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Abstract

We derive a large-scale hydrodynamic equation, including diffusive and dissipa-
tive effects, for systems with generic static position-dependent driving forces coupling
to local conserved quantities. We show that this equation predicts entropy increase
and thermal states as the only stationary states. The equation applies to any hy-
drodynamic system with any number of local, PT-symmetric conserved quantities, in
arbitrary dimension. It is fully expressed in terms of elements of an extended On-
sager matrix. In integrable systems, this matrix admits an expansion in the density
of excitations. We evaluate exactly its 2-particle-hole contribution, which dominates
at low density, in terms of the scattering phase and dispersion of the quasiparticles,
giving a lower bound for the extended Onsager matrix and entropy production. We
conclude with a molecular dynamics simulation, demonstrating thermalisation over
diffusive time scales in the Toda interacting particle model with an inhomogeneous
energy field.
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1 Introduction

Interacting systems comprised of many elementary constituents are notoriously hard to
describe. The theory of hydrodynamics provides one significant approach to reducing the
apparent complexity of the dynamics of such systems, by restricting the descriptors of the
dynamics to a smaller set, whose evolution is given in terms of non-linear partial differential
equations. In the past few years there has been a resurgence in the use of hydrodynamic
techniques. Prominent examples can be found in the study of gravity and relativistic
fluids [1, 2], strongly coupled field theories [3] and electron gases [4–6]. Specialising to
many-body theory in one spatial dimension, the theory of generalised hydrodynamics
(GHD) [7, 8], together with numerous subsequent works [9–22], has represented a major
breakthrough in attempts to describe the non-equilibrium dynamics of real-life strongly
correlated gases of bosons and low-dimensional magnets [23–26].

The conceptual approach underpinning the theory of hydrodynamics is the separa-
tion of scales [27], whereby the microscopic system is coarse-grained into mesoscopic fluid
cells, wherein local relaxation is assumed to occur over mesoscopic timescales. Hydrody-
namics then describes the evolution, on macroscopic space-time scales, of the parameters
characterising the local states that the system has relaxed to. According to the hydro-
dynamic principle, these parameters are the chemical potentials associated to the local
and quasi-local conserved quantities of the dynamics, and the hydrodynamic equations
follow by imposing the conservation laws associated to these conserved quantities. The
states of most apparent relevance are the maximal entropy states, states defined by the
properties of being steady, homogeneous, and ergodic under the dynamics. Taking these
as the local states, we obtain the Euler-scale equations: the equations of motion for the
convective flows of all conserved quantities. By adding more detailed information on the
spatial modulation of the local states, it is possible to include the effect of dissipation and
viscosity by adding diffusive terms to the Euler-scale equations. Inclusion of these terms
is usually associated with entropy production: the configuration space corresponding to
the microscopic scales broadens as large-scale structures are smoothed out. Thus, each
fluid cell sees its entropy increase, an effect which is absent in the Euler-scale description.
In conventional fluids, the Euler equation with the addition of viscosity effects is known
as the Navier-Stokes equation.

Other terms in the Euler and Navier-Stokes equations are often included to describe
the effect of external fields, such as gravitational fields in the original formulation of the
Euler and Navier-Stokes equations. These are so-called force or acceleration terms, often
resulting from coupling to the density of particles or energy in the fluid. For Galilean
(relativistic) invariant systems it is straightforward to add a term representing a coupling
to the number (energy) to the Navier-Stokes equation. This is because a special simplifi-
cation occurs: the current of particles (energy) is the momentum density, which is itself
a conserved quantity. However, the diffusive hydrodynamics in the presence of generic
forces, as in magneto- and thermo- hydrodynamics [28] and electron gases in magnetic
fields [6, 29], does not contain such a simplification.

In this paper we derive the general, multi-component diffusive hydrodynamic equa-
tions accounting for generic force fields. This generalises the Euler-scale results of [9, 30]
to the diffusive order. We express all terms using appropriate Onsager coefficients, written
as time-integrated correlation functions of generalised currents as in the Green-Kubo for-
mula. We use the quantum microscopic dynamics, involving the Kubo-Mori-Bogoliubov
inner products coming from perturbation theory and the Kubo-Martin-Schwinger rela-
tions. However, by standard arguments, the final results apply equally well to quantum

2



and classical systems. The rate of entropy production which we obtain is shown to be
non-negative, and generalises the known Onsager expression for the entropy rate under
charge gradients [31, 32]. We show that thermal states of the inhomogeneous evolu-
tion hamiltonian, accounting for the force fields and with arbitrary chemical potentials
for ultra-local quantities (such as the total mass in Galilean systems), are stationary un-
der our hydrodynamic equation. We mostly focus on systems in one spatial dimension,
however the derivation is easily extended to higher dimensions and we give the final fluid
equation in any dimension.

Our results have notable implications for the dynamics of integrable one-dimensional
systems subjected to external fields. Integrable systems are characterised by the presence
of a large number of local and quasi-local conserved quantities, which provide dynamical
constraints prohibiting conventional thermalisation. Many experimental and theoretical
results have emerged which have confirmed the validity of the following simple princi-
ple: isolated purely integrable Hamiltonian systems, both classical and quantum, relax to
statistical ensembles which are obtained by maximising entropy under the constraints pro-
vided by the full set of conserved quantities present in the system. These are the so-called
generalised Gibbs ensembles (GGEs) [33–40]. The correct hydrodynamical description of
such systems is GHD, where all such conserved quantities are taken into account.

It is generally expected that the addition of terms in the Hamiltonian that break all but
a few of the conserved charges should restore canonical thermalisation. However, the old
numerical experiment of Fermi-Pasta-Ulam-Tsingou [41] and the more recent cold-atom
experiment of the quantum Newton’s cradle [42], left no doubts that one-dimensional
interacting systems of particles whose Hamiltonian dynamics are almost integrable can
fail to thermalise on very large time-scales, prompting many theoretical and experimental
investigations of the topic [43–56].

Thus for integrable systems, as potentials coupling to the local and quasi-local con-
served charges of the system generically break integrability, we expect that a hydrodynamic
description should describe the approach to thermal stationary states. This can reproduce
for example the effect of external trapping potentials in cold atomic systems, different in-
teractions with external fields, or spatial inhomogeneities in the system’s Hamiltonian.
While Euler hydrodynamics has thermal states among its stationary states, the equations
do not allow for the entropy production required to reach this state from a generic ini-
tial condition [9, 30]. The inclusion of viscosity terms is therefore fundamental to provide
the required entropy production and the approach to thermalisation. This was already
shown in the simplest case of a coupling to the density [10] in a Galilean invariant system,
where the analysis simplifies considerably as mentioned above. Here we consider generic
classical and quantum integrable systems and generic forces, and derive consistent hy-
drodynamic equations describing the approach to thermalisation, which fully justify the
simplified equation used in [10] and give an explicit lower bound for entropy production.

1.1 Presentation of the problem and main result

We consider an isolated quantum system with n (which is infinite in integrable systems)
extensive conserved quantities in involution,

Qi =

ˆ
dx qi(x) (1.1)

with [Qi, Qj ] = 0 for all i, j. These are conserved in the sense that they are invariant with
respect to any Hamiltonian formed of linear combinations of Qi’s. The Hamiltonian we
choose below is inhomogeneous, under which they are not necessarily conserved, however
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as inhomogeneity length scales are large, these conserved quantities play a role within the
emergent hydrodynamic description.

The charge densities qi(x) either act non-trivially on finite regions surrounding x (local)
or have norms that decay quickly enough away from x (quasi-local). The charge densities

are assumed to be hermitian operators q†i = qi. We further assume that there exists a
parity and time (PT) inversion symmetry under which densities transform simply: an
anti-unitary algebra involution such as

PT (qi(x)) = qi(−x), (1.2)

As a consequence, the chargesQi are PT invariant. We also introduce the current operators
jk,i(y) defined by the flow induced by each conserved quantity, as [9]

i[Qk, qi(x)] + ∂xjk,i(x) = 0. (1.3)

The currents can be chosen hermitian, and by the assumed PT invariance, they can be
chosen to transform simply under the PT symmetry, PT (jk,i(x)) = jk,i(−x). By anti-
unitarity PT (qi(x, t)) = qi(−x,−t) and PT (jk,i(x, t)) = jk,i(−x,−t). Our results are valid
for a generic number n of conserved quantities and we shall later apply it to the integrable
case where n is infinite. We shall first restrict ourselves to one spatial dimension and later
generalise the result to higher dimensions.

Applying external fields coupling to the densities, the most generic inhomogenous
Hamiltonian reads

H =

n∑
i=1

ˆ
dx wi(x)qi(x), (1.4)

where wi(x) are generic functions of x. The time evolved observables o(x, t) are denoted
as usual

o(x, t) = eitHo(x)e−itH . (1.5)

We assume that the wi(x) vary slowly in space such that we can expand them around
any point x0 as

wi(x) = wi(x0) + (x− x0)∂x0w
i(x0) + . . . , (1.6)

with small higher order corrections. The accuracy of the resulting hydrodynamic equations
is determined by how small such derivatives are with respect to the miscroscopic scales
of the model; we leave a precise analysis for future works, but the example of the Toda
gas in section 4 will give some intuition. Effectively, the system is subject to external
inhomogenous forces

fi(x) = −∂w
i(x)

∂x
(1.7)

which locally break the conserved quantities. In the following we will use the repeated
indices convention to denote sums over indices.

Our main result is a hydrodynamic equation for the space-time evolution of the local
expectation values of the charge densities

qi(x, t) = 〈qi(x, t)〉ini, (1.8)

with respect to some initial state 〈· · · 〉ini, up to second order in spatial derivatives. This
includes diffusive terms which are responsible for entropy increasing and thermalisation.
We define ` = mini(|∂xqi(x, t)|−1), the spatial scale of variation of the local densities
which, in the hydrodynamic approximation, determines the scale of variation of other
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local observables, and `f = mini(|fi|−1). The resulting hydrodynamic equations, around
the point x, t, are correct up to and including terms of order 1/`2, 1/`2f , 1/(``f). With
increasing time, ` is expected to increase at almost all points, up to the scale `f determined
by the external fields, with the possible exception of isolated points where shocks or other
singular structures may develop. Therefore at large enough times, we assume ` ≈ `f.

It is convenient to characterise the state at x, t by a local maximal entropy state (a
local Gibbs of generalised Gibbs ensemble, which we will simply refer to as a local GGE)
which reproduces the averages qi(x, t). For this purpose, we define the thermodynamic
potentials βi(x, t) by inverting the defining relation

qi(x, t) =
tr[qie

−Qlβl(x,t)]

tr[e−Qlβl(x,t)]
, (1.9)

at each position x, t. We denote by 〈· · · 〉 the GGE with thermodynamic potentials βi(x, t),
where here and throughout we keep the x, t dependence implicit. This forms a family,
parametrised by x, t, of homogeneous and stationary states on the infinite line.

Let us consider a single fluid cell at position x, t, and introduce several quantities
associated to it. Given any n-dimensional vectors a, b (which may depend on x, t), we
shall use the following compact notation for the contraction of indices with the external
fields or forces

ja,k(y) = aiji,k(y), ji,b(y) = ji,k(y)bk, ja,b(y) = aiji,k(y)bk. (1.10)

We denote the time evolution of a generic operator o(y) in complex time as

o(y, sw − iτβ) = eiswiQi+τβ
lQl o(y) e−iswiQi−τβlQl (1.11)

where wi = wi(x) and βi = βi(x, t). Within the formulae below, this is to be interpreted
as microscopic time evolution, occurring within the mesoscopic cell at x, t. In particular,
the real part of the time evolution is with respect to the Hamiltonian Hx = wi(x)Qi,
which is (1.4) taken with the fields constant, at their local value at x. We also define the
generalised Kubo-Mori-Bogoliubov (KMB) inner product for two local operators in terms
of the connected correlation function

(o1(y, sw), o2(0)) =

ˆ 1

0
dλ 〈o1(y, sw − iλβ)o2(0)〉c. (1.12)

Throughout we shall require that the inner product is sufficiently clustering, specifically
that (o1(y, sw), o2(0, 0)) decays faster than 1/|y| at large |y|. We can then introduce the
following extended Onsager coefficients for a generic local operator o(x),

L[a, b; o] =

ˆ ∞
−∞

ds (Ja,b(sw), o)C , (1.13)

with Ji,k(sw) =
´∞
−∞ dy ji,k(y, sw), the spatially integrated current, and o = o(0). Here

we have introduced the connected inner product, denoted C , which is based on clustering
at large times:

(O1(sw), o2)C = (O1(sw), o2)− lim
s→∞

(O1(sw), o2). (1.14)

By the method of hydrodynamic projections, we can write the temporally disconnected
component as

lim
s→∞

(O1(sw), o2) = (PO1, o2) =
∑
ij

(O1, qi)C
ij(Qj , o2), (1.15)
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Figure 1: Graphical representation of the derivation of main result eq. (1.20). At each
mesoscopic time t0, the local hydrodynamic state is expanded in the slow variation of
the chemical potentials, eq. (1.18). The state is then evolved with the local Hamiltonian
(1.17), consisting of a global conservative part, and the force term, which breaks most
of the conservation laws. This time evolution describes local relaxation, and thus occurs
purely within the fluid cell. The outputs of this process are expressions for expectation
values of currents within the fluid-cell, expressed in terms of fluid-cell expectation values
of densities. These are then inserted into the Heisenberg equations of motion to obtain
the hydrodynamic equation.

where Cij is the inverse of the susceptibility matrix Cij = 〈Qiqj〉c, and P is the projector
onto the space of conserved quantities Qi. In terms of explicit double-indices (i, j) and
(k, l), the extended Onsager matrix L has matrix elements Li,j;k,l ≡ L[i, j; jk,l] defined by

aibjckdlLi,j;k,l = L[a, b; jc,d]. (1.16)

We now proceed to write the hydrodynamic equation governing the evolution of the local
expectation values qi(x, t). The derivation of our main result is provided in detail in later
sections. The main steps required are graphically shown in Fig. 1, and can be summarised
as follows:

1. The evolution of the densities qi and currents ji at position x0, governed by the local
Hamiltonian

Hx0 = wi(x0)Qi − fi(x0)

ˆ
dx (x− x0)qi(x), (1.17)

are obtained using perturbation theory. The form of the Hamiltonian is obtained by
expanding (1.4) to first order in fi about the point x0.

2. The resulting expectation values of the charges qi and currents ji, evolved using
perturbation theory, are expanded to first order in ∂x0β

i(x0, t0) within the hydrody-
namic cell at x0, t0. Each cell has the local state

ρ̃x0,t0 ∝ e−Qiβ
i(x0,t0)−∂x0β

i(x0,t0)
´
dy(y−x0)qi(y). (1.18)

3. By inverting the resulting expressions for the perturbatively time-evolved, fluid-cell
expanded expectation values, which are written in terms of βi(x0, t0) and ∂x0β

i(x0, t0),
we express the expectation values of currents in terms of expectation values of den-
sities (and their spatial derivatives). Here, the expectation values of densities are
the “finite-time” hydrodynamic variables.
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4. We take the large time t, see Fig. 1, limit of these expressions, which incorporates
the effect of local relaxation. This gives the currents in terms of the true hydrody-
namic variables in the fluid cell at x0, t0: the qi(x0, t0) and their spatial derivatives
∂x0qi(x0, t0). The mapping between these and the potentials is provided by (1.9).

5. We insert the resulting expressions for the currents into the Heisenberg equation of
motion ∂tqi = i[H, qi]. Using the density-density commutation relation (2.17), shown
in [9, 30], this can be written in terms of the microscopic currents:

∂tqi(x, t) = −∂xjw,i(x, t) + ji,f(x, t). (1.19)

When written for the hydrodynamic variables, qi(x, t) → qi(x, t), this becomes an
equation for the evolution of local states.

We stress that even if the expansion of the state and of the Hamiltonian are taken only to
first order in ∂x, the hydrodynamic equation resulting from this procedure is correct up to
second order in spatial derivatives, because all terms on the RHS of (1.19) are already first
order in derivatives. Suppressing the x, t dependence of each term, the full hydrodynamic
equation reads:

∂tqi + ∂xjw,i +
1

2
∂x (L[w, ∂xβ; jw,i] + L[β, f; jw,i])

= ji,f +
1

2
(L[w, ∂xβ; ji,f] + L[β, f; ji,f]) (1.20)

where we denoted the Euler expectation values of currents on local macroscopic states as

ji,k(x, t) =
tr[ji,ke

−Qlβl(x,t)]

tr[e−Qlβl(x,t)]
. (1.21)

Notice that the spatial derivatives of the thermodynamic potentials are related to the
spatial derivatives of the expectation values of the charges. In terms of the susceptibility
matrix Cij , this reads

Cij∂xβ
j = −∂xqi. (1.22)

Eq. (1.20) gives an unbroken continuity equation for the inhomogeneous energy density
wi(x)qi(x), which follows by linearity of the current operator ji,a as a function of a.
Using the relation wi(x)∂xL[w, ∂xβ; jw,i] = ∂xL[w, ∂xβ; jw,w] + L[w, ∂xβ; jw,f], and the
analogous relations for other terms, we see

∂t(w
iqi) + ∂x[jw,w +

1

2
(L[w, ∂xβ; jw,w] + L[β, f; jw,w])] = 0. (1.23)

Eq. (1.20) also returns conservation laws for any ultra-local density. This is defined as
a density uiqi(x), for some constants ui, whose charge does not generate any current,
uiji,k(x) = 0. An equivalent definition of an ultra-local density is ui[Qi, qk(x)] = 0, for all
k. In this case we have again the continuity equation

∂t(u
iqi) + ∂x[jw,u +

1

2
(L[w, ∂xβ; jw,u] + L[β, f; jw,u])] = 0. (1.24)

Examples of ultra-local densities are the particle density in Galilean models, and the
magnetic field in spin and Fermi-Hubbard chains.

The usual case, with a dynamics induced by a homogeneous Hamiltonian, is recovered
by setting f = 0, hence ji,f = 0 and therefore

L[a, b; ji,f] = L[a, f; o] = 0. (1.25)
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The simplification (1.25) also holds whenever the force only couples to a conserved density,
such as q0(x) (that is, fk = δk0 ), whose currents with respect to all flows, i.e. jk,0(x) for
all k, are themselves conserved densities. We will refer to such a q0(x) as self-conserved.
In this case, as conserved quantities are projected out in (1.14), the resulting Onsager
coefficients vanish. This phenomenon is observed, for instance, for the local particle density
in integrable or non-integrable Galilean systems, where we have jk,0 = qk−1 ∀ k by Galilean
invariance, in a suitable basis for the charges. Similar statements hold for relativistic
models, and for the XXZ chain, where in both cases the energy density is self-conserved.
Equalities of this type, for averages in a GGE, arise from the thermodynamic Bethe ansatz
and GHD expressions, as first noted in [9]; at the level of operators, they are related to
the observation that the boost operator preserves the integrable hierarchy [57].

Another simplification occurs if the external field fkqk(x) is ultra-local. In this case the
Onsager coefficients L[w, ∂xβ; o] become those taken with respect to the homogenenous
background Hamiltonian with w constant. The case of coupling to the particle density
in Galilean systems, considered in [10], admits both the aforementioned simplifications.
Note that the stronger requirement that all jk,0 be themselves conserved densities, for the
simplification (1.25), was missed in [10].

Finally, we note that, as the above overview of the derivation suggests, two main
timescales are involved, which are assumed to be well separated: the local thermalisation
time to relax in the local hydrodynamic cell (local relaxation, assumed much faster) and
the (longer) hydrodynamic large-scale dynamics; see (2.4) and (2.18). In the latter the
presence of force terms can induce a global thermalisation to a thermal Gibbs ensemble
where only energy and few other quantities describe the state, as explained below. This
dynamics is on diffusive timescales and regulated by the strength of diffusion terms and
force terms. In our construction, these are the only timescales which can enter the problem.

1.2 Entropy increase and stationarity

The equation (1.20) guarantees positive thermodynamic entropy increase and thermal
states as the only stationary states of the evolution. The definition of the entropy density
leads to the time-evolution

∂ts(x, t) = βi∂tqi(x, t). (1.26)

Using that the Euler part of the hydrodynamic equation does not lead to entropy increase
[30], ˆ

dx βi(∂xjw,i − ji,f) = 0, (1.27)

and spatially integrating (1.20) by parts, the increase in the total entropy S(t) =
´
dx s(x, t),

is given by the following combination of extended Onsager coefficients:

∂tS =
1

2

ˆ ∞
−∞

dx
(
L[w, ∂xβ; jw,∂xβ] + L[β, f; jw,∂xβ] + L[w, ∂xβ; jβ,f] + L[β, f; jβ,f]

)
.

(1.28)

Using the definition of the extended Onsager coefficients (1.13), the entropy increase takes
the quadratic form

∂tS =
1

2

ˆ ∞
−∞

dx

ˆ ∞
−∞

ds (Jw,∂xβ(sw) + Jβ,f(sw), jw,∂xβ + jβ,f)
C . (1.29)

The right-hand-side is always non-negative

∂tS ≥ 0, (1.30)
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as the KMB inner product (·, ·) is positive semi-definite1. Therefore (O, o) is non-negative,
as by translation invariance and clustering it can be written as the limit

(O, o) = lim
L→∞

1

2L

(ˆ L

−L
dy o(y) ,

ˆ L

−L
dz o(z)

)
≥ 0. (1.31)

Then, (O, o)C = ((1 − P)O, (1 − P)o) ≥ 0, and finally, by stationarity and clustering at
large times,

ˆ ∞
−∞

ds (O(sw), o)C = lim
T→∞

1

2T

(ˆ T

−T
dsO(sw),

ˆ T

−T
du o(0, uw)

)C
≥ 0, (1.32)

showing (1.30). It should be stressed that equation (1.28) generalises the entropy produc-
tion rate induced by thermodynamic forces found by Onsager [31,32] (see also more recent
works [58–60]) to a system with n conserved quantities and external inhomogeneous force
fields. Analogously to the work of Kubo [61] we here prove positivity of entropy increase by
the definition of the extended Onsager coefficients. In particular, by the above discussion
the extended Onsager matrix define in (1.16) is positive semi-definite,

L ≥ 0 (1.33)

and the entropy production formula is

∂tS =
1

2
mi,jLi,j;k,lm

k,l, mi,j = wi∂xβ
j + βifj . (1.34)

As entropy can only increase, stationarity should be reached when the entropy of
local states is maximal. The condition of stationary entropy is obtained from (1.29) by
considering the non-negativity result (1.31). It implies that we must have

ˆ ∞
−∞

ds (Jw,∂xβ(sw) + Jβ,f(sw), jw,∂xβ + jβ,f)
C = 0 (1.35)

at every point x. Suppose that there is some conserved density q0 which is ultra-local
and self-conserved, and q1, which is ultra-local but not necessarily self-conserved. Then a
family of stationary entropy solutions is given by

βi(x) = β(wi(x)− µ0(x)δi0 − µ1δ
i
1), (1.36)

where β and µ1 are constants, µ0(x) is an arbitrary function of x, and e0,1 are the associ-
ated basis vectors.

However, a stationary entropy does not necessarily guarantee that a stationary solu-
tion has been reached, as it only accounts for stationarity under the diffusive terms in
the hydrodynamic equation. The condition (1.36) makes all Onsager terms in (1.20) can-
cel, however there generally remains a nontrivial Euler-scale evolution, which preserves
entropy. The fully stationary solutions are those where ∂xjw,i = ji,f, which imposes the
constraint that µ0(x) is a constant in x (1.36) [9, 30, 62]. If it is not, the resulting Euler-
scale evolution exits the space of states (1.36), and diffusion then further increases entropy.
At large times, the solution reached is then for µ0(x) = µ0, a constant. This mechanism
is described in [10]. This shows that the expected thermal (Gibbs) states

βi(x) = β(wi(x)− µ0δ
i
0 − µ1δ

i
1), (1.37)

1In fact, it is in general a pre-inner product, as it is not necessarily positive-definite.
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where the thermodynamic and external forces cancel out, ∂xβ
i(x) + βfi(x) = 0, are sta-

tionary states with vanishing entropy production. We note that both the temperature,
and the chemical potential associated to any ultra-local conserved charge, are arbitrary
parameters of the stationary state. Ultra-local charges are still conserved with an inho-
mogeneous Hamiltonian, and temperatures and chemical potentials are determined by the
initial values of the total energy and of the total charges.

1.3 Example: few-component hydrodynamics coupled to the energy
density

To give an explicit application of the above, we now consider a Galilean system with
conservation of particle number N = Q0, momentum P = Q1 and energy E = Q2. We
choose a coupling to the energy field, namely a space-dependent Hamiltonian function,

H =

ˆ
dxw(x)h(x). (1.38)

This represents the simplest example of a system which requires the full formalism devel-
oped in this paper. Specifically we take

wi(x) = w(x)δi2, fi(x) = f(x)δi2. (1.39)

The hydrodynamic averages can be written in the following form

qi(x, t) =
tr[qie

−T−1(H−νP−µN)]

tr[e−T−1(H−νP−µN)]
, (1.40)

where T is the temperature, µ the chemical potential, and ν the boost parameter. We
denote the hydrodynamic averages of charge densities n, p and e, and their respective
currents by jn, jp, je (and more generally the indices n, p, and e representing 0, 1, 2).
As a consequence of the fact that jn,i = 0 and jp,i = qi, from all extended Onsager matrix
elements only the standard Onsager matrix elements remain,

Li;k =

ˆ ∞
−∞

ds (Ji(sw), jk)
C . (1.41)

Further, certain Onsager matrix elements vanish, as a consequence of the fact that jn =
p is a conserved density (the momentum density). We can thus write the full set of
hydrodynamic equations explicitly as:

∂tn + ∂x(wp) = 0, (1.42)

∂tp + ∂x(wjp)−
∂x
2

(
w2Lp;p

T

(
∂xν −

ν∂xT

T

)
+ w2Le;p

∂xT

T 2
− wfLe;p

T

)
= fe (1.43)

∂te + ∂x(wje)−
∂x
2

(
w2Lp;e

T

(
∂xν −

ν∂xT

T

)
+ w2Le;e

∂xT

T 2
− wfLe;e

T

)
= fje −

1

2

(
wfLp;e

T

(
∂xν −

ν∂xT

T

)
+ wfLe;e

∂xT

T 2
− f2Le;e

T

)
. (1.44)

By fundamental thermodynamic identities – in fact as a consequence of the KMS relation
[30] – the currents can be expressed in terms of the potentials, the specific free energy
f , and some constant G interpreted as the strength of the thermal entropy flux; that is
jn = p = νn, jp = νp − Tf , and je = νe − Tνf − T 2G. Therefore, the hydrodynamic
equations up to diffusive scale are fully determined by f , G and the three Onsager matrix
elements Lp;p, Lp;e = Le;p and Le;e. If parity symmetry is present then G = 0.
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1.4 Formulation in D spatial dimensions

It is a simple matter to extend our calculations and results to higher dimensions. The
only technical requirement is that the KMB product satisfy a slighter stronger clustering
condition: in D-spatial dimensions, (o1(~x, t), o2(0, 0)) decays faster than 1/|~x|D at large
|~x|. Further, the PT transformation is an anti-unitary algebra involution that inverts the
direction of all spatial components. We obtain

∂tqi +∇ · ~jw,i+
1

2
∇ ·
(
L
[
w,∇β;~jw,i

]
+ L

[
β,~f;~jw,i

])
= j

i,~f
+

1

2

(
L
[
w,∇β; j

i,~f

]
+ L

[
β,~f; j

i,~f

])
, (1.45)

where ji,~a = ~ji,k · ~a k, and the extended Onsager coefficients in higher dimensions read

L[a,~b; o] = lim
t→∞

ˆ t

−t
ds
(
J
a,~b

(y, sw), o(0, 0)
)C

. (1.46)

Note that L[a,~b; o] inherit the vectorial type of o. For the entropy increase we have
similarly:

∂tS =
1

2

ˆ +∞

−∞
ds
(
Jw,∇β(sw) + J

β,~f
(sw), jw,∇β(0, 0) + j

β,~f
(0, 0)

)C
≥ 0. (1.47)

2 Diffusive hydrodynamics with inhomogeneous fields

The purpose of this section is to derive the main result (1.20). The derivation is based on
evaluating, from microscopic calculations, an expression for the currents at large times,
from an initial condition where thermodynamic potentials are linear in space (constant
thermodynamic forces), and under a dynamics where the fields vary linearly in space (con-
stant external forces). The thermodynamic and external forces are taken to be small, and
the calculation is perturbative in these forces, with the application of standard perturba-
tion theory. At microscopic scales, there is local relaxation to a state which is near to a
maximal entropy state, and which spatially extends to the larger mesoscopic scales. The
expression for the expectation values of currents on these mesoscopic scales, expressed
in terms of the charge densities and their derivatives at the same mesoscopic scales, and
combined with the conservation laws, is the basis for the hydrodynamic equation govern-
ing the macroscopic evolution. The Euler contribution to these current expectation values
gives the “leading order” of the mesoscopic scales, and diffusive contributions are obtained
at sub-leading order. Similar ideas are used in order to obtain the slow dynamics under
integrability breaking in homogeneous situations [12,13,54,63].

2.1 Diffusive hydrodynamics: constant fields

In order to illustrate the method, we start with a simpler problem where the external
fields are constant in space, where we will obtain the hydrodynamic equation including
diffusive effects to the second order in spatial derivatives. Under unitary Heisenberg time
evolution and with constant fields wi(x) = wi in the Hamiltonian, eq. (1.4), the conserved
quantities Qi of the system are all exactly conserved. Their densities therefore satisfy a
set of continuity equations (denoting with o(x, t) = eiHto(x)e−iHt, with H = wiQi)

∂tqi(x, t) + ∂xjw,i(x, t) = 0. (2.1)
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The basic ingredient of the hydrodynamic approach is the hydrodynamic state, which is

ρ̃t ∝ e−
´
dx βl(x,t)ql(x). (2.2)

The state at a given time is thus equivalent to its potentials βl(x, t), viewed as functions of
x, and hydrodynamics prescribes how to calculate the time-evolution of these potentials.
Note however that the potentials appearing in (2.2) are not exactly those appearing in
(1.9) and (1.21), with the two differing by first-order spatial derivative terms, see the
discussion at the end of this subsection.

Crucial to these results is the hydrodynamic approximation, which accounts for two
separate effects:

I. Separation into local fluid cells: at every mesoscopic time t0 and position x0, the fluid
can be represented by the following state:

ρ̃x0,t0 ∝ e−β
l(x0,t0)Ql−∂x0β

l(x0,t0)
´
dy (y−x0) ql(y), (2.3)

where the functions β(x, t) are exactly those appearing in (2.2). This expression is justified
if the state is sufficiently slowly varying in space, and correlations decay sufficiently rapidly
in space, as then an expectation value evaluated at some position x0 in the state (2.2) will
be approximately equal to that in the state (2.3).

II. Local relaxation: hydrodynamic averages o(x0, t0) in the fluid cell located at x0, t0 are
not defined by equating them to 〈o〉ρ̃x0,t0 ≡ Tr(oρ̃x0,t0), but instead, they are defined as the
value of this observable after relaxation has occurred within the state ρ̃x0,t0 describing the
fluid cell. Relaxation occurs at mesoscopic time scales tmeso; micro-, meso- and macroscopic
timescales, in the cell ρ̃x0,t0 , are informally separated as

tmicro � tmeso � minl([vmicro|∂x0βl(x0, t0)|]−1)≡ tmacro. (2.4)

Here the quantities tmicro, vmicro are some microscopic time and velocity depending on
the model. Averages of observables obtained after relaxation – “mesoscopic averages” –
are to be expressed as functions of the mesoscopic averages of conserved densities, which
are then identified with the hydrodynamical variables qi. In practise, the mesoscopic
averages are obtained by taking limits in the correct order: infinite macroscopic times
|∂x0βl(x0, t0)| ∼ 0, followed by infinite microscopic evolution time t→∞.

Utilising the hydrodynamic approximation, we can trivially write the conservation
equations as

∂t0qi(x0, t0) + ∂x0 lim
meso
〈jw,i(x0, tmeso)〉ρ̃x0,t0 = 0, (2.5)

which is the basis of our hydrodynamic equation. Here limmeso is defined in eq. (2.4) and
we have defined qi(x0, t0) = limmeso〈qi(x0, tmeso)〉ρ̃x0,t0 . The non-trivial task is to express
the mesoscopic average of the currents in terms of qi(x0, t0), which is the subject of the
remainder of this section. Note that point II is crucial in establishing the irreversibility
of the hydrodynamic equations based on (2.5). In practise, the evolution over mesoscopic
times at x0, t0 is obtained by linear response from the ramp state (2.3): first performing a
perturbation theory in ∂x0β

l(x0, t0), and then taking the infinite (microscopic) time limit.
Thus the general procedure for obtaining the hydrodynamic equations is the following:

〈o(x0, t0)〉ini

≈ lim
t→∞

[
〈o(x0, t)〉ρ̃x0,t0
expressing βl(x0, t0) as functions of q

(t)
i (x0, t0) := 〈qi(x0, t)〉ρ̃x0,t0 ,

expanding to first order in ∂x0β
l(x0, t0)

]
(2.6)
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Under linear response from a ramp initial state, many observables grow linearly in time
(such as currents of ballistically transported quantites). The fact that the long-time limit
in the second line of (2.6) exists and is finite as a function of qi(x0, t0) is nontrivial, and
must be ascertained by the explicit calculation.

Without loss of generality, it is sufficient to consider x0 = t0 = 0. As written, (2.3) is
sufficient to ascertain the diffusive hydrodynamics; neglecting the derivative term yields the
Euler hydrodynamics, and including further terms in the series expansion of the argument
of the exponential would yield higher derivative corrections to the hydrodynamic equation,
which may or may not be physically sensible.

We denote ρ̃ = ρ̃0,0 and compute expectation values of charges qi(0, t) and their cur-
rents jw,i(0, t) in the state ρ̃; throughout we expand to first order in ∂x0β

l(x0, 0)|x0=0 ≡
∂xβ

l. In the following, expectation values denoted 〈· · · 〉 are taken with respect to the

homogeneous stationary GGE state ρGGE ∝ e−β
l(0,0)Ql , in contrast with the case when

they are taken with respect to the inhomogeneous ramp-state ρ̃ as 〈· · · 〉ρ̃. We use the
following relation, valid for generic operators A and B

eA+εB = eA + ε

ˆ 1

0
dτeτABe(1−τ)A +O(ε2) (2.7)

in order to expand the expectation values of charges and currents to first order in the
derivatives, in terms of the KMB inner product (1.12). This gives, using the notation
introduced in eq. (1.11),

〈qi(0, tw)〉ρ̃ = 〈qi〉 − ∂xβkK[qk; qi], (2.8)

〈jw,i(0, tw)〉ρ̃ = 〈jw,i〉 − ∂xβkK[qk; jw,i], (2.9)

with the following expression for integrated correlation functions on a homogenous, sta-
tionary state:

K[qk; o] =

ˆ
dy y (qk(y), o(0, tw))

=
1

2

ˆ
dy y

ˆ t

−t
ds ∂s(qk(y), o(0, sw))

= −1

2

ˆ
dy

ˆ t

−t
ds (jw;k(y, sw), o(0, 0)), (2.10)

where we used PT symmetry, and stationarity of the state and the conservation equation,
to introduce the s-integral, and current jw,k, respectively.

As per (2.6), we now need to express βk in terms of q
(t)
i = 〈qi(0, t)〉ρ̃ and take the limit

t→∞. This is obtained from (2.8), where the right hand side is considered as a function
of βk and ∂xβ

k, and using (2.10) we have:

〈qi〉 = q
(t)
i + ∂xβ

kK[qk, qi] = q
(t)
i − t ∂xβk(Jw,k, qi). (2.11)

Note that the second term on the right-hand side is small, as t|∂xβk| � v−1
micro. Consider

Eq. (2.9), where generally 〈jw,i〉[〈q〉] is known from the thermodynamics, and thus we

utilise this by changing variable to q
(t)
i within the same function. Eq. (2.11) then implies:

〈jw,i〉 ≡ 〈jw,i〉[〈q〉] = 〈jw,i〉[q(t)]− t ∂xβk
δ〈jw,i〉
δ〈ql〉

(Jw,k, ql) + . . . , (2.12)
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and therefore (2.9) can be expressed as:

〈jw,i(0, tw)〉ρ̃ = jw,i +
∂xβ

k

2

ˆ
dy

ˆ t

−t
ds (jw,k(y, sw), jw,i(0, 0)− δ〈jw,i〉

δ〈ql〉
ql(0, 0))

= jw,i +
∂xβ

k

2

ˆ
dy

ˆ t

−t
ds (jw,k(y, sw), jw,i)

C . (2.13)

where in the first line we used the definition (1.21), in the second, the chain rule for
differentiation and the projection formula (1.15). Taking the limit t → ∞, this returns
the hydrodynamic equation in the absence of external forces:

∂tqi + ∂x

(
jw,i +

1

2
L[w, ∂xβ; jw,i]

)
= 0 (2.14)

Two subtleties need to be clarified in the obtaining of this hydrodynamic equation in the
final step.

First, in (2.13), the Euler-scale current jw,i is evaluated within a GGE characterised
by the qi’s, while the KMB inner product (·, ·) is evaluated within the GGE determined
by β(0, 0). These are different GGE’s, expectation values of charge densities within the
GGE with potentials β(0, 0) are 〈qi〉 6= qi; the correction term on the right-hand side
of (2.11) means that qi can be written as a GGE average of charge densities by the
expected bijectivity between potentials and charge densities, but with different associated
thermodynamic potentials as per (1.9), say βhydro(0, 0). But the difference is first-order
in derivatives, and hence in (2.13) we can use βhydro(0, 0) for the KMB inner product, the
error being second-order in derivatives.

Second, in (2.13), ∂xβ is the slope of the ramp in the density matrix ρ̃. We must equate
the slope ∂xβ with the corresponding macroscopic spatial derivative ∂x0β

hydro(x0, 0)|x0=0,
connecting neighbouring fluid cells. This can be done using (2.11), written for arbitrary
x0, and taking the derivative ∂x0 . As t∂xβ

k � v−1
micro, the correction term is one derivative

order smaller, and thus again to leading order ∂xβ = ∂x0β
hydro(x0, 0)|x0=0, which is suffi-

cient in (2.13). With this identification, the results of section 1 are technically expressed
in terms of βhydro rather than the potentials introduced in (2.2), as these form the most
convenient basis to describe the evolution.

2.2 Diffusive hydrodynamics: inhomogeneous fields

We now turn our attention again to spatially modulated fields wi(x) in the Hamiltonian
(1.4). As we did for the state above, we can also expand the Hamiltonian locally around
any point x0 as

H = wi(x0)Qi − fi(x0)

ˆ
dx (x− x0)qi(x) + . . . , (2.15)

providing similar conditions hold. As we are interested in a hydrodynamic theory up to
second derivatives, it is in principle necessary to also include the second order term this
expression. However imposing PT symmetry for all densities qi(x) leads such contributions
to the hydrodynamic equations to vanish, see appendix B.

The continuity equation for the charge and current density operators now has an extra
contribution, due to the new term in the Hamiltonian, and reads

∂tqi(x, t) = −∂xjw,i(x, t) + ji,f(x, t) + . . . , (2.16)
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where we have used the result [9] (a higher-dimensional generalisation is shown in [30]):

i [qk(y), qi(x)] = ∂xjk,i(x)δ(y−x)+(jk,i(x)+ji,k(x))δ′(y−x)+(higher derivatives) . (2.17)

It should be noted that now [H,Qi] 6= 0, but, as mentioned, in the hydrodynamic
framework, the full set of charges for the homogeneous part of (2.15) is to be considered,
as the correction is most aptly treated through a separation of scales. This means that we
assume that the typical scale of spatial modulation of the external fields, `f = mini(|fi|−1),
must be large enough. As mentioned, `f naturally determines the scale of spatial modula-
tion of the local fluid state, hence we expect to have, at all large enough times, ` ≈ `f, and
the result of the hydrodynamic framework is an equation valid up to, and including, order
`−2 ≈ `−2

f . The physical interpretation is that the correction generates a fast dynamics to
a local hydrodynamic state as eq. (1.9) on mesoscopic times, and the effect on the state
due to the perturbations can be evaluated by perturbation theory in the interaction pic-
ture. Again, as in our discussion of the case without external forces, taking the long-time
limit in the perturbation theory amounts to taking a mesoscopic time scale and accounting
for local relaxation,

tmicro � tmeso � minl,x0((vmicro|∂x0βl(x0, t0)|)−1, (vmicro|fl(x0)|)−1). (2.18)

Once the average currents have been obtained in fluid cells after mesoscopic times, we
insert them into (2.16) in order to obtain the final hydrodynamic equation.

We employ perturbation theory to first order in the perturbation strength, fi(0), as
higher orders contain higher spatial derivatives and powers thereof. Under the full time
evolution generated by H eq. (2.15), we find, for a generic local operator o(x, t) =
eiHto(x)e−iHt at position x = 0,

o(0, t) = o(0, tw)− i

ˆ t

0
ds

ˆ
dx x fi(0) [qi(x, sw), o(0, tw)] + . . . , (2.19)

where, as before, we denoted operators evolved with respect to the portion of the Hamil-
tonian with flat fields in eq. (2.15) by means of the time arguments tw, as in eq. (1.11).
A single time argument refers still to the real time under the full evolution. The hy-
drodynamic expansion of the previous section in the presence of these new terms now
reads

〈qi(0, t)〉ρ̃ = 〈qi〉 − (∂xβ
k)K[qk; qi]− fkK[qk; qi], (2.20)

〈jw,i(0, t)〉ρ̃ = 〈jw,i〉 − (∂xβ
k)K[qk; jw,i]− fkK[qk; jw,i], (2.21)

〈ji,f(0, t)〉ρ̃ = 〈ji,f〉 − (∂xβ
k)K[qk; ji,f]− fkK[qk; ji,f], (2.22)

where K[a; b] is defined in (2.10), and we define the integrated correlation functions of the
commutators as

K[a; b] = i

ˆ t

0
ds

ˆ
dy y 〈[a(y, sw), b(0, tw)]〉. (2.23)

We now invoke hydrodynamic separation of scales as in the previous section with
homogeneous Hamiltonians, assuming that the space-time dependence of the system is
contained entirely in the potentials βk(x, t), which vary slowly in space and time. Here,
this consists of taking the infinite time limit of Eqs. (2.20) - (2.22), which describe the
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slow drift in the values of the charges after relaxation under the homogenous-breaking
perturbation has occurred, where we again assume that the limit is approximately reached
at timescales much shorter than the timescales of hydrodynamic evolution. Proceeding
analogously to the previous section, and taking the infinite time limit in eq. (2.23) we
obtain the following diffusive equation

∂tqi + ∂x

[
jw,i +

1

2
L[w, ∂xβ; jw,i]−

1

2
F[f, jw,i]

]
= ji,f +

1

2
L[w, ∂xβ; ji;f]−

1

2
F[f, ji;f],

(2.24)

with the new integrated correlator defined as by

F[f, o] = i

ˆ ∞
−∞

ds

ˆ
dy y fk〈[qk(y,ws), o(0, 0)− ∂〈o〉

∂〈qi〉
qi(0, 0)]〉, (2.25)

where again we have used PT symmetry in order to symmetrise the integral over time.
Here, the state 〈· · ·〉 is the GGE at the fluid cell (x, t).

The latter quantity can be rewritten in terms of the usual Onsager coefficients by
employing the Kubo–Martin–Schwinger (KMS) relation [30,64]. This allows us to rewrite
the expectation value of the commutator in any homogeneous, stationary GGE as

〈[qk(y, sw), o(0, 0)]〉 =− i

ˆ 1

0
dλβl∂y〈jl,k(y, sw − iλβ)o(0, 0)〉

=− i ∂y(jβ,k(y, sw), o(0, 0)). (2.26)

Note that the spatial derivative along with homogeneity of the state allows us to introduce
the connected correlation function. Therefore we have, integrating by parts over y in
(2.25),

F[f, o] = −L[β, f; o], (2.27)

which finally gives our main result (1.20).

3 Integrable systems: quasiparticle expression and lower
bounds for Onsager coefficient

In integrable systems, the local GGE state is most conveniently characterised by the Bethe
rapidities θ, whose distribution function (root density) in the fluid cell located at (x, t) is
denoted ρp(θ;x, t). This object specifies the density of quasiparticles with rapidity θ at
position (x, t), and is related to the hydrodynamic variables by

qi(x, t) =

ˆ
dθρp(θ;x, t)hi(θ), (3.1)

where hi(θ) are the single-particle eigenvalues of the charges Qi. With a sufficiently
complete set of charges, it is possible to invert this expression, so there is a bijection
between the root density and the expectation values of the charges. We now introduce the
dressing operation on functions defined over R. The action of a linear integral operator
is:

A · h :=

ˆ
dαA(θ, α)h(α), h ·A :=

ˆ
dαh(α)A(α, θ), (3.2)

with which we can define the dressed function

hdr = (1− Tn)−1 · h, (3.3)
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where [Tn](θ, α) = T (θ, α)n(α). Here T is the scattering shift of the model, which is
independent of the state and taken to be symmetric T (θ, α) = T (α, θ). The filling function
is n = 2πρp/(p

′)dr, where p(θ) is the eigenvalue of the momentum operator. In the
following we shall denote (p′)dr = k′.

The main task is to compute the hitherto unknown expressions for the extended On-
sager matrices L[a, b; jc,d] defined by (1.13). In integrable models these can be computed
exactly whenever at least one of the currents ja,b or jc,d project entirely on the space
spanned by linear and quadratic fluctuations of the local conserved densities [65,66]. This is
argued to be the case if a = w or c = w, as, after hydrodynamic reduction, currents of the
type jw,b lie in the hydrodynamic subspace that is invariant under higher flows, which is ar-
gued to be spanned by quadratic charges [63,66]. In this case, the only contributions to dif-
fusion are given by two-body scattering amongst quasiparticles: the two particle-hole con-
tribution in the expansion over intermediate states L[a, b; jc,d] = L2−ph[a, b; jc,d] [67–70].
The idea that such two-body processes are responsible for diffusion in integrable mod-
els first appeared before the advent of GHD in [71]. We compute the two particle-hole
contribution analogously to Ref. [72] via a form-factor expansion, see appendix A.

However, currents of the type ja,b for a 6= w do not entirely overlap with the space of
linear and quadratic fluctuations. Therefore, while three of the four Onsager coefficients
in (1.20) are fully given by their two particle-hole contributions, the coefficient L[β, f; ji,f]
is not, see appendix A for more details. Nevertheless, the lower bound L ≥ L2−ph for
the extended Onsager matrix (1.16) follows from the hydrodynamic projection mechanism
and the identification of the two particle-hole contribution with the projection onto the
quadratic space [65,66].

Our results read

L[w, ∂xβ; jw,i] = hi ·DC · ∂x(βkhk), (3.4)

L[β, f; jw,i] = hi ·DfC · ∂θ(βkhk), (3.5)

L[w, ∂xβ; ji,f] = ∂θhi ·DfC · ∂x(βkhk), (3.6)

L[β, f; ji,f] = ∂θhi ·Df2C · ∂θ(βkhk). (3.7)

The kernels in these equations are defined below. All kernels can be written in terms of the
full effective velocity given by the dynamics of the system Hamiltonian (1.4) at position
x, namely

veff
w (θ;x, t) =

wi(x)(h′i)
dr(θ;x, t)

k′(θ;x, t)
, (3.8)

and of the effective acceleration [9],

aeff
f (θ;x, t) =

fi(x)(hi)
dr(θ;x, t)

k′(θ;x, t)
. (3.9)

The kernels in rapidity space are given by

DC = (1− nT )−1 · δθ1,θ2
´
dακD(θ1, α)− κD(θ1, θ2)

k′(θ1)k′(θ2)
· (1− Tn)−1, (3.10)

and similarly for Df, Df2 with different functions κDf
, κDf2

, where the susceptibility kernel
is given by

C = (1− nT )−1 · ρpf · (1− Tn)−1, (3.11)

with the function f(θ) incorporating the statistics of quasiparticles (see for example the
review [70]). Notice that ρpf or its inverse denote the diagonal operator ρp(θ)f(θ)δ(θ−α).
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The function κD is defined as (neglecting the x, t dependence)

κD(θ1, θ2) = k′(θ1)k′(θ2)n(θ1)f(θ1)n(θ2)f(θ2)(T dr(θ1, θ2))2|veff
w (θ1)− veff

w (θ2)|, (3.12)

and the others are defined by including ratios of effective velocity and acceleration differ-
ences

κDf
(θ1, θ2) =

aeff
f (θ1)− aeff

f (θ2)

veff
w (θ1)− veff

w (θ2)
× κD(θ1, θ2) (3.13)

κDf2
(θ1, θ2)

2−ph
=

(
aeff
f (θ1)− aeff

f (θ2)

veff
w (θ1)− veff

w (θ2)

)2

× κD(θ1, θ2). (3.14)

The general multi-linear expression (A.12) for the Onsager coefficient makes it clear
that in thermal states (1.37), stationarity occurs, with the following cancellation:

Lthermal[w, ∂xβ; jw,i] + Lthermal[β, f; jw,i] = 0, (3.15)

Lthermal[w, ∂xβ; ji,f] + Lthermal
2−ph [β, f; ji,f] = 0. (3.16)

Ultra-local quantities, which have an arbitrary chemical potential in the thermal states,
correspond in the quasi-particle basis to quantities Q0 for which h0(θ) = a constant. It is
possible to use the following relations

∂x(βihi) = −(1− Tn) · ∂xn

nf(n)
, (3.17)

∂θ(β
ihi) = −(1− Tn) · ∂θn

nf(n)
. (3.18)

to verify that expressions (3.4)-(3.7) do satisfy the above cancellations in a thermal state:
In thermal states, the occupation number satisfies the following relations:

∂θn
thermal = −βnfveff

w k
′, ∂xn

thermal = βnfaeff
f k
′ (3.19)

which, together with ∂xβ
i = −βfi in the thermal state, implies the above cancellation

between the sum of the Onsager coefficients.
We are now in a position to write Eq. (1.20) for quasiparticles, using the relation

δn = n
ρp

(1 − nT )δρp, where δ is a variation with respect to the rapidity or the spatial
argument. We use this to obtain the following hydrodynamic equation

∂tρp =
(
∂x ∂θ

)
·
[1

2

(
D Df

Df Df2

)
·
(
∂xρp

∂θρp

)
−
(
veff
w ρp

aeff
f ρp

)]
, (3.20)

where we have used the known results for the Euler currents [7, 9, 57,73–75]

jw,i(x, t) =

ˆ
dθ ρp(θ;x, t)veff

w (θ;x, t)hi(θ), (3.21)

ji,f(x, t) =

ˆ
dθ ρp(θ;x, t)aeff

f (θ;x, t)h′i(θ). (3.22)

A notable consequence of eq. (3.20) is that motion of the fluid due to inhomogeneities in
the state always corresponds to spatial derivatives, while the effect of the external forces is
contained in rapidity derivatives. Therefore eq. (3.20) describes convective and diffusive
motions for the quasiparticles, equally in the physical and quasi-momentum coordinate
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of the fluid. In particular the kernel Df2 can be understood as the effective diffusion
constant of the quasiparticles in momentum space. The presence of the latter is directly
an effect of breaking the underlying integrability of the system, by means of the forces
fi, and proportional to the square of the force strength, similarly to Fermi’s golden rule
terms in homogeneous settings [13, 54, 63]. We stress that our analytical expression for
Df2 , given in terms of the function (3.14), constitutes generically only a lower bound for
such effective diffusion constant, where only two-body scatterings processes are taken into
account. Higher particle scattering processes, can indeed non-trivially contribute to this
kernel, nevertheless the form (3.7) is expected to hold at all orders.

As the analysis here is conducted for integrable systems with only one quasiparticle
type, the extension to systems with multiple species is easily done by replacing the rapidity
θ with the global index (θ, s), and inserting a sum over particle species to accompany each
rapidity integral.

It is easy to check that the total density of quasiparticles N and the total energy
E = 〈H〉 are conserved quantities of motion. We have

∂tN =

ˆ
dθ

ˆ
dx ∂tρp(θ;x, t) = 0 (3.23)

by the structure of derivatives in the equation. Regarding the total energy

∂tE =

ˆ
dθ

ˆ
dx hi(θ)w

i(x) ∂tρp(θ;x, t) (3.24)

it is already established that the convective terms ∂x
(
veff
w ρp

)
+ ∂θ

(
aeff
f ρp

)
in eq. (3.20)

conserve total energy, [9] while for the diffusive terms we have, after integration by parts

∂tE =
1

2

ˆ
dx

ˆ
dθ
[
fihi ·D · ∂xρp + fihi ·Df · ∂θρp

− wih′i ·Df · ∂xρp − wih′i ·Df2 · ∂θρp

]
= 0, (3.25)

as by their definitions, eq. (3.10) together with eq. (3.13), (3.14), we have

fihi ·D = wih′i ·Df, (3.26)

fihi ·Df = wih′i ·Df2 . (3.27)

The positive entropy increase (1.28) can also be written explicitly in the quasiparticle basis
by projecting it into the two particle-hole sector. Denoting ∆xn = (1 − Tn) · ∂xn

nf(n) and

∆θn = (1 − Tn) · ∂θn
nf(n) , the entropy increase can be written as a quadratic 2-by-2 block

quadratic form:

∂tS =
1

2

(
∆xn ∆θn

)
·
(
DC DfC
DfC Df2C

)
·
(

∆xn
∆θn

)
. (3.28)

Note that both DC and Df2C are positive semi-definite operators, as is the full matrix of
operators on the right-hand side of (3.28). As our explicit expression for Df2C is a lower
bound, substituting it into eq. (3.28) provides a lower bound for entropy production.
However, such a lower bound still ensures positive entropy production and vanishing of
entropy generation on thermal states, as it can be easily verified using eq. (3.19).
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4 Thermalisation in the Toda gas

4.1 Thermodynamics

The most immediate consequence of the formalism derived in the previous sections, is that
integrable systems perturbed by couplings to the local charge densities thermalise in the
diffusive regime. This is a prediction accessible by molecular dynamics simulations of clas-
sical systems. We choose as an example the integrable Toda system, whose Hamiltonian
in the presence of an external field coupling to the energy can be written

H =

N∑
i=1

V (xi)

2

(
p2
i + e−(xi+1−xi) + e−(xi−xi−1)

)
, (4.1)

where we have absorbed the effect of the external potential into a single prefactor V (xi).
In fact, in the integrable Toda system there are two complementary interpretations, whose
notions of space differ. In the first case, which we consider here, the Hamiltonian (4.1)
is viewed as describing a gas of particles with position xi, which is however not invariant
under permutations of these coordinates. In this case the physical space is parameterised
by the xi, and the choice of external field in (4.1) reflects our consideration of the gas
picture. In the complementary chain picture, the physical space is parameterized by the
index i, and we would have instead a potential Vi. Nevertheless, the two systems are
expected to be thermodynamically equivalent, and while the dynamics of the two systems
will differ in the presence of external fields, we expect that our general results will apply
to both, with the suitable definition of physical space. See [76] for a detailed discussion of
the relationship between the gas and chain pictures.

We will take periodic boundary conditions xN+1 = x1 +L and x0 = xN −L; in the ab-
sence of the external field such that V (xi) = 1, the system with these boundary conditions
is integrable. The full thermodynamics of the integrable system were recently elucidated
in [77, 78] for the open system, following earlier analysis of the thermal states (see the
review [79] and references therein). The dynamics of the open system are unbounded,
however one can bound the dynamics by introducing a pressure term, which under the
equivalence of ensembles is expected to provide equivalent results to the periodic system.
We define the variable R = xN − x1 which is approximately L in the periodic case due to
energetic considerations, as long as L ∼ N , which we shall impose. The dynamics of the
integrable Toda system in various contexts have recently been studied both analytically
within the context of Euler-GHD and numerically [20,80–82].

In order to make the connection between the numerical results and the analytical
predictions, we define numerical ‘fluid cells’ of width w � L/N , and compare the average
values of observables within these cells in the stationary state to those in the state defined
by the maximal entropy condition (1.36). This process is simplified by the fact that, in
the thermal state, the thermodynamics of the Toda gas can be solved explicitly. In the
Toda gas, there are two convenient ensembles which can be used, the Gibbs ensemble in
which N is fixed and R is fluctuating, and the Landau ensemble in which R is fixed and
N fluctuates. In the simulation procedure, the bins are of fixed width, and therefore the
latter ensemble is the relevant one, although it is convenient to first evaluate the former,
in order to express the thermodynamics in the latter. Introducing the pressure P and the
chemical potential µ, we have

ZGibbs =

ˆ N∏
i=1

dxidpi exp

(−βp2
i

2

)
exp

(
−βe−(xi+1−xi) − P (xi+1 − xi)

)
∼ e−Ng, (4.2)
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Figure 2: Numerical value of and LDA predictions for the energy density and number
density of the stationary state. In this figure N = 1000.

ZLandau =

∞∑
N=1

eµN
ˆ N∏

i=1

dxidpi exp

(−βp2
i

2

)
exp

(
−βe−(xi+1−xi)

)
δ(xN − x1 −R) ∼ e−Rf .

(4.3)

The thermodynamics in the Gibbs ensemble is found to be

ε(P, β) =
〈H〉
N

=
2P + 1

2β
, ν(P, β) =

〈R〉
N

= log(β)− ∂PΓ(P ). (4.4)

We relate the two ensembles using [76]:

f(µ, β) + P =
g(P, β)− µ

ν
, (4.5)

where the ensembles are chosen such that the density ν−1 is the same in both, where in
the Landau ensemble ν = R/〈N〉. This allows the calculation of expectation values in the
Landau ensemble, and thus to compare the LDA state predictions against the numerical
results. There is a subtlety when comparing with the numerics, arising from the fact that
R is not necessarily positive under the dynamics, or in the thermodynamics. If this occurs,
then matching the thermodynamics as calculated through bins of fixed width becomes ill-
defined. Therefore the initial state is chosen such that R > 0 for every sufficiently large
subset of particles in the gas for all times.

4.2 Numerical Results

By implementing a molecular dynamics solver for the Toda system with Hamiltonian
(4.1), we can show that the thermal LDA state (1.37) is indeed approximately reached at
diffusive timescales. We take the periodic potential V (x) = 2.5 + sin(2πx/L), where the
periodicity of the potential is equal to the periodicity of the Toda gas. We take N = L
throughout, with N = 1000 in Figs. 2 and 3, and N = 500 in Figs. 4 and 5, where more
realisations are needed to obtain relatively smooth plots2. Finally we take 50 fluid cells in
both cases. The energy density 〈H〉/N and density ν−1 are constant across initial states,
with values of 1.26 and 1 respectively.

2The required simulation length scales ∼ N3, N with the number of particles, and a further factor N2

associated to the simulation time required to access diffusive timescales, assuming the system is held at
constant density.
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Figure 3: Convergence of the global temperature β−1
0 = N−1

∑N
i=1 V (xi)p

2
i , which is

equal to the thermodynamic quantity by equipartition, to the LDA value. In this figure
N = 1000.
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Figure 4: Convergence of the density and energy density near the trough of the potential
to the LDA prediction. In this figure N = 500.
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Figure 5: Position independence of the temperature β−1
0 , defined within a region as β−1

0 =

N−1
∑N

i=1 V (xi)p
2
i . Shown is (L) the convergence to the LDA value for 0 < x ≤ L/2 and

(R) for L/2 < x ≤ L, with the same average values being obtained at late times in both
regions. In this figure N = 500.

22



In all the figures there are periodic oscillations of observables. By running the simu-
lations without the external energy field, that is, for the usual Toda gas, it was verified
that this is the period related to the periodic boundary conditions. In Fig. 5, the two
graphs have distinct frequencies, around the trough of the potential the dominant pe-
riod is τ ∼ 300, and around the peak of the potential the dominant period is, to a good
approximation, τ/2. Comparing the predictions of the LDA state with the averages of
the numerical data, we see a good agreement, to less than 5% errors, of all measured
quantities.

We note finally that a more complete evaluation of the descriptive powers of our
formalism is available. The equations of section 3 can be applied to the Toda gas by taking
the statistical factor to be f(θ) = 1, and the scattering shift as T (θ, α) = 2 log |θ−α|. We
leave this task for a future publication.

5 Conclusion

We have introduced a fully general formalism for the hydrodynamics of a Hamiltonian
system with generic inhomogeneous force fields, including terms to second order in spatial
derivatives. The resulting hydrodynamic equation is fully expressed in terms of Euler cur-
rents and extended Onsager coefficients, which provide the net entropy increase, shown to
be always non-negative. While our hydrodynamic equation applies to any inhomogeneous
deformed Hamiltonian constructed from PT-symmetric densities of conserved quantities
in involution, in the particular case of integrable systems we showed that expressions for
the extended Onsager coefficients may be obtained by a form factor expansion, and we
obtained explicit expressions at the two particle-hole order, which are valid at low density
of excitations. We have thereby extended the equations of generalised Hydrodynamics
to include generic force fields and dissipative terms. The equation has thermal states as
the only stationary states and positive entropy increase, showing how second order terms
in the hydrodynamics, namely diffusive processes in real and quasi-momenta space are
responsible for the thermalisation of the system. This confirms and generalises our previ-
ous result for the one dimensional Bose-gas in a generic trapping potential [10]. We have
confirmed the final thermalisation of an integrable classical system, a Toda chain under
an inhomogeneous energy field representing the effect of an inhomogeneous Hamiltonian.

Several extension and open questions are in reach. First the lower bound for the
diffusion constant Df2C we found should be tested against numerical predictions to check
its validity. It is reasonable to expect that its corrections are subleading at low density
of excitations and in weakly interacting limits [63,83]. In these regimes the final equation
(3.20) can be applied straightforwardly to describe the effect of external magnetic and
electric fields in lattice systems as the XXZ spin-1/2 chain and the Fermi Hubbard chain,
where interesting non-equilibrium phenomena can be observed [84,85]. Moreover it will be
important to clarify the role of diffusion in quasi-momentum space for the quasi-particles.
The recent years have brought up different classes of non-diffusive transport in real space
for integrable or quasi-integrable spin chains, related to the KPZ universality class, see
[14,86–90]. Similar forms of super-diffusion could be found in the quasi-momentum θ space,
in particular in those cases where the kernel Df2 can diverge. Finally, the techniques we
have used are clearly generalisable to higher-order hydrodynamics, which is thought to be
meaningful at least in integrable systems. We shall investigate these exciting questions in
the near future.
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A Computation of the Onsager coefficients

Onsager coefficients in integrable models can be analytically computed by expanding over
intermediate quasiparticle excitations, written in terms of particle-hole intermediate states.
This corresponds to hydrodynamic projections of each current on the space of normal
modes and their quadratic fluctuations, which has been shown to provide generically a
lower bound for the Onsager coefficients [66]. However, whenever at least one of the two
currents in the Onsager coefficient is generated by the the homogeneous Hamiltonian,
wiQi, flow, the lower bound is saturated and the two-particle hole contribution provides
the full Onsager coefficient (while the one particle-hole contribution gives the subtracted
ballistic part [70]). We shall here write the calculation for such contribution for generic
currents

L[i, j; jk,l] = lim
t→∞

ˆ t

−t
ds(Ji,j(y, sw), jk,l(0, 0))C =

∞∑
n=2

Ln−ph[i, j; jk,l]

=
(2π)2

2!2
lim
t→∞

ˆ
dθ−1 dθ−2 ρp(θ−1 )ρp(θ−2 )

 
dθ+

1 dθ+
2 ρh(θ+

1 )ρh(θ+
2 )

× δ(k)δt(εw)〈ρp|ji,j |θ+
1 , θ

+
2 , θ

−
1 , θ

−
2 〉〈θ+

1 , θ
+
2 , θ

−
1 , θ

−
2 |jk,l|ρp〉+ . . . , (A.1)

where the integration
ffl

denotes Hadamard regularisation, see for example [91], due to
the singularities in the integrand. In particular we shall use the matrix elements of the
generalised current operators

〈ρp|jk,i|{θ•p, θ•h}〉 = hDr
k ({θ•p, θ•h})fi({θ•p, θ•h}). (A.2)

The function hDr
k is the eigenvalue of the k-th charge dressed by the shift function on the

background given by ρp, see for example [72], and the function fi is known and given
by [72]

fi({θ•p, θ•h}) =

(
T dr(θ−2 , θ

−
1 )hdr

i (θ−2 )

k′(θ−1 )k′(θ−2 )(θ+
1 − θ−1 )

+
T dr(θ−1 , θ

−
2 )hdr

i (θ−1 )

k′(θ−2 )k′(θ−1 )(θ+
2 − θ−2 )

+
T dr(θ−2 , θ

−
1 )hdr

i (θ−2 )

k′(θ−1 )k′(θ−2 )(θ+
2 − θ−1 )

+
T dr(θ−1 , θ

−
2 )hdr

i (θ−1 )

k′(θ−2 )k′(θ−1 )(θ+
1 − θ−2 )

+ (. . . )

)
, (A.3)

with corrections (. . . ) given by finite elements in the limit of one of the particles θ+
i

approaching the value of one of the holes θ−j . Notice that the energy constraint need
particular care. We reguralise it as follows

ˆ t

−t
ds eisε =

sin(tε)

πε
= δt(ε). (A.4)

We proceed analogously to the standard case. Due to the two delta functions, the integral
is around particle and holes having the same values. We therefore expand over small

24



∆i = θ+
i −θ−i (and its permutation, accounting for an additional factor 2 to the integrated

correlator), obtaining

k = k′(θ1)∆1 + k′(θ2)∆2 + . . . , (A.5)

εw = veff
w (θ1)k′(θ1)∆1 + veff

w (θ2)k′(θ2)∆2 + . . . , (A.6)

hDr
k = (h′k)

dr(θ1)∆1 + (h′k)
dr(θ2)∆2 + . . . . (A.7)

The integration over ∆2 can be done using δ(k), which set ∆2 = −∆1k
′(θ1)/k′(θ2), which

gives

L2−ph[i, j; jk,l]

=
1

2
lim
t→∞

ˆ
dθ1

ˆ
dθ2

 
d∆1

k′(θ1)n(θ1)f(θ1 + ∆1)k′(θ2)n(θ2)f(θ2 − k′(θ1)/k′(θ2)∆1)(T dr(θ1, θ2))2

× δt(∆1k
′(θ1)(veff

w (θ1)− veff
w (θ2)))k′(θ1)(veff

i (θ1)− veff
i (θ2))(veff

k (θ1)− veff
k (θ2))

×
(
hdr
j (θ1)

k′(θ1)
−
hdr
j (θ2)

k′(θ2)

)(
hdr
l (θ1)

k′(θ1)
− hdr

l (θ2)

k′(θ2)

)
, (A.8)

where veff
i (θ) = (h′i)

dr(θ)/k′(θ). The limit t → ∞ can now be taken, excluding the zero-
measure set of points where (veff

w (θ1)− veff
w (θ2)) = 0. Then ∆1 can be integrated with the

δ(εw), which produces the Jacobian factor |k′(θ1)(veff
w (θ1)− veff

w (θ2))|. We then obtain

L2−ph[i, j; jk,l]

=
1

2

ˆ
dθ1

ˆ
dθ2k

′(θ1)n(θ1)f(θ1)k′(θ2)n(θ2)f(θ2)(T dr(θ1, θ2))2

× (veff
i (θ1)− veff

i (θ2))(veff
k (θ1)− veff

k (θ2))

|veff
w (θ1)− veff

w (θ2)|

×
(
hdr
j (θ1)

k′(θ1)
−
hdr
j (θ2)

k′(θ2)

)(
hdr
l (θ1)

k′(θ1)
− hdr

l (θ2)

k′(θ2)

)
. (A.9)

To recover the results in the main text it should be used also

βiveff
i (θ) = −n′(θ)/(f(θ)n(θ)k′(θ)), (A.10)

and

wiveff
i (θ) = veff

w (θ). (A.11)

One may also write an expression of the two particle-hole contribution to the generalised
Onsager coefficient, in terms of the kernel (3.12), in the explicitly multilinear form

L2−ph[a, b; jc,d]

=
1

2

ˆ
dθ1

ˆ
dθ2 κD(θ1, θ2)

∆veff
a (θ1, θ2)∆veff

c (θ1, θ2)∆aeff
b (θ1, θ2)∆aeff

d (θ1, θ2)

(∆veff
w (θ1, θ2))2

, (A.12)

where

∆veff
a (θ1, θ2) = veff

a (θ1)− veff
a (θ2), ∆aeff

a (θ1, θ2) = aeff
a (θ1)− aeff

a (θ2). (A.13)
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By appropriately separating the integral kernel from the external functions, one imme-

diately obtains (3.4)-(3.7). Higher particle-hole contribution
[
L[a, b; jc,d]

]
n>2−ph

vanish

whenever at least one of the form-factor is proportional to the Hamiltonian energy εw,
namely for current induced by Hamiltonian flow, due to the energy conservation δ(εw),
which gives a finite contribution only for the the two-particle hole contribution, together
with momentum conservation. However the case a = β and c = i evades this case. There-
fore the full sum over generic number of particle-hole excitations in this case remains

L[β, f; ji,f] = L2−ph[β, f; ji,f] +
∑
n≥3

Ln−ph[β, f; ji,f]. (A.14)

As the sum over n > 2 particle-hole contribution is currently out-of-reach, we shall here
only provide the n = 2 contribution, which constitutes a finite lower bound to the Onsager
coefficient L[β, f; ji,f]. Such higher particle-hole contribution will not affect total energy
conservation, see eq. (3.27) and the positiviness of the entropy increase.

B PT symmetry and perturbation theory

To include all terms up to second derivative order in the hydrodynamic equation in the
presence of inhomogeneous external fields, we must in principle also include the following
term in the Hamiltonian (2.15)

H(2) = −∂x0f
i(x0)

2

ˆ
dx (x− x0)2 qi(x). (B.1)

However, in systems with PT symmetry the contribution to the hydrodynamics from
this term vanishes. Taking expectation values with respect to the local homogeneous,
PT invariant states (neither perturbation theory nor inhomogeneity of the state need be
considered as we are already at highest order in derivatives), we find

〈[H(2), qi(x0)]〉 =− ∂x0f
k(x0)

2

ˆ
dx (x− x0)2〈[qk(x), qi(x0)]〉

=
∂x0f

k(x0)

2

ˆ
dxx2〈[qk(x), qi]〉∗

=
∂x0f

k(x0)

2

ˆ
dxx2〈PT ([qk(x), qi])〉

=
∂x0f

k(x0)

2

ˆ
dxx2〈[qk(−x), qi]〉

=
∂x0f

k(x0)

2

ˆ
dxx2〈[qk(x), qi]〉, (B.2)

which implies
〈[H(2), qi(x0)]〉 = 0. (B.3)

We therefore conclude that terms proportional to ∂x0f
i(x0) only can appear at 3-th order

in spatial derivatives, within the hydrodynamic gradient expansion.
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