the calculated lnP vs. the lnP mod-
elled by HDXmodeller as the scoring metric in order to see what, if any, changes could be identi�ed
between using RFU or lnP. In terms of lnP, the BnWT Rose�a data set produced an AUC score of 0.9989,
BspWT Rose�a had 0.0071, GFP Rose�a had 0.2898, GFP-nb Rose�a had 0.9862, GFP-nbmin Rose�a
had 0.2463, BnWT 3DR had 0.5222 and GFP 3DR had 0.8264 (Figure 5.13).
For the most part, we found that lnP AUC scores were relatively consistent with those produced using
RFU, with 4 of the 7 being within 0.025 AUC of each other. �is is not altogether surprising considering
that modelled lnP is derived from experimental RFU and calculated RFU is derived from calculated lnP.
�e BnWT 3DR data set saw a li�le more variance with an RFU AUC of 0.6006 and a lnP AUC of 0.5222,
however the most interesting results are those for GFP-nb and GFP-nbmin which both saw large di�er-
ences between their RFU and lnP AUCs. For GFP-nb, using lnP as the scoring metric increased its AUC
from 0.6674 to 0.9862, whereas for GFP-nbmin the exact opposite is true, with using lnP decreasing its
AUC from 0.7525 to 0.2463. �ese two results indicate that while RFU and lnP are mostly consistent,
there is the potential for large deviations to occur, possibly due to inconsistencies in experimental HDX
data that lead to diverging experimental RFUs vs. modelled lnPs.

A �nal point to mention is the RMSE scale of the GFP-nb RFU-level data set, which has an RMSE
variance between 8.1-8.8, compared to all the other RFU data sets, which all have RMSEs from 0-0.3. �is
indicates that HDXsimulator was much less able to estimate RFUs for GFP-nb compared to all the other
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Figure 5.12: ROCplots forwhole protein data sets – RFU. Sca�er plots (blue points) comparing the
decoys’ RMSD and RMSE values for whole protein data sets using RFU as the comparison metric from
which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within inset
plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) BnWT Rose�a, (B) BspWT Rose�a,
(C) GFP Rose�a, (D) GFP-nb Rose�a, (E) GFP-nbmin Rose�a, (F) BnWT 3DR, (G) GFP 3DR.
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Figure 5.13: ROC plots for whole protein data sets – lnP. Sca�er plots (blue points) comparing the
decoys’ RMSD and RMSE values for whole protein data sets using lnP as the comparison metric from
which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within inset
plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) BnWT Rose�a, (B) BspWT Rose�a,
(C) GFP Rose�a, (D) GFP-nb Rose�a, (E) GFP-nbmin Rose�a, (F) BnWT 3DR, (G) GFP 3DR.
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protein data sets, but only on the RFU-level as this scale discrepancy is not seen for the lnP-level data.
�is could be due to aforementioned inconsistencies in experimental HDX data, however this would not
explain why the GFP-nbmin data, which also saw deviation between RFU and lnP AUC values, does
not show this same scale di�erence in the RFU-level data. �e intricacies of unusual HDXsimulator
outputs such as these will no doubt require further thorough examination if such details are to be fully
understood.

5.7.2 Subsection data sets

In addition to allowing comparison to RFU-level data for whole proteins, having the ability to com-
pare calculated and modelled lnPs enabled us to, for the �rst time, investigate each protein data set in
higher resolution by breaking them down into individual subsections. With this higher resolution view,
we could see, for each whole protein data set, which subsections contributed towards higher AUC and
which contributed towards lower AUC. For this work, we chose the same subsections as were used for
HDXmodeller to see if any comparisons with R-matrix values could be seen at this higher resolution
view, however the method is not limited to these speci�c subsections and any sequential number of
residues could be analysed in this way.

For BnWT Rose�a (Figure 5.14), the A1-Y13 data set produced an AUC of 0.9501, Y13-A43 had
0.8183, A43-F56 had 0.9719, F56-D93 had 0.9678 and W94-I109 had 0.8503.
For BspWT Rose�a (Figure 5.15), the E8-L16 data set produced an AUC of 0.3099, L16-L34 had 0.3540,
L34-E52 had 0.2204, E52-L71 had 0.0016 and Q72-T85 had 0.8079.
For GFP Rose�a (Figure 5.16),the L7-F46 data set produced an AUC of 0.2727, F46-F99 had 0.7285, F100-
F130 had 0.8488, F130-F165 had 0.0809, K166-L207 had 0.5613 and L207-T230 had 0.3822.
For GFP-nb Rose�a (Figure 5.17), the L5-L21 data set produced an AUC of 0.5239, S22-W37 had 0.7816,
E48-F69 had 0.7216, L82-Y95 had 0.9783 and Y95-F103 had 0.9507.
For GFP-nbmin Rose�a (Figure 5.18), the A2-L22 data set produced an AUC of 0.3292, S23-E48 had
0.0291, E48-T70 had 0.9596, T70-C97 had 0.0802 and D121-H139 had 0.7494.
For BnWT 3DR (Figure 5.19), the A1-Y13 data set produced an AUC of 0.5107, Y13-A43 had 0.3618,
A43-F56 had 0.5886, F56-D93 had 0.5338 and W94-I109 had 0.5683.
For GFP 3DR (Figure 5.20), the L7-F46 data set produced an AUC of 0.7943, F46-F99 had 0.5801, F100-
F130 had 0.7713, F130-F165 had 0.7805, K166-L207 had 0.6682 and L207-T230 had 0.4807.

We found that the protein data sets used in this work had an interesting mix of results in terms
of their subsections, with some having fairly consistent AUC values and some having vastly di�erent
AUC values. �ose that were quite consistent were: BnWT Rose�a, GFP-nb Rose�a and BnWT 3DR;
whereas those that saw large variations were: BspWT Rose�a, GFP Rose�a, GFP-nbmin Rose�a and
GFP 3DR. For the majority of the data sets therefore, the whole protein AUC value was in fact taking
into account di�ering subsections that had quite disparate AUC results and smoothing across them.
�is was similar to the results we saw with HDXmodeller where most data sets were a combination of
higher and lower scoring subsections that were being amalgamated into a single R-matrix score. Such
discrepancies highlight the need for the residue-level lnP method we have developed in this work as
this information is lost when only considering whole protein peptide-level RFU data.
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Figure 5.14: ROC plots for BnWT Rosetta subsections – lnP. Sca�er plots (blue points) comparing
the decoys’ RMSD and RMSE values for BnWT Rose�a subsections using lnP as the comparison metric
from which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within
inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) A1-Y13, (B) Y13-A43, (C) A43-
F56, (D) F56-D93, (E) W94-I109.
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Figure 5.15: ROC plots for BsWT Rosetta subsections – lnP. Sca�er plots (blue points) comparing
the decoys’ RMSD and RMSE values for BsWT Rose�a subsections using lnP as the comparison metric
from which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within
inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) E8-L16, (B) L16-L34, (C) L34-
E52, (D) E52-L71, (E) Q72-T85.
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Figure 5.16: ROC plots for GFP Rosetta subsections – lnP. Sca�er plots (blue points) comparing
the decoys’ RMSD and RMSE values for GFP Rose�a subsections using lnP as the comparison metric
from which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within
inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) L7-F46, (B) F46-F99, (C) F100-
F130, (D) F130-F165, (E) K166-L207, (F) L207-T230.
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Figure 5.17: ROC plots for GFP-nb Rosetta subsections – lnP. Sca�er plots (blue points) compar-
ing the decoys’ RMSD and RMSE values for GFP-nb Rose�a subsections using lnP as the comparison
metric from which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated
within inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) L5-L21, (B) S22-W37,
(C) E48-F69, (D) L82-Y95, (E) Y95-F103.
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Figure 5.18: ROC plots for GFP-nbmin Rosetta subsections – lnP. Sca�er plots (blue points)
comparing the decoys’ RMSD and RMSE values for GFP-nbmin Rose�a subsections using lnP as the
comparison metric from which can be derived ROC curves (inset, green line) and subsequent AUC
values (indicated within inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A)
A2-L22, (B) S23-E48, (C) E48-T70, (D) T70-C97, (E) D121-H139.
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Figure 5.19: ROCplots for BnWT 3DR subsections – lnP. Sca�er plots (blue points) comparing the
decoys’ RMSD and RMSE values for BnWT 3DR subsections using lnP as the comparison metric from
which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within inset
plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) A1-Y13, (B) Y13-A43, (C) A43-F56,
(D) F56-D93, (E) W94-I109.
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Figure 5.20: ROC plots for GFP 3DR subsections – lnP. Sca�er plots (blue points) comparing the
decoys’ RMSD and RMSE values for GFP 3DR subsections using lnP as the comparison metric from
which can be derived ROC curves (inset, green line) and subsequent AUC values (indicated within
inset plot). Orange dashed line represents that native cut o� of 2.5 Å. (A) L7-F46, (B) F46-F99, (C)
F100-F130, (D) F130-F165, (E) K166-L207, (F) L207-T230.
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5.7.3 Combined data sets

With all these AUC scores produced for both the protein data sets as a whole as well as individual
subsections, we wanted to get an idea of the AUC scores we would obtain for the data sets all combined
together. �is would give us a statistical score that summarised HDXsimulator’s ability to determine
native structures, taking into account all the individual data sets we used in this work. We produced
three combined data sets: one taking into account all the whole protein’s scores on the RFU level, one
taking into account all the whole protein’s scores on the lnP level and one taking into account all the
subsection’s scores on the lnP level (Figure 5.21). To do this, we combined all the RMSD and RMSE
values comprising individual data sets into one large data set and then determined the AUC score for
this combined set. �e combined whole proteins set on the RFU level produced and AUC score of
0.5923, the combined whole proteins set on the lnP level produced an AUC of 0.5866 and the combined
subsections set on the lnP level produced and AUC of 0.5554.

We found that our average AUC values were very similar between the whole protein RFU and lnP
data, di�ering by 0.0057, which tells us that the metrics are virtually identical in their ability to cor-
rectly classify native vs. non-native decoys. In terms of comparing whole protein to subsection lnP,
we can again see that the AUC values are very similar, di�ering by 0.0312. �is tell us that subsection
level data is an accurate representation of the individual parts that make up the whole protein data.
If instead we had seen substantial deviation of the subsection data AUC from the whole protein data
AUC, it would indicate that either one or the other is being calculated incorrectly, or possibly that we
are seeing a similar e�ect to that which was observed with HDXmodeller where altering the data set
can fundamentally change the programs ability to calculate lnP.

�e AUC values themselves, at approx. 0.6, indicate that, taking into account all the data sets, the
methodology has an approx. 60 % chance to correctly identify any given decoy as either native or
non-native. �is is a positive result but is of course far below the accuracy that would be required for
researchers to trust that the structures identi�ed are in fact native or not for use in their own research.
With this in mind, there are several points that we have identi�ed as being potentially part of the cause
of these lower overall AUC values. �ese possible areas of future improvement shall be considered in
the Discussion.

5.8 Summary

In this chapter, we have seen results presented that contribute to the overall stated aim of this
thesis, that is, the ability of HDXsimulator to correctly classify a protein structure as being native or
non-native. �ese results cover: the �nal yields of barnase as well as native MS validation of the interac-
tion between it and barstar, HDX-MS experiments on all the binary PPIs investigated in this work, how
HDXmodeller modelled residue-resolved lnP values for each interaction, the results of relaxational MD
simulations as well as protein docking for use in future work on binary PPI structure determination,
the results of the investigation into the boundaries of modelling protein conformations with HDXsim-
ulator and �nally, the primary goal of this thesis, the results of our inquiry into HDXsimulator’s ability
to distinguish between native and non-native structures.
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Figure 5.21: Combined ROC plots for all whole protein and subsection data sets – RFU/lnP.
Sca�er plots (blue points) comparing the decoys’ RMSD and RMSE for whole protein and subsection
data sets using RFU/lnP as the comparison metric from which can be derived ROC curves (inset, green
line) and subsequent AUC values (indicated within inset plot). Orange dashed line represents that
native cut o� of 2.5 Å. (A) Combined whole protein data sets – RFU. Spilt axes necessary for viewing
due to GFP-nb Rose�a data set having much higher RMSE values compared to the others. (B)Combined
whole protein data sets – lnP. (C) Combined subsection data sets – lnP.
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�e �nal yields of BnWT and BnH102A a�er the improvements detailed in chapter 4.2 resulted in
3.08 mg/L and 34.2 mg/L pure protein being produced respectively. Native MS experiments carried out
on BnWT, BnH102A and BnWT:BspWT con�rmed the correct MWs and binding of these proteins. �e
identity and binding of proteins not produced during this study were con�rmed during the course of
HDX-MS experiments. �e acquisition of these proteins was the bedrock on which all our subsequent
experiments were based as without them there would be no experimental data with which to compare
our simulated results.

HDX-MS experiments were carried out in order to provide an experimental reality against which
HDXsimulator’s calculations could be compared. In addition, to ensure the validity of said experimental
reality, a comparison was made of the locational data elucidated by the HDX pro�les to the scienti�c
community’s understanding of the binding interaction, as found in the literature. We found that, in
all cases, our results for the interactions when mapped onto the protein structures of the binary PPI
matched with available crystal structures of the bound proteins. �erefore we are con�dent in saying
that our HDX results accurately represent the interactions of the binary PPIs and so are valid to take
forward and use for comparison with calculated data.

HDXmodeller enables residue-level lnPs to be calculated from peptide-level HDX data, with the
reliability of the modelled values being represented by a novel auto-validation matrix. Such a method
of HDX modelling has long been a goal of practitioners in the �eld [99–104], however it has proved
challenging to accurately determine all the underlying variables. Additional restraints encoded by the
peptide ion envelopes provide a potential way forward as they contain clues regarding the distribution
of isotope along a peptide [105–107]. We used HDXmodeller as a way to obtain modelled residue-
level lnPs in order to enable comparison with the residue-level lnPs calculated by HDXsimulator. We
found that the auto-validation R-matrix scores varied signi�cantly across our data sets with di�er-
ences seen not only across proteins but across protein subsections as well. Whole-protein data sets for
BnWT, BspWT and GFP-nbmin displayed R-matrix scores in the ”high” data bin (≥ 0.7) while BnH102A,
BsY29F, GFP and GFP-nb displayed R-matrix scores in the ”fair” data bin (0.5-0.69). Subsection-level
data sets varied even more, including subsections within the same protein, indicating that local factors
play a signi�cant role in the protein’s overall amenity to modelling (data available in Table 5.2).

In order to enable future use cases of our method on binary complexes, we carried out MD simu-
lations in order to generate relaxed structures of our proteins that could then subsequently be used in
docking simulations. We used NAMD to produce the relaxed structures, for which two di�erent types
of simulations were run: bound (with the binding partner present) and unbound (with the binding
partner missing). For each type, the simulation was run for between 10-20 ns, until the RMSD of subse-
quent frames stabilised vs. the initial frame. For most proteins, this occurred within a few nanoseconds,
however larger proteins such as GFP took longer. �e average structures were calculated using VMD’s
RMSDTT and the frames closest to the average carried forward into the docking stage of the project.

Protein-protein docking was carried out on two of the binary PPIs: BnWT:BspWT & GFP:GFP-nb
using HADDOCK on the unbound conformers of the constituent proteins. With a native cut o� of 2.5
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Å, the BnWT:BspWT interaction produced 10 native structures out of 1,000 selected to undergo �exible
re�nement. If the cut o� was raised to 3 Å, this number increased to 26 out of 1,000. When the poses
were visualised in Chimera, we could see that the location on BspWT relative to BnWT was always on
a horizontal plane through the true binding site with no poses found with BspWT on “top” or on “bot-
tom” of BnWT. In comparison the GFP:GFP-nb interaction produced no native poses with the closest
being 7.2 Å from the crystal structure. When looking at the poses in Chimera, we can see that while the
nanobody is mostly on the correct side of GFP, they are rotated at all sorts of angles compared to the
crystal structure, giving rise to the high RMSD values. We a�ributed this to the lack of ”lock and key”
geometry for this complex as well as a lack of localisation of the AIRs for GFP-nanobody. �erefore we
conclude that further optimisation is required before this docking technique can be brought forward
for use with HDXsimulator, however we are con�dent that HDX data has the potential to be capable
of accurately guiding protein-protein docking simulations.

When exploring the boundaries of modelling protein conformation using HDXsimulator, we in-
tended to chart HDXsimulator’s capabilities and limitations to enable us to improve future versions of
the program. A�er much trial and error, we found that the optimal method for error generation was
using HDXsimulator itself with suboptimal scaling factors which produced the correlated AUC and R̂2 values that we were looking for. �e results of our optimisation work tell us that the relationship
between AUC and RMSE/R̂2 is much more complicated than we had initially thought, with hidden
factors challenging our understanding. Protein subsections were shown to have quite di�erent pro�les
from each other, showing that, like with HDXmodeller, data generated for a protein as a whole is not
necessarily representative of its individual constituent parts. It is clear that more work will have to be
undertaken if we are to fully understand this relationship.

�e �nal part of our work was to test HDXsimulator’s ability to determine a protein’s in silico

structure, generated by Rose�a or 3DRobot, as being native or not. �is is accomplished by deriving the
in silico protection factor from 3D structures, a process which has long been of interest to researchers
[29, 30] and has become increasingly popular of late with several di�erent methods being a�empted
[108–112]. For HDXsimulator, we tested both residue-level lnP data on the level of whole proteins and
subsections as well as peptide-level RFU data on the level of whole proteins in order to evaluate which
metrics worked the best.

For whole protein data sets, we found a great variety in terms of the AUC scores that measure
HDXsimulator’s ability to tell native from non-native. Proteins such as BnWT’s Rose�a data set pro-
duced an AUC of 1, meaning that HDXsimulator could accurately classify structures in almost every
case; while proteins such as BspWT’s Rose�a data set produced an AUC of 0.0055, meaning that almost
every structure was misclassi�ed. We found that those AUCs derived from lnP data closely matched
those derived from RFU data in almost all cases.

A similar picture was seen when looking at lnP comparison data for individual protein subsections,
with certain ones being highly conducive to accurate structure classi�cation and others not, even within
the same protein. �ese results highlight the need for the residue-level lnP method we have developed
in this work as this information is lost when only considering whole protein peptide-level RFU data.

Finally, we combined all the AUC scores produced into three data sets: one charting all our RFU
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data for whole proteins, one for lnP data for whole proteins and one for lnP data for protein subsections.
When taken together, the combined whole proteins set on the RFU level produced and AUC score of
0.5923, the combined whole proteins set on the lnP level produced an AUC of 0.5866 and the combined
subsections set on the lnP level produced and AUC of 0.5554. �is indicates that, taking into account all
the data sets, the methodology as it currently stands has an approx. 60 % chance to correctly identify
any given decoy as either native or non-native. At greater then simple random chance, this result is
a positive �rst step towards the accurate determination of in silico protein structure and so backs our
stated goal of leveraging HDX-MS to determine native protein structures.
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6 Discussion

6.1 �e dUTPase : Stl interaction

Mapping the interaction of various dUTPases with their proteinaceous inhibitor Stl was a collabora-
tive project undertaken between the Borysik group and the Vértessy group from the Budapest Univer-
sity of Technology and Economics. �is project utilised the far more traditional use-case of HDX-MS:
locating the site of interaction between a protein and a ligand, in this case another protein. Our over-
arching goal was the investigation of the mechanism by which Stl can inhibit di�erent dUTPases that
share relatively li�le structural or sequence homology, with a key answer to this question being the lo-
cation of binding between the two proteins. �e project was split into two sub-projects: the �rst being
the investigation of the interaction between hDUT and Stl and the second being the investigation of
the interaction of a trimeric and a dimeric dUTPase with Stl.

For the investigation into the hDUT:Stl interaction, HDX-MS was one of a number of analytical
techniques brought to bear, the other major one being SEC-SAXS, to try and elucidate the mechanism
of inhibition. We ran HDX-MS experiments at three di�erent time points: 1 min, 10 mins & 100 mins
on hDUT and Stl complexed with each other as well as the two proteins on their own in order to gener-
ate bound minus unbound di�erence plots to allow quantitative appraisal of the data. Di�erence data
was also mapped onto the structures of the individual proteins to allow qualitative appraisal of the data.

In terms of hDUT, the largest negative ∆mass were found in the region of H34-L50 with other
signi�cant ∆mass seen in the region of the C-terminus. However, these C-terminal mass di�erences
converged more rapidly then those at the N-terminus, implying a weaker interaction. In addition,
residues A89-G110 also showed modest negative ∆mass, suggesting a role in the interaction. In terms
of Stl, a very signi�cant negative ∆mass could be seen localised to a limited number of residues (Y98-
Y113) with more minor changes seen across the whole of the protein, indicating that Stl may undergo
a global decrease in dynamics upon binding to hDUT. �ese results indicate that although binding in
Stl is localised to a very speci�c region, the interaction is propagated across the entire rest of the protein.

When combined with the other biophysical data presented in [79], our experiments provided ad-
ditional and conclusive evidence for the formation of a complex between hDUT and Stl as well as the
location of the interaction. �e regions of signi�cant uptake decrease observed in hDUT overlap with
the �rst three of the �ve conserved motifs found within trimeric dUTPases, providing evidence for
how Stl can bind to and inhibit di�erent trimeric dUTPases which share comparatively li�le sequence
homology. �e C-terminal region of hDUT, which includes the ��h conserved motif, also shows a sig-
ni�cant amount of deuterium uptake decrease upon complexation, however �uctuations of the HDX
rates indicate the interactions involving this segment are weaker and more transient compared to those
of other regions.

Previous work conducted on hDUT had shown that the binding of dUTP and Stl to hDUT are mu-
tually exclusive [74,75]. �is combined with our new locational data enabled a mechanistic model to be
proposed in which Stl is only allowed to manoeuvre into the substrate binding pocket of hDUT if access
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is not hindered by either dUTP or the closed conformation of the �exible motif 5. �e complex of hDUT
and Stl may be further stabilised by motif 5 which is consistent with the decrease in ∆mass observed
in this motif upon complex formation. However, a caveat to this proposal is that, in accordance with
our results, the stabilising e�ect is likely to be transient in nature.

Previous experiments by the Vértessy group as well of those of other collaborators have led to the
theory that the Stl dimer falls apart upon complexation with hDUT, however we saw almost no posi-
tive ∆mass shi�s in the Stl di�erence plot which would support this idea. �erefore we propose that
the dimer interface of Stl might overlap with the Stl:hDUT interaction surface and hence any posi-
tive ∆mass signals are suppressed due to the presence of hDUT in the same location. �is idea was
previously theorised by the Vértessy group [78] and is given more credence by our data as well as a
collaborator’s SEC-SAXS data which utilised our HDX-MS results as restraints.

With our results as a guide, SEC-SAXS has produced a model of the hDUT:Stl complex showing a
stoichiometry of hDUT3Stl3 as well as hDUT3Stl2. A schematic model of hDUT:Stl complex assembly
and Stl-DNA interaction is therefore proposed ( [79] Figure 6 in paper) which explains the data this
collaborative e�ort has gathered. It posits that while the complexation of hDUT to its substrate dUTP
prevents Stl binding and inhibition, the complexation of Stl to its substrate DNA does not prevent hDUT
binding, causing Stl dimer dissociation and the formation of hDUT3Stl3 as well as hDUT3Stl2 complexes.

In conclusion, hDUT has a prominent role in maintaining genome integrity via the conversion
of dUTP to dUMP, thus sanitising the nucleotide pool and preventing the misincorporation of uracil
into DNA. �is essential task has led to the enzyme being considered as a potential target for onco-
therapies and accordingly several small molecular drug targets have been developed to inhibit hDUT
function [80]. In this collaborative study, we set out to understand and document the molecular mech-
anism for the inhibition of hDUT by Stl through the formation of a complex between the two proteins
using a range of biophysical techniques, including HDX-MS. �e present results on the interaction be-
tween hDUT and Stl, including the acquired SEC-SAXS model based on HDX data restraints provide
plausible explanations for the observed mutual inhibition of Stl and hDUT’s physiological function in
their complex. Our HDX results enabled a clear delineation of the peptide segments around the hDUT
active site that are also involved in the binding surface to Stl and this data is consistent with the ob-
served inhibition of hDUT’s enzymatic function, as well as the mutually exclusive contest between
dUTP and Stl to bind to hDUT. Importantly, both conserved motifs 2 and 3 which are have previously
been shown to be involved in dUTP substrate binding are identi�ed by HDX-MS in the current study as
being involved in the interface for Stl binding, validating a hypothesis that had previously been based
only on computational models.

With these results in mind, we argue that proteinaceous inhibition of hDUT by Stl has the potential
to be a powerful tool in the arsenal of researchers investigating the function of dUTPases and sug-
gest further exploitation of Stl as a speci�c inhibitor of dUTPases for therapeutic-based applications. It
should also be noted that as our HDX results elucidate clear Stl peptide segments responsible for the
inhibition of hDUT, the possibility of developing peptide-based inhibitors cannot be underestimated.
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Discussion of the results relating to the interaction of trimeric and dimeric dUTPases with Stl can be

found in the paper in Appendix M.

6.2 Production of barnase and barstar

We decided to produce two of the proteins we would use for the benchmarking of HDXsimulator
in house. Barnase and barstar have long been known to the scienti�c community in the study of pro-
tein folding and as such there is a wealth of literature regarding their structures and kinetics, including
many mutants. We collaborated with the Ikura group from the Tokyo Medical and Dentistry University
who supplied us with plasmids for both barnase and barstar as well as protocols for their production
and puri�cation. We had hoped that this portion of the project would therefore be quite straight for-
ward, however this proved not to be the case and a substantial amount of optimisation was required to
produce and purify enough of each protein to meet our needs.

We believe that the reasons for most the di�culties we faced were twofold: the �rst was the relative
lack of protein production experience on our part compared to the Ikura group, especially experience
relating to these speci�c proteins, and the second was the di�erence in equipment used in our labs com-
pared to theirs. As any experienced researcher can a�est to, over the course of working on a system,
one unconsciously learns and carries out many small steps which do not necessarily make it into a �nal
protocol, but which nevertheless have an impact on the �nal result. �erefore, we can easily see how
a protocol that worked perfectly for one group may be a failure for another. �is is what we believe to
be the primary reason why we had to develop entirely new protocols for both proteins, as detailed in
chapter 4, although of course it is also possible that the initial plasmids may have been faulty or any
number of other possible causes of error.

Eventually we developed the barnase protocol to produce more than enough protein for our needs
and also substantially optimised the barstar protocol, however in the interests of time we contracted
out the �nal part, His tag cleavage, to an outside source. With both proteins in hand, we con�rmed
their identity and successful binding to each other by native MS, in which BnWT (theoretical mass:
12,383 Da) had an experimentally determined mass of 12,384 ± 0.55 Da; BnH102A (theoretical mass:
12,317 Da) had an experimentally determined mass of 12,323.45± 5.44 Da and the BnWT:BspWT com-
plex (theoretical mass: 22,587 Da) had an experimentally determined mass of 22,587 ± 0.02 Da. �ese
experiments are evidence for the correct character of the barnase WT and H102 mutant as well as the
successful binding of the two WT proteins. Native MS was used for these proteins/interaction and not
all proteins/interactions for the sake of expediency: with the conformation of the identity of both in
house proteins, as well as the pWT barstar and the BnWT:BspWT complex, it was deemed likely that
the other proteins/interactions would be of the correct character as well. Given that the identity of the
other proteins could also be con�rmed during the course of our HDX-MS experiments, it was deemed a
be�er use of time to take this route rather then use additional native MS as this way we could kill two
birds with one stone. At this stage we considered the protein production stage of the project to have
been completed successfully and could �nally move on to the collection of novel data.
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6.3 HDX-MS experiments on binary PPI protein complexes

With the requisite proteins produced or otherwise acquired, we moved on to the collection of novel
HDX data which would enable the subsequent benchmarking of HDXsimulator. To that end, for each
binary PPI, we collected HDX pro�les for both proteins in the unbound state as well as the bound state
at 0.25, 1, 5, 25, 120 & 480 minute time points. BEX and IEX were collected for each data set in order to
correct RFU values for extraneous exchange. Corrected RFU pro�les for the individual proteins would
go on to be used to develop HDXsimulator’s ability to classify individual decoy structures, whereas
calculated di�erence plots will see use in the future in developing HDXsimulator’s ability to classify
bound docking poses when that method has been fully developed.

�e corrected peptide-level RFU plots showed that all of the proteins displayed behaviour indicative
of a well-folded protein, with the various time points showing a good spread of RFU values across most
peptides. �is was the single most important aspect we needed to con�rm in order to allow subsequent
comparison against simulated data. �e region from approx. peptides 25-35 in the barstar pro�les that
we had previously identi�ed as being potentially unfolded still displayed some of the same signs: hav-
ing both high RFU values and the time points being relatively close together, however to a much lesser
degree than what we had observed previously. �erefore we were satis�ed that this protein was now
completely folded, an a�ribute further con�rmed by our native MS data of the BnWT:BspWT complex
showing almost no free protein peaks.

�e other salient point to mention with these RFU plots was the low levels of total uptake seen in
some of the data sets. Smaller proteins such as barstar saw the higher time points approaching an RFU
on 1, however in the larger proteins such as GFP, we could see that even the 480 minute time point didn’t
come close to achieving deuterium saturation in the majority of the peptides. Given that this is only
seen in the larger proteins, it is mostly likely that 480 minutes was simply not long enough to achieve
complete deuterium saturation and that longer time points would have seen RFU values approaching 1.

Residue-level quantitative di�erence plots and qualitative coloured structures were constructed in
order to allow us to ascertain the veracity of the interaction between both members of each binary PPI,
the former of which will be used in the future for the classi�cation of docking poses as either native
or non-native. Most data sets show strong uptake di�erences that are spread over a large amount of
the protein’s sequence which makes sense considering that most of the proteins are quite small and
so the interaction surface takes up a large proportion of the total sequence. �is combined with the
comparative low-resolution nature of peptide HDX is why all proteins except GFP see the majority of
their residues above the 99 % CI threshold. �is data is given more support when mapped onto crystal
structures as it can be qualitatively observed that, for each binary PPI, those regions on both proteins
with the highest uptake di�erence are juxtaposed opposite each other in three-dimensional space.

Overall, we are con�dent in the accuracy of our data as a true representation of the interactions be-
tween the proteins involved in the binary PPIs presented in this work. �e RFU plots for each individual
protein do not display any serious irregularities indicative of a fundamental �aw with the proteins and
the combination of native MS data, highly signi�cant di�erence plots and mapped structures all pro-
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vide strong evidence that our assessment of the interactions matches up with the scienti�c consensus.
�erefore we were happy to take all these data sets forward to use as benchmarks for the development
of HDXsimulator.

6.4 Obtaining residue-resolved lnPs using HDXmodeller

Unlike NMR, HDX-MS cannot typically be used to calculate experimental lnPs due to the low-
resolution nature of its data. However thanks to recent advances is methodology as presented in (Salmas
and Borysik, 2020. Accepted for publication), we now have the ability to calculate modelled lnPs from
experimental HDX-MS data using the program HDXmodeller. �e standout feature of the program is
an auto-validation function that takes into consideration the quality of the entire optimisation process
through the use of a covariance matrix over di�erent replicates. Replicates are compared against each
other in a pair-wise manner and their degree of correlation quantitatively assessed through the cal-
culation of an R-matrix score, with high scores indicating high modelling con�dence and low scores
indicating low modelling con�dence. �ere are several factors which are known to a�ect the R-matrix
value and, although a�empts have been made, we have not been able to devise a scoring metric which
can take them all into account and describe how likely any particular data set is to have high con�dence.
Some of these factors include the occupancy of any particular amino acid as well as precise shape of
the peptide map, taking into account speci�c overlaps etc., in addition to the RFU values of the pep-
tides themselves and how closely they match up. For these reasons, it was not possible to predict how
HDXmodeller would react to any particular data set and rules which seemed to apply to one would not
apply for another and so a substantial amount of tweaking was done to each individual data set to try
and get the best results out of it.

We used HDXmodeller to calculate modelled lnPs for our 7 protein data sets: BnWT, BnH102A,
BspWT, BsY29F, GFP, GFP-nb & GFP-nbmin because these values would be needed for use as a com-
parison data set for our residue-level work with HDXsimulator down the line. Modelled lnPs were
calculated for these proteins as a whole as well as for speci�c demarcated subsections in order to see
if any di�erences were visible at a higher resolution view. On the whole protein level, we saw that
all of the data sets had an R-matrix score classifying them as either ”high” (≥ 0.7) or ”fair” (0.50-0.69),
however when we moved to the subsection level we saw considerable di�erences start to emerge that
were not visible in the lower resolution view. Almost every data set contained subsections with R-
matrix scores in the ”low” (< 0.5) category as well as the fair and high categories, indicating that the
program’s con�dence in its modelled lnPs �uctuated dramatically across the sequence of the various
proteins.

Having the ability to demarcate regions which broadly contribute to high scores and those which
broadly contribute to low is a useful analysis tool which we made use of during the HDXsimulator
section of the project. For this, a high resolution view was important because it would enable us to
a�empt to correlate the R-matrix score of HDXmodeller with the AUC score of HDXsimulator for the
same subsections down the line and so allow us to see what, if any, the a�ect high scoring lnPs had on
eventual AUC values. We could therefore make more informed analyses based only on certain parts of
the proteins, whereas we could only speak generally about the protein as a whole if we did not have
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this high-resolution view.

6.5 Molecular Dynamics simulations & protein-protein docking

Before a library of docking poses with which to test HDXsimulator could be generated, we needed
to carry out MD simulations on the bound crystal structures of the proteins utilised in this study. As
there is li�le challenge in docking proteins that are already in the perfect orientation, MD was carried
out in order to relax the protein’s structures and so provide a realistic approximation of what docking
unbound crystal structures or even, later down the line unbound in silico structures determined to be
native by HDXsimulator, would be like.

We used CHARMM-GUI to prepare structures for MD and then ran equilibration and production
runs using NAMD on the individual constituent proteins of each binary PPI as well as the complexes
as a whole. Relaxation was qualitatively judged to have been successfully completed when the RMSD
of subsequent frames plateaued o� when compared to the �rst frame of the simulation. For most of
the proteins this happened very quickly, within a few nanoseconds, however some, most notably the
larger simulations like the bound complexes took substantially longer due to the greater number of
atoms involved.

A�er relaxation, we began to carry out docking simulations using the webserver version of HAD-
DOCK with AIRs generated using the results of our HDX experiments. �ose residues which passed the
99 % CI threshold were marked as signi�cant and de�ned as active restraints with the passive restraints
automatically de�ned in order to guide the simulations toward the native complex structure. Due to
this work taking place chronologically at the end of the project, we did not have time to complete all of
the docking simulations but nevertheless we have learned much from those few we have carried out.
Using a native cut o� of ≤ 2.5 Å, the docking of BnWT:BspWT produced 10 native poses whereas the
the docking of GFP:GFP-nb produced 0 native poses.

When looking at our initial HDX data sets for the BnWT:BspWT interaction, we were worried be-
cause almost every residue exceeded the 99 % CI threshold and so when applying this data to the AIRs
of HADDOCK, it would be the equivalent of not having restraints at all (when everything is signi�cant,
nothing is). �is highlights a key weakness of docking programs such as HADDOCK and PatchDock-
/FiberDock which allow the marking of residues: it is a binary on/o� switch that completely ignores
the complex shape of the HDX data that gave rise to it. Under such a system, a residue that only just
passed the CI threshold is given the exact same weight as a residue that exceeds the CI several times
over, despite the la�er clearly being of greater signi�cance to the interaction than the former. With this
problem in mind, we sought to ameliorate the issue by instead upping our CI threshold to extremely
strict levels and therefore only include those residues which played the greatest part in the interaction
in the AIRs. �is idea was trialled using CI thresholds of 99.9 & 99.95 %. However we found that, con-
trary to what we predicted, these stricter CI thresholds actually made the docking simulations worse
compared to the 99 % CI threshold, not be�er. We suspect that this may have been due to these higher
thresholds omi�ing residues with relatively lower uptake di�erence that are nevertheless important in
the binding interaction and therefore the program is struggling to correctly align the structures. �is
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would certainly explain why the stricter the CI threshold, the worse our results become. �ese results
hint at a potential limitation of using HDX data to mark small proteins such as BnWT & BspWT. Be-
cause the interaction a�ects virtually the whole protein, we are e�ectively not using any restraints and
so are mostly relying on the docking algorithm to correctly align the proteins based on intrinsic factors
of the structures themselves. �erefore the e�cacy of HDX data for use as AIRs in circumstances such
as these should be treated with caution.

GFP:GFP-nb displayed interesting behaviour in as much that it while it produced no native poses
at all, we think the reasons why can be explained by our previous observations of the BnWT:BspWT
docking simulation. �e fact that the only element causing non-native RMSD values was the rotation
of GFP-nb about a single axis shows that when highly speci�c HDX data is used as AIRs, as is the case
with GFP, a very accurate location for the binding partner can be found by HADDOCK. �e problem
lies in the fact that because the data for GFP-nb was not as speci�c, HADDOCK could not decide on
the proper orientation and so it found generating native structures very di�cult. It would have been
bene�cial to our analysis of this problem had one of our binary PPIs been between two larger proteins
of comparable size to GFP with equally speci�c interaction pro�les. We believe that such an interac-
tion would have produced many more native poses than the GFP:GFP-nb interaction as such speci�c
restraints would likely have been able to overcome the lack of shape complimentarity that appears to
have so hindered our docking of GFP:GFP-nb. However, it should be noted that we did not have nearly
as much time to optimise the the docking of GFP and GFP-nb compared to BnWT and BspWT, includ-
ing replicate runs and so it is very possible that with more time we would have been able to produce a
library of GFP:GFP-nb poses with a comparative number of native poses.

With the data from these two simulations in mind, we assert that HDX data has the potential to
be very capable of guiding protein-protein docking simulations, however there are a few caveats that
need to be taken into account. �e capacity to accurately dock structures is diminished the greater a
protein’s surface is covered by the AIRs as each subsequent active/passive marked residue reduces the
comparative weight of the ones that came before until, eventually, the AIRs become meaningless. In
cases such as these, the docking program can only rely on steric characteristics such as protrusions
and hollows which explains why BnWT:BspWT produced a good number of native poses (easily dis-
cernible shape complementarity), whereas GFP:GFP-nb did not (poor shape complementarity between
the structures). Based on the evidence we have accumulated from the two distinct docking simula-
tions a�empted thus far, we propose that the best docking simulations will likely be gained from those
interactions which have both speci�c HDX-generated AIRs and also show good shape complementar-
ity, although of course more data sets will be required to con�rm this. Future researchers using our
methodology will therefore likely be able to predict the e�cacy of a�empts to generate native complex
structures by analysing HDX pro�les of the proteins in the bound con�guration and comparing that to
the unbound structures (either crystal or generated using our decoy method) to see if one or both of
the conditions we set out for successful docking is met.
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6.6 Exploring the boundaries of modelling protein conformation using HDXsimu-
lator

HDXsimulator is a program developed by Ramin Salmas of the Borysik group for the purposes of
calculating residue-level lnP values from three-dimensional structures. Based on the methods of Ven-
druscolo & Paci et al. and Best & Vendruscolo [29, 30], HDXsimulator accepts as input a number of
three-dimensional models such as decoys and returns outputs of calculated lnP and RFU values for
each structure in the decoy set. Calculated lnP is then compared with modelled lnP generated by HDX-
modeller and calculated RFU values with experimentally determined RFUs in order to generate RMSE
metrics for each model. For the purposes of testing, HDXsimulator also compares the three-dimensional
coordinates of the models themselves with a (pseudo) native structure to generate an RMSD metric for
each model. �is allows for quantitative analysis via the construction of a ROC plot, which tests the
programs classi�cation e�cacy i.e. whether a decoy is native or non-native.

We started by mapping the boundaries of modelling protein conformation by HDX-MS using HDXsim-
ulator in order to determine its capabilities and limitations. �is was done by comparing lnP values
calculated using scaling factors (βH & βC) previously determined [30] to be optimal against lnPs that
were deliberately error-laden in order to see the relationship between the AUC score and the RMSE/R̂
2 of the reference data vs. the error data. Our goal in doing this was to help us improve future versions
of the program by having a clear and logical understanding of the factors that in�uence the relationship
between these two factors. Our expectations were to see AUC values decrease as error between origi-
nal and erroneous lnPs/RFUs increased, as represented by the RMSE/R̂2 metric, however this proved
more challenging than we had originally thought. In order to expedite the process of producing data
sets, we developed a pipeline process in order to automate the majority of the data handling using a
combination of Python and Bash scripts. �is allowed us to greatly reduce the time taken to produce
individual data sets as well as reducing the likelihood of user error causing invalid results.

Our concerns about e�ciency proved well founded as we had to trial multiple di�erent error gener-
ation methods until we found one which produced the expected relationship between AUC and RMSE/R̂2. In addition to Gaussian distributions, we also a�empted error introduction via shu�ing of the true
lnP values within the data set, initially within certain limits and then completely randomly, as well as
using HDXsimulator itself to produce the errors. We also enabled the code to consider only certain
parts of the protein data set as we had learned from HDXmodeller that di�erent domains of the protein
o�en behave di�erently. �erefore we reasoned that it would be bene�cial for us to have a higher res-
olution view that we could eventually correspond to the same experimental domains we had identi�ed
as being important in our work with HDXmodeller.

Of these methods, only using HDXsimulator itself with suboptimal scaling factors produced the
expected relationship between the values. We believe this method succeeded where the others failed
because it was the only one that inherently altered the actual method of lnP calculation whereas the
others simply modi�ed true values that had already been calculated. By varying the scaling factors
away from the values previously determined to be optimal, errors were produced that fundamentally
considered the tertiary structure of the decoy which gave rise to them. As the tertiary structure of the
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protein is primarily responsible for determining any given residues lnP, the errors we produced using
this method can be considered an authentic depiction of the decoy’s lnPs, only calculated using a sub-
optimal expression. �erefore it is not surprising that such a method would be able to show a strong
correlation between the AUC value and R̂2 whereas other methods of error generation, which had no
regard for the tertiary structure of the decoys, could not.

�e results of using this method of error generation on di�erent domains of the BspWT Rose�a data
set were interesting because they, like those of HDXmodeller, highlight how distinct tertiary structures
can react di�erently to the same methodology. In our results, we could see that the central domains
of BspWT Rose�a have a comparatively tight correlation between the R̂2 and AUC values, whereas
at the termini, the correlation is noticeably weaker with a far greater range of potential AUC values
that could be generated from any given R̂2 value. �e reason why one particular R̂2 value can give
rise to multiple di�erent AUCs can be deduced when one considers what exactly R̂2 represents: a
single number that a�empts to summarise how a whole protein’s worth of synthetic lnPs compares to
a set of reference values. �erefore we can see that there could be multiple di�erent combinations of
synthetic lnPs that all di�er from each other quite substantially but nevertheless have the same R̂2
vs. the reference data set. �ese disparate synthetic lnPs could therefore lead to very di�erent AUC
values as some of the structures they represent might be very close to the native while others may be
quite dissimilar. �is is a mathematical limitation of using a metric such as R̂2 as it cannot take such
di�erences into account and so reports them as a single value. With this in mind, it makes sense why
we see this behaviour more at the termini compared to the central domains: the decoys have greater
variation at the termini due to less steric clashes, hence the lnPs calculated across these domains will
be more varied than those in the central regions where possible tertiary structure is more restricted.

6.7 Di�erentiating between native and non-native structures using HDXsimulator

6.7.1 Overview

With the our now greater understanding of the capabilities and limitations of HDXsimulator, we
moved on to the most important part of this project: testing the program’s ability to correctly classify
structures from the various decoys sets prepared earlier as being native or non-native. We tested this
classi�cation ability for the 7 whole protein data sets on both the peptide RFU level (as we had done
previously in [31]) as well as on the residue lnP level that had been enabled by the development of
HDXmodeller. Calculated RFU/lnP was compared against experimental RFU/modelled lnP to gener-
ate an RMSE metric which was then compared against the RMSD of the decoys vs. the pseudo-crystal
structure in order to generate an AUC score which described HDXsimulator’s ability to accurately clas-
sify the structures. �e development of modelled lnPs for comparison against calculated lnPs on the
residue-level also enabled us to acquire a much higher resolution view of each protein data set than
was possible before by assessing individual subsections independently of the rest of the protein. �is is
not possible to do with peptide-level data as any peptides bridging between the subsections can carry
in�uence from those other subsections into the one you are looking at, making it impossible to deter-
mine which part of the protein is responsible for those RFU values. �is is not a problem on the level
of residue-resolved lnPs because on the scale of single amino-acids, no bridging between subsections
can occur.
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On the whole protein level, we found that our AUC results for RFU and lnP data were for the
most part fairly congruent with each other for the same protein, which makes sense considering that
that modelled lnP is derived from experimental RFU and calculated RFU is derived from calculated
lnP. However AUC values varied dramatically between di�erent proteins with some data sets such as
BnWT Rose�a having an almost perfect score of 0.9989 whereas others such as BspWT Rose�a had
completely the opposite score of 0.0071.
On the subsection level, we found that, similar to our results with HDXmodeller, there were o�en con-
siderable variations in terms of AUC score within the di�erent subsections of the protein data sets, with
some subsections that were able to be accurately classi�ed and others that were not.
When all our results were pooled together to obtain single AUC scores representing all the data sets on
the level of whole protein RFU, whole protein lnP and subsection lnP, we found that these scores came
to 0.5923, 0.5866 & 0.5554 respectively.

When taken all together, these results are indicative of a method that is still in relative infancy and as
such there are many aspects that will require further investigation. When using a binary classi�cation
method such as ROC curves, AUC values typically range from 0.5, meaning no be�er than guessing, to
1.0, meaning that classi�cation is always correct. However in our results, there are numerous instances
of AUC values falling substantially below 0.5. �is means that for these data sets, the correct classi�ca-
tion is being actively selected against, for example in the case of results for BspWT Rose�a where all
the native poses are in fact being classi�ed by the ROC as non-native. We believe this unusual result to
be a consequence of the manner in which the Rose�a decoy sets were produced as it is only in these data
sets that values so substantially below 0.5 are seen. In these decoy sets, the native structures are a sin-
gle cluster with o�en times a large gap in terms of RMSD between them and the rest of the non-native
decoys. �erefore these native decoys tend to move as a group and so if the calculated RFU/lnP tends
to designate one of them as non-native according to the ROC curve, they are likely to all be considered
non native, hence the extremely low AUC values exhibited by certain data sets. While some values be-
low 0.5 are seen in decoy sets produced by 3DRobot, in which this clustering of the native decoys does
not occur, it is no where near as prominent as that seen for Rose�a. �us it is more likely to be simply
the result of the imbalance between the small number of native decoys and the large number of non-
native decoys and therefore the disproportionate e�ect of one incorrectly classi�ed native decoy has
on the AUC score compared to one incorrectly classi�ed non-native decoy. �is class imbalance a�ects
the Rose�a decoy sets too of course which likely exacerbates the problems brought about by clustering.

In addition to comparing di�erent scoring metrics at varying resolutions, we also wanted to see
if there was any correlation between the R-matrix score, i.e con�dence, of the modelled lnPs and the
AUC value obtained for lnP-level data. �eoretically there should be a degree of agreement between
these two metrics because if inaccurate (low R-matrix) lnPs are used as the “true” values against which
calculated lnP for the native decoys are compared, the RMSE score between them should be quite high,
leading to low AUC values. However, our previous work indicated that having highly accurate lnP data
was not a prerequisite to obtaining high-scoring AUCs (hence our use of the minimalist equation of
Vendruscolo & Paci et al.) and our work here further con�rms this. We found that, on both the whole
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protein level and the subsection level, there was almost no discernible correlation between high or low
AUC values and high or low R-matrix values. For whole proteins, the R-matrix values were relatively
consistent, ranging between 0.645-0.795, yet the AUC values obtained from these same data sets ranged
from 0.0071-0.9989. Individual subsections presented a similar story, for example in the GFP Rose�a
data set, subsection F100-F130 had an R-matrix score of 0.588 and an AUC of 0.8488 whereas subsec-
tion K166-L207 had a relatively similar R-matrix score of 0.661 but a much lower AUC of 0.5613. �is
trend of disconnected R-matrix and AUC values can be seen in the majority of the data sets and, while
the reason why is not particularly clear, we believe it might be due to partially inaccurate lnP mod-
elling/calculation reporting compounding on top of each other to produce results that do not match.
An auto-validation metric for HDXsimulator, similar to that for HDXmodeller, might help alleviate this
problem.

A �nal point to consider when evaluating this data is the nature of the pseudo-crystal structures
we used. For each decoy set generated, the structure with the lowest RMS compared to the crystal
structure was taken and termed the pseudo-crystal structure for purposes of comparison. �is was
necessary because the numbering and exact order of the atoms in the decoys vs. the crystal structure
was completely di�erent, preventing their use with our RMSD calculating script and HDXsimulator.
�ese di�erences are so extreme as to not be easily solvable by .pdb editing programs. �erefore our
only recourse was to use one of the generated structures as a stand in for the real crystal structure
for purposes of analysis, however the veracity of this technique is dependant on how close to the real
crystal structure the pseudo-crystal structure is. We found that, at least for the Rose�a data sets, some
pseudo-crystal structures were very close to the real crystal structure (e.g. BspWT) while others (e.g.
GFP-nb) were substantially further away, as determined by their RMS score as reported by Abinitio.
It is di�cult to quantify what e�ect, if any, the variance of the pseudo-crystal structure from the real
crystal structure had on our AUC results. For example, the BspWT pseudo structure was almost iden-
tical to the real crystal structure and produced terrible AUC results while the GFP-nb pseudo structure
was quite di�erent from the real crystal structure and produced very good AUC results. Regardless,
having these structures di�er is something to be avoided if at all possible as at best it complicates our
analysis and at worst probably causes a certain amount of mis-classi�ed decoys. �is will no doubt be
another problem to overcome in the continued development of HDXsimulator, one that could probably
be ameloriated through increased ab initio sampling and/or data-driven decoy generation.

With the above observations in mind, we believe there are a number of areas of possible improve-
ment which may help to improve HDXsimulator’s ability to accurately classify decoy structures as
being native or non-native. �ese are detailed in the next section.

6.7.2 Recommendations for improving the classi�cation of structures

�e �rst is that, as it currently stands, the methodology is highly decoy-dependent as can seen by
the fact that the decoys produced by Rose�a and 3DRobot were not necessarily be�er or worse than
each other, only di�erent. �is is evident when comparing the two proteins for which we had two decoy
sets as, for BnWT, Rose�a produced superior AUC values while for GFP, 3DRobot produced superior
AUC values. With only a sample size of two di�erent methods, it is not possible to draw de�nitive
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conclusions about what exactly makes for a good decoy set, however we suspect that a likely area of
weakness in both these methods is their ab initio nature leading to a massive over-balance of non-native
structures compared to native ones. Such discrepancies between the numbers of structures that fall into
each class is likely having an e�ect on the AUC. �erefore a method which incorporates experimen-
tal data to guide structure generation, such as docking using HADDOCK (as will be discussed later),
would produce proportionally more native structures and have less class imbalance and so improve the
performance of the ROC curves.

Another point related to the generation of decoys is the number of structures actually produced for
each protein data set. In our current methodology, approx. 1,000 decoys are evaluated for each data
set, but this number is almost certainly too small to fully map the conformational landscape of any of
the proteins we investigated. �is number was chosen for our work for reasons of economy: we had
many such decoy sets to produce and it was unknown at the time what an appropriate number for each
would be, hence we se�led on 1,000 as a compromise between production time and thoroughness. We
predict that had a higher number of structures been chosen, for example 10,000 or even 100,000, we
would see improved results as a greater proportion of the possible conformers would have been sam-
pled. Such numbers would not have been practical for the work conducted here but may be possible
for researchers investigating a single protein.

HDXsimulator itself is of course an area of possible improvement. �e method used in this work to
estimate protection factors from decoys is based on the same method proposed by Vendruscolo & Paci
et al. in 2003 and as such makes use of a simple interpretation of the various factors that contribute to
any given residue’s protection. Such an equation is very useful for high throughput methods such as
ours, however because only two factors, contacts and hydrogen bonds, are considered, it leaves open
the possibility of other potentially important elements being ignored. With this in mind, we are in the
exploratory stage of developing a new approach to estimate protection factors from structures based
on thermodynamic terms. However, our preliminary experiments indicated that this method currently
performs worse than that of Vendruscolo & Paci et al. in terms of the RMSE comparison to modelled
lnPs (data not shown) and it is clear that a considerable amount of work will need to be done before we
can start to seriously consider switching over to this new method.

�e proteins themselves are another important factor when considering the e�cacy of the tech-
nique as presented in this thesis. As can be seen from our results, di�erent proteins (and within the
same protein, di�erent decoy sets) produce very di�erent results from one another, some excellent e.g.
BnWT Rose�a, and some terrible e.g. BspWT Rose�a, and our combined score is of course an amal-
gamation of all these results together. As we were only able to sample 7 data sets during the course of
this work, one bad data set can severely a�ect the score, even though it may be an exception and not a
rule. We could see this clearly when we removed the two worst data sets from the overall calculation
(BspWT Rose�a & GFP Rose�a) and our �nal score of the whole protein lnP data set improved from
0.5866 to 0.6716 (data not shown). �e solution to this problem is of course to increase the number of
data sets analysed to the point where the true trend of AUC values can be seen and it is not in�uenced
by a few erroneous data sets. �is was not practical for us to do during this work as 10s if not 100s of
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data sets from di�erent proteins would be required; however our long-term plan is to turn data acqui-
sition into a community project where researchers from all over the world can submit their HDX data.
�is will allow us to acquire many more data sets then could ever be obtained in-house and will likely
be an integral step to improving the HDXmodeller/HDXsimulator methodologies.

Another source of possible problems which may a�ect the accuracy of HDXsimulator is the exper-
imental HDX data itself. Such data is considered by this methodology to be “true” data and therefore
any deviation away from it is considered to be error and thus the mark of an increasingly non-native
structure. However, as with all experimental data regardless of method or application, this is not neces-
sarily the case and while every e�ort was taken to try and ensure that the experimental HDX acquired
for these proteins was as accurate as possible (replicates, extraneous exchange controls etc.), there is
always the possibility that some parts of some data sets may in fact be “false” and this would of course
a�ect the resultant AUC value/s for those proteins. Biological replicates and replicates run by other
labs using di�erent hardware would be a way of identifying if this had occurred to a substantial degree.
However, from a practical perspective, it took 15+ weeks just to run one set of HDX experiments on all
these proteins and, a�er the aforementioned years spent producing barnase/barstar, we simply did not
have the required time to dedicate to producing biological replicates of every protein data set for com-
parison. Furthermore, because HDX’s primary interest to the scienti�c community is as a di�erence
method, corrected RFU values are rarely reported and so it was not possible to compare our data to
literature values. All of this leaves the possibility that some of our experimental HDX results may have
been partially mistaken, however within the bounds of this project, this was not possible to de�nitively
prove or deny.

Finally, the way in which native/non-native decoys are classi�ed could itself be altered. For ex-
ample, 2.5 Å is commonly used as a cut o� for native structures, hence why we used this value in
our experiments, however this value could be moved depending on how rigid we wanted to be about
the de�nition of the structures. For instance, if we did not need a strictly “native” structure, we could
increase the RMSD cut o� to something higher like 5 Å. �is would give the ROC curve considerably
more leeway in terms of class assignment and so result in a higher AUC, at the cost of structures poten-
tially being less native than before. Another, more substantial change we could look into would be the
method of classi�cation itself. �e current implementation uses ROC analysis, however other classi�ca-
tion methods exist which might potentially be superior for our data sets. For example, Precision-Recall
curves may present a be�er solution than ROC curves because they work be�er on imbalanced data sets
such as ours. Precision-Recall curves summarize the trade-o� between the recall or true positive rate
(the same as ROC curves) and the precision or positive predictive value which is the fraction of positive
results that are true positives as opposed to the false positive rate used by ROC curves. Precision-Recall
curves tend to perform be�er than ROC curves on imbalanced data sets because of the use of true neg-
atives in the ROC curve’s false positive rate which is avoided by Precision-Recall curves.

Overall, we believe that the results presented here for HDXsimulator represent a positive �rst step
upon which a reliable and e�ective method for predicting protein structure can be built. �is method
has not been in development long, with the �rst diagnostic data sets only being recently produced,
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hence why the results are not quite up to the standard where native and non-native decoys can reliably
discriminated. From the data sets produced in this work, we have identi�ed numerous avenues for
improvement that can be explored in the future which have the potential to produce a method that will
be of great bene�t to structural biologists and analytical chemists alike.

6.8 Summary & conclusions

�e work undertaken in this thesis is extensive in its breadth and variety, incorporating a diverse
range of di�erent techniques spanning multiple scienti�c disciplines. From classical biochemical ap-
proaches such as the manipulation of DNA, cell culture and the production of proteins to analytical
chemistry in the form of HDX and native mass spectrometry and even computational chemistry and
computer science techniques such as MD, protein docking and Python programming. �is thesis illus-
trates perfectly the modern trend of science as a multi-disciplinary undertaking, incorporating multiple
di�erent elements from across the spectrum of scienti�c understanding in order to answer ever more
complicated questions.

Before the main project of structure classi�cation began, we �rst worked on determining the loca-
tion of binding between various di�erent dUTPases and Stl for which there were no complex crystal
structures available. Samples of three di�erent dUTPases: human, ϕ11 & ϕNM1 as well as Stl were
received from the Vértessy group and the location of binding determined by HDX-MS. �is informa-
tion was combined with data from other structural techniques in order to develop a model for the
mechanism of inhibition of dUTPase by Stl. We found that in the case of the hDUT:Stl interaction, the
complexation of hDUT to its substrate dUTP prevents Stl binding and inhibition, while the complexa-
tion of Stl to its substrate DNA does not prevent hDUT binding. �is causes Stl dimer dissociation and
the formation of hDUT3Stl3 as well as hDUT3Stl2 complexes. In the case of the interaction of timeric
and dimeric dUTPases with Stl, we found that Stl’s inhibitory plasticity is as a result of di�erent bind-
ing surfaces interacting with timeric and dimeric dUTPases. Upon complexation, the timeric dUTPases
form a dUTPase3Stl3 complex and the dimeric dUTPases form a dUTPase1Stl1 complex.

�e main question we set out to answer with the work undertaken in this thesis was: can an ana-
lytical technique such as HDX-MS be combined with computational chemistry in order to allow the de-
duction of native structures ex nihilo? Initial work carried out [4] set the stage by proving that peptide-
level RFU data calculated from three-dimensional coordinates using the methodology of Vendruscolo
& Paciet al. could be successful in selecting for native structures from a background of non-native ones.
�is was expanded upon in [31] where we quanti�ed this ability to discriminate between native and
non-native structures using calculated vs. experimental RFU data by using a binary classi�cation sys-
tem in the form of ROC curves. �ese initial works identi�ed a number of areas in which the technique
could be improved, and these became the main thrust of the work carried out in this PhD. Our �rst
goal was to expand the list of experimental data sets available for analysis by acquiring HDX data on
more protein systems. Binary PPIs were chosen for this because they would allow collected data sets
to be used both for the individual proteins themselves as well as for the complexes. We leveraged past
experience with protein production in order to produce two of the proteins, barnase and to a certain
extent barstar, in-house and contracted out to specialists to produce the rest. With proteins in hand,
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we carried out extensive characterisation of each system by HDX-MS, looking not only at di�erence
data but also at absolute RFU values corrected for extraneous exchange.

Simultaneously to this acquisition of data, Ramin Salmas developed HDXmodeller to enable the
calculation of residue-level lnP data from peptide-level RFU outputs and HDXsimulator to take advan-
tage of this modelled lnP data and allow structures to be discriminated using residue-level lnP data in
addition to peptide-level RFU data. �is development also enabled higher resolution data acquisition
by allowing protein data sets to be broken down into subsections of any length. An extensive process
to map the boundaries of modelling protein conformation using HDXsimulator was then undertaken
in order determine its capabilities and limitations, followed by production runs of the individual pro-
tein’s data sets in both the original whole protein RFU form as well as the new whole protein lnP and
subsection lnP forms. When data sets were combined, we obtained decent results as determined by
ROC curves of approx. 0.6, meaning that our current methodology can classify protein structures with
60 % accuracy. However importantly, this �gure takes into account several very bad data sets and if
these are excluded, our accuracy increases to approx. 70 %. Using these results, we were able to suggest
several ways in which the methodology could be improved so that future classi�cation accuracy could
approach the level needed for users to be con�dent in its results. Concurrently, we started to develop
the method to work not only on single proteins but also on binary PPIs. We began by conducting MD
experiments on the crystal structures of the binary complexes in order to relax them and so not bias
subsequent docking steps. With this completed, protein-protein docking was carried out on two of the
four binary complexes we would be studying, at which point work on this PhD ceased.

In conclusion, the work conducted in this thesis has laid the groundwork for the eventual devel-
opment of an e�ective technique for determining protein structures from HDX-MS outputs. While the
AUC results for our initial combined data set were lower than we had hoped for, this is not altogether
surprising considering this is a brand-new project that we have had to develop from the ground up.
�ese results are therefore encouraging and leave plenty of opportunity for subsequent development
by others to progress the technique to the point where protein structures can be reliably classi�ed
into native and non-native by their HDX data alone. Furthermore, we have begun the developmental
steps that will be required to enable this methodology to discriminate between native and non-native
complexes as well; further expanding its use cases to include the extremely important class of binary
PPIs. We believe therefore that we have successfully answered the primary research question of this
PhD project, that an analytical technique such as HDX-MS can indeed be leveraged to determine native
protein structures. We anticipate that further improvement of the methodology will be a community
endeavour with data contributions from HDX groups all over the world and that, when su�ciently
developed, this technique will be an invaluable tool for scientists studying proteins for which no ex-
perimental structures exist.

6.9 Future work

As a methodology near the start of its development, there are numerous paths which could be
taken to improve upon what is presented here. Most of these are discussed at length in chapter 6.7.2
and involve the procurement of additional decoy sets from di�erent methods, increasing the number
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of decoys per data set, modifying HDXsimulator so it can predict lnPs with greater accuracy, acquiring
and generating experimental data for additional proteins, producing replicates of HDX data to ensure
validity and, �nally, modifying the method by which class assignment is determined for potentially
be�er accuracy. Beyond making improvements to HDXsimulator, which may take an indeterminate
amount of time, there are also other areas that could be worked on, such as continuing the development
of the binary PPI branch of this thesis so that it can interface with HDXsimulator. �ere is also a lot
of work to be done from a community relations point of view. If we are to acquire the 10s or 100s of
data sets we will need to properly validate the methodology, we will need to make the use of the tools
as simple as possible in order to encourage others to use them. Related to this, we will need to increase
community awareness of our tools, not just through papers but also through conferences.
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Olivér Ozohanics, Károly Vékey, Dmitri I. Svergun, Antoni J. Borysik, and Beáta G. Vértessy.
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Appendices

A E. coli Competent Cells protocol by Promega

Single-Use Competent Cells Standard Transformation Protocol

1. Remove competent cells from –70 ◦C and place on ice for 5 minutes or until just thawed.

2. Add 1–50 ng of DNA (in a volume not greater than 5 µl) to the Competent Cells. Move the pipe�e
tip through the cells while dispensing. �ickly �ick the tube several times. Do not vortex.

3. Immediately return the tubes to ice for 5–30 minutes.

4. Heat-shock cells for 15–20 seconds in a water bath at exactly 42 ◦C. Do not shake.

5. Immediately place the tubes on ice for 2 minutes.

6. Add 450 µl of room-temperature SOC medium to each transformation reaction, and incubate for
60 minutes at 37 ◦C with shaking (approximately 225 rpm). For best transformation e�ciency,
lay the tubes on their sides and tape them to the platform.

7. For each transformation reaction, we recommend plating 100 µl of undiluted cells and 1:10 and
1:100 cell dilutions on antibiotic plates. Incubate the plates at 37 ◦C overnight.

B Miniprep protocol by Qiagen

Protocol: Plasmid DNA Puri�cation using the QIAprep Spin Miniprep Kit and a Microcentrifuge

1. Resuspend pelleted bacterial cells in 250 µl Bu�er P1 and transfer to a microcentrifuge tube. En-
sure that RNase A has been added to Bu�er P1. No cell clumps should be visible a�er resuspension
of the pellet. If LyseBlue reagent has been added to Bu�er P1, vigorously shake the bu�er bot-
tle to ensure LyseBlue particles are completely dissolved. �e bacteria should be resuspended
completely by vortexing or pipe�ing up and down until no cell clumps remain.

2. Add 250 µl Bu�er P2 and mix thoroughly by inverting the tube 4–6 times. Mix gently by invert-
ing the tube. Do not vortex, because this will result in shearing of genomic DNA. If necessary,
continue inverting the tube until the solution becomes viscous and slightly clear. Do not allow
the lysis reaction to proceed for more than 5 min. If LyseBlue has been added to Bu�er P1, the cell
suspension will turn blue a�er addition of Bu�er P2. Mixing should result in a homogeneously
colored suspension. If the suspension contains localized colorless regions, or if brownish cell
clumps are still visible, continue mixing the solution until a homogeneously colored suspension
is achieved.

3. Add 350 µl Bu�er N3. Mix immediately and thoroughly by inverting the tube 4–6 times. To
avoid localized precipitation, mix the solution thoroughly, immediately a�er addition of Bu�er
N3. Large culture volumes (e.g.,≥5 ml) may require inverting up to 10 times. �e solution should
become cloudy. If LyseBlue reagent has been used, the suspension should be mixed until all trace
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of blue has gone and the suspension is colorless. A homogeneous colorless suspension indicates
that the SDS has been e�ectively precipitated.

4. Centrifuge for 10 min at 13,000 rpm (∼ 17,900 x g) in a table-top microcentrifuge. A compact
white pellet will form.

5. Apply 800 µl of the supernatant from step 4 to the QIAprep 2.0 spin column by pipe�ing.

6. Centrifuge for 30–60 s. Discard the �ow-through.

7. Recommended: Wash the QIAprep 2.0 spin column by adding 0.5 ml Bu�er PB and centrifuging
for 30–60 s. Discard the �ow-through. �is step is necessary to remove trace nuclease activity
when using endA+ strains, such as the JM series, HB101 and its derivatives, or any wild-type
strain, which have high levels of nuclease activity or high carbohydrate content. Host strains,
such as XL-1 Blue and DH5α , do not require this additional wash step.

8. Wash QIAprep 2.0 spin column by adding 0.75 ml Bu�er PE and centrifuging for 30–60 s.

9. Discard the �ow-through, and centrifuge at full speed for an additional 1 min to remove residual
wash bu�er. Important: Residual wash bu�er will not be completely removed unless the �ow-
through is discarded before this additional centrifugation. Residual ethanol from Bu�er PE may
inhibit subsequent enzymatic reactions.

10. Place the QIAprep 2.0 column in a clean 1.5 ml microcentrifuge tube. To elute DNA, add 50 µl
Bu�er EB (10 mM TrisHCl, pH 8.5) or water to the center of each QIAprep 2.0 spin column, let
stand for 1 min and centrifuge for 1 min.

C Minimal phosphate media protocol

For 1 L low phosphate media (0.1 mM phosphate), add:
900 ml H2O + 0.4 g casamino acids→ autoclave
100 ml 10 x MOPS
10 ml 20 % glucose
0.1 ml 1 M neutral phosphate bu�er
1 ml 20 mg/ml adenine
50 µl 10 mg/ml thiamine
1 ml 50 mg/ml ampicillin
1 ml 34 mg/ml chloramphenicol

10 x MOPS:
MOPS 0.4 M
Tricine 42 mM
NH4Cl 95 mM
K2SO4 2.8 mM
MgCl2 5.3 mM
NaCl 0.5 M
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CaCl2 5 mM
FeSO4 0.1 M
Adjust to pH 7.4 with NaOH
Filter sterilize and store at 4 ◦C
For 1 L 10 x MOPS, add 10 µl micronutrients before use

Micronutrients for 10 x MOPS:
Ammonium molybdate 3 mM
Cobalt chloride 64 mM
Manganese chloride 80 mM
Boric acid 0.4 M
Copper sulphate 16 mM
Zinc sulphate 11 mM
Filter sterilize and store at 4 ◦C

1 M neutral phosphate bu�er:
Na2HPO4 0.5 M
NaH2PO4 0.5 M
Filter sterilize or autoclave

D �ikChange II Site-Directed Mutagenesis protocol by Promega

Mutant Strand Synthesis Reaction (�ermal Cycling):

1. Synthesize two complimentary oligonucleotides containing the desired mutation, �anked by un-
modi�ed nucleotide sequence. Purify these oligonucleotide primers prior to use in the following
steps (see Mutagenic Primer Design).

2. Prepare the control reaction as indicated below:

• 5 µl of 10× reaction bu�er

• 2 µl (10 ng) of pWhitescript 4.5-kb control plasmid (5 ng/µl)

• 1.25 µl (125 ng) of oligonucleotide control primer #1 [34-mer (100 ng/µl)]

• 1.25 µl (125 ng) of oligonucleotide control primer #2 [34-mer (100 ng/µl)]

• 1 µl of dNTP mix

• 38.5 µl ddH2O (to bring the �nal reaction volume to 50 µl)

�en add:

• 1 µl of PfuUltra HF DNA polymerase (2.5 U/µl)

3. Prepare the sample reaction(s) as indicated below:

• 5 µl of 10× reaction bu�er

• x µl (5–50 ng) of dsDNA template
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• x µl (125 ng) of oligonucleotide primer #1

• x µl (125 ng) of oligonucleotide primer #2

• 1 µl of dNTP mix

• ddH2O to a �nal volume of 50 µl

�en add:

• 1 µl of PfuUltra HF DNA polymerase (2.5 U/µl)

4. Cycle each reaction using the cycling parameters outlined in the following table.

Segment Cycles Temperature Time

1 1 95 ◦C 30 seconds
2 12-18 95 ◦C 30 seconds

55 ◦C 1 minute
68 ◦C 1 minute/kb of plasmid length

5. Adjust segment 2 of the cycling parameters according to the type of mutation desired (see the
following table):

Type of mutation desired Number of cycles

Point mutations 12
Single amino acid changes 16

Multiple amino acid changes 18

6. Following temperature cycling, place the reaction on ice for 2 minutes to cool the reaction to ≤
37 ◦C.

Dpn I Digestion of the Ampli�cation Products:

1. Add 1 µl of the Dpn I restriction enzyme (10 U/µl) directly to each ampli�cation reaction.

2. Gently and thoroughly mix each reaction mixture by pipe�ing the solution up and down several
times. Spin down the reaction mixtures in a microcentrifuge for 1 minute and immediately in-
cubate each reaction at 37 ◦C for 1 hour to digest the parental (ie., the nonmutated) supercoiled
dsDNA.

Transformation of XL1-Blue Supercompetent Cells:

1. Gently thaw the XL1-Blue supercompetent cells on ice. For each control and sample reaction
to be transformed, aliquot 50 µl of the supercompetent cells to a prechilled 14-ml BD Falcon
polypropylene round-bo�om tube.

2. Transfer 1 µl of the Dpn I-treated DNA from each control and sample reaction to separate aliquots
of the supercompetent cells. As an optional control, verify the transformation e�ciency of the
XL1-Blue supercompetent cells by adding 1 µl of the pUC18 control plasmid (0.1 ng/µl) to a 50-
µl aliquot of the supercompetent cells. Swirl the transformation reactions gently to mix and
incubate the reactions on ice for 30 minutes.
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3. Heat pulse the transformation reactions for 45 seconds at 42 ◦C and then place the reactions on
ice for 2 minutes. Note: �is heat pulse has been optimized for transformation in 14-ml BD Falcon
polypropylene round-bo�om tubes.

4. Add 0.5 ml of NZY+ broth preheated to 42 ◦C and incubate the transformation reactions at 37 ◦C
for 1 hour with shaking at 225–250 rpm.

5. Plate the appropriate volume of each transformation reaction, as indicated in the table below, on
agar plates containing the appropriate antibiotic for the plasmid vector.

Reaction type Volume to plate

pWhitescript mutagenesis control 250 µl
pUC18 transformation control 5 µl (in 200 µl of NZY+ broth)

Sample mutagenesis 250 µl on each of two plates
(entire transformation reaction)

6. Incubate the transformation plates at 37 ◦C for >16 hours.

E His-tag cleavage reaction protocol by Invitrogen

Recommended Conditions for Cleavage of a Fusion Protein:

1. Add the following to a microcentrifuge tube:

• Fusion Protein 20 µg

• 20X TEV Bu�er 7.5 µl

• 0.1 M DTT 1.5 µl

• AcTEV Protease, (10 units) 1.0 µl

• Water to 150 µl

2. Incubate at 30 ◦C. Remove 30 µl aliquots at 1, 2, 4, and 6 hours.

3. Add 30 µl 2X SDS sample bu�er (125 mM Tris-HCl, pH 6.8; 4 % SDS; 1.4 M β-mercaptoethanol; 20
% (v/v) glycerol; 0.01 % bromophenol blue). Keep samples at -20 ◦C until experiment is complete.

F Code for synthetic lnP error generation using HDXsimulator

import random
import os

count = 1
while count ¡= 1000:

betac = random.uniform(0.2, 0.5)
betah = random.uniform(1, 3)
os.system(”sed -i s/Betac=.*/Betac=” + str(betac) + ”/ simulator.py”)
os.system(”sed -i s/Betah=.*/Betah=” + str(betah) + ”/ simulator.py”)
os.system(”python3 HDXsimulator.py”)
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os.system(”awk ’–print $6 ’ path/to/output/files* ¿ path/to/new/directory/lnPkobs
-SD-” + str(count))

print(count)
count = count + 1

G Code for the calculation of kobs values

import math
import os
import glob
import shutil

inputlnP = ”path/to/input/file/lnPkobs-*”
inputkint = ”path/to/input/file/kint.inp”

listoffiles = glob.glob(inputlnP)
for filename in listoffiles:
lnP = []
kint = []
with open(filename, ”r”) as f:
lines = f.readlines()
for line in lines:
if line != ”0“n”:
lnP.append(line)

with open(inputkint, ”r”) as ff:
lines = ff.readlines()
for line in lines:
kint.append(line)

with open(filename + ”@out”, ”w”) as fff:
fff.write(”0“n”)

for l, k in zip(lnP, kint):
value = math.exp(float(l))
kobs = float(k)/value
with open(filename + ”@out”, ”a”) as fff:
fff.write(str(kobs) + ”“n”)

destdir = ”path/to/output/files”
for file in glob.glob(”path/to/input/files/*@out”):
shutil.copy(file, destdir)
try:
os.remove(file)

except:
pass

for file in glob.glob(”path/to/output/files/*@out”):
p1, p2, p3 = file.split(”/”)
par1, par2 = p3.split(” ”)
part1, part2 = par2.split(”@”)
os.rename(file, ”path/to/output/files/” + part1)
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H Original barstar protocol by the Ikura group

1. Transformation of E. coli BL32(DE3)/pLysE:

• Add DNA (<50 ng) to each competent cells (∼ 25 µl) on ice

• Mix the contents gently

• Store on ice for 30 mins

• Transfer into a bath preheated at 42 ◦C

• Store for 45 sec

• Rapidly transfer to an ice bath

• Keep on ice for 2 min

• Add 0.5 ml of LB preheated at 37 ◦C

• Incubate at 37 ◦C for 1 h with 200 rpm

• Transfer 100 µl onto agar-plate containing 50 µg/ml Amp & 34 µg/ml Cam

• Incubate at 37 ◦C o/n

2. Preculture:

• Inoculate a single colony into 6 ml of LB containing 50 µg/ml Amp & 34 µg/ml Cam & 1 %
glucose

• Incubate at 37 ◦C o/n with 200 rpm

3. Large scale culture:

• Inoculate 6 ml of the o/n culture into 1 L of 2xYT containing 50 µg/ml Amp & 34 µg/ml Cam

• Incubate at 37 ◦C with 110 rpm

• Add 1 ml of 1M IPTG a�er OD600nm reaches 0.5 (2.5-3.5 h)

• Incubate at 37 ◦C with 110 rpm with 110 rpm for 4h-o/n

• Harvest by centrifugation (4000 rpm and 10 min)

• Store at -20 ◦C

4. Lysis & salting out:

• Resuspend the cells with 50 ml/2L culture lysis bu�er

• Homogenize by homogenizer

• Sonicate with 190 W and 15 min

• Centrifuge for 15 min at 15000 rpm and collect the supernatant

• Add ammonium sulphate up to 40 % at 4 ◦C and mix well

• Centrifuge for 15 min at 15000 rpm and collect the supernatant

• Add ammonium sulphate up to 80 % at 4 ◦C and mix well

• Centrifuge for 15 min at 15000 rpm and collect the pellet
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• Dissolve with 20 ml/2L culture dialysis bu�er

• Dialyze o/n in 2 L of dialysis bu�er

5. Puri�cation – Ion exchange (Q sepharose prep):

• Equilibrate with 3 vol. of starting bu�er at 4 ml/min (150 ml

• Load the sample a�er �ltration

• Wash with 3 vol. of starting bu�er at 4 ml/min (150 ml

• Run with a linear gradient from 0 to 1 M NaCl at 4 ml/min (250 ml

• Collect the elution with 4 ml of fraction size

• Dialysis o/n in 2 L dialysis bu�er

6. Puri�cation – gel �ltrate (superdex G-75 prep):

• Equilibrate with 2 vol. of dialysis bu�er at 3 ml/min

• Load the sample a�er �ltration

• Run with more than 1 vol. of the bu�er at 3 ml/min (350 ml)

• Collect the elution with 4 ml of fraction size

I Original barnase protocol by the Ikura group

1. Transformation of E. coli BL32(DE3)/pLysS:

• Add DNA (<50 ng) to each competent cells (∼ 25 µl) on ice

• Mix the contents gently

• Store on ice for 30 mins

• Transfer into a bath preheated at 42 ◦C

• Store for 45 sec

• Rapidly transfer to an ice bath

• Keep on ice for 2 min

• Add 0.5 ml of LB preheated at 37 ◦C

• Incubate at 37 ◦C for 1 h with 200 rpm

• Transfer 100 µl onto agar-plate containing 50 µg/ml Amp & 34 µg/ml Cam

• Incubate at 37 ◦C o/n

2. Preculture:

• Inoculate a single colony into 6 ml of LB containing 50 µg/ml Amp & 34 µg/ml Cam & 1 %
glucose

• Incubate at 37 ◦C o/n with 200 rpm

3. Large scale culture
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• Inoculate 6 ml of the o/n culture into 1 L of low phosphate media containing 50 µg/ml Amp
& 34 µg/ml Cam

• Incubate at 30 ◦C with 110 rpm

4. Osmotic shock & ion exchange I (SP sepharose):

• Add 55 ml of acetic acid into 1 L culture

• Stir for 15-30 min at 4 ◦C

• Centrifuge for 15 min at 7500 rpm and collect the supernatant

• Load on SP sepharose column (gel vol. = ∼50 ml) at 3 ml/min

• Wash with 3 vol. of sodium acetate (pH 5) at 4 ml/min (150 ml)

• Elute with high-salt bu�er at 4 ml/min and collect the elution with 1000 drops/tube

• Dialyze o/n in 2 L dialysis bu�er

5. Puri�cation – ion exchange II (SP sepharose prep):

• Load sample a�er �ltration

• Wash with 3 vol. of starting bu�er at 4 ml/min (150 ml)

• Run with a linear gradient from 0 to 0.5 M NaCl at 3 ml/min (250 ml)

• Collect the elution with 4 ml of fraction size

J Code for the calculation of Gaussian error lnP values

import numpy as np

stdev = [1, 2, 3, 4, 5, 6]
repeats = 3
inputfile = ”path/to/input/file/lnP.txt”
outputfile = ”path/to/output/files/lnPkobs”

for i in stdev:
data = []
count = 1
while count $¡$= repeats:
with open(inputfile, ”r”) as f:
lines = f.readlines()
for line in lines:
myarray = np.fromstring(line, dtype=float, sep=’,’)
syntherror = np.random.normal(size = 1, loc = myarray, scale = i)
data.append(syntherror)

with open(outputfile + ”-SD%s-%s.txt” % (i, count), ”w”) as ff:
ff.write(”0“n”)

with open(outputfile + ”-SD%s-%s.txt” % (i, count), ”a”) as ff:
np.savetxt(ff, data, newline=”“n”)

del data[:]
count = count + 1
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K Code for the semi-random shu�ling of lnP values

import random

shuffle = [1, 2, 3, 4, 5, 6]
repeats = 3

inputfile = ”path/to/input/file/lnP.txt”
outputfile = ”path/tp/output/files/lnPkobs”
lst = []

with open(inputfile, ”r”) as f:
lines = f.readlines()
for line in lines:
lst.append(line.strip())

for maxdistance in shuffle:
count = 1
while count ¡= repeats:
initialarray = lst
elementtaken = [(i ¡ maxdistance) or i ¿ (len(initialarray) + maxdistance -

1) for i in range(len(initialarray) +
maxdistance * 2)]

result = [0] * len(initialarray)
for i in range(len(initialarray)):

if not elementtaken[i]:
elementtaken[i] = True
result[i] = initialarray[i - maxdistance]
continue

possiblepositions = [position for position in range(i - maxdistance, i +
maxdistance + 1) if not
elementtaken[maxdistance +
position]]

position = random.choice(possiblepositions)
result[i] = initialarray[position]
elementtaken[maxdistance + position] = True

with open(outputfile + ”-SD%s-%s.txt” % (maxdistance, count), ”w”) as ff:
ff.write(”0“n”)

with open(outputfile + ”-SD%s-%s.txt” % (maxdistance, count), ”a”) as ff:
for i in result:
ff.write(str(i) + ”“n”)

count = count + 1

L PAPER: �antitative Evaluation of Native Protein Folds and As-
semblies byHydrogenDeuteriumExchangeMass Spectrometry (HDX-
MS).
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Abstract. Hydrogen deuterium exchange mass
spectrometry (HDX-MS) has significant potential
for protein structure initiatives but its relationship
with protein conformations is unclear. We report
on the efficacy of HDX-MS to distinguish between
native and non-native proteins using a popular
approach to calculate HDX protection factors
(PFs) from protein structures. The ability of
HDX-MS to identify native protein conformations
is quantified by binary structural classification

such that merits of the approach for protein modelling can be quantified and better understood. We show that
highly accurate PF calculations are not a prerequisite for HDX-MS simulations that are capable of effectively
discriminating between native and non-native protein folds. The simulations can also be performed directly on
unique structures facilitating high-throughput evaluation of many alternate conformations. The ability of HDX-MS
to classify the conformations of homo-protein assemblies is also investigated. In contrast to protein monomers,
we show a significant lack of correspondence between the simulated and experimental HDX-MS data for these
systems with a subsequent decrease in the ability of HDX-MS to identify native states. However, we demonstrate
surprisingly high diagnostic ability of the simulated data for assemblies in which a significant proportion of the
individual chains occupy protein-protein interfaces. We relate this to the number of peptides that can sample
alternate subunit orientations and discuss these observations within the larger context of applying HDX-MS to
evaluate protein structures.
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Introduction

Hydrogen deuterium exchange mass spectrometry (HDX-
MS) reports on time-dependent changes in the deuterium

uptake of a protein in D2O solvent with a structural probe at
virtually every amino acid along the protein backbone [1–3].
Despite many advantages of HDX-MS including speed and
sensitivity, the method is normally limited to providing

qualitative insight into protein conformations. Protein struc-
tures are typically required to inform on experimental outputs
but the use of HDX-MS to determine protein structures is
something of a novelty.We recently demonstrated the potential
for simulating the HDX-MS patterns of proteins to elucidate
the structures of hetero-protein assemblies [4]. Here, HDX
protection factors (PFs) were estimated from atomic coordi-
nates and then used to modify the chemical exchange rates of
residues to calculate the isotope uptake of each peptide. The
approach facilitated the high-throughput ranking of docking
poses based on pairwise comparisons with experimental data.
Importantly, it permitted the quantitative discrimination of
different poses without the need for additional processing or
user interpretation.
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doi.org/10.1007/s13361-018-2070-3) contains supplementary material, which
is available to authorized users.
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The potential for determining native protein folds by HDX-
MS is another exciting application of the technique. Accurately
predicting protein exchange rates remains a significant chal-
lenge although the ability of predictive tools to discriminate
between native and non-native folds by HDX-MS has not been
previously investigated or quantified [5–8]. Here, we extend
our previous work on HDX-MS protein modelling to investi-
gate the performance of these methods to identify native pro-
tein folds and the conformations of homomeric protein assem-
blies. We show that the HDX-MS patterns of proteins simulat-
ed directly from their atomic structures are sufficiently accurate
to discriminate between native and non-native protein folds. In
contrast, the simulated HDX-MS profiles of homo-protein
complexes are shown to correspond poorly with their respec-
tive experimental outputs. Surprisingly, the capacity to dis-
criminate between native and non-native quaternary structures
of protein complexes is high for protein assemblies in which
each subunit has multiple interchain contacts. We relate this to
an increase in the number of peptides that can sample alternate
chain orientations in these systems. Taken together, these data
add to our understanding of the use of HDX-MS for structural
evaluation and provide an important foundation on which
future developments in the area can be built.

Methods
Mass Spectrometry

HDX-MS experiments were performed on a Synapt G2Si
HDMS coupled to an Acquity UPLC M-Class system with
HDX and automation (Waters Corporation, Manchester, UK).
Human alpha lactalbumin (Athens Research and Technology
Inc., Athens, USA), enolase from baker’s yeast (Sigma-Aldrich
Ltd., Dorset, UK) and serum amyloid P component (SAP) from
human serum (Merck Chemicals Ltd., Nottingham, UK) were
purchased as lyophilised powder, and barnase was prepared in-
house. The isotope uptake of each protein was determined using
a continuous labelling workflow at 20 °C. Each protein was
dissolved in buffer E (10 mM potassium phosphate pH 7.0) to a
final concentration of 5–10 μM. Isotope labelling was initiated
by diluting 5 μl of each protein into 95 μl of buffer L (10 mM
potassium phosphate in D2O pD 6.6) for various time points.
Aliquots of each reaction were taken and quenched by diluting
in equal volumes of ice-cold 2% formic acid. Human alpha
lactalbumin was quenched in an equal volume of 10 mM phos-
phate buffer containing 0.4 M tris(2-carboxyethyl)phosphine
hydrochloride (Bertin Pharma, Bretonneux, France) and 1.5%
HCl to promote pepsin digestion by reduction of disulphide
bonds and barnase quench solutions contained 4 M urea. Pro-
teins were digested online with a Waters Enzymate BEH pepsin
column at 20 °C. The coverage and redundancy of alpha lactal-
bumin and barnase digestion were enhanced by increasing the
column pressure to 7000 psi with the aid of a back pressure
regulator (Waters Corporation). Peptides were trapped on a
Waters BEH C18 VanGuard pre-column for 3 min at a flow
rate of 200 μl/min in buffer A (0.1% formic acid ~ pH 2.5)

before being applied to a Waters BEH C-18 analytical column.
Peptides were eluted with a linear gradient of buffer B (0.1%
formic acid in acetonitrile ~ pH 2.5) at a flow rate of 40 μl/min.
All trapping and chromatography were performed at 0.5 °C to
minimise back exchange. MS data were acquired using an MSE

workflow in HD mode with extended range enabled to reduce
detector saturation and maintain peak shapes and all labelling
time points were obtained in triplicate. The MS was calibrated
separately against NaI and the MS data were obtained with lock
mass correction using Leu-enkephalin. Peptides were assigned
with the ProteinLynx Global Server (PLGS, Waters Corpora-
tion, Manchester, UK) software and the isotope uptake of each
peptide determined with DynamX v3.0. The isotope uptake of
each peptide was corrected for back/in exchange according to
methods outlined by Zhang [1]. Fully deuterated protein sam-
ples were prepared by dissolving lyophilised samples in buffer
L; each sample was then sterilised using a 0.2-μm syringe filter
prior to incubation at 37 °C for at least 3 weeks. The isotope
uptake of each peptide is reported as the relative fractional
uptake (RFU) which is the observed mass shift of a peptide
normalised to the maximum possible change in mass.

Simulating Protein HDX-MS Patterns

HDX protection factors (PFs) were estimated according to
near-contacts criteria and hydrogen bonding as previously de-
scribed where the protection of residue i (lnPsimi ) is expressed as
the number of heavy atoms (NC

i ) and hydrogen bond acceptors
(NH

i ) within defined distance cutoffs from the backbone amide
each weighted by an empirically determined scaling term (β)
(Eq. 1) [4, 5]:

lnPsimi ¼ NC
i βC þ NH

i βH ð1Þ
When compared to experimental data previously obtained by
NMR, Eq. 1 significantly overestimates the PFs of backbone
amides [9]. To account for this discrepancy, a separate exclu-
sion parameter (excl) was introduced that allowed the outputs
to be rescaled by omitting the contribution of all heavy atoms
from the contact calculations of user-defined residues: where
excl = 0 reports all heavy atoms for PF calculations of residue i;
excl = 1 omits the atoms of residue i; excl = 2 omits the atoms
of residue i and immediately adjacent residues and so on. In
addition to this, a smoothing function was also introduced for
atom counting within the cutoff distance, where dist(h, O) and
dist(n, heavyAtom) are the linear distances relating to the
respective hydrogen bond and contact calculations and hcut
and heavycut are the respective cutoff distances of 2.4 and
6.5 Å (Supporting Information, Fig. S1, Eq. 2) [10]:

lnPsimi ¼ βH
1þ e10dist h;Oð Þ−hcut þ

βC
1þ e5dist n;heavyAtomð Þ−heavycut ð2Þ

PFs were simulated directly from the corresponding crystal
structures (1A4V, 1A2P, 1SAC and 3ENL) with missing struc-
ture built using Modeller [11–15]. In the case of alpha
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lactalbumin, PFs were also calculated from a protein ensemble
generated by molecular dynamics (MS) simulations of 1A4V in
explicit water. MD simulations were performed using the
OPLS/AA force field implemented within GROMACS 4.6.7
[16]. Production MD simulations were carried out at 300 K for
100 ns following energy minimisation and extensive solvent
equilibration. One hundred structures were taken along the
100-ns trajectory and protection factors expressed as the average
values taken across all conformations. Alpha lactalbumin and
barnase decoy sets were prepared using 3DRobot with the output
set to 1000 structures [17]. A range of enolase and SAP decoys
were prepared using a local installation of SymmDock V1.0
without constraints yielding ca. 10,000 and 5000 transformants
for enolase and SAP respectively [18]. Transformants were then
refined on a local installation of SymmRef V1.2 using the
recommended settings to remove steric clashes and allow for
backbone and sidechain flexibility [19].

The simulated PFs were used to generate HDX-MS patterns
of each protein using an in-house script implemented within
MATLAB. In the case of enolase and SAP, the PFs of each
residue were taken as the average across all protein chains. The
code takes as input the protein sequence, experimental peptide
list of a protein and the start and end positions of each peptide
along with the experimental temperature and pD. It then

calculates the intrinsic chemical exchange rates (kint) of each
backbone amide proton according to previously defined near-
neighbour effects using the modified exchange factors for
acidic residues [20, 21]. The intrinsic exchange rates and PFs
are then used to determine the observed exchange rates (kobs)
for each residue according to Eq. 3. The isotope uptake of each
peptide is then calculated from the following polyexponential
function, where Dt is the total number of deuterium atoms
incorporated into the peptide at time t, N is the total number
of exchangeable positions and ki is the observed hydrogen
exchange rate constant of residue i (Eq. 4):

kobs ¼ kint
PF

ð3Þ

Dt ¼ N− ∑
N

i−1
exp −kitð Þ ð4Þ

Proline residues were discounted along with amino-terminal
groups to ensure that the simulated RFU calculations were in
line with experimental outputs processed by DynamX.

Figure 1. Outline of the HDX-MS simulation workflow and analysis: A set of decoys were first prepared for each protein and the
RMSD of each decoy determined by alignment with the native structure. (top row) Five example decoys are shown for alpha
lactalbumin along with their corresponding RMSD. (second row) PFs simulated directly for each decoy according to Eq. 1. (third
row) The PFs were used to modify the chemical exchange rates and the isotope uptake of each residue determined and projected
onto an experimental peptide list to generate a library of simulated HDX-MSprofiles. (fourth row) The library of HDX-MS simulations
was then compared to that of experimental HDX-MS data to obtain the RMSE of each simulation as shown. (bottom row) Prior to
alignment with the simulated HDX-MS data, all experimental outputs were first corrected for extraneous exchange. Following this
process, the simulated HDX-MS profiles were then ranked according to their RMSEwith the experimental outputs and their ability to
identify native structures evaluated based on their performance in binary structural classification
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Expression and Purification of Barnase

Unless stated otherwise, all chemicals were purchased from
Fluorochem Ltd., Derbyshire, UK, Sigma-Aldrich Ltd., Dorset,
UK, or VWR International Ltd., Leicestershire, UK. Overex-
pression of wild-type barnase (Bacillus amyloliquefaciens ri-
bonuclease) was directed from the plasmid pTZ416 under the
control of the alkaline phosphatase promotor and was kindly
provided by Prof Teikichi Ikura (Tokyo Medical and Dentistry
University, Japan) [22]. The plasmid was transformed into
BL21(DE3)pLysS cells and plated onto LB agar plates con-
taining ampicillin (50mg/ml) and chloramphenicol (34mg/ml).
A single colony was used to inoculate 50 ml LB containing
ampicillin and chloramphenicol and incubated overnight at
37 °C with agitation at 220 rpm; 1.2 ml of the pre-culture
was then used to inoculate 200 ml low-phosphate media con-
taining ampicillin and chloramphenicol and incubated over-
night at 30 °C with agitation at 110 rpm. The low-phosphate
media was prepared as follows. For 1 l low-phosphate media,
0.4 g casamino acids was added to 900ml H2O and autoclaved.
To this, 100 ml 10 × concentrate filter sterilised MOPS (3-(N-
morpholino)propanesulfonic acid) was added containing 10 ml
20% glucose, 0.1 ml 1 M neutral phosphate buffer, 1 ml of
20 mg/ml adenine, 50 μl 10 mg/ml thiamine, 1 ml 50 mg/ml

ampicillin and 1 ml 34 mg/ml chloramphenicol. The concen-
trated MOPS buffer contained 0.4 M MOPS, 42 mM tricine,
95 mM NH4Cl, 2.8 mM K2SO4, 5.3 mMMgCl2, 0.5 M NaCl,
5 mM CaCl2 and 0.1 M FeSO4 adjusted to pH 7.4 with NaOH
which was then filter sterilised. Immediately prior to use, 10 μl
micronutrients was added to the MOPS buffer which contained
3 mM ammonium molybdate, 64 mM cobalt chloride, 80 mM
manganese chloride, 0.4 M boric acid, 16 mM copper sulphate
and 11 mM zinc sulphate sterilised by filtration. The 1 M
neutral phosphate buffer contained 0.5 M Na2HPO4 and
0.5 M NaH2PO4 which was then autoclaved. After overnight
incubation, 11 ml acetic acid was added to the cell culture and
left mixing for 20 min at 4 °C to promote the release of barnase
into the media by osmotic shock. The cells were then centri-
fuged at 7500 rpm for 15 min and the supernatant retained for
purification following vacuum filtration through a 0.22-μm
filter. Barnase was then equilibrated against two column
vo lumes of d ia lys i s bu f f e r o f 50 mM Tr i sHCl
(tris(hydroxymethyl)aminomethane hydrochloride) pH 8.0 be-
fore purification by size exclusion chromatography on a
Superdex 75 10/300 GL column (GE Healthcare Life Sciences,
Little Chalfont, UK). The purification and identity of barnase
were confirmed by SDS/PAGE electrophoresis and mass
spectrometry.

Figure 2. Native folds of alpha lactalbumin and barnase investigated by HDX-MS: (a, e) Mirror plots comparing experimental
(positive) and simulated (negative) HDX-MS outputs. Experimental data were acquired at 0.25, 1, 5, 20, 60, 240 and 480 min at
293.15 K (coloured dark blue through red respectively). The pink bars denote the time-averaged difference in RFU between the
experimental and simulated data and are shown to highlight areas of significant change. (b, f) Scatterplot comparing observed and
simulated HDX-MS data of all RFU time points with different labelling times coloured as in (a). (c, g) The relationship between the
RMSE and RMSD of 1000 decoys. The RMSE was calculated by pairwise comparison of the simulated and experimental HDX-MS
data and the RMSD determined by alignment with the crystal structure. (d–h) ROC plots demonstrating the ability of the HDX-MS
simulations to classify protein structures. Decoys with an RMSD ≤ 2.5 Å with the crystal structure were classified as native. Alpha
lactalbumin and barnase data are shown in the upper and lower four figures, respectively
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Evaluation of HDX-MS Simulations to Identify
Native Structures

The ability of the HDX-MS simulations to discriminate be-
tween native and non-native protein structures was quantified
from the associated receiver operator characteristic (ROC)
plots of a binary classification test. The RMSE of each HDX-
MS simulation was obtained by pairwise comparison with the
associated experimental outputs across all peptides and label-
ling time points. The RMSD of each decoy was determined by
alignment with the relevant native crystal structure using the
McLachlan algorithm implemented on a locally installed copy
of ProFit v3.1 with decoys having an RMSD ≤ 2.5 Å classified
as native [23, 24]. A ROC plot was then generated for each
dataset using SigmaPlot 13.0 (Systat Software Inc., London,
UK) and the ability of the HDX-MS simulations to identify
native structures determined from the area under the curve
(AUC) where values > 0.9 were considered excellent, > 0.8
good, 0.6–0.8 poor to fair and below 0.6 failed.

Results and Discussion
Many different methods have been developed to estimate the
HDX behaviour of proteins but the capacity of these ap-
proaches to discriminate between native and non-native states
by HDX-MS has not been previously tested or quantified. The
ability of HDX-MS to identify native protein folds was evalu-
ated with alpha lactalbumin and barnase with the PFs of these
proteins simulated according to Eq. 1 after minor optimisation
(Fig. S1, BMethods^) [5]. The PFs were used to modify the
chemical exchange rates of these proteins from which the
isotope uptake of each residue was determined and projected
onto experimental peptide lists to simulate HDX-MS outputs
(BMethods^). The ability of the HDX-MS simulations to dis-
criminate between native and non-native folds was evaluated
using decoy sets of 1000 different protein conformations.
HDX-MS data was simulated for each decoy generating a
library of HDX-MS profiles which were ranked according to
their correspondence with experimental data obtained in-house
(Fig. 1, BMethods^). A binary classification test was then
performed to evaluate the efficacy to which the HDX-MS
simulations could discriminate between native and non-native
protein folds. The diagnostic ability of the simulated HDX-MS
profiles was quantified from the area under the curve (AUC) of
the associated ROC plots which is a measure of the success rate
of correctly classifying structures selected at random
(BMethods^).

HDX-MS data simulated for the native states of alpha
lactalbumin and barnase correlated surprisingly well with ex-
perimental outputs of the proteins. For alpha lactalbumin, the
experimental and simulated outputs are practically identical
over the first ~ 45 peptides with the accuracy of the simulation
only breaking down marginally toward the C-terminal end of
the protein. The correspondence between the experimental and
simulated data of alpha lactalbumin and barnase is comparable
with respective RMSE of 0.174 and 0.165 RFU (Fig. 2(a, e)).

The simulated RFU of all labelling time points and peptides
agrees well with the experimental data with no significant
discrepancies in the gradient of the fit between these data
(Fig. 2(b, f)). While the native state HDX-MS simulations of
both proteins compare equally well with their respective ex-
perimental outputs, there are significant differences in their
overall diagnostic ability. For a set of 1000 protein decoys,
there are many native (low RMSD) alpha lactalbumin struc-
tures that also yield HDX-MS simulations that align closely
with the experimental outputs (lowRMSE). This contrasts with
the barnase decoy set where the clustering around native struc-
tures that also generates accurate HDX-MS simulations is
qualitatively less apparent (Fig. 2(c, g)). Differences in the
ability of HDX-MS to discriminate between native and non-
native protein folds of these proteins were confirmed from the

Figure 3. peptide maps of alpha lactalbumin and barnase: The
peptide maps of alpha lactalbumin (blue) and barnase (red) that
comprise the HDX-MS data of these proteins are shown along
with the respective number of peptides, coverage and redun-
dancies. The ~ 20 residue region missing from the alpha lactal-
bumin data spans two of the four disulphide bonds of the
protein
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associated ROC plots. The alpha lactalbumin and barnase data
have respective AUC values of 0.96 and 0.85 indicating that
the HDX-MS simulations of alpha lactalbumin are > 3-fold
more likely to correctly identify native and non-native struc-
tures than those of barnase (Fig. 2(d, h)). Differences in the
diagnostic ability of the HDX-MS of these proteins could
reflect variations in the number of peptides that comprise each
dataset. While both proteins have similar chain lengths, the
barnase HDX-MS profile is comprised of around 50% fewer
peptides. Despite a significant region of missing peptides
around two of the disulphide bonds of alpha lactalbumin, the
peptide redundancy is significantly higher for this protein. High
redundancy may enhance the ability of the alpha lactalbumin
HDX-MS data to discriminate between different folds resulting
in the exceptionally high AUC (Fig. 3).

The accuracy of the HDX-MS simulations of these proteins
is remarkable given that the underlying PF estimates correlate
poorly with previously determined experimental values (Fig.
S1). The HDX-MS data were also simulated directly from
crystal structures of the proteins which neglect the ensemble
property of HDX and the understanding that exchange is driven
by protein motion. The coefficients βC, βH (Eq. 1) were previ-
ously found by fitting experimental PFs from a limited number
of proteins to structural ensembles generated by molecular
dynamics (MD) simulations [5]. Surprisingly, however, we

found that PFs simulated from the ensemble average of alpha
lactalbumin corresponded less well with the experimental PFs
of this protein. HDX-MS data simulated from the ensemble
average also compared less well with experimental outputs
(Fig. S2). Overall, PFs simulated from an MD ensemble of
alpha lactalbumin reduced the accuracy of the HDX-MS sim-
ulations. While these results are somewhat unexpected, they
agree with recent observations showing that data simulated
from single structures can improve the correlation with exper-
imental HDX data [25].

We then applied the same approach to characterise the
structures of the homo-protein assemblies enolase and SAP.
Here, we assume the native fold of the proteins and investigate
the ability of the HDX-MS simulations to identify the native
chain organisation. In contrast to the HDX-MS simulations of
the protein monomers, those obtained for the native protein
complexes are characterised by an overall lack of correspon-
dence with their respective experimental outputs (Fig. 4(a, e)).
The HDX-MS simulations fail to broadly capture the experi-
mental data with RMSE for the respective HDX-MS simula-
tions of enolase and SAP of 0.219 and 0.212 RFU. The
correspondence between all peptides and time points is also
asymmetrical with the RFU of the simulations either under or
overestimating the experimental values (Fig. 4(b, f)). Despite
the poor accuracy of the HDX-MS simulations of both protein

Figure 4. Native structures of enolase and SAP investigated by HDX-MS: (a, e) Mirror plots comparing experimental (positive) and
simulated (negative) HDX-MSoutputs. Experimental data were acquired at 0.25, 1, 5, 20, 60, 240, and 480min at 293.15 K (coloured
dark blue through red respectively). The pink bars denote the time-averaged difference in RFU between the experimental and
simulated data and are shown to highlight areas of significant change. (b, f) Scatterplot comparing observed and simulated HDX-MS
data of all RFU time points with different labelling times coloured as in (a). (c, g) The relationship between the RMSE and RMSD for a
range of decoys. The RMSEwas calculated by pairwise comparison of the simulated and experimental HDX-MSdata and the RMSD
determined by alignment with the crystal structure. (d–h) ROC plots demonstrating the ability of the HDX-MS simulations to classify
protein structures. Decoys with an RMSD ≤ 2.5 Å with the crystal structure were classified as native. Enolase and SAP data are
shown in the upper and lower four figures, respectively
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complexes, there are significant differences in their ability to
discriminate between native and non-native structures. The
ability of the enolase simulations to identify native structures
is poor with the associated ROC plot indicating failure with an
AUC of 0.69 (Fig. 4(c, d)). In contrast, however, the ability of
the SAP HDX-MS simulations to correctly classify structures
is extremely high with the AUC if the associated ROC plot
indicating a success rate of 95% (Fig. 4(g, h)).

Given the inaccuracy of the HDX-MS simulations of both
enolase and SAP, the high diagnostic ability of the SAP simu-
lations is unexpected. This is likely attributed to differences in
the number of interchain contacts in these proteins. Whereas a
significant proportion of each SAPmonomer is buried in subunit
interfaces of the pentameric complex, the buried regions of each
enolase chain are limited to a single dimeric interface. Accord-
ingly, the likelihood of peptides probing protein-protein inter-
faces is much higher in SAP such that the HDX-MS outputs of
this complex canmore effectively differentiate between different
chain orientations. To highlight this, HDX-MS data were simu-
lated for both enolase and SAP showing the change in RFU
(ΔRFU) between the native and a non-native protein complex.
As expected, the proportion of each protein chain buried in
protein-protein interfaces is significantly higher in SAP with
the consequence that many more SAP peptides exhibit large
changes in their RFU for the different subunit poses and the
ΔRFU of the SAP peptides is more widespread and pronounced
(Fig. 5). We suggest that the increased number of interchain
contacts in SAP enhances the ability of the HDX-MS simula-
tions of this protein to discriminate between different assembly
structures. High numbers of interchain contacts must therefore
be particularly important for the modelling of homo-protein
complexes by HDX-MS and may in some cases overcome
limitations in the accuracy of the simulated data.

Conclusion
The aim of this work was to quantify the ability of HDX-MS to
discriminate between native and non-native protein conforma-
tions based on a popular approach to estimate PFs from protein
structures. The efficacy of the method was evaluated on the
peptide level using the PF estimates to calculate HDX-MS
outputs of proteins and their assemblies and then comparing
these simulations to experimental data obtained in-house. The
ability of HDX-MS to identify native structures was quantified
based on their performance in binary structural classification to
provide insight into the use of HDX-MS for protein modelling.

We show that HDX-MS data simulated directly from pro-
tein atomic structures can be highly diagnostic for native pro-
tein folds, even when the underlying PFs of these data are
poorly defined. For alpha lactalbumin, PF calculations (lnP)
with an RMSE of only 2.86 over 44 residues were sufficient to
generate HDX-MS outputs capable of discriminating between
native and non-native states with a success rate of > 95% (Fig.
S1). Our data suggest that high-peptide redundancy may be
more important than overall coverage in the ability of HDX-
MS to differentiate between native and non-native structures.
The alpha lactalbumin HDX-MS data significantly
outperformed that of barnase in binary structural classification
despite having a peptide coverage of only 82% compared with
99% for barnase. Although the native state HDX-MS simula-
tions of both these proteins agreed equally well with their
respective experimental profiles, the peptide redundancy of
the alpha lactalbumin data is significantly higher. We propose
that the high-peptide redundancy of the alpha lactalbumin
HDX-MS outputs enhances the capacity of these data to dif-
ferentiate between different folds resulting in the exceptionally
high AUC. Remarkably, protein ensembles were not required

Figure 5. ΔRFU for different chain orientations of enolase and SAP: (a) native (green) and non-native (red) protein-protein interfaces
shown on a single enolase protein chain. Interfacial regions were defined using a 6.5-Å distance cutoff as used in Eq. 1. The plot
shows the ΔRFU between the native and non-native assembly for all peptides. (b) as per (a) but shown for SAP the ΔRFU between
the native and non-native SAP assemblies for all peptides is also shown. Data in the ΔRFU plots reflect the seven different labelling
times from 15 s to 8 h, coloured dark blue to red respectively. Non-native interfaces for both proteins represent assemblies with the
highest RMSD after alignment with the native complex
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for these calculations and even reduced the accuracy of the
simulated protection factors. While this observation contradicts
accepted relationships between protein motions and exchange
behaviour, the capacity to generate accurate HDX-MS data
from unique states is appealing because of the associated
benefits with regard to throughput.

HDX-MS data simulated for homo-protein assemblies com-
pared significantly less well with experimental outputs. This
could be due to significant differences in the HDX behaviour of
protein complexes and the fact that Eq. 1 was never optimised
for use with largemulti-chain proteins. To better understand the
scope of Eq. 1, HDX-MS data were simulated over a range of
different βC, βH weighting values and the outputs compared the
experimental data. While the expression could be marginally
optimised to improve the correspondence between the simulat-
ed and experimental profiles, this did not improve the ability of
the simulations to correctly classify the quaternary conforma-
tions of protein assemblies (Fig. S3). The inability of Eq. 1 to
describe the HDX behaviour of protein assemblies may origi-
nate from more pronounced EX1 exchange in these assemblies
which is not defined by the current approach. However, no
significant EX1 signatures were visible in the experimental
isotope patterns of these proteins suggesting that equilibrium
exchange (EX2) dominates the isotope uptake of these proteins
(data not shown). Interestingly, the HDX-MS simulations of
the pentameric protein assembly SAP were shown to be highly
diagnostic of the native complex in spite of their poor corre-
spondence with experimental data. We suggest that this stems
from a greater number of protein-protein interfaces in this
complex with an associated increase in the number of peptides
available to sample native and non-native chain orientations.
However, this observation also points to a limitation in the
characterisation of homo-protein complexes in that knowledge
of peptide redundancy and coverage in the native interface can
only be had with the aid of a high-resolution structure. This is
not a challenge for hetero-proteins however, as the degree of
peptide sampling in the native interface can be inferred directly
from associated HDX-MS difference data without the need for
any structural reference. Indeed, the ability of HDX-MS to
provide detailed footprinting information on the protein-
protein interfaces of hetero-protein complexes in the absence
of any structural information is one of the major strengths of the
technique.

We have demonstrated that a simple expression used to
calculate protein exchange behaviour is sufficient to simulate
HDX-MS data that can effectively differentiate between native
and non-native protein folds. While these data are limited to a
few selected protein structures and further work is required to
understand the scope of these expressions, they do provide an
important window in the use of HDX-MS for protein model-
ling. Peptide redundancy appears to be more important than
overall coverage for these approaches and a high degree of
interchain contacts is essential for HDX-MS guided modelling
of protein complexes. Future work to characterise and develop
improved expressions for calculating the PFs of proteins from
their atomic structures may unlock previously untapped

potential of HDX-MS in areas such as ab initio protein folding
and high-throughput structure determination. This will require
a greater understanding of the relationship between protein
structure and HDX for which the present work represents a
useful platform.
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Abstract: The dUTPase enzyme family plays an essential role in maintaining the genome integrity
and are represented by two distinct classes of proteins; the β-pleated homotrimeric and the all-α
homodimeric dUTPases. Representatives of both trimeric and dimeric dUTPases are encoded by
Staphylococcus aureus phage genomes and have been shown to interact with the Stl repressor protein of
S. aureus pathogenicity island SaPIbov1. In the present work we set out to characterize the interactions
between these proteins based on a range of biochemical and biophysical methods and shed light on
the binding mechanism of the dimeric ϕNM1 phage dUTPase and Stl. Using hydrogen deuterium
exchange mass spectrometry, we also characterize the protein regions involved in the dUTPase:Stl
interactions. Based on these results we provide reasonable explanation for the enzyme inhibitory
effect of Stl observed in both types of complexes. Our experiments reveal that Stl employs different
peptide segments and stoichiometry for the two different phage dUTPases which allows us to propose
a functional plasticity of Stl. The malleable character of Stl serves as a basis for the inhibition of both
dimeric and trimeric dUTPases.

Keywords: dUTPase; inhibition; interaction surface; Stl staphylococcal repressor

1. Introduction

Infections caused by Staphylococcus aureus are hazardous for both humans and livestock especially
since S. aureus strains develop resistance and adapt to the new hosts rapidly via horizontal gene
transfer (HGT)[1,2]. Highly mobile S. aureus pathogenicity islands (SaPI) play a key role in this process
since they frequently carry genes encoding toxic shock syndrome toxin, staphylococcal enterotoxin B,
and other superantigens [3]. The spread of SaPIs is mediated by the so-called helper phages through
a unique mechanism in which SaPIs residing in the staphylococcal genome replicate autonomously
upon helper phage invasion or prophage activation. Thereafter a specific derepressor protein of the
phage relieve the repression of the genes responsible for SaPI excision, replication, and packaging [4].
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It has been shown that in case of SaPIbov1 pathogenicity island homotrimeric dUTPase enzymes
of specific phages are responsible for the SaPI induction through direct interaction with Stl; the master
repressor protein of the SaPI lifecycle [5,6]. Homotrimeric phage dUTPases share a conserved core and
also frequently contain an approximately 30–40-residue-long, diverse phage-specific insertion. It has
been hypothesized that this phage-specific insert plays an important role in the SaPI induction since
the pH15 phage dUTPase, which lacks this insertion region, cannot function as a SaPI-derepressor [5,7].
However, it has been shown that a mutant ϕ11 phage dUTPase lacking this phage-specific insert also
interacts with the Stl, although it disrupts the Stl-DNA interaction less effectively than the wild-type
protein and has a reduced capacity to induce SaPIbov1 [6–8]. Moreover, it was also reported that
mycobacterial dUTPase lacking the phage specific insert can also bind to Stl in vitro and in vivo [9].
On the other hand, ϕSaov3 and ϕB2 phage dUTPases that contain the same sequence of the insert as
the SaPI inducing dUTPases of phage ϕ11 and 80α, respectively, are not capable of derepression [10].
In addition, it has also been established that neither ϕ11 nor 80α phage dUTPases can bind to the
substrate dUTP and Stl at the same time, suggesting the involvement of the dUTPase active site in the
dUTPase:Stl complex formation [6,7]. The active site of trimeric dUTPases is built up as the following:
A substrate binding pocket is formed by conserved motifs 1,2,4 from one of the protomers and motif 3 of
a second protomer, motif 5 from the third protomer closes the active site upon substrate binding [11,12].
As dUTP hinders dUTPase:Stl complex formation, it was suggested that Stl binds to dUTPase in an
open, substrate-free conformation, while it is unable to bind to dUTPase when the binding pocket
is in closed conformation [6]. It has also been shown that motif 5 has negligible contribution to the
protein–protein interaction in case of ϕ11 phage dUTPase while it has somewhat more pronounced
role in case of 80α phage dUTPase [6,7]. Taking these data together it was appealing to hypothesize
that the substrate binding pocket is directly involved in Stl-dUTPase interaction. Although dUTPase
activity per se is not essential for SaPI mobilization there is evidence that certain mutations of specific
residues in motif 4 and motif 3 influence the SaPI induction capability of 80α phage dUTPase, which
argues that the dUTPase active site has key role in the complex formation with Stl [7,13].

In parallel to these studies it has also been revealed that not only the homotrimeric phage
dUTPases but a homodimeric dUTPase from ϕNM1 phage is also capable to interact with the Stl of
SaPIbov1 [14,15]. Hill et al. provided clear evidence also for the direct interaction of the ϕNM1 phage
dUTPase and Stl [14]. This finding is surprising since homodimeric and homotrimeric dUTPases
share no structural similarity: dimeric dUTPases are all-α helical proteins while trimeric dUTPases
have a β-pleated 3D fold (Figure 1) [12,16,17]. The two active sites of dimeric dUTPases are built
up symmetrically on the interface of the dimer by 5 motifs as one protomer provides motif 1,2,4,5
and the other donates motif 3. Although it has turned out that in case of ϕNM1 phage dUTPase the
enzymatic activity is not essential for SaPI mobilization [15], the two structurally highly different
dUTPase families have only the dUTP binding ability in common, so it is suggestive to speculate on
the role of this region in Stl binding.
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Figure 1. Comparison of homotrimeric and homodimeric phage dUTPases. (a) Structure of the
β-pleated trimeric ϕ11 phage dUTPase (PDB ID 4GV8) protein is represented as cartoon, substrate
analogue dUPNPP shown as sticks with atomic coloring as carbon: magenta, oxygen: red, nitrogen:
blue, phosphorus: orange. (b) An all-α-helical dimeric dUTPase protein of ϕDI Staphylococcal phage
(PDB ID 5MYD, [17]) is represented as cartoon, dUPNPP shown as sticks with atomic coloring as
carbon: magenta, oxygen: red, nitrogen: blue, phosphorus: orange. (c) Close-up representing the
architecture of the trimeric ϕ11 phage dUTPase active site (PDB ID 4GV8 [18], motif 5 is not localized
in the ϕ11 phage dUTPase electron density map, so that is modeled based on the 80α phage dUTPase
structure [PDB ID: 3ZEZ]). Conserved motifs are colored by subunits, substrate analogue dUPNPP
shown as sticks with atomic coloring according to (a). The substrate binding pocket is constituted at the
interface of two subunits by conserved motifs 1, 2, and 4 of one subunit and motif 3 of the other subunit.
Upon dUTP hydrolysis the pocket is closed by motif 5 of the third subunit. (d) Close-up representing
the architecture of the all-α-helical dimeric dUTPase protein of ϕDI Staphylococcal phage (PDB ID
5MYD, [17]). Conserved motifs are colored by subunits, substrate analogue dUPNPP shown as sticks
with atomic coloring according to (a). The substrate binding pocket is located at the dimer interface.

No detailed study is yet available which investigates the peptide segments involved in the
formation of the binding surface of Stl with phage dUTPases of different folds. Furthermore, the large
structural differences between homotrimeric and homodimeric dUTPases poses the question whether
Stl promiscuity is orchestrated by different binding peptide segments of the Stl protein or if dUTPases
present the same binding surface to Stl (potentially comprising the active site where the substrate
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dUTP is accommodated) despite their different folds. This question was also investigated by Bowring
et al. in their study published in 2017 [19] using two truncated Stl constructs: Stl-1-175 and Stl-87-267.
This latter construct with two additional residues (Stl-85-276) was first characterized and termed as
Stl-C-terminal domain in our previous work published in 2015 [20]. Bowring et al. concluded that
these two constructs interact differently with the trimeric ϕ11 phage dUTPase and the dimeric ϕO11
phage dUTPase. We have previously shown that the Stl C-terminal domain binds to the trimeric
ϕ11 phage dUTPase with high affinity compared to the full-length Stl, and also strongly inhibit the
enzymatic activity of the enzyme [20]. The results reported by Bowring et al. [19] were in disagreement
with our previous data [20]; however, the reason for this discrepancy was not addressed in [19].

Herein we set out to explore the binding mechanism of the interaction between homodimeric
and homotrimeric dUTPases and Stl. We also aim to clarify the controversy between our previous
data [20] and the study of Bowring et al. [19]. Based on enzyme inhibition assays, we here show
that homodimeric ϕNM1 dUTPase has similar affinity to Stl as the homotrimeric ϕ11 dUTPase.
We also show that the binding of Stl to the homodimeric ϕNM1 dUTPase results in dissociation of
the homodimer and the formation of heterodimeric Stl:dUTPase assemblies. These events may be
important for dUTPase inhibition given that the active sites of this protein are located in the dUTPase
dimer interface. This is markedly different from the trimeric dUTPases which interact with Stl without
the change of oligomeric state. In order to provide exclusive insight to the structural details of complex
formation, we performed hydrogen deuterium exchange mass spectrometry measurements. This
pioneering technique can reveal information such as the change in H/D exchange rate upon complex
formation [21–23]. If a decrease is observed in a specific area, that region is suggested to be directly
involved in the protein–protein interaction [24,25]. Based on our hydrogen deuterium exchange mass
spectrometry (HDX-MS) results, we identify regions of both Stl and homotrimeric and homodimeric
dUTPase proteins which are involved for complex formation.

2. Materials and Methods

2.1. Cloning, Expression, and Purification of Proteins

TheϕNM1 phage dUTPase (DUTϕNM1, Uniprot ID: A0EWK2, residues 2-178) was amplified from
the pET21A vector provided by the courtesy of Dokland laboratory [14] using 5′-TATTGGATCCATGG
CTAGCACTAACACATTAACA-3′ forward and 5′-GGTCCTCGAGTTACACGTATCCTTTTCCTGCG-3′
reverse primers and cloned to a pGEX-4T-1 vector in frame with the thrombin cleavable amino-terminal
GST tag by using BAMHI and XhoI restriction sites. The resulting construct was validated by sequencing
(Eurofins MWG Operon). DUTϕ11 was expressed from a pET-15b plasmid created by cloning of
the codon-optimized cDNA of DUTϕ11 that was cloned into the vector from Novagen with NdeI
and XhoI restriction sites using the services of Eurofins MWG Operon. A truncated mutant of the
ϕ11 dUTPase lacking the phage specific insert DUTϕ11∆insert and Stl were expressed from constructs
designed earlier [18,26]. Sequences of the proteins are shown in Supplementary Table S1.

Proteins were expressed in E. coli strain BL21 Rosetta (DE3) propagated on Luria–Bertrani broth
till OD600 = 0.6 and then induced with 5 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) for 4 h at
30 ◦C in case of Stl and DUTϕNM1 and 37 ◦C for DUTϕ11 and DUTϕ11∆insert. The cells were then
harvested by centrifugation (30 min 16000g) and stored at −80 ◦C.

Purification of GST-tagged Stl and DUTϕNM1 proteins were carried out as described earlier for
the case of Stl [20]. Briefly, cell pellets were resuspended by Potter–Elvehjem homogenizer in 30 mL
buffer A (50 mL HEPES (pH = 7.5), 200 mM NaCl) supplemented with 2 mM dithiothreitol (DTT),
ca. 2 µg/mL RNase and DNase, and an EDTA-free complete ULTRA protease inhibitor tablet (Roche).
The cell suspension was sonicated (4 × 60 s), and centrifuged (16000g, 30 min). The supernatant
was loaded on a pre-equilibrated benchtop glutathione-agarose affinity-chromatography column (GE
Healthcare) and then the column was washed with ten volumes of buffer A. The GST tag was removed
by overnight on-column cleavage of the fusion-protein by of 80 unit thrombin (GE Healthcare) in
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4 mL buffer A at 20 ◦C. Pure proteins (>95% as verified by SDS gel electrophoresis) were obtained in
the flow-through.

Purification of DUTϕ11 was carried out by NiNTA affinity chromatography and a subsequent gel
filtration as the following: protein was solubilized in 50 mL lysis buffer (50 mM TRIS·HCl, pH = 8.0,
300 mM NaCl, 0.5 mM EDTA, 0.1% Triton X-100, 10 mM 2-mercaptoethanol, 5 mM benzamidine, 1
mM PMSF; ca. 2 µg/mL RNase and DNase and an EDTA-free complete ULTRA protease inhibitor
tablet (Roche)). Following 4 × 60 s sonication, the supernatant from centrifugation (16,000g, 30 min)
was applied onto a Ni-NTA column (Novagen) pre-equilibrated with lysis buffer containing 15 mM
imidazole. After removing the contaminants by washing the column with ten bed volumes of low
salt and high salt buffers (50 mM HEPES pH = 7.5, supplemented with 30 mM KCl or 300 mM KCl,
respectively), DUTϕ11 was eluted with 500 mM imidazole dissolved in low salt buffer. After elution
DUTϕ11 was dialyzed against buffer B (50 mM HEPES, pH = 7.5, 300 mM NaCl, 5 mM MgCl2) and
then gel-filtrated in buffer B on a GE Healthcare S200 Increase 10/300 (24 mL) column.Purity of the
obtained protein preparation was above 95% based on SDS gel electrophoresis results.

Purification of DUTϕ11∆insert was carried out as described earlier [6]. Shortly, protein was
solubilized in the same way as DUTϕ11 in low salt buffer (20 mM HEPES (pH = 7.5), 100 mM NaCl,
5 mM MgCl2, 10 mM 2-mercaptoethanol) supplemented with 2 µg/mL RNase and DNase and one tablet
of Complete ULTRA EDTA-free protease inhibitor. Supernatants were directly loaded on a Q-Sepharose
column (5 mL) equilibrated with low salt buffer and eluted by applying 25 mL of a linear gradient up to
1000 mM NaCl; dUTPase appeared at 0.3–0.5 M NaCl. The second purification step was gel-filtration
performed as in the case of DUTϕ11. The purified DUTϕ11∆insert appeared as single bands of at least
95% purity on SDS-PAGE.

All protein preparations were either used freshly or frozen in liquid nitrogen, and stored at
−80 ◦C in small aliquots. Concentration of the proteins was determined based on the absorbance value
measured at 280 nm by NanoDrop 2000 UV-Vis spectrophotometer using the extinction coefficients
calculated based on amino acid composition (http://web.expasy.org/protparam) (Supplementary
Table S1).

2.2. dUTPase Enzyme Activity Assay

Proton release during the transformation of dUTP into dUMP and PPi was followed using a Jasco
V550 spectrophotometer at 559 nm and 293 K. Reaction mixtures contained DUTϕNM1 dUTPase
enzyme and Stl protein at different concentrations of 0–300 nM in 1 mM HEPES–HCl (pH = 7.5) buffer
containing 5 mM MgCl2, 150 mM KCl, and 40 mM phenol red pH indicator. The reaction was initialized
with 30 mM dUTP after pre-incubation of proteins for 5 min. The initial velocity was determined from
the slope of the first 10% of the progress curve. Quadratic binding equation was fitted to the data.

2.3. Native Gel Electrophoresis

Native gel electrophoresis was performed in 12% polyacrylamide gel. After 1-h pre-electrophoresis
with constant voltages of 100 V in Tris-HCl buffer (pH = 8.7), 15 µL of the premixed samples was
loaded onto the gel and electrophoresed for 1.5 h on 150 V. In order to avoid protein denaturation
the apparatus was cooled on ice during procedure. Gels were stained by Page Blue protein staining
solution (Thermo Fisher). Species and concentrations of monomers are indicated on Figure 2b.

2.4. Chemical Crosslinking

Stl and DUTϕNM1 samples of 20 µM concentration and the dUTPase-Stl mixtures of 1:1 molar
ratio (40 µM total protein concentration) were prepared and incubated for 5 min at 20 ◦C, then 20 mM
disuccinimidyl suberate (DSS) was added to the samples, followed by a further incubation at 20 ◦C
for 1 h. Quenching of the crosslinking reaction was performed by the addition of 5 µL 100 mM
(pH = 7.5) Tris buffer to 40 µL of samples and were analyzed by SDS-PAGE on a 12% gel using Page
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Ruler prestained protein ladder as a molecular weight marker. Gels were stained by Page Blue protein
staining solution (Thermo Fisher).

2.5. Native Mass Spectrometry

For the mass spectrometry measurements of DUTϕNM1 and the DUTϕNM1:Stl complex,
a commercial Waters QTOF Premier instrument equipped with an electrospray ionization source was
used in positive ion mode. The mass spectra were recorded under native conditions, and the mixtures
contained the proteins at concentration of 40 µM in 5 mM NH4HCO3 buffer solution (pH = 8.0). These
conditions allow transfer of the native protein complexes to the gas phase. The capillary voltage was
2600 V, the sampling cone voltage was 128 V, and the temperature of the source was kept at 363 K.
Mass spectra were obtained in the mass range of 1500–6000 m/z.

2.6. HDX-MS

HDX-MS acquisitions were performed on a Synapt G2Si HDMS coupled to an Acquity UPLC
M-Class system with HDX and automation (Waters Corporation, Manchester, UK). The deuterium
uptake of the DUTϕ11, DUTϕNM1, and Stl proteins was determined using a continuous workflow
with labelling taking place at 20 ◦C. Each protein was solubilized in Buffer S (20 mM HEPES, 300 mM
NaCl, 5 mM MgCl2, pH = 7.5) to a working concentration of 10–20 µM. Deuterium labelling was
initiated by diluting 5 µL of each protein sample into 95 µL of Buffer L (20 mM HEPES, 300 mM NaCl,
5 mM MgCl2 in D2O, pD = 7.1). After various incubation times, samples were quenched in Buffer Q
(2.4% formic acid) at 1 ◦C to retard further deuteration or back-exchange and were then digested on-line
with a Waters Enzymate BEH pepsin column at 20 ◦C. Trapping of the peptides occurred on a Waters
BEH C18 VanGuard pre-column for 3 min at a flow rate of 200 µL/min in 0.1% formic acid (pH = 2.5)
before being applied to a Waters BEH C-18 analytical column. Elution of the peptides was achieved
using a linear gradient of Buffer E (0.1% formic acid in acetonitrile, pH = 2.5) at a flow rate of 40 µL/min.
To minimize back-exchange all trapping and chromatography stages of the experiment are performed
at 0.5 ◦C. Determination of the bound HDX profile of each protein was carried out by pre-mixing the
proteins at approximately equimolar concentrations. MS data were acquired using an MSE workflow
in HD mode with extended range enabled to reduce the detector saturation and maintain peak shapes.
Undeuterated reference acquisitions were obtained in sextuplicate for each protein along with labelling
acquisitions of 1, 10, and 100 min, which were obtained in triplicate. The MS was calibrated using NaI
and MS data were obtained with lock mass correction using Leu-enkephalin.

Peptides were assigned with the ProteinLynx Global Server (PLGS) (Waters Corporation,
Manchester, UK) software package, with the deuterium uptake of each assigned peptide being
determined with DynamX v3.0 (Waters Corporation, Manchester, UK). Evaluation of the data fitting as
well as determining the error of each dataset were performed as previously described [27]. The total
∆mass of each peptide was then plotted against the residue position, allowing the generation of “Woods
plots” which describe the ∆mass of each peptide in the bound state [28]. The average ∆mass across
all peptides at each residue was then calculated. Residues with values exceeding the 99% confidence
bands are noted and defined as part of the interaction surface of Stl and phage dUTPases. In all cases
sequence coverage was above 90% and redundancy was above 3.

2.7. Homology Models

In case of Stl the formerly generated and validated Phyre2 model was used [20,26], 3D homology
model of DUTϕNM1 was created also with Phyre2 based on the crystal structure of ϕDI and ϕO11
phage dUTPases (PDB ID: 5MYD, 5MIL) [17,19,29].
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3. Results and Discussion

3.1. Stl Inhibits the Enzymatic Activity of Homodimeric and Homotrimeric dUTPases with Comparable
Inhibition Constant

It has been shown that the homodimeric DUTϕNM1 induces the replication of SaPIbov1 through
complex formation with Stl, and this complex formation also results in the decrease of enzymatic
activity of the DUTϕNM1 enzyme [14]. In the present study we quantitatively analyzed the inhibition
of DUTϕNM1 by Stl (Figure 2a). Based on steady-state enzymatic activity measurements of DUTϕNM1
performed in the presence of Stl of different concentrations, we found that the maximal inhibition
was about 40%, thus half of the original enzymatic activity was retained even at relatively high
concentration of Stl. This markedly differs from the complete loss of dUTPase enzymatic activity
observed upon homotrimeric DUTϕ11-Stl complex formation within the same steady-state assay
conditions [6]. This result on its own does not necessarily implicate weaker binding per se, as for
example in case of competitive inhibition observed for the DUTϕ11-Stl system [6], the extent of
inhibitory effect on enzymatic activity is determined by the dissociation and association kinetics of both
the inhibitor and the ligand. Indeed, the apparent inhibitory constant found in case of the homotrimeric
DUTϕ11 (Ki, app = 27 ± 5 nM, c.f. [6]), is comparable to the data we obtained here for the homodimeric
DUTϕNM1, Ki, app = 34 ± 14 nM (Figure 2a). The exact mechanism of inhibition can only be revealed
by detailed transient kinetic and thermodynamic characterization of the dimerization and substrate
binding of the DUTϕNM1 in the presence and absence of Stl, which was beyond the scope of this study.

3.2. Mechanism of Interaction with Stl is Markedly Different between Homodimeric and Homotrimeric
Phage dUTPases

The stoichiometry of the DUTϕNM1-Stl complex was then investigated using various biochemical
and biophysical assays to critically evaluate and expand the suggestion for the existence of a heterodimer
based on the chemical crosslinking by Hill and Dokland [14]. The proteins were first characterized by
native gel electrophoresis on their own or premixed (Figure 2b). Mixtures of the Stl and DUTϕNM1
proteins represented different ratios of the proteins in the samples (see numbers of ratios and
concentrations of monomers above the specific lanes on Figure 2b). Lanes containing the individual
proteins (either DUTϕNM1 or Stl on their own) show bands corresponding to the homodimeric
assemblies as previously described [6,14]. Upon mixing the two proteins, a new third band clearly
emerged, that was not present in the samples of the individual proteins (highlighted with an arrow on
the figure). The presence of this new band argues for the formation of a DUTϕNM1-Stl complex.

To confirm the complex formation and investigate its stoichiometry, the assemblies were then
investigated by chemical crosslinking (Figure 2c). Previous cross linking experiments have reported
a 1:1 DUTϕNM1-Stl heterodimer [14], although the short spacers (ca. 5 Å) used in these experiments
may have resulted in overrepresentation of these assemblies. We performed the crosslinking of the
proteins by using disuccinimidyl suberate (DSS) which possesses a ca. 11 Å linker distance in order to
identify any higher order complex of DUTϕNM1 and Stl. SDS-PAGE analysis of the individual proteins
after crosslinking resulted in the presence of two bands for each protein with molecular weights
corresponding to those expected for the monomeric and dimeric proteins (Figure 2c). In the premixed
samples containing a mixture of DUTϕNM1 and Stl in 1:1 molar ratio a unique band is present with
a molecular weight (ca. 55 kDa) consistent with that expected for a DUTϕNM1:Stl heterodimer in
accordance with the native gel electrophoresis experiments. As we have not found any other assembly
of higher molecular weight we also concluded that the DUTϕNM1-Stl complex is likely to consist of
one monomer of Stl and one monomer of DUTϕNM1.
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Figure 2. Biophysical characterization of ϕNM1 phage dUTPase-Stl interaction. (a) Enzyme activity of
homodimeric DUTϕNM1 in the presence and absence of Stl (steady-state conditions). The maximal
extent of inhibition was about 40%, the binding is characterized by the apparent inhibitory constant of
Ki, app = 34 ± 14 nM. (b) Native gel electrophoresis of Stl, DUTϕNM1 and the mixture of the two proteins
of various molar ratios, species, and concentrations of monomers are indicated in the figure. Note the
emerging band (indicated by arrow) in the samples containing the mixture of the two proteins that
suggests the formation of an Stl-DUTϕNM1 heterodimer, situated between the bands of the individual
dimeric proteins. (c) SDS-PAGE analysis of Stl, DUTϕNM1, and their mixture after chemical crosslinking
induced by the reagent disuccinimidyl suberate (DSS). The mixture of the untreated proteins was also
loaded on the gel as a control. The band corresponding to the molecular mass of the DUTϕNM1-Stl
heterodimer is denoted with a red star. (d) The native mass spectrum of the DUTϕNM1-Stl mixture.
Peak series with m/z values of 2946 (18+), 3119 (17+), 3315 (16+), 3535 (15+), 3788 (14+) (highlighted
in red) indicate the presence of an assembly associated with the molar mass of 53020 ± 7 Da, which
corresponds to a 1:1 complex of Stl (32.0 kDa) and DUTϕNM1 (21.0 kDa), constituting the DUTϕNM1-Stl
heterodimer (designated as “NM1+Stl” on the figure). Peaks corresponding to DUTϕNM1 monomer
(NM1) and homodimer (NM1+NM1) are also present in the spectrum.

The 1:1 composition of the DUTϕNM1–Stl complex was also confirmed by native mass-spectrometry
measurements (Figure 2d, Figure S1). In the spectrum, the monomer form of the DUTϕNM1 protein
was the most abundant showing a Gaussian-like distribution of the m/z values 1907.934 (+11), 2098.611
(+10), 2331.718 (+9), 2623.025 (+8), 2997.660 (+7), 3497.052 (+6), 4196.261 (+5), 5245.075 (+4) (Figure S1a).
The mass calculated from these MS peaks is 20976 Da, which corresponds to the molar mass of
20976 Da calculated based on amino acid composition of the protein (http://web.expasy.org/protparam)
(Supplementary Table S1). Although less abundant, still the peaks corresponding to a dimer of
DUTϕNM1 were also observable in the spectrum as series of peaks with m/z 3228.073 (+13), 3497.235
(+12), 3814.862 (+11) associated with the molar mass of 41950 Da, well agreeing with the expected 41952
Da for a homodimer of DUTϕNM1 (Figure S1a). New peaks of m/z 2945.7484 (+18), 3118.9684 (+17),
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3314.5295 (+16), 3533.9619 (+15), 3787.103 (+14), 4078.3411 (+13), 4418.1189 (+12), 4819.6745 (+11) were
also emerging in the spectra of the mixture of the DUTϕNM1 and Stl. These peaks are associated with
the molar mass of 53020 Da. This clearly shows that the complex consists of one monomer Stl (32016 Da)
and one monomer DUTϕNM1 (20976 Da), i.e., 1:1 stoichiometry is observed.

In contrast to this, the stoichiometry of the complex resulting from the interaction of the
homotrimeric DUTϕ11 with Stl was found to be 3:2 or 3:3 dUTPase: Stl [6,8], suggesting that DUTϕ11
remains in homotrimeric oligomeric state upon complex formation. Small-angle X-ray scattering
studies suggested that in the trimeric human dUTPase-Stl complex, Stl is present in monomers [26].
Here we observe that in the interaction of the DUTϕNM1 protein with Stl, both proteins dissociate into
monomers and form a heterodimer. These results can provide a possible explanation on the mechanism
of enzymatic inhibition of the DUTϕNM1 protein, since in case of DUTϕNM1, the active site is located
at the dimer interface of the protein (cf. Figure 1), which is likely affected by the Stl binding. It has
been suggested that Stl as other similar repressors binds to its cognate DNA site as a dimer. Complex
formation with either DUTϕNM1 of DUTϕ11 involves monomers of Stl (cf. [6,7,26] and present work),
which provides a potential model for the perturbation of the Stl-DNA complex through dissociation of
the repressor dimers to interact with the derepressor in both types of complexes.

3.3. dUTPase Active Sites are Directly Involved in the Complex Formation with Stl

The protein surfaces responsible for the interaction between DUTϕNM1:Stl and DUTϕ11:Stl
complexes were investigated using hydrogen deuterium exchange mass spectrometry (HDX-MS),
similarly as in a previous study [26]. This method reports on a protonated protein’s time-dependent
uptake of deuterium when dissolved in a fully deuterated solvent, in which changes can be localized to
peptide units across the protein backbone. In binding assays, HDX-MS outputs are typically reported
by changes in the rate of isotope uptake (∆mass) between unbound and bound protein complexes,
yielding characteristic difference plots that provide unique insight into protein–protein interfaces [23].
In the present study, we determined HDX-MS data for all proteins either in isolation or in premixed
samples and then difference plots were prepared by subtraction of the uptake data obtained for
the bound protein complexes from those obtained for the proteins in their unbound conformations
(cf. Methods).

The HDX-MS difference plots of both dimeric and trimeric dUTPases exhibited large changes
in isotope uptake in the presence of Stl consistent with the binding of the inhibitor to these proteins
(Figures 3 and 4). In the case of DUTϕ11, the most conspicuous ∆mass data were observed for peptides
that spanned most of the active site segments as well as the phage specific insert of the protein (Figure 3,
peptide numbering is shown on Figure S2). This indicates the direct involvement of DUTϕ11 active
site in the complex formation with Stl (cf. also Supplementary Figure S3) and is consistent with
previous work showing that the dUTP substrate and the Stl compete for the same binding site [6].
Similar conclusions were drawn for the trimeric human dUTPase by HDX-MS [26] and for the trimeric
dUTPase from E. coli by mutational analysis [30]. So that it seems that Stl may have a uniform binding
mode to the trimeric dUTPases. As it has been shown that the phage specific insert is not essential for
the binding of DUTϕ11 to Stl [8], possibly the interaction of the residues of the insert with Stl is the
consequence of binding of the inhibitor protein to the active site of DUTϕ11. This hypothesis has been
reinforced by the HDX-MS data obtained for a truncated mutant, which lacks the phage specific insert,
DUTϕ11∆insert (Figure S2 and S4–S6). In the experiments with this mutant protein and Stl, the large
∆mass data for the dUTPase active site segments were clearly preserved (cf. Figure S5b).

It is important to note that no significant ∆mass was observed for the DUTϕ11 conserved motif 5.
This finding is also in agreement with the previous results indicating that the truncated mutant of the
DUTϕ11 protein lacking motif 5 was capable of binding to Stl with similar affinity as that of the full
length, wild-type protein [6,7].
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Figure 3. Hydrogen deuterium exchange mass spectrometry (HDX-MS) results for DUTϕ11 upon
mixing with Stl. (a) HDX difference plot showing the ∆mass of each peptide (solid lines) as well as
the average amount per residue (dotted line). The dashed lines represent the 99% confidence bands
evaluated over the whole dataset. (b) X-ray crystal structure (PDB ID 4GV8 [23]) of DUTϕ11 colored
according to HDX-MS difference data following the color gradient shown at the bottom of the panel;
substrate analogue dUPNPP is also shown as black sticks in order to ease visualization of the active
sites (views: top, bottom, sides). Regions which could not be probed by HDX-MS are shown in white.
(c) Sequence of the DUTϕ11 is shown, where the conserved active site building motifs are boxed
and the phage specific insert is underlined with a dashed line. Letter coloring is according to HDX
difference data.

The HDX-MS results for the DUTϕNM1–Stl complexes revealed significantly more complex
binding interaction as compared with the outputs of DUTϕ11-Stl (Figure 4, peptide numbering is
shown on Figure S6). Peptides spanning residues 15–36 and 155–171 of DUTϕNM1 show significant
decreases in ∆mass consistent with the binding of Stl and occlusion of these sites from isotope exchange.
These regions contain active site residues of potential key-importance in enzymatic activity including
Q17, D21 (residues of motif 1 responsible for uracil binding), K159 and R166 (residues of motif 5
responsible for phosphate binding) as determined by sequence alignment against a dimeric dUTPase
with detailed study on the active site [31], and dimeric phage dUTPase structures [17,19] (Figure 4b).
This suggests that part of the active site is directly involved in the protein–protein complex formation,
as these residues of the protein become less accessible to the solvent upon complex formation (cf. also
Supplementary Figure S2). However, we also note here that specific mutation of K159 to alanine did
not abolish DUTϕNM1:Stl complex formation either in vitro or in vivo, thus this residue is not an
essential factor in the protein–protein interaction [15].
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Figure 4. HDX-MS results for DUTϕNM1 upon mixing with Stl. (a) HDX difference plot showing the
∆mass of each peptide (solid lines) as well as the average amount per residue (dotted line). The dashed
lines represent the 99% confidence bands evaluated over the whole dataset. (b) Homology model of
DUTϕNM1 colored according to HDX-MS difference data following the color gradient shown at the
bottom of the panel; substrate analogue dUPNPP is also shown as black sticks in order to ease the
visualization of the active sites (views: top, bottom, sides). Regions which could not be probed by
HDX-MS are shown in white. (c) Sequence of the DUTϕNM1 protein. Conserved active site building
motifs are boxed, letter coloring is according to HDX difference data.

In the presence of Stl, the DUTϕNM1 protein also shows extended regions of positive ∆mass
including peptides covering residues 48–65, 89–97, and 116–129. The results potentially indicate
that these protein regions may become more solvent accessible in the presence of Stl presumably
as a consequence of dimer dissociation as observed in the crosslinking assay, or undergo other
conformational changes. To better understand the significance of these results, the HDX-MS outputs
were mapped onto a 3D homology model of DUTϕNM1 dimer (Figure 4c). According to the analysis
of residue–residue interactions across the dimer interface of the in silico 3D model performed with
DIMPLOT [32], residues 45–58 and 111–124 are located on the dimer interface. Thus, the increase in
H/D exchange rate detected in these regions might correspond to the increased solvent accessibility of
these segments because of the dissociation of DUTϕNM1 homodimer upon complex formation with
Stl. All in all, the native gel electrophoresis, chemical crosslinking, enzyme activity, native MS, and
HDX-MS experiments all support the formation of a heterodimer complex constituting DUTϕNM1
and Stl.

It has been formerly proposed that a short segment with common sequence (GVSS) of the
DUTϕ11 and DUTϕNM1 might have a role in complex formation [15] (cf. also sequence alignment on
Supplementary Figure S9). Although this segment of DUTϕ11 (residues 66–69) showed significant
decrease in H/D exchange rate, the same segment of DUTϕNM1 (residues 83–86) did not present
significant HDX signal upon complex formation, arguing against this hypothesis. Further analysis is
required to decide on the potential role of this segment in complex formation.
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3.4. Different Regions of Stl Mediate the Promiscuity of this Protein for dUTPase Binding

We next compared the different plots of Stl in the presence of the dUTPases representing the
homodimeric and homotrimeric families in order to better understand the interesting capability of
Stl to interact with both types of dUTPases (cf. Figure 5, peptide numbering is shown on Figures S4
and S8). These experiments were also expected to shed light on the contradiction between the data
published by Nyiri et al. in 2015 [20] and Bowring et al. in 2017 [19] for interaction of Stl-C-terminal
domain (Stl-85-267) with DUTϕ11. The HDX-MS outputs revealed dramatically different ∆mass
profiles for Stl, depending on which dUTPase is added. In the presence of DUTϕ11, Stl exhibits
significant negative mass shifts across the protein backbone. This suggests that the binding of Stl to
DUTϕ11 induces a global conformational tightening of the protein and also implies that Stl protein
has a larger conformational space in the absence of dUTPase. In addition to these global changes in
protein conformation, Stl also displays a dramatically pronounced negative mass shift localized to the
protein region of residues ca. 98Y – 113Y (Stl-98-113). This suggests that this region plays a major role
in the interaction of Stl with DUTϕ11. Since this tyrosine-rich region is part of the Stl-85-267 (termed
as Stl-C-terminal domain (or Stl-87-267, termed as Stl∆HTH) truncated constructs, these HDX-MS data
are consistent with our previous results which showed that this truncated Stl construct lacking the
N-terminal 84 residues is fully capable of binding to and inhibiting the enzymatic activity of the
DUTϕ11 enzyme [20]. It is also of interest to point out that the very same peptide segment was
also shown to be similarly involved in the interaction of Stl with human dUTPase, another trimeric
dUTPase [26], strengthening the role of this segment in interactions with representatives from this
family of dUTPases.

As we also showed earlier, the N-terminal 84 residues contains the DNA-binding helix-turn-helix
motif of the repressor protein [20]. So the results presented in this study reinforce the suggestion
that DNA-binding and protein–binding functions of Stl can be associated with different segments of
the protein.

In case of the DUTϕNM1-Stl complex, peptides covering the region of the N-terminal 200 residues
of Stl were identified with no significant HDX change, however peptides from the 60 residue-long
segment situated at the very C-terminal part of the Stl sequence showed pronounced negative signal.
Within the region, the segment of Stl-227-247 shows the largest shifts. On the one hand, these results
are consistent with the former finding that truncation of the N-terminal 84 residues did not perturb the
complex formation between Stl and DUTϕNM1 [15] or Stl and another dimeric phage dUTPase from
phage ϕO11 [19]. On the other hand, these results also clearly delineate the different segments of the
Stl-C-terminal domain that are used by the repressor protein for complex formation with DUTϕ11 and
human dUTPase [26] (homotrimeric dUTPase family) or DUTϕNM1 (homodimeric dUTPase family).
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Figure 5. Experimental results and schematic models showing how the Stl repressor protein of SaPIbov1
interacts with drastically different families of phage dUTPases. (a,d) HDX difference plots showing the
∆mass of each peptide (solid lines) as well as the average amount per residue (dotted lines) of Stl upon
mixing with DUTϕ11 (a) and DUTϕNM1 (d). The dashed lines represent the 99% confidence bands
evaluated over the whole dataset. (b,e) Homology model of Stl colored according to the HDX-MS
difference data obtained upon binding to DUTϕ11 (b) and DUTϕNM1 (e), following the color gradient
shown at the bottom of the panel (views: top, bottom, sides). Regions which could not be probed by
HDX-MS are shown in white. (c,f) Sequence of Stl is shown with letter coloring according to HDX
difference data when bound to DUTϕ11 (c) and DUTϕNM1 (f).
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4. Conclusions

Altogether, our kinetic, cross-linking, native mass spectrometry, and HDX-MS experiments suggest
previously unreported functional plasticity of S. aureus pathogenicity island repressor protein Stl and
revealed new details for a better understanding of the different binding mechanisms of Stl for the
two different phage dUTPases. The HDX-MS experiments shown here suggested highly different
interaction surface of Stl with the dimeric DUTϕNM1 and trimeric DUTϕ11 dUTPases. Native mass
spectrometry data here and in earlier papers [6,26,33] provided direct experimental data for the distinct
Stl-binding mechanisms of the two dUTPase families. The two families of dUTPases have evolved
separately and constitute drastically different protein folds and active site architecture, as reviewed
in [12,34]. It is of interest to consider that Staphylococcal phages encode dUTPase representatives
from both families (cf. [6]and [19]) such that the presence of a dUTPase is a conserved character of
these phages.

Why do phages encode their own dUTPases? A reason for this may arise from the interesting lack
of endogenous dUTPase from S. aureus strains [35]. Since dUTPase is important for preventive DNA
repair [11], phages may increase their chances by encoding their own copy of this important enzyme,
either from the trimeric or from the dimeric dUTPase family. SaPIs on the other hand have evolved
to rely on phages for their life cycle. The Stl repressor of SaPIbov1 has been adapted to interact with
both types of dUTPases that will function as derepressors of Stl function, allowing induction of the
pathogenicity island mobile genetic elements (SaPIs). In this case, the conserved presence of dUTPases
within the phages is also profitable for SaPIbov1. The fact that HDX-MS data showed that different
segments of this Stl repressor target phages encoding different dUTPases underlines the suggestion
that mobile genetic elements may gain benefit from conditions of low dUTP levels to ensure uracil-free
DNA environment. One possible advantage is that the low dUTP level, provided by the dUTPase
enzymatic action, enhances the fidelity of SaPI replication via diminution of the mutation rate [36],
while reducing the potential for the selective evolution of phages to escape SaPI interference in parallel.

It is especially interesting that even if integrated prophages contain the dUTPase gene, the
expression of the protein is most likely being repressed [6]. In some of the S. aureus strains a specific
inhibitor protein of the uracil DNA glycosylase, namely SaUGI presumably moderates uracil excision,
while the survival of other strains is yet unexplained [35,37,38]. It has also been demonstrated that the
prophage free S. aureus RN450 strain, which does not contain the dUTPase gene possesses elevated
genomic uracil content compared to dut+ ung+ bacteria [35]. It seems likely that mobile genetic
elements may encode either dUTPase or SaUGI to escape the damaging uracil-DNA repair, which can
impair their horizontal gene transfer [9]. In addition to this, uracil content of a mobile genetic element
might also prevent its integration into the genome of the new host, as it was recently demonstrated in
the case of human immunodeficiency virus [39,40]. It is also tempting to hypothesize that some SaPIs
recognize phages through dUTPase-Stl interaction, in order to ensure their uracil-free replication [6].
This could have a dual advantage: i) Replicated SaPI genomes are not fragmented by the host repair
mechanism, ii) mutation rate of phages is not elevated by the damaging base excision repair (BER),
which hinder their ability to escape the SaPI interference.

Based on our results Scheme 1 shows a schematic model, which describes the interaction of Stl
with dimeric and trimeric dUTPases.

Stl protein dimerizes in solution and based on the similarity with other repressors and the
symmetry of the specific binding site of the protein within the SaPI DNA, it is assumed that Stl
binds to DNA as dimers (Scheme 1) [26,41]. Interaction of Stl monomers with dUTPases perturbs
the dimerization of the repressor, hence it leads to the dissociation of the Stl-DNA complex. Trimeric
DUTϕ11 dUTPase can form DUT3Stl2 and DUT3Stl3 complexes with Stl, while in the case of dimeric
enzyme DUTϕNM1 the complex is a DUT-Stl heterodimer (Scheme 1) [6,9,26,33]. Based on our results
Stl binds directly to the active site of trimeric dUTPases and it acts as a competitive inhibitor of these
enzymes [6]. As also presented herein, Stl also reduces the enzymatic activity of dimeric dUTPases,
although via a mechanism somewhat different from that observed for the trimeric enzymes. We show
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direct evidence from native mass spectrometry that inhibition of dimeric dUTPases by Stl during
complex formation between the two proteins results from perturbation of the active site architecture,
which resides at the dimer interface of the enzyme.Biomolecules 2019, 9, x 15 of 18 

 

 

Scheme 1. Interaction of the Stl protein with dimeric and trimeric dUTPases. Stl (orange, N-terminus 

is denoted with letter N, C-terminal with letter C) forms dimers in solution and may bind to DNA 

(black) as dimers. Perturbation of Stl dimerization by dUTPases leads to the dissociation of the Stl-

DNA complex. Stl inhibits both the trimeric (light blue triangles) and dimeric dUTPases (dark blue 

rectangles). The inhibition is based on competition between Stl and the substrate, dUTP (black dots) 

in case of the trimeric dUTPases. Stl monomers and dUTPase trimers form DUT3Stl2 and DUT3Stl3 

complexes. We found that the region of residues ca. 98Y – 113Y of Stl protein has a major contribution 

in the interaction of Stl with trimeric dUTPases (cf. also [26]). The substrate binding site of dimeric 

dUTPases, which is located at the dimerization surface of the enzyme, is impaired upon formation of 

a heterodimeric complex of the dUTPase with Stl. This explains the reduction of the enzymatic activity 

of dimeric dUTPases in the presence of Stl. We found that peptides from the 60 residue-long segment 

situated at the very C-terminal part of the Stl sequence play a key role in the heterodimer formation. 

Stl protein dimerizes in solution and based on the similarity with other repressors and the 

symmetry of the specific binding site of the protein within the SaPI DNA, it is assumed that Stl binds 

to DNA as dimers (Scheme 1) [26,41]. Interaction of Stl monomers with dUTPases perturbs the 

dimerization of the repressor, hence it leads to the dissociation of the Stl-DNA complex. Trimeric 

DUT11 dUTPase can form DUT3Stl2 and DUT3Stl3 complexes with Stl, while in the case of dimeric 

enzyme DUTNM1 the complex is a DUT-Stl heterodimer (Scheme 1) [6,9,26,33]. Based on our results 

Stl binds directly to the active site of trimeric dUTPases and it acts as a competitive inhibitor of these 

enzymes [6]. As also presented herein, Stl also reduces the enzymatic activity of dimeric dUTPases, 

although via a mechanism somewhat different from that observed for the trimeric enzymes. We show 

direct evidence from native mass spectrometry that inhibition of dimeric dUTPases by Stl during 

complex formation between the two proteins results from perturbation of the active site architecture, 

which resides at the dimer interface of the enzyme.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1,  

Figure S1: Annotated mass spectra of the mixture of the DUTNM1 (NM1) with Stl (STL) protein (a) and Stl 

protein (b) measured under native electrospray conditions. Figure S2: Coverage map of HDX-MS difference 

plots for DUT11 and DUT11insert upon complex formation with Stl. Figure S3: Active sites of DUT11 and 

DUTNM1 colored according to HDX-MS difference data obtained upon complex formation of those with Stl 

protein. Figure S4: Coverage map of HDX-MS difference plots for Stl upon complex formation with DUT11 

and DUT11insert. Figure S5: HDX-MS difference data obtained for DUT11 and DUT11insert upon complex 

formation with Stl. Figure S6: HDX-MS difference data obtained for Stl upon complex formation with DUT11 

and DUT11insert. Figure S7: Coverage map of HDX-MS difference plots for DUTNM1 upon complex formation 

with Stl. Figure S8: Coverage map of HDX-MS difference plots for Stl upon complex formation with DUTNM1. 

Scheme 1. Interaction of the Stl protein with dimeric and trimeric dUTPases. Stl (orange, N-terminus
is denoted with letter N, C-terminal with letter C) forms dimers in solution and may bind to DNA
(black) as dimers. Perturbation of Stl dimerization by dUTPases leads to the dissociation of the Stl-DNA
complex. Stl inhibits both the trimeric (light blue triangles) and dimeric dUTPases (dark blue rectangles).
The inhibition is based on competition between Stl and the substrate, dUTP (black dots) in case of the
trimeric dUTPases. Stl monomers and dUTPase trimers form DUT3Stl2 and DUT3Stl3 complexes. We
found that the region of residues ca. 98Y – 113Y of Stl protein has a major contribution in the interaction
of Stl with trimeric dUTPases (cf. also [26]). The substrate binding site of dimeric dUTPases, which
is located at the dimerization surface of the enzyme, is impaired upon formation of a heterodimeric
complex of the dUTPase with Stl. This explains the reduction of the enzymatic activity of dimeric
dUTPases in the presence of Stl. We found that peptides from the 60 residue-long segment situated at
the very C-terminal part of the Stl sequence play a key role in the heterodimer formation.
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