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ABSTRACT

The simulation and analysis of the thermal stability of nanoparticles, a stepping stone towards their application in
technological devices, require fast and accurate force fields, in conjunction with effective characterisation methods. In
this work, we develop efficient, transferable, and interpretable machine learning force fields for gold nanoparticles based
on data gathered from Density Functional Theory calculations. We use them to investigate the thermodynamic stability
of gold nanoparticles of different sizes (1 to 6 nm), containing up to 6266 atoms, concerning a solid-liquid phase
change through molecular dynamics simulations. We predict nanoparticle melting temperatures in good agreement
with available experimental data. Furthermore, we characterize the solid-liquid phase change mechanism employing
an unsupervised learning scheme to categorize local atomic environments. We thus provide a data-driven definition
of liquid atomic arrangements in the inner and surface regions of a nanoparticle and employ it to show that melting
initiates at the outer layers.
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INTRODUCTION

Gold (Au) nanoparticles (NPs) find widespread appli-
cation in many technological areas, such as in optics,1,2

nanomedicine,3,4 and catalysis5–9. As all chemo-physical
properties of Au NPs depend on their shape, the analysis of
their structural stability has attracted a lot of attention in the
past years. A deep understanding of the liquid-solid phase
change mechanisms of Au NP, also accounting for surface re-
arrangements, may, in particular, be crucial for catalytic ap-
plications, where the reaction conditions often demand the
nanocatalysts to work at high temperatures while preserving
their size and shape.

Numerical simulations can, in principle, offer a platform
to investigate and characterize phase change mechanisms of
NPs at an atomistic level. However, two long-standing chal-
lenges must be overcome to improve the numerical predic-
tions of NPs’ thermal stability. The first concerns the dif-
ficulty of defining an unbiased characterisation of the phase
change mechanism. Indeed the identification of order parame-
ters to characterise solid-liquid phase changes at the nanoscale
is an active topic of debate with a long tradition.10–13 Widely
used methods often rely on chemical-intuition and heuristic
approaches, and can therefore lead to descriptive order pa-
rameters which are neither fully general nor robust to param-
eter tuning. For example, changes in the first neighbour dis-
tance distribution affect the definition of coordination number

too drastically,14,15 and little research has been carried out on
the characterization of local atomic environments peculiar of
NP’s surface atoms.

The second challenge is related to the development of accu-
rate and fast interparticle potentials, which reproduce the com-
plexity of the NPs’ energy landscape. In so far, atomistic mod-
elling methods have offered a strict trade-off between com-
putational speed and accuracy. While simulations based on
electronic structure methods, such as density functional the-
ory (DFT), provide quantitative accuracy, their computational
cost severely limits the capabilities to generate dynamical tra-
jectories of large systems and for long times. On the con-
trary, large systems and long simulation timescales are easily
accessible when employing semi-empirical potentials. Nev-
ertheless, such methods do not necessarily provide a quantita-
tive insight on the chemistry of NPs’ phase changes16 because
their analytical functional form limits their predictive power
and flexibility. Furthermore, these potentials are often fitted
to bulk properties, which poses an additional limit to their ac-
curacy when simulating nanoscale systems17.

In this work, we tackle these two challenges by adopting
data-driven methods to generate an accurate and efficient de-
scription of interatomic potentials, and by developing an au-
tomated routine that classifies the atomic environments ob-
served during Au NPs’ phase change. To obtain long, i.e.,
hundreds of ns, and accurate trajectories during melting of
Au NPs of variable sizes, we develop a set of machine learn-
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ing force fields (ML-FFs)18–25 using the innovative frame-
work of mapped Gaussian processes26–28. ML-FFs can ap-
proximate the force-energy predictions yielded by the refer-
ence DFT method they are trained upon while being many or-
ders of magnitude faster to compute. Here, we train ML-FFs
on LDA-DFT data, rPBE-DFT data, and contrast our results
with experimental results, and with predictions found using
a semi-empirical interatomic potential. To characterise the
melting kinetics, we adopt an unsupervised machine learn-
ing clustering scheme which discriminates in an automatic
fashion locally liquid from locally solid environments, surface
from inner environments, and high-coordination from low-
coordination surface environments. We then obtain a route
to estimate the NPs melting temperature by monitoring the
relative population of liquid atoms in the nanoparticle, and
the melting mechanism by recording the spatial distribution
of locally liquid environments as a function of temperature.
We employ these data-driven tools to study the melting of Au
NPs with diameters between 1 and 6 nm, and various initial
geometrical shapes. We univocally show that melting initiates
in the outermost layer of Au NPs first, and occurs in the NPs’
core second.

RESULTS

Machine Learning Force Fields

To construct a training database, we extract 7 random de-
correlated frames from ab initio molecular dynamics trajecto-
ries where an Au NP containing 309 atoms (∼2 nm of di-
ameter) with an initial face centred cubic (FCC) morphol-
ogy undergoes melting. We calculate, for each frame, forces
and energies at DFT LDA and DFT GGA-rPBE levels, and
utilize a 2+3-body mappable Gaussian process regression
framework26,27 to fit two ML-FFs, one for each DFT method;
further detail is provided in the Methods and in the Supple-
mentary Methods. When training on 2100 local atomic envi-
ronments, our ML-FFs incur in a mean absolute error (MAE)
on the force components of 0.09 ± 0.04 eV/Å (LDA ML-
FF) and 0.07 ± 0.03 eV/Å (rPBE ML-FF), and in a MAE
on the atomic energy differences of 2.65 ± 2.02 meV/atom
(LDA ML-FF) and 1.98 ± 1.76 meV/atom (rPBE ML-FF),
on validation sets disjointed from the training sets. The re-
ported accuracy is comparable to the ones quoted in previous
studies29–35, and is deemed satisfactory. This training dataset,
albeit small, contains a heterogeneous set of local atomic en-
vironments, as shown in Supplementary Figure 1; and we,
therefore, consider it to be representative for Au NPs in the
size range of interest.

We test the accuracy of the two ML-FFs on a more complex
dataset, which encompasses NPs’ architectures of different
sizes and shapes (see Supplementary Methods). Supplemen-
tary Table 1 reports the mean absolute errors (MAEs) on force
components and atomic energies incurred by each of the ML-
FFs developed on these validation datasets. The MAEs on
force components are again consistently around 0.1 eV/Å, and
the MAEs on atomic energy differences are consistently lower

than 10 meV/atom. The ML-FFs are, therefore, considered
accurate enough and, more importantly, transferable across
different NPs’ sizes and shapes. This holds regardless of the
DFT level of theory used to train the ML-FF (GGA PBE and
LDA) and its implementation (VASP projector augmented-
wave and CP2K Gaussian plane wave).

When validating the ML-FFs against the experimental bulk
cohesive energy (Supplementary Figure 4), we observe that
LDA (rPBE) based ML-FF overestimates (underestimates)
this quantity. We then adopt a parametric mixing of the two
ML-FFs (see also the Methods section) and generate a third
ML-FF, labelled hybrid, which, by construction, has cohesive
energy in the bulk phase that matches the experimental one.
The 2- and 3-body FFs forming the three ML-FFs present
some noticeable differences; in Supplementary Figure 5 we
show how the LDA ML-FF is more bound and stiffer than the
rPBE ML-FF, and how the hybrid ML-FF has, as expected, a
shape that is in-between the one of the other two ML-FFs.

Phase Change Characterization

Following the successful training and validation of our ML-
FFs, we employ them to study the size-dependent melting
temperature of Au NPs. We consider NPs whose diame-
ter ranges from 1 to 6 nm, corresponding to NPs contain-
ing 147, 309, 561, 923, 2869, and 6266 atoms. We sample
the NPs’ evolution in a temperature range between 400K and
1600K when subject to a heating rate of 20 K/ns. We also test
5 K/ns and 10 K/ns heating rates and do not observe signifi-
cant changes in the melting temperature estimate (see Supple-
mentary Figure 6). For each NP size and ML-FF, we simulate
Au NPs for a total of 2.4 ms, a time-length not accessible to
electronic structure calculations, even for the largest state-of-
the-art computational facilities. We refer the interested reader
to the Methods section for further details on the numerical
setup used to perform the simulations.

To characterize the solid-liquid phase transition, while dis-
tinguishing between surface and inner melting, we adopt an
unsupervised machine learning approach that hinges on a
small database of configurations randomly extracted from the
phase change trajectories we simulated and a local atomic
density representation. In particular, we employ a modi-
fied version36 of the 3-body local atomic cluster expansion
descriptor37 to associate a 40-dimensional set of features to
each atom. We then exploit a hierarchical k-means cluster-
ing scheme to isolate six classes of local atomic environments
(see also the Methods and Supplementary Methods). This la-
bels the local atomic environments as being in solid or liquid
phase, and as belonging to the inner, high-coordination sur-
face, and low-coordination surface motifs. As illustrated in
panels b and c of Figure 1 and Supplementary Figures 6 and
13, both the number of nearest neighbours (#NN) within a pre-
defined cut-off and the nominal MD simulation temperature at
which these are sampled, correlate with the labels assigned by
the clustering algorithm.

The six local atomic environment classes showcased in Fig-
ure 1 and Supplementary Figures 8 and 9, can be characterised
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FIG. 1. Features of the six classes of local atoms environments identified through clustering.Visualization of the hierarchical k-means
clustering results for MD simulations of Au nanoparticles with 147, 309, 561, 923, 2869 and 6266 atoms, carried out using the ML-FF trained
on rPBE-DFT data. Panel a: 1st and 2nd component (x- and y-axis) of the t-sne projection of the atomic expansion coefficients of 104 local
atomic environments randomly sampled from melting MD simulations. The colours label the six classes assigned by the hierarchical k-means
clustering algorithm, as defined in the main text. The normalized average pair-distance distribution function (PDF) belonging to each class is
shown and coloured accordingly. Panels b and c: same t-sne projection as in panel a). In panel b, the colours indicate the nominal simulation
temperature at which the local atomic environment was taken from, in panel c, the number of nearest neighbours (#NN) computed using a
cut-off of 3.6 Å.

from the number of neighbours within a given cut-off (here
taken as 3.50 Å for the LDA ML-FF, 3.75 Å for the rPBE ML-
FF, and 3.60 Å for the hybrid ML-FF) they display, and from
features in their pair-distance distribution function (PDF). In
detail:

• Solid inner (SI) atoms have 12 NN within the cho-
sen cut-off, and their PDF displays a well-defined peak
at a second NN distance consistent with the one of
bulk FCC Au. SI local atomic environments com-
prise FCC-like motifs, as well as motifs with 5-fold-
or icosahedral-symmetry.

• Liquid inner (LI) atoms have, on average, 11 NNs. The
PDF for this class of local atomic environment presents
the first peak at distances lower than the one for bulk
lattice and lacks a pronounced second peak in corre-

spondence to the bulk lattice one.

• Solid High-coordination Surface (SHS) atoms present,
on average, 8 NNs, and peaks its PDF in correspon-
dence to the second nearest-neighbours (lattice bulk).

• Liquid High-coordination Surface (LHS) atoms also
have 8 NNs on average, yet the PDF lacks a peak at
the bulk lattice.

• Solid Low-coordination Surface (SLS) atoms find an
average of 6.9 atoms at a distance consistent with the
bulk NNs distance.

• Liquid Low-coordination Surface (LLS) atoms have, on
average, 6.0 atoms at a distance lower than the bulk
nearest-neighbours distance; furthermore, the PDF does
not display any peak for the second NNs.
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This unsupervised approach enables an original and data-
driven definition of liquid atomic arrangements in the inner
part of the NPs and at the surface. Local atomic environments
in a liquid phase are all characterized by the absence of a peak
of their PDF in correspondence to their bulk lattice distance
(i.e., the one predicted by the reference interatomic poten-
tial). This observation holds regardless of whether they lie
in the inner part or at the surface of the NP, and their coordi-
nation. Furthermore, this result confirms and rationalises the
universal signature of melting for the whole NP we recently
proposed13.

Having discriminated in automated fashion atoms in liquid
and solid environments, also as a function of their spatial loca-
tion in the NP, we draw novel definitions to determine melting
phase changes in the nanoparticle. To this end we monitor the
time evolution of the occurrence of liquid environments, their
rate of variation, and at which temperature their relative pop-
ulation increases above the 0.4 of the total, also as a function
of their distance from the center of mass of the NP. In the fol-
lowing, we refer to the melting temperature of the NP (T NP

melt)
as the temperature at which the number of inner atoms that are
identified as liquid (#LI) by the clustering algorithm displays
the maximum positive derivative. This melting temperature
estimation method yields equivalent results w.r.t. other well-
established algorithms to calculate the melting temperature,
such as the caloric curve maximum derivative and the heat ca-
pacity peak (see Supplementary Figure 13). This observation
further corroborates our trust in the clustering algorithm as a
tool to characterise Au nanoparticles melting.

Size-dependent melting

Figure 2 reports the T NP
melt for NPs of different sizes as a

function of the NPs’ reciprocal radius, as found during MD
simulations carried out with the LDA, rPBE and hybrid ML-
FFs. The reported T NP

melt is averaged over the 4 (2 for NPs with
more than 2500 atoms) independent MD simulations carried
out for each NP and each ML-FF. For an immediate com-
parison, we report the experimental melting temperature of
bulk FCC Au at atmospheric pressure (T bulk

melt ), and the ex-
perimental melting temperatures of Au NPs as a function of
the NP size38,39. For reference, we add the T NP

melt estimates
obtained using a classical MD where the interatomic interac-
tion is derived in the second-moment approximation of the
tight-binding (TB-SMA)13. All the ML-FFs lead to T NP

melt pre-
dictions which are (as expected) lower than the ones found
during experiments for C-supported Au NPs (pink squares in
Figure 2). On average, the rPBE-derived ML-FF predicts T NP

melt
250±50 K lower than the ones predicted by the LDA-derived
ML-FF, and 180±40 K lower than the ones predicted by the
hybrid ML-FF. Interestingly, the T NP

melt predicted by the hybrid
ML-FF are less than 50 K away from the melting tempera-
tures found experimentally via differential scanning calorime-
try measurements.39

Melting mechanism characterisation

In the previous section we established the quantitative
agreement between the ML-FFs’ predictions and the experi-
mental melting temperatures of Au NPs, also as a function of
their size. It is then natural to proceed further and analyse the
mechanism by which phase changes occur.

To this end, we display in Figure 3 example snapshots of
an Au 6266 NP at different temperatures (panel a), and the
temperature-dependent radial distribution of the fraction of LI
(#LI/#tot, panel b) and of LS (#LS/#tot, panel c) local atomic
environments. The # symbol indicates the number of atoms
belonging to a certain class, where we define: #LS = #LHS+
#LLS, and #tot = #LHS+#LLS+#LI +#SHS+#SLS+#SI.
The results we report are found by averaging over the set of
independent MD melting simulations employing the rPBE-
based ML-FF. We refer the interested Reader to Supplemen-
tary Figures 14 and 15 for the same plots for all systems with
147, 309, 561, 923, 2869 and 6266 atoms and using the three
ML-FFs.

In Figure 3 and Supplementary Figures 14 and 15, the large
majority of the local atomic environments are correctly la-
belled as solid (liquid) at the start (end) of each MD simu-
lation. The average occurrence of all LI atoms increases with
temperature, reaching around 0.5 at the T NP

melt independently
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FIG. 2. Melting temperatures of Au NPs of different sizes.
Average T NP

melt as a function of NP’s reciprocal radius computed for
MD simulations employing the LDA-trained (blue triangles), rPBE-
trained (orange triangles), and hybrid (green triangles) ML-FFs. Ex-
perimental data for size-selected Au NPs supported on carbon (pink
squares) and spherical Au NPs (purple diamonds), is taken from Fos-
ter et al. 38 and Duan et al. 39 , respectively. Grey pentagons refer to
the T NP

melt estimates from TB-SMA iterative MD melting simulations
from Delgado-Callico et al. 13 . Error bars indicate the standard devi-
ation of the melting temperature estimations, and of the NP sizes for
experimental data taken from Foster et al. 38 (pink squares).
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FIG. 3. Distribution of liquid environments in an Au 6266 NP.
Panel a: snapshots of Au 6266 simulated using the r-PBE ML-FF
at different nominal simulation temperatures, with atoms coloured
according to the clustering algorithm, and using the same colour
scheme as in Figure 1. Panels b and c: average fraction of #LI (b)
and #LS (c) local atomic environments as a function of the radial
distance from the COM (y coordinate), and of the nominal system
temperature (x coordinate). The bold coloured lines in panels b and
c indicate the isosurfaces in the plot, from 0 to 1 every 0.1, while the
black dashed line indicates the T NP

melt of 1065 K.

of their distance from the NPs’ centre of mass (COM). Areas
located few Å below the NPs’ surface instead display signifi-
cant abundances of LI atoms also at temperatures below T NP

melt.
Such observation is in line with experimental results by Fos-
ter et al. 38 , where a surface melting (T surf.

melt ) temperature be-
low the T NP

melt was observed for Au NPs of sizes comparable
to the ones we analyse. This T surf.

melt was determined in Foster
et al. 38 by taking the average between the onset temperature
for shape changes visible via aberration-corrected scanning
transmission electron microscope and the highest temperature
for which these did not occur.

To compare our results with available experimental data,
we would like to introduce a numerical definition of T surf.

melt .
In analogy to the T NP

melt definition, T surf.
melt should be defined as

the temperature at which a clear discontinuity appears in the
temperature-dependent evolution of the abundances of liquid-
like atoms at the surface of the nanoparticle. This is, however,
not advisable. While the number of LI atoms has a clear and
distinct positive jump – which allows us to define a T NP

melt (Sup-
plementary Figure 12) – the temperature-dependent evolution
of the number of LS does not show such a clear first-order
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FIG. 4. Surface phase change temperatures of Au NPs of differ-
ent sizes. T surf.

melt (downward triangles) and T NP
melt (upward triangles)

as a function of NPs’ reciprocal radius, for MD simulations carried
out using the LDA ML-FF (panel a), rPBE ML-FF (panel b), and
hybrid ML-FF (panel c). Experimental estimates of T surf.

melt from high-
resolution TEM measurements are taken from Foster et al. 38 , and
are shown as pink circles. Error bars indicate the standard deviation
of the melting temperatures and of the NP sizes for experimental data
taken from Foster et al. 38 (pink circles).

transition (Supplementary Figure 17). The relative amount
of LS atoms increases gradually with temperature for all NP
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sizes and all ML-FFs, and reaches values around 0.5 (white
line in panel (c) of Figure 3 and Supplementary Figures 14 and
15) for atoms in the surface layer at temperatures approaching
T NP

melt.
We, thus, abandon the search for an unbiased definition of

T surf.
melt and introduce the quantity T surf.

thresh, which provides an in-
dication of the temperature at which significant surface rear-
rangement occurs. The latter is defined as the lowest temper-
ature where at least 0.4 of the local atomic environments in
the surface of the NP are classified as liquid (see the Methods
section for additional details). Figure 4 reports the values of
T surf.

thresh and the T NP
melt for all our MD simulations, and the exper-

imental T sur f .
melt as reported in Foster et al. 38 . The temperature

ranges comprised between T surf.
thresh and T NP

melt are in line with the
experimentally reported T surf.

melt , this is especially true for the
case of the hybrid ML-FF.

To deepen our understanding of the melting mechanism, we
also calculate the mean first-passage temperature (MFPT) re-
quired to observe the transition to a liquid phase of 0.4 of
the atoms which initially resided at a nanoparticle edge, on
a (100) surface, on a (111) surface, or in a bulk environment.
These families of atoms are discriminated against according
to their number of first NNs at the beginning of the MD sim-
ulations. Edge atoms (#NN=6) are more likely to move into
a liquid phase than atoms on a (100) facet (#NN=8), which in
turn are more prone to end into a liquid phase than the atoms
on a (111) facet (#NN=9). The inner atoms (#NN=12) present
the overall largest MFPT. This finding is coherent with the
melting initiating from the outer layers of the NP (additional
details are available in the Methods, and in the Supplementary
Methods).

The trends observed during the melting characterization in-
dicate that local phase changes in the outermost layer of a NP
start to occur at temperatures a few hundred of K below the
T NP

melt. For Au NPs, the proposed characterization protocol es-
tablishes that local solid to liquid changes first initiate at low-
coordinated atoms at the vertices and edges, then propagate
to atoms on (100) and (111) facets, and finally proceed to the
inner region of the nanoparticle.

DISCUSSION

We characterize the melting mechanism in gold nanoparti-
cles of size 1-6 nm, and predict the melting temperatures in
good agreement with experimental data using molecular dy-
namics. These simulations employ machine learning force
fields, under the mapped Gaussian process framework, to sur-
pass the trade-off between accuracy and cost in traditional
atomistic modelling methods. We showcase that accurate, ef-
ficient, and size-transferable force fields can be trained us-
ing small training datasets. We additionally generate a hy-
brid 2+3-body force field by linearly combining two machine
learning force fields fitted on data computed using differ-
ent density functional theory functionals; this force field is
parametrised to reproduce the bulk cohesive energy and yields
predictions of melting temperatures of Au nanoparticles in
striking agreement with available experimental data.

To elucidate the melting mechanism, we subsequently de-
velop a general unsupervised clustering approach to differen-
tiate between inner and surface layers and to characterise the
phase change at the atomistic level. Thanks to the insight of-
fered by the proposed clustering algorithm, we demonstrate
that the melting transition initiates at the outer layer, and later
spreads to the inner region. The increase in locally liquid en-
vironments in the outer region of the nanoparticle before the
melting of its core finds a parallel with what is generally re-
ferred to in the literature as surface melting. The predicted
trend is in very good agreement with our experimental ob-
servations, where melting was found to start at the outermost
layer, at a temperature few hundred of K lower than the NP
melting. We verify that such a melting mechanism occurs re-
gardless of the force-field used to model interatomic interac-
tions, but we also find that different force fields predict differ-
ent surface and nanoparticle melting temperatures. We expect
that the data-driven simulation and characterisation methods
developed here, and the insight we obtain, will stimulate and
benefit other research aimed at addressing the complexity of
phase changes (solid-to-liquid and liquid-to-solid alike) at the
nanoscale.

METHODS

Database Construction

To construct the training set, we randomly sample 7 frames
from a set of 60 frames extracted at regular time intervals from
an ab initio MD trajectory where an Au NP containing 309
atoms (approx 2 nm in diameter) with an initial FCC mor-
phology undergoes melting from 300 K to 1200 K. Atomic
forces and energy associated with each configuration are cal-
culated within the density functional theory framework, and
employing LDA and GGA-rPBE pseudopotentials to gener-
ate the training sets for the LDA an rPBE ML-FFs, respec-
tively. The training sets we employ therefore contain 2163
local atomic environments and associated forces, and 7 total
energy values, one for each structure. When assessing learn-
ing curves (Supplementary Figure 2) we find, in agreement
with previous reports26,27, that the MAE on force prediction
converges for training databases which encompass a few hun-
dreds of local atomic environments, and energy predictions
do so when energies of a handful of configurations are uti-
lized. We furthermore note (Supplementary Figure 3) that the
shape of the 2-body part of the ML-FFs resulting from train-
ing encompassing few hundreds of local atomic environments
remains, in essence, unchanged when the number of training
points is increased.

We generate a validation set by extracting de-correlated
frames from MD trajectories previously reported in Delgado-
Callico et al. 13 , and from ab initio MD trajectories previ-
ously reported in Foster et al. 38 . We sample the melting MD
trajectories reported in Delgado-Callico et al. 13 , carried out
using a second-moment tight-binding potential, from 400 K
up to 1200 K, and increasing iteratively the temperature of
25 K every 5 ns. For this setup, we consider NPs contain-
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ing 146, 147, 192, and 201 atoms which present initial differ-
ent closed-shell geometries, namely octahedron (146 atoms),
icosahedron (147 atoms), Marks decahedron (192 atoms),
and regular-truncated octahedron (201 atoms). The NPs un-
dergo both solid-solid and solid-liquid rearrangements during
these MD trajectories (for more details see also the original
reference13). The melting MD trajectories reported in Foster
et al. 38 are carried out via NVT simulations, as in the VASP
suit, performed at temperatures from 300 to 1200 K with a
150 K interval using LDA DFT, for Au NPs containing 147,
309, and 561 atoms starting from a cuboctahedron.

Machine Learning Force Fields Construction

We construct the ML-FFs for Au by applying the frame-
work of mappable few-body FFs trained via Gaussian Process
regression (GPR)26,27 using the FLARE Python Package.25,28

GPR FFs hinge on the nearsightedness principle of quantum
mechanics to predict total energies for a system of atoms S as
a sum of local atomic energy contributions εi(ρi):

E(S) = ∑
i∈S

εi(ρi), (1)

where the local atomic energy is predicted as:

εi(ρi) = ∑
n

k(ρi,ρn)αn. (2)

In Eq. 2, k(ρi,ρn) is the kernel (or similarity) function com-
puted between two local atomic environments, the weights α

are analytically calculated during the training process, and n
is the index that runs from 0 to the number of training data
points employed. We employ 2- and 3-body kernels for lo-
cal atomic environments, which compare local atomic envi-
ronments ρi based on their distances of pairs and triplets of
atoms, respectively.26,27,40 A local atomic environment ρi is
defined as the collection of relative positions ri j = r j − ri of
all atoms j contained within a sphere of radius rcut centered on
atom i. While traditional GPR FFs are faster to compute than
the electronic structure methods they are trained on, they are
still orders of magnitude slower than traditional parametrised
FFs. The GPR FFs are therefore transformed into tabulated
FFs, which retain the accuracy of the original GPR FFs while
being extremely fast to compute, on par with other classical
FFs. The ability to map the GPR FFs follows from the ex-
plicit 2- and 3-body nature of the representations we adopt,
and takes place via spline interpolation, following the proce-
dure introduced by Glielmo et al. 26 and first applied to MD
simulations in Zeni et al. 27 . The hyper-parameters used to
train the ML-FFs are, following the notation employed in Van-
dermause et al. 28 , σs,2 = 0.02, l2 = 0.4, σs,3 = 7.0, l2 = 8.6, σn

= 0.12, rcut, 2 = 8.0 Å, rcut, 3 = 4.5 Å.

Hybrid ML-FFs

We generate a third ML-FF, named hybrid, by linearly com-
bining the 2- and 3-body FFs of the ML-FFs derived from

LDA and rPBE. This is done through a parameter β that
weights the two ML-FFs so that the energy εhybrid for a lo-
cal atomic environment ρ , is:

ε
hybrid(ρ) = βε

LDA(ρ)+(1−β )ε rPBE(ρ). (3)

The parameter β is tuned to match the experimental cohesive
energy of bulk Au (3.81 eV/atom) and is set to 0.61 for our
ML-FF. The resulting hybrid ML-FF is a 2+3-body FF, and
it has cohesive energy and equilibrium bulk lattice parame-
ter that are intermediate between the LDA and rPBE ML-FFs
ones, as can be seen in Supplementary Figure 1. We remark
that the generation of such hybrid ML-FF is possible because
of the strictly 2+3-body nature of the ML-FFs employed, and
because of the similar functional forms the LDA and rPBE
ML-FFs display. Furthermore, the hybrid ML-FF can be eas-
ily fitted to match the experimental cohesive energy of bulk
Au solely because this energy is overestimated (underesti-
mated) by the LDA (rPBE) ML-FF.

DFT calculations setup

We employ training data calculated under the Local Den-
sity (LDA) or Generalized Gradient Approximation (GGA
- rPBE pseudopotentials) to the exchange-correlation term.
We carry out LDA41 calculations using the Vienna Ab ini-
tio Simulation Package42,43 with projector-augmented wave
pseudopotentials.44,45 The energy cut-off of the plane-wave
basis set was 240 eV, and the tolerance for self-consistency
for the electronic steps was set at 10−6 eV. We calculate GGA
rPBE46 reference energies and forces using CP2K 6.1.47 All
elements are described with the DZVP-MOLOPT basis set48

with cores represented by the dual-space Goedecker-Teter-
Hutter pseudopotentials.49 The plane-waves cut-off is set to
500 Ry with a relative cut-off of 50 Ry. The self-consistent
cycle converges when a change of less than 10−6 eV is ob-
served in the estimate of the system’s energy.

Molecular Dynamics calculations setup

To study via ML-FFs the melting of Au NPs, we perform
several independent MD simulations at fixed volume in pe-
riodic boundary conditions (box width = 100Å). We employ
LAMMPS50 as our MD engine, and the FLARE28 add-on for
calculating the energies and forces predicted by the mapped
ML-FF. The temperature of the system, controlled using a
Langevin thermostat with a 100 fs noise, continuously in-
creases at a rate of 20 K/ns, with starting temperatures that
range between 400K and 700K and ending temperatures that
range between 1200K and 1500K, depending on the NP’s
sizes. Newton’s equations of motions are integrated via a
velocity-Verlet algorithm with a 1 fs time step for systems
with less than 1000 atoms, and 2 fs for systems above 1000
atoms in the case of the LDA and rPBE ML-FFs. All simula-
tions employing the hybrid ML-FF are carried on using a 5 fs
integration time step.
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Local Atomic Environment Descriptor

We employ a local atomic density descriptor to feature each
atomic environment in a NP as a function of the relative po-
sitions of the other atoms within a cut-off set to 1.75 times
the average nearest neighbour distance, and therefore set to
4.24 Å for simulations employing the LDA ML-FF, to 4.42 Å
for simulations employing the r-PBE ML-FF, and to 4.30 Å
for simulations employing the hybrid ML-FF. A sensitivity
analysis shows that the featurisation associated with the rep-
resentation is marginally affected by the choice of the cut-
off radius, as long as the latter is larger than the bulk second
nearest neighbours distance (see Supplementary Methods for
further detail). We adopt the 2+3-body atomic cluster expan-
sion representation with 4 radial and 4 angular components
and employ Bessel functions of the first kind as radial basis
functions.36,37,51

Clustering Algorithm for Phase Change Characterisation

To apply the clustering algorithm to data generated through
the use of a ML-FF, we first gather 10000 randomly chosen lo-
cal atomic environment representations from among MD sim-
ulations of all NP sizes. We then run a hierarchical k-means
clustering52 algorithm to group similar representations, apply-
ing two to three iterations of k-means clustering to partition
the local atomic environment sampled during the MD sim-
ulations into the six classes described previously (additional
details can be found in the Supplementary Methods).

Melting Temperature Estimation

We estimate the T NP
melt as the temperature for which the max-

imum positive derivative of the fraction of inner atoms la-
belled as liquid w.r.t. the nominal simulation temperature
(or, equivalently, the simulation time) is observed. The T NP

melt
is commonly defined as the temperature where the highest
value of the heat capacity is observed T NP

melt, or as the temper-
ature here the highest standard deviation in the total energy
is found.13,53,54 Supplementary Figure 13 shows the striking
correspondence that exists between the T NP

melt estimated using
the three aforementioned methods. This result confirms that
the T NP

melt estimation methods we introduce are accurate for the
systems we consider and reinforces our belief that the charac-
terization offered by our clustering method is valid.

Surface Transition Temperature Calculation

To calculate T surf.
thresh, we analyse the spatial distribution of

LS atoms. We subdivide the NP in spherical shells of width 1
Å centered at the COM of the NP. We define the crust radius,
Rcrust, as the distance from the NP COM of the spherical shell
where the highest fraction of LS atoms resides. This gener-
ally coincides with the outermost radial shell of atoms in the

Rcrust

Rsurf.

FIG. 5. Crust and surface radiuses in an Au 6266 NP. Depiction
of the values of Rcrust (pink) and Rsurf. (grey) for an Au 6266 NP.
Atoms are colour-coded according to their class as yielded by the
clustering algorithm, and mirror the ones of Figures 1 and 3.

NP. We then aim to define a surface shell, and consider a sec-
ond distance, Rsurf. = Rcrust−3 Å. The choice of a 3 Å buffer
represents an arbitrary but educated guess to incorporate, ap-
proximately, a second shell of atoms in our statistics. Finally,
we define T surf.

thresh as the lowest temperature at which the liquid
local atomic environments in the surface of the NP amount for
the 0.4 of the total number of local atomic environments in the
surface shell. To exemplify the protocol, Figure 5 displays the
values of Rsurf. and Rcrust for a snapshot extracted from an MD
trajectory sampled using the rPBE ML-FF.

Mean First-Passage Temperature

To evaluate the mean first-passage temperature (MFPT), we
monitor the label assigned to each atom in the system by the
hierarchical clustering scheme at each time step. The MFPT
is then defined as the lowest temperature at which at least 0.4
atoms of given initial coordination are labelled as liquid en-
vironments. Since MFPTs depend on the T NP

melt, for all MD
trajectories we normalize each MFPT by the average T NP

melt for
that particular NP size and ML-FF employed.

Statistical Information

Simulation results are obtained as averages over 4 indepen-
dent simulations for NPs containing less than 1000 atoms, and
over 2 independent simulations for NPs containing more than
1000 atoms. The T NP

melt reported for each NP size and ML-FF
are the average T NP

melt computed across the 4 (or 2) indepen-
dent MD simulations. The error bars for T NP

melt reported for
the y-axis of Figure 2 and Supplementary Figures 6 and 13,
are calculated as the maximum between 25 K - the tempera-
ture window (see also Methods) used to individuate the peak
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of the positive derivative of the fraction of liquid atoms w.r.t.
simulation temperature - and the standard deviation of T NP

melt
computed for the 4 (or 2) independent MD simulations for
each NP size and ML-FF used to simulate them. The mean
absolute errors (MAEs) on energy differences (force compo-
nents) reported in Supplementary Table 1 are computed on a
variable number of observations, determined by the NP size,
from 9 (15147) for Au 561 Co to 50 (22050) for Au 147 Co.
On average, MAEs on energy differences (force components)
are calculated on 33 ± 14 (21417 ± 12531) samples.

DATA AVAILABILITY

The tabulated Au ML-FFs, Au NPs MD trajecto-
ries, and ab initio training data for Au NPs gen-
erated in this study have been deposited in the
Materials Cloud database under accession code
https://archive.materialscloud.org/record/2021.131.55 Ex-
ample MD trajectories are also stored in the same repository.
Source data for Figures 2 and 4 are provided with this paper.
Other data are available from the authors upon request.

CODE AVAILABILITY

A majority of the code used in this calculation is open
source. ML-FF training and mapping are carried on us-
ing FLARE (https://github.com/mir-group/flare). DFT data
are gathered using CP2K (https://www.cp2k.org) and VASP
(https://www.vasp.at - licence number 5-867). MD Simula-
tions are run via LAMMPS (https://lammps.sandia.gov). The
computation of local atomic environment descriptors, and
the clustering characterization are carried on using the Raffy
Python package56. K-means clustering is done in Python via
the SciPy library.
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