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Highlights

• We combine bin packing and just-in-time batch scheduling into a new
problem

• We minimize total weighted earliness tardiness in a combined packing
scheduling problem

• Our constraint program addresses the packing and scheduling aspects si-
multaneously

• Our branch-and-check approaches solve the problem under few heuristic
assumptions

• Performance comparison of constraint versus mixed-integer programming
master problems
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Abstract

This paper considers the on-time guillotine cutting of small rectangular items
from large rectangular bins. Items assigned to a bin define the bins’ process-
ing time. Consequently, an item inherits the completion time of its assigned
bin. Any deviation of an item’s completion time from its due date causes either
earliness or tardiness penalties. This just-in-time two-dimensional bin packing
problem (JITBP) combines two difficult discrete optimization problems: Bin
packing and total weighted earliness tardiness single machine scheduling. It is
herein modeled as an integrated constraint program, augmented with two sets
of logically redundant constraints that speed the search. The first set uses the
concept of dual feasible functions. It focuses on bin packing feasibility. The
second is the result of a linear program that schedules filled bins on a single
machine. As an alternative to this integrated model, this paper proposes two
decomposition cut-and-check approaches that define the master problem (MP)
as a relaxation of JITBP where the items are reduced to dimensionless enti-
ties. They then reestablish the geometric feasibility of the MPs’ solutions by
iteratively augmenting MP with Benders cuts generated from the subproblems.
The two approaches are similar in concept except that one implements MP as
a constraint program (CP) while the second implements it as a mixed-integer
program (MIP). Because JITBP is computationally challenging, we test all ap-
proaches under a number of heuristic assumptions, which include a maximum
runtime for the MIP and CP solvers. The results provide computational evi-
dence that the integrated constraint programming approach performs relatively
well, and outperforms the decomposition approach whose MP is a CP. However,
both approaches are outperformed by the decomposition approach whose MP
is a warm-started MIP.

Keywords: Weighted earliness tardiness; Bin packing; Scheduling; Constraint
programming; Hybrid approach; Branch-and-Check; Approximate algorithm
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1. Introduction

One of the stages of furniture manufacturing involves the cutting of two-
dimensional (2D) small items from 2D large rectangular boards, referred here-
after as bins. The small items are then assembled during later stages. Cutting
an item earlier than its due date induces unnecessary handling and storage that
translate into earliness costs. Similarly, cutting an item after its due date causes
the starvation of later stages and a tardy delivery of the final product. This
yields a tardiness cost that includes compensations to end customers, wages of
unwanted extra work hours, inefficient use of production resources, losses caused
by starvation of later stages, extra mailing costs caused by rushed orders that
must be handled as a priority, etc. That is, furniture manufacturers face the
combined problem of (i) assigning 2D rectangular small items into identical 2D
rectangular large bins and (ii) scheduling the on-time guillotine cutting of the
bins. Obviously, this combined problem appears in other environments includ-
ing steel manufacturing [4], ship lock scheduling [45], embarkation of cargos [10],
defense, air cargo, and rescue operations.

This paper studies a new JIT 2D bin packing problem when the on-time
guillotine cutting of the bins uses a single cutting machine. This problem,
labeled JITBP, minimizes the total weighted earliness tardiness (TWET) of the
small items while satisfying all standard cutting and scheduling constraints. It
plans the cutting of the filled bins such that the cutting schedule minimizes
the weighted deviation of the completion time of each item’s cutting from the
item’s distinct due date. A bin’s cutting time depends on the bin’s content.
As such, JITBP is very complex. It combines the difficulty of two NP-hard
problems: 2D bin packing problem (2DBPP) [25], and TWET single machine
batch scheduling problem [36].

Combined problems consider different aspects of the supply and logistic chain
[12]. They are more realistic than their single but inter-related components.
They should be addressed simultaneously not only because they account for
more constraints, consider the true nature of the variables, and build intricate
interdependencies but also and, most importantly, because they enhance the
chances of direct real-life implementation of their solutions without any mod-
ification and at no supplementary cost. JITBP is no exception. Solving it
requires a thorough understanding of cutting, scheduling, and their interac-
tion. Cutting involves non-overlap, containment, assignment, and disjunctive
constraints. Scheduling involves non-overlap, non-preemption, and sequencing
constraints. Optimizing material utilization and TWET can be either com-
peting or cooperating goals depending on practical settings. The simultaneous
satisfaction of cutting and scheduling constraints is challenging. In addition,
altering the assignment of an item from one bin to another alters the two bins
processing times; thus, affects the structure of the entire solution, and most
importantly of its cost components. Finally, the search space contains a large
number of infeasible and of symmetrical solutions.

This paper models JITBP as a novel integrated constraint program (CP).
This model explores the strengths of two customized problem-specific constraints
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that speed the reduction of variables’ domains through inference mechanisms.
The first constraint is linear programming (LP)-based. It determines a minimal
cost schedule of a feasible assignment of items to bins. It prunes the search
tree rapidly. The second constraint applies the concept of dual feasible func-
tions in search for a feasible packing. It filters out many infeasible items-to-bin
assignments as the CP-search progresses.

For large and difficult instances of JITBP, this paper investigates two branch-
and-check (B&C) models that are inspired from logic-based Benders decompo-
sition (LBBD). (LBBD techniques are notorious for successfully handling plan-
ning and scheduling problems [17].) The two proposed B&C approaches build
a master problem (MP) that assimilates items to dimensionless entities, and
entrust packing feasibility to the subproblems. That is, MP drops the geomet-
ric constraints that describe the relationships among packed items and between
a packed item and its assigned bin. It assigns items to bins and searches for
the bins’ best completion times such that they minimize TWET. The subprob-
lems, which focus on packing feasibility, eliminate infeasible cutting patterns
by injecting Benders cuts to MP. Both approaches solve the subproblems via a
CP-based packing algorithm. However, the first models MP as a mixed-integer
program MIP while the second models MP as a CP. Thus, they explore two
promising/interesting B&C decompositions of the integrated model. Because
CP and MIP solvers benefit from a warm-start mode, this paper proposes a
simple iterative two-phase heuristic for this purpose.

This paper assesses the performance of the proposed approaches. (Even
though they can converge to global optima, all three proposed algorithms are
run under heuristic assumptions, including a threshold runtime for MIP and
CP solvers.) Specifically, this paper evaluates the optimality gap reduction of
each approach, and infers the most appropriate way of formulating MP: using
CP versus MIP. The computational investigation reveals that the decomposition
approach whose MP is an MIP is preferred to the integrated CP based approach.
In turn, this latter outperforms the decomposition approach whose MP is a CP.

This manuscript has six major contributions. First, it offers a novel inte-
grated CP model that models an unlimited number of guillotine cuts by creating
a constant number of regions. This model is a successful alternative to more tra-
ditional MIPs, which either limit the number of guillotine cuts per bin or resort
to disjunctive constraints (and their intrinsic computational issues). This model
is not intrinsic to the problem at hand. It is easily extendable to other guillo-
tine packing applications. Second, to the best of the authors’ knowledge, this
manuscript is the first to consider dynamic cutting times for two-dimensional
bins, where the cutting time of a bin is a function of its contents. This is a ma-
jor advancement that distinguishes the paper from the state of the art, which
assumes a constant bin’s processing time regardless of a bin’s content. Third,
despite the prevalence of Benders decomposition, both its hybridization within
CP and MIP and its application to JITBP are new. Fourth, presenting and com-
paring the three proposed approaches highlight the difficulties and advantages
inherent to B&C for this specific JITBP. Not only does it assess the capability
of each approach to solve JITBP, but it also investigates the modelling issues
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brought up by decomposition. Fifth, JITBP is of sizeable importance to the
industry, logistics, and defence force applications. While the packing compo-
nent may differ from guillotine packing, minimizing TWET of batched items
prevails. Finally, the proposed approaches are modular. They are extendable to
any machine environment including parallel machines and (hybrid) flow shops.
Changing the shop environment causes only small changes to the CP scheduling
function evoked within the MIP and CP models.

Section 2 reviews pertinent literature. Section 3 defines the problem. Section
4 proposes an integrated model to JITBP. Section 5 details the two proposed
decomposition based approaches. Section 6 presents the iterative two-phase
warm-start heuristic. Section 7 discusses the results. Finally, Section 8 summa-
rizes the paper and gives possible extensions.

2. Literature Review

This section highlights the difficulty of JITBP and of its components. Sec-
tions 2.1-2.3 present the recent work on, respectively, TWET single machine
scheduling, bin packing (BP), and JITBP related problems.

2.1. Weighted Earliness Tardiness Scheduling

The simplest single machine TWET scheduling problem has unit weights and
a common non-restrictive due date d; i.e., d is large enough not to constrain the
scheduling process. Its optimal solution is V-shaped. Jobs completing before
d follow the longest processing time rule, while jobs starting after d follow the
shortest processing time rule. One job ends its processing on d, and another
starts processing at d. There is no idle time between jobs. Finally, the starting
time of the schedule is not necessarily zero. The weighted version of this problem
changes its difficulty level making it NP-hard [20]. Similarly, a restrictive due
date alters some of the aforementioned conditions for the unit weight version.
A job may be processed through the common due date and idle time may be
inserted between successive jobs. When idle time is permitted, the problem
reduces to identifying the optimal sequence and to inserting idle time between
jobs of the sequence. The general case with distinct due dates has an optimal
schedule that may contain idle time between adjacent jobs.

The single machine distinct due dates TWET scheduling problem is strongly
NP-hard [46], with few exact techniques [24, 43] and no polynomial-time al-
gorithm with a guaranteed worst-case performance unless P = NP [31]. For
unit weights, exact approaches vary from dynamic programming [1] to branch-
and-bound (B&B)[40]. The problem is generally approached heuristically [29,
30, 47]. Rocholl and Mönch [39] consider a variant that is close to JITBP: a
total earliness tardiness single machine batch scheduling with a common non-
restrictive due date. They use a random key genetic algorithm.
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2.2. On Bin Packing

2DBPP allocates, without overlap, a set of small rectangular items into the
minimum number of identical large rectangular bins. The problem is extensively
studied. Among its effective exact approaches is a branch-and-price-and-cut
algorithm [32]. The approach uses a constraint satisfaction formulation that
is more flexible than its integer counterpart. Martello et al. [28] explore the
aforementioned constraint satisfaction formulation to check the feasibility of
a packing within a single bin. They use the feasibility check to speed up a
column generation pricing approach for the three-dimensional case. Cote et al.
[11] design a branch-and-cut and a Benders decomposition approach for 2DBPP
with unloading constraints. These exact approaches highlight the difficulty of
the problem, which is NP-hard in the strong sense. They solve instances with
up to 100 items but often fail to solve instances with as few as 20 items. Solving
large or difficult instances exactly is time-consuming without any guarantee of
a sufficiently good convergence to a global optimum. Approximate approaches
to the problem vary from best/first fit algorithms [8] to meta-heuristics [25] to
hyper-heuristics [42, 26] to multi-agent based algorithms [37] to a combination
of CP and iterative packing heuristics [35].

2.3. On Scheduling and Bin Packing

Solving a combined problem is generally harder than tackling its components
separately. Optimizing each component is suboptimal to the combined problem.
Thus, an effective approach should optimize both components simultaneously.
BP appears in conjunction with (un)loading constraints [44], vehicle routing
[19], and JIT single / parallel machine scheduling [34].

Li [23] considers a variation of an industrial 2D cutting stock where meet-
ing due dates is more important than minimizing waste. Hendry et al. [16]
explore the same problem but address the two components individually within
a two-stage solution procedure. Reinertsen and Vossen [38] investigate a prob-
lem that arises in steel manufacturing. They minimize the convex combination
of makespan and total weighted tardiness of a one-dimensional cutting stock
problem with due dates. They tackle the problem using an integer program-
ming based heuristic. For the same problem, Arbib and Marinelli [4] propose
exact approaches, including column generation ones. They apply time-indexed
models, which contain a large number of variables. This number is reduced
using an ad-hoc procedure. Braga et al. [9] consider the same problem. They
review two exact formulations and embed a variant of the arc flow model into
a meta-heuristic to approximately solve medium scale instances. Arbib and
Marinelli [5] consider the one-dimensional BP where items are assigned to iden-
tical unit-length bins with the objective of minimizing the convex combination
of makespan and maximum lateness. In this context (and in the previous two
references), the makespan is the number of bins, and bins have a constant cut-
ting time (not a necessarily realistic assumption as they point out) and integer
due dates that are multiples of the cutting times. The problem is modeled as
a time-indexed mixed-integer LP, and is tackled via column generation. It is
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decomposed into an MP that schedules filled bins and into pricing problems
that fill single bins iteratively. The model is further augmented with bounds on
makespan and on maximum lateness.1

Bennell et al. [7] extend the above problem to 2D. They use genetic algo-
rithms to tackle the non-oriented 2DBPP with due dates with two objective
functions: minimizing the number of used bins and minimizing the maximum
lateness of the items. Polyakovskiy and M’Hallah [35] address the same problem,
but focus on the second objective. In addition to a tight lower bound on max-
imum lateness, they propose an MIP that solves small-sized instances exactly.
To cope with larger-sized instances, they design a two-stage heuristic, which
iteratively improves the incumbent via a series of assignment low-level MIPs
guided by feasibility constraints. Their approach embeds a lookahead strategy
that guards against infeasible search directions and constrains the search to im-
proving directions only. Marinelli and Pizzuti [27] minimize both the number of
bins and the maximum lateness of the 2DBPP with due dates using a sequential
value correction heuristic. Arbib et al. [3] exemplify an industrial case study
that illustrates a relationship between the two-dimensional packing and the
scheduling problem where the objective is to minimize the weighted number of
tardy jobs. Focusing on the scheduling aspects, they propose a branch-and-cut
algorithm [22] for two scheduling environments: single machine with precedence
relations, and identical parallel machines with unit operation times.

A prelude [33] to this paper addresses JITBP via an agent-based constructive
heuristic (ABH) and via a CP-based approximate heuristic (CPH). ABH con-
structs a solution through repeated negotiations between agents representing the
items and bins. The agents cooperate in a way that minimizes TWET. CPH
adopts the impact-based search strategy that is implemented in the general-
purpose solver IBM CP Optimizer. Their results stipulate that CPH is superior
to ABH for small-sized instances while the opposite prevails for larger instances.

In this paper, we introduce a warm-start heuristic that consistently outper-
forms ABH. In addition, we adopt CPH’s model as a core of a new integrated CP
model and refine it considerably. We augment CPH’s model with customized
constraints that strengthen domain reduction and inference mechanisms while
eliminating some unnecessary constraints. In this way, the new integrated model
obtains better solutions than CPH in smaller run times. Subsequently, when
initiated with the warm-start solution, the integrated model consistently out-
performs both CPH and ABH. Therefore, neither CPH nor ABH are used for
comparison purposes. Instead, the efficiency and efficacy of the integrated model
are compared to those of the two new LBBD approaches. The comparison uses
an existing benchmark set of instances whose due dates are amended to better
reflect the challenges imposed by JITBP’s components.

1For one-dimensional BP [5], it is reasonable in most applications to assume unit bin
processing times. Variable processing times are considered in some 2DBPP cases (e.g. [3])
but not in others.
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3. Problem Formulation

Consider a manufacturing process, which involves a cutting stage that pro-
duces a set I = {1, . . . , n} of n small rectangular items from a setB = {1, . . . ,m}
of large identical rectangular sheets of raw material, referred to as bins. The
cutting stage uses a single machine, which obtains items by a series of edge to
edge cuts that are parallel to the edges of the sheets. Item i ∈ I is characterized
by its integer length li, integer width wi, and integer due date di that defines
when i should ideally be produced.

In a JIT environment, an item’s due date is agreed upon between the pro-
ducer and consumer. (The producer and consumer may be two consecutive
stages of the manufacturing chain.) Missing an item’s due date may result in
the loss of the customer or the need to compensate for the delay along the
production or assembly line. On the other hand, cutting an item much earlier
than its due date may cause unwanted inventory, handling, and potential dam-
age. Let Ci denote the completion time of item i ∈ I (i.e., the time its cutting
is finished). When cut prior to di, item i is early. Similarly, when cut after
di, item i is tardy. The length item i is tardy or early is important. Thus,
any cutting schedule of a set of items should strive to avoid both earliness and
tardiness costs. The earliness of item i is Ei = max {0, di − Ci} and causes
an earliness penalty εiEi, where εi is a per time unit earliness cost of item
i. This cost can be perceived as an inventory cost. Similarly, when produced
later than di, item i has tardiness Ti = max {0, Ci − di}. Consequently, item
i incurs a tardiness cost τiTi, where τi is the per-unit tardiness cost of item i.
This cost reflects the additional costs incurred by subsequent production stages
and corresponding in-house logistics. Albeit determining τi and εi reliably may
seem difficult, these values can be determined using cost accounting techniques,
generally implemented in all shop floors. Regardless, the scheduling literature
assumes that their values are known. In addition, their relative magnitudes are
more important than their true values.

A bin b ∈ B is characterized by its integer length L and integer width W
such that li ≤ L and wi ≤W for any i ∈ I. Depending on the items’ dimensions,
it is possible to cut more than one item from a bin. A subset Ib ⊆ I of items
assigned to a bin b ∈ B can not overlap and must be entirely contained in the
bin. The subset forms a batch b whose items share its completion time Cb.
The processing time of batch b is a function ϕ (Ib) of Ib. Herein, we assume
that ϕ (Ib) is dynamic and linear in the number of items. Evidently, an empty
bin has a zero cutting time. In this research, ϕ (Ib) depends on the setup and
handling time of the items not on their cutting time. The handling time is
quite intricate because it involves the items’ rotation and correct positioning
under the cutter. On the other hand, the cutting can be very fast depending on
industrial setting: it may simply consist of lowering a lever. That is, the items’
cutting times per say can be negligible for all purposes because of their small
magnitude. It follows that ϕ (Ib) is not a linear function of the processing times
but of the number of items in a bin.

JITBP searches for (i) a feasible guillotine packing of I into bins of B, and
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(ii) a bin cutting schedule that minimizes TWET, defined by
∑
i∈I (εiEi + τiTi).

Clearly, m ≤ n as n is a valid upper bound on the number of bins. A feasible
solution that uses less bins is more efficient from a packing perspective, but may
not be as efficient from a scheduling perspective: It may cause a higher TWET.

The packing and scheduling components of this problem are strongly inter-
dependent. They interact with each other either cooperatively or competitively
depending on the problem parameters such that the due dates’ distribution,
setup and handling time. Relaxing the packing density (by assigning a single
item per bin) does not necessarily reduce TWET. Similarly, a dense packing
that assigns multiple items to a bin may either increase or decrease TWET.
Thus, finding the optimal number of bins and their contents is not trivial.

JITBP is an NP-hard combinatorial optimization problem that is compu-
tationally challenging. It has a huge solution space due to a large number
of alternative solutions caused by symmetric packing configurations and sched-
ules. It uses disjunctive constraints, which determine the completion time of the
items. In MIP, each disjunctive constraint is represented via a “Big M” con-
straint. The “Big M” reformulation has a drawback: Its resulting relaxation is
often too weak. It degrades the search and lengthens the partial enumeration
[15]. It almost exhaustively enumerates the search space. This major drawback
motivates the design of alternative effective solution techniques.

4. An Integrated Constraint Programming Approach

CP is a prominent modeling technique for BP and scheduling alike [18]. We
therefore use CP to model JITBP, which combines packing and scheduling. In
CP, a problem is modelled via a set V of variables and via a set of constraints
C on V. Each variable νi ∈ V is defined by its domain D(νi). CP enumerates
solutions traversing a search tree. At a node of the tree, it restricts the domain
D(νi) of every variable νi ∈ V subject to C. Each constraint acts as a special-
purpose filtering algorithm that excludes, from the domains of the variables,
those values that lead to infeasible solutions. When νi ∈ V is fixed, the search
inspects those constraints that share νi. CP propagates the constraints; it
checks whether fixing the value of νi eliminates values from the domains of
other variables that are connected to νi via one or more constraints of C. Thus,
the results of one filtering procedure are repeatedly propagated to the others
until a certain level of consistency is achieved. When it yields an empty D(νi),
the filtering signals an infeasible solution. When the domain of νi is not empty
but is not a singleton, CP branches on νi by partitioning D(νi). As the search
descends into the tree, CP reduces the variables’ domains. It obtains a feasible
solution when the domain of every variable νi ∈ V reduces to a singleton. When
emphasis is on optimality, the search continues until either the optimum is
found, or the exploration of the tree is unsuccessful.

Herein, we model JITBP using CP (cf. [21].) Section 4.1 defines the decision
variables. Section 4.2 presents the model, which avoids the notorious weakness of
MIP and of its “Big M”constraints. Section 4.3 explains the role of the logically
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Figure 1: Illustrating the two cutting patterns resulting from a different sequence of cuts. The
first cut is horizontal in pattern α (on the left) and vertical in pattern β (on the right).

redundant constraints included in the model. Finally, Section 4.4 details the
adopted search strategy.

4.1. Decision and Auxiliary Variables

Our CP model for JITBP explores a new approach to modeling a not-a-
priori fixed number of guillotine cuts. Every item i ∈ I is obtained from a bin
(L,W ) or from a region (L′,W ′), L′ ≤ L, W ′ ≤ W , of a bin via a sequence of
horizontal and vertical cuts.

• When the first cut is horizontal, as depicted in Figure 1.a, the region
(L′,W ′) is split into two regions: Rti of size (L′,W ′ − wi) at the top of i,
and Rri of size (L′ − li, wi) at the right of i. In this case, i is said to be
the result of an α cutting pattern.

• When the first cut is vertical, as shown in Figure 1.b, the cutting of the
bin produces two regions: Rti of size (li,W

′ − wi) at the top of i and Rri
of size (L′ − li,W ′) at the right of i. In this case, i is said to be the result
of a β cutting pattern.

Regardless of cut type, cutting item i ∈ I creates two regions: Rti to the top
and Rri to the right of i. When L′ = li (resp. W ′ = wi), R

r
i (resp. Rti) is

empty. Therefore, the extraction of the n items creates 2n regions: Rt1, . . . , R
t
n

and Rr1, . . . , R
r
n. Let the initial m unfilled bins correspond to regions R1 = . . . =

Rm = (L,W ), and let R = {R1, . . . , Rm, R
t
1, . . . , R

t
n, R

r
1, . . . , R

r
n} be the set of

all regions. At no cutting stage, does R have more than m+ 2n regions.
The proposed CP model and search strategy assign the n items to the regions

of R, determine each region’s size, and schedule the first m regions. For this
purpose, they use integer decision variables and auxiliary variables. The first
set of decision variables assigns items to regions. It is a vector e = (e1, . . . , en),
where ei = j if item i is positioned in region j ∈ R. Three scenarios are possible.

• ei ∈ {1, . . . ,m} when i is the first item packed into bin j = ei.

• ei ∈ {m+ 1, . . . ,m+ n} when i is located in region Rtei−m on top of item
(ei −m). Because i can’t be packed on top of itself (i.e., i can’t be in
Rti = Rm+i), ei 6= m+ i.
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• ei ∈ {m+ n+ 1, . . . ,m+ 2n} when i is located in region Rrei−m−n to the
right of item (ei −m− n). Because i can’t be packed to the right of itself
(i.e., i can’t be in Rri = Rm+n+i), ei 6= m+ n+ i.

The domain of ei is therefore

D (ei) = {1, . . . ,m+ 2n} \ {m+ i,m+ n+ i}

with the two values, m+ i and m+ n+ i excluded from D (ei).

The second set of decision variables (̂l, ŵ) determines the sizes of the m+2n

regions: the length l̂ ∈ {N}m+2n
and the width ŵ ∈ {N}m+2n

where
(
l̂j , ŵj

)
is

the size of Rj ∈ R. Because Rj = (L,W ) for j = 1, . . . ,m, while Rm+j = Rtj
and Rm+n+j = Rrj for j = 1, . . . , n, the domains of l̂ and ŵ are:

D
(
l̂j

)
=





L if j ∈ {1, . . . ,m}
{lj−m, . . . , L} if j ∈ {m+ 1, . . . ,m+ n}
{0, . . . , L− lj−m−n} if j ∈ {m+ n+ 1, . . . ,m+ 2n}

and

D (ŵj) =





W if j ∈ {1, . . . ,m}
{0, . . . ,W − wj−m} if j ∈ {m+ 1, . . . ,m+ n}
{wj−m−n, . . . ,W} if j ∈ {m+ n+ 1, . . . ,m+ 2n}

.

The third set of decision variables x ∈ {N}m+2n
and y ∈ {N}m+2n

deter-
mines the bottom-left coordinates (xj , yj) , j = 1, . . . ,m+2n, of regions Rj ∈ R.
These variables have domains

D (xj) =





0 if j ∈ {1, . . . ,m}
{0, . . . , L− lj−m} if j ∈ {m+ 1, . . . ,m+ n}
{lj−m−n, . . . , L} if j ∈ {m+ n+ 1, . . . ,m+ 2n}

and

D (yj) =





0 if j ∈ {1, . . . ,m}
{wj−m, . . . ,W} if j ∈ {m+ 1, . . . ,m+ n}
{0, . . . ,W − wj−m−n} if j ∈ {m+ n+ 1, . . . ,m+ 2n}

The fourth set of decision variables υ ∈ {0, 1}n selects the cutting pattern
(α or β) for every item i ∈ I: υi = 1 (or true) if i is the result of an α pattern,
and 0 otherwise.

Finally, the fifth set of decision variables C ∈ {Z≥0}m defines the completion
times of the m bins. Let Cmax be an upper bound on the completion time Cb
of bin b ∈ B. Then, the domain of Cb is

D (Cb) = {0, . . . , Cmax} .
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minu =
∑

i∈I
max (εi · (di − Element[C,ai]) , τi · (Element[C,ai]− di)) (1)

s.t. AllDifferent [e1, . . . , en] (2)

((ei≤m)→ai =ei)∧(¬(ei≤m)→ai =Element[a,(ei−m)modn]) i ∈ I (3)

qb = Count [a, b] b ∈ B (4)

Equals [qb, 0]→
m∑

k=b+1

qk = 0 b∈B, mlb<b<m (5)

Max [a] = z (6)
(
li ≤ Element

[
l̂,ei

])
∧ (wi ≤ Element[ŵ,ei]) i ∈ I (7)

(
vi → l̂m+i = Element

[
l̂,ei

])
∧
(
¬vi → l̂m+i = li

)
i ∈ I (8)

ŵm+i = Element[ŵ,ei]− wi i ∈ I (9)

l̂m+n+i = Element
[
l̂,ei

]
− li i ∈ I (10)

(vi → ŵm+n+i = wi) ∧ (¬vi → ŵm+n+i = Element[ŵ,ei]) i ∈ I (11)

xm+i = Element[x,ei] i ∈ I (12)

ym+i = Element[y,ei] + wi i ∈ I (13)

xm+n+i = Element[x,ei] + li i ∈ I (14)

ym+n+i = Element[y,ei] i ∈ I (15)

ϕ [a, 1] ≤ C1 (16)

Cb−1 + ϕ [a, b] ≤ Cb b ∈ B \ {1} (17)
∑

i∈I
λk′iEquals [ai, b] ≤ 1 b∈B, k′=1, . . . , k (18)

Schedule [a,C] (19)

Figure 2: The CP model for the JITBP.

Along with the aforementioned decision variables characterized by their re-
stricted domains, the CP model uses three auxiliary variables. The first set
a ∈ {1, . . . ,m}n reveals the items’ affiliations: ai = b when item i is assigned to
bin b ∈ B. The second set q ∈ {Z≥0}m gives the number of items assigned to
each bin. Let qmax be a known upper bound on the number of items that can
fit into a single bin, and let mlb ≤ m be the lower bound of [14] on the number
of bins required to cut the n items. Forcing the first mlb bins to contain at least
one item, D(qb) = {1, . . . , qmax} for every b ≤ mlb and D(qb) = {0, . . . , qmax}
for each b > mlb. This rule partially excludes symmetrical solutions emerging
when a filled bin b empties all its items into an empty bin b′ that precedes or
succeeds bin b on the cutting machine. This exchange of items produces a dif-
ferent solution but the same objective function’s value. The third set is the
number z of used bins, where D (z) = {mlb, . . . ,m}.

4.2. The Constraint Programming Model

The CP model, which restricts the variables’ domains as described in Sec-
tion 4.1, is given in Figure 2. Equation (1) defines the objective function
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value u as the TWET of the items of I. Because ai defines the bin to which
item i is assigned, Element[C,ai] is the completion time Ci of i. In fact,
the expression Element[υ,h] returns the hth variable of υ. When i is early,
Ei = di − Element[C,ai] > 0 while Element[C,ai]− di < 0. On the other hand,
when i is tardy, di−Element[C,ai] < 0 while Ti = Element[C,ai]−di > 0. It fol-
lows that the maximum of εi · (di − Element[C,ai]) and τi · (Element[C,ai]− di)
determines the weighted earliness tardiness of i.

Constraint (2) ensures that the n items are assigned to different regions. It
uses CP-specific constraint AllDifferent [υ1, . . . , υn], which ensures that vari-
ables υ1, . . . , υn take distinct values. Constraint (3) identifies the bin ai corre-
sponding to region ei where item i is assigned. If i is positioned in one of the
first m regions of R, then it is the first item assigned to its bin; therefore, the
constraint sets ai = ei when ei ≤ m. Alternatively, i is positioned in a residual
top or right region of a bin whose first positioned item is item (ei −m) mod n;
therefore, the constraint assigns to i the bin ai that includes its region ei, where
ai = Element[a,(ei −m) mod n]. Constraint (4) calculates the number of items
contained in bin b ∈ B. It applies CP expression Count [υ, h], which counts the
number of variables of υ taking the value h.

Constraint (5) is logically redundant. It breaks the symmetry that is inherent
in this model. If bin b is empty, then all its succeeding bins should be empty.
Because the first mlb bins must have at least one item, this constraint is only
imposed for bins following bin mlb. It uses the CP expression Equals [υi, h] ,
which returns 1 if υi = h and 0 otherwise. Constraint (6) bounds bin ai assigned
to item i by the upper bound z. Because no item is allocated to an empty bin,
and all empty bins are tagged to the end of the schedule, z is the number of non-
empty bins. This constraint uses the CP expression Max [υ] = max{υ1, . . . , υn},
which returns the maximum value of the elements of υ.

Constraints (7)-(15) guarantee the packing feasibility. Constraint (7) guar-
antees that region ei, which holds item i, is large enough to fit i; i.e., that length
li and width wi are less than or equal to the region’s length and width, given

respectively by Element
[
l̂,ei

]
and Element[ŵ,ei]. Constraints (8) and (9) com-

pute the size of the top residual area Rti obtained when cutting item i. When
the first cut generating i is horizontal (i.e., vi = 1), constraint (8) implies that

the length l̂m+i of Rti equals the length of region ei where i is positioned. On
the other hand, when the first cut generating i is vertical (i.e., ¬vi), the length
of Rti equals li. Constraint (9) calculates the width ŵm+i of Rti as the difference
between the width of region ei and the width of item i. That is, the width
ŵm+i of Rti does not depend on the cutting pattern. Similarly, constraints (10)
and (11) specify the size of the right residual region Rri . Constraint (10) sets

the length l̂m+n+i of Rri to the difference between the length of region ei to
which item i is assigned and the length li of item i. That is, the length of Rri is
independent of the cut that generates i. Constraint (11) sets the width of Rri .
When i is extracted via an α pattern (i.e., vi = 1), the width of Rri equals the
width wi of item i. On the other hand, when i is cut via a β pattern (i.e., ¬vi),
the width of Rri is the same as the width of region ei. Constraints (12) and (13)

12

                  



determine the bottom leftmost x and y-coordinates of region Rti. They set the
x-coordinate of Rti to ei’s x-coordinate, and set the y-coordinate of Rti to the
sum of the y-coordinate of region ei and wi. Likewise, constraints (14) and (15)
compute the coordinates of region Rri . Equation (14) sets the x-coordinate of
Rri to the sum of the x-coordinate of region ei and li, while Equation (15) sets
its y-coordinate to the y-coordinate of region ei. Excluding constraints (12)-(15)
does not make the solution of JITBP infeasible. It may even speed the search.

Constraints (16) and (17) address the scheduling component of the problem.
Constraint (16) ensures that the schedule starts on or after time zero. Indeed,
idle time may be inserted at the beginning of the schedule when it reduces
TWET. Constraint (17) guarantees the no overlap of the processing windows
of two consecutive bins. The completion time of a bin is the sum of its starting
time and its cutting time. Because idle time is allowed, the starting time of a
bin b is larger than or equal to Cb−1, the completion time of bin b−1; i.e., of the
bin that precedes bin b. The cutting time of a bin b is defined by ϕ [a, b], which
is a function of the items assigned to bin b and given by a. Finally, constraints
(18) and (19) are logically redundant.

4.3. Redundant Constraints

Constraint (18) applies the concept of dual feasible functions (DFF) to
strengthen the search for a feasible packing while constraint (19) applies mathe-
matical programming to obtain a minimal cost feasible schedule of packed bins.

The application of dual feasible functions (DFFs) yields strong lower bounds
to the minimal number of bins that can pack orthogonally a given set of 2D
oriented items. This is a 2DBPP [2]. In addition, the application of DFFs
indicates whether a subset of items may be packed into a single bin. This is a
2D orthogonal packing problem (2OPP). When its solution value is larger than
one, the subset of items under consideration can’t be packed into a single bin,
and the packing of this subset is fathomed from JITBP’s search space.

A DFF is a function µ : [0, 1]→ [0, 1] such that
∑
s∈S s ≤ 1⇒∑

s∈S µ (s) ≤
1 holds for any set S of non-negative real numbers. Assume that (µ1, µ2) is a pair

of two DFFs, then (µ1 (li/L) , µ2 (wi/W )) ∈ (0, 1]
2

represents the transformed
dimensions of item i ∈ I, derived from i’s original dimensions (li, wi). For a
feasible packing into a single bin to exist, the sum of the areas of the modified
items must be less than or equal to 1,

∑

i∈I
µ1 (li/L)µ2 (wi/W ) ≤ 1. (20)

Various combinations of DFFs may lead to different transformed items. For
k distinct DFF combinations, a real-valued matrix Λ = (λk′i) ∈ Rk×n≥0 stores
a collection of scaled areas of item i as an argument of two DFFs, µ1 and µ2,
for every i ∈ I and k′ = 1, . . . , k. The DFFs u(1), U (ε), and φ(ε) are the step
functions described by Theorem 14 of Fekete and Schepers [14] for 2DBPP. Here,
they are used to deduce, from constraint (20), the valid feasibility inequality

13

                  



constraint (18) for the CP model. This inequality is of the form

∑

i∈I
λk′iEquals [ai, b] ≤ 1, b ∈ B, k′ = 1, . . . , k. (21)

Some of the k constraints of inequality (18) may be superfluous. A constraint
k′, k′ = 1, . . . , k, is superfluous if either

∑
i∈I λk′i ≤ 1 or there exists k′′,

k′′ = 1, . . . , k, k′ 6= k′′, such that λk′i ≤ λk′′i for all i ∈ I. Any superfluous
constraint is omitted. Among the non-superfluous ones, only a subset of the
constraints are entered in the model; i.e., those that maximize the values of∑
i∈I λk′i. Section 7.2 explains how the constraints are selected and how the

DFFs’ control parameters are set.
Even though the CP model optimizes the bins’ completion times, its search

might be slow. CP’s inference process takes the form of domain reduction,
constraint propagation and generation of “no good” cuts. To overcome this
glitch, we use LP to deduce the optimal completion times C1, . . . , Cm of the m
bins once a is fixed. Specifically, we strengthen CP’s search via a customized
constraint Schedule [a,C]. For a given input a, Schedule [a,C] determines the
optimal C that minimizes TWET by solving an LP, via any general purpose
LP solver. It has three sets of decision variables: Ĉ ∈ {R≥0}m representing the
completion times of the m bins, E ∈ Rn≥0 and T ∈ Rn≥0 expressing the earliness
and tardiness of the n items. It is defined as follows:

min û =
∑

i∈i
(εiEi + τiTi) (22)

s.t.Ti − Ei = Ĉb − di i ∈ I, b = ai (23)

ϕ [a, 1] ≤ Ĉ1 (24)

Ĉb−1 + ϕ [a, b] ≤ Ĉb b ∈ B \ {1} (25)

û ≤ u∗ (26)

Ti ∈ R≥0, Ei ∈ R≥0 i ∈ I (27)

Ĉb ∈ R≥0, Cb ≤ Ĉb ≤ Cb b ∈ B (28)

LP schedules the bins on the single cutting machine. Eq. (22), which defines the
objective, minimizes TWET. Eq. (23) calculates the earliness Ei and tardiness
Ti of item i, which is in bin b; i.e., b = ai. It defines the lateness Ti −Ei of i as
the difference between the completion time Ĉb of its bin and its due date di. Eq.
(24) guarantees that the schedule starts on or after time zero. It allows for the
insertion of idle time at the beginning of the schedule. It sets the completion
time of the first bin greater than or equal to the processing time of the first bin.
Eq. (25) determines the completion time of each bin ensuring that the processing
periods of two successive bins do not overlap in time. It allows for the insertion
of idle time between any pair of successive bins if this decreases TWET. Eq. (26)
bounds the objective value by the cost u∗ of the incumbent when an incumbent
is available. It fathoms any non-improving solution. Finally, Eqs. (27)-(28)
declare the variables positive real values. Additionally, Eq. (28) restricts the
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interval of Ĉb to [Cb, Cb], b ∈ B, where Cb and Cb are lower and upper bounds
retrieved from the active CP. When LP is infeasible, Schedule [a,C] is violated.

4.4. Search Strategy

The search is sequential. Each phase instantiates a subset of variables. The
subsets do not overlap. Choosing the “right” sequence of phases can drastically
reduce the search time. The order of the variables within a phase is undefined.
The search engine applies its built-in policies to explore the search space.

Our CP approach divides its variables into 3 subsets: {z}, {e,a,C}, and
all other variables. Using these three distinct subsets, the search engine under-
takes three sequential phases. The first phase decides the maximum number of
used bins. The second phase assigns the items to particular regions. It fixes
e, which, in turn, fixes a. This assignment triggers the customized constraint
Schedule [a,C]. Subsequently, Schedule [a,C] either signals an infeasible par-
tial solution or reduces the values of C to a vector of singletons.

• In the former case, Schedule [a,C] rejects the current partial solution
and halts the exploration of the branch; signaling a “no good” cut. Con-
sequently, CP backtracks.

• In the latter case, the search engine reduces the domains of C to the single
values of Ĉ1, . . . , Ĉm, and proceeds to phase three.

The third phase continues the search, which instantiates the remaining variables
including the packing variables: It constructs a feasible solution.

Evidently, the inference process within a phase affects the domains of all
the variables of the model, not only of the variables that phase. Therefore, the
search engine might detect the infeasibility of a partial solution during phase
two. In such a case, it backtracks.

The reduced CP, which excludes constraints (12)-(15), may run faster than
the complete model and achieve a tighter upper bound. Its solution then serves
as a partial solution to the complete model with the variables’ domains restricted
to the values of that solution. Then, the search must only fix the remaining part.
We explore this trivial idea to improve the performance of the approach.

5. Decomposition-Based Approaches

Our two other approaches adopt the branch-and-check (B&C) form of the
logic-based Benders decomposition (LBBD) [13, 41]. LBBD delays the enforce-
ment of complicating constraints. It relaxes the complicating constraints to
obtain an MP. It then iteratively augments MP with constraints deduced from
its interrelated logic-based sub-problem(s). Specifically, LBBD obtains an op-
timal solution of MP. Keeping the variables of that solution fixed, it solves the
sub-problem(s) and generates a Benders cut(s) for MP. When the solution for
every sub-problem is feasible, a new incumbent is at hand. It then augments
MP with all generated cuts and solves the resulting MP. It stops when MP does
not improve the incumbent; i.e., the incumbent is a proven global optimum.
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B&C and LBBD differ in terms of when to solve the sub-problems. While
LBBD solves the subproblem(s) when MP’s optimum is at hand, B&C solves
the subproblem(s) whenever a feasible solution to MP is at hand. B&C ex-
plores the fact that identifying a global optimum or proving the optimality of
the incumbent are generally the most time-consuming parts of a B&B search.
Therefore, in lieu of seeking MP’s optimality, it solves the sub-problem(s) when-
ever a feasible solution for MP is found during the B&B search. As a rule of
thumb, problems having more difficult MPs than sub-problems are better suited
to B&C, whereas those having more difficult sub-problems than MP are better
adapted to LBBD [6]. In the following, we explain how we decompose JITBP
and why our decomposition is better adapted to B&C than to LBBD.

In our decomposition, the packing constraints are considered the complicat-
ing constraints. They are dropped from MP and assigned to the subproblems.
Consequently, MP considers items as dimensionless entities, assigns them to the
bins, and simultaneously searches for the bins’ completion times that minimize
TWET. That is, MP drops the geometric constraints that describe the relation-
ships between pairs of packed items and between a packed item and its assigned
bin. Those constraints consider both the length and width of the items and bins,
and ensure the non-overlap of pairs of items and the containment of an item in
the bin in both dimensions. To overcome this glitch, our decomposition dele-
gates the mission of detecting the feasibility of a packing to the sub-problems.
The sub-problems may identify an infeasible packing of a subset of items in one
or more used bins. When packing rules are violated, a sub-problem eliminates
such infeasible pattern by generating a cut that is injected into MP.

Adopting the decomposition paradigm, we consider two models that take
advantage of the respective strengths of MIP and CP.

• The first models MP as an MIP (without the packing constraints). De-
spite the strength of MIP in solving assignment problems, this model suf-
fers from the “Big M” reformulation, which ensures disjunction in pairing
items with their bins. It makes MP hard to solve exactly; thus, motivating
our choice of B&C rather than LBBD.

• The second models MP as a relaxation of the full CP model of Section 4;
i.e., dropping the packing constraints (7)-(15) and their associated vari-
ables. We consider this model so that we can compare the performance of
CP and MIP as solution techniques for MP.

Hereafter, we detail both decomposition approaches. Sections 5.1 and 5.2
present the MIP and the CP based MPs while section 5.3 explain the 2OPP
packing procedure that solves the sub-problems.

5.1. A Mixed-Integer Programming Based Master Problem

Herein, MP is modeled as an assignment MIP. Let a denote a matrix of
binary decision variables such that aib = 1 if item i ∈ I is assigned to bin
b ∈ B and 0 otherwise. Let Ei and Ti be two non-negative real-valued decision
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min
∑

i∈I
(εiEi + τiTi) (29)

s.t.
∑

b∈B
aib = 1 i ∈ I (30)

Ei − Ti + Sib = di − Cb i ∈ I, b ∈ B (31)

Cmax (aib − 1) ≤ Sib ≤ Cmax (1− aib) i ∈ I, b ∈ B (32)

ϕ (a) ≤ C1 (33)

Cb−1 + ϕ (a) ≤ Cb b ∈ B \ {1} (34)
∑

i∈I
aib ≥ 1 b = 1, . . . ,mlb (35)

∑

i∈I
aib ≤ qmaxzb b = mlb + 1, . . . ,m (36)

zb+1 ≤
∑

i∈I
aib b = mlb + 1, . . . ,m (37)

∑

i∈I
λk′iaib ≤ 1 b ∈ B, k′ = 1, . . . , k (38)

aib ∈ {0, 1} i ∈ I, b ∈ B (39)

zb ∈ {0, 1} b ∈ B (40)

Ti, Ei ∈ R≥0 i ∈ I (41)

Cb ∈ R≥0 b ∈ B (42)

Sib ∈ R i ∈ I, b ∈ B (43)

Figure 3: The mixed-integer master program of the B&C approach for the JITBP.

variables denoting the earliness and tardiness of item i. Let Cb be a non-
negative real-valued decision variable expressing the completion time for bin b.
In addition, let zb be a binary variable equal to 1 when bin b is used, and equal
to 0 when b is empty. Finally, let Sib ∈ R be an auxiliary slack variable. Then
the MIP model built on these sets of variables is depicted in Figure 3.

Eq. (29) defines the objective function, which minimizes the TWET of di-
mensionless items. Eq. (30) positions item i in exactly one bin. Eq. (31)
calculates the earliness Ei and the tardiness Ti of item i ∈ I. Eq. (32) imple-
ments a “Big M” constraint that constrains a slack variable Sib to 0 when i is
assigned to bin b ∈ B. Otherwise, it allows Sib to be any arbitrary negative
or positive value within the bounded range [−Cmax, Cmax]. Cmax is an upper
bound on the maximal completion time of all bins. Eq. (33) ensures that the
schedule starts after time zero. Eq. (34) schedules the bins: It calculates their
completion times inserting idle time between consecutive bins when necessary.
The completion time of a bin b is larger than or equal to the sum of the com-
pletion time of its predecessor bin b − 1 and the cutting time of bin b. Both
Eqs. (33) and (34) use the linear function ϕ (a), which defines the cutting time
of bin b. This cutting time depends on the items assigned to bin b; i.e., on the
items whose aib = 1. Eq. (35) ensures that each of the first mlb bins has at least
one item. In fact, there is no feasible packing that uses less than mlb bins. Eq.
(36) determines the used bins. This constraint uses an upper limit qmax on the
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number of items packed into a bin. Eq. (37) forces bin b+ 1 to be empty when
its predecessor bin b is empty, but allows the use of bin b+ 1 otherwise. It is a
symmetry breaking constraint. Eq. (38) is a feasibility constraint of the form of
inequality (20). Its inclusion in MP tightens the relaxation while its exclusion
omits the layout aspect of the problem; thus, can not produce reasonably good
bounds. Finally, Eqs. (39)-(43) declare the variables’ types.

The search strategy sets a priority order for variables of a so that it branches
on variables with larger areas first. It does not prioritise the variables of vector
C; thus, makes them equally important. It strives to assign the items to the
bins. However, because it only branches on variables having fractional variables,
the search may delay assigning large-sized items until late in the search tree.

A larger number of constraints derived from Eq. (38) does not necessar-
ily strengthen MP, and may even slow down the search. Indeed, not all the
feasibility constraints tighten the lower bound on the packing area. Here, we
only augment the model with the existing constraints that have the largest total
sums

∑
i∈I λk′i, k

′ = 1, . . . , k. We treat the remaining constraints as lazy con-
straints that are only checked when an integer feasible solution is found. A lazy
constraint is activated within the model when such a check reveals its violation.
Section 7.1 further specifies the selection of the feasibility constraints along with
other settings applied to the MIP solver.

The B&B search applied to MP is a source of multiple 2OPP sub-problems,
which decide whether a subset of items is packable into a single bin subject to
the existing geometrical constraints. Every time the search faces a new feasible
integer solution that outperforms the incumbent, that solution is checked for
packing feasibility of the used bins. The algorithm sequentially solves the 2OPP
for each of the bins retrieving the information about the assigned items from a.
To solve the sub-problem, it calls the packing procedure described in Section
5.3. When the packing constraints are satisfied for every bin of the candidate
solution, the search updates the incumbent and resumes exploring the solution
space. If the routine fails to prove packing feasibility for a subset of items
Ib = {i ∈ I : aib = 1} assigned to bin b ∈ B, the MIP is augmented with one or
more Benders cuts. One approach would augment MP with

∑

i∈Ib
aib ≤ |Ib| − 1, (44)

which forces bin b to drop one of its assigned items. Alternatively, we augment
MP by a set of Benders cuts:

∑

i∈Ib\{j}
aib +

1

|I∗|
∑

i∈I∗
aib ≤ |Ib| − 1 ∀j ∈ Ib (45)

where I∗ = {j}∪{i ∈ I \ Ib : lj ≤ li ∧ wj ≤ wi} is the union of item j ∈ Ib with
the set of items that are not included in bin b but that are identical to or larger
than item j. There are as many Benders cuts as there are items in bin b: one
cut per item j ∈ Ib. The cut restricts the mutual assignment to b of all the
items of Ib \ {j} and of any item of I∗ (not only of item j). That is, every item
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minu =
∑

i∈I
max (εi · (di − Element[C,ai]) , τi · (Element[C,ai]− di))

s.t. AllDifferent [a1, . . . , an] (46)

Packing [a] (47)

Eqs. (4 - 6, 16 - 19)

Figure 4: The master problem’s CP model for the B&C decomposition approach.

i ∈ I∗ must be assigned to a bin b′ ∈ B \ {b} when all the items of Ib \ {j} are
assigned to b. Our experiments suggest that the cut of Eq. (45) performs better
than the cut of Eq. (44), albeit not all items of I∗ may replace j. In fact, the
assignment of items into bins is also affected by the proximity of the due dates
of items included in Ib and by the resulting penalties. When I∗ = {j} for any
j ∈ Ib, then (45) reduces to (44), which is the cut herein applied.

5.2. A Constraint Programming Based Master Problem

Herein, MP is a relaxation of the CP model of Section 4. It assigns items to
bins and schedules the bins on the cutting machine. The sub-problems search
for a feasible packing. That is, MP, given by Figure 4, uses only a subset of the
variables and constraints of the model of Figure 2. It uses decision variables a,
C, q and z with a no longer being a vector of auxiliary variables. In addition,
constraint (46) differs from constraint (2) in that it spans the variables of a.
Finally, the model is augmented with the customized constraint Packing [a],
which relates to a series of 2OPP sub-problems. Despite these differences, MP
adopts the same search strategy as the integrated model.

Constraint (47) is linked to the domain of u. It is activated once the variable
is reduced to a singleton. This occurs when all items are assigned to the sched-
uled bins. The filtering algorithm of Packing [a] decodes the assignment to a
series of 2OPP decision problems, and solves each via the packing procedure of
Section 5.3. If PACK finds a feasible packing pattern for each of the used bins,
then the current MP’s solution is feasible and is a new incumbent. Otherwise,
MP’s solution is rejected, the set of items violating the packing constraints is
cached, and the search backtracks. The search later uses cached results to avoid
calling PACK when the subset of items is in the cache. To achieve better perfor-
mance, we made caching subset-size specific; thus, two infeasible solutions are
cached separately if they comprise a different number of items. Cache is checked
in ascending order of the subset size starting from the subset of size two.

5.3. A Bin Packing Procedure

The 2OPP decision sub-problem is part of the search of both approaches. It
checks whether a guillotine packing of a given set of items Ib, b ∈ B, exists. Here,
we adapt the complete CP model of Section 4 for the case of a single bin. In
contrast to the full version, the reduced model, referred to as PACK, operates on a
set of 1+2n′ regions, n′ = |Ib|, so that the first region corresponds to the empty
bin, while the remaining 2n′ elements refer to Rt1, . . . , R

t
n′ and Rr1, . . . , R

r
n′ ; i.e.,
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AllDifferent [e1, . . . , en′ ](
li ≤ Element

[
l̂,ei

])
∧ (wi ≤ Element[ŵ,ei]) i ∈ Ib

(
vi → l̂i+1 = Element

[
l̂,ei

])
∧
(
¬vi → l̂i+1 = li

)
i ∈ Ib

ŵi+1 = Element[ŵ,ei]− wi i ∈ Ib
l̂n′+i+1 = Element

[
l̂,ei

]
− li i ∈ Ib

(
vi → ŵn′+i+1 = wi

)
∧
(
¬vi → ŵn′+i+1 = Element[ŵ,ei]

)
i ∈ Ib

xi+1 = Element[x,ei] i ∈ Ib
yi+1 = Element[y,ei] + wi i ∈ Ib
xn′+i+1 = Element[x,ei] + li i ∈ Ib
yn′+i+1 = Element[y,ei] i ∈ Ib

Figure 5: The CP model of packing procedure PACK.

to the regions produced by cutting the items 1, . . . , n′. Furthermore, PACK omits
the objective function given by constraint (1) and drops all but e, l̂, ŵ, x, y, and
v variables. This subsequently leads to the exclusion of constraints (3)-(6) and
(16)-(19). This results in the CP model of PACK given by Figure 5. Herein, no
particular CP search strategy is applied for PACK. Excluding decision variables
x and y along with their related constraints from the model may speed-up the
search of the decision problem.

6. Warm-Start Heuristic

Herein, we start the MIP and CP solvers from a feasible incumbent, which
is the result of an iterative two-phase heuristic. The constructive phase builds a
solution from scratch by iteratively adding one item until all items are packed.
The improvement phase rebuilds the solution via a simple local search.

Each iteration of either of the two phases is a function of the item j ∈ I that
is to join a subset of already packed items I ′ ⊂ I in a subset of bins B′ ⊂ B.
The packing of the items of I ′ into the bins of B′ is equivalent to the current
partial solution. With I ′ and B′ fixed, the elements of the assignment vector a
indicate the bin assigned to item i; i.e., ai = b, i ∈ I ′, b ∈ B′, when i is assigned
to bin b. B′ is built on k (partially) filled bins and k+1 dummy empty bins. The
empty bins are used when item j can’t fit into any of those k (partially-filled)
bins. The 2k+ 1 bins of B′ are ordered such that every odd bin is empty while
every even bin is filled. Thus, each iteration operates with 2k+ 1 bins and aims
to assign j to one of them. Clearly, j is either the first item of a new empty bin
or an additional item in one of existing bins.

The choice for a bin can be undertaken iteratively by inserting the item
into every bin and computing the resulting penalties. However, we herein opt
for using an MIP that ignores the geometry of the items and bins. The MIP
is faster than the iterative approach while it matches the iterative approach’s
results because it only considers a limited number of positions.
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Let zb be a binary decision variable that equals 1 when j is placed in bin b,
and 0 otherwise. In addition, let Cb be a real-valued decision variable defining
the completion time of b. Finally, let E and Ei (resp. T and Ti), i ∈ I ′, be
non-negative real-valued variables defining the earliness (resp. the tardiness) of
item j ∈ I \ I ′ and of the items in the partial solution. Using the above decision
variables, the following MIP determines the bin b where item j is assigned.

min ũ =
∑

i∈I′
(εiEi + τiTi) + εjE + τjT (48)

s.t.
∑

b∈B′
zb = 1 (49)

Ei − Ti = di − Cb i ∈ I′, b = ai (50)

djzb − Cb ≤ E b ∈ B′ (51)

Cb − djzb − Cmax (1− zb) ≤ T b ∈ B′ (52)

ϕ (∅, z1) ≤ C1 (53)

ϕ (Ib, zb) + Cb−1 ≤ Cb b ∈ B′ \ {1} (54)

ũ ≤ u∗ − 1 (55)

zb ∈ {0, 1} b ∈ B′ (56)

Cb ∈ R≥0 b ∈ B′ (57)

Ti ∈ R≥0, Ei ∈ R≥0 i ∈ I′ (58)

T ∈ R≥0, E ∈ R≥0 (59)

Eq. (48) defines the objective function as the TWET of already scheduled
items and of the newly added item j. Eq. (49) sets j as an element of one of
the bins. If Eq. (20) is violated for some k′, k′ = 1, . . . , k, then zb = 0, and
zb along with the associated constraints can be eliminated from the model. Eq.
(50) recomputes the earliness and tardiness for items that have been placed into
the bins during the earlier iterations; i.e., for items of the assignment vector
a. Should j join bin b, Eq. (51) and (52) calculate the resulting earliness and
tardiness of j, where Cmax denotes an upper bound on the maximal completion
time of the bins. Eq. (53) defines the completion time of the first (empty) bin
when its processing starts no earlier than time zero while Eq. (54) sets the
completion times for all other bins. Both Eqs. (53) and (54) use the processing
time ϕ (Ib, zb), which equals 0 if bin b is empty, and the processing time of the
set of items Ib ∪ {j} when zb = 1 or the set Ib when zb = 0 and b contains
items. Clearly, Ib = ∅ for every odd bin in B′. Furthermore, any dummy bin
that stays empty in the model’s solution is immediately excluded from further
consideration. Eq. (55) bounds the objective value ũ by the cost u∗ of the
incumbent when available; otherwise the model excludes this constraint. Finally,
Eqs. (56)-(59) declare the variables’ types.

The two phases of the warm-start heuristic use the above model. The first
phase constructs a feasible solution from scratch. It iteratively finds the best
position for the next item j ∈ I, where I is sorted in descending order of the
items’ areas. As no prior solution is available, this phase discards Eq. (55).
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The second phase is a simple local search. It sequentially examines the
packed items. It extracts one item from a bin and places the extracted item
into a different bin or into a new bin if this improves the existing solution. Thus,
this phase may increase/decrease the number of used bins. Solutions obtained
within the second phase must outperform the incumbent as Eq. (55) implies.
In the absence of an improving solution, the model is infeasible. When the
second phase updates the incumbent, it does another round of checks for all the
items. If it fails to relocate at least one of the items, it terminates; treating the
incumbent solution as a local optimum. The incumbent provides the number of
bins m as an input parameter to both decomposition-based approaches. Clearly,
bounding the maximal number of bins by m might exclude a global optimum
that uses more than m bins.

As the model assimilates the items to dimensionless entities, the algorithm
tests whether the obtained solution satisfies the geometric packing requirements.
To do so, it applies the packing procedure PACK of Section 5.3. If the packing
constraints are satisfied for bin b when augmented by item j (i.e. when zb = 1),
the heuristic accepts the solution of the model. Otherwise (i.e., zb ≤ 0), a new
constraint that prohibits the assignment of item j to bin b is added to the model,
and the model is solved again. In this way, the first phase of the heuristic may
always create a new bin. However, the second phase, whose objective is bounded
by u∗, may run out of alternative assignments for item j. The latter means that
no feasible solution exists and j’s current position is locally optimal.

7. Computational Results

The objective of the computational investigation is twofold: (i) to compare
the performance of the three proposed approaches: ‘I’ the integrated approach,
‘1’ the B&C using CP for MP, and ‘2’ the B&C using MIP for MP; and (ii) to
investigate the best suited MP for the decomposition based approach for JITBP:
a CP or an MIP. To achieve these two objectives, we undertake an extensive
computational experiment using 500 instances, and compare the relative per-
formance of the three methods and the improvements they bring to the solution
value of the warm-start heuristic H. We apply the appropriate statistical tests
for all comparisons. We use a 5% significance level for all hypothesis tests and a
95% confidence level for all confidence interval estimates. A five point summary
gives the minimum, first, second and third quartiles and the maximum. Based
on the analysis of the computational results, we discuss all three approaches
(how and why they work as they do), we point out when each approach should
be used, we motivate our settings, and we indicate what makes an approach
outperform the others.

Sections 7.1 and 7.2 present the benchmark instances and the algorithm
settings while Sections 7.3 and 7.4 compare the results for small and larger
sized instances. Section 7.5 is a concluding remark.
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7.1. Benchmark Instances

We assess the performance of our approaches using the 2DBPP instances of
[8] while making the items’ due dates reflect the tradeoff between the scheduling
and packing components of JITBP. The set has square bins of size L = W . It
consists of 10 categories. The categories are grouped according to their item-
to-bin size ratios. These ratios reflect the average number of items that can
be packed into a bin: A low bin density set L with relatively large items and
a high bin density set S with small items. Each category has five problem
sizes: n = 20, 40, 60, 80, and 100. There are ten instances per category and
problem size; thus, a total of 500 instances. Table 1 summarizes the charac-
teristics of the instances. Columns 1 and 2 indicate the category and its set.
Column 3 specifies the length of a side of a bin whereas Column 4 describes
how the items’ dimensions are generated. Categories 1-6 have homogeneous
items that are randomly generated from a specific discrete uniform distribution
whereas categories 7-10 contain heterogeneous items belonging to four types
in various proportions. The four types correspond to items whose (li, wi) are
randomly generated from the respective discrete Uniform

([
2
3W,W

]
,
[
1, 12W

])
,([

1, 12W
]
,
[
2
3W,W

])
,
([

1
2W,W

]
,
[
1
2W,W

])
, and

([
1, 12W

]
,
[
1, 12W

])
.

Table 1: Generating items’ widths and heights

Category Set L = W Item size (li, wi)
1 L 10 Uniform[1, 10]
2 S 30 Uniform[1, 10]
3 L 40 Uniform[1, 35]
4 S 100 Uniform[1, 35]
5 L 100 Uniform[1, 100]
6 S 300 Uniform[1, 100]
7 L 100 type 1 with probability 70%; type 2, 3, 4 with probability 10% each
8 L 100 type 2 with probability 70%; type 1, 3, 4 with probability 10% each
9 L 100 type 3 with probability 70%; type 1, 2, 4 with probability 10% each

10 S 100 type 4 with probability 70%; type 1, 2, 3 with probability 10% each

The earliness εi and the tardiness τi per time unit penalties follow a Uni-
form[1, 10]. As in real life manufacturing, a bin’s processing time accounts for
its setup time tl and an item’s handling time th. Herein, the processing time of a
non-empty bin b is ϕ (Ib) = tl+ th · |Ib| with tl = 180 and th = 40. Furthermore,
the items’ due dates follow a discrete Uniform[0.5λ, λ] with λ = tl ·mlb + th · n.
This distribution, determined after extensive computational experiments, ac-
counts for the minimum number of bins mlb and the problem size n. It makes
the numbers of early and tardy items relatively balanced and “forces”each item
to search for its ideal bin as in industry. Consequently, the proposed approaches
must address the items’ competition for available space within bins while min-
imizing TWET. Instances with sparse or dense due dates leave little room for
optimisation. They often lead to trivial solutions. Sparse due dates suppress the
packing component of JITBP gearing the problem toward a scheduling problem
whereas dense due dates gear the problem towards a 2DBPP. This due dates’
distribution, which is a function of mlb, allows us to observe the effect of the
scaling of the items’ sizes to bins and of the number of items.
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7.2. Algorithm Settings

The proposed approaches are implemented in Java, which evokes IBM ILOG
Optimization Studio 12.8 to handle MIP and CP models. The models are run
on a personal computer with 4GB of RAM and a 3.06 GHz Dual Core processor.
However, for a fair comparison, we solve both the MIP and CP models using a
single core and setting Cmax = max

i∈I
{di} + tl ·m + th · n, where tl and th are

the parameters of the cutting time function ϕ. We subsequently set the upper

bound on the number items that a bin can fit to qmax = i∗ :
∑i∗

j=1 l[j]w[j] ≤ LW ,
∑i∗+1
j=1 l[j]w[j] > LW and l[1]w[1] ≤ l[2]w[2] . . . ,≤ l[n]w[n].
We generate the feasibility constraints of Eq. (20) using a pair of control

parameters (p, q) ∈ {0.1, 0.2, 0.3, 0.4, 0.5}2. This generates up to k = 55 feasi-
bility constraints. Only five feasibility constraints are injected in the CP models
(both integrated and decomposed approaches). The MIP model of the MP of
Approach 2 includes ten feasibility constraints while the other 45 constraints
are injected as lazy constraints (cf. Section 4.3).

All proposed approaches can solve the problem exactly. However, JITBP is
computationally challenging. Therefore, we focus on the quality of the primal
bounds. First, we set a three-second time limit on PACK; making it act as a
heuristic. If, after three seconds, PACK does not identify a feasible solution to
2OPP, we assume that the items can’t be packed in a single bin. This setting,
inferred from preliminary computational investigations, gives the best trade-off
between the quality of the packing and runtime. Indeed, a larger time limit
does not necessarily lead to better packing solutions while it unduly increases
the runtime of the decomposition approaches. It may enhance the bound but
because the number of calls of PACK is very large, it will increase the runtime
of the dependent approaches and deteriorate the solution quality. Similarly, a
shorter runtime often hinders PACK from reaching a feasible packing; thus causes
poor quality solutions. The chosen set up ensures a balanced strategy between
solution quality and runtime. The Benders cut uses the set I∗ of items j such
that 1.5lj ≤ li and 1.5wj ≤ wi. Because PACK is a heuristic, it generally fails to
find a feasible packing within the time limit, even though packing larger items
within a bin may be feasible by another run of PACK. Thus, the strict form of
cut (45) may overlook many feasible solutions. This current choice of the set I∗

therefore cuts off only those patterns that are most likely to be infeasible.
Second, we set the MIP solver CPLEX to emphasize the search of high

quality hidden feasible solutions. This set up generates more feasible solutions
during its search for the optimum, at the cost of a slower proof of optimality.
The MIP solver CPLEX proves optimality when the relative optimality gap is
at its default value 10−6.

Third, we base MIP’s node selection on the best estimate. This selection
strategy favors the node with the best progress toward integer feasibility rela-
tive to objective function degradation. This setting is recommended when it is
difficult to find feasible solutions or when a proof of optimality is not crucial.

Fourth, we initiate the MIP of approach 2 from H’s feasible solution with at
most m bins, where m is obtained by H. When cold started, CPLEX fails to
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identify a good-quality feasible solution within any of the allocated run times.
It fails to produce a dense packing. It focuses on various sparse assignments.
Because of the large size of the feasible solution space and poor linear relaxation,
CPLEX spends a large portion of its search exchanging pairs of items. Even
though this may improve TWET, it doesn’t improve the density of the bins.
It is as if CPLEX were spending its search time solving the single machine
TWET scheduling problem with little or no consideration to the BP aspect.
Subsequently, in most cases, CPLEX returns low-density filled bins at the end
of the allocated runtime. For the instances at hand, the larger the number of
bins, the higher the TWET is.

To obtain a dense packing, the warm-start heuristic H decides iteratively
where to pack the item under consideration: in a new or in an existing bin.
CPLEX exploits H’s solution to explore potential assignments of items into
the m bins with the objective of minimizing TWET. It takes CPLEX hours of
run time to reach the same solution quality as H. For fairness, we warm-start
the three approaches, and we bound the maximal number of bins by m.

Finally, the performance of a CP model depends on its solver; particularly,
on the filtering algorithms and on its search strategies. Here, we resort to the
CP Optimizer with its search algorithm set to the restart mode. This mode
adopts a general purpose search strategy inspired from integer programming
techniques. It guarantees the optimality of the final solution of a problem. It
is based on the concept of the impact of a variable. The impact measures the
importance of a variable in reducing the search space. It is learned from the
observation of the domains’ reduction during the search. It helps the restart
mode drastically improve the performance of the search. The inference level for
all the constraints in CP-based models is set to medium. This strengthens the
domain reduction of the search at the cost of a larger computational time.

7.3. Results for Small Sized Instances

Table 2 summarizes the computational results for small sized instances (i.e.,
n = 20 and 40). Columns 1 and 2 indicate the problem size and category. Col-
umn 3 displays the average, over all instances of a category, of the performance
ratio of H. Columns 4-6, 7-9, and 10-12 report the average over all instances of
a category of the performance ratio of the integrated approach, B&C with CP,
and B&C with MIP. The three columns of each triplet give the average when the
allocated runtime t = 100, 600, and 3600 seconds. The performance ratio of an
approach •, • = H, I, 1, 2 is expressed as a percentage. It is defined by 100%u•

u ,

where u = min{uH , uI , u1, u2} is the value of the best local minimum over all
proposed approaches, and uH , uI , u1, u2 are the values of the local optima ob-
tained by the warm startup heuristic, the integrated approach, B&C with CP,
and B&C with MIP, respectively. Column 13 reports the number of instances
solved exactly by B&C with MIP (with m bins and a 3-second time limit on
PACK); that is, the number of times u2 = u∗, where u∗ is the optimum. Column
14 gives the number of times B&C with MIP provides the tightest bound. The
last two columns provide RTH and RT , the average run times of H and B&C
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Figure 6: Box plots of the observed performance ratios

with CP when this latter proves the optimality of its incumbent. Next, Table 3
reports the number of times uH = u, and u• = u, • = I, 1, 2 when the allocated
run times are t = 100, 600, and 3600 seconds. Finally, Figures 6 and 7 summa-
rize the results. They present, respectively, the box plots of the performance
ratios per problem size and 95% confidence intervals of their means.

The analysis of Tables 2 - 3 and of Figures 6 - 7 suggests that increasing
the runtime enhances the performance of the three approaches. In addition,
initializing the integrated approach with H’s solution makes CPLEX improve
that solution. In some instances, it allows CPLEX to converge to the global
optimum u∗ that is achievable with m bins and a 3-second threshold runtime
for PACK. Paired t-tests confirm that increasing the runtime from 100 seconds
to 600 seconds and from 600 seconds to 3600 seconds decreases both the mean
TWET and the mean performance ratios for all three methods.

For set S and n = 20, H obtains the best solution in 28 out of 40 instances.
The solution of each of these instances is suspected to be the global optimum
(for m bins and a 3-second threshold runtime for PACK). It was not improved by
any of the three proposed methods independently of the allocated runtime.

Even though both the integrated approach and B&C with CP rely on CP’s
search and inferencing, paired t-tests indicate that, for equal run times, the
integrated method is on average better than B&C with CP. This is reasonable
because the integrated approach has a better vision of the problem’s specificity
that is drawn from the extended set of problem-related constraints; e.g., the
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Figure 7: 95% confidence intervals for the mean performance ratios

packing constraints. Imposing more constraints is often beneficial for the CP
search. It strengthens the inferencing and domain reduction. Thus, it makes
the CP search more efficient when dealing with the integrated model than when
solving the regular CP model of B&C with CP. When manipulating the inte-
grated model, the search engine avoids the investigation of a large number of
solutions; specifically those using a large number of bins. In this way, it avoids
too much diversification while relying on intensification around solutions that
have a dense packing. In addition, the integrated approach applies a “back en-
gineering”approach by imposing an upper bound on the number of bins. On the
other hand, when solving the model of B&C with CP, the constraint program-
ming solver does not explore the additional information brought explicitly from
the problem-specific constraints. Because its model is less specific, the search’s
progress is slower than when solving the integrated model.

Paired t-tests indicate that, for equal run times, the integrated approach
is outperformed by B&C with MIP. However, this result must be interpreted
with caution. If both approaches are cold started, the integrated approach
obtains better quality solutions within a similar run time; i.e., the integrated
approach’s progress is quicker than the progress of B&C with MIP. When warm-
started, B&C with MIP is faster and investigates more permutations for small
instances. It undertakes an educated heuristic search around the initial so-
lution. As the search space becomes large, the sampling becomes inefficient.
Despite the valid statistical inference, the overall performance of the integrated
approach is not much worse than the performance of the warm-started B&C
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with MIP. Its average relative gap, which is of the order of 3%, is reasonably
small. In the absence of such a warm-start strategy, the integrated approach is
generally superior. B&C with MIP is myopic to the problem’s specificity, thus
does work on many heuristic solutions as part of the upper bounding process.
The improvement of its results is not proportional to its search time. That is,
B&C with MIP remains blind unless warm-started. Regardless, only 56 out
of 200 instances are solved optimally by the warm-started B&C with MIP. A
five point summary of their run times is (0, 3, 47, 650, 3460) with an average of
532 and a standard deviation of 907; all in seconds. The large standard devia-
tion reflects the different levels of difficulty of the instances. For the instances
that were not solved to optimality, the average optimality gap, as reported by
CPLEX, is 0.6766 with a standard deviation of 0.3015. The five point summary
is (0.0222, 0.4140, 0.8072, 0.9382, 1.0000).

Figure 8 illustrates the behavior of the proposed approaches as a function
of the problem size and items’ size. The mean performance ratio degrades as n
increases from n = 20 to 40 because each item has more alternative positions.
Therefore, the search must consider a larger search space. For set S, the packing
is dense. Therefore, regardless of the number of possible permutations, the
items are easy to swap. Reshuffling the items will not have a large effect for
two reasons: The total number of bins used is already reduced, and TWET is
limited (because the due dates’ distribution depends on mlb). It is suspected
that for n = 20, the warm-start heuristic does well because the search space is
small. For n = 40, it most likely produces the same quality solutions as when
n = 20 while CPLEX does well too.

As inferred by analysis of variance tests, the mean TWET for the instances of
set S is smaller than its counterpart for set L. In addition, the mean performance
ratio of any approach is worse when the items are large than when the items
are small. This is actually a result of the distribution of the due dates. The due
dates are a function of mlb, the minimal number of required bins. Thus, they
implicitly address the items’ sizes. A test instance with a prevalent number
of small (versus large) items needs less bins; therefore its due dates are dense.
The opposite prevails for an instance with many large items: the due dates
become sparse while packing patterns become less dense. Furthermore, small
items have generally more packing alternatives rather than larger items. This
may force a large item to be packed in a bin whose completion time is far from
the item’s due date. These factors increase the chances of instances of set S to
have their items cut around their due dates. It follows that the observed worse
performance ratios for set L versus those of set S is reasonable.

Instances with larger items seem more challenging. However, packing checks
are quite fast as the number of items per bin is small. Even though such in-
stances call PACK more often, they run faster. Because the due dates are sparse,
finding the ideal assignment of items to bins is hard. The local search tries
to reinsert an item. Yet, the reinsertion has a very limited effect in terms of
solution enhancement. Unless a major diversification is undertaken (a complete
reconfiguration of the solution), it is almost impossible to escape from the lo-
cal optimum by simply changing the position for an item. Because due dates
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Figure 8: 95% confidence intervals for the mean performance ratio as a function of problem
size and set

are sparse, the structure of the test instances limits the success of the local
search operator. For small instances, swapping items or any another intensi-
fication operator does not decrease the objective function value. These S/L
related inferences/observations confirm that, for these test instances, the search
focuses not only on the bin packing/cutting aspect of the problem but also on
its scheduling aspect (which is driven by the due dates’ distribution).

7.4. Results for Large Sized Instances

Table 4 summarizes the results for n = 60, 80 and 100. It reports the
same information as Table 2 except that the allocated run times are t1 =600,
t2 = 3600 and t3 =14400 seconds. Again, when cold started, B&C using MIP
fails to identify a good-quality feasible solution within the allocated runtime. In
addition, it doesn’t prove the optimality of the incumbent of any of the tested
instances. Therefore, the statistic η is omitted; so is the runtime’s statistic when
CPLEX proves the optimality of its incumbent.

The analysis of Table 4 suggests that as n increases, H maintains the same
level of solution quality while CPLEX starts getting stuck around its initial
solution. This is most likely because of a larger search space.

Increasing the runtime enhances the performance of the three approaches. In
addition, initializing B&C using MIP with H’s solution makes CPLEX improve
that solution. Paired t-tests confirm that increasing the runtime decreases both
the mean weighted earliness tardiness and the mean performance ratio for the

30

                  



Table 4: Average performance ratios (%) of all proposed approaches, number of times B&C
with MIP obtains the best bound, and the average run times of the warm-up heuristic for
large sized instances

Performance ratio (%) Number
of times

Run
time (s)

Heur.
Integrated appr. B&C with CP B&C with MIP

for time limit t(s) for time limit t(s) for time limit t(s) u2 = u RTH
n Cat. 600 3600 14400 600 3600 14400 600 3600 14400

60 1 119.8 113.1 107.0 105.6 119.7 117.2 115.2 110.4 103.7 100.4 9 8
2 126.7 118.9 115.2 113.9 120.0 114.7 108.8 103.6 101.1 100.1 9 125
3 114.9 113.3 110.3 107.8 114.8 114.6 114.0 108.4 103.5 100.3 7 37
4 125.2 121.1 120.0 118.7 122.4 114.9 108.9 106.2 102.1 100.9 8 117
5 115.4 109.4 106.0 103.9 115.4 115.0 112.1 108.8 104.2 101.7 5 21
6 120.2 116.5 116.0 114.7 116.6 114.1 107.8 101.7 100.6 100.0 10 90
7 127.7 117.6 111.8 107.6 127.5 125.9 122.3 108.9 102.9 100.3 8 12
8 133.2 122.5 113.5 108.5 132.3 129.8 123.2 107.9 104.4 100.0 10 9
9 103.5 103.1 102.5 101.2 103.3 102.7 101.8 101.8 101.0 100.5 5 12

10 116.8 116.4 114.9 113.1 116.4 116.0 113.8 106.7 103.2 100.0 10 89
Overall 120.3 115.2 111.7 109.5 118.8 116.5 112.8 106.4 102.7 100.4 81 52
80 1 114.2 112.2 106.7 103.4 114.2 113.9 113.2 110.2 105.4 100.7 8 11

2 115.1 113.8 113.4 112.2 113.9 111.9 111.4 109.3 102.2 100.0 10 206
3 116.2 115.6 114.1 110.9 116.2 116.1 116.0 110.8 104.8 100.0 10 76
4 117.8 116.7 116.3 116.0 115.6 113.6 112.6 106.8 103.2 100.0 10 223
5 111.6 110.3 107.6 105.1 111.6 111.6 111.2 108.2 105.7 101.6 6 39
6 123.2 118.9 117.0 116.5 120.5 118.8 117.7 105.7 101.2 100.0 9 211
7 129.3 123.1 116.5 110.6 129.2 128.6 126.7 120.9 111.5 100.0 10 19
8 125.2 121.5 114.5 109.0 125.2 125.2 124.3 111.8 107.7 100.0 10 13
9 105.6 105.5 104.9 104.1 105.3 105.1 104.1 103.8 102.1 100.1 8 22

10 109.3 108.8 108.3 107.5 108.8 108.8 108.5 107.0 102.3 100.1 9 214
Overall 116.8 114.6 111.9 109.5 116.1 115.4 114.6 109.4 104.6 100.2 90 103

100 1 116.4 115.6 112.9 107.7 116.4 116.4 116.2 115.1 109.4 101.0 8 18
2 111.7 110.8 110.0 109.9 110.2 109.8 109.8 105.9 103.5 100.0 9 270
3 108.1 107.9 107.7 107.0 108.1 108.0 108.0 106.4 103.6 100.1 9 126
4 109.3 107.1 107.0 106.9 108.1 108.1 107.8 108.5 103.3 100.1 9 315
5 110.4 110.1 109.4 107.3 110.4 110.4 110.4 108.6 105.2 100.0 10 58
6 115.2 113.8 113.5 113.4 113.6 112.7 112.1 108.8 102.0 100.0 10 242
7 124.9 123.8 120.5 114.9 124.9 124.9 124.8 119.1 110.6 100.0 10 49
8 121.6 119.8 116.4 109.4 121.5 121.3 120.0 112.3 106.3 100.0 10 18
9 104.3 104.3 104.3 104.1 104.1 104.1 103.8 103.8 102.6 100.0 10 24

10 113.1 112.9 112.8 112.8 113.0 113.0 113.0 111.3 106.3 100.0 10 297
Overall 113.5 112.6 111.4 109.3 113.0 112.9 112.6 110.0 105.3 100.1 95 142

three approaches. This is further elucidated in Figure 9, which displays the 95%
confidence intervals of the mean performance ratio of all proposed approaches. It
clearly puts in evidence the improvement brought up by the additional runtime.

Paired t-tests further indicate that, for equal run times, the integrated ap-
proach outperforms B&C using CP. This is expected because the integrated ap-
proach gains from the problem-specific constraints and from the broader model
encompassing all aspects of JITBP. The additional information makes the search
of integrated approach more efficient than the search of the B&C using CP.

Paired t-tests indicate that, for equal run times, the integrated approach
is outperformed by B&C using MIP. However, in the absence of a warm-start
strategy, the integrated approach is generally superior. B&C using MIP is my-
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Figure 9: 95% confidence intervals for the mean performance ratios for large instances

opic to the problem’s specificity; thus, works futilely on many heuristic solutions
as part of the upper bounding process.

The behavior of the heuristics as a function of n is due to the deteriora-
tion of the quality of the best solution as n increases. This is, in turn, due
to the sparser distribution of due dates when the instances get larger. Thus,
the proposed methods cannot significantly improve H’s solutions within the
allocated runtime. This is further clarified in Figure 10, which illustrates the
behavior of the heuristics as the number and size of the items vary. The inte-
grated approach, for example, struggles with larger items because due dates are
sparse and better solutions may need to reconfigure the whole incumbent. In
the restart mode, the CP Optimizer follows a variable neighborhood search-like
strategy. Therefore, escaping from a local optimum is challenging for such prob-
lems. For small items, it becomes easier for the solver to operate on the search
space: Due dates are dense, and there is a large panoply of better alternative
solutions that do not require the restructuring of large portions of the solution.
This is clearly observed in Figure 10. Similarly, the performance of B&C using
CP degrades. However, this behavior does not persist for H, which does not
involve any randomness in its actions. H’s performance is actually constant.
The variation of H’s performance ratio is due to the deterioration of the best
bound. The improvements that B&C with CP brings to the solutions of H are
less than their counterparts for B&C with MIP. B&C with CP stumbles at the
first larger instances and its performance becomes worse than that of the inte-
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Figure 10: 95% confidence intervals for the mean performance ratio as a function of problem
size

grated approach. It seems unable to cope with the size of the search space. In
summary, B&C with MIP is the best approach for most large-sized instances.

The observed runtime of H is both category and size dependent, as eluci-
dated by Figure 11. Its behavior is quite natural. Instances of set S need more
time than instances of set L. They have many small items. Therefore, the
local search of H has more alternatives for reinserting an item; consequently, it
undertakes, in general, more iterations. It calls PACK more often, and PACK may
exhaust its time limit without identifying a feasible solution.

The mean runtime of H does not necessarily increase as a function of n
because H does not call PACK when it fails to improve the scheduling solution
(i.e., TWET of filled bins). In fact, H solves a MIP. When MIP is infeasible,
H concludes that there is no better schedule and omits calling PACK. Thus, its
runtime tends to increase because it gets more scheduling solutions improved
during the search.

7.5. Remark

Scheduling the cutting of the bins on a single machine is not restrictive.
Indeed, using multiple cutters for the purpose will only slightly alter constraints
(16), (17), and (19). For a parallel machine environment with η machines,
constraints (16) will apply for the first bin assigned to every machine in lieu
to the first bin only. Constraint (17) will apply only for pairs of bins cut on
the same cutter. Finally, constraint (19) will use CP functions that ensure
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Figure 11: Box plot of the runtime of warm-start heuristic as a function of problem size and
category

the no-overlap of the processing of bins assigned to a same cutter and the no
duplicate assignment of a bin to more than one cutter. Similarly, for a flow
shop environment with η consecutive machines, constraints (16) will apply for
the completion time of first bin in every stage. Constraint (17) will apply for
every stage. Finally, constraint (19) will use CP functions that ensure the no-
overlap of the cutting of a bin on two consecutive stages in addition to the
no-overlap of the cutting of two bins on a same stage.

8. Conclusion

This paper introduces a new discrete optimization problem that combines
twoNP-hard problems: the two-dimensional bin packing and the total weighted
earliness tardiness single machine scheduling. Each of these two problems is par-
ticularly difficult. The combined nature of the problem is further complicated by
the interdependence of its two components. They interact either cooperatively
or competitively depending on the problem’s parameters. The problem consid-
ers the guillotine cutting of rectangular items from rectangular bins. Cutting
an item earlier or later than its due date induces lateness penalties. The objec-
tive is to minimize the total weighted earliness and tardiness of the items. The
problem has a wide panoply of interesting applications in the areas of fleet plan-
ning and logistics; in particular, in rescue planning and defense operations. It
is herein formulated in a novel way that models guillotine cuts using a constant
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number of regions. Meanwhile, the problem considers dynamic bins’ process-
ing times. In fact, the processing time of a bin is a dynamic function of the
bin’s content, as opposed to the similar state-of-the-art examples that assume
an artificial constant cutting time.

This paper tackles the problem using a competitive integrated constraint pro-
gramming approach and two branch-and-check decomposition based approaches.
The first models the master problem as a mixed-integer program while the
second models it as a constraint program. The three approaches react differ-
ently to issues that emerge from the interdependence of the two hard problems.
The computational investigation reveals that the decomposition approach whose
master problem is modeled as a mixed integer program is preferred to the inte-
grated constraint programming based approach. In turn, this latter outperforms
the decomposition approach whose master problem is modeled as a constraint
program. The computational results further highlight the important role of
warm-start heuristics in the search process of advanced solution techniques.

The ultimate goal of any future research is the development of tight / time-
efficient dual bounds and of exact approaches. Albeit our approaches solve
small-sized problems to optimality, their computational time (as for most ap-
proaches addressing problems with a weighted earliness-tardiness cost) grows
rapidly for large and difficult instances. Loose dual bounds are intrinsic to such
problems. A content-based bin’s processing time further widens the duality gap;
increasing the challenges imposed by the multiple aspects of the problem, and
emphasizing the need for its investigation.

Other extensions of this research include the design of alternative warm-
start heuristics and of adaptive enumerative techniques, such as evolutionary
algorithms and meta-heuristics, to the problem. Another promising research
direction is the development of hybrid approaches that benefit from the com-
plementary strengths of Artificial Intelligence and Operations Research. These
approaches should focus on effective diversification (rather than intensification)
mechanisms and on ways to fathom the largest number of infeasible/dominated
solutions from the search space. In addition, this problem can be extended
to more complex manufacturing set ups, to cutting problems with irregular
shapes and with constraints emanating from the apparel manufacturing, or to
three-dimensional variable-sized variable-cost bin packing problems that arise
in transportation.
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