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Abstract In the scalar case, the spectral factorization mapping f → f + puts a
nonnegative integrable function f having an integrable logarithm in correspondence
with an outer analytic function f + such that f = | f +|2 is almost everywhere. The
main question addressed here is towhat extent ‖ f +−g+‖H2 is controlled by ‖ f −g‖L1

and ‖ log f − log g‖L1 .
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1 Introduction

Let f be a nonnegative integrable function on the unit circle in the complex plain,
0 ≤ f ∈ L1(T), satisfying the Paley–Wiener condition

log f ∈ L1(T). (1)

Then it admits a spectral factorization

f (t) = f +(t) f −(t) a.e. on T, (2)

where f + is a function analytic inside the unit circle, f + ∈ A(T+), and f −(z) =
f +(1/z), which is analytic outside the unit circle including the infinity, f − ∈ A(T−).
More specifically, f + belongs to the Hardy space H2(D); therefore, its boundary
values f +(t) = f +(eiθ ) = limr→1 f +(reiθ ) exist a.e. and the Eq. (2) holds for these
boundary values. Note also that f + = f − a.e. on T and therefore (2) is equivalent to

f (t) = | f +(t)|2 a.e. on T.

Condition (1) is necessary for factorization (2) to exist. It also plays an impor-
tant role in the linear prediction theory of stationary stochastic processes, one of
the historically first applications of spectral factorization (see [16,21]). Namely, let
. . . , X−1, X0, X1, . . . be a stationary stochastic process with the spectral measure
dμ = f dt + dμs . In a different but equivalent language, {Xn}n∈Z is a sequence
in a Hilbert space and 〈Xn, Xk〉 = 1

2π

∫
T
ei(n−k)θ dμ(θ). The process is determin-

istic if Xn+1 can be represented as the limit of linear combinations of vectors from
{. . . , Xn−1, Xn}, i.e, Xn+1 ∈ Span{. . . , Xn−1, Xn}. As it happens (see e.g., [16]),
condition (1) is necessary and sufficient for the process to be non-deterministic.

Starting with the original applications in the prediction theory of stochastic
processes, spectral factorization procedure appeared in such seemingly distant areas
as singular integral equations [4,13], linear estimation [15], quadratic and H∞ control
[2,4,12], communications [11], filter design [8,19,20], etc.

If we require f + to be an outer analytic function, then the factorization (2) is unique
up to a constant factor c with absolute value 1, |c| = 1. The unique spectral factor
which is positive at the origin can be a priori written as

f +(z) = exp

(
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log f (eiθ ) dθ

)

. (3)

In most applications, a spectral factor f + in (2) is not explicitly required to be outer
and instead is subject to certain extremal conditions called, in various works, minimal
phase or maximal energy, optimal, etc. In mathematical terms, however, they amount
to f + being outer, so seeking the solution (3) is natural.
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From the practical point of view, it is important to study the continuity properties
of the spectral factorization map

f 	→ f + (4)

defined by (3). Namely, we are interested in knowing how close g+ is to f + when a
spectral density g is close to f . The reason why we study this question is that usually
an estimated spectral density function f̂ being dealt with is constructed empirically
from observations and is only an approximation to the theoretically existing spectral
density f . Therefore, we need to know how close f̂ + remains to f + under such
approximation.

An answer to the above question depends on norms we use as a measurement of the
accuracy in the spaces of functions and of their spectral factors. Since the boundary
values of the function (3) can be expressed as

f +(t) = √
f (t) exp

(
i

2
l̃og f (t)

)

,

where ∼ stands for the harmonic conjugation operator

h̃(eiτ ) = (P)
1

2π

∫ 2π

0
h(eiθ ) cot

(
τ − θ

2

)

dθ,

and the conjugation is not a bounded operator on L∞ or C(T), it is not surprising that
the map (4) is not continuous in these spaces [1]. Furthermore, it is shown in [5] that
every continuous function on T is a discontinuity point of the spectral factorization
mapping in the uniform norm, whereas in [14] it was shown that on a large class of
function spaces (the so-called decomposingBanach algebras) the spectral factorization
mapping is continuous.

The spectral factorization of a trigonometric polynomial

f (t) =
N∑

k=−N

ckt
k, (5)

which is non-negative on T, has the form

f (t) =
N∑

k=0

akt
k

N∑

k=0

akt
−k;

i.e., the spectral factor f + is a polynomial of the same degree N . This result is known
as the Fejér-Riesz lemma (see, e.g., [8]). The spectral factor can also be expressed in
terms of zeros of polynomial (5), and therefore the map (4) is continuous on PN , the
set of all functions of the form (5). Papers [6,7] are devoted to estimating the constant
CN in the inequality

‖φ+ − ψ+‖L∞ ≤ CN‖φ − ψ‖L∞ , φ, ψ ∈ PN ,
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and it is shown there that CN ∼ log N asymptotically, under the condition that the
values of functions φ and ψ are bounded away from 0.

Moving to Lebesgue spaces, themap (4) is not continuous in the L1 norm in general,
since a small change of values of function f , if these values are close to 0, may cause
a significant change of log f . However,

‖ fn − f ‖L1 → 0 and ‖ log fn − log f ‖L1 → 0 �⇒ ‖ f +
n − f +‖H2 → 0. (6)

A proof of an analog of (6) for more general matrix case can be found in [3] or
[10]. In the present paper, we discuss quantitative estimates of the rate in the above
convergence. Firstly, we look for estimates of ‖g+ − f +‖H2 in terms of ‖g − f ‖L1

and ‖ log g− log f ‖L1 . It turns out that, in general, there is no such estimate. Namely,
there is no function � : [0,+∞)2 → [0,+∞) such that lims,t→0 �(s, t) = 0 for
which the estimate

‖g+ − f +‖2H2
≤ �

(‖g − f ‖L1 , ‖ log g − log f ‖L1

)

holds for all f, g ≥ 0 with ‖ f ‖L1 , ‖g‖L1 ≤ 1.

Theorem 1 There exist functions fn, gn ≥ 0, n ∈ N, such that

‖ fn‖L1 , ‖gn‖L1 ≤ 1, ‖gn − fn‖L1 ≤ 1

n
, ‖ log gn − log fn‖L1 ≤ 1

n
,

but ‖g+
n − f +

n ‖H2 ≥ 2 − 1/n.

Nevertheless, one can still obtain an estimate for ‖g+ − f +‖H2 if one takes into
account that for each f ∈ L1(T) there exists an Orlicz space L�(T) such that f ∈
L�(T) (see, e.g., [17, Sect. 8]). One can show that there exists a function �� :
[0,+∞) → [0,+∞) such that limt→0 ��(t) = 0 and

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + ‖ f ‖� ��

(‖ log f − log g‖L1

)
(7)

(see Theorem 3 below). The estimate becomes particularly simple if f ∈ L∞(T).

Theorem 2 Let f and g be arbitrary spectral densities for which f + and g+ exist.
Then,

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + 2.5 ‖ f ‖L∞‖ log f − log g‖L1 .

The paper is organized as follows. In Sect. 2, we prove (7) and Theorem 2. Theorem
1 is proved in Sect. 3.

This paper is a preliminary step toward the investigation of similar problems in
the more complicated matrix case, which is going to be the subject of a forthcoming
paper.
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2 Positive results

Let K be the best constant in Kolmogorov’s weak type (1, 1) inequality

m{ϑ ∈ [−π, π) : |ψ̃(ϑ)| ≥ λ} ≤ K

λ

∫ π

−π

|ψ(ϑ)| dϑ, λ > 0, ψ ∈ L1[−π, π),

where m stands for the Lebesgue measure on the real line. It is known that K =
(1 + 3−2 + 5−2 + . . .)/(1 − 3−2 + 5−2 − . . .) ≈ 1.347 (see [9]).

Lemma 1 Let G : [0,+∞) → [0,+∞) be a bounded absolutely continuous function
that attains its maximum at point a ∈ (0,+∞) (and possibly elsewhere) and is
nondecreasing on [0, a]. Suppose G(0) = 0 and

I (G) :=
∫ a

0
G ′(λ)

dλ

λ
< +∞.

Then,
∫ π

−π

G
(∣∣ψ̃(ϑ)

∣
∣) dϑ ≤ K I (G)‖ψ‖L1 .

Proof Let

μψ(λ) := ∣
∣{ϑ ∈ [−π, π ] : ∣

∣ψ̃(ϑ)
∣
∣ ≥ λ

}∣∣ .

Using Kolmogorov’s weak type (1, 1) estimate with constant K , one gets

∫ π

−π

G
(∣∣ψ̃(ϑ)

∣
∣) dϑ ≤

∫

|ψ̃(ϑ)|<a
G

(∣∣ψ̃(ϑ)
∣
∣) dϑ + G(a)μψ(a)

=
∫

|ψ̃(ϑ)|<a

∫ |ψ̃(ϑ)|
0

G ′(λ) dλ dϑ + G(a)μψ(a)

=
∫ a

0
G ′(λ)(μψ(λ) − μψ(a)) dλ + G(a)μψ(a)

=
∫ a

0
G ′(λ)μψ(λ) dλ − G(a)μψ(a) + G(a)μψ(a)

=
∫ a

0
G ′(λ)μψ(λ) dλ ≤ K‖ψ‖L1

∫ a

0
G ′(λ)

dλ

λ

= K I (G)‖ψ‖L1 .

��
We need some notation from the theory of Orlicz spaces (see [17,18]). Let � and

� be mutually complementary N -functions, i.e.,

�(x) =
∫ |x |

0
u(t) dt and �(x) =

∫ |x |

0
v(t) dt,
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where u : [0,∞) −→ [0,∞) is a right continuous, nondecreasing function with
u(0) = 0 and u(∞) := limt→∞ u(t) = ∞, and v is defined by the equality
v(x) = supu(t)≤x t . Let (�,
,μ) be a measure space, and let L�(�), L�(�) be
the corresponding Orlicz spaces, i.e., L�(�) is the set of measurable functions on �

for which either of the following norms

‖ f ‖� = sup

{∣
∣
∣
∣

∫

�

f gdμ

∣
∣
∣
∣ :

∫

�

�(g)dμ ≤ 1

}

or

‖ f ‖(�) = inf

{

κ > 0 :
∫

�

�

(
f

κ

)

dμ ≤ 1

}

is finite. Note that these two norms are equivalent, namely (see, e.g., [17, (9.24)] or
[18, Sect. 3.3, (14)])

‖ f ‖(�) ≤ ‖ f ‖� ≤ 2‖ f ‖(�) , ∀ f ∈ L�(�).

Wewill use the following Hölder inequality (see, e.g., [17, (9.27)] or [18, Sect. 3.3,
(16)]) ∣

∣
∣
∣

∫

�

f gdμ

∣
∣
∣
∣ ≤ ‖ f ‖�‖g‖(�). (8)

For an N -function �, let

��(s) := inf

{

t > 0 : 1

t
�′

(
1

t

)

≤ 1

s

}

, s > 0. (9)

If �′ is continuous, the above definition of �� can be rewritten in terms of inverse
functions, because �′ is nondecreasing. For an arbitrary N -function �, one has

τ�′(τ ) ≤
∫ 2τ

τ

�′(x) dx = �(2τ) − �(τ) < �(2τ).

Hence,

��(s) ≤ 2

�−1
( 1
s

) , s > 0.

It is clear that
��(s) → 0 as s → 0 + . (10)

Also,
�(τ) ≡ τ q/q, 1 < q < ∞ �⇒ ��(s) ≡ s1/q . (11)

Lemma 2 For every N-function �, the following estimate holds

∥
∥1 − cos ψ̃

∥
∥

(�)
≤ 2��

(
K0‖ψ‖L1

)
, ∀ψ ∈ L1, (12)
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where

K0 := K

2

∫ π

0

sin λ

λ
dλ < 1.25 (13)

and K is the same as in Lemma 1.

Proof We will use Lemma 1 with

G(λ) = �

(
1 − cos λ

κ

)

and a = π . We have

I (G) = 1

κ

∫ π

0
�′

(
1 − cos λ

κ

)

sin λ
dλ

λ
≤ 1

κ
�′

(
2

κ

) ∫ π

0

sin λ

λ
dλ.

Hence,

∫ π

−π

�

(
1 − cos ψ̃(ϑ)

κ

)

dϑ ≤ 2

κ
�′

(
2

κ

)
K

2

∫ π

0

sin λ

λ
dλ ‖ψ‖L1 . (14)

Taking κ > 2��

(
K0‖ψ‖L1

)
, we observe that the right-hand side of inequality

(14) does not exceed 1 by virtue of the definition (9). Thus, (12) follows. ��
Lemma 3 ∥

∥1 − cos ψ̃
∥
∥
L1

≤ 2K0‖ψ‖L1 , ∀ψ ∈ L1, (15)

where K0 is defined by (13).

Proof We will use Lemma 1 with

G(λ) = 1 − cos λ

and a = π . We have

I (G) =
∫ π

0

sin λ

λ
dλ

and

∥
∥1 − cos ψ̃

∥
∥
L1

=
∫ π

−π

(
1 − cos ψ̃(ϑ)

)
dϑ ≤ K

∫ π

0

sin λ

λ
dλ ‖ψ‖L1 ,

which implies (15). ��
Theorem 3 For every pair � and � of mutually complementary N-functions, the
following estimate holds

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + 4‖ f ‖� ��

(
K0

2
‖ log f − log g‖L1

)

,
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where K0 is the same as in Lemma 2.

Proof

‖ f + − g+‖2H2
= ‖ f +‖2H2

+ ‖g+‖2H2

−2Re
∫ π

−π

f 1/2(ϑ)g1/2(ϑ) exp

(
i

2
(log f (ϑ) − log g(ϑ))∼

)

dϑ

= ‖ f 1/2‖2L2
+ ‖g1/2‖2L2

− 2
∫ π

−π

f 1/2(ϑ)g1/2(ϑ) dϑ

+ 2
∫ π

−π

f 1/2(ϑ)g1/2(ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ

=
∥
∥
∥( f 1/2 − g1/2)2

∥
∥
∥
L1

+ 2
∫ π

−π

f 1/2(ϑ)

×
(
g1/2(ϑ) − f 1/2(ϑ)

)(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ

+ 2
∫ π

−π

f (ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ

≤
∫ π

−π

(
g1/2(ϑ) − f 1/2(ϑ)

)2
dϑ

+ 4
∫ π

−π

f 1/2(ϑ)
(
g1/2(ϑ) − f 1/2(ϑ)

)

+ dϑ

+ 2
∫ π

−π

f (ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ.

Here and below, for x ∈ R, we define x+ := max(x, 0).
Using the Hölder inequality (8) and the elementary inequality

(
a1/2 − b1/2

)2 + 2b1/2
(
a1/2 − b1/2

)

+ ≤ |a − b|, ∀a, b ≥ 0,

which is easily proved by considering the cases a ≥ b and a < b separately, one gets

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + 2‖ f ‖�

∥
∥
∥
∥1 − cos

(
1

2
(log f − log g)∼

)∥
∥
∥
∥

(�)

.

It is now left to apply Lemma 2 with ψ = 1
2 (log f − log g). ��

Since every integrable function belongs to a certain Orlicz space (see [17, Sect. 8]),
Theorem 3 with an appropriate pair� and� of mutually complementary N -functions
applies to any nonnegative integrable function f with an integrable logarithm. The
condition (10) is fulfilled as well.



Quantitative results on continuity of the spectral... 525

Corollary 1 For every p ∈ (1,∞), there exists a constant C(p) such that

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + C(p)‖ f ‖L p‖ log f − log g‖

p−1
p

L1
.

One can take C(p) = 2
p+1
p K

p−1
p

0

(
p

p−1

) p−1
p
, where K0 is defined by (13).

Proof It is sufficient to take �(t) ≡ t p/p, �(t) ≡ tq/q, 1 < p < ∞, q = p/(p−1)
in Theorem 3 and to apply (11) and [17, (9.7)]. ��
Corollary 2 There exists a constant C such that

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + C‖ f ‖L∞‖ log f − log g‖L1 .

One can take C = 2K0 < 2.5, where K0 is defined by (13).

Proof It follows from the proof of Theorem 3 that

‖ f + − g+‖2H2
≤ 2‖ f − g‖L1 + 2‖ f ‖L∞

∥
∥
∥
∥1 − cos

(
1

2
(log f − log g)∼

)∥
∥
∥
∥
L1

.

It is now left to apply Lemma 3. ��

3 Negative results

In this section, we prove Theorem 1.

Proof It follows from the proof of Theorem 3 that for any f, g ≥ 0 one has

‖ f + − g+‖2H2
=

∥
∥
∥( f 1/2 − g1/2)2

∥
∥
∥
L1

+ 2
∫ π

−π

f 1/2(ϑ)
(
g1/2(ϑ)− f 1/2(ϑ)

)(

1−cos

(
1

2
(log f (ϑ)− log g(ϑ))∼

))

dϑ

+ 2
∫ π

−π

f (ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ

≥ −4
∫ π

−π

f 1/2(ϑ)

∣
∣
∣g1/2(ϑ) − f 1/2(ϑ)

∣
∣
∣ dϑ

+ 2
∫ π

−π

f (ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ

≥ 2
∫ π

−π

f (ϑ)

(

1 − cos

(
1

2
(log f (ϑ) − log g(ϑ))∼

))

dϑ − 4‖ f − g‖L1 .

Let wn be a conformal mapping of the unit disk onto the ellipse with the axes

[−εn, 0] and − εn/2 + i[−2π, 2π ],
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such thatwn(0) = −εn/2, where εn = 1
2πn . Let hn := exp(Rewn). Then (log hn)∼ =

(Rewn)
∼ = Imwn and therefore ‖1 − cos( 12 (log hn)∼)‖L∞ = 2.

Due to duality considerations, there exists f 0n ≥ 0 such that ‖ f 0n ‖L1 = 1 and

∫ π

−π

f 0n (ϑ)

(

1 − cos

(
1

2
(log hn(ϑ))∼

))

dϑ

≥
(
1 − εn

2

) ∥
∥
∥
∥1 − cos

(
1

2
(log hn)

∼
)∥

∥
∥
∥
L∞

.

If log f 0n ∈ L1, we take fn = f 0n . Otherwise,we define fn = (1−εn/2) f 0n +εn/4π .
Then, ‖ fn‖L1 = 1, and (1 − εn/2)2 > 1 − εn implies that

∫ π

−π

fn(ϑ)

(

1 − cos

(
1

2
(log hn(ϑ))∼

))

dϑ

≥ (1 − εn)

∥
∥
∥
∥1 − cos

(
1

2
(log hn)

∼
)∥

∥
∥
∥
L∞

.

Finally, let gn = hn fn . Then, 0 ≤ gn ≤ fn , ‖gn‖L1 ≤ 1,

‖ fn − gn‖L1 = ‖ fn(1 − hn)‖L1 ≤ ‖1 − hn‖L∞ ≤ 1 − e−εn ≤ εn <
1

2n
,

‖ log fn − log gn‖L1 = ‖ log hn‖L1 ≤ 2π‖ log hn‖L∞ = 2πεn = 1

n
,

and

‖ f +
n − g+

n ‖2H2
≥ 2(1 − εn)

∥
∥
∥
∥1 − cos

(
1

2
(log hn)

∼
)∥

∥
∥
∥
L∞

− 4‖ f − g‖L1

> 4(1 − εn) − 2

n
> 4

(

1 − 1

4n

)

− 2

n
≥

(

2 − 1

n

)2

.

��
Remark The norms ‖ log fn‖L1 and ‖ log gn‖L1 might not be bounded in Theorem 1.
Let f 0n be the function from the above proof. Changing the definition of fn in the proof
to fn = f 0n + 1, one can change the estimates ‖ fn‖L1 , ‖gn‖L1 ≤ 1 in the theorem for
‖ fn‖L1 = 2π + 1, ‖gn‖L1 ≤ 2π + 1, ‖ log fn‖L1 ≤ 1.
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