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Dependence of evanescent wave polarization on the losses of guided optical modes
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London WC2R 2LS, United Kingdom

(Dated: September 24, 2021)

Spin-momentum locking of evanescent waves describes the relationship between the propagation
constant of an evanescent mode and the polarization of its electromagnetic field, giving rise to
applications in light nano-routing and polarimetry among many others. The use of complex numbers
in physics is a powerful representation in areas such as quantum mechanics or electromagnetism; it
is well known that a lossy waveguide can be modeled with the addition of an imaginary part to the
propagation constant. Here we explore how these losses are entangled with the polarization of the
associated evanescent tails for the waveguide, revealing a well-defined mapping between waveguide
losses and the Poincaré sphere of polarizations, in what could be understood as a “polarization-
loss locking ” of evanescent waves. We analyze the implications for near-field directional coupling
of sources to waveguides as optimized dipoles must take into account the losses for a perfectly
unidirectional excitation. We also reveal the potential advantage of calculating the angular spectrum
of a source defined in a complex rather than the traditionally purely real transverse wavevector space
formalism.

I. INTRODUCTION

Since the birth of nanoscience in the latter decades of
the twentieth century, it is possible to revisit some old
well-established theoretical concepts and exploit them
for novel near-field applications in subwavelength phe-
nomena. In particular, consider the case of evanescent
waves [1], known more than 150 years ago and tradition-
ally considered as a mere theoretical corollary in total
internal reflection situations. In recent years, evanes-
cent waves have become deeply re-envisioned as fasci-
nating and promising tools for optical applications in the
nanoscale. Apart from carrying linear and angular mo-
menta in the direction of propagation, evanescent waves
were lately shown to also transport a transverse spin an-
gular momentum [2–5], leading to spin-momentum lock-
ing [6, 7] (also known as the photonic quantum spin Hall
effect [6] in line with its electronic counterpart).

Spin-momentum locking is one of the most promising
features of evanescent waves, as it is an inherent property
independent of their source. It has been experimentally
demonstrated that spin-momentum locking occurs in a
wide range of physical systems such as surface-plasmon-
polaritons [8], optical fibers [7, 9, 10] and silicon waveg-
uides [11]. It plays a key role enabling selective coupling
in the near and far fields via polarized dipoles [8, 12],
giving rise to recoil optical forces [13–16] and presents
further applications in other areas such as optical iso-
lation [17, 18], nanopolarimetry [19], or optical vortex
emitters [20]. We also note that the underlying physics
applies to wave-fields beyond electromagnetism such as
acoustics [21, 22] and gravitational waves [23].

The spin-momentum locking of evanescent tails in a
waveguided mode ultimately stems from the transversal-
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ity condition of momentum eigenmodes, k·E = k·H = 0,
relating the wavevector k to the electric field E and mag-
netic field H polarization of the mode [6]. Therefore, the
propagation constant of the waveguide mode km is cru-
cial, because momentum conservation in translationally-
invariant waveguides requires that the component of the
evanescent field’s wavevector in the propagation direc-
tion, kx, must be equal to the intrinsic propagation con-
stant of the mode, as depicted in Fig. 1. In recent
literature [3, 7], lossless waveguide modes are typically
considered - which means that the propagation constant
km, and hence kx too, is taken as a real number. In
this well-known situation, the total wavevector of the
evanescent wave still exhibits complex-number behavior
due to the wavevector k having an imaginary component
in the perpendicular direction to the guided mode kz,
corresponding to the direction of evanescent attenuation,
while having a purely real component in the propagation
direction, kx. As we know, both components are related
via the wave-equation k · k = k2, where k = nω/c is the
background wavenumber for a medium with refractive in-
dex n. However, more degrees of freedom can be gained
if one considers complex propagation constants corre-
sponding to lossy waveguides. Mathematically, a lossy
waveguide is simply associated with a complex propaga-
tion constant. This, in turn, implies a complex wavevec-
tor component in the propagation direction kx = k′x+ik′′x
for the evanescent wave. In this case, to satisfy the wave-
equation, both kx and kz wavevector components acquire
both real and imaginary parts, which therefore affects
the polarization properties and the spin of the associ-
ated evanescent waves via the transversality conditions.
Although this is an expected result, or at least should
not be surprising, in this paper we wish to study the
phenomenon in depth, to uncover its subtleties. In par-
ticular, we will see that the presence of losses must be
taken into account when designing a dipole for optimal
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directionality in evanescent coupling.

evanescent 
wave

waveguided mode
mode profile

FIG. 1. Evanescent tail of a two-dimensional (2D-) slab
waveguide showing the relation between the evanescent
wavevector k = kxx̂ + kz ẑ and the waveguide propagation
constant km.

This paper is split into two main parts. First, we will
analyze the polarization in the evanescent tail for a lossy
waveguide. We will study the geometric paths described
in the Poincaré sphere by this polarization as the losses of
the waveguide are varied. Second, we will study evanes-
cent coupling between a dipole source and a lossy waveg-
uide, exploring the effects of loss in the guided mode,
and how the dipole optimization and tunability for se-
lective control of unidirectional excitation should be re-
calculated in this scenario. For this, we will use both
Fermi’s golden rule [24, 25] and the angular spectrum
approach [8, 12, 15, 21, 26], which we will here extend
to a complex domain. We will prove that the dipole po-
larization must be re-optimized taking into account the
losses for a perfect contrast directionality and this op-
timization can be associated with a zero in a complex
domain of the angular spectrum.

II. POLARIZATION PATHS FOR THE
EVANESCENT TAILS OF A LOSSY WAVEGUIDE

In our first approach, we will calculate the polarization
ellipse for the evanescent tails of a lossy waveguide. In or-
der to get at the essence of the phenomenon, we will study
the simplest possible scenario, a two-dimensional prob-
lem as shown in Fig. 1, where a slab waveguide is embed-
ded in an infinite-homogeneous background of refractive
index n. In our calculations we take n = 1 for simplicity,
i.e., free space surroundings. The lossy waveguide sup-
ports a well defined time-harmonic mode defined by its
propagation constant km = k′m+ ik′′m. The propagator in

the waveguide is given by ei(kmx−ωt) = eik
′
mxe−iωte−k

′′
mx,

clearly exhibiting phase propagation in space associated
to the propagation constant k′m, time-harmonic phase ad-
vance in time due to the real-valued angular frequency ω,
and an evanescent amplitude decay in space correspond-
ing to the attenuation constant k′′m caused by waveguide
mode losses. The evanescent tails of such a mode can be
written as a momentum eigenvector in complex phasor
notation as {Eev(r),Hev(r)} = {E0,H0}eik·r, where E0

and H0 are the evanescent wave electric and magnetic

field polarization, k is the wavevector of the evanescent
wave, and r is the position vector. Such a momentum
eigenvector must be a solution to Maxwell’s equations,
and as such it must fulfill two important requirements:

k · k = k2 and k ·Eev = k ·Hev = 0. (1)

The first requirement comes from the homogeneous
Helmholtz wave-equation derived [27] from Maxwell’s
equations, and the second comes from Gauss’ law in the
absence of sources, also known as the transversality con-
dition [7]. Note, as is well known, that the first equation
acts on a complex wavevector, so it is not the analytical
equation of a circumference.

To simplify the situation further we will consider only a
transverse-magnetic (TM or p-) mode, in which the mag-
netic field polarization of the evanescent wave is trivial
H0 = Hyŷ and the electric field is responsible for all the
interesting polarization phenomena and transverse spin
E0 = Exx̂ + Ez ẑ. This apparent loss of generality is
justified because a transverse-electric (TE or s-) mode
would show identical phenomena, but simply switching
the roles between E0 and H0. Hence, in our simplified
case of a TM mode and 2D problem k = kxx̂ + kz ẑ, the
above conditions in Eq. 1 can be simplified to:

k2x + k2z = k2 and kxEx + kzEz = 0. (2)

With these equations, together with the fact that kx =
km due to conservation of momentum parallel to the axes
of translational invariance in the waveguide, we are able
to study all the changes in the polarization of the evanes-
cent tails with the addition of losses to the waveguide.
In order to illustrate this behavior, we map a grid in the
complex plane of propagation constants (Fig. 2(a), cor-
responding to any possible propagating mode) to the as-
sociated transverse polarization that the evanescent tail
would have for that mode, in the Poincaré sphere, as
shown in Fig. 2(b) (see Appendix A for detailed cal-
culations). The plane of polarization ellipses used to
calculate the Stokes parameters to depict the Poincaré
sphere is taken as the (x, z) plane, parallel to the propa-
gation direction x, as expected for the electric field of a
p-polarized evanescent mode.

To analyze Fig. 2, we highlight as a blue line the well-
known case of lossless waveguided modes, corresponding
to a real km/k ∈ [1,∞). When km/k = 1, this is not
a guided mode but a propagating plane wave, with lin-
ear p-polarization, hence we are in the equator of the
Poincaré sphere. When km/k > 1 is increased, making
the wave more and more evanescent (i.e. decaying more
strongly), the polarization of the evanescent wave follows
a geodesic path, moving towards the upper pole, where
S3/S0 = 1 corresponding to purely circular polarization
in the Poincaré sphere, in agreement with the well-known
appearance of a transverse spin. When losses are added,
it is interesting that the polarization moves away from
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FIG. 2. Evanescent wave polarization in the Poincaré sphere from normalized Stokes parameters {S1, S2, S3}/S0 (b) as the
propagation constant of the waveguide mode is varied in the complex plane (a) where the red and blue lines represent a mesh
in the complex km plane, mapped into the Poincaré sphere. The thick blue line represents the line km ∈ [1,∞) where the red
and purple thick lines represent varying imaginary parts for k′m/k = 1 and k′m/k = 1.2 respectively. A selection of four points
{A,B,C,D} have been chosen as an example, with propagation constants km/k = 1.2 + {0− 3} i

2
showing the influence of the

imaginary part of km (waveguide losses, k′′m) on the polarization. The corresponding electric field polarization ellipse is shown
in (c).

the S2 = 0 condition [7], as kz is not purely imaginary,
characteristic of lossless modes. The presence of non-zero
S2 indicates a tilting of the polarization ellipse due to the
losses. As losses are increased, the polarization follows a
cardioid-like path in the Poincaré sphere, also tending to
the upper pole in the limit of high losses.

To illustrate this effect, in Figs. 2(a,b) we select four
distinct locations {A,B,C,D}, corresponding to modes
with km/k = 1.2 + {0, 0.5, 1, 1.5}i, varying the amount
of losses. The polarization ellipse for the electric field of
the evanescent tail of such a mode is plotted in Fig. 2(c),
noting that the local polarization of the electric field tilts
and depends strongly on the losses of the waveguide.

III. NEAR-FIELD COUPLING DIPOLE
OPTIMIZATION

Now, the fact that the polarization of the evanescent
electric field in the waveguide depends on losses has ev-
ident implications for unidirectional coupling of dipoles
near the surface. Consider a point-like dipole with po-
larization given by p=(px, py, pz) placed in the evanes-
cent region of the slab waveguide at a height d above
the dielectric slab waveguide of thickness t. As is known
[8], suitably optimized elliptical dipoles can be used to
achieve the unidirectional excitation of the guided modes.
Here we ask how this is affected by the losses in the
waveguide.

Figure 3 shows a numerical simulation of the effect of
losses on dipolar directional excitation. Fig. 3(a) corre-
sponds to the known case of a lossless waveguide being
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FIG. 3. Dielectric slab waveguide with thickness t = λ/6 placed on free space, excited by a dipole source placed at a distance
d = λ/10 from the dielectric, with a varying dipole optimization (up/bottom) and amount of dielectric losses (left/right). In
the left column, a lossless material is considered, with refractive index n1 = 2, whereas in the right column a lossy material
with n2 = 2 + 0.3i is used. The dipoles were optimized via Fermi’s golden rule for near-field selective vectorial coupling to the
left side. The upper row has a dipole p1 ≈ (1.11, 0, 0.49i) ∝ k∗lossless while the lower row has p2 ≈ (1.10, 0, 0.11+0.47i) ∝ k∗lossy.
Clear unidirectionality is shown in (a) and (d) with theoretically contrast ratio 1:0 whereas in (b) and (c) an “undesired”
back-excitation is observed, with an expected contrast of 1:0.14. Color scale (arbitrary units) is the same for all plots. For the
simulation, the COMSOL Wave Optics module was used.

excited by an optimized elliptical dipole, exhibiting per-
fect directionality. Fig. 3(b) shows exactly the same
dipole, but with losses added to the waveguide. One can
see that, due to the presence of losses, the dipole is no
longer perfectly unidirectional, i.e., it does not exhibit
a 100% contrast ratio between left and right excitation.
This is because the polarization of the evanescent tails of
the waveguides have changed, and hence the optimization
of the dipole must take this into account. In Fig. 3(d),
the dipole polarization has been adjusted to account for
the losses, and this time one sees, indeed, a perfect direc-
tionality. This dipole, whose polarization is adjusted for
losses, will not work in the lossless waveguide as shown
in Fig. 3(c). The results convincingly show that dipole
directionality must necessarily take losses into account if
one wants to achieve perfect directionality. Next we ex-
plain how to deduce this, following two complementary
methods: Fermi’s golden rule, and the dipole angular
spectrum.

In the context of dipolar coupling to waveguides,
Fermi’s golden rule approaches states [24, 25] that the
excitation amplitude of a mode with electric field E(r)
by a dipole p located at r0 is proportional to p∗ ·E(r0),

such that the intensity is proportional to |p∗ ·E(r0)|2.
Following this approach, one can achieve perfect con-
trast directionality of excitation simply by choosing a
dipole polarization that cannot couple to the evanescent
wave propagating along one direction in the waveguide.
This is achieved when p ∝ k∗; with this condition, fol-
lowing Gauss’ law requirement from Eq. 1, we can see
that p∗ · Eev ∝ k · Eev = 0. In our simplified 2D case,
this means p ∝ (k∗x, 0, k

∗
z) = (±km, 0,

√
k2 − k2m)∗ with

the plus or minus sign determining which of the two di-
rections of mode propagation, right or left, we wish the
dipole to not couple to. The polarization of the opti-

mized dipole therefore depends directly on the losses of
the waveguide, via km, and this is the optimized dipole
used in the numerical simulations of Figs. 3(a,d).

The above argument using Fermi’s golden rule fully
explains why taking losses into account is important for
dipole directionality, but next we will also analyze the
same phenomenon from the dipole angular spectrum ap-
proach. This is often used as an alternative explanation
to directionality - giving the same results, but offering a
different perspective, as it reveals that directionality can
be a property of the dipole itself, independently of the
waveguide mode [2, 8]. The directionality of the dipole
can be then associated with a zero amplitude at a specific
location in the angular spectrum of the dipole source.
This specific location is determined by the waveguide
mode. This approach offers an intuitive way to design
the directionality of multimode waveguides [28] by setting
sources with zero amplitudes at the angular spectrum lo-
cation corresponding to the propagation constant of each
mode. However, this approach comes with a problem
when considering lossy modes, because the propagation
constant of the mode is a complex number, whereas the
angular spectrum of a source Edipole(kx, ky) is defined
on the real plane of transverse wavevectors (kx, ky), as
follows [29]:

Edipole(r) =

∫∫ ∞
−∞

Edipole(kx, ky)ei(kxx+kyy+kzz)dkxdky

(3)
where Edipole(r) are the spatial fields of a dipole in free

space, and kz = ±
√
k2 − k2t , with k2t = k2x + k2y being

the transverse wavevector and choosing the sign of kz
depending on the one of z.

The question we ask is, can we study the angular spec-
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trum of the dipole beyond real values of kx and ky to
study its coupling to lossy modes? Can we define and
calculate an angular spectrum defined for complex val-
ues in the transverse momentum plane? The definition
of the angular spectrum, in Eq. 3, requires an integral
on the real plane (kx, ky), however, nothing is stopping
us from taking the known analytical form of the angu-
lar spectrum of a dipole, which is defined in terms of
kx and ky, and calculating it for complex values of kx.
The angular spectrum of an electric dipole source with
dipole moment p is well known (see a concise derivation
on Appendix B):

Edipole(kx, ky) =
i

8π2ε

k2

k
(+)
z

[(p · êp)êp + (p · ês)ês] (4)

where k
(+)
z indicates taking the sign of kz that corre-

sponds to positive z, ε is the electric permittivity of the

medium, and the two unit vectors êp = (kxkzkkt
,
kykz
kkt

,−ktk )

and ês = (−ky/kt, kx/kt, 0) represent the p-polarized and
s-polarized unit vectors [12, 30], remembering to choose
the sign of kz according to whether we are calculating
the field in the upper hemisphere with z > 0 or the lower
one, where z < 0.

If one designs a dipole p optimized for generating a per-
fect directionality inside a lossless waveguide mode with
a certain real value of propagation constant km, such as
the dipole in Fig. 3(a), then the dipole angular spec-
trum shows a zero amplitude at (kx, ky) = (km, 0), as
shown in Fig. 4(a). This was known since the early de-
signs of directional dipoles [8] but in that same work, the
presence of losses was identified as a challenge for uni-
directionality. The broadening of the waveguide mode’s
spatial Fourier spectrum in the real kx axis due to the
losses suggested that one cannot design a dipole source
to achieve perfect directionality in a lossy waveguide. Af-
ter all, where should we place this zero in order to cover
the entire broadened range of wavevectors spanned by
the lossy mode? The answer is that we need to reinter-
pret the broadening of the mode as a shift of its position
away from the real axis and going into the complex do-
main of kx. Then it is still possible to design a dipole
whose angular spectrum has a zero on the exact loca-
tion of the mode within the complex domain, enabling
the design of perfect directionality even for lossy waveg-
uides, as shown in Fig. 4(b). The dipole designed using
this method matches exactly with the one designed using
Fermi’s golden rule previously. In this figure, the angu-
lar spectrum is plotted, using Eq. 4, for a dipole that
is designed, as described above, to show optimized direc-
tionality on a lossy waveguide. Instead of calculating the
spectrum on the real (kx, ky) plane, as is conventional for
angular spectra, we have also calculated the spectrum in
the Argand plane of kx. Interestingly, while the angu-
lar spectrum does not show any zero amplitude in the
real plane of (kx, ky), it does show a zero amplitude at
the complex point kx = k′m + ik′′m, as clearly seen in the

figure. This indicates that, although the procedure to
calculate the fields from the angular spectrum (Eq. 3)
involves using only the real values of kx and ky, the in-
formation contained in the angular spectrum E(kx, ky)
is still meaningful when one considers complex values for
the arguments kx and ky, at least in terms of predicting
the source’s unidirectionality.

(a)

(b)

max

0

FIG. 4. Angular spectrum |E(kx, ky) · êp| for a dipole opti-
mized to show perfect contrast directionality for a p-polarized
mode that is (a) lossless with km ∈ R and (b) lossy with
km = k′m + ik′′m (so km ∈ C). In (b) the angular spectrum
does not show zero amplitude at any location on the (kx, ky)
real plane (the traditional domain of the angular spectrum),
but it does show a zero amplitude if we calculate the spectrum
in the complex kx plane.

IV. DISCUSSION

Using an analogy with the phenomenon of spin-
momentum locking, in which the spin and polarization of
the evanescent wave depends on the propagation direc-
tion, we see that the spin and polarization also depends
on the losses of the waveguide, showing a phenomenon
that we could call polarization-loss locking. It is very
interesting to note that the losses of a waveguide can
be analytically derived from simply looking at the po-
larization of the mode at a single fixed point (and vice
versa). This allows one to deduce the amplitude decay
or spatial gradients of a mode simply with a local pre-
cise measurement of polarization, not even requiring the
measurement of polarization over a small neighborhood.
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The local polarization at every point is uniquely mapped,
with a one-to-one correspondence, to the complex prop-
agation constant.

We also showed how this polarization-loss relation
must be taken into account when designing near-field
dipole directionality and carefully described how this is
consistent with existing frameworks of dipole directional-
ity. In particular, it required us to stretch the definition
of angular spectra, intriguingly showing some evidence
that the calculation of angular spectra in complex vari-
ables might have physical significance.

We note that the mode polarization is especially sensi-
tive when the propagation constant is near the threshold
with propagating waves km = k0m ' 1, corresponding to
weakly confined modes. In that case, tiny changes in ei-
ther the real part (km = k0m + ε) or the imaginary part
(km = k0m + iε) (with 0 < ε ∈ R) of the propagation con-
stant will result in comparably large changes in the corre-
sponding polarization of the evanescent wave, which can
be translated into significant variations in dipolar cou-
pling to waveguided modes. This suggests that a mod-
ulation of intensity could be achieved using directional
dipole sources near a waveguide whose real or imaginary
part of refractive index are changed via a material non-
linearity, as well as a potential way to encode information
on spatial variations of optical losses of a material, whose
readout can be realized optically via directional sources.

It is always interesting to see physical phenomena arise

when extending variables that are typically considered
real into the complex domain. Further research is envis-
aged exploiting the unidirectional coupling not only in
lossy waveguides, as performed here, but also lossy sur-
rounding media as well, when the waveguide is embedded
in a complex refractive index, or other possibilities such
as near-zero index materials [31]. In this case, the wave-
equation condition k·k = k2 becomes even more interest-
ing because the right-hand-side wavenumber may become
complex itself, so k acquires more degrees of freedom, and
new exotic nanophotonic phenomena could arise.
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Fortuño, Laser and Photonics Review 13 (2019).

[29] L. Novotny and B. Hecht, Principles of Nano-Optics, 1st
ed. (Cambridge University Press, New York, 2006).



7

[30] N. Rotenberg, M. Spasenov́ıc, and et al., Physical Re-
view Letters 108 (2012).

[31] N. Kinsey, C. DeVault, A. Boltasseva, and V. Shalaev,
Nature Reviews Materials 4, 742 (2019).

[32] F. Perrin, Journal of Chemical Physics 10, 415 (1942).
[33] E. Collett, Field Guide to Polarization (SPIE, 2005).
[34] K. Y. Bliokh and F. Nori, Physics Reports 592 (2015).
[35] L. Mandel and E. Wolf, Optical Coherence and Quantum

Optics, 1st ed. (Cambridge University Press, 1995).
[36] M. F. Picardi, Doctor of Philosophy Thesis, King’s Col-

lege London University (2020).
[37] A. Ishimaru, Electromagnetic Wave Propagation, Radia-

tion and Scattering (Wiley-IEEE Press, 2017).

Appendix A: Stokes parameter dependence on the
propagation constant

In order to calculate the Stokes parameters of the
evanescent tail electric field employed to plot the paths
on the Poincaré sphere in Fig. 2, we used the definition
of Stokes parameters [32, 33] but applied in the (x, z)
plane where the electric field lies:

S0

S1

S2

S3

 =

 Ex · E∗x + Ez · E∗z
Ex · E∗x − Ez · E∗z
Ex · E∗z + Ez · E∗x
iEx · E∗z − iEz · E∗x

 . (A1)

According to the conditions in Eq. 2, it is easy to
see that, once km is fixed, and hence kx = km, then
we can calculate kz =

√
k2 − k2x using the Helmoltz

condition (such that Im(kz) ≥ 0) and then the elec-
tric field is restricted by the transversality condition to
E0 = A0(ŷ×k) = A0(−kz, 0, kx) where A0 is an arbitrary
scaling factor. Substituting this into the Stokes parame-
ters in Eq. A1 results in parametric paths of polarization
along the Poincaré sphere as a function of mode propaga-
tion constant S(km) = (S0, S1, S2, S3) used to generate
the paths in Fig. 2:S0

S1

S2

S3

 =

 |kz|
2 + |kx|2

|kz|2 − |kx|2
−2Re (k∗xkz)

2Im (k∗xkz)

 = |km|2

 |η|
2 + 1

|η|2 − 1
−2Re (η)

2Im (η)

 , (A2)

where superscript ∗ means complex conjugation, | · |
means the complex Euclidean modulus, and we have used
the ratio [34]:

η(km) =
kz
kx

=

√
k2 − (k′m + ik′′m)2

k′m + ik′′m
, (A3)

with special care taken to always take the square root
sign that guarantees a positive imaginary part of kz, to
ensure a physically meaningful evanescent wave above
the waveguide (the opposite sign should be used for the
evanescent wave below the waveguide). From here, many

analytical limits in the Poincaré sphere can be mathe-
matically obtained. In the propagating plane wave case
km/k = 1, η becomes null, so S2/S0 = S3/S0 = 0
and analogously S1/S0 = −1. In the limit of grow-
ing lossless mode propagation constant k′m → ∞, one
can calculate that limk′m→∞ η = i. The same limit
can be found for the case of unbounded mode losses
limk′′m→∞ η = i. In both cases, therefore, the polar-
ization tends to S1/S0 = S2/S0 → 0 and S3/S0 → 1,
corresponding to the upper pole of the Poincaré sphere
as depicted in Fig. 2 from the main text.

Appendix B: Angular spectrum of an electric dipole

The angular spectrum of a dipole source in a homoge-
neous medium has been derived previously in the litera-
ture [12, 29, 30, 35, 36] but here we present a very concise
derivation. Our starting point is the vector potential of a

dipole [29, 37] given as A = −iωµp e
ikr

4πr where ω is the an-
gular frequency, µ is the magnetic permeability, k = nω/c
is the wavenumber and r = |r− r0| is the radial distance
to the dipole position r0, which we take as r0 = 0 be-
low. The electromagnetic fields can be calculated from
the potential as H = 1

µ∇ × A and E = − 1
iωε∇ × H.

Combining these well known definitions we can write the
electric field of a dipole as:

E(r) = ∇×∇×
(

1

ε
p
eikr

4πr

)
. (B1)

In order to find the angular spectrum, we need to per-
form a double spatial Fourier integral. To do this, we can
use the well-known Weyl identity [35]:

eikr

r
=

i

2π

∫∫ ∞
−∞

eik·r

k
(+)
z

dkxdky, (B2)

where r = (x, y, z), k = (kx, ky, kz), with the sign of

kz = ±
√
k2 − k2t chosen depending on whether we are

taking z > 0 or z < 0 such that Im(kz) > 0 or Im(kz) <

0 respectively, and where k
(+)
z specifies having to take

the sign for z > 0. Substituting Eq. B2 into B1, we
can evaluate the curl (∇×) operators inside the integral,
which due to the harmonic dependence become (ik×)
operators, resulting in:

E(r) =

∫∫ ∞
−∞

1

ε

i

8π2k
(+)
z

[ik× ik× p] eik·rdkxdky.

(B3)
By simple comparison between Eq. B3 and the def-

inition of the angular spectrum in Eq. 3 of the main
text, we immediately identify the angular spectrum of
the dipole as the terms multiplying the exponential. This
finalises our derivation of the angular spectrum of the
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dipole. However, one may note that the angular spec-
trum is a vector quantity E(kx, ky), hence in practice it
is useful to decompose it into its components in some
basis.

A useful basis is the spherical basis, aligned with the
relative orientation of the wavevector, defined by the
unit vectors {êk, êp, ês} where we define êk = k/k,

ês = (ẑ × k)/
√

(ẑ× k) · (ẑ× k) and êp = ês × êk,
such that one can check they form an orthonormal basis
êi · êj = δij , with the interesting feature that the basis
vectors are in general complex-valued and yet our defini-
tion of orthonormality does not involve complex conjuga-
tion. This is possible thanks to the wave-equation, Eq. 1

in the main text, which results in êk · êk = 1. Thanks to
this orthonormality, any vector can be expressed in terms
of its components p = (p · êk)êk + (p · ês)ês + (p · êp)êp.
Therefore, making use of the fact that êk × ês = −êp
and êk × êp = ês or using Lagrange’s formula for triple
product, it is straightforward to show that ik× ik×p =
−k2(êk × êk × p) = k2 [(p · ês)ês + (p · êp)êp] is simply
a projection of p into the space orthogonal to êk. Sub-
stituting this into Eq. B3 we arrive directly at:

E(r) =

∫∫ ∞
−∞

ik2

8π2εk
(+)
z

p [(·êp)êp + (·ês)ês] eik·rdkxdky,

(B4)
which completes the derivation of Eq. 4 in the main text.


