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Abstract. Positron emission particle tracking (PEPT) is a technique which allows

the high-resolution, three-dimensional imaging of particulate and multiphase systems,

including systems which are large, dense, and/or optically opaque, and thus difficult

to study using other methodologies. In this work, we bring together researchers

from the world’s foremost PEPT facilities not only to give a balanced and detailed

overview and review of the technique but, for the first time, provide a rigorous, direct,

quantitative assessment of the relative strengths and weaknesses of all contemporary

PEPT methodologies. We provide detailed explanations of the methodologies explored,
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including also interactive code examples allowing the reader to actively explore, edit

and apply the algorithms discussed. The suite of benchmarking tests performed and

described within the document is made available in an open-source repository for future

researchers.

Keywords: Positron emission particle tracking, PEPT, positron imaging, nuclear

imaging, biomedical imaging, granular materials, particulate media, multiphase systems

Submitted to: Rep. Prog. Phys.
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1. Introduction

Positron Emission Particle Tracking (PEPT) is a nuclear imaging technique widely

used in a range of scientific disciplines, including physics [1–4], chemical, mechanical,

nuclear and civil engineering [5–10], and more recently the biomedical field [11–13].

PEPT allows the fully-three-dimensional tracking of one or more ‘tracer particles ’ as

they move through a given system. By using highly-penetrating 511 keV gamma rays,

the interior dynamics of even large, dense, optically opaque systems may be viewed

with high temporal and spatial resolution [14]. PEPT was originally developed at

the University of Birmingham in the late 1980s [15, 16] and, despite extensive use in

diverse applications, for the first three decades of its existence operated using largely

the same fundamental algorithms originally implemented. The last decade, however, has

seen an upsurge in the development of novel approaches to PEPT, including algorithms

utilising cutting-edge machine-learning approaches [17,18] and highly-efficient trajectory

reconstruction algorithms with potential applications in the study of bloodflow, cancer

metastasis and other biomedical applications [11]. Recent years have also seen the

advent of the numerical modelling and simulation of PEPT systems [17, 19–21], a new

capability with the potential to revolutionise both the development of PEPT systems

and algorithms, as well as their application to scientific and industrial processes.
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While there exist multiple distinct PEPT methodologies, the underlying algorithms

have been developed, tested, and demonstrated using vastly differing hardware. As

such, it is near-impossible to draw direct comparison between these methods simply by

analysing and comparing existing published work [17,22] – a problem we aim to address

definitively in this paper.

In the following pages, we begin with an accessible introduction to and overview

of PEPT, its fundamental methodology, and its grounding in nuclear physics (Section

2). We then, in Section 3, discuss both the underlying physics and practicalities of

the detectors and radiotracers required to perform PEPT, and subsequently (Section

4) explain how this hardware, and indeed full PEPT experiments, may be numerically

modelled [23, 24]. In Section 5, we review all recently-developed and/or widely-used

PEPT methodologies, providing links to interactive online resources through which the

user may gain direct insight into the underlying algorithms thereof. In Section 6 we

provide a first direct, quantitative comparison of the capabilities of different PEPT

methodologies, utilising new results from a carefully-designed testing framework (Section

6.1). In Section 7, we provide a brief overview of the diverse applications (and potential

future applications) of PEPT in science, industry and medicine, before summarising in

Section 8.

2. The Fundamentals of PEPT

Before discussing PEPT and its underlying algorithms in detail, it is important to first

ensure solid understanding of the fundamental principles upon which PEPT operates. In

this section, we will present a basic explanation of the PEPT technique in an idealised

system, before going on to introduce some of the major complicating factors which

necessitate the use of advanced algorithms such as those explored in this paper.

Figure 1. Simple schematic illustrating (a) the emission of back-to-back γ photons

from a radioactively-labelled tracer particle and (b) the detection of the emitted

photons by a dual-headed gamma camera.
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2.1. PEPT in an Ideal World

Consider a single tracer particle, radioactively ‘labelled ’ with a positron-emitting

radioisotope – that is to say that a number of β+-emitting atoms have either been

adsorbed onto, or created within, the tracer material‡. As positrons usually possess

short mean free paths, λ (typically of the order of millimetres), especially in relatively

dense media [25–27], one may reasonably expect that an emitted positron will annihilate

with an electron either in or near the tracer itself. For the idealised case presented here,

however, let us make the simplifying assumption that all positrons are emitted from the

geometric centre of our particle, and annihilate immediately upon emission (i.e. λ = 0).

The annihilation of a positron and electron will produce a pair of 511 keV γ rays

with trajectories separated by 180 ± 0.5◦§ – i.e. they can be expected, to a reasonable

approximation, to trace a straight line through the centre of the tracer volume (Fig.

1(a)).

Consider next that our tracer particle is placed within the field of view of a suitable

detector system (a ‘positron camera’) capable of recording both the position, ~ri, and

time, ti, at which an incident photon i interacts with said detector system. A simple

schematic of such a set-up is provided in Fig. 1(b), depicting a detector system known as

a dual-headed planar camera, comprising a pair of flat, parallel detector heads. For such

a system, if any two photons are registered by the opposing detector heads within a given

resolving time, tr – typically of the order of nanoseconds or hundreds of picoseconds [29]

– it is assumed that both photons must have been emitted from the same positron-

electron annihilation event. Assuming also, as above, that such photon pairs follow

collinear trajectories and originate from the tracer particle, we can use the recorded

values of ~r1 and ~r2 – the photons’ detected positions – to reconstruct the linear path

taken, known as a ‘line of response’ (LoR). If several pairs of photons are emitted in

quick succession, one may – for an ideal system – determine the position of the tracer by

calculating the point of intersection of these lines, and thus the tracer’s position, allowing

us to effectively track its motion, and thus extract also additional parameters, such as

its pseudo-instantaneous velocity [22]. If a tracer’s trajectory is recorded for a suitably

long period, one may also use PEPT data to extract a wide range of physical quantities

and fields, ranging from self-diffusion coefficients [30–32] and velocity distributions [33]

to three-dimensional density distributions [34]. While the present work does not focus

on these parameters and their determination from PEPT data, the interested reader

may find details thereof in references [22, 30,35–37].

‡ The processes through which this may be achieved are described in detail in Section 3.2.
§ The possibility of a slight acollinearity arises due to the fact that the positron and electron are not

perfectly at rest before annihilation. While the motion of the positron is normally largely arrested

before annihilation, the momentum associated with the electron’s orbital state may nonetheless exert

a small influence on the resultant photons’ trajectories. It should be noted that the value of ±0.5◦ is

only indicative, but nonetheless provides a reasonable characterisation of the extent of acollinearity to

be expected [28].
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Figure 2. Schematic diagrams illustrating (a) the emission and detection of multiple

pairs of photons and (b) the reconstruction of their trajectories, from which a

reconstructed particle centroid may in turn be obtained.

2.2. PEPT in the Real World

In reality, determining a tracer’s position from a given ‘sample’ of LoRs is somewhat

more complicated. Firstly, one must consider ‘positron flight ’ (the distance a positron

will travel between β+ emission and annihilation) meaning one cannot realistically

assume that all photons will be emitted from a single point in space at which all

LoRs neatly intersect. The extent of positron flight depends on several factors – the

tracer size and material, the density of the surrounding medium/media, and the initial

positron energy [25]. This ‘spread ’ is further compounded by the detector’s finite spatial

resolution [21], meaning that recorded values of ~ri all carry an inherent error. As such,

detecting a particle is more complex than simply finding a point of intersection; there

do, however, exist various ways in which particle position data may be extracted from

a sample of LoRs, as we will see in section 5.

One must also consider that not all LoRs correspond to ‘real’ annihilation events,

and even those which do may not correspond to the true trajectory followed by the

resultant photons. Recall from above that a positron camera records the positions

of, and thus produces an LoR from, any two photons detected within the system’s

resolving time – i.e. it is possible that a pair of entirely unrelated photons may happen

to be detected within tr – a ‘false coincidence’. Such coincidences may be created,

for example, due to secondary radiation from the tracer, i.e. if the labelling isotope’s

decay results in direct γ-emission as well as β+-emission (‘associated coincidences ’); if

two annihilation events occur in rapid succession but only one photon from each pair is

detected and/or due to the detection of background radiation (‘random coincidences ’);

or if one or both photons belonging to an annihilation pair become scattered, thus

deviating from the collinear trajectory assumed by the detection algorithms (‘scattered

coincidences ’). These possibilities are illustrated Fig. 3.

Clearly, false coincidences will detract from the accuracy with which we may

locate our tracer particle, and in severe cases even result in entirely false reconstructed

locations. To maximise accuracy, we must find an effective means through which to

separate ‘true coincidences ’ from false. As will become evident in the coming pages,

this is a surprisingly complex task, for which a wide range of approaches have been
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Figure 3. Schematic diagrams illustrating the various forms of false coincidence which

may occur during PEPT imaging, as described in the main text.

– and continue to be – developed. In Section 5 we provide an overview of currently

available approaches, and in Section 6 we put them to the test.

3. PEPT Hardware

3.1. PEPT Detectors

3.1.1. An Overview of Detector Physics– In this section we provide a brief overview of

relevant detector physics concepts. For brevity, we provide only key terms and concepts

necessary to the comprehension of the rest of this article; the interested reader, however,

may find further detail and contextualisation in Appendix 1.

As is clear from the preceding section, to perform PEPT effectively, we need to

be able to detect single 511 keV annihilation photons at high efficiency and with high

energy and spatial resolution, and be able to precisely detect coincidences. The total

number, ns, of individual annihilation photons (‘singles’) detected, known as the true

‘singles event rate’ is determined by the activity, A, of the tracer, the fraction, γ, of

total decays that yield positrons, the ‘efficiency ’ (the fraction of photons from a source

that a given detector is expected, on average, to register), ε, of the detector and the

fractional solid angle subtended by the detector, Ω:

ns = AγεΩ, (1)
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With high-activity tracers the singles rate measured is reduced by ‘deadtime’, the

period of time when a detector has recently registered a photon interaction and, whilst

processing the current interaction, cannot register any subsequent interactions. By

considering the effect of deadtime through a ‘deadtime factor ’, fDT , we can use the

above expression for the total singles rate to provide an expression for the measured

singles rate:

ms = nsfDT . (2)

For very high activity sources, the deadtime can be so great that the camera becomes

‘blinded ’ by photons; as such, perhaps somewhat counter-intuitively, more activity is

not always better in PEPT imaging.

As is clear from the above, deadtime parameters can be a critical limiting factor

affecting the temporal and spatial resolution of a PEPT measurement. For this and

many other reasons, different positron cameras offer strongly differing performance, as

we will discuss in the subsequent section.

3.1.2. Conventional Detector Systems (Ring and Planar Scanners)– The original

PEPT detector system was a Multi-Wire Proportional Chamber (MWPC) positron

camera developed in the 1980s at the University of Birmingham, in collaboration with

the Rutherford Appleton laboratory, Oxford, and the Royal Marsden general hospital,

Surrey [38,39]. As this article concerns recent developments, however, we will not discuss

the MWPC system in detail – though the interested reader may find further information

in Appendix 2. Nonetheless, as the first ever PEPT system, it is worth mentioning

briefly as a benchmark against which subsequent hardware can be measured. Using the

precursor to the Birmingham algorithm [40] (see section 5.1), the MWPC could locate

a tracer moving at 1 m/s to within approximately 5 mm, approximately 50 times per

second.

Figure 4. (a) The University of Birmingham’s ADAC Forté scanner. (b) The

University of Cape Town’s ADAC Vetex (foreground) and HR++ (background)

scanners. (c) The HR++ ring scanner at the University of Cape Town.

In 1999, the MWPC was replaced with an ADAC Forté camera, pictured in
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Fig. 4(a); the University of Cape Town acquired a functionally similar system, the

ADAC Vertex, in 2011 (Fig. 4(b)). Both cameras represent exemplars of dual-headed

‘planar scanners ’; the Birmingham Forté is in fact one of two positron cameras used in

the algorithm comparison tests presented in section 6. Each of the ADAC systems’

dual detector heads comprises a single, large area (590 × 470mm2) sodium iodide

(NaI) scintillation crystal, which converts incident 511 keV gamma photons into a

cascade of lower-energy photons. These crystals are optically coupled to an array of

55 photomultiplier tubes (PMTs), which detect the photons from the aforementioned

cascade. The relative number of photons detected by different neighbouring PMTs can

be used to determine the ‘light centroid ’, and thus the approximate position at which

the original gamma photon interacted with the detector [41]. The spatial resolution of

each of the camera’s two detector heads at 511 keV – that is, the precision with which

it can ascertain the position of a single interacting photon – is approximately 6 mm.

The maximum total coincidence rate of the camera – that is, the number of annihilation

pairs of photons that can be detected per unit time – is approximately 100–150 kHz

(for reference, the maximum singles rate of this camera is of the order of 4 MHz per

detector head).

In addition to planar scanners, the other commonly-used positron camera geometry

– indeed the most commonly used for modern medical positron emission tomography

(PET) – is the ‘ring ’ geometry, in which multiple, smaller detector crystals are arranged

in a cylinder surrounding the patient/system of interest (see e.g. Fig. 4(c)). These

scanners typically cover a smaller field of view than planar scanners like the ADAC,

meaning only relatively small-scale systems, or specific sections of larger apparatus, can

be studied. Ring scanners do, however, typically offer high sensitivity, and thus can be

operated at higher event rates and with greater spatial resolution.

The Positron Imaging Centre (PIC) at Birmingham first investigated the potential

for PEPT with fixed ring scanners in 2006-2007 [42], utilising several different systems

[43–45]. The Cape Town facility hosts the unique ECAT HR++ (Fig. 4(c)), which

comprises six rings of HR+ block detectors instead of the standard four, extending

its axial field of view. Birmingham and Tennessee have investigated PEPT utilising

small animal PET scanners with ∼1mm spatial resolution, which operate on the same

principle used by the larger conventional ring scanners, described below. These scanners

offer even better sensitivity than ‘normal’ (human) ring scanners, but at the cost of a

still smaller field of view (typically ∼100 mm diameter), restricting yet further the size of

the system that can be investigated. At the University of Tennessee, PEPT experiments

have been conducted [19,46,47] using such scanners, including a Concorde Microsystems

microPET P4 [48] and a Siemens Inveon [49]; a newer scanner, the Mediso MultiScan

LFER [50], is now being explored for PEPT deployment at Virginia Commonwealth

University. This scanner is designed for primate imaging, and as such offers a slightly

larger field of view than other animal scanners.

Unlike the previously-described, single-crystal ADAC, ring scanners use ‘block

detectors ’ [51] (see Fig. 5); though not necessary to the comprehension of this article,
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Figure 5. Examples of individual block detectors. Large numbers of such blocks

can be assembled into ring scanners such as those shown in Fig. 4(c) or the modular

positron cameras of Birmingham and Cape Town shown in Fig. 6.

and thus omitted from the main text, the interested reader may find details pertaining

to block detectors, their structure, and their operation in Appendix 3.

Individual detector blocks are grouped into units called ‘buckets ’ which typically

host 4 to 12 blocks. For Bismuth Germanate Oxide (BGO) crystals used in

contemporary PEPT scanners, a single bucket may achieve an event rate of 1.5–2.0

MHz [52]. As the total singles rate for a camera system is simply the sum of the

individual bucket singles rates, a ring scanner (which comprises a number of such

buckets) can easily achieve a total singles rate of 30 MHz; the HR++ system at Cape

Town, for example, can provide singles rates > 70 MHz for suitably active particles.

3.1.3. Modular Cameras– In PEPT, unlike PET, uniformity of the field of view –

i.e. a symmetric geometry such as that achieved in ring and planar cameras – is not

required, meaning customised, ‘modular’ geometries can be designed to accommodate

large and/or unusually-shaped apparatus [53–55]. The block-bucket approach described

above is, at its heart, inherently modular, with buckets able to operate independently of

one another. As such, to within reason, it is possible to arrange buckets in any arbitrary

geometry.

This concept forms the basis of the modular PEPT camera: blocks sourced from

conventional ex-clinical ring scanners are coupled to a custom data acquisition system

and arranged in a suitable geometry for a given system, with Monte Carlo simulations

(discussed in section 4) used to optimise the detector layout. The detector modules are

rugged and transportable, enabling PEPT measurements to be made on apparatus that

cannot easily be moved, or for infrastructure requiring specific associated equipment

not available in the laboratory, for example. Figure 6 shows a modular camera being

used in tandem with the ADAC Forte at Birmingham to study a relatively large-scale,

two-section fluidised bed. Here, the modular camera was used to observe the upper

section of the bed and the ADAC to observe the lower.
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Figure 6. The modular (top) and ADAC Forte (bottom) cameras being used to study

a fluidised bed system larger than can be accommodated in any conventional scanner

alone.

3.1.4. Evolution of PEPT Camera Capabilities– As is clear from the preceding

sections, one of the most direct manners in which to improve the capabilities of the PEPT

technique is to simply employ a positron camera with a greater data acquisition rate.

Fig. 7 provides an illustration of the progression of data acquisition rates over generations

of positron cameras. The abscissa shows the total (i.e. true + false) coincidence data rate

acquired, limited by system deadtime, for each positron camera analysed. The ordinate

displays the number of these total events which correspond to true events. The points

of inflexion illustrate the maximum count rate of each system, with deviations from the

linear caused by deadtime processes, as discussed above. The historical trend has been

in pushing the points of inflexion towards the upper right corner as data acquisition

systems improve and deadtime factors are reduced. One of the major aims of the field

is to continue pushing this boundary.

3.2. PEPT Tracers

The progress of PEPT and our ability to exploit an ever wider range of applications is

inherently associated not only with the advancement of detector technology (as discussed
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Figure 7. The progression of data acquisition rates over generations of positron

camera.

in section 3.1) and algorithms (as discussed in section 5) but also the development of

new radiotracers. As the standard PEPT radiolabelling process has been described in

detail in previous publications [56, 57], we limit our focus here to recent advancements

and a brief overview of the underpinning principles, terminology and concepts.

3.2.1. Fundamental Concepts The radiotracers employed in PEPT differ significantly

from those used in PET; in particular, a typical PEPT radiotracer comprises a

solid, macroscopic particle, as opposed to taking the form of a fluid. Unlike in

most conventional, (microscopic)‖ molecule-based radiotracers, the introduction of a

radionuclide to such a particle usually has a negligible effect on its original structure

due to its large size [59], allowing PEPT to be used non-invasively.

If a truly non-invasive measurement is desired, it is necessary that the tracer particle

used matches the physical properties (size, density, frictional coefficient etc.) of those

constituting the system to be imaged. In the case granular systems, this can be achieved

simply by using choosing a tracer comprised of the same material as the bulk – i.e. if we

are imaging a fluidised bed of sand particles, simply irradiate a sand particle! Though

‖ Note that the term ‘microscopic’ as used here does not refer to particles of the micron scale, which

can be used in PEPT imaging. Rather, the terms ‘microscopic’ and ‘macroscopic’ are here used to

distinguish between particles on the atomic/molecular scale and larger ‘granular’ particles comprising

large numbers of individual atoms or molecules, respectively [58].
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not always possible due to the limitations of current radiolabelling techniques [59], in

a majority of cases particles truly identical to those used in the bulk system under

investigation can be radiolabelled in at least one of the three main ways described in

this section.

When attempting to assess which – if any – labelling technique is appropriate

for a given material, one will typically evaluate three parameters: the radiochemical

yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS). The RCY

simply corresponds to the amount of radioactivity successfully ‘attached’ to the material

with respect to the starting amount of radioactivity; the RCP measures the presence

of other radioactive elements within a sample; the RCS quantifies the strength of the

material-radionuclide bond. For PEPT, we require high values of all three parameters.

Clearly, a high RCY is desirable in order to get high activity and thus a high event

rate. A low RCP – i.e. the presence of other, non-β+ decaying radioactive species – will

add unwanted noise (i.e. false LoRs) to measurements and lower the maximum activity

that can be used without incurring problems due to deadtime. A low RCS means the

radionuclide may easily become detached from the material during measurement. This

leaching of radioactive material can prove problematic in several ways: not only is it

reducing the activity of the tracer itself, but it is also introducing background noise

and, if the leaching is significant, may even lead to false locations if the leached material

accumulates in a given region of the system – i.e. the PEPT algorithms track the ‘free’

radionuclide as well as – or, worse, instead of – the radiolabelled particle itself.

There exist three main strategies for the radiolabelling of PEPT tracers – direct

activation, ion exchange and surface labelling (see Fig. 8) – each of which we will

introduce briefly below.

Figure 8. Simple schematic illustration depicting the three main ways in which

atoms of a positron-emitting radioisotope (represented by yellow particles carrying

a black trefoil) can be integrated into a tracer either by converting an existing atom

through irradiation with a suitable ion beam (direct activation, top left), exchanging

a radioactively inert atom with a positron emitter (ion exchange, top right) or simply

adhering a suitable radioisotope to the existing atoms (surface labelling, lower centre).
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3.2.2. Direct Activation In many ways the most straightforward irradiation technique,

in this method activity is induced directly in the desired tracer particle by bombarding

it with a high-energy beam of accelerated ions (typically protons or Helium-3 nuclei¶)

in order to generate a suitable positron-emitting radionuclide from a stable element

within the tracer material. One of the most commonly-employed routes is to irradiate

a material containing natural oxygen (16O) with a 33 MeV 3He beam to produce 18F

from 16O atoms via the nuclear reactions:

16O(3He, p)18F. (3)

and

16O(3He, n)18Ne→18 F. (4)

The popularity of this particular reaction stems from two main factors – firstly, oxygen

atoms can be found in many materials that are widely used in industry, such as glass,

sand, alumina and zirconia; secondly, by directly irradiating water (H2O) one can then

go on to label a wide array of other materials using the indirect activation techniques

described below. Other commonly used isotopes include Cobalt-55, produced via the

bombardment of iron atoms with protons, Copper-61, produced from Nickel using a

beam of deuterons, and Gallium-66, produced by bombarding Nickel with protons, with

a variety of other processes also possible [60–62].

As well as producing 18F, the process described in equation (4) also produces a

number of short-lived ‘side radionuclides ’ such as 10C (half-life 19.3 s), 12N (half-life 11

ms), 27Si (half-life 1.16 s),
29P (half-life 4.1 s), and 26Al (half-life 6.4 s) [60]. To ensure

a high RCP – i.e. the absence of large amounts of ‘secondary radiation’ which will add

noise to the reading without increasing the true event rate – the tracer produced must

therefore be allowed to ‘cool down’ for a short period of time (∼ 20 minutes) after

the reaction until these unwanted radionuclides have largely decayed away. Similar

procedures are also typically required for other radionuclides, with the duration of the

cool down period varying according to the half lives of both the desired and unwanted

radioisotopes.

One of the great advantages of direct activation is that, as the radionuclide is

created from a stable element which is a part of the particle’s structure, detachment

of the radionuclide is extremely unlikely – i.e. particles produced via direct activation

typically have an excellent RCS.

Due to the significant heating effects inherently experienced when a particle is

bombarded with high-energy ion beams, the direct activation process is typically limited

to relatively large particles (> 1 mm) and materials with relatively high melting points.

For particles which do not fulfil these criteria, alternative approaches – i.e. indirect

activation – must be explored.

¶ Helium-4 nuclei or deuterons may also be used, but this is less common as fewer widely-used reactions

require these ions.
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3.2.3. Indirect Activation There are two main methodologies by which indirect

activation may be achieved: ion exchange and surface labelling. In the former, instead of

a stable atom within the material of interest being converted into a positron emitter, an

atom is instead removed from the material and replaced with a suitable positron emitter.

This is typically performed by placing a suitable material such as an ion exchange

resin [63] in a liquid containing a high concentration of free 18F ions. Under suitable

conditions [56], the free fluorine ions will preferentially attach to the resin, thereby

completing the labelling process. The chemistry of this process is briefly detailed in

Appendix 4. The main advantage of the ion exchange method is the relative simplicity

of the radiolabelling process. A major disadvantage, however, is the weakness of the

bond between the particle and the radionuclide, giving a low RCS, and thus a significant

possibility of activity leaching into the surrounding system – especially in the case of

measurements involving fluid flow.

The surface labelling strategy is based on the affinity of certain materials toward

specific radionuclides. By exploiting different chemistries, through the careful choice of

material and the radionuclide, it is possible to attach positron-emitting nuclei to the

surface of a particle by strong interactions. In the field of nanomaterials, this method

has been applied for the radiolabelling of different inorganic particles such as those

made of hydroxyapatite, silica, or iron oxide with radionuclides such as 18F, 68Ga, 64Cu

or 89Zr, among others [64].

The surface labelling strategy is currently being used by researchers at King’s

College London to facilitate the activation of silica particles as small as 1 µm with
68Ga for use in PEPT applications. The radionuclide, here 68Ga, is able to react with

the silanol groups of silica, forming strong bonds in a short period of time. A similar

approach may be used to increase the affinity of 18F toward various different materials,

for example by activating the surface of the material of interest using Fe3+ salts previous

to the incubation with 18F. This strategy allows the successful radiolabelling of materials

such as microcrystalline cellulose (MCC), quartz, calcite, apatite or coal particles.

Aside from the specific examples described above, there are many possibilities

for the radiolabelling of different nanomaterials, and hence possible applications for

PEPT. There are, however, several challenges associated with the labelling of nanoscale

materials. These include a decrease in the potential for high levels of radioactivity per

particle and in the isolation of a single particle. Future work to address these challenges

is ongoing at King’s College, with the aim of expanding the application of PEPT into

new and exciting areas, perhaps most notably in the biomedical field, where the use of

small, biocompatible tracers may prove revolutionary.
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4. Simulating PEPT

4.1. The Value of Simulation

In recent years researchers have begun using numerical modelling to simulate PEPT

hardware and experiments, creating artificial PEPT data from simulated fluid flows [20]

and even producing highly faithful digital twins of real PEPT systems [21]. For

a technique such as PEPT, the availability of such models can be highly valuable

for a variety of reasons. As evident from the previous section, to perform ‘real’,

physical PEPT experiments, one requires a significant amount of expensive hardware

and infrastructure. Moreover, even with the relevant facilities in place, the inherent

material, staff and energy costs associated with PEPT imaging make it a cost-intensive

process. In other words, when using PEPT, one wants to make as efficient use of

one’s time as possible, and avoid unnecessary tests and/or failed experiments. By using

simulations, it is possible to test the viability of an experiment, or the suitability for

PEPT imaging of a given experimental system, using only a laptop, thus minimising

the chance of wasted experimental time and maximising the benefits gained from PEPT

experimentation. Simulations can also be used to maximise these benefits further by

predicting in advance the optimal parameters (e.g. tracer activity, tracer number, head

separation, system positioning, acquisition time...) with which to perform any given set

of experiments and, as discussed in the preceding section, to help optimise the geometries

of custom PEPT detector systems.

An additional major benefit is the provision of a valuable ‘sandbox’ in which

to explore the fundamental physics of the technique, to develop new theoretical and

empirical models, and – as is the case in the present work – develop and test algorithms.

Though a fairly recent development within the field, it is expected that in the

coming years the use of simulation will become increasingly commonplace for PEPT

research, as it already has with other nuclear physics techniques [65–68].

4.2. Modelling PEPT Hardware

As we have seen in the preceding sections, both radiation detectors (see section 3.1) and

radiotracers (section 3.2) are central to PEPT experiments [19] [69]. As such, if we wish

to create an accurate numerical simulation of a PEPT experiment, it is vital that we

are able to faithfully model positron sources, radiation transport through experimental

geometries, and synthetic pulse-processing chains, amongst other crucial aspects of the

emission and detection processes. The Geant4 Application for Tomographic Emission

(GATE) software [70, 71] provides an invaluable tool for such modelling. In GATE,

geometries can be created manually from design drawings or imported as detailed mesh

files created using suitable CAD software. Particle interactions with the imported or

created geometries are passed through a series of conditions emulating how the electronic

pulse-processing systems of ‘real’ positron cameras would respond [72]. This step, called

the digitizer, is unique to each detector system. The digitizer is also partially responsible
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Figure 9. Left: A simulated fluidised bed can be studied in a GATE simulation by

using the particle volume fraction at each timestep to create materials and prescribing

the extracted positions of a single particle as a positron emitting source. Right: A CT

scan of a chest phantom voxelised inside a GATE simulation.

for recreating a crucial aspect of each detector system – the coincidence count-rate, and

its variation with source activity – and can also include the effects of deadtime [73], as

touched upon in section 3.1.

As with any numerical simulation, it is vital that GATE models are validated

against experimental data [74]. To validate the GATE model of a detector system,

a common set of experiments using the real and GATE modelled detectors should

be conducted, such that the values attained numerically and experimentally can

be compared, and thus provide a quantitative assessment of the model’s accuracy.

The National Electronics Manufacturers Association (NEMA) provides a standardised

protocol, NEMA NU-2, for testing the performance of PET scanners; this framework

has been used in validating the two GATE models used in section 6 of this work: the

Siemens ECAT EXACT HR+ ring scanner and the Phillips ADAC Forte dual-headed

positron camera [75] [21] [76]. If values obtained from the virtual and experimental

NEMA tests agree to within an acceptable tolerance, then one may assume that said

model provides a reasonable simulation of the real detector system. Examples of such

validation processes can be seen in [21].

The NEMA-validated GATE models of the ADAC and ECAT systems used in the

present work can be freely downloaded from open-source repositories linked, respectively,

here and here.

4.3. Simulating a PEPT Experiment

As mentioned above, the use of a validated GATE model to study PEPT experiments

requires only a CAD model of the experimental geometry itself and relevant details (e.g.
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size, material and motion) of the relevant tracer(s) to be tracked. Tracer movement

can be prescribed analytically by assigning a source velocity vector; alternatively,

discrete movements at specific timesteps can be read in from another file, allowing

trajectories produced via, for example, the Discrete Element Method [77] or other

numerical simulations to be directly converted into ‘pseudo-PEPT’ data. When a GATE

simulation is conducted using realistic source movement, the detected LoRs can be used

to reconstruct the tracer trajectory as in a ‘real’ PEPT experiment. This pseudo-

PEPT trajectory can then be compared to the known ‘ground truth’ data – i.e. the

originally prescribed positions – giving the user an estimate of the accuracy of a given

PEPT experiment prior to experimentation. Further, the effect of the detector settings,

source activity, and experimental conditions can be altered in the GATE simulation to

determine optimal conditions for the ‘real’ experiment. Finally, as we will see in section

6, such a comparison can also allow us to test and compare the capabilities of different

PEPT algorithms.

As well as source movement, the movement of the system being imaged can be

included in GATE simulations. In multiphase systems such as fluidised beds, large

transient voids created by bubbles of gas moving up through the dense medium can

significantly affect the scattering of gamma rays by reducing the amount of material

which must be traversed by the rays before they are detected. If a DEM simulation

of the bed is created, the particle volume fraction in discrete cells can be prescribed

into the GATE simulation and updated during each timestep. This process, known as

‘voxelisation’ can also be used create detailed representations of the geometry of complex

systems where the internal structure is not known by using a Computed Tomography

(CT) scan [78]. CT images can be placed inside a GATE simulation and prescribed

material properties such that the scattering of gamma rays inside a complex system are

approximated [79].

5. PEPT Methodologies – an Introduction

In the preceding sections, we have provided an introduction to the fundamental principle

of PEPT, and the tracers and detector systems through which it operates. At the end of

Section 2, we discussed the complexity of extracting accurate particle positions from the

mix of true and false lines of response provided by raw PEPT data, and accounting for

the inherently limited resolution of PEPT detectors and spread caused by positron flight.

In section 3, meanwhile, we discussed the push toward faster and more accurate detection

through the development of improved hardware, and the development of tracers capable

of carrying higher levels of β+ activity. In this section, we provide a detailed overview

of the various methodologies developed to address the challenges highlighted in Section

2, and push the boundaries of PEPT’s spatial and temporal resolution further than

hardware and tracer development alone. Considering the aims of this article, we place

a particular focus on the most recent and most promising algorithms, and those which

are most widely used. In each case, we will provide an overview of the methodology
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and underlying algorithms, and briefly summarise the major strengths and weaknesses

thereof. A more detailed, quantitative analysis of these will then be given in section 6.

5.1. The Birmingham Method

The Birmingham Method, developed at the University of Birmingham by the original

developers of the PEPT technique, David Parker and Michael Hawkesworth, is the oldest

yet still, to date, the most widely-used PEPT algorithm. The fundamental principle of

the method is, for a given set of LoRs, to discard false events iteratively until only true

LoRs remain, finding an accurate particle centroid from the remaining data [80,81].

Figure 10. (a) Simple visualisation of the perpendicular distance, δ, between an LoR

and an arbitrary point (x, y, z) in space, as discussed in the main text. (b) For a pair

of perfectly-intersecting photons emitted from a tracer, the minimum distance point,

~rMDP , will correspond exactly to the point of intersection. (c) The presence of false

coincidence events may pull the MDP away from the true particle centre.

The algorithm considers a sample containing a user-defined number, Ns, of time-

consecutive LoRs from a full PEPT data set. Each LoR is defined by its start- and

end-points (i.e. the positions at which the recorded photons interact with the detector)

which can be given in Cartesian coordinates as (x1, y1, z1) and (x2, y2, z2) (see Fig. 10).

The smallest distance, δ(x, y, z), between the LoR defined by these points and any given

point, (x, y, z), in three-dimensional space, can be determined as:

δ2r2 = [(x− x2)z12 − (z − z2)x12]2 + [(y − y2)x12 − (x− x2)y12]2

+ [(z − z2)y12 − (y − y2)z12]2 (5)

where χ12 = χ1 − χ2 (χ = x, y, z), and r =
√
x212 + y212 + z212 is thus the scalar length of

the current LoR of interest. For a given sample of Ns LoRs, one can determine the root

mean squared distance, D(x, y, z), of point (x, y, z) from all LoRs in our sample as:

D =

√√√√ 1

Ns

Ns∑
i

δ2i (6)
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By finding the minimum of the above function, which may be achieved by simultaneously

solving:

∂D

∂x
= 0,

∂D

∂y
= 0,

∂D

∂z
= 0, (7)

we can determine the point in space which minimises the total distance to all LoRs,

known as the ‘minimum distance point ’ (MDP). As the MDP will be influenced by both

true and false LoRs, if we wish to determine the position of our tracer accurately, we

must first eliminate erroneous data. This is achieved using a simple iterative process:

for an initial sample of Ns LoRs, an initial MDP is determined as outlined above, and

all LoRs whose perpendicular distance, δi, from this point are more than 20% greater

than the RMS distance D (i.e. δi
D
> 1.2) are discarded as ‘corrupt ’. A new MDP is then

determined from the remaining LoRs, and the process repeated until only a user-defined

fraction f of the initial sample remain. A simplified example of this process is shown in

Fig. 11; in reality, a significantly larger number of LoRs (typically of the order of 100)

is normally used.

Figure 11. Simplified schematic illustrating the operation of the Birmingham method

for a sample containing an initial Ns = 15 LoRs, and processed using an f value of 1
3 .

In each panel, dashed blue lines represent recorded LoRs, while black crosses represent

the minimum distance point (defined in the main text) of this sample of LoRs. Panels

(a), (b) and (c) correspond, respectively, to the initial sample of LoRs, an intermediate

step in the algorithm, and the final remaining LoRs used to calculate the particle’s

true centroid (see main text).

The Birmingham method may be relatively simply extended to the case of multiple

tracers [82,83]. For a given sample of LoRs containing Nt tracers, the algorithm begins as

before, iteratively determining the centroid position of a single particle. In the multiple

particle case, it is typically beneficial if the iterative discarding of LoRs is a little more

gradual; as such, at each step of the iteration only LoRs whose distance from the current

MDP are 50% greater than the mean are discarded. Once this first tracer has been

located, the process is repeated using the same sample, but omitting all LoRs identified

as belonging to the original tracer. This process is repeated until all tracers have been

located. Clearly, for each additional particle located, the initial pool of LoRs used to

determine its location decreases in size, leading to inherently reduced statistics – that is

to say, the more tracers introduced into the system, the lower the precision with which

they may be detected. This approach has been shown to track up to four particles
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successfully, with a minimum separation of approximately twice the detector’s inherent

spatial resolution.

An interactive Python notebook illustrating the key steps in the Birmingham

algorithm may be found here. A complete implementation of the Birmingham

method may also be found on Positron Imaging Centre github repository,

https://github.com/uob-positron-imaging-centre/.

Strengths Weaknesses

Arbitrarily high accuracy for stationary Can only track limited number (. 4)

tracer of individual tracers

Relatively computationally efficient Requires a priori knowledge of Nt

Mesh-free method Accuracy decreases sharply with Nt

Table 1. Major strengths and weaknesses of the Birmingham method.

5.2. The Line-Density Method

The line-density method [84] was developed in 2012 at the University of Cape Town.

Though no longer used on its own, it forms the foundation of several subsequently-

developed algorithms discussed and tested later in this paper, and as such will be

addressed in some detail.

Figure 12. Simplified 2D image representing the voxelisation of the computational

volume and the calculation of line density. In this image, cells intersected by lower

(higher) numbers of LoRs are indicated by darker (brighter) shading, allowing us to

easily discern the voxel containing the peak line density and thus the approximate

tracer position.
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The method begins by discretising the computational volume (i.e. the camera’s field

of view) into a series of three-dimensional voxels, as illustrated in Fig. 12. A numerical

value is then assigned to each of these voxels corresponding to the total number of LoRs

passing through it. Clearly, the closer to the source (i.e. tracer) a voxel lies, the higher

the number of lines likely to pass through it. An estimation of the tracer location may

therefore be determined by finding the voxel containing the highest line density. This

estimate may be improved and a sub-voxel resolution achieved by considering a one-

dimensional ‘row’ of voxels passing through this maximum along each Cartesian axis

(x, y, z). For each of these 1D rows, one may plot the distribution of counts along the

relevant axis.

If the tracer’s dimension is smaller than the pixel size, the distributions obtained

may then be fitted with Gaussian functions, whose means and widths can be taken,

respectively, as the location and error therein along each axis.

To track multiple particles, the approach outlined above is again applied, but this

time looking for local maxima in the line-density matrix. To do so, both the number of

tracers to be tracked and their approximate initial positions within the system must be

specified when initiating the tracking process. Each particle is assigned a specific ‘region’

based on a visual inspection of the first density matrix. For each subsequent timestep,

the regions in which to search for each given particle are then calculated based on the

respective tracer’s previous position and velocity, allowing a reasonable estimation of

its expected position for the following timestep. However, if the regions assigned to

two or more distinct tracers overlap, the algorithm will record the position of only one,

typically the more active. One must be careful, therefore, when deciding on the size

of the search – too big, and tracers’ regions will often overlap; too small and a quickly

and/or erratically-moving tracer may fall outside its predicted region. To address this

latter possibility, the search region’s dimension, d, is typically constrained to satisfy the

inequality d > |a|(δt)2, where a is the particle’s maximum acceleration.

Under suitable conditions, the line-density method is capable of achieving a similar

level of accuracy to the Birmingham algorithm. However, the use of a discretised

mesh introduces certain problems not encountered in the original method, notably the

grid-size dependence of results (thus requiring additional optimisation and sensitivity

analysis), and potential for pixelisation effects for slower-moving tracers.

An interactive Python notebook illustrating the key steps in the Line Density

algorithm may be found here.

5.3. G-Means Clustering

The G-means method of Wiggins et al. [85] was developed at the University of Tennessee,

Knoxville to enable multiple particle tracking using an arbitrary number of tracers. This

method begins by creating a line density matrix as described in section 5.2. First, a

check is made to ensure that the maximum line-crossing value is above a preset threshold

value. If so, the grid of voxels is first high-pass filtered based on a fraction (usually 0.25-
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Strengths Weaknesses

Relatively computationally efficient Requires a priori knowledge of Nt

Relatively simple to implement Requires a priori knowledge of initial tracer positions

Grid-size dependent results

Subject to pixelation for slower-moving tracers

Table 2. Major strengths and weaknesses of the line density method.

0.5) of the peak line-crossing value. The remaining voxels are then clustered via G-means

clustering [86–88] – modified k-means [89] algorithm – to determine their positions.

It is worth noting that the G-means algorithm was in fact not the first PEPT

algorithm to make use of clustering – this was the K-Medoids method, developed by

Gundogdu [90–92]; this method, however, was never widely adopted, and hence is not

discussed in the main text. The interested reader, however, may find full details in

Appendix 5.

Particles are identified as follows: Firstly, the LoR-crossing data are treated as

points in R3 positioned at the centre of each voxel with a multiplicity corresponding

to the number of line crossings at each point. Clustering begins with a k=1 clustering

(i.e. a universal centroid calculation) and subsequently splits or accepts clusters based

on a statistical test. Thus it grows the number of clusters until the natural number

of clusters in the dataset is reached, avoiding the potential false convergence errors of

k-means that can be caused by a poor initialization. The decision to split or accept a

cluster is based on its adherence to a Gaussian fit.

For splitting, we consider a set S of points with data already sorted into k clusters,

Xj ⊂ S, with j ∈ J = {1, 2, ...k}. For a specific cluster, Xm,m ∈ J, containing n

points, the covariance matrix is calculated, and power iteration used to identify its

main principal component and corresponding eigenvalue λ. Two daughter centroids, c1

and c2, are initialized along the main principal component, a distance ±
√

2λ/π from

the centroid of Xm, and k-means clustering with k = 2 used to re-cluster the data with

c1 and c2 used as initial cluster centres. After converging on two new centroids, c′1 and

c′2, the data in Xm are projected onto the line v = c′1 − c′2, such that x′i = (xi · v)/|v|.
This new dataset, X ′m, is a 1-D representation of Xm, normalized to have mean 0 and

variance 1.

A 1-D Anderson-Darling (A-D) test [93] is used to determine if X ′m is normally

distributed. For each of the n values x′i ∈ X ′m, let zi = F (x′i), where F is the N(0, 1)

cumulative distribution function, the A-D statistic, A2, is first calculated as

A2(Z) =
1

n

∑
i = 1n(2i− 1)[ln(zi) + ln(1− zn+1−i)]− n. (8)

Then, as the mean and variance must be estimated from the measured data, a correction
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is applied to A2 as

A2
∗(Z) = A2(Z)

(
1 +

4

n
− 25

n2

)
. (9)

If the value of A2
∗ is below a user-defined critical value, the cluster Xm is considered

sufficiently Gaussian and accepted. If it is not, it is split, and another clustering

performed with k′ = k + 1. This process is continued until all clusters pass the A-

D test. When all clusters pass the A-D test, the calculated centroids are taken as

tracer positions. Fig. 14 shows a visual representation for the case of three activated

particles [85].

Figure 13. Visual depiction of clustering via G-means. Clustering begins by treating

the data as one cluster (a). This is then split into two clusters (b) and three (c) along

the principle axes of each cluster. Further splitting is rejected at this point, it being

assumed that the algorithm has found the total number of ‘natural’ clusters (i.e. the

locations of all tracers within the field of view).

After particles are identified for all timesteps, they are linked into continuous

trajectories, typically using the modified nearest-neighbours algorithm described by

Wiggins et al. [85]. If between-frame displacements are particularly large (i.e. when

imaging rapid flows and/or with low data acquisition rates), a more robust linking

algorithm, described in [47, 94], may be used. After this linking process, a second

‘re-linking’ step is performed in which the start and end points of all trajectories are

considered. If the beginning of one trajectory and the end of another are found to be very

close in time and space, the apparent gap is considered to be an instance of occlusion, and

the two trajectories are merged [94]. Statistical noise in the reconstructed trajectories

may be subsequently removed by convolution with Gaussian kernel, as described further

in section 5.5.

The G-means reconstruction algorithm has been shown to yield comparable

accuracy to the Birmingham algorithm for single-particle location [85], and can track up

to 17 particles simultaneously. A major advantage of this method is that it facilitates
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the tracking of multiple tracers without a priori information on the number or initial

positions thereof. It also allows particles to enter and leave the field of view, enabling

experiments in test sections with recirculating flow loops. However, for large Ntthe

clustering routine employed in this method is computationally expensive and shows poor

convergence. Specifically, the selection of the A-D critical value (used to accept/reject

the splitting of clusters) therein is based on user experience and is not well-founded

in statistics due to the discrete nature of the data used. The number of clusters

found in each timestep is very sensitive to the selection of this value. As such, the

algorithm will often converge on an incorrect number of particles when many are present

if the A-D critical value is not chosen properly. This can result in both false-positive

and false-negative detections, which must be accounted for during trajectory linking.

Furthermore, as this method uses discrete grid elements for line density tallying, there is

some sensitivity to the selection of the grid size. In spite of these challenges, the utility

of this method for flow measurements with multiple tracers has been demonstrated by

Langford et al. [19].

An interactive Python notebook illustrating the key steps in the G-means algorithm

may be found here.

Strengths Weaknesses

Capable of tracking up to 17 tracers Computationally expensive for large Nt

Does not require a priori knowledge of Nt Sensitivity to A-D critical value

Grid-size dependent results

Table 3. Major strengths and weaknesses of the G-means method.

5.4. Spatiotemporal B-spline reconstruction (SBSR)

Spatiotemporal B-spline reconstruction [11], a technique developed in 2014 at Stanford

University, aims, in brief, to find the spatiotemporal trajectory that is most consistent

with the recorded LoR data by minimizing an objective function. Unlike prior PEPT

the SBSR method’s intended purpose is focused predominantly on the biomedical

sector, having recently been demonstrated tracking the migration of single cells in live

subjects [95]. To this end, the algorithm is designed so as to allow objects to be tracked

using a minimal number of LoRs.

The trajectory of a tracer is modelled as a three-dimensional B-Spline [96] of the

continuous temporal variable t. Each of the three spatial coordinates is modelled as

a weighted sum of spline basis functions, Bi(t); therefore, each trajectory, ~r(t), is

represented by three sets of basis coefficients, ~ai = (axi , a
y
i , a

z
i ). That is to say

~r(t) =
N∑
i=1

~aiBi(t). (10)
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The number, N , of basis functions can be adjusted by the user for each dataset,

considering the number of counts available and the presumed tracer velocity.

Figure 14. Simple schematic illustrating the SBSR method. The algorithm uses

an least-squares approach to determine the best-fitting three-dimensional spline for a

given set of points – i.e. the single trajectory which passes, on average, closest to all

LoRs within a given sample.

With the basis functions set-up, a convex optimisation algorithm is used to find

the spline weights that best match the data. The objective function used is the sum of

the squared distances between each recorded coincidence event and the time-matched

location along the estimated spline trajectory. A decrease in the objective function

means that the reconstructed spline trajectory lies closer to the recorded events. As

the objective function is convex, the optimisation is guaranteed to converge to a unique

trajectory.

As the objective function’s distance penalty is squared, false coincidences can have

an outsized impact on the estimated tracer position. Therefore, the distance penalty is

capped beyond a maximum threshold, which is set according to the spatial resolution

of the PET scanner+.

5.5. The Feature Point Identification Method (FPI)

The feature point identification (FPI) method [97] was developed at the University

of Tennessee in 2011. The method begins with the creation of a line-density grid, as

described in section 5.2. As can be seen in Fig. 12, the grids created can in many ways

+ As the SBSR method is under patent, we do not provide here an interactive example as for other

techniques.
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Strengths Weaknesses

Can track particles with very low activity Currently only tracks single particles

Mesh-free method

Table 4. Major strengths and weaknesses of the SBSR method.

be considered analogous to a digital image, with each cell corresponding to a pixel with

an intensity representing the line density of (i.e. total number of pixels crossing) said

pixel. The FPI method exploits this analogy by using techniques are borrowed from

image processing and optical particle tracking [98,99] to identify, locate and track tracer

particles.

The ‘image’ corresponding to the line-density grid created by a given sample of

LoRs is first smoothed via a convolution-based filter. This is typically performed with a

box-car kernel over a cubic region of width 2f+1, where f is the smoothing size (usually

1 voxel). If N t(x, y, z) represents the number of LoR-crossings at voxel position (x, y, z)

during timestep t, then the smoothed image can be computed as:

N ′t(x, y, z) =
1

(2f + 1)3

x+f∑
i=x−f

y+f∑
j=y−f

z+f∑
k=x−f

N t(i, j, k). (11)

For optical particle tracking, Sbalzarini and Koumoutsakos [98] used convolution

with a Gaussian kernel for image smoothing. This can also be employed for PEPT

in cases in which significant background noise is expected. Examples of the raw line-

crossing grid and the smoothed image can be seen in Fig. 15.

Figure 15. Visual depiction of FPI processing, showing unfiltered line-crossing

grid (left) and filtered image (right). Final tracer positions are indicated with ×’s.

Eperimental data shown are the same as those seen in Fig. 14.

Having smoothed the image, approximate particle positions can then be estimated
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as local intensity maxima in N ′t. These local maxima are taken simply as the voxels

possessing intensities in the upper rth percentile of a given time frame with a line-crossing

value greater than any other voxel within a cube of side-width 2w + 1. The value of r

can be adjusted based on the amount of noise (i.e. the preponderance of false LoRs) in

a given image and the relative ‘brightness’ (i.e. detected activity) of each particle.

The parameter w serves as an apparent particle image size, where the image of

each particle is a cube of high LoR density centred at the maxima. However, w also

inherently places restrictions on the between-particle separation distances for which

individual particles can be successfully resolved in a given timestep. If two or more

particles are separated by less than w voxels, the particle that appears brightest (i.e.

whose peak-intensity pixel has the highest line-density) will be detected, but the other(s)

will be ignored; worse, the presence of the other (non-detected) tracer(s) will bias the

recorded position of the detected particle toward the centroid of all tracers involved.

Thus, if two or more particles approach closely, only that having the highest activity is

likely to be followed. The position history of the other particle will therefore be split into

two trajectories – another factor which may cause issues in the post-processing of the

data collected, especially for cases in which it is important to assign specific trajectories

to specific particles. Based on these significant potential complications, it is clear that

– as far as possible – the value of w should be chosen such that it is smaller than the

expected inter-particle separations for a given experiment.

Following the identification of local maxima as described above, final tracer

positions are calculated within each image. Current implementations of the FPI method

[46] calculate tracer locations using 1-D Gaussian fits in each spatial direction, centred

at each local maximum, imitating optical peak location routines [100]. The position

of each particle is taken to be the mean of the fitted Gaussian, and the uncertainty is

calculated based on the standard deviation σ as ∆x = σ/
√
NLoR. NLoR can be estimated

for a given particle as the number of LoR passing within (w+0.5) voxels of its calculated

position. Tracer locations from individual timesteps can then be linked into trajectories

by the nearest-neighbours method described in [85] and section 5.3, or the projection

method described in [47,94].

After trajectory reconstruction, measurement noise is reduced through the

convolution (in time) of each trajectory with a Gaussian kernel of the form

k(τ) = A exp

(
− τ

2

σ2

)
, (12)

as used in optical particle tracking studies [101]. Here, σ is the effective filter size (in

timesteps) and should be selected to be smaller than the smallest time scale of interest

in the system interrogated. By convolving each trajectory with differentiated kernels,

instantaneous velocity and acceleration can also be calculated for each tracer [97].

The multiple particle capability of FPI has been demonstrated for reconstructions of

up to 100 particles via simulation [97] and 80 particles in an experiment [94]. Its primary

drawback is the aforementioned inter-particle resolution limit set by the parameter w. In
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most measurements, this manifests as a temporary loss of information for some tracers

but, in general, has little effect on overall measurement outcomes. The FPI method,

like the other grid-based methods previously described, also displays a degree of grid-

size dependence; however, the aforementioned use of Gaussian fitting during particle

localization has been seen to remove any significant biasing due to pixelation.

An interactive Python notebook illustrating the key steps in the FPI algorithm may

be found here. A complete implementation of the FPI method may also be found on

Positron Imaging Centre github repository, https://github.com/uob-positron-imaging-

centre/.

Strengths Weaknesses

Can detect at least 100 tracers Particle spacing limited by parameter w

Does not require a priori knowledge of Grid-size dependent results

number of tracers

Table 5. Major strengths and weaknesses of the FPI method.

5.6. Voronoi-Based Multiple Particle Tracking (VMPT)

The VMPT method [102], developed by Blakemore, Govender et al. at the University of

KwaZulu-Natal, unlike preceding techniques, uses three-dimensional Voronoi tesselation

[103–105] to create a detailed, spatisally-non-uniform line-density map, with statistical

filtering [106] and DBSCAN clustering [107, 108] techniques used to determine particle

positions therefrom. The trajectories are then extracted using multiple target tracking

(MTT) [109–112], specifically the multiple hypothesis method [113].

Like the K-Medoids method briefly mentioned above, the VMPT technique has not,

to date, been widely adopted, and has since been superseded by the Spherical Density

Method, described below. As such, for brevity, its details are not discussed in the main

text. Nonetheless, the interested reader may find full details in Appendix 6.

5.7. The Spherical Density Method

The spherical density method [114] of Odo, Govender et al. represents a marked

departure from prior methodologies in that it requires a significant amount of a priori

information regarding the tracer particles used and the distribution of beta-emitting

material thereupon.

The method’s operation is predicated on two main heuristic assumptions:

I. A positron’s mean free path, λ, between emission and annihilation is smaller than

the tracer particle radius, R, meaning that one may reasonably expect a higher

concentration of annihilation events inside the tracer medium than outside∗
∗ For the case of a tracer in which the radionuclide is applied as a surface coating (Fig. 16), the
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Figure 16. Simple schematic illustrating the two types of radiolabelled spherical

particle considered in the spherical density method. Panel (a) represents the case of a

positron source placed at the centre of a dense spherical tracer, and panel (b) a similar

tracer instead coated with a positron emitter. In both cases, red crosses represent

positron-electron annihilation centres. The distances R and r∗ represent, respectively,

the radius of the tracer and the radial distance across which annihilation centres are

expected to be most densely and evenly distributed [114].

II. The highest and most uniform concentration of annihilation centres lies within a

radial distance r∗ from the radial centre of the positron-emitter with which the

tracer is labelled, with r∗ < R. The two main cases considered in the original work

of Odo et al. [114] – a particle with a radiolabelled central core, and one with a

surface coating of positron-emitting material – are depicted schematically in Fig.

17.

These simple assumptions can be used as a robust means of identifying and thus

removing corrupt LoRs from a data set. Let us consider a simplified, two dimensional

data set, pictured in Fig. 17. From visual observation, one can intuitively determine

that lines 1, 4 and 9 are likely to be corrupt. Beyond this, however, it is harder to

distinguish corrupt from true LoRs.

To sort true from false LoRs, the SDM considers the shortest distance, di−j between

each given pair of LoRs,

di−j =
|
−−→
PiPj.~n|
||~n||

, (13)

with ~Pi and ~Pj representing the closest points on a given pair of LoRs li and lj and ~n the

unit vector connecting them. According to assumption II. above, for any uncorrupted

LoR lm passing through our tracer, any other uncorrupted LoRs corresponding to the

same tracer must satisfy the constraint dm−n ≤ R (m 6= n, n ∈ [1, N ]). As such, the

tracer position can be expected to be represented by a ‘set’, si, of multiple LoRs all

satisfying this condition.

additional assumption that the tracer medium is denser than the surrounding medium must also be

considered.
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Figure 17. Left: Hypothetical example of a small sample of LoRs in a two-dimensional

plane. Right: Table detailing the total number of interacting LoRs (i.e. cases in which

an LoR passes within a distance di−j ≤ R of the current LoR of interest) belonging to

the sample, si, pertaining to each given LoR, li.

Let us consider, as an example, the set, s5 belonging to LoR l5 from Fig. 17. We can

see that l5 possesses a total of 6 points of nearest approach falling within the constraint

d5−n ≤ R. To determine which of this ‘set’, s5, of nearest neighbours most probably

represents the true position of the tracer, the algorithm first determines the centroid

along l5 of the 6 relevant points, ~Pn (see Fig. 18).

Considering again our assumptions, one can reasonably assume that all true LoRs

should fall within a distance R from the calculated centroid. Any LoRs not satisfying

this constraint are then classified as corrupt. For the case of set s2, LoRs l10 and l11
that were previously part of the set are now discarded, leaving 4 LoRs which we may

presume to be uncorrupted (see Fig. 18).

This process is repeated for the sets, sn, belonging to all other LoRs, with the set

possessing the largest number of LoRs taken to represent the uncorrupted data. In

cases where multiple sets possess the same number of remaining LoRs, the algorithm

simply chooses the first such set. It is typically unimportant which is chosen, as all

uncorrupted LoRs belonging to the chosen set are also members of the other sets with

the same maximum number of remaining LoRs. The tracer position is then determined

using exclusively LoRs from the chosen set.

The use of a priori information regarding particle size, geometry and tracer

distribution is both the greatest benefit and the greatest drawback of the spherical

density method. While the use of this information effectively ensures the absence of

corrupt LoRs, its requirement means that the method is currently restricted to a very

specific range of tracer geometries. Nevertheless, as the majority of PEPT work to date

has employed spherical or near-spherical tracers, this is not a severe limitation in most

cases.

In order to perform multiple particle tracking, the algorithm is run as described

above, and the centroid of the set containing the largest number of uncorrupted LoRs
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Figure 18. Left: The same hypothetical set of LoRs depicted in Fig. 17, showing also

a green circle of diameter 2R placed at the centroid of all points of closest approach

lying along line l5 (see main text). Right: The table from Fig. 17 updated to include

only cases satisfying the additional constraint that all LoRs counted within the set si
must pass within a distance R of the centroid position of li.

is taken as the position of the first tracer. The LoRs corresponding to this set are then

removed from the data set, and the algorithm applied again to the remaining LoRs.

This process is then repeated until all Nt tracers within the system have been detected

successfully.

To associate computed centroids from a given sample A with a subsequent sample

B, the algorithm computes the absolute separation distances between each new centroid

and those from the previous batch. If the timestep between successive frames is suitably

small, and the particle velocities suitably low, it can be assumed that for two successive

computed centroids, the particle would not have moved significantly from its initial

computed position. On this basis, the algorithm can associate each newly computed

centroid with the closest neighbour from the previous set. This process is repeated to

match all centroids from sample B to a correspondent centroid from A.

An interactive Python notebook illustrating the key steps in the Spherical Density

Method algorithm may be found here.

Strengths Weaknesses

Extremely effective in identifying Requires a priori knowledge of tracer geometry

corrupt LoRs and positron emitter distribution

Mesh-free method Requires a priori knowledge of Nt

Relatively computationally efficient Currently only implemented for spherical tracers

Table 6. Major strengths and weaknesses of the spherical density method.
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5.8. PEPT using Machine Learning (PEPT-ML)

The PEPT-ML algorithm [17, 18], developed by Nicuşan and Windows-Yule at the

University of Birmingham uses, as its name implies, machine-learning-based clustering

techniques to locate and track PEPT tracers. The PEPT-ML algorithm begins by

subdividing the acquired set of LoRs into samples of equal length - ideally about

200 LoRs per sample, but many fewer may be used to maximise temporal resolution;

indeed, PEPT-ML has been shown to successfully locate particles using fewer than 20

distinctLoRs. For each sample, all pairs of LoRs whose separation is smaller than a

user-defined value dmax are transformed into ‘cutpoints ’; a cutpoint is simply the half-

way point of the segment connecting a pair of LoRs at their point of closest approach.

As depicted in Figure 19, cutpoints are denser around tracers. The Hierarchical Density

Based Spatial Clustering of Applications with Noise (HDBSCAN) [115] algorithm (an

overview of which is given in Appendix 7) is used to extract clusters from a given sample

of cutpoints. Unlike previously-described algorithms, where the weighted centre of each

cluster is then taken as an approximate tracer position, PEPT-ML considers instead

‘cluster exemplars ’, or the most significant intra-cluster data points, to compute the

final tracers’ locations. As these exemplars are uniformly distributed along a cluster

of cutpoints, this allows PEPT-ML to avoid commonly-encountered ‘parallax ’ effects,

where the asymmetric LoR (and thus cutpoint) distribution for tracers positioned away

from the scanner centre creates clusters with higher densities of cutpoints toward the

scanner centre, thus skewing the conventionally-calculated centre. An example of two

tracers’ tracked positions after this initial (‘first-pass ’) clustering is depicted in Figure

19(d).

Following this initial clustering, the cluster centres found are then themselves

clustered again, yielding tight, highly accurate tracer trajectories (two-pass clustering

– see Figure 19 (e)). By windowing the raw PEPT data to create large numbers of

‘overlapping’ first-pass clusters, two-pass clustering is able to retain even sharp, sudden

changes in the particle movement.

As the number of cutpoints is quadratically proportional to the local LoR density,

the number of cutpoints belonging to a given cluster can be taken as an indirect measure

of tracer activity; PEPT-ML uses this ‘tracer signature’ to aid the reconstruction of

tracer trajectories, even in cases where particles collide – a potentially powerful ability.

The process used by PEPT-ML to link and distinguish particle trajectories involves

two stages: a spatio-temporal ‘segregation’ step and a signature-based linking step.

The segregation stage involves a single-linkage clustering algorithm which constructs a

minimum spanning tree (MST, or minimum distance path) connecting all points found,

then simply ”cuts” all paths longer than a maximum distance. However, points that are

in the same spatial position at different times must be differentiated - a custom spatio-

temporal metric is therefore used, such that only locations close in the time-sorted array

of positions can be connected in the MST. Figure 19(f) depicts the segregated positions

found after the second pass of clustering, colour-coded by the trajectory ID assigned.
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Figure 19. Illustration of steps used by PEPT-ML in tracking two 1 mm diameter

MCC tracers in a bubbling fluidised bed, imaged at the University of Birmingham.

Panel a) depicts 400 LoRs from the data set; panel b) shows their corresponding

cutpoints, computed for pairs of LoRs which are closer than dmax = 0.5 mm. Panel c)

colour-codes them by the cluster IDs assigned by HDBSCAN: green represents noise,

purple is cluster one and orange is cluster two; the cluster exemplars’ (see main text)

centroids are shown as large circles, blue and red, respectively. Panel d) depicts the

tracer locations found after the first pass of clustering of 80,000 LoRs. Panel e) shows

the corresponding tracer locations after the second pass of clustering; both panels d)

and e) colour-code points by their cluster size. Panel f) illustrates the separated tracer

trajectories, colour-coded by the points’ trajectory ID.

If tracers collide or intersect, the signatures of the interacting particle can be used to

correctly link the pre- and post-collisional ‘ends’ of each trajectory.

An interactive Python notebook illustrating the key steps in the PEPT-ML

algorithm may be found here. A complete implementation of the PEPT-ML method may

also be found on Positron Imaging Centre github repository, https://github.com/uob-

positron-imaging-centre/.

5.9. PEPT using Expectation Maximisation (PEPT-EM)

The PEPT Expectation-Maximisation algorithm [116] was developed at the University

of Edinburgh in collaboration with the University of Birmingham. The method expands

on the original concept of the Birmingham Method by clustering lines into ‘inlier ’ and

‘outlier ’ sets. Using a maximum-likelihood approach [117, 118], the LoRs in a set of
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Strengths Weaknesses

Does not require a priori knowledge of Algorithm parameters can be less

number of tracers intuitive

Can track at least 128 tracers High memory usage for extreme

Includes tracer signature-based numbers of tracers

trajectory separation

High-performance, parallelised

implementation with Python interface

Table 7. Major strengths and weaknesses of PEPT-ML.

data can be allocated to one of many clusters which are iteratively recalculated until

convergence, with LoRs that are due to a scattered coincidence or random coincidence

being assigned to a larger ‘outlier ’ cluster approximating the volume of the detector

field of view, and ‘true’ LoRs being attributed to a smaller ‘inlier ’ cluster corresponding

to the tracer.

Unlike other methods, PEPT-EM is based on a physical model of positron emission

and LoR generation. For a set of K particles, each particle has a centre defined as

~xk (k = 1, 2, · · · , K) and emits positrons that annihilate a short distance away from

the centre at yk, where the probability of annihilation at yk is defined by a Gaussian

distribution around the centre ~xk with a variance σ2
k. The relative weight of each cluster

is defined by ρk, loosely characterising the relative activity of each particle.

This sets up the problem as a Gaussian mixture [119], which can be solved using

expectation maximisation (EM) [120]. We also denote an outlier cluster where k = 0,

centred at the middle of the field of view and with a variance of the order of the size of

field of view. We call the inverse of this variance α, such that α−3/2 is of the order of

the volume of the field of view. In practice, we use this value as a constant that requires

some fine tuning. The weight of this cluster, ρ0, is also defined by normalising ρ such

that
∑K

k=0 ρk = 1.

Using this information, we define the log-likelihood of finding each cluster with

parameters ~xk, σ
2
k, ρk in a set of lines L as

L
(
{~xk, σ2

k, ρk}1≤k≤K
∣∣L) =

∑
`∈L

log

(
ρ0α +

K∑
k=1

ρkσ
−2
k e−D

2(~xk,`)/2σ
2
k

)
. (14)

The log-likelihood is preferred as it is a concave function and therefore easier to maximise

than the likelihood. However, maximising the likelihood explicitly is difficult due to the

large number of variables, hence we use expectation-maximisation. With an initial

guess of the clusters, we are able to optimise and improve the solution iteratively until

we maximise the likelihood.

In order to use expectation-maximisation, we introduce unobserved, or latent,

variables. We can think of this variable as imaginary, used to simplify our model.
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In this case, the latent variable we use is ζ and is associated with each LoR and labels

the LoR as being associated with one of K clusters, such that if the LoR was generated

by a positron annihilation originating from the particle k, then the value of ζ` = k where

ζ` ∈ 0, 1, ..., K.

We can then, for each line and each cluster k, determine the probability that ζ` = k,

given as the latent weights.

w`,k

({
~xk′ , σ

2
k′ , ρk′

}
1≤k′≤K

)
=

ρkσ
−2
k e−D

2(~xk,`)/2σ
2
k

ρ0α +
∑K

k′=1 ρk′σ
−2
k′ e−D

2(~xk′ ,`)/2σ
2
k′

(15)

for 1 ≤ k ≤ K, where k = 0 is the outlier cluster and w`,0 = 1−
∑K

k=1w`,k and D2(~x, `)

is the minimum distance between the cluster centre ~x and the line `, where ~y is a point

on the line:

D2(~x, `) = |~x− ~y|2 − ((~x− ~y) · ~n)2 . (16)

Note that calculating the latent weights requires an initial guess for the centroids ~xk,

variance σk and weights ρk of our K clusters. Once we have the latent weights calculated,

we use them to recalculate ~xk, σkandρk using

~xk = Centroidk ≡

(∑
`∈L

w`,kT`

)−1∑
`∈L

w`,kT` ~y`, with T` = I3 − ~n` ⊗ ~n`. (17)

where I3 is the identity matrix and ~y` and ~n` are a point on the line ` and the unit

vector along ` respectively. The optimal variances σ2
k are given by

σ2
k = Vark ≡

∑
`∈Lw`,kD

2 (Centroidk, `)

2
∑

`∈Lw`,k
. (18)

Finally, the optimal component weights ρk are given by

ρk = Rk ≡
1

N

∑
`∈L

w`,k, (19)

with N the number of LoRs. The weight of the outliers is determined as ρ0 =

1−
∑K

k=1 Rk.

The iterative nature of the algorithm requires alternating between the calculation

of the latent weights, and maximising the likelihoods using equations 17, 18 and 19 until

convergence is achieved, as shown in Algorithm 1. The convergence of an inlier and the

outlier cluster is illustrated in figure 20.

The number of iterations to reach convergence can vary depending on the number

of clusters and the initial guess. Typically, for the first frame, we apply of the order of

1000 iterations. However, when tracking trajectories, we can achieve convergence using

fewer iterations provided that the time interval between batches of LoRs is sufficiently
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Figure 20. Left: A schematic of the PEPT-EM model of an LoR ` being emitted at

point y around the surface of a Gaussian cluster centred on x with a variance σ2. Right:

A simple schematic showing the evolution of the clusters generated by the PEPT-EM

algorithm, showing clusters k = 0, 1, 2, 3. The large outlier cluster, k = 0, accounts for

detected LoRs that have undergone scatter or are due to random coincidences, while

smaller clusters converge using their most-likely LoRs.

Algorithm 1 PEPT-EM

1: Initialize {xk, σ2
k, ρk}1≤k≤K

2: ρ0 ← 1−
∑K

k=1 ρk
3: repeat . Main loop

4: compute wk,` from (15) . Expectation step

5: for 1 ≤ k ≤ K do . Maximization step

6: xk, σ
2
k, ρk ← Centroidk,Vark,Rk

7: ρ0 ← 1−
∑K

k=1 ρk Me

8: end for

9: until convergence

small that the particle centroids have only moved a small distance. Consequently, by

updating the position of individual clusters we implicitly achieve trajectory separation.

A further feature of PEPT-EM, which isn’t used in this paper, is that one may

take a Taylor expansion of the particle centroids within a single batch of LoRs L with

respect to time, to account for the motion and acceleration of particles within a single

batch of LoRs. As such, not only can we maximise the likelihood of each cluster k

having a centroid ~xk, but also a velocity δ~xk/δtL and acceleration δ2~xk/δ
2tL. This can

significantly reduce the amount of post-processing needed on PEPT data in order to

produce velocity vector fields, for example, and can significantly assist in improving the

accuracy of tracking.

An interactive Python notebook illustrating the key steps in the PEPT-EM

algorithm may be found here.

6. PEPT Methodologies – a Quantitative Comparison

As is apparent from the preceding section, there exist many, strongly divergent PEPT

methodologies. Although all documented in peer-reviewed literature, it is nonetheless
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Strengths Weaknesses

Can track a large number of tracers Number of iterations to convergence

Relatively computationally efficient can be arbitrary

Includes simple trajectory separation Requires a priori estimate of Nt

Extended to track velocity & acceleration Tuning of parameter α is tricky

With strongly differing activity, multiple

clusters may converge on same point

Table 8. Major strengths and weaknesses of PEPT-EM.

impossible to compare their effectiveness directly and reliably from this literature alone,

due largely to two reasons: firstly, the different algorithms have been developed and

tested using different detectors and tracers, meaning quoted values of spatial and

temporal resolution quoted are system-specific. Secondly, the tests used to benchmark

said algorithms vary widely between different publications.

A major aim of this work is to provide a comprehensive and rigorous standardised

testing framework for the benchmarking of PEPT algorithms. In the subsections below,

introduce the proposed framework, and apply it to the methodologies described in

Section 5, focusing specifically on the most modern and/or widely-used algorithms.

6.1. A Standard Testing Framework for PEPT

The framework has been carefully designed to allow a comprehensive, quantitative and,

importantly, fair comparison of diverse PEPT algorithms. Firstly, as different algorithms

will inherently possess different strengths and weaknesses, the benchmarking framework

comprises a number of individual tests, each designed to evaluate a specific aspect of an

algorithm’s performance. As not all PEPT algorithms are designed for multiple-particle

tracking, it is divided into two parts, one assessing an algorithm’s ability to locate

a single tracer, the other its ability to locate – and, crucially, distinguish – multiple

particles. Secondly, our analysis judges an algorithm’s ability based on a number

of distinct quantities, including both spatial and temporal resolution, the number of

particles it can successfully track, its resilience to noise, and various other factors.

Thirdly, each individual test must be performed using two distinct camera geometries

(based, respectively, on the ADAC Forté [14, 21] and ECAT EXACT [121, 122]), such

that algorithms developed for a ring camera are not unfairly disadvantaged by being

tested exclusively on a planar camera, and vice-versa]. Finally, all tests are produced

using GATE simulations (as described in Section 4) such that the ‘true’ particle positions

] As the scanner geometries simulated are based on real cameras currently used in PEPT imaging,

the geometries, sensitivities, and other key detector properties will inherently differ between the two –

i.e. the absolute accuracy achievable on the ADAC will differ from that achievable on the ECAT. As

such, the results of different algorithms should only be compared in absolute terms for each individual

scanner separately.
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against which measured locations are compared can be known to an arbitrary degree of

accuracy and precision.

It is important to note that the aim of this comparison is not to present a single

‘best’ algorithm, but rather to highlight the relative strengths and weaknesses of each

methodology, such that future researchers may choose the most suitable method – or

indeed methods – for their specific goals. To ensure a lack of bias, the tests for each

algorithm were performed by the original developers thereof, and none of the participants

were permitted to view the ground-truth data until after the submission of their results.

The benchmarking tests, alongside all data presented herein, have been made

available in an open-source repository here, allowing the developers of future PEPT

algorithms to assess their capabilities against contemporary methods easily and

meaningfully, thus providing a much-needed standard for the PEPT technique.

For all simulated tests, unless otherwise stated, 10 MBq of fluorine-18 is prescribed

as the source activity for a 2 mm diameter, volumetrically activated glass tracer. The

activity is defined as positron-emission.

6.2. Single Particle Tracking Tests

In this first suite of tests, we evaluate the fundamental abilities of a PEPT algorithm:

its achievable spatial and temporal accuracy, its ability to track rapidly-moving tracers,

its ability to mitigate noise, and its consistency throughout a system’s field of view.

We include in this test the two algorithms which, historically, have received the most

use (the Birmingham method and the G-means method) as well as the most recent

algorithms from each of the world’s main PEPT centres (SBSR, FPI, the Spherical

Density method, PEPT-ML and PEPT-EM).

6.2.1. Minimum activity test– The first, and most fundamental, test is designed to

evaluate the maximal accuracy of an algorithm, as well as its functionality using small

numbers of LoRs (i.e. locating low-activity tracers). The test simply requires the

reconstruction of a single tracer, using a number of LoRs Ns ∈ [101, 104]. For each

sample size, Ns, 10 repeat tests are performed, each with a different random set of

LoRs.

The performance of a given algorithm is judged on the following criteria: i) the

minimal static location error, σs, achieved for any Ns; ii) the smallest number of LoRs

for which a particle can be located successfully. For the case in which, in test ii), multiple

algorithms share the same minimum sample size, Nmin.
s , they are differentiated based

on the location error achieved at Nmin.
s . For a given Ns, the location error is calculated

as the mean over all Nrep repeat tests of the absolute distance between the true particle

location, ~rt, and the measured particle location, ~rt, i.e.

σs =
1

Nrep

Nrep∑
i

|~rt − ~rm| (20)
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Figure 21. The error, as calculated from equation (20), in PEPT detected positions

decreases when more LoRs are used. Data is shown for both the ADAC forte detector

geometry (A) and the ECAT EXACT detector geometry (B). The error bars shown

represent the standard deviation of the results achieved across multiple repeat tests.

As one may intuitively expect, location error increases monotonically with

decreasing sample size for all algorithms tested. Within their respective margins of

error, the precision of all algorithms shows a similar power law relation with Ns. Despite

being the oldest algorithm, the Birmingham method in fact achieves the highest overall

accuracy in both camera geometries, and performs consistently well across all tests. In

many – indeed a majority of – cases it is outperforms even the most recent algorithms,

though PEPT-ML and the FPI method yield superior results in some cases.

That the Birmingham method performs so well in this test – in particular for high

numbers of LoRs – is perhaps not surprising, as its iterative nature means that, for

static tracers such as those imaged here, it can hypothetically achieve arbitrarily high

accuracy [14]).

In terms of the various algorithms’ abilities to discern the position of low-activity

tracers (point ii) above), 5 of the 7 algorithms tested managed to reliably provide a

location using only 10 LoRs, though in all cases the location error was > 1 mm. For

Ns ≤ 50, the Spherical Density Method did not return a result; while the G-means

algorithm returned values, these were in many cases false locations, hence the significant

error bars shown. All algorithms were found to be able to yield sub-millimetre accuracy

with as few as 100 LoRs.

6.2.2. Maximum velocity test– This test is intended to establish the ability of a PEPT

algorithm to track fast-moving particles. The test involves reconstructing the trajectory

of a moving tracer following a one-dimensional sawtooth path (Fig. 22). The tracer

velocity varies from 0.04 m/s to 20 m/s, a span designed to represent, and indeed

exceed, the range of velocities one may reasonably expect to encounter in a real PEPT
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experiment. The sawtooth path is chosen to introduce significant accelerations and

discontinuities, thus further challenging the algorithms. The tracer activity is fixed

at 10 MBq, a value chosen to be a) representative of values used in experiment, b)

adequately high that the particle motion can, hypothetically, be tracked in all cases,

and c) adequately low that neither positron camera is expected to experience significant

dead time [21].

Figure 22. Example trajectory for the velocity tests over two periods of motion.

A: Forte geometry and for vtracer = 80mms−1 B: Forte geometry for vtracer =

10240mms−1. C: ECAT geometry and for vtracer = 80mms−1 D: ECAT geometry

for vtracer = 10240mms−1.

The phenomenology observed here is somewhat richer than in the preceding section.

The Birmingham algorithm, though typically producing the best results in the previous,

stationary-source test now exhibits the largest location errors in a significant majority
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of cases. Conversely PEPT-EM, which produced some of the weakest results for the

stationary source in the ECAT geometry now produces the smallest errors for all but two

cases in the same geometry. For the ADAC, however, while PEPT-EM again performs

strongly for slow-moving tracers its accuracy falls off rapidly as velocity increases, to

the point where at high velocities it gives the largest error of all algorithms tested.

This is probably due to the fact that at the highest velocities, where only relatively

few LoRs per point can be suitably used, the algorithm cannot meaningfully identify

both an ‘outlier’ and ‘inlier’ cluster. PEPT-ML, meanwhile, consistently performs either

best or second-best across both camera geometries and all velocities tested. The SBSR

algorithm also performs extremely well, in particular in the ADAC geometry, and for

the case of fast-moving tracers – as may perhaps be expected from its intended purpose

of accurately tracking particles using minimal numbers of LoRs.

The majority of algorithms approximately obey a power-law relation between tracer

velocity and location error. The increase in tracer speed is expected to cause a greater

spread of LoRs within each reconstruction timestep and thus a decrease in reconstruction

accuracy. In response to increasing tracer speed, it is typically helpful to decrease the

reconstruction timestep to mitigate this effect. However, this inherently leads to a

reduced total number of LoRs available for each tracer location, thus reducing spatial

resolution. Users in this exercise were left to balance these competing defects in the

manner they deemed most suitable for their own respective algorithms. In particular,

the decrease in location accuracy with a decreasing numbers of LoRs per location is

clearly observed in the results for the G-means and FPI algorithms: the results for these

algorithms show apparent step changes in error, occurring approximately every other

data point. The fact that these step-changes align with changes in the reconstruction

timestep implemented by the user strongly suggests that it is indeed the changing

number of LoRs used for reconstruction causing this effect. A similar effect may be

observed in the PEPT-EM results, with changes in accuracy at each datapoint.

Considering the above-discussed trade-off between temporal and spatial resolution,

it is potentially useful to reframe our data in a way which compensates for this effect. In

Fig. 24, rather than the pure spatial resolution achieved by the algorithms – which takes

no account of how often a particle was detected – we consider instead the ‘spatiotemporal

resolution’, defined as the average location error divided by the root of the detection

rate††. In terms of this metric, the PEPT-EM algorithm – which uses comparatively

large amounts of data to produce particularly high location accuracy – performs less well,

while the abilities of PEPT-ML and the SBSR methods – both designed explicitly to

handle low-activity tracers – are more strongly emphasised; possible reasons underlying

this, omitted here for brevity, are discussed in detail in Appendix 8. For both the spatial

and spatiotemporal cases, the SBSR algorithm is observed to perform particularly well

for high tracer velocities.

††The square root is chosen as the most reliable normalising factor as it is well known that the precision

of PEPT location varies approximately as 1√
N

where N is the number of LoRs used per particle location

event [14].
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Figure 23. The error in PEPT detected positions increases when tracers move at a

higher velocity. A: Forte detector geometry and movement in X-direction. B: Forte

detector geometry and movement in Z-direction. C: ECAT detector geometry and

movement in X-direction. D: ECAT detector geometry and movement in Z-direction.

6.2.3. Scatter sphere test– The goal of this test is to establish the ability of the different

algorithms tested to handle noisy data. In order to produce noise, the GATE-simulated

source is placed at the centre of a 50 mm diameter sphere whose physical properties are

varied to elicit different levels of both scatter and attenuation, each of which may act to

increase the presence of ‘random’ photons and thus noise in a given PEPT measurement.

The scatter media used are summarised in Table 9.

The materials used are chosen to provide a significant range of attenuation

coefficients and thus degrees of both attenuation and scatter, from air – in which almost

zero scatter is expected – to BGO, in which only one in every thousand gamma ray pairs

can be expected to reach the detectors unimpeded. The spheres are offset vertically by

20 mm from the centres of both cameras so as to avoid any non-representative data
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Figure 24. The calculated spatiotemporal resolutions of PEPT detected positions

increases when tracers move at a higher velocity. A: Forte detector geometry and

movement in X-direction. B: Forte detector geometry and movement in Z-direction. C:

ECAT detector geometry and movement in X-direction. D: ECAT detector geometry

and movement in Z-direction.

arising due to the special case of a perfectly-centred source.

Unlike the two preceding tests which produced relatively clear trends, those yielded

by the scatter sphere test are more complex. While the overall trend across all data

sets is, unsurprisingly, a general decrease in accuracy with increasing density (and

thus increasing scatter/attenuation), the individual behaviours of several algorithms

are observed to be somewhat erratic.

Only the G-means algorithm yields a continuous monotonic trend, suggesting it

is the least sensitive to noise; the downside, however, is that on average it yields the

lowest accuracy. Though non-monotonic, the FPI, Spherical Density and SBSR methods

all yield relatively consistent and strong results across both detector geometries. The
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Figure 25. Left: Image of the 100 mm diameter scatter sphere and three gamma

ray pairs, one of which has scattered with the sphere material. Centre: Image of the

scatter sphere inside the ADAC Forte detector. Right: Image of the scatter sphere

inside the ECAT geometry.

Material Density (g/cm3) Cross-section (cm2) Attenuation Coeff. (cm−1)

Air 0.00129 0.0806 0.000111

Polyethylene 0.960 0.0986 0.0946

Water 1.00 0.0960 0.0960

PVC 1.65 0.0890 0.147

Aluminium 2.70 0.0837 0.226

NaI 3.67 0.0933 0.342

CZT 5.68 0.0896 0.509

Steel (SS304) 7.92 0.0832 0.659

Copper 8.96 0.0827 0.741

BGO 7.13 0.1501 1.070

Table 9. List of materials and properties used in the scatter sphere tests.

Birmingham method shows both relatively good consistency and accuracy (indeed, the

best accuracy for the highest attenuation) in the ADAC geometry, but is somewhat less

reliable in the ECAT.

These findings raise an interesting question as to whether ability or reliability is

the most important factor when choosing an algorithm for an experiment involving

significant variability in the degrees of scatter and attenuation likely to be encountered.

If the former, PEPT-EM would be the most sensible choice, but would run the risk

of producing extreme outliers. If the latter, then the FPI, Spherical Density or SBSR

method would provide a safer choice.

The extreme variation observed is most likely explained by the fact that under

high-scatter conditions, there exists an increased probability that random fluctuations

in the LoR density field may be comparable in magnitude to those registered at the

true particle location, and that certain algorithms are simply more susceptible to these

false locations. A deeper investigation into the origins of the observed inconsistencies

in location would make a valuable future study.
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Figure 26. The error in PEPT detected positions increases when more LoRs are

corrupted by scattering. A: Forte detector geometry. B: ECAT detector geometry.

6.2.4. Field of view test– In this test, a simple, linear tracer trajectory is simulated,

with the particle starting outside the camera at one end of its field of view, and passing

through its centre and out the other end. The goal of this test is to establish the

ability of the algorithms tested to successfully track particles not only in the centre of

a camera’s field of view but also in other regions, where sensitivity and efficiency are

reduced.

Figure 27. Left: Forte geometry. Right: ECAT geometry. Length of the trajectory

for the FOV tests.

As is immediately clear from Fig. 28, for the ADAC geometry, the Stanford SBSR

method markedly outperforms other algorithms both in terms of its peak accuracy and

consistency across the bulk of the detector face. While all other algorithms experience

Page 46 of 72AUTHOR SUBMITTED MANUSCRIPT - ROPP-101402.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



CONTENTS 47

a sharp increase in their error margins as the tracer leaves the most sensitive central

region of the camera, an error of < 0.2 mm is achieved across the vast majority of the

trajectory for SBSR. Despite this high accuracy, the code also offers very impressive

temporal resolution, as may be seen from the density of points in Fig. 28, again in

line with its intended purpose of providing high-resolution data using relatively low

numbers of LoRs. Interestingly, this excellent performance is not reflected in Fig. 29,

as the overall mean error is significantly skewed by the presence of large deviations

encountered at the very edges of the scanner (not shown in Fig. 28 so as to maintain

a sensible y-axis scale). This is a salient reminder that such simple scalar statistics –

while useful for making quick, broad comparisons – can, in some cases, be misleading.

Where this is found to be true in the present work, as in this case, we have been careful

to include additional data to ensure a fair and meaningful comparison.

Figure 28. As the tracer nears the edges of the FOV, the error increases. A: Forte

geometry. B: ECAT geometry. Every fifth detection is plotted and moving average

filter of 20 points is applied to smooth the plotted trajectories for each algorithm.

In the ECAT geometry, while at its peak near the centre of the system the SBSR

algorithm still achieves the highest accuracy of all codes tested, it is the FPI algorithm

that demonstrates the greatest consistency across the full axial length of the detector.

The lower accuracy achieved by the SBSR algorithm in this case is most probably due

to the relatively short bore of the ECAT camera – as the locations determined by the

SBSR algorithm take into consideration both previous and subsequent timesteps, it is

possible that high errors achieved near the edge of the system are acting to increase the

error also of other points further within the detector field of view that also rely on this

information.

In terms of overall accuracy, all codes are observed to achieve sub-millimetre

precision for both camera geometries. In the ADAC geometry, the Birmingham and

PEPT-ML algorithms are observed to provide the highest accuracy; in the ECAT
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geometry the FPI and PEPT-EM algorithms perform similarly well. Where the

Birmingham, FPI and PEPT-EM algorithms all follow relatively consistent trends,

however, PEPT-ML’s accuracy varies much more erratically, though this may be due to

the small sample size used, allowing it to yield a significantly higher temporal resolution

than the other codes whilst maintaining a comparable spatial resolution – as is clearly

illustrated in Fig. 29.

A key observation from this test is that the fundamental tracking philosophy of

whether a single frame contains a fixed number of LoRs or occurs over a fixed timestep

can considerably impact the results obtained. At the edges of the field of view, the

camera sensitivity varies rather significantly. In this case, the Birmingham algorithm,

for example, simply discards data points at the edges of the system due to the absence of

a suitable number if ‘good’ LoRs for it to locate a particle at each end of the trajectory

– the calculated uncertainty on the minimum distance point in these cases is above the

defined threshold, meaning that the points are discarded. However, for the most part

of the trajectory the Birmingham algorithm is perhaps over-sampling, with a location

every 250 LoRs, meaning that the tracked locations appear relatively noisy.

In contrast, PEPT-EM provides a relatively smooth trajectory towards the centre

of the detector, sampling at a fixed rate every 10 ms and thus utilising approximately

8000 LoRs per location; however at each end there is a deviation from a straight line, as

fewer LoRs are used at each location. For the ECAT dataset, if the first 10 and final 10

points are excluded, the RMS error to a straight line fit is 0.11 mm for the Birmingham

method, and 0.025 mm for Expectation-Maximisation. However, if we include all of

the points the RMS error becomes 0.13 mm for the Birmingham method and 0.18 mm

for Expectation-Maximisation. If the number of LoRs per location is increased to 5000

for the Birmingham Method, then we reduce the RMS error to 0.025 mm accross all

points, at the expense of tracking the ends of each trajectory. Therefore, for problems

like this in which the tracer explores the entirety of a scanner’s field of view, the user

should consider whether they value tracking the entirety of a trajectory with slightly

less accuracy, or choose to use an algorithm that may provide a shorter section of the

trajectory but not compromise on resolution.

The G-means and FPI methods similarly use fixed timesteps for reconstruction,

and suffer from a loss of accuracy at the axial edges of each scanner, where reduced

sensitivity leads to fewer LoRs per timestep. In the case that these regions of reduced

accuracy may adversely impact the outcomes of a given measurement, an experiment

can be designed such that any data taken in these regions can be rejected. Such a

‘clipping’ of the scanner field of view to its more sensitive regions has indeed already

been employed in PEPT measurements using the FPI method [46,94].

In general, error values corresponding to the majority of codes follow an

approximate ’U’-shape, with a minimum at the centre of the detector and a maximum

near its edge. This is probably due to the higher proportion of random events near the

edges of the detectors, where it is more likely that one half of an annihilation-pair of

gamma rays will hit the detector and the other ‘miss’. The corresponding increase in
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Figure 29. Above: Mean errors of each algorithm plotted with error bars denoting

the standard deviation of errors. A: Forte geometry. B: ECAT geometry. Below: The

spatiotemporal resolution returned by each algorithm. A: Forte geometry. B: ECAT

geometry. Below: The spatiotemporal resolution returned by each algorithm. A: Forte

geometry. B: ECAT geometry.

corrupted LoRs will tend to ‘pull’ the measured location toward the centre of the field

of view. Differences in sensitivity and geometric efficiency at different positions within

the cameras’ fields of view are also liable to have an effect on the data quality produced

by some, if not all, algorithms near the edge of the field of view. Additionally, there

exists a slight asymmetry to the ‘U’-shape. This is because in the Forte geometry the

detectors are fixed to a large aluminium gantry ring about which they able to rotate.

Similarly, in the ECAT geometry, tungsten shielding is present which acts to partially

shield the detectors from rays potentially emanating from other parts of a given system

lying outside the FOV. In both cases, the asymmetrically-positioned material increases
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the proportion of detected LoRs corrupted by scatter and/or attenuation, and thus

disproportionately increases the error in PEPT reconstructed positions for some regions

of the field of view as compared to others.

The main observation which can be drawn from this section is the complexity of the

value judgement one must undertake when choosing the most suitable PEPT algorithm

for a given situation. Here, the algorithm achieving the lowest overall error is not

necessarily the same as that which will produce the highest spatial resolution across

the majority of the scanner’s field of view, nor are either of these guaranteed to yield

optimal temporal resolution. As such, the optimal choice depends sensitively on the

goals of the experiment to be performed, the detector geometry used, and the size of

the system used. This observation presents a particularly emphatic example of a more

general finding from the present work – that there really does not exist a single ‘best’

algorithm overall; rather, different algorithms will excel under different circumstances.

6.3. Multiple Particle Tracking Tests

In this second set of tests, we assess our algorithms’ abilities to detect, differentiate and

track multiple particles, exploring their accuracy, their ability to distinguish nearby

tracers, their ability to simultaneously locate large numbers of tracers, and their

resilience against false location events. In these tests, only 5 of the 7 algorithms tested

in the previous section are included – the SBSR algorithm has yet to be extended to

the case of multiple-particle tracking and the Birmingham method, though capable of

locating multiple tracers, does not have an in-built functionality for trajectory separation

in the case of equally-active tracers.

6.3.1. Minimum separation test– In this test, two 2 mm diameter tracers, each of

activity 10 MBq, are separated by a variable distance x. The value of x is varied from

30 mm down to 2 mm (i.e. the point at which the two simulated tracers are in contact).

The purpose of this test is to assess the ability of a given algorithm to successfully

resolve two particles in close proximity as opposed to falsely merging them into a single

location – an explicitly-noted problem with some older algorithms [84].

It is immediately notable that PEPT-EM, PEPT-ML, FPI and the Spherical

Density Method are all capable of successfully resolving the two separate tracers up

to and including the point of contact. This is a potentially highly consequential finding,

as it had previously been assumed that the PEPT technique was incapable of imaging

particle collisions. This observation, therefore, potentially opens up a number of valuable

new applications for PEPT. Further testing needs to be performed in order to determine

the limitations on tracer size for which particle collisions can be successfully resolved.

All five codes tested achieve sub-millimetre accuracy across the majority of the

tested separation values. The accuracy levels achieved by all codes are observed to

remain relatively independent of the precise particle separation for comparatively large

distances (& 5 mm), sharply increasing after this point in all cases except for PEPT-
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Figure 30. The measured error in PEPT location for the case of two static tracers

separated by various centre-to-centre distances ranging from 2 mm (particles in

contact) to 30 mm. A: Forte detector geometry and separation in X-direction. C:

ECAT detector geometry and separation in X-direction. D: ECAT detector geometry

and separation in Z-direction.

EM, which maintains a remarkable degree of precision (typically < 100 µm), even to

the point of contact. This impressive consistency is perhaps due to the fact that, unlike

other contemporary PEPT methods, the Gaussian mixture model underlying PEPT-EM

is based on a more comprehensive mathematical model of the physics underlying PEPT.

That is, PEPT-EM seeks to maximise the probability of there being exactly 2 tracer

clusters, rather than trying to identify N clusters and their locations. It should also be

mentioned, however, that PEPT-EM produced only a single data point from all LoRs

in the samples provided, with others attempting to produce multiple locations from the

same data, which may have had an influence on the absolute accuracy achieved.

It is also of note that in many of these results there appears to be a gap of roughly

0.1 mm between the accuracy achieved by PEPT-EM and PEPT-ML and that of the

G-Means and FPI methods. This may be simply due to a small discretization error

caused by the use of voxels in the latter methods. For this exercise, both G-Means

and FPI used 1 mm grids; it has been shown in optical peak fitting routines (similar to

the methodology employed for FPI localization) that the minimum achievable accuracy
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is usually on the order of one-tenth of a pixel [123]. In other words, it is possible

that the differences observed between voxelised and mesh-free methods is not an innate

difference in the algorithms’ abilities, but simply due to the specific choice of voxel size

implemented.

6.3.2. False positive test– In this test, the algorithms used must successfully locate an

array of 4, 8, and 16 particles arranged, respectively, to form a square, a cube, and a

tesseract (Fig. 31), geometries deliberately chosen to include high degrees of symmetry to

create ‘cross-talk’ between LoRs from different particles which may be falsely interpreted

as particle positions. This test is therefore designed to assess an algorithm’s resilience

to false detection events.

All geometries created share a vertex length of 10 mm, meaning that no two particles

lie closer than this distance. This specific minimum separation distance is chosen to be

greater than the detector resolution and – as demonstrated in the previous section –

corresponds to the separation above which the majority of codes’ spatial resolutions

become invariant with distance, ensuring that the present test does not unfairly ‘re-

examine’ abilities tested previously.

Impressively, all codes successfully located all particles in all cases, with no codes

producing false locations.

For all algorithms tested, however, we observe a general decrease in accuracy with

increasing tracer number. While one may intuitively ascribe this trend of increasing

error simply to an increase in particle number, it is notable that a similar trend is not

observed in section 6.3.4, where particle positions are entirely random. This suggests

that it is indeed the symmetry of the systems modelled here that produces an additional

confounding effect. Specifically, we observe that the measured particle locations are

biased toward the centre of the constellation of particles (see Fig. 31).

For the lower tracer numbers and lower degrees of symmetry, all algorithms are

observed to achieve sub-millimetre accuracy, with PEPT-ML and PEPT-EM both

providing resolution on the scale of 100 microns, and the latter achieving accuracy

of below 10 microns in the 4 particle case. As in the previous test, we observe a small

difference in behaviour between meshed and mesh-free methods, which may be ascribed

to the aforementioned pixelation effects. The relatively increased error in the spherical

density method most probably arises due to the iterative nature of the algorithm – as

data is being discarded for each additional particle detected, the precision of locations

will decrease with increasing tracer number, as noted in prior works concerning iterative

PEPT algorithms [82,83].

6.3.3. Orientation tracking test– This test aims to assess not only an algorithm’s

ability to locate a tracer at a single point in time, but to follow said tracer reliably

across multiple timesteps and, importantly, to distinguish successfully the trajectories

of multiple particles following intersecting paths. As such, this is a test not only of
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Figure 31. Above: Figure illustrating the positions of groups of tracers for the false

positive test. The three tests correspond to groups of 4, 8 and 16 partricles arranges,

respectively, in a square, a cube and a tesseract (the four-dimensional analogue to a

cube). Note that in reality each group of tracers are simulated separately and centred

at 0, 0, 0 mm. Below: The positions returned by each PEPT algorithm for the 16

particle test, though some particles are hidden by symmetry in this figure. Some

biasing towards the centre is shown, most notably for the FPI and G-Means methods.

The SDM algorithm experiences difficulty distinguishing between tracers when they

are highly concentrated. A: Forte geometry. B: ECAT geometry.
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Figure 32. The error in PEPT detected positions for the groups of particles illustrated

in Fig. 31. A: Forte geometry. B: ECAT geometry.

the raw location accuracy of a method, but also the associated trajectory separation

algorithms.

Figure 33. This test uses three particles which remain constantly separated from

one another by a fixed distance of 34.5mm (panel (a)) whilst being translated across

a spherical surface. The paths followed by the three particles are illustrated in panel

(b).

We simulate three particles, each separated from the others by a fixed distance,

moving continuously across the surface of a sphere of diameter 40 mm at a constant

velocity 0.8 m/s (see Fig. 33). The reconstructed trajectories are compared individually

against the ground truth data and the mean deviation (equation (20)) across all

measured trajectories used as a measure of the algorithm’s capability.

All of the tested algorithms were able to distinguish and link the separate paths

followed by the three moving particles successfully – that is to say all yield consistent

trajectories with consistent IDs, avoiding the common issues of particles ‘switching’

ID at points of intersection or becoming ‘lost’. Once again, all algorithms showed
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Figure 34. Above: Mean error in reconstructed positions of the three tracers (note

that all algorithms correctly linked the positions of tracers into unique trajectories).

A: Forte geometry. B: ECAT geometry. Below: Spatiotemportal resolution of the

trajectory linking test. A: Forte geometry. B: ECAT geometry.

themselves capable of producing sub-millimetre accuracy even for the case of multiple

moving tracers. For both detector geometries, PEPT-ML and PEPT-EM produced both

the highest and most consistent accuracy.

Interestingly, despite relatively large errors and the largest variability of all codes

tested in the ADAC geometry, in the ECAT geometry the G-means algorithm shows

a capability similar to that of PEPT-ML and PEPT-EM, and even outperforms its

successor, the FPI method. As discussed previously, however, the simple measure of

overall error does not account for the frequency of detection. If we consider instead the

spatiotemporal resolution (Fig. 34), we see an improved relative performance from the

FPI method. Indeed, by this measure, the FPI method also (for the ECAT geometry)

outperforms the PEPT-EM method which, despite high overall accuracy, offers a lower

temporal resolution.

6.3.4. Large tracer number test– The eighth and final test is intended to assess

limitations on the number, Nt, of tracers that can be successfully tracked by a given

algorithm, evaluating also how the algorithm’s accuracy is influenced by increasing Nt.

The test consists of 9 distinct data sets, each containing a different number of
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tracers placed in random positions throughout the scanners’ fields of view. The tests

are deliberately conducted with pseudo-random numbers of particles to prevent those

attempting the benchmarking tests from making ‘educated guesses’ as to the expected

number of locations.

Two aspects of the codes’ performance are directly tested: their ability to locate

large numbers of tracers with no a priori information regarding the specific number to

be located, and the accuracy with which said tracers are located (see Fig. 35). Regarding

the former criterion, all algorithms tested perform impressively – indeed, for the ECAT

geometry the Spherical Density, FPI and PEPT-ML algorithms successfully locate all

particles in all tested cases; the last two also receive a perfect score for the ADAC

geometry. The G-means algorithm also performs relatively well, typically losing only

a relatively small fraction of tracers in comparatively high-Nt cases. The PEPT-EM

algorithm performs well for comparatively low tracer numbers in the ECAT geometry,

but loses particles in almost all ADAC test cases, the fraction of lost tracers generally

increasing with Nt.

In terms of the accuracy with which the successfully-located tracers are found, the

algorithms perform similarly, with PEPT-ML and PEPT-EM generally producing the

highest overall accuracy, though it must be remembered of course that PEPT-EM in

many cases is detecting a smaller fraction of the total particle number present than the

other algorithms, thus potentially skewing this metric.

The consistency in average location accuracy exhibited across the full range of

tracer numbers explored is striking: the FPI method, for example, can seemingly detect

79 particles just as precisely as it can detect 6. Indeed, all algorithms tested are found

to consistently produce millimetre- or submillimetre-scale accuracy across practically all

data sets. This observation bodes very well for future research using large numbers of

PEPT tracers, a possibility that to date has yet to be properly explored and exploited.

7. PEPT Applications

Having looked in detail at the algorithms and hardware used to perform PEPT we

provide, in this penultimate section, some insight into the ways in which PEPT may

be usefully applied in various areas of science, industry, and medicine. The section is

split into two parts: in the first, we provide an overview of the major contemporary

applications of the PEPT technique, highlighting the fields in which it has been

widely and successfully applied, and providing a concise reference guide to some of

the important work in these areas. In the second, we discuss some of the new, emerging

applications of PEPT, several of which are only possible due to the recent advancements

discussed in these pages. In this second subsection we also look at where these and

further developments may take us in the near future.
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Figure 35. Above: The means error of the PEPT detected positions from the multiple

particle tracking test compared to the nearest GATE prescribed particle positions A:

Forte geometry. B: ECAT geometry. Below: The percentage of particles found by

each PEPT algorithm compared to the number prescribed GATE particles. A: Forte

geometry. B: ECAT geometry.

7.1. Current Applications

We preface this section by noting that the focus of this Review lies on developments

of the PEPT technique itself, as opposed to its applications. There exist already a

number of resources focusing specifically on PEPT’s applications in various of fields

(see, for example, [22,30,60,81,124,125]). As such, this section does not aim to provide

a detailed analysis of prior works using PEPT, but rather a succinct reference guide

introducing a number of useful sources, from which the interested reader may then gain

further knowledge.

Early work using PEPT focused on the imaging of industrial process equipment,

taking advantage of PEPT’s unique ability to image large, opaque, fast-moving systems

with high accuracy. Particular attention was paid to batch mixing systems [126–128]

used widely in the chemical, food and pharmaceutical sectors. The study of mixing

and segregation in industrial processes has remained a major area of investigation using
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PEPT since its inception [124, 129–131]; more recently, PEPT has additionally been

used to study the fundamental dynamics of mixing and segregation phenomena from

a pure-physics perspective [3, 132, 133]. PEPT is also used extensively in the study

of numerous other key industrial processes including extrusion [134, 135], fluidisation

[7, 35–37, 136, 137], granulation [31, 138, 139], die-filling [140, 141], (hydro)cyclone

separation [142–144], anaerobic digestion [10,145], stirred tanks, and milling [8,9,69,146].

In addition to the more applied research described above, in the later 90s, PEPT

became more widely adopted in the study of the fundamental physics of particulate

and multiphase systems. Due to its improved data acquisition rate compared to other

three-dimensional imaging methods [58] such as x-ray CT [147], RIMS [148] or PET

[149], and its improved spatial resolution as compared to radioactive particle tracking

[150] or magnetic particle tracking [151], PEPT has proved a highly popular means

of studying the dynamics of granular gases [152], whose rapid dynamics researchers

could not previously capture precisely using conventional techniques. Granular gases,

and more generally ‘vibrofluidised’ granular beds [153], provide a valuable canonical

system in which to study the fundamental phenomena and dynamics of particulate

media [58], making them a common choice for such pure-physics studies. PEPT

has been used to study numerous aspects of these systems, including their granular

temperature distributions [154] (and the striking non-equipartition thereof [2, 155]),

their diffusive behaviours [32,156], their velocity distributions [33,157], and phenomena

such as jamming [158], segregation [3], and granular convection [1, 4]. PEPT has

also been used for research into the fundamental physics of particulate, multiphase

and indeed pure-fluid systems in a number of other geometries, most notably fluidised

beds [35, 36,136,159], rotating drums [133,160–163] and stirred tanks [5, 164–167].

PEPT’s ability to provide detailed, three-dimensional data make it an extremely

valuable and well-established [168] tool for the validation of theoretical and numerical

models, being used to complement and validate a variety of discrete element method

(DEM) models of systems, from fundamental systems such as vibrofluidised beds [1–4]

and rotating drums [133,169] to comparatively complex industrial equipment including

mixers [130, 170–173], mills [8, 146, 174, 175], granulators [176] and other process

equipment [177]. PEPT and DEM represent in many ways an ideal complementary

pairing: the former provides detailed and accurate three-dimensional information

regarding the dynamics of a system, but offers only limited information regarding

particle contacts and stresses, and is comparatively expensive to perform, limiting the

feasibility of large-scale parameter studies. DEM, meanwhile, provides full information

regarding particle contacts and stresses, and can be performed cheaply using a standard

PC, making large parameter studies, and the exploration of extreme conditions (e.g.

frictionless particles, zero gravity) easily achievable. However, DEM results in isolation,

due to the many simplifying assumptions of the technique [58], cannot be trusted to be

accurate – or even physical [74]. Rigorous, multi-faceted validation, such as that which

may be performed through comparison with PEPT data, is required if their results are

to be useful.
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The above holds true also for computational fluid dynamics (CFD) [178] and

indeed coupled CFD-DEM models [179], widely used, for example, to simulate the

dynamics of fluidised beds [180–182]. In the literature one may find many examples

of combined PEPT-CFD (and PEPT-CFD-DEM) studies of these systems [183] as

well many others, including wet mills [8, 146], hydrocyclones [142, 184], and various

forms of agitated vessels, from dishwashers [185] to anaerobic digesters [186], and

spanning systems comprising simple Newtonian fluids, non-Newtonian fluids and fluid-

solid suspensions [187,188].

7.2. Nascent and Future Applications

As is clear from the preceding section PEPT has, historically, been used predominantly

by physicists, engineers, and in industry. One field in which PEPT has been under-

exploited, however, is that of geophysics/geomechanics. While the potential value of

the technique in this field has been suggested in prior publications [189–191], and

systems widely studied using PEPT, such as rotating drums and vibrated beds, are

commonly used as laboratory-scale proxies for geophysical systems [192–194], the direct

application of PEPT to geophysical problems remains, to date, very limited. Much like

in the industrial sector – where it enjoys great popularity – PEPT’s ability to image

large, dense, opaque systems with unusual geometries would prove highly valuable in

the field of geophysics. Based on this suitability, and the fact that, over the past decade,

positron emission tomography (PET), has begun to be adopted by the field [195–197],

we are hopeful that PEPT may soon follow suit.

In recent years, researchers have also begun to explore the potential of PEPT in

the biomedical field [11, 12]. Advances in the ability to label small particles (section

3.2), combined with improved hardware (section 3.1) and the development of new, more

efficient algorithms (section 5) mean it is now possible to track the motion of cells

and other small objects in vivo [95]. Such an ability carries myriad clinical and non-

clinical possibilities, for example in emission-guided radiation therapy for the treatment

of cancers [198,199], to track cells during cell-based therapies [200,201], or in the study of

blood flow, for example helping to validate and improve models of flow within ventricular

assist devices [202,203]. It may also potentially be used in conjunction with 4D PET/CT

imaging, e.g. to improve image quality by estimating motion due to breathing [204]. Of

course these represent just a few examples; there exist many more possible applications

of PEPT in the biomedical discipline, making it an exciting field for future exploration.

8. Summary and Future Outlook

It is clear both from the review of recent literature presented and the new work

performed in this article that the past decade has seen a significant expansion in both

the applications of and capabilities of the PEPT technique. Perhaps our most notable

finding is that of the diverse new methods developed, there does not exist a single
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‘best’ algorithm; rather, all exhibit particular strengths and weaknesses. As such, to

get the most out of the PEPT technique, it is advisable to use different algorithms for

different goals and/or in different systems. For example, for the tracking of slow-moving,

relatively active single tracers one can make very effective use of the original, highly

computationally-efficient Birmingham method; conversely, for applications requiring the

tracking of large numbers of particles, or where the imaging of particle-particle collisions

is necessary, the more modern, but more computationally intensive, algorithms such

as PEPT-ML, PEPT-EM or FPI are of value; if tracer activity is limited meanwhile

– e.g. when tracking small, fast-moving particles – the Stanford SBSR method may

be the optimal choice. We hope the detailed benchmarks and algorithm overviews

provided in this work will be of value to future researchers in choosing the most suitable

methodology/ies for their analysis.

Our results have also demonstrated that several contemporary algorithms possess

impressive capabilities in the tracking of large numbers of individual tracers at relatively

low activities. To date, the vast majority of PEPT research has focused on single

particles, with a handful of studies employing small but non-unity numbers of tracers.

Combined with our findings that several of these algorithms can also detect and

distinguish contacting tracers, this opens up a number of exciting possibilities for entirely

novel future studies involving large numbers of interacting tracers. These multiple-

particle studies will not only lead to more efficient collection of single-tracer data for the

calculation of previously attainable flow and transport phenomena, but will also enable

the collection of three-dimensional, multiple-point, multiple-time statistics, helping us

to more deeply understand the flow behaviours of a diverse range of system. Such data

may be otherwise unobtainable in a number of complex and opaque geometries.

Beyond the development of PEPT algorithms, the future potentially also holds a

variety of exciting developments concerning PEPT tracers and detectors. Regarding

the former, a major goal in the field remains the creation of ever smaller tracers, so

as to realise the many potentially groundbreaking medical applications discussed in

the preceding section, as well as opening new potential avenues of investigation in

industrial applications. For example, particles in the 1-20 µm range have increasing

industrial relevance in processes such as fluidisation, mineral extraction/processing and

mining, recovery of low grade ores, or in various closed cycle processes relating to

the green economy, where particle ‘fines’ have increasing relevance to high-intensity

or low-efficiency processes. The advent of PEPT algorithms capable of successfully

tracking smaller and more multitudinous tracers also gives rise to the possibility of

directly studying processes such as grinding and milling in which the tracer particles

used actually undergo fracture. Researchers at the University of Birmingham, for

example, are currently using PEPT to study the production of graphene via shear-

exfoliation [205, 206] using carbon flakes labelled with positron-emitting 11C. Similar

techniques, potentially in tandem with the application of Positron Emission Projection

Imaging (PEPI) [207], may also be employed to study other industrially-important

processes such as dissolution and dispersion.

Page 60 of 72AUTHOR SUBMITTED MANUSCRIPT - ROPP-101402.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



CONTENTS 61

Regarding detectors, in addition to the general progression in the data acquisition

rates of positron cameras discussed in section 3.1, some modern PET scanners can

also offer time-of-flight data [208] which, compared to the simple LoRs offered by

conventional scanners, provide additional localisation information regarding individual

annihilation events. The availability of this additional information has already

facilitated a step-change in PET imaging capabilities, and stands to prove similarly

transformative in the field of PEPT, where it may be used, for example, to ‘pre-filter’

the raw data fed to the algorithms described in section 5, or to develop entirely new

algorithms. PEPT practitioners are also yet to take full advantage of full-body positron

cameras [209], which not only offer a larger field of view than conventional ring scanners,

but also minimise issues relating to the non-uniform sensitivity of narrower scanners,

the negative effects of which have been clearly demonstrated in section 6.
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[169] S González, CRK Windows-Yule, Stefan Luding, DJ Parker, and Anthony Richard Thornton.

Forced axial segregation in axially inhomogeneous rotating systems. Physical Review E,

92(2):022202, 2015.

[170] Ali Hassanpour, Hongsing Tan, Andrew Bayly, Prasad Gopalkrishnan, Boonho Ng, and Mojtaba

Ghadiri. Analysis of particle motion in a paddle mixer using discrete element method (dem).

Powder Technology, 206(1-2):189–194, 2011.

[171] HP Kuo, PC Knight, DJ Parker, MJ Adams, and JPK Seville. Discrete element simulations of

a high-shear mixer. Advanced Powder Technology, 15(3):297–309, 2004.

[172] M Marigo, M Davies, T Leadbeater, DL Cairns, A Ingram, and EH Stitt. Application of positron

emission particle tracking (pept) to validate a discrete element method (dem) model of granular

flow and mixing in the turbula mixer. International journal of pharmaceutics, 446(1-2):46–58,

2013.

[173] TW Martin, JPK Seville, and DJ Parker. A general method for quantifying dispersion in

multiscale systems using trajectory analysis. Chemical engineering science, 62(13):3419–3428,

2007.

[174] Yang Yang. A study of fine particle grinding in vertically stirred media mills via positron

emission particle tracking technology and the discrete element method. PhD thesis, University

of Birmingham, 2018.

[175] Domenico Daraio, Jose Villoria, Andrew Ingram, Alessio Alexiadis, E Hugh Stitt, and Michele

Marigo. Validation of a discrete element method (dem) model of the grinding media dynamics

Page 70 of 72AUTHOR SUBMITTED MANUSCRIPT - ROPP-101402.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



CONTENTS 71

within an attritor mill using positron emission particle tracking (pept) measurements. Applied

Sciences, 9(22):4816, 2019.

[176] Ali Hassanpour, S Joseph Antony, and Mojtaba Ghadiri. Modeling of agglomerate behavior under

shear deformation: effect of velocity field of a high shear mixer granulator on the structure of

agglomerates. Advanced Powder Technology, 18(6):803–811, 2007.

[177] William R Ketterhagen, Mary T am Ende, and Bruno C Hancock. Process modeling in

the pharmaceutical industry using the discrete element method. Journal of pharmaceutical

sciences, 98(2):442–470, 2009.
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