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Abstract

This paper studies the equality generalized symmetric traveling salesman prob-

lem (EGSTSP). A salesman has to visit a predefined set of countries. S/he must

determine exactly one city (of a subset of cities) to visit in each country and the

sequence of the countries such that s/he minimizes the overall travel cost. From an

academic perspective, EGSTSP is very important. It is NP-hard. Its relaxed ver-

sion TSP is itself NP-hard, and no exact technique solves large difficult instances.

From a logistic perspective, EGSTSP has a broad range of applications that vary

from sea, air, and train shipping to emergency relief to elections and polling to

airlines’ scheduling to urban transportation. During the COVID-19 pandemic, the

roll-out of vaccines further emphasizes the importance of this problem. Pharma-

ceutical firms are challenged not only by a viable production schedule but also by a

flawless distribution plan especially that some of these vaccines must be stored at

extremely low temperatures. This paper proposes an approximate tree-based search

technique for EGSTSP. It uses a beam search with low and high level hybridization.

The low-level hybridization applies a swap based local search to each partial solu-

tion of a node of a tree whereas the high-level hybridization applies 2-Opt, 3-Opt or

Lin-Kernighan to the incumbent. Empirical results provide computational evidence

that the proposed approach solves large instances with 89 countries and 442 cities

in few seconds while matching the best known cost of 8 out of 36 instances and

being less than 1.78% away from the best known solution for 27 instances.
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1. Introduction

Logistics in general and transportation in particular are the cornerstones
of modern life. Their importance emanates from their multi-fold reper-
cussions on the cost of goods, profit margins of transportation companies,
clients’ service quality, drivers’ well being, and air pollution. In fact, they in-
volve several parties: end clients, manufacturers, distributors, drivers, stock
holders, etc. In addition, they require the scheduling of several interrelated
tasks that are dynamic in nature and constrained in time and space. The
economic and temporal constraints augment their complexity. Solving them
requires the migration of tools from diverse disciplines including information
technology, optimization, and vehicle routing.

Among the most widely studied transportation problems is the traveling
salesman problem (TSP). A traveler has to visit a finite number of countries
starting from one country and returning back to it, and visiting every coun-
try exactly once. The objective is to find a minimal cost route, where the
cost can be total duration, travel distance, etc. TSP’s importance emanates
from its occurrence as a subproblem of complex real life problems in the
transport of passengers/goods and in scheduling. For these problems, TSP
identifies a minimal-cost itinerary for each salesman. For example, TSP is a
special case of the equality generalized symmetric traveling salesman prob-
lem (EGSTSP), where the salesman chooses exactly one of many cities of a
country to visit; i.e., a TSP with a covering constraint.

Formally, consider a set of nodes that are divided into clusters. EGSTSP
searches for the shortest route that visits exactly one node from every clus-
ter starting and ending at the same cluster. EGSTSP is more difficult than
TSP because of the combinatorial aspect added by the sizes of the clusters.
EGSTSP occurs in several real-life applications such as maritime ship rout-
ing, distribution of medical supplies, urban waste management, telecommu-
nication networks, logistics, rapid post dispatching, VLSI, circuit designs,
and in laser cutting to determine the trajectory of a laster cutter [18, 21].
During the COVID-19 pandemic, EGSTSP has drawn a lot of attention.
With reduced air-traffic and disrupted logistic chains, the procurement and
dispatching of goods to confined customers and isolated cities has become a
true challenge. In addition, the availability of a vaccine raises the issue of
its fair distribution and of health care equity. Some of these vaccines impose
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a cold chain that can’t be broken. In such cases, optimizing the distribu-
tion plan is of prime importance. This optimization is equivalent to solving
a large scale EGSTSP. Evidently, its exact solution may be challenging.
However, the continuous advancement of the computing technologies pro-
vides near-optimal solutions to such difficult problems. They are allowing
approximate methods to undertake a more extensive search; thus obtaining
nearer-global optima in shorter times.

EGSTSP has been solved by exact approaches (such as dynamic pro-
gramming, branch and bound, and branch and cut), and by approximate
ones such as local improvement heuristics (k-opt, swap, insertion, etc.), and
meta-heuristics (tabu search, ant colony, genetic algorithms, etc.). This pa-
per proposes a new approximate hybrid approach for the EGSTSP. Hybrid
heuristics have identified the best known solutions to several complex combi-
natorial optimization problems. They are powerful search methods because
they tackle two competing goals: exploration and exploitation. Exploration
is a diversification of the search. It investigates the solution space in or-
der to determine the part that has a higher chance of containing the global
optimum. Exploitation refines (or intensifies) the search on the part of the
space that has a high potential of containing the global optimum.

The proposed hybrid heuristic is a beam search (BS) (i.e., a truncated
branch and bound) that is augmented with improvement techniques. It
ensures exploration via a standard width-first BS and exploitation via lo-
cal search heuristics. BS strives for global optimization while local search
heuristics strive for local optimization in the global optimum’s neighbor-
hood. That is, BS can be assimilated to evolution while local search to
learning. Generally, synchronization of evolution and learning yields effi-
cient hybrid heuristics. Specifically, the proposed hybrid BS embeds

� a low-level hybridization, which addresses the functional composition of
BS by subjecting the partial solution at each node to a local search; and

� a high level hybridization that maintains BS self containing by subjecting
the incumbent of BS to a k-opt type of search.

To the best of the authors’ knowledge, this is the first application of
BS to EGSTSP. In addition, the hybridization explores the success of local
search to assess the nodes of the tree and to estimate their potential. It
subsequently chooses the nodes with the best potential to branch on and
prunes the non-promising ones; thus, it explores the search space’s parts
that contain near-global optima while it discards the others. It then applies
a 2-opt, a 3-opt or the notorious improved Lin-Kernighan (LK) heuristic [9]
to its incumbent. The computational investigation provides computational
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evidence of the good performance of the hybridized BS within a reduced
runtime. Its deviation from the best known solution is less than 0.0578%
for half of the instances and less than 1.78% for three quarters of them.

Section 2 defines the problem. Section 3 reviews the literature on EGSTSP.
Section 4 details the proposed approaches. It presents the algorithm of a
standard BS, its adaptation to EGSTSP, the low-level hybridized BS, and
the high-level hybridized BS when applying each of the three local improve-
ment methods: 2-Opt, 3-Opt and LK. Section 5 presents the computational
results, which assess the efficiency of the methods in terms of solution qual-
ity and runtime and highlights the utility of the hybridizations. Finally,
Section 6 summarizes the findings and gives potential research extensions.

2. Problem Definition

EGSTSP is an NP-hard combinatorial optimization problem. It consists
of finding the optimal path of a salesman who has to travel through a set
of countries while visiting exactly one city from each country and visiting
every country once. The optimal path minimizes the total traveled cost.
Hence, the salesman must determine for each country the city s/he will visit
and the order of visit of the countries. EGSTSP is more complex than
TSP. For TSP, each country consists of a single town while EGSTSP has
the additional complexity of choosing a city from each country. Because it
extends TSP, which is NP-hard, EGSTSP is also NP-hard.

Herein, we define EGSTSP using the notation of [6, 7] and present their
integer linear program (ILP). Formally, consider a complete non-oriented
graph G = (N,E) where N = {1, . . . , n} is a set of nodes that are divided
into m mutually exclusive clusters Ch, h = 1, . . . ,m, and m ≥ 3. E =
{[i, j] : i ∈ N, j ∈ N, i 6= j} denotes the set of edges e connecting pairs
(i, j) of distinct nodes i ∈ N and j ∈ N, i 6= j. The cost of traveling
through edge e ∈ E is de. This cost may be assimilated to a linear function
of the Euclidean distance between i and j. The objective of EGSTSP is to
determine a minimal cost cycle T ⊆ E such that T includes exactly one city
from each cluster, and each cluster is visited once.

To define the ILP model of EGSTSP, we introduce the following nota-
tion. For a subset S ⊆ N, E(S) := {[i, j] ∈ E : i ∈ S, j ∈ S} denotes the
set of edges with both endnodes in S and δ(S) := {[i, j] ∈ E : i ∈ S, j /∈ S}
the set of edges with exactly one end node in S. For simplicity, we denote
δ({v}) by δ(v), for v ∈ N .

ILP uses two types of binary variables: xe = 1 if the salesman travels
through edge e ∈ E and 0 otherwise, and yv = 1 if the salesman visits node
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v ∈ N and 0 otherwise. Using the aforementioned notation and these two
sets of binary variables, EGSTSP can be formulated as follows.

min z =
∑
e∈E

dexe (1)

s.t.
∑
e∈δ(v)

xe ≤ 2yv v ∈ N (2)

∑
v∈Ck

yv = 1 k = 1, . . . ,m (3)

∑
e∈δ(S)

xe ≥ 2(yi + yj − 1) S ⊂ N, 2 ≤ |S| ≤ n− 2, i ∈ S, j ∈ N \ S (4)

xe ∈ {0, 1} e ∈ E (5)

yv ∈ {0, 1} v ∈ N (6)

The objective function, given by Equation (1), minimises the total travel
cost. Equation (2) preserves the flow through every node. A node is visited
if it has both a predecessor and a successor node; therefore the righthand
side is 2; otherwise, the righthand side must be zero. Equation (3) ensures
that the tour includes exactly one city from each cluster. Equation (4)
guarantees the connectivity of the solution: Each cut separating two visited
nodes i and j must be crossed at least twice. Finally, Equations (5) and (6)
determine the nature of the decision variables.

Because EGSTSP is NP-hard, solving large instances of EGSTSP using
ILP is difficult. Herein, we are interested in efficiently solving large instances
of EGSTSP using heuristic methods, and in comparing the heuristics’ so-
lutions to the ILP results that are readily available in the literature (and
given by zlit in the computational section and in the Appendix).

3. Literature Review

Small instances of the equality generalized TSP (EGTSP) were solved
exactly using dynamic programming [26], branch and bound [14], and branch
and cut [6]. Large instances have been tackled approximately; for example,
Noon and Bean [20] applied the TSP’s closest neighborhood heuristic. Lien
et al. [16] assimilated EGTSP to a TSP whose number of nodes is three
times as large as the number of clusters. Dimitrijevic and Saric [5] devel-
oped an alternative transformation that had fewer nodes; i.e., using twice as
many nodes as the number of clusters of the original EGTSP. Ben-Arieh et
al. [2] opted for a transformation that had as many nodes as the number of
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clusters of EGTSP using the ‘exact’ Noon–Bean, and two modifications of
the non-exact Fischetti–Salazar–Toth transformation. Helsgaun [9] trans-
formed EGSTSP into a classic TSP and applied LK to the transformed
TSP. Karapetyan and Gutin [11] proposed an LK heuristic for EGSTSP.
Smith and Imeson [25] applied an iterative remove and insert heuristic for
EGSTSP. They opted for three insertion mechanisms: the furthest node, the
cheapest, and random insertion. Karapetyan and Gutin [12] also designed
a large neighborhood search for EGSTSP. Renaud et al. [22] proposed an
Initialization, Insertion and Improvement heuristic that Renaud and Boctor
[23] further generalized. Khachai and Neznakhina [13] developed a dynamic
programming based heuristic for EGSTSP.

Another surge of the EGSTSP literature came from hybrid approaches.
Ardalan et al. [1] hybridized the Imperialist Competitive Algorithm with
a local search. Lawrence and Daskin [15] hybridized a random key genetic
algorithm with a local search. Their algorithm is quite fast. It identifies its
best solution within the first two or three iterations. Its good performance is
due to the utility of the local search in identifying the best solution. However,
their algorithm is outperformed by the mimetic algorithm of Gutin et al.
[8], who combined the advantages of genetic algorithms and local search.
Chira et al. [4] designed a “sensible” ant colony system that makes the
ants sensitive to the pheromone level in their trail; thus, explore the most
promising regions of the search space. Yang et al. [28] augmented ant
colony optimization to EGSTSP with a mutation mechanism and a local
search. They showed the importance of the local search, in particular, for
instances with fewer than 200 nodes. Bontoux et al. [3] proposed a mimetic
algorithm whose crossover operator is based on a large neighborhood search.

Different variants of EGSTSP have appeared recently. Sundar and Rathi-
nam [27] applied a branch and cut and Zhou and Brian [30] extended
Christofide’s TSP algorithm to the multi-depot EGSTSP where there are
several travelers; each departing from a different depot (node). Mestria [19]
considered the clustered traveling salesman problem, where all nodes of a
cluster must be visited in a contiguous manner. The author hybridized a
variable neighborhood random descent with local search (for intensification)
and with a greedy randomized adaptive search (for diversification). This
latter consists of a constructive heuristic and a perturbation method. The
author applied several variable neighborhood structures, in a random order.
Jian et al. [10] proposed a hybrid genetic ant colony algorithm for the mul-
tiple TSP, where each salesman departs from a specific depot and returns to
it. Yuan et al. [29] studied the generalized TSP with time windows, where
arrival to a city must occur within a time window. They proposed two in-
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teger linear programs and valid inequalities that are separated dynamically
within a branch-and-cut algorithm. They initiated their branch and bound
from a feasible solution built via a simple heuristic. They solved instances
with up to 30 clusters within a one-hour runtime. Salman et al. [24] im-
posed precedence constraints on EGSTSP, developed a new branching rule,
and adapted some existing bounds to the problem.

This literature review suggests that EGSTSP was never tackled via BS.
It further suggests that hybridization is a key factor in the success of most
approaches to TSP related problems. To explore these findings, this paper
proposes a hybrid BS that employs local search at each node and applies a
k-opt type of search to the incumbent.

4. Proposed Approaches

We efficiently solve EGSTSP using hybridized BS-based algorithms. BS
is a truncated tree search. It avoids exhaustive enumeration by branching on
a subset of elite nodes, believed to lead to the optimum. They usually have
minimal fitness values, which are either the cost of their partial solutions or
their upper bounds. At each iteration, ω nodes are selected for branching,
where ω is the beam width. The other nodes are permanently discarded,
and no backtracking is performed. We enhance the performance of BS by
hybridizing it at two levels. The low-level hybridization adds a local search
phase at each node of the BS tree. The high-level hybridization applies 2-
opt, 3-opt or LK heuristics to the best solution that BS obtains. Section
4.1 describes a standard BS. Section 4.2 explains our adaptation of BS to
EGSTSP. Sections 4.3 and 4.4 present the low- and high-level hybridization.

4.1. Standard Beam Search

The pseudo code of a standard BS is given in Figure 1. It consists
of an initialization step, an iterative step and a stopping criterion. The
initialization step declares the set N of current nodes of the tree to the root
node µ0 and the setM of offspring nodes to the empty set. When an initial
feasible solution x is available, this step further sets the incumbent x∗ and
its value z∗ = z(x∗) to, respectively, this initial solution x and its objective
function value. When an initial feasible solution is not available, the upper
bound z∗ is set to ∞.

The iterative step chooses a node from N , and sets it as the current
node. It branches out of the current node, and adds all new nodes to M
except for leaves. Leaves constitute feasible solutions; thus, are candidate
solutions. A leaf becomes the incumbent whenever its cost is less than z∗.
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Initialization
Set N = {µ0}, M = ∅.
If an initial feasible solution x whose cost z(x) is available, set the incumbent x∗ = x,
and its objective function value z∗ = z(x); otherwise, set z∗ = inf .

Iterative step

1. Choose a node µ of N ; branch out µ; and insert the created nodes (i.e., the
offsprings of µ) into M.

2. If a node µ of M is a leaf, then

� compute its objective function value zµ;

� if zµ < z∗, update z∗ and the incumbent solution;

� remove µ from M.

3. Assess the potential of each node of M.

4. Rank the nodes of M in a non-descending order of their values.

5. Insert the min{δ, |M|} best nodes of M into N ; and set M = ∅.

Stopping condition
If N = ∅, stop; otherwise, goto the iterative step.

Figure 1: A standard BS.

The iterative step appends the ω smallest-cost nodes of M to N and re-
initializes M to the empty set. This process is reiterated until no further
branching is possible; that is, till N = ∅. When applying a width-first BS,
the nodes of N belong to the same level of the tree.

4.2. Proposed Beam Search

This section presents our proposed BS-based method BS0 for EGSTSP.
BS0 identifies a least cost ordering of the clusters. It assimilates the nodes
of the tree to partial solutions (i.e., ordered subsets of C), and branching
out of a node to augmenting it with an additional cluster. Its tree starts
at the root node (i.e., level ` = 0) with an empty tour, and has at most
m levels. A partial solution s` corresponding to a node at level `, ` =
1, . . . ,m, is a sequence of cities i1, i2, · · · , i` all belonging to N and to
different clusters. As all tree-search techniques, BS0 has three major steps:
branching, assessment, and selection.
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The branching of a node of the tree corresponds to appending a cluster
to the partial solution of that node. That is, out of a node of level ` emanate
m−` branches; each leading to a different cluster. A node inherits the path of
its parent, and appends a cluster to the end of its parent’s path. Specifically,
branching out of the node corresponding to s` consists in appending a city
from a non-visited cluster to s`.

The assessment of the cost of a newly created node s` is based on a
straightforward / simple lower bound and on an upper bound. The lower
bound is the cost zs` of the partial solution s`. It is the sum of the travel
costs between the successive nodes of s`:

zs` = di1,i2 + di2,i3 + . . .+ di`−2,i`−1 + di`−1,i` .

It is the sum of its parent node’s cost zs`−1 = di1,i2 +di2,i3 +. . .+di`−2,i`−1 and
of the travel cost di`−1,i` from its parent node to the appended cluster. The
upper bound is a total-cost of a complete solution constructed by iteratively
appending the closest city of a ‘not yet assigned’ cluster to the partial
solution s`.

At a given level ` of the tree, the selection chooses the ω best nodes
among all generated child nodes for further branching at the next level `+1
of the tree. These iterative branching, evaluation and selection processes are
repeated until ` = m; that is, until all clusters are visited. Herein, BS0 is
started with a feasible solution obtained via a greedy heuristic that chooses
arbitrarily the first city i1 and iteratively appends the closest city from a
non-visited cluster.

In summary, BS0 is a constructive approach that starts at the root node
with an empty tour and appends a cluster at each level of the tree. It stops
when the tour has m clusters visited. It has an O(ωm) worst case time
complexity. Thus, our transformation of EGSTSP into TSP is less complex
than competing transformations. It maintains m < n nodes whereas TSP
considers n nodes.

4.3. Enhanced Beam Search

The low-level hybridized BS, denoted hereafter as BS1, subjects each
partial solution s` obtained at a node of a level `, ` = 3, . . . ,m, of the tree
to a local search. The local search is simple but efficient. It preserves the
order of the clusters in s` but changes the selected node of one or more
clusters. It chooses the ‘best’ city among all nodes of every cluster of the
partial solution s`. At a level ` ∈ {3, . . . ,m}, BS generates m− ` nodes. Let
s` be one of these nodes and let s` = ([1], . . . , [`]), where [i] denotes the ith
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cluster of the tour. The local search iterates for h = [2], . . . , [`− 1]. It fixes
the partial paths [1], . . . , [h− 1] and [h+ 1], . . . , [`], and iterates through all
the cities v of cluster Ch. It retains the city v∗ ∈ Ch that minimizes the
distance from [h− 1] to v to [h+ 1]; i.e.,

d[h−1]v∗ + dv∗[h+1] = min
v∈Ch

{d[h−1]v + dv[h+1]}.

When applied to a node s`, the local search has O(`c) complexity (c = c̄),
where c̄ = max

h=1,...,m
{|Ch|} is the maximum number of cities among all clusters.

Because it is applied to all

m∑
`=3

`(m − `) nodes of the tree, the local search

increases the complexity of BS1 to at worst O(ωm2c̄). Yet, it allows BS1 to
attenuate the myopic nature of BS0; i.e., BS0 may miss the global optimum
when it selects the ω best nodes of a level and permanently prunes the
others.

4.4. High-Level Hybridized Beam Search

The high level hybridized BS, denoted BS·, · = 2, 3, 4, applies a 2-Opt, a
3-Opt, or LK heuristic to the best solution obtained by BS1. Because the
hybridization is high-level, the worst time complexity of BS·, · = 2, 3, 4 is the
sum of the complexity of BS1 and of the adopted hybridization approach.

The 2-Opt has an O(m2) complexity where m is the number of clusters
of the tour. It chooses two clusters of the tour randomly and reverses the
flow between them. It is repeated as long as the solution is improved. For
instance, consider a tour [1], [2], . . . , [i − 1], [i], [i + 1], . . . , [j − 1], [j], [j +
1], . . . , [m], [1], where [i] denotes the [i]th cluster of the tour. When 2-
Opt chooses randomly clusters [i] and [j], it generates the new solution
[1], [2], . . . , [i− 1], [j], [j − 1], . . . , [i+ 1], [i], [j + 1], . . . , [m], [1].

The 3-Opt has an O(m3) complexity where m is the number of clusters of
the tour. For a tour [1], [2], . . . , [i−1], [i], [i+1], . . . , [j−1], [j], [j+1], . . . , [κ−
1], [κ], [κ+ 1], . . . , [m], [1], 3-Opt chooses randomly three clusters [i], [j] and
[κ] of the tour, and generates the new solution [1], [2], . . . , [i], [κ], [κ−1], [j+
1], [i + 1], . . . , [j], [κ + 1], . . . , [m], [1]. It repeats this process as long as the
solution is improved.

LK yields near-global optima when started from a large number of ini-
tial solutions. Any perturbation of its best solution causes increases of the
order of 10 to 15% of its best cost. It is one of the best heuristics for the
symmetric TSP because of its adaptive nature. Indeed, it swaps a number
of partial sequences of the tour. This number is not predetermined; yet, it
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offers a good tradeoff between solution quality and runtime. While 2-opt
and 3-opt break 2 and 3 edges of the tour, LK chooses the number of edges
to be broken such that this number yields a minimal cost tour. In this
sense, LK may be perceived as a variable-k exchange of k edges. It chooses
k links to exchange and tests the utility of exchanging k+ 1 links. (Initially
k = 2.) Any exchange must generate a feasible neighbor. Its utility is as-
sessed via the difference of the costs of the current solution and its neighbor.
It is only adopted when it reduces the current solution’s cost. LK marks
the exchanged edges yielding the best net cost reduction as permanent and
prohibits their elimination for a number of iterations by inserting them into
a tabu list. When the exploration of exchanging k + 1 links reduces the
incumbent’s cost, LK updates the incumbent, and reduces k; otherwise, it
increases k. LK stops when the incumbent can no longer be improved. Even
though the complexity of LK is not well determined in the literature, our
implementation has a worst time complexity of O(m5): It binds k to 5.

5. Computational Results

The computational investigation assesses the performance of hybridiza-
tion in general, and of its type, in particular, on the solution quality and on
the runtime of BS. For this purpose, it uses five versions of BS:

BS0 A standard width-first beam search of beam width ω,

BS1 BS0 augmented with a local search at each node of the tree,

BS2 BS1 with its best solution subject to a 2-opt,

BS3 BS1 with its best solution subject to a 3-opt, and

BS4 BS1 with its best solution subject to the LK heuristic with k up to 5.

It applies these five versions (coded in C and run on an Intel Core i3-4030U,
1.90 GHz, 4GB RAM) to 36 benchmark instances of EGSTSP, all avail-
able at http://www.cs.rhul.ac.uk/home/zvero/GTSPLIB/. Let zlit be the
best known solution, and zBS·

ω , · = 0, 1, 2, 3, 4 the corresponding BS· solu-
tion value, for a beam width ω = 1, 2, 3, 4, 5, 10, obtained within runtime
t·ω (expressed in seconds). For this solution, the percent optimality gap

∆·ω = 100% z·ω−zlit
zlit

. Herein, we analyze the results, reported in Appendix
A, focusing on the utility of the low- and high-level hybridization of BS. We
then conclude with some useful remarks.
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Figure 2: Mean runtime of BS0, . . . , BS4 as a function of beam width ω

5.1. Utility of the Low Level Hybridization

First, we compare the runtime and solution quality of BS0 to that of
BS1; that is, of BS without and with local search at each node. (cf. Tables
A.1 and A.2 for the detailed results.) We undertake this comparison to
highlight the importance of the low-level hybridization undertaken at each
node of each level ` of the search tree.

Figure 2, which displays the mean runtime of BS0, . . . , BS4, suggests that
the mean runtime of BS increases linearly as a function of the beam width
ω. Its average runtime (in seconds) can be estimated as a linear function
of ω: t̄0 = 0.5454ω − 0.0459 and t̄1 = 0.5473ω + 0.0080, with 99.03% and
99.98% respective coefficients of determination. This behavior is expected
as a larger beam width requires more evaluations of partial solutions, of
bounds, of sorting, stocking, and retrieving.

Figure 3, which displays box plots of the observed run times, further clar-
ifies this tendency. Yet, it stipulates that the local search does not increase
the run time. A statistical paired t-test infers that there is no difference be-
tween the mean run times of BS0 and BS1 at any level of significance while a
paired statistical test infers that the mean ∆BS1 is less than the mean ∆BS0

at any level of significance and that the mean difference ∆BS0 −∆BS1 has
a 4.84% point estimate a 4.19% lower bound of a 95% confidence interval.
This difference is due to the local search, which enhances the search of BS,
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Figure 3: Box plots of observed run times of BS0, . . . BS4 as a function of beam width ω

by investigating the neighborhood of the partial solution at each node. In
fact, ∆BS0 > ∆BS1 for all tested instances and for all beam widths. In

addition, the average percent deviation 100% z1
ω−z0

ω
z0
ω

is of the order of 26%;

further highlighting the importance of the local search undertaken by BS1

at every node. Because BS1 is superior to BS0 in terms of solution quality
while being equally good in terms of runtime, it can be inferred that BS1 is
better than BS0.

Figure 4 displays the box plots and means of the percent deviation of
the solutions of BS·, · = 0, . . . , 4, from zlit. Zooming on the box plots and
means of BS0 and BS1, we detect a seemingly counter-intuitive behavior for
small ω. Increasing ω from 1 to 4 does not decrease ∆BS0 and ∆BS1 . This
is most likely because it makes BS choose, at a level `, partial solutions that
–despite their good quality at level `– do not lead to near-optima. That is,
the diversification brought up by the larger beam width focuses on areas of
the search space that do not contain the global optimum. The local search
undertaken at each node does not mitigate this glitch. On the other hand,
increasing ω beyond 5 overcomes this issue. Setting ω = 10 allows BS to
obtain solutions that are closer to the global optimum. That is, it makes BS
investigate areas of the search space that contain near-global optima. This
highlights the importance of the choice of the partial solutions at a level ` in
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Figure 4: Box plots of percent deviation of the solutions of BS0, . . . , BS4 as a function of
beam width ω

order to direct the search toward the most promising regions. In this sense,
the local search provides a lookahead strategy that helps BS judiciously
choose its partial solutions.

5.2. Utility of the High Level Hybridization

Second, we compare the performance of BS2, BS3, and BS4. This com-
parison highlights the important impact of the high level hybridization,
which requires a negligible additional runtime. (cf. Tables A.3 - A.5 for
the detailed results.)

As Figure 4 reveals, the improvements of the solution quality due the
high-level hybridization are much larger than their counterparts due to the
low-level hybridization, regardless of the beam width. These improvements
occur at no additional runtime cost except for the last three instances when
run with BS4 and a beam width ω = 10. These instances are marked as
outliers in Figure 3, which displays the box plots and means of the observed
run times of BS0 - BS4. For all beam widths, the mean run time of any of
the approaches is larger than its median; signaling the existence of outlier
cases, corresponding to the last three instances. Despite the presence of
these outliers, which drive the run time of BS4 up for ω = 10, paired t-tests
infer that there is no statistical evidence to claim that the mean run time of
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any pair of hybridized versions of BS are different at a 5% significance level.
The lack of exploitation and of exploration of the search space makes

BS0 obtain better results for larger beam widthes. This behavior persists
for BS1, which benefits from a local search at each of its nodes, and for BS2,
which benefits from an intensified 2-opt search around its best solution.
However, for BS3 and BS4, the 3-opt and the LK intensification makes BS
obtain its best solutions using a beam width ω = 3, with a mean runtime
less than 2 seconds. This is confirmed by Figures 2 and 5, which display
respectively the mean percent deviation from zlit and mean runtime as a
function of beam width for BS0 to BS4.

5.3. Remarks

LK is known to obtain good results when initialized from several ran-
dom initial solutions. The proposed approach BS4 provides evidence that
it is possible to generate initial solutions for LK in a more systematic man-
ner. Furthermore, the results infer that BS3 with a beam width ω = 3
yields, on average, better results than the other considered beam searches.
However, it remains true that the incumbent of BS1 can be subjected to
three types of searches 2-opt, 3-opt, and LK, at a negligible additional run-
time. In fact, there is no statistical difference between the runtime of BS1

and BS·, · = 2, 3, 4; implying that the bulk of their runtime is caused
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Figure 6: Percent deviation of BS solutions from best known ones

by the BS component. Finally, even though ω = 3 yields in general the
best performance, running BS1 with different beam widths constitutes a
good diversification strategy. Using these two additional aforementioned in-
tensification and diversification mechanisms reduces the percent deviation
gaps of the BS solution to those observed in the literature; matching the
best solution in 22.22% of the instances, and averaging a 0.01344% devi-
ation. The mean should be interpreted with care as it is affected by two
outlier values, recorded for instances 40kroA200 and 80rd400, as shown in
Figure 6. These outliers are clearly depicted in Figure 7, which displays
the resulting box plot of percent deviations for this BS. The corresponding
five-point summary of the percent deviation is (Minimum=0, Q1=0.00063,
Q2=0.00578, Q3=0.01779, Maximum=0.07027), where Q1, Q2 and Q3 are
the first, second and third quartiles. Ignoring the two outlier instances
brings the largest deviation over the other 34 instances to 0.03925% and its
average to 0.01020%.

6. Conclusion

This paper addressed EGSTSP via a beam search that obtains good so-
lutions for large beam widths. However, to avoid the exponential increase
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of runtime associated with branch and bound, we opted for both a low-
and a high-level hybridization of the beam search. First, we performed a
local search at each node of the tree. This local search acts as a looka-
head strategy. It allows the beam search to retain the partial solutions that
could lead to near-global optima in lieu of selecting the lowest cost partial
solutions. This local search improved the performance of the beam search
without affecting its runtime. Second, we subjected the best solution of
the beam search to each of three local search operators: 2-Opt, 3-Opt and
Lin-Kernighan. This high level hybridization further improved the solu-
tion quality of the standard beam search by up to 70% without affecting
its runtime. Applying the three search operators to the incumbent offers
BS more exploration and exploitation power. The proposed hybridization
can be applied to different variants of traveling related problems including
vehicle routing, dial-a-ride, and delivery with time windows. Other types
of search techniques can also be considered such as simulated annealing,
variable neighborhood search, adaptive, and data-driven techniques.
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Appendix A. Detailed Computational Results

The results of BS·, · = 0, . . . , 4 are reported in Tables A.1-A.5. The
first column indicates the ‘.gts’ label of the instance whereas the second
column reports its best known solution zlit, available in the literature. The
next six triplets of columns report the BS· solution value zBS·

ω , · = 0, . . . , 4,

its percent optimality gap ∆·ω = 100% z·ω−zlit
zlit

, and its runtime t·ω in seconds
when the beam width ω = 1, 2, 3, 4, 5, 10.
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