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Abstract

The aim of this thesis is to characterise the statistics of the top eigenpairs of sparse symmetric

random matrices, adopting the perspective and the tools of statistical physics of disordered

systems.

Our first main result is the development of a statistical mechanics formalism to compute

the statistics of the top eigenpair of sparse ensembles. Framing the problem in terms of op-

timisation of a quadratic form on the sphere and introducing a fictitious real temperature, we

employ the cavity and the replica methods to determine the solution in terms of functional self-

consistency equations, which are efficiently solved by a population dynamics algorithm. In our

derivation, the structure of the density of the top eigenvector’s components is understood in

terms of the heterogeneous contributions coming from nodes of different degrees.

Then, introducing a “deflation” mechanism – that maps the largest eigenvalue of a matrix

to zero while leaving its eigenvectors invariant – in conjunction with the statistical mechanics

framework used for the top eigenpair, we study the statistics of the second largest eigenpair of

sparse ensembles assuming that the top eigenpair statistics is known. This is the second main

result of this thesis. The orthogonality condition between distinct eigenvectors naturally arises

in the solution and is included in an appropriately modified version of the population dynamics

algorithm. We also show that the population dynamics algorithm is not able to accurately

capture the thermodynamic limit N → ∞ when using a finite population size NP. We find

evidence of the existence of an optimal population size N?
P for a given graph size N.

Our results are in perfect agreement with numerical diagonalisation of large sparse ad-

jacency matrices, concentrating on the cases of random regular and Erdős-Rényi graphs and

sparse Markov transition matrices for unbiased random walks.

Before deriving our main results, we provide an extensive presentation of the cavity and

the replica methods, using the problem of the average spectral density as a case study.
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Chapter 1

Introduction

The primary goal of this thesis is to determine the statistics of the top eigenpairs of sparse

symmetric random matrices, using methods borrowed from statistical physics of disordered

systems.

Given a N×N symmetric matrix J (i.e. Ji j = J ji for any i, j = 1, . . . ,N) with real eigen-

values {λα}α=1,...,N and corresponding eigenvectors {vvvα}α=1,...,N , an eigenpair is given by the

pair (λα ,vvvα), for any α = 1, . . . ,N. The N eigenvalues can be sorted in descending order, with

λ1 ≥ λ2 ≥ . . .≥ λN . Therefore, the pairs (λ1,vvv1) and (λ2,vvv2) represent respectively the top and

the second largest eigenpair of J. When the matrix J is random, then so are its eigenvalues and

eigenvectors. Thus, considering the ensemble of J identified by the joint distribution P({Ji j})

of the matrix entries, one’s aim is to characterise the average ensemble properties of eigenval-

ues and eigenvectors, namely the probability density function (pdf) of the eigenvalues (known

as average spectral density), the typical average value of a specific eigenvalue λα and the pdf

of the components of the associated eigenvector. We consider ensembles of sparse symmetric

random matrices, where the word “sparse” indicates that most of the entries are zero. The

pattern of the non-zero entries is random itself and encodes the structure of a random graph.

Indeed, this kind of matrices can be regarded as weighted adjacency matrices of undirected

graphs.

Focussing on such matrices, our goal is to set up a statistical mechanics framework to

obtain the statistics of the top two eigenpairs. Namely, in Chapter 3 we focus on the typical

average largest eigenvalue 〈λ1〉J and the density of the corresponding top eigenvector’s com-

ponents ρJ(u). In Chapter 4 we determine the average second largest eigenvalue 〈λ2〉J and the

density of the associated second eigenvector’s components ρJ,2(v).

Before tackling the extremal eigenpair problem for sparse symmetric random matrices,
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in Chapter 2 we introduce and thoroughly explain the main methods employed in this thesis,

namely the cavity and the replica method, using the spectral density problem for such matrices

as an example. Indeed, the calculation of the average spectral density has traditionally been

one of the pivotal questions in Random Matrix Theory (RMT), ever since the application of

RMT to the statistics of energy levels of heavy nuclei [4]. Besides, another specific reason for

which it is instructive to review the spectral problem as the first topic of this thesis is that in the

pioneering work of Edwards and Jones [5], for the first time the determination of the spectral

density was mapped into a statistical mechanics problem. Inspired by this framework, we will

build the setup for the extremal eigenpairs analysis. Therefore, Chapter 2 will provide not only

an introduction to the methods but also the statistical mechanics baseline that we will employ

throughout the whole thesis.

1.1 A historical perspective on the spectral problem for sparse ma-

trices

The spectral problem plays a central role in RMT and it has diverse applications in physics [6],

computer science [7], finance [8–10] and statistics [11, 12]. The most celebrated results about

the density of states such as the Wigner semicircle law [13] for Wigner matrices (includ-

ing Gaussian ensembles) and the Marčenko-Pastur law [14] for covariance matrices refer to

“dense” matrix ensembles, i.e. those for which most of the matrix entries are non-zero.

On the other hand, the spectral problem is very relevant also for sparse matrix models.

Indeed, the spectral properties of adjacency matrices of sparse graphs encode the structural

and topological features of many complex systems [15, 16]. For random walks on graphs, the

eigenvalue spectrum is directly connected to the relaxation time spectrum [17, 18]. Moreover,

from the condensed matter point of view, sparsely connected matrix models provide a test

ground for physical systems described by a Hamiltonian with finite-range interactions (see for

instance [19]).

The key result linking the spectral problem to statistical mechanics is the celebrated

Edward-Jones formula [5]. Indeed, the formula recasts the determination of the average spec-

tral density (2.1) into the problem of evaluating the average free energy 〈logZ(λ )〉J of a disor-

dered system with partition function Z(λ ). Edward and Jones were the first to use the replica

method, extensively employed in spin-glass physics [20], to perform averages of this type in

the context of random matrices.
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Historically, the application of the Edwards-Jones recipe to sparse symmetric random ma-

trices (in particular Erdős-Rényi [21, 22] adjacency matrices with the non-zero entries drawn

from a Bernoulli distribution) was pioneered by Bray and Rodgers in [23] (and also for the

analogous spectral problem of graph Laplacians in [24].). However, in their formulation the

average spectral density ρ(λ ) depends on the solution of a very complicated integral equa-

tion, which, as of today is still unsolved – except in the limiting cases of Erdős-Rényi graphs

with large mean degree, and for large values of the spectral parameter λ (see again [23] and

also [25]). The same integral equation has been derived independently with a supersymmetric

approach in [26] and later obtained in a rigorous manner in [27], thus confirming the exact-

ness of the symmetry assumptions in [23]. The difficulties in dealing with such equation even

from a numerical point of view stimulated the search for a variety of approximation schemes,

such as the single defect approximation (SDA) [28] and the effective medium approximation

(EMA) [29, 30]. Alongside approximation schemes, results from numerical diagonalisation

such as in [31, 32] have been employed to investigate the spectral properties of sparse random

matrices.

A different approach to the spectral problem of sparse symmetric random matrices was

proposed in [33]. There, the order parameters of the replica calculation are represented as un-

countably infinite superpositions of Gaussians with random variances, as suggested by earlier

solutions of models for finitely coordinated harmonically coupled systems [34]. The intractable

Bray-Rodgers integral equation is then replaced by another integral equation, which – although

also highly non-linear – has the advantage that it can be solved efficiently by a stochastic pop-

ulation dynamics algorithm. In Chapter 2, we will review both approaches.

Almost in parallel to [33], the cavity method [35] was used by Rogers and collaborators

in [36] to compute the spectrum of large single instances of sparse symmetric random matrices.

The cavity method, also known as belief propagation, represents a much simpler alternative to

replicas and its exactness for locally tree-like graphs with finite mean degree c was proved

in [37]. The applicability of the cavity method is ensured by the tree-like structure of the un-

derlying graphs. The ensemble average spectral density (2.1) is then obtained building on the

single-instance results, circumventing the calculation of the average “free energy” 〈logZ(λ )〉J
altogether. Similarly to [33], the cavity treatment produces non-linear fixed-point integral equa-

tions that are completely equivalent to those obtained within the replica framework.

It has been shown in [38] that both the cavity and the replica method yield the same results
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concerning the spectral density of Erdős-Rényi (ER) graphs and sparse covariance matrices.

Both approaches in [33] and [36] recover known results such as the Kesten-McKay law for the

spectra of random regular graphs [39,40], the Marčenko-Pastur law and the Wigner’s semicircle

law respectively for sparse covariance matrices and for ER adjacency matrices in the large

mean degree limit. Moreover, both methods allow to characterise the spectral density of sparse

Markov matrices [41,42] and graphs with modular [43] and small-world [44] structure and with

topological constraints [45]. The localisation transitions in the spectra of sparse symmetric

random matrices that were already observed in [33] were studied in greater detail in [46]. In

a similar manner, both the cavity and the replica methods have also been employed to study

the statistics of the top and second largest eigenpair of sparse symmetric random matrices

[1, 2, 47]. The two methods have also been extended to the case of sparse non-Hermitian

matrices [48–51]. A particular attention has been devoted to the spectral properties of the

Hashimoto non-backtracking operator on random graphs [52, 53]. Both cavity and replica

methods have been recently used to characterise the dense (c→∞) limit of the spectral density

of adjacency matrices of undirected graphs within the configuration model, which reveals that

the behaviour of the limiting spectral density is not universal but actually depends on degree

fluctuations. Indeed the expected Wigner semicircle is recovered when the degree distribution

tightly concentrates around the mean degree c for c→ ∞, whereas non trivial deviations from

the semicircle are found when degree fluctuations are stronger [54]. Moreover, thanks to the

extension of the replica method to the analysis of sparse loopy random graphs, the influence of

loops on the spectra of sparse matrices has been lately investigated in [55, 56]. There is also a

recent cavity analysis of the problem of loopy graphs by Newman and collaborators in [57].

1.2 Extremal eigenpairs

1.2.1 Importance of the top eigenpair

The largest eigenvalue and the associated top eigenvector of a matrix play a very important

role in many applications, such as synchronisation problems on networks [58], percolation

problems [59], linear stability of coupled ODEs [60], financial stability [61] and several other

problems in physics and chemistry, connected to the applications of Perron-Frobenius’s theo-

rem [62]. Also in the realm of quantum mechanics, the search for the ground state of a compli-

cated Hamiltonian essentially amounts to solving the top eigenpair problem for a differential

operator [63]. The top eigenpair is also relevant in signal reconstruction problems employing

algorithms based on the spectral method [64]. These extremal questions also arise in multivari-
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ate data analysis. In Principal Component Analysis, the top eigenpair of a covariance matrix

provides information about the most relevant correlations hidden in the dataset [65]. The role

of the eigenvectors of the empirical covariance matrix for the estimation of the top eigenvector

of the corresponding population covariance matrix has been discussed in [66].

In the context of graph theory, the eigenvectors of both adjacency and Laplacian matrices

are employed to solve combinatorial optimisation problems, such as graph 3-colouring [67]

and to develop clustering and cutting techniques [68–71]. In particular, the top eigenvector of

graphs is intimately related to the “ranking” of the nodes of the network [72]. Indeed, beyond

the natural notion of ranking of a node given by its degree, the relevance of a node can be

estimated from how “important” its neighbours are. The vector expressing the importance of

each node is exactly the top eigenvector of the network adjacency matrix. Google PageRank

algorithm works in a similar way [73, 74]: the PageRanks vector is indeed the top eigenvector

of a large Markov transition matrix between web pages.

1.2.2 Importance of the second largest eigenpair

The second largest eigenvalue and the associated second eigenvector of a matrix are of great

significance as well. Plenty of applications can be found in many areas of science. In coding

theory, the Hamming distance of a binary linear code can be expressed as a function of the

second largest eigenvalue of the coset graph associated to the code [75]. In biology, it has

been shown in [76] that the second largest eigenvalue of cancer metabolic networks describes

the speed of cancer processes. In the context of clustering methods based on the adjacency

matrix of a graph, the second eigenvector encodes inter-cluster connectivity, complementing

the information about intra-cluster connectivity included in the top eigenvector [70, 77]. With

regard to the power method algorithm, employed for the computation of the leading eigenpair

of single matrix instances in many real-world applications, the ratio of the absolute value of

the first two eigenvalues of a matrix determines the rate of convergence of the method [78].

Moreover, in Principal Component Analysis, the second eigenvector of the covariance matrix

of standardised data represents the direction that accounts for the second largest source of

variability within the dataset [65, 79] and complements the information coming from the first

principal component.

The knowledge of the spectral gap, i.e. the distance between the largest and second largest

eigenvalue, is essential for random walks on undirected graphs, which are substantially equiv-

alent to finite time-reversible Markov chains, as pointed out by Lovasz in his survey [17].
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Indeed, up to log-factors, the inverse spectral gap of the transition matrix represents the mix-

ing rate of the Markov chain, i.e. how fast the state probability vector of a Markov chain

approaches the limiting stationary distribution [80], given by the top right eigenvector of the

transition matrix. The inverse of absolute value of second largest eigenvalue of the transition

matrix denotes the largest relaxation time or mixing time, and the corresponding eigenvector

describes the non-equilibrium mode with the slowest decay rate. The second largest eigenpair

of Markov transition matrices also plays an important role in all processes that are described

by means of random walks on graphs, such as out of equilibrium dynamics of glassy systems

(see e.g. [81, 82]) and search algorithms such as Google PageRank [83].

1.3 Quantitative results on top eigenpairs of random graphs

1.3.1 Top eigenvalues

When the matrix J is random and symmetric with i.i.d. entries, analytical results on the statis-

tics of the top eigenvalue date back to the classical work by Füredi and Komlós [84]: the largest

eigenvalue of such matrices follows a Gaussian distribution with finite variance, provided that

the moments of the distribution of the entries do not scale with the matrix size. This result

directly relates to the largest eigenvalue of ER adjacency matrices in the case when the prob-

ability p for two nodes to be connected does not scale with the matrix size N. This result has

been then extended by Janson [85] in the case when p is large. However, in our analysis we

will be mostly dealing with the sparse case, i.e. when p = c/N, with c being the constant

mean degree of nodes (or equivalently, the mean number of non-zero elements per row of the

corresponding adjacency matrix). In this sparse regime, Krivelevich and Sudakov [86] proved

a theorem stating that for any constant c the largest eigenvalue of ER graphs diverges slowly

with N as
√

logN/ log logN. To ensure that the largest eigenvalue remains ∼ O(1), the nodes

with very large degree must be pruned (see [87]).

The second largest eigenvalue plays a pivotal role in the study of complex systems and

graph theory, representing topological features of the graphs [88]. If the spectral gap is large,

then the graph has good connectivity and expansion properties [72]. Therefore, many results

have been derived about bounds for the second largest eigenvalue (see e.g. [89, 90]). In par-

ticular, bipartite regular graphs with very wide spectral gaps are called expanders (magnifiers

if not bipartite) and have been widely studied since the seminal work of Alon [91]. To shed

light on the expansion properties of regular graphs, specific bounds have been derived for their

second largest eigenvalue (see e.g. [75] and [92]).
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1.3.2 Eigenvectors

The characterisation of eigenvectors properties has proved to be much harder than the spec-

tral problem and is generally a less explored area of RMT. Excluding the cases of i) invari-

ant ensembles, where eigenvector components follow the celebrated Porter-Thomas distribu-

tion [93, 94], ii) dense non-Hermitian matrices (see for instance the seminal works of Chalker

and Mehlig [95] along with results about correlations between eigenvectors [96, 97] and some

more recent applications [98–101]) and iii) perturbed matrices [102–106], systematic results

are scarcer for sparse Hermitian matrices, especially in the limit of high sparsity. Indeed, al-

though Gaussian statistics and delocalisation of eigenvectors are known properties of adjacency

matrices of ER and random regular graphs (RRGs) in the case where the mean degree c = c(N)

diverges with N [107–109], very few results are available in the case of high sparsity, i.e. with

c being the constant mean degree of nodes, which we focus on.

In this limit, numerical studies have shown that most of the eigenvectors of a random reg-

ular graph follow a Gaussian distribution [110], as well as almost-eigenvectors1 [111], whereas

ER eigenvectors are localised especially for low values of c [31]. Localisation properties of

eigenvectors of sparse directed random graphs have been recently investigated in [112].

The statistics of the top eigenvector’s components for very sparse symmetric random ma-

trices was first considered in the seminal works by Kabashima and collaborators [47,113,114].

The focus there is on specific classes of real sparse random matrices, i.e. when the matrix

connectivity is either a random regular graph or a mixture of multiple degrees, and the nonzero

elements are drawn from a Bernoulli distribution. More precisely, in [47] and [114] the cavity

method was employed for the top eigenpair problem, while in [113] the replica formalism was

instead adopted to study the same problem in the thermodynamic limit.

Inspired by the work of Kabashima and collaborators, in [1] we generalised and expanded

the cavity and replica analyses that they pioneered, in order to build a versatile and flexible

statistical mechanics framework to study the top eigenpair of weighted adjacency matrices of

sparse random graphs. The configuration model is used to generate the pure {0,1} adjacency

matrices of uncorrelated random networks, whereas bonds weights are chosen independently.

In [2], using a deflation technique and an improved version of the statistical mechanics setup

that we proposed in [1], we were able to determine the statistics of the second largest eigenpair.

Chapter 3 and Chapter 4 will be based on respectively [1] and [2].

1An almost-eigenvector of a matrix A with eigenvalue λ is a normalised vector vvv that satisfies the eigenvector
equation (A−λ I)vvv = 000 within some small tolerance ε , i.e. ||Avvv−λvvv||2 ≤ ε .



Chapter 2

Introduction to the cavity and replica methods

for the spectral density of sparse symmetric

random matrices

2.1 Introduction

Given a N×N symmetric random matrix J with eigenvalues {λi}i=1,...,N , the avevage spectral

density is defined as

ρ(λ ) =

〈
1
N

N

∑
i=1

δ (λ −λi)

〉
J

, (2.1)

where the limit N→ ∞ is understood and 〈...〉J denotes the average over the matrix ensemble

to which J belongs. The latter is also referred to as “disorder” average.

In this chapter, we will retrace the main milestones in the determination of the spectral

density of sparse symmetric random matrices using a statistical mechanics approach. As ex-

amples, we will look at adjacency matrices of sparse random graph models (specifically the

Erdős-Rényi and the random regular graph model). We will consider both the unweighted

case, where the non-zero entries of the matrix J have a given value of 1, and the weighted case,

where the non-zero entries of J are drawn from a Gaussian distribution. We will take advantage

of this analysis also to explain in great detail the cavity and replica methods that will be the

main calculation tools employed in this thesis.

We start with the analysis of the Edwards-Jones formula in Section 2.2, providing its proof

in Section 2.2.1 and discussing how to deal with the average 〈logZ(λ )〉J appearing in their for-

mula in Section 2.2.2. For clarity and simplicity, we will first illustrate the cavity approach

in Section 2.3. We outline the cavity setup in Section 2.3.1, then we deal with the spectrum
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of large instances of sparse symmetric random matrices in Section 2.3.2. In Section 2.3.3 we

show how the single-instance approach can be extended to the N→ ∞ limit to recover the en-

semble average spectral density. Besides, in 2.3.4 we evaluate the large c limit of the average

spectral density obtained within the cavity formalism, showing that it converges to the Wigner

semicircle. We will then follow the historical development of the subject by documenting the

Bray-Rodgers replica approach in Section 2.4. We will derive the Bray-Rodgers integral equa-

tion in Section 2.4.3, while in Section 2.4.4 we will obtain its large c asymptotic expansion,

showing that its leading order gives rise to the Wigner semicircle, as expected. In Section 2.5

we will deal with the alternative replica solution proposed in [33], showing in Section 2.5.1

that the solution obtained with this approach coincides with that found by the cavity treat-

ment in Section 2.3.3. In Section 2.6, we outline the stochastic population dynamics algorithm

employed to solve the non-linear fixed-point integral equations that are found within both the

cavity and replica frameworks respectively in Section 2.3.3 and Section 2.5.1.

2.2 Edwards-Jones formula

Edwards and Jones in [5] provide a formula to express the average spectral density of N×N

random matrices (2.1) as

ρ(λ ) =− 2
πN

lim
ε→0+

Im
∂

∂λ
〈logZ(λ )〉J , (2.2)

with

Z(λ ) =
∫
RN

dvvvexp
[
− i

2
vvvT (λε1− J)vvv

]
, (2.3)

where again the 〈...〉J denotes the average over the matrix ensemble to which J belongs. In

(2.2), which is valid for any N, Im indicates the imaginary part and log is the branch of the

complex logarithm for which logez = z. In (2.3), the symbol 1 represents the N×N identity

matrix, the symbol vvv describes a vector in RN and the integral extends over RN . Moreover,

λε = λ − iε , where ε is a positive parameter ensuring that the integral (2.3) is convergent, since

the absolute value of the integrand has the leading behaviour e−
ε

2 ∑
N
i=1 v2

i . The integral (2.3)

can be interpreted as the canonical partition function of the Gibbs-Boltzmann distribution of N

harmonically coupled particles with an imaginary (inverse) temperature, viz.

PJ(vvv) =
1

Z(λ )
exp [−iH(vvv)] , (2.4)
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with a complex “Hamiltonian”

H(vvv) =
1
2

vvvT (λε1− J)vvv . (2.5)

In this framework, the computation of (2.1) requires to evaluate 〈logZ(λ )〉J , which is the canon-

ical free energy of the associated N particles system, averaged over the random couplings.

2.2.1 Proof of the Edwards-Jones formula

The starting point is the definition (2.1). Looking for a representation of the Dirac delta, one

considers the Sokhotski-Plemelj identity (see Appendix 2.A for a proof), viz.

1
x± iε

−−−→
ε→0+

Pr
(

1
x

)
∓ iπδ (x) , (2.6)

where x ∈ R and Pr denotes the Cauchy principal value. The imaginary part of the identity,

namely

δ (x) =
1
π

lim
ε→0+

Im
1

x− iε
, (2.7)

provides the desired representation. Therefore, inserting (2.6) into (2.1) results in

ρ(λ ) =
1

πN
lim

ε→0+
Im

〈
N

∑
i=1

1
λ −λi− iε

〉
J

=− 1
πN

lim
ε→0+

Im

〈
N

∑
i=1

1
λi + iε−λ

〉
J

, (2.8)

where the minus sign has been made explicit.

One would now express the ratio in the angle brackets as the derivative of the princi-

pal branch of the complex logarithm, denoted by Log. Unlike other properties, its derivative

behaves exactly like that of the real logarithm, therefore

N

∑
i=1

1
λi + iε−λ

=− ∂

∂λ

N

∑
i=1

Log(λi + iε−λ ) , (2.9)

entailing for the average spectral density the formula

ρ(λ ) =
1

πN
lim

ε→0+
Im

∂

∂λ

〈
N

∑
i=1

Log(λi + iε−λ )

〉
J

. (2.10)

The sum of logarithms in (2.10) can be related to the partition function Z(λ ) in (2.3) by ex-
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ploiting the following identity [94, 115],

Z(λ ) =
∫
RN

dvvvexp
[
− i

2
vvvT (λε1− J)vvv

]
= (2π)N/2 exp

[
−1

2

N

∑
i=1

Log(λi + iε−λ )+
iπN

4

]
.

(2.11)

Caution is needed when taking the logarithm on both sides of (2.11), as in general Log(ez) 6= z.

Indeed, using the definition of the complex logarithm applied to the exponential function (see

Eq. (2.B.8) in Appendix 2.B for more details) and taking the principal logarithm on both sides

of (2.11), one would obtain

N

∑
i=1

Log(λi + iε−λ ) =−2LogZ(λ )+NLog(2π)+
iπN

2
+4πi

⌊
1
2
− g(λ )

2π

⌋
, (2.12)

where

g(λ ) =−1
2

N

∑
i=1

Arg(λi + iε−λ )+
πN
4

(2.13)

is the imaginary part of the exponent in (2.11) and the symbol b...c denotes the floor operation,

i.e. bxc is the integer such that x−1 < bxc ≤ x for x ∈ R.

Note that this branch choice would make the r.h.s. not everywhere differentiable for λ ∈R.

Therefore, it is convenient to pick the branch of the complex logarithm such that logez = z, i.e.

for which the extra (non-differentiable) phase term in (2.12) is killed. This choice yields

N

∑
i=1

Log(λi + iε−λ ) =−2logZ(λ )+Nlog(2π)+
iπN

2
, (2.14)

where the constant terms on the r.h.s. depend on N, but not on λ . Taking the derivative, one

eventually finds
∂

∂λ

N

∑
i=1

Log(λi + iε−λ ) =−2
∂

∂λ
logZ(λ ) , (2.15)

therefore the Edwards-Jones formula (2.2) is recovered.

2.2.2 Tackling the average in the Edwards-Jones formula

In order to obtain the spectral density, the average 〈logZ(λ )〉J must be computed. It explicitly

reads

〈logZ(λ )〉J =
∫

∏
i< j

dJi jP({Ji j})log
∫
RN

dvvvexp
[
− i

2
vvvT (λε1− J)vvv

]
, (2.16)

where P({Ji j}) is the joint distribution of the matrix entries. The presence of the logarithm in

(2.16) prevents a factorisation of averages over edges (i, j) even for a factorised pdf of the Ji j.
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The only available strategy seems to perform the inner N-fold integral over vvv first, compute

the logarithm, and then average over the random matrix disorder. However, this sequence of

operations would simply run the Edwards-Jones formula (2.2) backwards, leading to the useless

identity ρ(λ ) = ρ(λ ). The only chance to make some progress therefore relies on performing

the disorder average first. However, the two integrations in (2.16) cannot be directly exchanged

due to the presence of the logarithm in between.

Disorder averages such as (2.16) are called quenched averages. The technique to handle

such averages is the replica trick. It is a well established method employed in the statistical

mechanics of disordered systems that allows one to bypass the logarithm in (2.16) in favour of

the computation of integers moments of Z(λ ) (see Section 2.4)1.

The replica method for the calculation of the spectral density of dense random matrices

was employed by Edwards and Jones in [5]. The same replica calculation for sparse ensem-

bles was pioneered by Bray and Rodgers in [23]. However, we prefer to start with the cavity

approach because it is technically much less involved and allows one to circumvent the direct

computation of 〈logZ(λ )〉J . We will then follow the historical path traced in [23] in Section

2.4.

2.3 Cavity method for the spectral density

The cavity method as implemented in [36] makes it possible to derive the spectral density for a

single instance of large sparse symmetric matrices. According to the physical interpretation of

the Edwards-Jones formula, the calculation of the spectral density can be recast as a problem

of interacting particles on a sparse graph. The basic idea behind the cavity method [35] is that

observables related to a certain node of a network in which cycles are scarce (thereby called

tree-like) can be determined from the same network where the node in question is removed.

Due to the sparse structure, the removal of a node makes its neighbouring sites (as well as the

signals coming from them) uncorrelated.

2.3.1 Definition of the sparse matrix ensemble

We consider a large N×N sparse symmetric random matrix J. It represents the weighted ad-

jacency matrix of a graph G , i.e. each entry can be expressed as Ji j = ci jKi j, where the ci j

represent the pure {0,1} adjacency matrix and the Ki j encode the bond weights. In an undi-

1There exists also an alternative though only approximate strategy, known as annealed average, which does not
rely on the replica method. It consists in “moving” the logarithm outside the disorder average. Although formally
incorrect, the annealed protocol provides the correct spectral density of “dense” random matrices, such as Gaussian
ones (see Section 15.4 in [94] for a thorough discussion).
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rected graph, the degree ki of the node i is defined as the number of nodes in its neighbourhood

∂ i = { j : ci j = 1}, viz.

ki = ∑
j∈∂ i

ci j = |∂ i| . (2.17)

We define c = 1
N ∑

N
i=1 ki as the mean degree. We consider locally tree-like sparse matrices, in

which the probability of finding a cycle vanishes as lnN/N when N → ∞. Alternatively, this

property is implied by the requirement that the mean degree c does not increase with the matrix

size N, hence c/N → 0 as N → ∞. In this very sparse regime, the cavity method predictions

are approximate. However, they are exact on trees, and they become asymptotically exact on

finitely connected networks as the thermodynamic limit is taken.

Following the statistical mechanics analogy, in the sparse case the N particles described

by the variables vi interact on the graph G where an edge is defined for any pair (i, j) of

interacting particles. While the replica formalism analyses the partition function (2.3) in the

limit N→ ∞, the cavity method focusses on the associated Gibbs-Boltzmann distribution (2.4)

with imaginary inverse temperature i and complex Hamiltonian (2.5), as shown in the section

below.

2.3.2 Cavity derivation for single-instances

The spectral density of J — i.e. the pdf of the eigenvalues of the matrix J — is obtained from

the Edwards-Jones formula (2.2) for finite N as

ρJ(λ ) =−
2

πN
lim

ε→0+
Im

∂

∂λ
logZ(λ ) , (2.18)

where Z(λ ) is defined in (2.3). The subscript indicates that ρJ(λ ) refers to a single, specific in-

stance J 2. For the same reason, no averaging is needed. Performing explicitly the λ -derivative

in (2.18) with Z(λ ) defined in (2.3), one obtains

∂

∂λ
logZ(λ ) =− i

2

N

∑
i=1

∫ N

∏
j=1

dv j PJ(vvv)v2
i , (2.19)

where

PJ(vvv) =
1

Z(λ )
exp
[
− i

2
vvvT (λε1− J)vvv

]
(2.20)

2We remark that ρJ(λ ) is not the density of the top eigenvalue of J.
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is the Gibbs-Boltzmann distribution defined in (2.4). For any given i, the average w.r.t. the

joint pdf (2.20) in (2.19) reduces to the average w.r.t. the single-site marginal Pi(vi), viz.

∫ N

∏
j=1

dv j PJ(vvv)v2
i =

∫
dviPi(vi)v2

i = 〈v2
i 〉 , (2.21)

where the 〈v2
i 〉 represent the single-site variances of each of the N marginal pdfs Pi(vi). Using

(2.19) and (2.21), the spectral density in (2.18) can thus be written as

ρ(λ ) =− 2
πN

lim
ε→0+

Im

(
− i

2

N

∑
i=1
〈v2

i 〉

)
=

1
πN

lim
ε→0+

N

∑
i=1

Re〈v2
i 〉 . (2.22)

Therefore, it is sufficient to determine the N single-site variances to calculate the spectral den-

sity using (2.22).

In order to find the 〈v2
i 〉 , one looks at each marginal pdf Pi(vi). Due to the sparse nature of

J, the variable vi is coupled (through Ji j) only to those v j associated to nodes that are neighbours

of i. Hence, the single-site marginal of the node i can be expressed as

Pi(vi) =
∫ N

∏
j(6=i)

dv j PJ(vvv) =
1
Zi

e−
i
2 λε v2

i

∫
dvvv∂ ie

i∑ j∈∂ i Ji jviv j P(i)(vvv∂ i) . (2.23)

In (2.23), the integration is over the “particles” interacting with particle i, i.e. those sitting on

the neighbouring sites ∂ i. The distribution P(i)(vvv∂ i) collects the contributions coming from the

interaction of each of the v j ( j ∈ ∂ i) with particles sitting on nodes that are not neighbours

of i themselves (see Graph 1 on the l.h.s. of Fig. 2.1). The contributions to the integral

defining Pi(vi) coming from nodes further away generate a constant term that is absorbed in the

normalisation constant Zi.

The distribution P(i)(vvv∂ i) is called the cavity distribution, since it refers to a graph in which

the node i has been removed. In a tree-like structure, the neighbouring sites of each node i are

correlated mainly through the node i. Hence, when the node i is removed, its neighbours

become uncorrelated (see Graph 2 on the r.h.s. of Fig. 2.1). Therefore, the joint cavity pdf

P(i)(vvv∂ i) factorises into the product of independent cavity marginals P(i)
j (v j), i.e.

P(i)(vvv∂ i) = ∏
j∈∂ i

P(i)
j (v j) . (2.24)
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Figure 2.1: Graphs sketches. Left graph 1: a tree-like graph where the indices refer to the notation used in Section 2.3.1 to derive
cavity single-instance equations. Right graph 2: example of the decorrelation occurring to the nodes j1, j2 and j3,
neighbours of the node i, after the removal of i.

Hence, the single-site marginal (2.23) can be expressed as

Pi(vi) =
1
Zi

e−
i
2 λε v2

i ∏
j∈∂ i

∫
dv jeiJi jviv j P(i)

j (v j) . (2.25)

Eq. (2.25) shows that the marginal Pi(vi) is defined in terms of the cavity marginals

P(i)
j (v j). A self-consistent definition of each of the cavity marginal distributions P(i)

j (v j) can

be obtained by iterating the same reasoning as above. Indeed, one can now choose one of

the nodes j ∈ ∂ i and define the marginal pdf associated to that node in the same way as in

Eq. (2.25). However, the network one is considering at this stage is that where the node i has

already been removed, therefore eventually obtaining the cavity marginal P(i)
j (v j), namely

P(i)
j (v j) =

1

Z(i)
j

e−
i
2 λε v2

j ∏
`∈∂ j\i

∫
dv`eiJ j`v jv`P( j)

` (v`) , (2.26)

where the symbol ∂ j\i denotes the set of neighbours of node j excluding i (see again Graph 1

on the l.h.s. of Fig. 2.1 ). In turn, the cavity marginals P( j)
` (v`) are defined on the graph where

also the node j ∈ ∂ i has been removed.

Eq. (2.26) defines a set of recursion equations for any pair of interacting nodes (i, j).

The set of recursion equations (2.26) is solved exactly by a zero-mean Gaussian ansatz for the



2.3. Cavity method for the spectral density 25

cavity marginals P(i)
j (v j). Indeed, assuming that

P(i)
j (v j) =

√
ω

(i)
j

2π
exp

(
−

ω
(i)
j

2
v2

j

)
, (2.27)

and performing the Gaussian integrals on the r.h.s. of (2.26), one gets

P(i)
j (v j) =

1

Z(i)
j

exp

[
−1

2

(
iλε + ∑

`∈∂ j\i

J2
j`

ω
( j)
`

)
v2

j

]
. (2.28)

The comparison between the exponents of (2.27) and (2.28) entails

ω
(i)
j = iλε + ∑

`∈∂ j\i

J2
j`

ω
( j)
`

. (2.29)

Therefore, the set of equations (2.26) translates into a set of self-consistency equations 3 for

the set of cavity inverse variances ω
(i)
j .

Similarly, the Gaussian ansatz (2.27) can be inserted in the single-site marginal expression

(2.25), yielding a Gaussian structure for Pi(vi), viz.

Pi(vi) =
1
Zi

exp
(
−1

2
ωiv2

i

)
, (2.30)

with single-site inverse variances given by

ωi = iλε + ∑
j∈∂ i

J2
i j

ω
(i)
j

. (2.31)

Once the cavity inverse variances are determined as the solution of (2.29), the single-site inverse

variances 〈v2
i 〉 = 1

ωi
are found from (2.31), and the spectral density is readily obtained from

(2.22) as

ρJ(λ ) =
1

πN
lim

ε→0+

N

∑
i=1

Re
[

1
ωi

]
=

1
πN

lim
ε→0+

N

∑
i=1

Re[ωi]

(Re [ωi ])2+( Im[ωi])
2 . (2.32)

As a concluding remark, it can be noticed that the set of self-consistency equations for

the cavity inverse variances (2.29) only depends on the square of matrix entries, thus entailing

that the spectrum of the matrix J is equal to that of the matrix −J and therefore is perfectly

3The set of self-consistency equations (2.29) can be solved by a forward iteration algorithm.
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symmetric around λ = 0. This property indeed holds exactly for trees, since every tree is a

bipartite graph (see [72] or Appendix 2.G for a simple proof of this property). This check

further corroborates that cavity equations are exact on trees, but only approximate on tree-like

structures as long as cycles are negligible.

2.3.3 Thermodynamic limit within the cavity framework

In this section we depart from [36] and show that the ensemble average of the spectral density

(2.1) can be recovered from the single-instance spectral density (2.32) as obtained through the

cavity method. Indeed, by invoking the law of large number in (2.32), in the large N limit one

gets

ρJ(λ ) =
1

πN
lim

ε→0+

N

∑
i=1

Re
[

1
ωi

]
−−−→
N→∞

ρ(λ ) =
1
π

lim
ε→0+

∫
dω̃π̃(ω̃)Re

[
1
ω̃

]
, (2.33)

where π̃(ω̃) is the pdf of the inverse variances ωi taking values around ω̃ . In the r.h.s. of Eq.

(2.33) the subscript J has been dropped, as the quantity ρ(λ ) characterises the ensemble of

J, rather than a single matrix. Eq. (2.33) implicitly assumes that the spectral density enjoys

the self-averaging property, meaning that a large single instance of the ensemble faithfully

represents the average behaviour over many instances.

The task now is to find the pdf of the inverse variances π̃(ω̃). Recalling the single-instance

relation (2.31) between the single-site inverse variances ωi and the cavity inverse variances ω
(i)
j ,

the pdf π̃(ω̃) will be determined in terms of the probability density π(ω) of ω
(i)
j .

In order to find the pdf π(ω), two main observations are needed. First, it is worth re-

marking that we consider configuration model ensembles (such as the Erdős-Rényi ensemble),

which are cases of random uncorrelated networks, i.e. where degree-degree correlations are

absent. In general, in the presence of degree-degree correlations, the probability that a node

of degree k is connected to a node of degree k′ is conditional, namely P(k′|k). However, for

random uncorrelated networks, P(k′|k) is independent of k and therefore P(k′|k) reduces to the

probability that an edge points to a node of degree k′, which is simply given by k′
c p(k′). Indeed,

it is defined as the ratio between the fraction of edges pointing to nodes of degree k′ , k′p(k′),

and the fraction of edges pointing to nodes of any degree, i.e. the sum ∑k′ k′p(k′) = c.

Moreover, one also observes that the set of self-consistency equations for the cavity in-

verse variances (2.29) refers to the links of the underlying graph. In an infinitely large network,

links can be distinguished from one another by the degree of the node they are pointing to.
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Therefore, considering a link (i, j) pointing to a node j of degree k, the value ω of the cavity

inverse variance ω
(i)
j living on this link is determined by the set {ω`}k−1 of the k−1 values of

the cavity inverse variances ω
( j)
` living on each of the edges connecting j with its neighbours

` ∈ ∂ j\i. In an infinite system, these values can be regarded as k−1 independent realisations

of the random variables of type ω
( j)
` , each drawn from the same pdf π(ω). The entries of J ap-

pearing in (2.29) are replaced by a set {K`}k−1 of k−1 independent realisations of the random

variables K j`, each distributed according to the bond weights pdf pK(K). The distribution π(ω)

is then obtained by averaging the contributions coming from every link w.r.t. the probability
k
c p(k) of having a link pointing to a node of degree k, as defined above. This reasoning leads

to the self-consistency equation

π(ω) =
∞

∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω−

(
iλε +

k−1

∑
`=1

K2
`

ω`

))〉
{K}k−1

, (2.34)

where {dπ}k−1 = ∏
k−1
`=1 dω`π(ω`) and the angle brackets 〈·〉{K}k−1

denote the average over

k− 1 independent realisations of the random variable K. Eq. (2.34) is generally solved via a

population dynamics algorithm (see Section 2.6).

The same reasoning can be applied to find the pdf π̃(ω̃) of inverse variances. Recalling

(2.31), it can be noticed that the ωi are variables related to nodes, rather than links. Since in

the infinite size limit the nodes can be distinguished from one another by their degree, the pdf

π̃(ω̃) can be written in terms of (2.34) as

π̃(ω̃) =
∞

∑
k=0

p(k)
∫
{dπ}k

〈
δ

(
ω̃−

(
iλε +

k

∑
`=1

K2
`

ω`

))〉
{K}k

, (2.35)

where p(k) is the degree distribution.

Inserting (2.35) into (2.33) gives (at the ensemble level)

ρ(λ ) =
1
π

lim
ε→0

∞

∑
k=0

p(k)Re
∫
{dπ}k

〈
1

iλε +∑
k
`=1

K2
`

ω`

〉
{K}k

=
1
π

lim
ε→0+

∞

∑
k=0

p(k)
∫
{dπ}k

〈
Re
[
∑

k
`=1

K2
`

ω`

]
+ ε(

Re
[
∑

k
`=1

K2
`

ω`

]
+ ε

)2
+
(

λ + Im
[
∑

k
`=1

K2
`

ω`

])2

〉
{K}k

.

(2.36)

Eq. (2.36) is the ensemble generalisation of the single-instance formula (2.32) and provides the
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ensemble average of the spectral density (2.1). The average spectral density as expressed in

(2.36) can be interpreted as a weighted sum of local densities, each pertaining to sites of degree

k. As shown by (2.36), the solution of the spectral problem is completely determined by the

distribution π satisfying the self-consistency equation (2.34). Once π has been obtained, the

average spectral density (2.36) is evaluated by sampling from a large population representing

the distribution π(ω). Section 2.6 illustrates the algorithm that produces the solution of self-

consistency equations of this type as well as the details of the sampling procedure.

2.3.4 The c→ ∞ limit in the cavity formalism

One can easily show that taking the c→ ∞ limit in Eq. (2.34), (2.35) and then eventually

(2.33), the Wigner semicircle law is recovered. This has been first shown in [36]. According

to [54], we consider graphs in the configuration model having a degree distribution with finite

mean and variance such that σ2
k
〈k〉2 =

〈k2〉−〈k〉2
〈k〉2 → 0 as 〈k〉= c→ ∞. Here, the symbol σk denotes

the standard deviation of the degree distribution p(k). For example, σk =
√

c for Erdős-Rényi

graphs.

A meaningful large-c limit is obtained for Eq. (2.34) or equivalently (2.35) by rescaling

each instance of the bond random weights as Ki j =Ki j/
√

c. Therefore, considering (2.34) one

obtains

π(ω) =
∞

∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω−

(
iλε +

1
c

k−1

∑
`=1

K 2
`

ω`

))〉
{K }k−1

, (2.37)

where the K` are independent realisations of the rescaled bond weights of type Ki j, each

drawn from the same pdf pK (K ). For large c, the sum over the degrees in Eq. (2.37) receives

contributions only from k = c±O(σk). As c→∞, the degree distribution p(k) becomes highly

concentrated around k = c, thus the argument of the δ -function on the r.h.s of Eq. (2.37) can

be evaluated using the Law of Large Number (LLN). Indeed, one finds that the r.h.s. of the

condition

ω = iλε +
1
c

c−1

∑
`=1

K 2
`

ω`
(2.38)

does not fluctuate, hence ω itself is fixed and determined by the algebraic equation

ω̄ε = iλε +
〈K 2〉

ω̄ε

⇔ ω̄ε =
iλε ±

√
4〈K 2〉−λ 2

ε

2
. (2.39)

For large c, the quantity 〈K 2〉 = 1
c ∑

c−1
`=1 K 2

` '
1
c ∑

c
`=1 K 2

` represents the second moment of
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the pdf of the rescaled bond weights.

The very same reasoning can be applied to the argument of the δ function in (2.35),

entailing that in the limit c→ ∞ the ω̃ are non-fluctuating as well, and take the same constant

values given by the solutions of Eq. (2.39), viz.

π̃(ω̃) = δ (ω̃− ω̄ε) as c→ ∞ . (2.40)

Therefore, inserting Eq. (2.39) and (2.40) in Eq. (2.33), one finds that in the limit c→ ∞

ρ(λ ) =
1
π

lim
ε→0+

Re
[

1
ω̄ε

]
=

1
π

lim
ε→0+

Re

[
2

iλε ±
√

4〈K 2〉−λ 2
ε

]

=
1

2π〈K 2〉
lim

ε→0+
Re
[

iλε ∓
√

4〈K 2〉−λ 2
ε

]
, (2.41)

which in the ε → 0+ limit eventually reduces to

ρ(λ ) =


1

2π〈K 2〉

√
4〈K 2〉−λ 2 −2

√
〈K 2〉< λ < 2

√
〈K 2〉

0 elsewhere
, (2.42)

where the plus sign has been chosen to get a physical solution. The latter expression corre-

sponds to the Wigner’s semicircle.

2.4 Replica method: the Bray-Rodgers equation

In this section, we illustrate the replica calculation for the average spectral density, as originally

proposed by Bray and Rodgers. Following [23], the goal is to evaluate the average spectral

density (2.1) of an ensemble of N ×N real symmetric sparse matrices. Leveraging on the

notation of Section 2.3, given a matrix J, each matrix entry can be written as Ji j = ci jKi j,

where the ci j = {0,1} represent the pure adjacency matrix of the underlying graph and the Ki j

encode the bond weights. In particular, the matrix model considered in [23] is the Erdős-Rényi

(ER) model: the probability of having a non-zero entry is given by p = c/N, where c represents

the mean degree of the nodes of the underlying graph. For more details on the ER model, see
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Appendix 2.C. The joint distribution of the matrix entries is given by

P({Ji j}) = ∏
i< j

pC(ci j)δci j,c ji ∏
i< j

pK(Ki j)δKi j,K ji , (2.43)

where pC(ci j) represents the ER connectivity distribution, viz.

pC(ci j) =
c
N

δci j,1 +
(

1− c
N

)
δci j,0 , (2.44)

while pK(Ki j) represents the bond weight pdf, which will be kept unspecified until the very end

of the calculation.

2.4.1 Replica derivation

The Edwards-Jones formula (2.2) is used. As anticipated in Section 2.2, in order to deal with

the quenched average (2.16) the replica identity will be employed, viz.

〈logZ(λ )〉J = lim
n→0

1
n

log〈Z(λ )n〉J , (2.45)

where n is initially taken as an integer 4. The replica identity is easily obtained considering that

in the limit n→ 0

log〈Z(λ )n〉J = log
(
1+n〈logZ(λ )〉J +O(n2)

)
' n〈logZ(λ )〉J . (2.46)

The average replicated version of the partition function (2.3) reads

〈Z(λ )n〉J =
∫ n

∏
a=1

N

∏
i=1

dvia exp

(
− i

2
λε

N

∑
i=1

n

∑
a=1

v2
ia

)〈
exp

(
i
2

N

∑
i, j=1

n

∑
a=1

viaJi jv ja

)〉
J

. (2.47)

The ensemble average 〈...〉J splits into the connectivity average w.r.t. the ci j and the disorder

average w.r.t. the Ki j. The connectivity average can be performed explicitly exploiting the large

N scaling, yielding〈
exp

(
i
2

N

∑
i, j=1

n

∑
a=1

viaJi jv ja

)〉
J

= exp

[
c

2N

N

∑
i, j=1

(〈
eiK ∑a viav ja

〉
K−1

)]
, (2.48)

where 〈...〉K denotes averaging over pK(K). The details of the calculation leading to (2.48) can

4It is implicitly expected that the average replicated partition function 〈Z(λ )n〉J could be analytically continued
in the vicinity of n = 0 in a safe manner, although in principle this is not guaranteed.
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be found in Appendix 2.D.

In order to decouple sites, the following functional order parameter is introduced,

ϕ(~v) =
1
N

N

∑
i=1

n

∏
a=1

δ (va− via) , (2.49)

via the path integral identity

1 = N
∫

DϕD ϕ̂ exp

[
−i
∫

d~vϕ̂(~v)

(
Nϕ(~v)−

N

∑
i=1

n

∏
a=1

δ (va− via)

)]
, (2.50)

where~v∈Rn represents a n-dimensional vector in the replica space. Eq. (2.50) is the functional

analogue of

1 =
∫

dxδ (x− x̄) =
∫

dx
∫ dk

2π
e−ik(x−x̄) . (2.51)

In terms of the order parameter (2.49), the average replicated partition function becomes

〈Z(λ )n〉J = N
∫

DϕD ϕ̂ exp
(
−iN

∫
d~vϕ̂(~v)ϕ(~v)

)
× exp

[
Nc
2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eiK ∑a vav′a

〉
K
−1
)]

×
∫ n

∏
a=1

N

∏
i=1

dvia exp

[
− i

2
λε

N

∑
i=1

n

∑
a=1

v2
ia + i

N

∑
i=1

∫
d~vϕ̂(~v)

n

∏
a=1

δ (va− via)

]
. (2.52)

The multiple integral I in the last line of (2.52) factorises into N identical copies of the same

n-dimensional integral over Rn. Indeed, one finds

I =
∫ n

∏
a=1

N

∏
i=1

dvia exp

(
− i

2
λε

n

∑
a=1

N

∑
i=1

v2
ia + i

N

∑
i=1

ϕ̂(~vi)

)

=

[∫ n

∏
a=1

dva exp

(
− i

2
λε

n

∑
a=1

v2
a + iϕ̂(~v)

)]N

=exp

[
NLog

∫
d~vexp

(
− i

2
λε

n

∑
a=1

v2
a + iϕ̂(~v)

)]
, (2.53)

where Log denotes again the principal branch of the complex logarithm.

The replicated partition function (2.52) can then be written in the form

〈Z(λ )n〉J ∝

∫
DϕD ϕ̂ exp(NSn[ϕ, ϕ̂,λ ]) , (2.54)
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where

Sn[ϕ, ϕ̂,λ ] = S1[ϕ, ϕ̂]+S2[ϕ]+S3[ϕ̂,λ ] , (2.55)

with

S1[ϕ, ϕ̂] =− iN
∫

d~vϕ̂(~v)ϕ(~v) , (2.56)

S2[ϕ] =
c
2

∫
d~vd~v′ϕ(~v)ϕ(~v′)

(〈
eiK ∑a vav′a

〉
K
−1
)
, (2.57)

S3[ϕ̂,λ ] =Log
∫

d~vexp

(
− i

2
λε

n

∑
a=1

v2
a + iϕ̂(~v)

)
. (2.58)

Eq. (2.54) is amenable to a saddle-point evaluation for large N, yielding

〈Z(λ )n〉J ≈ exp(NSn[ϕ
?, ϕ̂?,λ ]) , (2.59)

where the star denotes the saddle-point value of the order parameter and its conjugate. The sta-

tionarity conditions of the action (2.55) w.r.t. the functional order parameter ϕ and its conjugate

ϕ̂ give

δSn

δϕ

∣∣∣∣
ϕ?,ϕ̂?

= 0⇒ iϕ̂?(~v) =
∫

d~v′ϕ?(~v′)

[〈
exp
(

iK ∑
a

vav′a

)〉
K

−1

]
, (2.60)

δSn

δ ϕ̂

∣∣∣∣
ϕ?,ϕ̂?

= 0⇒ ϕ
?(~v) =

exp
[
− i

2 λε ∑a v2
a + iϕ̂?(~v)

]
∫

d~v′ exp
[
− i

2 λε ∑a v′2a + iϕ̂?(~v′)
] . (2.61)

The two stationarity conditions (2.60) and (2.61) can be combined. Indeed, by calling iϕ̂?(~v) =

cg(~v) and inserting (2.61) in (2.60), one obtains

g(~v) =

∫
d~v′ f (~v ·~v′)exp

[
− i

2 λε ∑a v′2a + cg(~v′)
]

∫
d~v′ exp

[
− i

2 λε ∑a v′2a + cg(~v′)
] , (2.62)

where f (x) = 〈eiKx〉K−1.
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2.4.2 Average spectral density: replica symmetry assumption

The function g(~v) defined by (2.62) fully determines the average spectral density. Indeed,

recalling (2.2) and using (2.59), one gets

ρ(λ ) =− 2
πN

lim
ε→0+

Im
∂

∂λ
〈logZ(λ )〉J

=− 2
πN

lim
ε→0+

Im
∂

∂λ
lim
n→0

1
n

log〈Zn(λ )〉J

≈− 2
πN

lim
ε→0+

Im
∂

∂λ
lim
n→0

1
n

log [exp(NSn[ϕ
?, ϕ̂?,λ ])]

=− 2
π

lim
ε→0+

Im lim
n→0

1
n

∂

∂λ
Sn[ϕ

?, ϕ̂?,λ ] . (2.63)

The λ -derivative acts only on the terms of the action Sn explicitly depending on λ , due to the

stationarity of Sn w.r.t. ϕ? and ϕ̂?. Indeed, one obtains

∂

∂λ
Sn[ϕ

?, ϕ̂?,λ ] =
∂ϕ

∂λ

δSn

δϕ

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

+
∂ ϕ̂

∂λ

δSn

δ ϕ̂

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

+
∂Sn

∂λ

∣∣∣∣
ϕ=ϕ?,ϕ̂=ϕ̂?

=
∂S3[ϕ̂

?,λ ]

∂λ
,

(2.64)

with S3[ϕ̂
?,λ ] defined in (2.58) entailing the ratio

∂

∂λ
Sn[ϕ

?, ϕ̂?,λ ] =
− i

2
∫

d~v
(
∑a v2

a
)

exp
[
− iλε

2 ∑a v2
a + cg(~v)

]
∫

d~vexp
[
− iλε

2 ∑a v2
a + cg(~v)

] , (2.65)

where g(~v) solves (2.62).

In order to perform the n→ 0 limit in (2.63), an assumption on the symmetries of the

function g(~v), or equivalently of both ϕ?(~v) and ϕ̂?(~v), under permutations of replica indices

needs to be made. It is known that a replica-symmetric “high-temperature” solution, preserving

both permutational and rotational symmetry in the replica space, is exact in the random matrix

context 5. Indeed, the “Hamiltonian” of the spectral problem describes a harmonic energy

landscape, which only has a single minimum. Therefore, all the replicas will concentrate in

this single minimum, excluding replica symmetry breaking. Hence, following [23], one can

assume

g(~v) = g(v) , (2.66)

where v = |~v|=
√

∑a v2
a. Therefore, taking into account the ratio (2.65), the replica symmetric

5Rotational invariance in replica space is a stronger condition than the symmetry upon permutation of repli-
cas. An example of an ansatz satisfying permutational symmetry, but not rotational invariance would be g(~v) =
g(∑n

a=1 va).
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ansatz (2.66) and that Im(ix) = Re(x) for any x ∈ C, the average spectral density reads

ρ(λ ) =
1
π

lim
ε→0+

Re lim
n→0

1
n

∫
d~vv2 exp

[
− iλε

2 v2 + cg(v)
]

∫
d~vexp

[
− iλε

2 v2 + cg(v)
] . (2.67)

To further simplify the ratio of integrals in (2.67), n-dimensional spherical coordinates are

introduced, with the symbol v representing the radial coordinate. The functions in both the

numerator and the denominator of Eq. (2.67) have a radial dependency only, hence the factor

arising in both in the numerator and denominator of (2.67) from the integration over the angular

degrees of freedom cancels, yielding eventually

ρ(λ ) =
1
π

lim
ε→0+

Re lim
n→0

1
n

∫
∞

0 dvvn+1 exp
[
− iλε

2 v2 + cg(v)
]

∫
∞

0 dvvn−1 exp
[
− iλε

2 v2 + cg(v)
] . (2.68)

The integral in the denominator can be further simplified integrating by parts, i.e.

∫
∞

0
dvvn−1 exp

[
− iλε

2
v2 + cg(v)

]
=

1
n

∫
∞

0
dvvn exp

[
− iλε

2
v2 + cg(v)

](
iλεv− cg′(v)

)
,

(2.69)

since the boundary contribution vanishes. Therefore, taking the n→ 0 limit, the average spec-

tral density reads

ρ(λ ) =
1
π

lim
ε→0+

Re

∫
∞

0 dvvexp
[
− iλε

2 v2 + cg(v)
]

∫
∞

0 dvexp
[
− iλε

2 v2 + cg(v)
]
(iλεv− cg′(v))

. (2.70)

The expression (2.70) shows that the function g(v) is the only ingredient needed to compute

the average spectral density. The search for a (replica-symmetric) solution of (2.62) will be

addressed in Section 2.4.3.

2.4.3 Replica symmetry assumption for the Bray-Rodgers integral equation

At this stage, in order to get a replica-symmetric version of (2.62), the replica-symmetric ansatz

(2.66) is applied and spherical coordinates are again introduced. Assuming that φ1 = φ ∈ [0,π]

is the angle between the vectors~v and ~v′ and |~v′|= r one finds

g(v) =
∫

∞

0 drrn−1 exp
[
− i

2 λεr2 + cg(r)
]∫

π

0 dφ(sinφ)n−2 f (vr cosφ)∫
∞

0 drrn−1 exp
[
− i

2 λεr2 + cg(r)
]∫

π

0 dφ(sinφ)n−2
, (2.71)
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since all the remaining angular integrations cancel between numerator and denominator. We

recall that f (z) = 〈eiKz〉K−1. In order to proceed, a specific bond weight distribution must be

introduced. The choice made by Rodgers and Bray in [23],

pK(K) =
1
2

δK,1 +
1
2

δK,−1 , (2.72)

entails that f (z) = cosz−1. This gives

g(v) =
∫

∞

0 drrn−1 exp
[
− i

2 λεr2 + cg(r)
]∫

π

0 dφ(sinφ)n−2[cos(vr cosφ)−1]∫
∞

0 drrn−1 exp
[
− i

2 λεr2 + cg(r)
]∫

π

0 dφ(sinφ)n−2
. (2.73)

The angular integral in the numerator in (2.73) yields (see formula 21 of Section 3.715 in [116])

Iang
num =

∫
π

0
dφ(sinφ)n−2[cos(vr cosφ)−1]

=

√
πΓ
(n−1

2

)
2

[(
2
vr

) n
2 (

nJ n
2
(vr)− vrJ n

2+1(vr)
)
− 2

Γ
(n

2

)] , (2.74)

where Jα(x) indicates the Bessel function of the first kind, defined by the series

Jα(x) =
∞

∑
m=0

(−1)m

m!Γ(m+α +1)

( x
2

)2m+α

. (2.75)

The angular integral in the denominator of (2.73) is independent of the radial one and

gives

Iang
den =

∫
π

0
dφ(sinφ)n−2 =

√
πΓ
(n−1

2

)
Γ
(n

2

) , (2.76)

thus canceling the divergent factor for n < 1 appearing in (2.74). The radial integral

in the denominator in (2.73) can be simplified integrating by parts. By calling G(r) =

exp
[
− i

2 λεr2 + cg(r)
]
, one obtains

Irad
den =

∫
∞

0
drrn−1G(r) =−1

n

∫
∞

0
drrnG′(r) , (2.77)

as the boundary contribution vanishes. Collecting the results, one finds

g(v) =−
nΓ
(n

2

)
2

∫
∞

0 drrn−1G(r)
[( 2

vr

) n
2
(

nJ n
2
(vr)− vrJ n

2+1(vr)
)
− 2

Γ( n
2)

]
∫

∞

0 drrnG′(r)
. (2.78)

Lastly, the n→ 0 limit in (2.78) is taken. Recalling the definition of G(r) and noticing
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that

1.

Γ(n)≈ 1
n

as n→ 0⇒ lim
n→0
−nΓ

(n
2

)
=−2 , (2.79)

2.

lim
n→0

∫
∞

0
dr rnG′(r) =

∫
∞

0
dr G′(r) = G(∞)−G(0) =−ecg(0) , (2.80)

3.

lim
n→0

rn−1G(r)

[(
2
vr

) n
2 (

nJ n
2
(vr)− vrJ n

2+1(vr)
)
− 2

Γ
(n

2

)]=−vJ1(vr)G(r) , (2.81)

one obtains

g(v) =
v
∫

∞

0 drJ1(vr)exp
[
− i

2 λεr2 + cg(r)
]

−ecg(0) . (2.82)

Given the structure of Eq. (2.82), it follows that g(0) = 0, therefore eventually

g(v) =−v
∫

∞

0
drJ1(vr)exp

[
− i

2
λεr2 + cg(r)

]
, (2.83)

which is equivalent to Eq. (18) in [23]. This equation, also known as the Bray-Rodgers integral

equation, fully defines the quantity g(v). Despite numerous attempts, an exact analytical solu-

tion for (2.83) is currently not available. The numerical evaluation of Eq. (2.83) in the case of

c = 20 has been carried out in [117], to obtain the average spectral density of Laplacians of ER

graphs with bimodal weights. In this high connectivity regime, the quality of the numerical so-

lution was comparable with the SDA approximation (see [28]). On the other hand, the authors

in [19] describe a procedure for the solution of a similar integral equation employing a series

expansion which is valid only for c < 1/2. Nonetheless, for values of c that are in between

these two extremal cases, Eq. (2.83) has proved to be hard to tackle even numerically, due to

the exponential non-linearity and the oscillatory Bessel term.

Taking into account Eq. (2.83), the average spectral density (2.70) can be further simpli-

fied as follows. Indeed, recalling that G(v) = exp
[
−i λε

2 v2 + cg(v)
]
, the denominator in Eq.

(2.70) can be expressed as

Iρ,den =−
∫

∞

0
dv G′(v) = G(0)−G(∞) = ecg(0) = 1 , (2.84)
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therefore entailing that the average spectral density reduces to

ρ(λ ) =
1
π

lim
ε→0+

Re
∫

∞

0
dv vexp

[
− iλε

2
v2 + cg(v)

]
. (2.85)

2.4.4 The average spectral density in the c→ ∞ limit

It can be shown that Eq. (2.83) can be solved perturbatively in powers of 1/c in the limit c→∞.

In this framework, the average spectral density (2.85) is in turn expressed as a perturbative

expansion, whose leading term is the Wigner semicircular law.

One possible way to extract the large c limit of the average spectral density in the replica

formalism amounts to considering K = K /
√

c in Eq. (2.60), where the distribution of the

rescaled weights being pK (K ) = 1
2 δK ,1 +

1
2 δK ,−1, and expanding the exponential through

its Taylor series. This choice would result in the conjugate order parameter being expressed

as an expansion in powers of 1
c , given that the odd powers of 1√

c are cancelled by the fact that

the odd moments of pK (K ) are zero. Assuming that the order parameter (2.61) at the saddle

point is expressed as a multivariate factorised zero-mean Gaussian, i.e.

ϕ
?(~v) =

n

∏
a=1

e−
v2
a

2σ2

√
2πσ2

, (2.86)

the leading order of its conjugate results in a quadratic polynomial in the va, namely

iϕ̂?(~v) =−〈K
2〉K
2

σ
2

n

∑
a=1

v2
a , (2.87)

where σ2 is determined by the condition

1
σ2 = iλε + 〈K 2〉K σ

2⇒ σ
2 =
−iλε ±

√
−λ 2

ε +4〈K 2〉K
2〈K 2〉K

. (2.88)

Using (2.87) and (2.88) in Eq. (2.63), one easily obtains the Wigner semicircle.

Another way to obtain the average spectral density as a perturbative series for large c is an

expansion inspired to the one outlined in [23,25], which we detail below. At first, the following
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changes of variables are introduced,

v2 =−2is
λε

, (2.89)

r2 =−2iu
λε

, (2.90)

λ
2
ε = cx2

δ
, (2.91)

where xδ = x− iδ , with δ > 0. Moreover, it is assumed that g(v) = 1
c γ(s).

Eq. (2.91) implies rescaling the spectral density such that a meaningful c→ ∞ limit can

be considered. This rescaling is equivalent to normalising the matrix entries by
√

c. After the

change of variables, the spectral density will be expressed in terms of xδ = x− iδ , which does

not scale with c. In this setting, the limit ε → 0+ is replaced by the limit δ → 0+. Taking into

account (2.91), for the l.h.s. of Eq. (2.85) before taking the ε → 0+ limit one finds

ρ(λε) = ρ(xδ )
dxδ

dλε

= ρ(xδ )
1√
c
, (2.92)

entailing that

ρ(λ ) = lim
ε→0+

ρ(λε) = lim
δ→0+

ρ(xδ )
1√
c
= ρ(x)

1√
c
. (2.93)

One then rewrites Eq. (2.83) in terms of the new variables. The differential in (2.83)

transforms as

dr =− i
λε

√
− λε

2iu
du =− i√

cxδ

√
−
√

cxδ

2iu
du , (2.94)

while the integration boundaries are unchanged. Indeed, from (2.90), one finds

u =

√
cr2δ

2
+ i
√

cr2x
2

=

√
cr2

2

√
x2 +δ 2ei arctan( x

δ ) =


0 r = 0

∞ r→ ∞

. (2.95)

In terms of the new variables, after some algebra Eq. (2.83) converts to

γ(s) =
s

x2
δ

∫
∞

0
duexp [−u+ γ(u)]

∞

∑
m=0

1
m!(m+1)!

(
su
cx2

δ

)m

, (2.96)

corresponding to Eq. (23) in [23].

With these choices, it is natural to expand γ(s) as a power series in s/c. High powers of s
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are related to high powers of 1/c. Therefore, one expects to find a solution of the form

γ(s) = c
∞

∑
r=1

br

( s
c

)r
, (2.97)

where in turn the coefficients br are defined via the expansion

br =
∞

∑
`=0

b(`)r

c`
. (2.98)

Eq. (2.97) and (2.98) allow one to obtain all possible combinations of powers of sr

cr+` .

The target is to determine the coefficients b(`)r , by solving Eq. (2.96) order by order. This

would permit a complete representation of γ(s) as a power series. The following steps will be

followed for the solution.

• Express γ via the expansions (2.97) and (2.98) in both the l.h.s. and the exponent of the

r.h.s. of (2.96).

• Integrate w.r.t. u term by term in the r.h.s. of (2.96).

• Equate the coefficients of the powers sr

cr+` .

The expansion of γ(s) will be stopped at O
(1

c

)
. Hence, the l.h.s. of (2.96) reads

γ(s) = b1s+b2
s2

c
+O

(
s2

c2

)
= b(0)1 s+b(1)1

s
c
+b(0)2

s2

c
+O

(
s2

c2

)
. (2.99)

Looking at the r.h.s., one notices that only the terms m = 0 and m = 1 of the sum in (2.96) are

needed to match the powers sr

cr+` in (2.99). Indeed, one finds

γ(s) =
s

x2
δ

∫
∞

0
duexp [−u+ γ(u)]+

s2

2cx4
δ

∫
∞

0
du uexp [−u+ γ(u)]+O

(
s2

c2

)
. (2.100)

The first and second integral on the r.h.s. of (2.100) can be denoted respectively as IA

and IB. Considering first the integral IA, it has a pre-factor of order O(s), therefore it may

yield contributions of any order in powers of 1/c depending on the order at which we stop the

expansion of γ(u) in the exponent. Expanding γ(u) as in (2.99) is sufficient to obtain all the
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O(1) and O
(1

c

)
contributions. Indeed, we have

IA =
∫

∞

0
duexp [−u+ γ(u)]

'
∫

∞

0
duexp

[
b(0)2

c
u2 +

(
b(0)1 −1+

b(1)1
c

)
u

]

=

√
π

2
√
−b(0)2

c

ey2
erfc(y) , (2.101)

where

y =−
b(0)1 −1+ b(1)1

c

2
√
−b(0)2

c

, (2.102)

and Re
(

b(0)2
c

)
< 0. The function denoted by erfc(z) is the complementary error function,

defined for real z as

erfc(z) =
2√
π

∫
∞

z
dt e−t2

. (2.103)

In order to express (2.101) as a power series, an asymptotic expansion of erfc(z) is employed.

For large real z it is given by

erfc(z)' e−z2

z
√

π

[
1+

∞

∑
n=1

(−1)n (2n)!
n!(2z)2n

]
. (2.104)

The series is divergent for any finite z. However, few terms of it are sufficient to approximate

erfc(z) well for any finite z. Using (2.104) in (2.101), one obtains

IA ≈−
1

b(0)1 −1+ b(1)1
c

1+
∞

∑
n=1

(2n)!
(

b(0)2
c

)n

n!
(

b(0)1 −1+ b(1)1
c

)2n


=− 1

b(0)1 −1+ b(1)1
c

−
∞

∑
n=1

(2n)!
n!

(
b(0)2

c

)n
1(

b(0)1 −1+ b(1)1
c

)2n+1 . (2.105)

Eq. (2.105) can be further simplified recalling that (1+βx)α ≈ 1+αβx for x� 1, entailing

that the first term of (2.105) becomes

− 1

b(0)1 −1+ b(1)1
c

≈ 1

1−b(0)1

+
b(1)1(

1−b(0)1

)2
1
c
. (2.106)
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Since the expansion is stopped at O
(1

c

)
, only the n = 1 term in the sum in (2.105) needs to be

considered, as the contributions for n ≥ 2 are at least O
( 1

c2

)
. Moreover, since the n = 1 term

exhibits the O
(1

c

)
scaling explicitly, only the O(1) contribution arising from the round brackets

in the denominator of the general term of the sum in (2.105) must be taken into account. Indeed,

using (2.106) the n = 1 term in (2.105) becomes

2
b(0)2

c

− 1

b(0)1 −1+ b(1)1
c

3

≈ 2
b(0)2

c

 1

1−b(0)1

+
b(1)1(

1−b(0)1

)2
1
c


3

= 2
b(0)2(

1−b(0)1

)3
1
c
+O

(
1
c2

)
. (2.107)

Collecting all the leading contributions to the integral IA one obtains

IA =
∫

∞

0
duexp [−u+ γ(u)] =

1

1−b(0)1

+
1
c

 b(1)1(
1−b(0)1

)2 +
2b(0)2(

1−b(0)1

)3

+O

(
1
c2

)
.

(2.108)

Considering now the second integral on the r.h.s. of (2.100), denoted by IB, its pre-factor

has already the O
(1

c

)
scaling. Therefore, only the O(1) term arising from the 1

c expansion of

IB is needed. To this purpose, it is sufficient to consider the expansion of γ(u) no further than

O
(u

c

)
. Indeed, one finds

IB =
∫

∞

0
du uexp [−u+ γ(u)]

≈
∫

∞

0
du uexp

[
−

(
1−b(0)1 −

b(1)1
c

)
u

]

≈ 1(
1−b(0)1

)2 +O

(
1
c

)
, (2.109)

with Re
(

1−b(0)1 −
b(1)1

c

)
> 0.

In conclusion, using the expansions of IA and IB, respectively given by Eq. (2.108) and

(2.109), Eq. (2.100) representing the r.h.s. of (2.96) becomes

γ(s)=
1

x2
δ

(
1−b(0)1

)s+
1
x2

δ

 b(1)1(
1−b(0)1

)2 +2
b(0)2(

1−b(0)1

)3

 s
c
+

1
2x4

δ

1(
1−b(0)1

)2
s2

c
+O

(
s2

c2

)
.

(2.110)
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Equating term by term the expansion in Eq. (2.99) and (2.110), one gets a closed set of

equations to determine the three coefficients b(0)1 , b(1)1 and b(0)2 , viz.

O(s) : b(0)1 =
1

x2
δ

(
1−b(0)1

) , (2.111)

O
( s

c

)
: b(1)1 =

1
x2

δ

 b(1)1(
1−b(0)1

)2 +
2b(0)2(

1−b(0)1

)3

 , (2.112)

O

(
s2

c

)
: b(0)2 =

1

2x4
δ

(
1−b(0)1

)2 , (2.113)

corresponding to Eq. (25), (26) and (27) in [23]. The latter system of equations can be easily

solved, yielding

b(0)1 =
1
2

[
1±A

1
2

]
, (2.114)

b(1)1 =∓ xδ
2

16

[
1±A

1
2

]4

A
1
2

, (2.115)

b(0)2 =
1
2

(
b(0)1

)2
, (2.116)

where A = 1− 4
x2

δ

.

Finally, the average spectral density (2.85) can be evaluated perturbatively. Indeed, taking

into account Eq. (2.93) and applying the change of variables (2.89), (2.91) and g(v) = 1
c γ(s) to

the r.h.s. of Eq. (2.85), one finds

ρ(x)
1√
c
=

1
π

lim
δ→0+

Re
[(
− i√

cxδ

)∫
∞

0
dsexp [−s+ γ(s)]

]
⇒

ρ(x) =
1
π

lim
δ→0+

Im
[

1
x− iδ

∫
∞

0
dsexp [−s+ γ(s)]

]
, (2.117)

where the dependence on c is only through the power series (2.97) expressing γ(s).

The goal is to obtain the O(1) leading term dominating in Eq. (2.117) for large c, along

with its O(1/c) correction. It is worth noticing that the integral appearing on the r.h.s. of Eq.

(2.117) has been already evaluated up to O(1
c ). Indeed, it corresponds to the integral IA of Eq.

(2.108). Therefore, using (2.108) in (2.117) one gets

ρ(x) = ρ0(x)+
1
c

ρ1(x)+O

(
1
c2

)
, (2.118)
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where

ρ0(x) =
1
π

lim
δ→0+

Im

[
1

x− iδ
1

1−b(0)1

]
, (2.119)

ρ1(x) =
1
π

lim
δ→0+

Im

 1
x− iδ

 b(1)1(
1−b(0)1

)2 +
2b(0)2(

1−b(0)1

)3


 , (2.120)

and the coefficients b(0)1 , b(1)1 and b(0)2 have been defined respectively in (2.114), (2.115) and

(2.116).

The O(1) leading term ρ0(x) in Eq. (2.119) is simply obtained by observing that

Im

[
1

x− iδ
1

1−b(0)1

]
=

1
2

Im
[

x− iδ ±
√

(x− iδ )2−4
]
. (2.121)

Using (2.121), considering the imaginary part and taking the δ → 0+ limit, the O(1) leading

term in Eq. (2.118) becomes

ρ0(x) =


1

2π

√
4− x2 −2 < x < 2

0 elsewhere
, (2.122)

where we have used that

Im [
√

y] =


√
−y y < 0

0 y > 0
, (2.123)

and the plus sign in front of the square root has been chosen in order to get a physical (non-

negative) solution. This sign choice amounts to selecting the top alternative for the signs ap-

pearing in the expansion coefficients (2.114), (2.115) and (2.116). Eq. (2.122) corresponds to

the Wigner’s semicircle as expected.

Similarly, using the definitions (2.114), (2.115) and (2.116), taking the δ → 0+ limit and

employing the property (2.123), after some algebra the O
(1

c

)
correction (2.120) is obtained as

ρ1(x) =


x4−4x2+2
2π
√

4−x2 −2 < x < 2

0 elsewhere
, (2.124)

where the sign is determined by the same sign convention for the coefficients of the expansion
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Figure 2.2: The O(1/c) correction ρ1(x) found in Eq. (2.124) to the average spectral density of ER matrices with bimodal
weights distribution in the large c limit (red line), compared to the histogram of 9.99× 106 eigenvalues of matrices
from the ER ensemble with c = 50 and bond weight distribution pK(K) = 1

2 δK,1/
√

c +
1
2 δK,−1/

√
c (blue dotted line).

The O(1) contribution ρ0(x) in Eq. (2.122) has been removed from the histogram.

adopted for the evaluation of ρ0(x). The correction (2.124) is non-zero only in the interval−2<

x < 2 and diverges at the edges. Moreover, one can notice that the total average spectral density

(2.118) is correctly normalised up to order O
(1

c

)
, given that the integral of the correction

(2.124) over its domain −2 < x < 2 is zero.

In Fig. 2.2, we compare the analytical expression for ρ1(x) against the data from direct

diagonalisation of sparse ER matrices, with bond weights distribution pK(K) = 1
2 δK,1/

√
c +

1
2 δK,−1/

√
c, in the case of c = 50. We obtained the eigenvalues of 10000 matrices of size

N = 1000 and discarded the isolated contribution due to the top eigenvalue of such matrices,

which lies outside the spectrum. We then organised the remaining 9.99×106 eigenvalues in a

normalised histogram and removed from the data the semicircular contribution ρ0(x) evaluated

at the middle-point of each histogram bin. We found a very good agreement between the ana-

lytical curve representing ρ1(x) (red line) and the numerical diagonalisation data (blue dotted

line).

2.5 Alternative Replica solution: uncountably infinite superposi-

tion of Gaussians

Kühn in [33] suggested a different approach for the average spectral density problem, which

completely bypasses (2.83). At the outset, the treatment in [33] is the same as in [23], but

departs from the Bray-Rodgers original derivation at the level of the stationarity conditions

(2.60) and (2.61). The order parameter ϕ(~v) and its conjugate iϕ̂(~v) are represented as an
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uncountably infinite superposition of complex Gaussians, i.e.

ϕ(~v) =
∫

dωπ(ω)
n

∏
a=1

e−
ω

2 v2
a

Z(ω)
, (2.125)

iϕ̂(~v) = ĉ
∫

dω̂π̂(ω̂)
n

∏
a=1

e−
ω̂

2 v2
a

Z(ω̂)
, (2.126)

where Z(x) =
√

2π

x and π(ω) and π̂(ω̂) are normalised pdfs of the inverse variances ω and ω̂6

with Re(ω),Re(ω̂)≥ 0. The constant ĉ is chosen to enforce the normalisation of π̂(ω̂).

Eq. (2.125) and (2.126) are expansions of ϕ and ϕ̂ in an over-complete function system.

One can also notice that π(ω) is the inverse Laplace transform of ϕ , if one consider ϕ as a

function of the v2
a. The structure of this ansatz derives from the study of models for amorphous

systems. In that context, it was noticed that harmonically coupled systems — such as the

model defined by our “Hamiltonian” (2.5) — admit a solution in terms of superposition of

Gaussian [34, 118]. This ansatz exhibits permutation symmetry among replicas as well as

rotational symmetry in replica space, therefore sharing the same symmetries assumed in [23]

(see Eq. (2.66)). The advantage of the ansätze (2.125) and (2.126) is that they allow us to

extract the leading contribution to the saddle-point of (2.54) in the limits N→ ∞ and n→ 0.

The path integral over the ϕ and ϕ̂ is thus replaced by a path integral over π and π̂ .

Therefore, Eq. (2.54) becomes

〈Z(λ )n〉J ∝

∫
DπD π̂ exp(NSn[π, π̂,λ ]) , (2.127)

where

Sn[π, π̂,λ ] = S1[π, π̂]+S2[π]+S3[π̂,λ ] , (2.128)

and

S1[π, π̂] =−ĉ−nĉ
∫

dπ(ω)dπ̂(ω̂)log
Z(ω + ω̂)

Z(ω)Z(ω̂)
, (2.129)

S2[π] = n
c
2

∫
dπ(ω)dπ(ω ′)

〈
log

Z2(ω,ω ′,K)

Z(ω)Z(ω ′)

〉
K
, (2.130)

S3[π̂,λ ] = ĉ+n
∞

∑
k=0

pĉ(k)
∫
{dπ̂}klog

Z(iλε +{ω̂}k)

∏
k
`=1 Z(ω̂`)

. (2.131)

In the latter expressions, the shorthands dπ = dωπ(ω), {dπ̂}k = ∏
k
`=1 dω̂`π̂(ω̂`) and {ω̂}k =

6We employ the same labels used in the cavity treatment, as the two objects will eventually coincide.
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∑
k
`=1 ω̂` have been used. Moreover, Z2(ω,ω ′,K) = Z(ω)Z(ω ′+ K2

ω
). The function pĉ(k) is

the Poisson degree distribution pĉ(k) = e−ĉĉk

k! , which naturally crops up in the calculation when

representing eiϕ̂?(~v) appearing in (2.61) as a power series. The derivation of (2.129), (2.130)

and (2.131) is detailed in Appendix 2.E. We notice that the O(1) contributions in (2.129) and

(2.131) cancel each other, making the action (2.128) of O(n).

The stationarity conditions (2.60) and (2.61) are replaced by the stationarity conditions

w.r.t. π and π̂ . They are

δSn

δπ
= 0⇒

ĉ
c

∫
dπ̂ log

Z(ω + ω̂)

Z(ω)Z(ω̂)
=
∫

dπ
′
〈

log
Z2(ω,ω ′,K)

Z(ω)Z(ω ′)

〉
K
+

γ

c
, (2.132)

and

δSn

δ π̂
= 0⇒∫

dπ log
Z(ω + ω̂)

Z(ω)Z(ω̂)
=

∞

∑
k=1

pĉ(k)
k
ĉ

∫
{dπ̂}k−1 log

Z(iλε +{ω̂}k−1 + ω̂)

Z(ω̂)∏
k−1
`=1 Z(ω̂`)

+
γ̂

ĉ
, (2.133)

where γ and γ̂ are two Lagrange multipliers to enforce the normalisation condition of π and π̂ .

The equality (2.132) is realised by making sure that γ satisfies the equality

− ĉ
c

∫
dπ̂(ω̂) logZ(ω̂) =

γ

c
, (2.134)

while the remaining part (which is a function of ω) should satisfy

ĉ
c

∫
dπ̂(ω̂) log

Z(ω + ω̂)

Z(ω)
=
∫

dπ(ω ′)

〈
log

Z
(

ω + K2

ω ′

)
Z(ω)

〉
K

, (2.135)

where Z2(ω,ω ′,K) = Z(ω ′)Z(ω + K2

ω ′ ) has been used. Since eq. (2.135) must hold for any

value of ω in order for (2.132) to be satisfied, one notices that the following definition

π̂(ω̂) =
ĉ
c

∫
dπ(ω)

〈
δ

(
ω̂− K2

ω

)〉
K
, (2.136)

once inserted in the l.h.s. of (2.136), indeed produces the r.h.s. Likewise, also in (2.133) a
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constant part can be isolated,

−
∫

dπ(ω) logZ(ω) =−
∞

∑
k=1

pĉ(k)
k
ĉ

∫
{dπ̂}k−1 log

k−1

∏
`=1

Z(ω̂`)+
γ̂

ĉ
, (2.137)

and a part that is a function of ω̂ , viz.

∫
dπ(ω) log

Z(ω + ω̂)

Z(ω̂)
=

∞

∑
k=1

pĉ(k)
k
ĉ

∫
{dπ̂}k−1 log

Z(iλε +{ω̂}k−1 + ω̂)

Z(ω̂)
. (2.138)

As before, since (2.138) must hold for any ω̂ , it follows that

π(ω) =
∞

∑
k=1

pĉ(k)
k
ĉ

∫
{dπ̂}k−1δ (ω− (iλε +{ω̂}k−1)) . (2.139)

In order for both π̂ and π to be normalised to 1, the condition ĉ = c must be imposed.

2.5.1 Average spectral density unfolded

The solutions of the two coupled functional equations

π̂(ω̂) =
∫

dπ(ω)

〈
δ

(
ω̂− K2

ω

)〉
K
, (2.140)

π(ω) =
∞

∑
k=1

pc(k)
k
c

∫
{dπ̂}k−1δ

(
ω−

(
iλε +

k−1

∑
`=1

ω̂`

))
, (2.141)

represent the saddle-point evaluation of (2.127). The symbol pc(k) represents the Poisson

degree distribution, which is expected for ER sparse graphs. However, it has been shown

in [1, 34, 44] that the above equations hold unmodified also for any non-Poissonian degree

distributions p(k) within the configuration model framework, as long as the mean degree 〈k〉=

c is a finite constant, i.e. does not scale with N, and the variance is finite. Unlike (2.83),

the equations (2.140) and (2.141) can be very efficiently solved numerically by a population

dynamics algorithm (see Section 2.6). Some remarks are in order.

• Inserting (2.140) into (2.141) yields a unique self-consistency equation for π that is ex-

actly identical to (2.34), obtained using the cavity method in the thermodynamic limit.

This fact demonstrates once more the equivalence between the replica and cavity meth-

ods.

• Alternatively, one could insert (2.141) into (2.140), obtaining a single self-consistency
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equation for π̂ that reads

π̂(ω̂) =
∞

∑
k=1

pc(k)
k
c

∫
{dπ̂}k−1

〈
δ

(
ω̂− K2

iλε +∑
k−1
`=1 ω̂`

)〉
K

. (2.142)

The solution of the latter equation via a population dynamics algorithm will be described

below in Section 2.6. While the two approaches are equivalent, here we choose to work

with the {ω̂} since the final equation for the spectral density is more naturally expressed

in terms of those, as shown in the following.

The pdf π̂(ω̂) defined in (2.142) fully determines the average spectral density. Indeed,

recalling (2.2) one gets

ρ(λ ) =− 2
πN

lim
ε→0+

Im
∂

∂λ
〈logZ(λ )〉J

'− 2
π

lim
ε→0+

Im lim
n→0

1
n

∂

∂λ
S3[π̂,λ ]

=
1
π

lim
ε→0+

∞

∑
k=0

pc(k)Re
∫
{dπ̂}k

1
iλε +{ω̂}k

=
1
π

lim
ε→0+

∞

∑
k=0

pc(k)
∫
{dπ̂}k

Re [{ω̂}k]+ ε

(Re [{ω̂}k]+ ε)2 +(λ + Im [{ω̂}k])
2 , (2.143)

where the latter expression corresponds to Eq. (33) in [33]. We notice that (2.143) is com-

pletely equivalent to (2.36) if π̂(ω̂) is expressed in terms of π(ω) according to (2.140). All the

observations made about (2.36) hold here as well. The average spectral density as expressed

in (2.143) is evaluated by sampling from a large population distributed according to π̂(ω̂): this

procedure will also be illustrated in Section 2.6.

2.5.2 Singular contributions, the presence of localised states and the role of ε

The average spectral density (2.143) can be rewritten in order to isolate singular pure-point

contributions from the continuous spectrum. Indeed, defining

P(a,b) =
∞

∑
k=0

pc(k)
∫
{dπ̂}kδ (a−Re[{ω̂}k])δ (b− Im[{ω̂}k]) , (2.144)

one finds the identity

ρ(λ ) =
1
π

lim
ε→0+

∫
dadbP(a,b)

a+ ε

(a+ ε)2 +(λ +b)2 . (2.145)
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The integrand in (2.145) becomes singular as ε → 0 for a = 0. These singular contributions

can be isolated representing P(a,b) as

P(a,b) = P0(b)δ (a)+ P̃(a,b) , (2.146)

yielding for the spectral density

ρ(λ )=
1
π

lim
ε→0+

∫
dbP0(b)Lε(λ +b)+

1
π

lim
ε→0+

∫
a>0

dadbP̃(a,b)
a+ ε

(a+ ε)2 +(λ +b)2 . (2.147)

Here, Lε(λ + b) is a Cauchy distribution with scale (half-width at half-maximum) parameter

ε , viz.

Lε(λ +b) =
1
π

ε

ε2 +(λ +b)2 −−−→
ε→0+

δ (λ +b) , (2.148)

that reduces to a delta-peak in b = −λ for any value of λ as ε → 0+. The spectral density

ρ(λ ) can then be easily evaluated by sampling (see Section 2.6) from the population of the a

and b (i.e. the ω̂). Relying on the law of large numbers and calling M the number of samples

{(ai,bi)}, the two integrals in (2.147) can indeed be rewritten as

ρ(λ )' ρS(λ )+ρC(λ )

' 1
M

M

∑
i=0∧ai=0

Lε(λ +bi)+
1

πM

M

∑
i=0∧ai>0

ai + ε

(ai + ε)2 +(λ +bi)2 , (2.149)

where ρS(λ ) and ρC(λ ) indicate respectively the singular and the continuous part of the average

spectral density. Eq. (2.149) corresponds to Eq. (40) in [33].

We are now going to present some evidence that the singular contribution ρS(λ ) to the

average spectral density is related to localisation properties.

Figure 2.3 shows the spectral density obtained for ER matrices with mean degree c = 2

and Gaussian weights with zero mean and variance 1/c. It has been numerically shown [32,33]

that the tails of the distribution and the central peak in λ = 0 are dominated by localised states,

i.e. the eigenvectors corresponding to those values of λ have most of their components equal

to zero. Given that there is a one-to-one matching between the eigenvectors of graphs and

their nodes, a localised state can be also described as an eigenvector that is concentrated on

few sites of the graph. Quantitatively, the presence and location of localised states in the

spectrum is confirmed by the numerical analysis of the Inverse Participation Ratio (IPR) of the
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Figure 2.3: Spectral density of ER matrices with mean degree c = 2 and Gaussian bond weights with zero mean and variance
1/c. In all panels, direct diagonalisation results (red circles) are obtained from a sample of 10000 matrices of size
N = 1000. Top: population dynamics result obtained with a regulariser ε = 10−3 (solid blue line) vs. the direct
diagonalisation results. Medium: population dynamics result obtained with a regulariser ε = 10−300 (solid blue
line) vs. the direct diagonalisation results. Bottom: comparison between population dynamics result obtained with a
regulariser ε = 10−3 (solid blue line), population dynamics result obtained with a regulariser ε = 10−300 (solid green
line) and direct diagonalisation on a logarithmic scale. An extremely small value of ε is not able to capture the tails
of the spectral density related to localised states, where the singular contributions prevail.
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Figure 2.4: Spectral density of ER matrices with mean degree c = 4 and Gaussian bond weights with zero mean and variance
1/c. Top: population dynamics result (solid blue line) obtained with a regulariser ε = 10−3 vs. direct diagonalisation
results (red circles) are obtained from a sample of 10000 matrices of size N = 1000. Bottom: comparison between
population dynamics result with ε = 10−3 (solid blue line), direct diagonalisation results obtained from a sample
of 10000 matrices of size N = 1000 (red circles) and direct diagonalisation results obtained from a sample of 2500
matrices of size N = 4000 (green stars).

Figure 2.5: Spectral density of adjacency matrices of random regular graphs with coordination c = 4. The population dynamics
result (solid blue line) is compared to the analytical expression of the spectral density, found in [39, 40], known as
Kesten-McKay pdf (red circles).
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eigenvectors in [33]. Given an eigenvector vvv of a N×N matrix, its IPR is defined as

IPR(vvv) =
∑

N
i=1 v4

i(
∑

N
i=1 v2

i

)2 . (2.150)

The above definition is independent of the eigenvector’s normalisation. The IPR of localised

states is O(1), as opposed to the O(N−1) scaling for delocalised states. Indeed, the aforemen-

tioned numerical studies in [32, 33] show that the O(1) scaling for IPR is found in correspon-

dence of the tails and around the peak in λ = 0. Moreover, the IPR analysis makes it possible to

relate localised states with the singular contributions to the overall spectrum ρ(λ ). Indeed, the

regions of the spectrum where the IPR is O(1) are also those where the singular contribution

ρS(λ ) dominates over ρC(λ ).

Moreover, when comparing numerical direct diagonalisation and population dynamics

results two fundamental aspects must be taken into account.

• On the one hand, the eigenvalues obtained by direct diagonalisation must be suitably

binned in order to produce the numerical spectral density profile. The binning procedure

can smoothen peaks originating from singular contributions, making them harder to de-

tect. Ideally, the bin size ∆ should be small enough to resolve the local variability of the

spectral density, but also large enough to include enough eigenvalues. Quantitatively, if

NS is the total number of eigenvalues from direct diagonalisation, then a suitable ∆ is the

smallest value ensuring that the average number of eigenvalues per bin is NSρ(λ )∆� 1.

Here, we used NS = 107 and ∆ = 10−2, allowing us to faithfully represent cases where

ρ(λ ) is as small as O(10−5).

• On the other hand, the parameter ε plays an essential role in highlighting the singular

contributions to the spectrum. In the evaluation of (2.149) only the samples such that

bi ∈ [−λ −O(ε),−λ +O(ε)] for any given value of λ contribute to ρS(λ ). Therefore,

in order to have enough data for a reliable evaluation of the singular contribution ρS(λ ),

one must refrain from using a very small ε > 0 (such as ε =O(10−300)), but rather use a

relatively large value ε > 0 (such as ε = O(10−3)), to ensure that M ερS(λ )� 1. Here

M indicates the number of samples used to evaluate the sums in (2.149).

The effects of the choice of the regulariser ε are evident in the case c = 2 (see Fig. 2.3),

since for such low c localised states prevail in the spectrum. Indeed, this is due to the structure

of the graph itself, which is made of a giant cluster component and a collection of isolated finite
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connected clusters of nodes of any size (see Appendix 2.C). An excellent agreement between

direct diagonalisation and population dynamics results is achieved for ε = 10−3 (top panel). In-

deed, in the ε = 10−3 case, the Cauchy peaks related to the singular contributions to the spectral

density are broadened into “wider” Cauchy pdfs. On the other hand, when using a smaller reg-

ulariser such as ε = 10−300 (medium panel), the spectral density exhibits large fluctuations

mainly due to errors that occur when sampling isolated states, as the condition M ερS(λ )� 1

cannot be satisfied. The peaks are superimposed on the continuous curve representing ρC(λ ).

However, the curve ρC(λ ) is unable to capture the tails of the spectral density: this effect is

highlighted on a logarithmic scale (bottom panel). This is the typical signature of a localisation

transition: the tails of the spectral density are dominated by localised states, hence they cannot

be represented by the continuous part of the spectrum. At the same time, using too small

values for ε makes it impossible to observe the localised state contributions in the tails. If a

larger regulariser (hence better local statistics) were employed (bottom panel), then the tails

could be revealed. For an extensive discussion of these phenomena, see [33].

These effects are much less evident in the c = 4 case, shown in Fig. 2.4, as localised states

are much less relevant as the mean degree c increases. Indeed it has been shown in [119, 120]

that the weight of the delta-peaks related to localised states is an exponentially decreasing

function of c, hence the peaks tend to disappear and merge into the continuous part of the

spectrum as c grows. Moreover, the proportion of isolated nodes and isolated tree-like clusters

of nodes in the graph is strongly reduced (see again Appendix 2.C). Therefore, the choice of

the regulariser is of lesser importance, and population dynamics simulations run with different

values of ε yield very similar results. Here, the peak at λ = 0 due to isolated nodes can

still be noticed. The case of the spectral density of ER matrices with Gaussian couplings

with c = 4 is used to show that finite size effects are barely present in the spectral problem

(bottom panel of Fig. 2.4). In fact, numerical diagonalisation of matrices of different size

(in particular N = 1000 and N = 4000) are barely distinguishable if compared to the same

population dynamics simulation. Indeed, the Kolmogorov-Smirnoff test for the two samples

returns a p-value of 32%, in favour of the hypothesis that they come from the same distribution.

Finally, as an illustration of the fact that the formalism presented here can be used to

obtain the spectral density for other ensembles in the configuration model class having a degree

distribution with finite mean and variance, we show in Fig. 2.5 the spectral density of the

ensemble of adjacency matrices of random regular graphs (RRG), having degree distribution
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p(k) = δk,c. In Fig. 2.5 we consider the case c = 4. For RRGs adjacency matrices, there are

no localised states for any c > 2. Conversely, there are mainly localised states for c = 2 (see

again [33] for a detailed discussion). The population dynamics algorithm perfectly reproduces

the Kesten-McKay distribution [39, 40], given by the analytical formula

ρ(λ ) =
c
√

4(c−1)−λ 2

2π(c2−λ 2)
for |λ | ≤ 2

√
(c−1) . (2.151)

We remark that (2.151) can be derived analytically within the formalism of Section 2.5.1 em-

ploying a “peaked” ansatz for the distribution of inverse variances as π̂(ω̂) = δ (ω̂− ω̄). This

is shown in Appendix 2.F.

2.6 Population dynamics algorithm

In this section, we sketch the stochastic population dynamics algorithm that allows us to solve

the self-consistency equation (2.142) and the sampling procedure to evaluate (2.143). This kind

of algorithm is widely used in the study of spin glasses [121, 122]. This procedure is general

and allows to solve every equation having the same structure as (2.142) (including for instance

(2.34)).

In order to solve (2.142), one represents the pdf π̂(ω̂) in terms of a population of NP

complex values {(ω̂i)}1≤i≤NP
, which are assumed to be sampled from that pdf. Given that

the true pdf is initially unknown, a starting population is randomly initialised with Re[ω̂i]> 0.

Then, a stochastic algorithm for which the solution of Eq. (2.142) is the unique stationary

solution is constructed.

To start, we fix ε = 10−300. Indeed, when solving (2.142), we may choose ε to be as small

as possible in order not to bias the values of the ω̂ 7. Moreover, we define a set I of equally

spaced real positive numbers, starting at zero. The parameter λ will take values in I. The

distance between two consecutive values in I, denoted by ∆λ , represents the λ -scan. For the

plots shown in this chapter, we have employed ∆λ = O(10−3). However, the mesh precision

can be tuned depending on the desired resolution of the spectrum. Since the average spectral

density as expressed by Eq. (2.145) (or equivalently Eq. (2.149)) is an even function of λ , it

can be evaluated in the interval I and then simply mirrored w.r.t. 0 to obtain the full spectral

density shape. As a last remark, it is convenient to normalise the bond weights drawn from

pK(K) by
√

c, where c is the mean degree.

7This morally corresponds to considering the ε → 0+ limit in eq. (2.142).
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Given these initial remarks, the stochastic algorithm consists of iterating the following

step until a statistically stationary population is obtained, for any given λ ∈ I.

1. Generate a random k according to the distribution k
c p(k), where p(k) is the degree distri-

bution of interest and c = 〈k〉.

2. Generate K from the bond weights pdf pK(K).

3. Select k−1 elements ω̂` from the population at random, then compute

ω̂
(new) =

K2

iλε +∑
k−1
`=1 ω̂`

, (2.152)

which is the equality enforced by the delta function in (2.142) . Replace a randomly

selected population member ω̂ j (where j = 1, ...,NP) with ω̂(new).

4. Return to (i).

A sweep is completed when every member of the population ω̂ j with j = 1, ...,NP has been

updated once according to the previous steps. We denote the i-th sweep for a given λ as Si(λ ).

A sufficient number Neq of sweeps is needed to equilibrate the population. Stationarity can

be assessed by looking at the sample estimate of the first moments of the ω̂ variables. The

convergence is granted by the fact that recursive distributional equations such as Eq. (2.142)

admit a unique probability distribution as a solution, as it has been shown in [37].

The population dynamics algorithm can also be employed for the sampling procedure

that allows one to numerically evaluate (2.143) (and in a similar fashion (2.36)). Once (for

a given value of λ ) the population {(ω̂i)}1≤i≤NP
has been brought to convergence after Neq

equilibration sweeps, a number Nmeas of so-called measurement sweeps M(λ ) is performed.

Here, Nmeas is the number of the measurement sweeps.

Each measurement sweep M j(λ ) ( j = 1, ...,Nmeas) can be divided into two parts. In the

first part, the population in equilibrium is updated via a sweep S j(λ ), as described before. The

second part is the actual measurement part m j(λ ), involving the following steps. Two (real)

empty arrays {ai}{1≤i≤Nsam} and {bi}{1≤i≤Nsam} of size Nsam are initialised. Here, Nsam is the

number of samples per measurement sweep. Each of the ai and the bi will eventually play the

role of the real and the imaginary parts of sums of the ω̂`, respectively. Then, for i = 1, ...,Nsam:

1. Generate a random k according to the degree distribution pc(k) (or in general p(k))
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2. Select k numbers ω̂` from the population {ωi}1≤i≤NP
at random and compute

xi =
k

∑
`=1

ω̂` . (2.153)

3. Compute

ai = Re[xi] , (2.154)

bi = Im[xi] . (2.155)

When all Nmeas measurement sweeps M j(λ ) have been completed (typically, Nmeas ≈ 104),

the resulting Nmeas arrays of the type {ai}{1≤i≤Nsam} (respectively {bi}{1≤i≤Nsam}) are merged

together, yielding a unique large array {A j}{1≤ j≤M } (respectively {B j}{1≤ j≤M }) of size M =

Nsam×Nmeas, which is the total number of samples (typically, we choose Nsam such that M is

O(107) for the chosen value of Nmeas). Therefore we can eventually compute

ρ(λ ) =
1

πM

M

∑
j=1

A j + ε

(A j + ε)2 +(B j +λ )2 , (2.156)

which represents the contribution to the average spectral density for a given value of λ . Eq.

(2.156) corresponds to Eq. (2.149). The evaluation of the sample average (2.156) requires a

careful choice of ε , since the value of ε in (2.156) will determine the width of the Cauchy dis-

tributions approximating the delta-peaks in the spectrum (see the discussion in Section 2.5.2).

In general, the value of ε employed in (2.156) can be larger (up to ε =O(10−3)) than the value

ε = 10−300 chosen for the equilibration sweeps in (2.152), in order to have sufficient statistics

to faithfully represent the singular part of the spectrum. Eq. (2.156), corresponding to eq. (40)

in [33], is a discretised version of (2.145). This step concludes the sampling algorithm for a

given value of λ . The full sampling algorithm can be summarised as follows.
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Algorithm 1 Population dynamics sampling algorithm

1: for λ ∈ I do
2: for e = 1, ...,Neq do
3: Se(λ ) . Equilibration sweeps.
4: end for
5: for j = 1, ...,Nmeas do
6: S j(λ )
7: m j(λ ) . S j(λ ) and m j(λ ) jointly form the measurement sweep M j(λ ).
8: end for
9: Compute (2.156) for given λ using results from steps 5 to 8.

10: end for .

2.7 Summary

We have provided a comprehensive overview of the computation of the average spectral density

of sparse symmetric random matrices using a statistical mechanics setup. We started with the

celebrated Edwards-Jones formula (2.2) and outlined its proof. The formula allows to recast the

determination of the density of states of a N×N matrix into the calculation of the average free

energy of a system of N interacting particles at equilibrium, described by a Gibbs-Boltzmann

distribution at imaginary inverse temperature. Therefore, techniques from the statistical physics

of disordered systems, such as the replica method, can be employed to correctly deal with the

calculation of the average free energy (see Eq. (2.16)) that features in the Edwards-Jones

formula. The replica method was indeed the strategy used in the seminal work of Bray and

Rodgers, which represents the first attempt to obtain the spectral density for matrices with

ER connectivity. We have reproduced their calculations in detail, showing how to derive the

integral equation (2.83) whose solution still represents a challenging open problem. We also

described how to obtain the Wigner semicircle as the leading order of the large mean degree

expansion of Eq. (2.83).

Considering sparse tree-like graphs within the Edwards-Jones framework, we have de-

scribed how to apply the cavity method to the spectral problem for single instances. The

cavity method circumvents the averaging of the free energy by making the associated Gibbs-

Boltzmann distribution the target of its analysis. We have demonstrated that in this context the

only ingredients needed to compute the spectral density are the inverse variances of each of the

N marginal pdfs of the Gibbs-Boltzmann distribution (see Eq. (2.22)). These inverse variances

are easily obtained in terms of a set of self-consistency equations (2.29) for the cavity inverse

variances. We have also discussed an algorithm to perform the single-instance cavity analy-
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sis. Moreover, we have explained how in the thermodynamic limit the cavity single-instance

recursions give rise to a self-consistency integral equation (2.34) for the pdf of the inverse cav-

ity variances, in terms of which the average spectral density (2.36) is fully determined at the

ensemble level.

We have also illustrated an alternative replica derivation, where the high-temperature

replica symmetry ansatz employed by Bray and Rodgers is realised by assuming that the or-

der parameter and its conjugate are expressed through an infinite superposition of zero-mean

complex Gaussians, with random inverse variances (see Eq. (2.125) and (2.126)). We showed

that the two coupled integral equations (2.140) and (2.141) that define the pdfs of the afore-

mentioned inverse variances reduce to a unique self-consistency equation (2.142), which is

equivalent to Eq. (2.34) found within the cavity treatment in the thermodynamic limit. In the

replica framework, too, the average spectral density (2.143) depends only on this single pdf

defined in (2.142). Therefore, once again the equivalence between the cavity and replica ap-

proaches is confirmed. Indeed, both methods permit to express the average spectral density

as a weighted sum of local contributions coming from nodes of different degree k. On the

practical side, the average spectral density is obtained by sampling from a large population of

complex numbers distributed according to the pdf of the inverse variances (2.142) (or equiva-

lently (2.34)). We remark that both approaches are not restricted to ER graphs, but can handle

any degree distribution with finite mean and variance.

The essential tool for solving self-consistency equations of the kind of Eq. (2.142) and

performing the sampling procedure to evaluate the spectral density (2.143) is a stochastic pop-

ulation dynamics algorithm which we outlined in detail. Results obtained with the population

dynamics algorithm are in excellent agreement with the numerical diagonalisation of large

weighted adjacency matrices of tree-like graphs, provided that the correct choice of the value

of the regulariser ε used in the algorithm is made. Indeed, we thoroughly describe the impor-

tant role of ε in unveiling the contribution of the localised states to the spectral density, also

in connection with the graph’s mean degree and structure. We are also able to show that the

spectral density does not significantly suffer from finite size effects, away from any localisation

transition. In the immediate vicinity of localisation transitions, it is expected that finite size ef-

fects will affect results as in other continuous phase transitions. However, this phenomenology

has not been fully investigated.
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2.A Sokhotski-Plemelj formula

The Sokhotski-Plemelj identity is

lim
ε→0+

1
x± iε

= Pr
(

1
x

)
∓ iπδ (x) . (2.A.1)

It is employed for the solution of some improper integrals. A quick proof for a real test function

g(x) follows. We have

lim
ε→0+

∫
∞

−∞

dx
g(x)

x± iε
= lim

ε→0+

∫
∞

−∞

dx x
g(x)

x2 + ε2 ∓ iπ lim
ε→0+

∫
∞

−∞

dx g(x)
1
π

ε

x2 + ε2 , (2.A.2)

where the real and imaginary part of the integrand have been separated. The first integral on

the r.h.s. of (2.A.2) can be written as a Cauchy principal value, viz.

lim
ε→0+

∫
∞

−∞

dx x
g(x)

x2 + ε2 = lim
ε→0+

∫
∞

−∞

dx
g(x)

x
x2

x2 + ε2 (2.A.3)

= lim
ε→0+

(∫ −ε

−∞

dx
g(x)

x
+
∫

∞

ε

dx
g(x)

x

)
=

[
Pr
(

1
x

)]
(g) . (2.A.4)

The second integral on the r.h.s of (2.A.2) reduces to

lim
ε→0+

∫
∞

−∞

dx g(x)
1
π

ε

x2 + ε2 =
∫

∞

−∞

dx g(x)δ (x) = g(0) , (2.A.5)

where limε→0+
1
π

ε

x2+ε2 = δ (x) has been employed.

2.B The principal branch of the complex logarithm

The logarithm in the complex plane is in general a multi-valued function. Whenever a well

defined, single-valued function is needed, the principal branch of the complex logarithm can



2.C. Erdős-Rényi graphs 60

be considered. It is denoted by “Log” and defined such that for any z ∈ C with r = |z|,

Log(z) = ln(r)+ iArg(z) with Arg(z) ∈ ]−π,π] . (2.B.6)

The function Arg(z) denotes the principal value of the argument of the complex number z. In

particular, given z = reiθ ∈ C, the argument of z is given by arg(z) = θ and is in general a

multi-valued function. The single-valued principal argument Arg(z) is related to arg(z) via the

following relation,

Arg(z) = arg(z)+2π

⌊
1
2
− arg(z)

2π

⌋
, (2.B.7)

where the symbol b...c denotes the floor operation, i.e. bxc is the integer number such that

x−1 < bxc ≤ x for x ∈ R.

In general Logez 6= z for z ∈ C. Indeed, for any z = x+ iy ∈ C the following property

holds:

Log(ez) = Log|ez|+ iArg(ez) = Log(ex)+ iArg(eiy)

= x+ i
{

arg(eiy)+2π

⌊
1
2
− arg(eiy)

2π

⌋}
= x+ iy+2πi

⌊
1
2
− y

2π

⌋
= z+2πi

⌊
1
2
− Im[z]

2π

⌋
, (2.B.8)

where Log(x) = ln(x) for x ∈ R and the definition (2.B.7) has been used for the principal value

of the argument Arg(z).

2.C Erdős-Rényi graphs

The Erdős-Rényi (ER) graph is the prototypical example of a random graph, introduced by

Erdős and Rényi in [21,22]. It is the simplest and most studied uncorrelated undirected random

network. It can be denoted by G(N, p), where N is the number of nodes and p ∈ [0,1] is the

probability that any two nodes (there are N(N−1)/2 possible pairs, hence possible links) are

connected. In other words, p is the probability that a link exists independently from the others.

In formulae, the probability that a link exists between nodes i and j is

pC(ci j) = pδci j,1 +(1− p)δci j,0 . (2.C.9)
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All properties of the ER model depend on the two parameters N and p. Its degree distri-

bution is binomial, viz.

Pr[a random node has degree k] = p(k) =
(

N−1
k

)
pk(1− p)N−1−k . (2.C.10)

Indeed, a node has degree k if it is connected to k nodes (the probability of this event being

pk) and at the same it is not connected to all the remaining N−1− k nodes (the probability of

this event being (1− p)N−1−k). The binomial coefficient accounts for the fact that the specific

subset of k nodes we choose out of the remaining N− 1 does not matter. The mean degree is

then c = p(N− 1). In the limit N → ∞ where N− 1 ' N and keeping c = N p constant, the

binomial distribution in (2.C.10) converges to the Poisson distribution,

pc(k) =
cke−c

k!
. (2.C.11)

The condition for this limit to hold is exactly verified in the sparse ER ensemble that we con-

sider in our analysis. Indeed, we explicitly ask that the mean degree c be a finite constant,

hence ensuring that p = c
N → 0 as N → ∞. The Poisson distribution in (2.C.11) is decaying

exponentially for large degree k.

The structure of an ER graph and in particular the existence of a giant component depend

on the value of p [22]. The giant component of a graph is the largest connected component

(i.e. cluster of nodes) in the graph, containing a finite fraction of the total N nodes. In a

connected component, every two nodes are connected by a path, whereas there are no con-

nections between two nodes belonging to two different components. We have the following

properties [123, 124].

• For p < 1
N (i.e. c < 1), the probability of having a giant component is zero. Indeed, al-

most every G(N, p) graph has no connected components with size larger than O(ln(N)),

and can be described as a disjoint union of trees and unicycle components, i.e. trees with

an extra link forming a cycle.

• For p > 1
N (i.e. c > 1), the probability of having a giant component is 1. Almost every

G(N, p) graph will have a unique giant component whose size is O(N) containing cycles

of any length, while the remaining smaller components (typically trees and unicycles)

have at most size O(ln(N)).
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• p= 1
N = pc represents the percolation threshold as it separates the two regimes: indeed at

p = pc (i.e. c = 1) most of the isolated components for c < 1 merge together, giving rise

to a giant component of size O(N2/3). As the (constant) mean degree c > 1 increases,

the smaller components join the giant component, which then becomes O(N) in size.

The smaller the size of the isolated components, the longer they will survive the merging

process.

• For p ≤ ln(N)
N , almost every G(N, p) graph contains isolated nodes, hence it is discon-

nected. As soon as p > ln(N)
N , almost every G(N, p) graph becomes connected, as the

isolated nodes attach to the giant component entailing that every pair of nodes in the

graph is connected by a path. The value p = ln(N)
N is then a threshold for the connectivity

of the graph.

The structural properties of the graph are reflected in the spectrum. Indeed, the variety of

peaks in the spectrum related to singular contributions are due to isolated nodes and isolated

finite clusters of nodes that are still present for finite constant c > 1, alongside with the giant

component.

The ER graph can also be seen as a model of link percolation [125]. Indeed, ER graphs

can be generated also starting from a fully connected graph and removing links at random with

constant probability 1− p.

An algorithm for the generation of the adjacency matrix of any generic random graphs

within the configuration model is described in Section 8.1 and detailed in Appendix J.5 (Algo-

rithm 27) of [126].

2.D How to perform the average (2.48)

The goal is to perform the average〈
exp

(
i
2

N

∑
i, j=1

n

∑
a=1

viaJi jv ja

)〉
J

(2.D.12)

w.r.t. the joint distribution of the matrix entries

P({Ji j}) = ∏
i< j

pC(ci j)δci j,c ji ∏
i< j

pK(Ki j)δKi j,K ji , (2.D.13)
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where

pC(ci j) =
c
N

δci j,1 +
(

1− c
N

)
δci j,0 (2.D.14)

represents the ER connectivity distribution, and pK(Ki j) is the bond weight pdf. The average

is computed for large N as follows,〈
exp

(
i
2

N

∑
i, j=1

n

∑
a=1

viaJi jv ja

)〉
J

=

〈
∏
i< j

exp

(
i

n

∑
a=1

viaci jKi jv ja

)〉
{c},{K}

= ∏
i< j

〈
exp

(
i

n

∑
a=1

viaci jKi jv ja

)〉
c,K

= ∏
i< j

[
1+

c
N

(
〈eiK ∑a viav ja〉K−1

)]
' exp

[
c

2N

N

∑
i, j=1

(〈
eiK ∑a viav ja

〉
K−1

)]
, (2.D.15)

where the subscripts {c} and {K} respectively denote averaging w.r.t. the joint pdfs of the

{ci j} and the bond weights {Ki j}, whereas the non-bracketed subscripts c and K refers to the

average over a single random variable drawn from pC(c) and pK(K), respectively. Moreover,

in the second line we have used independence of the random variables and in the last line we

have re-exponentiated the product and the factor 1/2 prevents from over-counting symmetric

terms in the double sum.

2.E The action Sn in terms of π and π̂

The following action is derived in Section 2.5,

Sn[π, π̂,λ ] = S1[π, π̂]+S2[π]+S3[π̂,λ ] . (2.E.16)

The contributions (2.129), (2.130) and (2.131) are obtained from (2.56), (2.57) and (2.58) re-

spectively, using the saddle-point expressions (2.125) and (2.126) for the order parameter ϕ?(~v)

and its conjugate iϕ̂?(~v). Defining the shorthands dπ(ω) = dωπ(ω), {dπ̂}k = ∏
k
`=1 dω̂`π̂(ω̂`),
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{ω̂}k = ∑
k
`=1 ω̂` and Z(x) =

∫
dv e−

x
2 v2

=
√

2π

x , one finds

S1[π, π̂] =−ĉ
∫

dπ(ω)dπ̂(ω̂)
∫

d~v
n

∏
a=1

e−(
ω+ω̂

2 )v2
a

Z(ω)Z(ω̂)

=−ĉ
∫

dπ(ω)dπ̂(ω̂)

(
Z(ω + ω̂)

Z(ω)Z(ω̂)

)n

'−ĉ−nĉ
∫

dπ(ω)dπ̂(ω̂) log
(

Z(ω + ω̂)

Z(ω)Z(ω̂)

)
, (2.E.17)

where we have used a small n expansion in the last line. Concerning S2, one has

S2[π] =
c
2

∫
d~vd~v′

∫
dπ(ω)dπ(ω ′)

n

∏
a=1

e−
ω

2 v2
a

Z(ω)

e−
ω ′
2 v′a

2

Z(ω ′)

(
〈eiK ∑a vav′a〉K−1

)
=

c
2

∫
dπ(ω)dπ(ω ′)

[〈(
Z2(ω,ω ′,K)

Z(ω)Z(ω ′)

)n〉
K
−1
]

' n
c
2

∫
dπ(ω)dπ(ω ′)

〈
log

Z2(ω,ω ′,K)

Z(ω)Z(ω ′)

〉
K
, (2.E.18)

where we have used Z2(ω,ω ′,K) =
∫

dvdv′e−
ω

2 v2−ω ′
2 v′2+iKvv′ and again a small n expansion.

Concerning S3, one gets

S3[π̂,λ ] = Log
∫

d~v e−i λ

2 ∑a v2
a+iϕ̂(~v)

= Log
∫

d~v e−i λ

2 ∑a v2
a

∞

∑
k=0

(iϕ̂(~v))k

k!

= Log
∞

∑
k=0

ĉk

k!

∫
d~v e−i λ

2 ∑a v2
a

∫
{dπ̂}k

k

∏
`=1

n

∏
a=1

e−
ω̂`
2 v2

a

Z(ω̂`)

= Log
∞

∑
k=0

ĉk

k!

∫
{dπ̂}k

[
Z (iλε +{ω̂}k)

∏
k
`=1 Z(ω̂`)

]n

' Log
∞

∑
k=0

ĉk

k!

∫
{dπ̂}k

(
1+n log

Z (iλε +{ω̂}k)

∏
k
`=1 Z(ω̂`)

)

= Log eĉ

[
1+n

∞

∑
k=0

ĉk

k!
e−ĉ

∫
{dπ̂}k log

Z (iλε +{ω̂}k)

∏
k
`=1 Z(ω̂`)

]

' ĉ+n
∞

∑
k=0

pĉ(k)
∫
{dπ̂}k log

Z (iλε +{ω̂}k)

∏
k
`=1 Z(ω̂`)

, (2.E.19)

where pĉ(k) = ĉk

k! e−ĉ is a Poisson distribution with parameter ĉ. We remark that in the second

line we have expressed exp(iϕ̂(~v)) through its power series and a small n expansion has been

used across the entire calculation.
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2.F The Kesten-McKay distribution from a peaked π̂

We analytically derive the spectral density of the ensemble of adjacency matrices of random

regular graphs (RRGs), using the formalism of Section 2.5. We employ eq. (2.142) and (2.143),

specialised to the RRG case where p(k) = δk,c and pK(K) = δ (K− 1). Therefore, we obtain

for the self-consistency equation for π̂

π̂(ω̂) =
∫
{dπ̂}c−1δ

(
ω̂− 1

iλε +∑
c−1
`=1 ω̂`

)
, (2.F.20)

whereas for the spectral density we get

ρ(λ ) =
1
π

lim
ε→0+

Re
∫
{dπ̂}c

[
1

iλε +∑
c
`=1 ω̂`

]
. (2.F.21)

Eq. (2.F.20) can be solved by a degenerate pdf of the form

π̂(ω̂) = δ (ω̂− ω̄ε) , (2.F.22)

provided that ω̄ε solves

ω̄ε =
1

iλε +(c−1)ω̄ε

⇔ ω̄ε =
−iλε ±

√
(iλε)2 +4(c−1)

2(c−1)
. (2.F.23)

Therefore, the spectral density reads

ρ(λ ) =
1
π

lim
ε→0+

Re
[

1
iλε + cω̄ε

]
=

1
2π

lim
ε→0+

Re

[
(c−2)(iλε)∓ c

√
4(c−1)−λ 2

ε

λ 2
ε − c2

]
. (2.F.24)

Taking the real part and thereafter the ε → 0+ limit in (2.F.24), one obtains

ρ(λ ) =
c
√

4(c−1)−λ 2

2π(c2−λ 2)
for |λ | ≤ 2

√
(c−1) , (2.F.25)

where the minus sign has been chosen in order to have a physical solution. The latter expression

is the Kesten-McKay pdf in Eq. (2.151).
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2.G Trees have a symmetric spectrum

A tree is a connected acyclic undirected graph. Acyclic means that it contains no cycles. In

a tree, any two nodes are connected via a unique path [127]. In particular, trees are examples

of bipartite graphs, in which nodes can be divided into two disjoint subgraphs S1 and S2, such

that every node in subgraph S1 only has neighbours in the complementary subgraph S2 and vice

versa.

Here, we show that the N ×N adjacency matrix A (whether it is weighted or not) of a

tree with N nodes has a spectrum that is symmetric around λ = 0. In other words, for any

eigenvalue λ of A, then −λ is also an eigenvalue of A. This result is encoded in the fact that

in the set of recursion equations for the cavity inverse variances (2.29) and single-site inverse

variances (2.31), the matrix entries appear only through their square.

Let xxx be the eigenvector of A corresponding to the eigenvalue λ . Given xxx and λ , we will

be able to construct a vector yyy that is an eigenvector of A corresponding to the eigenvalue −λ .

Indeed, considering the eigenvalue equation for the component xi,

λxi = ∑
j∈∂ i

Ai jx j , (2.G.26)

the node i contributing to the l.h.s. of (2.G.26) and the nodes { j : j ∈ ∂ i} contributing to

the r.h.s. of (2.G.26) always belong to different subgraphs. Therefore, the signs of all the

components x j with j ∈ ∂ i all belonging to one of the two subgraphs (S1 or S2) can be changed,

giving rise to

−λxi = ∑
j∈∂ i

(Ai j)(−x j)⇔−λyi = ∑
j∈∂ i

(Ai j)(y j) . (2.G.27)

This reasoning can be iterated for any i = 1, . . . ,N. Therefore, given the eigenvector xxx corre-

sponding to λ , one can construct a vector yyy such that

yi =


xi i ∈ S1

−xi i ∈ S2

. (2.G.28)

Of course, the choice of inverting the sign of the components of xxx on the set S2 is arbitrary. The

same result is achieved by changing the sign of the components living on nodes in S1 while

leaving the components defined on nodes in S2 unchanged. The vector yyy is thus an eigenvector
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of the matrix A corresponding to −λ .



Chapter 3

Top Eigenpair Statistics for Weighted Sparse

Graphs

3.1 Introduction

Building on the statistical mechanics framework that has been presented in Chapter 2, we

present a cavity and replica formulation of the top eigenpair problem which is close in spirit to

the Edwards-Jones setup for the spectral problem. Indeed, the top eigenpair problem is framed

as the search for the ground state of a system of particles interacting on a sparse graph, de-

scribed by a Gibbs-Boltzmann distribution with real inverse temperature β . Our cavity deriva-

tion differs from the one in [47] in that it targets directly the Gibbs-Boltzmann distribution of

the associated physical systems, in analogy to the treatment for the spectral density in Chap-

ter 2. Moreover, the method we propose is able to accommodate hard constraints, thereby

providing a flexible setup that can be easily expanded to deal with more structured problems.

The plan of the chapter is as follows. In Section 3.2, we will formulate the search of the

top eigenpair in terms of its statistical mechanics analogy. In Section 3.3, we will describe

the cavity approach to the problem for the single instance case (in 3.3.1), deriving the single-

instance recursion equations already found in [47]. In addition, we provide in Appendix 3.A

a detailed analysis of these recursion equations, showing that their convergence is strictly re-

lated to the spectral properties of a modified non-backtracking operator associated with the

single-instance matrix. We extend the cavity derivation to the thermodynamic limit (i.e. at the

ensemble level) in 3.3.2. In Section 3.3.3, we also show how to derive the Porter-Thomas dis-

tribution [93,94] from the ensemble equations in the large c limit. In Section 3.4, we formulate

the replica approach to the same problem, first focussing on the largest eigenvalue problem (in

3.4.1) and then on the density of top eigenvector’s components (in 3.4.2). Our replica deriva-
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tion is valid for any degree distribution p(k) with finite mean and variance characterising sparse

graphs within the configuration model. Thanks to the replica analysis, we show the equivalence

of the cavity and replica methods at the ensemble level. Moreover, we are able to better un-

derstand the behaviour of the stochastic integral recursions that provide the solution of the top

eigenpair problem in the thermodynamic limit. In Section 3.5, we test our formalism in the

case of Markov transition matrices on a random graph structure. In Section 3.6, we provide the

details of the population dynamics algorithm employed to solve these recursions. This algo-

rithm allows us to characterise the distributions of the cavity fields in the thermodynamic limit

and identify the individual contributions of nodes of different degrees k to the top eigenvector’s

entries. Finally, in Section 3.7 we offer a summary.

3.2 Formulation of the problem

We consider a sparse random N×N symmetric matrix J = (Ji j), with real i.i.d. entries. The

matrix entries are defined as

Ji j = ci jKi j , (3.1)

where the ci j ∈ {0,1} constitute the connectivity matrix, i.e. the adjacency matrix of the un-

derlying graph, and the Ki j encode bond weights.

Similarly to Chapter 2, we consider locally tree-like sparse matrices, characterised by the

fact that their degree distribution p(k) has a finite constant mean 〈k〉 = c (hence c/N → 0 as

N → ∞), and finite variance. We will consider bounded degree distributions, i.e. with a finite

maximum degree kmax not scaling with N. For instance, a suitable candidate can be a bounded

Poisson distribution

P(ki = k) = pc(k) = N −1e−c̄c̄k/k! , k = 0, . . . ,kmax , (3.2)

with the mean degree a finite constant c≡ 〈k〉 and N =∑
kmax
k=0 e−c̄c̄k/k! to ensure normalisation.

The bond weights Ki j will be i.i.d. random variables drawn from a parent pdf pK(K) with

bounded support. This setting is sufficient to ensure that the largest eigenvalue λ1 of J will

remain of O(1) for N→ ∞.

The spectral theorem ensures that J can be diagonalised via an orthonormal basis of eigen-

vectors vvvα with corresponding real eigenvalues λα (α = 1, . . . ,N),

Jvvvα = λαvvvα , (3.3)
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for each eigenpair α = 1, . . . ,N. The N eigenvalues can be sorted in descending order,

λ1 ≥ λ2 ≥ . . . ≥ λN . In particular, for unweighted adjacency matrices and adjacency matri-

ces with positive weights the Perron-Frobenius theorem ensures that the top eigenvalue is not

degenerate, entailing that λ1 > λ2.

The goal of this chapter is to set up a formalism based on the statistical mechanics of

disordered systems to find:

• the average (or typical value) 〈λ1〉J of the largest eigenvalue λ1;

• the density ρJ(u) =
〈

1
N ∑

N
i=1 δ (u− v(i)1 )

〉
J

of the top eigenvector’s components, vvv1 =

(v(1)1 , . . . ,v(N)
1 ) ,

where the average 〈·〉J is taken over the distribution of the matrix J.

The problem can be formulated as the optimisation problem of a quadratic function Ĥ(vvv),

according to which vvv1 is the vector normalized to N that realises the condition

Nλ1 = min
|vvv|2=N

[
Ĥ(vvv)

]
= min
|vvv|2=N

[
−1

2
(vvv,Jvvv)

]
, (3.4)

as dictated by the Courant-Fischer definition of eigenvectors. The round brackets (·, ·) indicate

the dot product between vectors in RN . It is easy to show that Ĥ (vvv) is bounded

− 1
2

λ1N ≤ Ĥ (vvv)≤−1
2

λNN , (3.5)

and attains its minimum when computed on the top eigenvector. The function Ĥ (vvv) can be

thought of as the “Hamiltonian” of a system of N particles interacting pairwise along the edges

of the graph defined by the adjacency matrix C = (ci j).

For a fixed matrix J, the minimum in (3.5) can be computed by introducing a ficti-

tious canonical ensemble of N-dimensional vectors vvv at inverse temperature β , whose Gibbs-

Boltzmann distribution reads

Pβ ,J(vvv) =
1

ZN
exp
[

β

2
(vvv,Jvvv)

]
δ (|vvv|2−N) , (3.6)

where the delta function enforces normalisation. Clearly, in the low temperature limit β →

∞, only one ’state’ remains populated, which corresponds to vvv = vvv1, the top eigenvector of

the matrix J. Moreover, in view of (3.5) the intensive free energy per particle F
N in the zero
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Figure 3.1: Tree-like structure of a graph. The indexing refers to the labels used in the cavity method treatment in subsection
3.3.1.

temperature limit reduces to λ1, up to a factor −1/2, viz.

F
N

∣∣∣∣
β→∞

=−λ1

2
. (3.7)

On the other hand, the free energy can be expressed through the partition function ZN at any β

as
F
N

=− 1
βN

lnZN , (3.8)

therefore entailing that

λ1 = lim
β→∞

2
βN

lnZN . (3.9)

We will employ the latter definition to obtain the top eigenvalue of J in both the cavity and the

replica framework.

3.3 Cavity analysis

In what follows, we will use a cavity method [35] formulation for the top eigenpair problem

which is deeply rooted in the statistical mechanics approach to disordered systems. Our formu-

lation provides equations for the statistics of the top eigenpair that are fully equivalent to those

found earlier by Kabashima et al. in [47]. Our treatment, however, brings more neatly to the

surface a few subtleties related to the solution of self-consistency equations and their range of

applicability, this way providing a more transparent derivation.
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3.3.1 Cavity derivation for a single instance

Consider for the time being a single instance of the random matrix J. As shown at the end of

the previous section, its top eigenvalue can be defined as

λ1 = lim
β→∞

2
βN

lnZN , (3.10)

where the partition function ZN reads

ZN =
∫

dvvv exp
[

β

2
(vvv,Jvvv)

]
δ (|vvv|2−N) . (3.11)

Employing a Fourier representation for the Dirac delta in (3.11), one finds

ZN =

(
β

4π

)∫
dλ exp [βNSN(λ )] , (3.12)

where the action SN(λ ) reads

SN(λ ) =
iλ
2
+

1
βN

LogZ̃N(λ ) , (3.13)

with

Z̃N(λ ) =
∫

dvvv exp
[
−β

2
(vvv,Avvv)

]
=

√
(2π)N

β N detA
, (3.14)

and we have considered the matrix A = iλ1N − J. Evaluating the integral (3.12) with a saddle

point approximation for large β , one notices that the contribution to the integral (3.12) coming

from (3.14) can be neglected. Therefore, the partition function reduces to

ZN ≈ exp
[

βN
2

iλ ?

]
, (3.15)

where the symbol λ ? denotes the saddle-point value of the variable λ . Using (3.10), Eq. (3.15)

entails that

λ1 = iλ ? . (3.16)

In order to determine the value iλ ?, we consider Eq. (3.12) without calculating explicitly the

integral (3.14) defining Z̃N . The stationarity condition of the action SN w.r.t. to λ requires

1 =
1
N

N

∑
i=1
〈v2

i 〉 , (3.17)
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where the angle brackets indicate the average w.r.t. the distribution

Pβ (vvv|iλ ?) =
1

Z̃N
exp
[

β

2
(vvv,Jvvv)− β iλ ?

2
(vvv,vvv)

]
. (3.18)

The pdf in (3.18) is the grand canonical version of the canonical Gibbs-Boltzmann distribution

(3.6). For large N, the two pdfs are expected to provide the same physical results, entailing that

in the limit β →∞ the top eigenvector of J can be found by studying the ground state of (3.18)

instead of that of (3.6).

The saddle-point value iλ ? is defined as the only value such that Eq. (3.17) is satis-

fied in the β → ∞ limit . Actually, Eq. (3.17) expresses the normalisation condition for the

components of the top eigenvector. Indeed, the variables vi appearing in (3.17) represent the

components of the top eigenvector of J when the low temperature limit is considered.

In view of Eq. (3.16), we set iλ ? = λ ∈ R, since it must be real because of the symmetry

of the matrix J. The distribution (3.18) then reads

Pβ (vvv|λ ) =
1

Z̃N(λ )
exp
[

β

2
(vvv,Jvvv)− βλ

2
(vvv,vvv)

]
(3.19)

and represents the starting point of the cavity analysis. Considering its partition function

Z̃N(λ ) =
∫

dvvvexp
{

β

[
1
2
(vvv,Jvvv)− λ

2
(vvv,vvv)

]}
, (3.20)

one notices that the condition λ > λ1 is necessary to ensure convergence for all β .

Our goal is to obtain a factorisation of the pdf (3.19) in order to easily perform the β →∞

limit. We then start looking at the structure of its marginals, using the cavity method as in

Section 2.3.2. For a given component vi its marginal distribution Pi(vi) is obtained by integrat-

ing out all other components in (3.19) using the sparsity condition Ji j = 0 if j /∈ ∂ i (where ∂ i

denotes the immediate neighbourhood of i). Thus, it reads

Pi (vi) =
1
Zi

exp
(
−β

λ

2
v2

i

)∫
dvvv∂ i exp

(
β ∑

j∈∂ i
Ji jviv j

)
P(i) (vvv∂ i) , (3.21)

where P(i)(vvv∂ i) is the joint distribution of the components pertaining to the immediate neigh-

bourhood of i, ∂ i, when the node i has been removed. Indeed, all the components outside ∂ i

can be integrated out without difficulty, and the resulting constant term can be just reabsorbed
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in the normalisation constant. P(i)(vvv∂ i) is also known as cavity probability distribution.

Adopting now a tree-like approximation, which is accurate for very sparse graphs, all

nodes j in ∂ i are connected with each other only through i (see Fig. 3.1), therefore they

get disconnected when the node i is removed from the network: this implies that the integral

appearing in (3.21) factorises as

Pi (vi) =
1
Zi

exp
(
−β

λ

2
v2

i

)
∏
j∈∂ i

∫
dv j exp(βJi jviv j)P(i)

j (v j) . (3.22)

In the same way, a similar expression can be derived for the marginal cavity distribution P(i)
j (v j)

now appearing in (3.22). Iterating the reasoning as before, and further removing the node j ∈ ∂ i

in the network in which the node i had already been removed, one can write

P(i)
j (v j) =

1

Z(i)
j

exp
(
−β

λ

2
v2

j

)
∏

`∈∂ j\i

∫
dv` exp

(
βJ j`v jv`

)
P( j)
` (v`) , (3.23)

where the symbol ∂ j\i denotes the neighbourhood of j excluding i.

Equation (3.23) has now become a self-consistent equation for the cavity probability dis-

tributions, which can be solved by a Gaussian ansatz for P(i)
j (v j), namely

P(i)
j (v j) =

√
βω

(i)
j

2π
exp

−βh(i)j
2

2ω
(i)
j

exp
(
−β

2
ω

(i)
j v2

j +βh(i)j v j

)
, (3.24)

where the parameters ω
(i)
i and h(i)j are called cavity fields. The ω

(i)
i play the role of cavity

inverse variances, whereas the h(i)j can be considered as cavity biases. Unlike the spectral

problem, here we employ a non-zero mean Gaussian ansatz. It is chosen to obtain a solution

vvv whose components are not peaked at zero in the β → ∞ limit. Inserting the Gaussian ansatz

(3.24) in (3.23) and performing the resulting Gaussian integrals, one obtains

P(i)
j (v j) =

1

Z(i)
j

exp
(
−β

2
λv2

j

)
∏

`∈∂ j\i
exp

β

2

(
J j`v j +h( j)

`

)2

ω
( j)
`

 . (3.25)

Comparing the coefficients of the same powers of v j between (3.24) and (3.25), one obtains the
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following two self-consistent relations which define the cavity fields ω
(i)
i and h(i)j , viz.

ω
(i)
j = λ − ∑

`∈∂ j\i

J2
j`

ω
( j)
`

, (3.26)

h(i)j = ∑
`∈∂ j\i

J j`

ω
( j)
`

h( j)
` . (3.27)

These equations have been obtained before in [47].

The Gaussian ansatz (3.24) can then be inserted in (3.22), resulting in a Gaussian distri-

bution for the single-site marginals

Pi (vi) =
1
Zi

exp
(
−β

2
ωiv2

i +βhivi

)
, (3.28)

where the N coefficients ωi and hi are given by

ωi = λ − ∑
j∈∂ i

J2
i j

ω
(i)
j

, (3.29)

hi = ∑
j∈∂ i

Ji j

ω
(i)
j

h(i)j . (3.30)

Here, ω
(i)
j and h(i)j are the fixed-point solutions of (3.26) and (3.27). Therefore, using (3.28) to

express (3.19), one finds

Pβ (vvv|λ ) =
N

∏
i=1

1
Zi

exp
(
−β

2
ωiv2

i +βhivi

)
. (3.31)

In the limit β → ∞, Eq. (3.31) converges to

P(vvv|λ ) =
N

∏
i=1

δ

(
vi−

hi

ωi

)
, (3.32)

from which one concludes that the components of the top eigenvector of the fixed matrix J (a

single instance of the ensemble) must be given by v(i)1 = hi/ωi, where hi and ωi are the values

obtained from (3.29) and (3.30), after the fixed-points of the recursions (3.26) and (3.27) have

been obtained. The normalisation condition (3.17) then becomes

1 =
1
N

N

∑
i=1

(
hi

ωi

)2

. (3.33)
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A detailed analysis of the recursions (3.26) and (3.27) is deferred to Appendix 3.A. There

we show that their convergence and the possibility for the condition (3.33) to be satisfied are

strongly interlaced and determined by the value of λ . Indeed, convergence is achieved only for

λ = λ1, as it should according to Eq. (3.16).

We conclude this section by noticing that although the single-instance derivation only

relies on the tree-like approximation for the local connectivity and is arguably very easy and

intuitive, it is not particularly useful as it stands. Indeed, we show in Appendix 3.A that the

cavity algorithm essentially transforms the original top eigenpair problem for the N×N matrix

J into the top eigenpair problem for the related larger Nc×Nc non-symmetric matrix B, i.e. the

non-backtracking operator of J. It is, however, a conceptually necessary ingredient to discuss

infinite-size matrices, as we do in the next subsection below.

3.3.2 Thermodynamic limit

In an infinitely large network, it is no longer possible to keep track of an infinite number of

cavity fields. We then consider first the joint probability density that the cavity fields of type

ω
(i)
j and h(i)j take up values around ω and h

π (ω,h) = Prob
(

ω
(i)
j = ω,h(i)j = h

)
=

(
N

∑
i=1

ki

)−1 N

∑
i=1

∑
j∈∂ i

δ

(
ω−ω

(i)
j

)
δ

(
h−h(i)j

)
, (3.34)

where N is now large but finite. This is a properly normalised pdf: indeed, we can associate

two cavity fields ω
(i)
j and h(i)j to any link (i, j) of the network. Since every node i is the source

of ki links, their total number is given by ∑
N
i=1 ki.

As is done in Section 2.3.3, one may appeal to the single-instance update rules given by

(3.26) and (3.27) to characterise the above distribution self-consistently, with the only differ-

ences that in this case the cavity fields pdf π(ω,h) is bivariate and the ω and h are real valued.

Following the exact same reasoning of Section 2.3.3, the joint pdf π(ω,h) is given by the

self-consistency equation

π (ω,h) =
kmax

∑
k=1

r (k)
∫ [k−1

∏
`=1

dπ (ω`,h`)

]〈
δ

(
ω−λ +

k−1

∑
`=1

K2
`

ω`

)
δ

(
h−

k−1

∑
`=1

h`K`

ω`

)〉
{K}k−1

,

(3.35)

where dπ (ω`,h`) ≡ dω`dh`π (ω`,h`), the average 〈·〉{K}k−1
is taken over k− 1 independent

realisations of the random variable K and r(k) = k
c p(k) denotes the probability mass function
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of having a random link pointing to a node of degree k. The sum in (3.35) starts from k = 1

since we should not be concerned with isolated nodes. Eq. (3.35) is generally solved via a

population dynamics algorithm (see Section 3.6 for details). In some exceptional cases, such

as for adjacency matrices of random regular graphs, it can be solved analytically (see discussion

in sections 3.4.1.2 and 3.4.2.2 below).

Similarly, the joint pdf of the coefficients ωi and hi can be expressed as

π̃
(
ω̃, h̃

)
=

1
N

N

∑
i=1

δ (ω̃−ωi)δ
(
h̃−hi

)
. (3.36)

In this case, there is a pair of marginal coefficients ωi and hi living on each node. Categorising

nodes by their degree and following the same line of reasoning that led to (3.35), in the infinite

size limit the joint pdf of the random variables of the type ωi and hi can be written as

π̃
(
ω̃, h̃

)
=

kmax

∑
k=0

p(k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈
δ

(
ω̃−λ +

k

∑
`=1

K2
`

ω`

)
δ

(
h̃−

k

∑
`=1

h`K`

ω`

)〉
{K}k

,

(3.37)

where p(k) is the degree distribution. Here, π (ω`,h`) is the fixed-point distribution of cavity

fields, i.e. the solution of the self-consistency equation (3.35), which should therefore be solved

beforehand.

The distribution of the top eigenvector’s components in the thermodynamic limit is then

obtained in terms of the pdf π̃
(
ω̃, h̃

)
in (3.37), exploiting the analogy with the single-instance

case in (3.32), and reads

ρJ(u) =
∫

dω̃dh̃ π̃
(
ω̃, h̃

)
δ

(
u− h̃

ω̃

)

=
kmax

∑
k=0

p(k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈
δ

u−
∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

. (3.38)

Moreover, Eq. (3.16) generalises at the ensemble level as

〈λ1〉J = λ , (3.39)

where the value of λ must be fixed taking into account the normalisation condition (3.33) of
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the top eigenvector, that in the thermodynamic limit becomes

1 =
∫

dω̃dh̃ π̃
(
ω̃, h̃

)( h̃
ω̃

)2

=
kmax

∑
k=0

p(k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

. (3.40)

Eq. (3.39) is crucially confirmed by the behaviour of the stochastic integral equation (3.35).

Indeed, for every λ > 〈λ1〉J , the distribution of the h’s shrinks to a delta peak located at zero,

whereas for λ < 〈λ1〉J , negative values of the ω’s start to appear while the h’s grow without

bounds in the self-consistency solution of (3.35). This is not surprising, since λ < 〈λ1〉J is

precisely the range of values for λ that makes the Gibbs-Boltzmann distribution (3.19) not

normalisable. Therefore, the only value of λ such that the normalisation condition (3.40) can

be satisfied is exactly 〈λ1〉J .

In summary, Eq. (3.35), (3.38), (3.39) and (3.40) provide the solution to the top eigenpair

problem within the cavity formalism. We anticipate that they will match respectively (3.106),

(3.145), (3.117) and (3.107) obtained with the replica method in Section 3.4 below.

3.3.3 Large-c limit for weighted adjacency matrices

Here we study the large c behaviour of the equations (3.35), (3.38), (3.39) and (3.40) repre-

senting the solution to the top eigenpair problem of sparse ensembles. As done in the case of

the average spectral density in Section 2.3.4, we consider a configuration model graph, whose

degree distribution p(k) – with finite mean, finite variance and a bounded maximum degree –

satisfies the condition σ2
k
〈k〉2 = 〈k2〉−〈k〉2

〈k〉2 → 0 as 〈k〉 = c→ ∞. A meaningful large-c limit is ob-

tained for Eq. (3.35) by rescaling each instance of the bond random weights as Ki j = Ji j/
√

c,

leading to

π(ω,h) = ∑
k≥1

k
c

p(k)
∫
{dπ}k−1

〈
δ

(
ω−λ +

1
c

k−1

∑
`=1

J 2
`

ω`

)
δ

(
h− 1√

c

k−1

∑
`=1

h`J`

ω`

)〉
{J }k−1

.

(3.41)

In the c� 1 limit, the k-sum in Eq. (3.41) is restricted to k = c±O(σk), so that the argument

appearing in the first δ -function on the r.h.s of this equation can be evaluated by appeal to the

Law of Large Number (LLN). This entails that

ω = λ − 1
c

k−1

∑
`=1

J 2
`

ω`
(3.42)
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is non-fluctuating, hence the self-consistency equation demands that

π (ω,h) = δ (ω− ω̄)×P(h) , (3.43)

with (by the LLN)

ω̄ = λ − 1
c

k−1

∑
`=1

J 2
`

ω̄
= λ −

〈J 2〉J
ω̄

. (3.44)

Specializing to 〈J 2〉J = 1, we see that

ω̄1,2 =
1
2

(
λ ±

√
λ 2−4

)
, (3.45)

which requires λ ≥ 2 to have real positive ω̄ .

Similarly, the argument of the second δ -function on the r.h.s of (3.41) exhibits a scaling

that allows one to conclude (for 〈J`〉J = 0) that

h =
1√
c

k−1

∑
`=1

h`J`

ω`
=

1√
c

k−1

∑
`=1

h`J`

ω̄
∼N (0,σ2

h )

which follows from the Central Limit Theorem. The variance follows using independence of

the {h`} and {J`}

σ
2
h = 〈h2〉= 1

cω̄2

k−1

∑
`=1
〈h2

`〉〈J 2
` 〉J =

σ2
h

ω̄2 . (3.46)

This equation allows a finite variance if and only if ω̄2 = 1, which requires λ =±2, i.e. that λ

– the most probable location of the largest eigenvalue – is at the edge of the Wigner semi-circle

(and we require the positive solution).

To obtain the distribution ρJ(u) of eigenvector components, we consider Eq. (3.37), (3.38)

and (3.40). After the rescaling K` =J`/
√

c and in the large c-limit, it is easy to see from (3.37)

that ω̃ = ω̄ and that h̃ is a sum of Gaussians, and thus itself Gaussian, of variance σ2
h /ω̄2 ≡ σ2

h

by (3.46). It then follows from the normalisation condition (3.40) that σ2
h = 1, so eventually

ρJ(u) =
1√
2π

e−u2/2 . (3.47)

Looking now at the variable η = u2, and noting that positive and negative u give rise to the
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same η , one obtains by the simple transformation of pdf’s

ρ(η) =
1√
2πη

e−η/2 , (3.48)

which is the standard form of the Porter-Thomas distribution for real-valued (invariant) random

matrices (see [94], Eq. (9.10)).

3.4 Replica derivation

The cavity approach has the advantage of leading rather quickly to the result. It is, however,

instructive to reconsider the problem from the point of view of the replica approach, which

provides a lengthier but rather systematic procedure. Similarly to what has been shown in

Chapter 2 regarding the spectral problem, we make a quite transparent and convincing case for

the equivalence between the cavity and replica methods for the top eigenpair problem.

In this section, we evaluate the average location of the largest eigenvalue and the density

of top eigenvectors’ components within the replica framework. For the sake of clarity, we will

keep the two pathways (typical largest eigenvalue vs. density of top eigenvector’s components)

clearly separate until the point where we realise that the same self-consistency equation governs

the statistics of both quantities. Our derivation provides a general and robust methodology that

can be applied to any graph within the configuration model, whose degree distribution has

finite mean, finite variance and bounded maximal degree. As we did for the cavity approach,

we thoroughly discuss bounds on the values of parameters that guarantee a converging solution.

Across the whole section, we will first provide the formulation for a generic degree distribution

p(k) with the aforementioned characteristics. Then we will give numerical results for the

Erdős-Rényi (ER) case and derive an analytical solution for adjacency matrices of random

regular graphs (RRGs).

3.4.1 Typical largest eigenvalue

Consider again a N ×N symmetric matrix Ji j = ci jKi j. The joint distribution of the matrix

entries is

P
({

Ji j
}∣∣{ki}

)
= P

({
ci j
}∣∣{ki}

)
∏
i< j

δKi j,K ji pK (Ki j) , (3.49)
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where, in the framework of the configuration model [44], the distribution P
({

ci j
}∣∣{ki}

)
of

connectivities
{

ci j
}

compatible with a given degree sequence {ki} is given by

P
({

ci j
}∣∣{ki}

)
=

1
M ∏

i< j
δci j,c ji

( c
N

δci j,1 +
(

1− c
N

)
δci j,0

) N

∏
i=1

δ∑ j ci j,ki , (3.50)

and the pdf pK (Ki j) of bond weights (with compact support and upper edge ζ ) can be kept

unspecified until the very end. The average of the largest eigenvalue can be computed as the

formal limit

〈λ1〉J = lim
β→∞

2
βN
〈lnZ〉J , Z =

∫
dvvvexp

[
β

2
(vvv,Jvvv)

]
δ

(
|vvv|2−N

)
, (3.51)

in terms of the quenched free energy of the model defined in (3.6). The average over J is

computed using the replica trick as follows

〈λ1〉J = lim
β→∞

2
βN

lim
n→0

1
n

ln〈Zn〉J , (3.52)

where n is initially taken as an integer, and then analytically continued to real values in the

vicinity of n = 0. The replicated partition function is

〈Zn〉J =
∫ ( n

∏
a=1

dvvva

)〈
exp

(
β

2

n

∑
a=1

N

∑
i, j

viaJi jv ja

)〉
J

n

∏
a=1

δ

(
|vvva|2−N

)
. (3.53)

Taking the average w.r.t. the joint distribution (3.50) of matrix entries yields [44]〈
exp

(
β

2

n

∑
a=1

N

∑
i, j

viaJi jv ja

)〉
J

=
1

M

∫
π

−π

(
N

∏
i=1

dφi

2π

)
exp

(
−i∑

i
φiki

)

× exp

[
c

2N ∑
i, j

(〈
eβK ∑a viav ja+i(φi+φ j)

〉
K
−1
)]

, (3.54)

where 〈·〉K denotes averaging over the single-variable pdf pK(K) characterising the i.i.d. bond

weights Ki j. A Fourier representation of the Kronecker deltas expressing the degree constraints

in (3.50) has been employed. We also employ a Fourier representation of the Dirac delta

enforcing the normalisation constraints,

n

∏
a=1

δ

(
|vvva|2−N

)
=
∫

∞

−∞

(
n

∏
a=1

β

2
dλa

2π

)
n

∏
a=1

exp

[
−i

β

2
λa

(
N

∑
i=1

v2
ia−N

)]
. (3.55)
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The replicated partition function thus becomes

〈Zn〉J =
1

M

(
β

4π

)n ∫ ( n

∏
a=1

dvvvadλa

)
exp
(

i
β

2
N ∑

a
λa

)
exp

(
−i

β

2 ∑
a

∑
i

λav2
ia

)

×
∫

π

−π

(
N

∏
i=1

dφi

2π

)
exp

(
−i∑

i
φiki

)
exp

[
c

2N ∑
i, j

(〈
eβK ∑a viav ja+i(φi+φ j)

〉
K
−1
)]

.

(3.56)

In order to decouple sites, we introduce the functional order parameter

ϕ (~v,φ) =
1
N

N

∑
i=1

δ (φ −φi)
n

∏
a=1

δ (va− via) , (3.57)

where the symbol ~v denotes a n-dimensional vector in replica space. We then consider its

integrated version [44]

ϕ (~v) =
∫

dφ eiφ
ϕ (~v,φ) =

1
N

N

∑
i=1

eiφi
n

∏
a=1

δ (va− via) , (3.58)

and enforce the latter definition using the integral identity

1 =
∫

NDϕD ϕ̂ exp

{
−i
∫

d~v ϕ̂ (~v)

[
Nϕ (~v)−∑

i
eiφi

n

∏
a=1

δ (va− via)

]}
. (3.59)

In terms of the integrated order parameter (3.58) and its conjugate, the replicated partition

function can be written as

〈Zn〉J =
1

M

(
β

4π

)n

N
∫

DϕD ϕ̂d~λ exp
(
−iN

∫
d~vϕ̂ (~v)ϕ (~v)

)
× exp

[
Nc
2

(∫
d~vd~v′ϕ(~v)ϕ(~v′)

〈
eβK ∑a vav

′
a

〉
K
−1
)]

exp
(

i
β

2
N ∑

a
λa

)
×
∫

π

−π

(
N

∏
i=1

dφi

2π

)
e−i∑i φiki

∫ n

∏
a=1

dvvva exp

[
−i

β

2 ∑
a

∑
i

λav2
ia + i∑

i
eiφi ϕ̂(~vi)

]
. (3.60)
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The multiple integral in the last line above is the product of N n-dimensional integrals, each

related to a degree ki. It can be written as

I =
N

∏
i=1

∫
π

−π

dφi

2π

∫
d~vi exp

(
−iφiki− i

β

2 ∑
a

λav2
ia + iϕ̂(~vi)eiφi

)
=exp

[
N

∑
i=1

Log
∫

d~vi exp
(
−i

β

2 ∑
a

λav2
ia

)
I[ki,~vi]

]
, (3.61)

where Log denotes the principal branch of the complex logarithm, and

I[ki,~vi] =
∫

π

−π

dφi

2π
exp
(
−iφiki + iϕ̂(~vi)eiφi

)
. (3.62)

Each of the φi integrals can be performed by rewriting the last exponential factor as a power

series, viz.

I[ki,~vi] =
∫

π

−π

dφi

2π
e−iφiki

∞

∑
s=0

(iϕ̂(~vi))
s

s!
eisφi =

∞

∑
s=0

(iϕ̂(~vi))
s

s!
δs,ki =

(iϕ̂(~vi))
ki

ki!
, (3.63)

for any ki with i = 1, . . . ,N. Thus, by invoking the Law of Large Numbers, the single-site

integral I in (3.61) can be expressed as

I =exp
[ N

∑
i=1

Log
∫

d~vi exp
(
−i

β

2 ∑
a

λav2
ia

) (
iϕ̂(~vi)

ki
)

ki!

]
=exp

[
N

kmax

∑
k=kmin

p(k)
[

Log
∫

d~vexp
(
−i

β

2 ∑
a

λav2
a

)
(iϕ̂(~v))k−Log(k!)

]]
, (3.64)

where we have used
1
N

N

∑
i=1

Log f (ki)'
kmax

∑
k=kmin

p(k)Log f (k) , (3.65)

and p(k) is the actual degree distribution of the graph. Henceforth, we will consider kmin = 0.

The replicated partition function thus takes a form amenable to a saddle point evaluation

for large N (where we assume we can safely exchange the limits n→ 0 and N→ ∞)

〈Zn〉J ∝
1

M

∫
DϕD ϕ̂d~λ exp

(
NSn[ϕ, ϕ̂,~λ ]

)
, (3.66)

where

Sn[ϕ, ϕ̂,~λ ] = S1 [ϕ, ϕ̂]+S2 [ϕ]+S3(~λ )+S4[ϕ̂,~λ ] , (3.67)
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and

S1[ϕ, ϕ̂] =−i
∫

d~vϕ̂(~v)ϕ(~v) , (3.68)

S2[ϕ] =
c
2

(∫
d~vd~v′ϕ(~v)ϕ(~v′)

〈
eβK ∑a vav

′
a

〉
K
−1
)

, (3.69)

S3(~λ ) = i
β

2 ∑
a

λa , (3.70)

S4[ϕ̂,~λ ] =
kmax

∑
k=0

p(k)
[

Log
∫

d~vexp
(
−i

β

2 ∑
a

λav2
a

)
(iϕ̂(~v))k−Log(k!)

]
. (3.71)

The stationarity of the action Sn w.r.t. variations of ϕ and ϕ̂ requires that the order parameter

at the saddle point ϕ? and its conjugate ϕ̂? satisfy the following coupled equations

iϕ̂?(~v) = c
∫

d~v′ϕ?(~v′)
〈

exp
(

βK ∑
a

vav′a

)〉
K

, (3.72)

ϕ
?(~v) =

kmax

∑
k=1

p(k)k
exp
(
−i β

2 ∑a λav2
a

)
(iϕ̂(~v))k−1

∫
d~v′ exp

(
−i β

2 ∑a λav′a
2
)(

iϕ̂(~v′)
)k , (3.73)

which have to be solved together with the stationarity conditions w.r.t. each component λā of

~λ

1 =
kmax

∑
k=0

p(k)

∫
d~vexp

(
−i β

2 ∑a λava
2
)
(iϕ̂(~v))k v2

ā∫
d~v′ exp

(
−i β

2 ∑a λav′a
2
)(

iϕ̂(~v′)
)k ∀ā = 1, . . . ,n . (3.74)

The equations (3.72) and (3.73) show some resemblance with the saddle-point equations lead-

ing to the spectral density of Erdős-Rényi random graphs (see for instance Eq. (2.60) and (2.61)

in Chapter 2 and also [23] where they have first been derived). The most noticeable difference

is that the “Hamiltonian” of our problem is real-valued and includes the inverse temperature β .

Following [33] as in Section 2.5 of Chapter 2, we will now search for a replica-symmetric

solution, expressing the order parameter ϕ(~v) and its conjugate ϕ̂(~v) in the form of a superpo-

sition of uncountably infinite Gaussians. However, at odds with the choice in [33], we choose

these Gaussians with a non-zero mean. This ansatz will be preserving permutational symmetry

between replicas, but not the rotational invariance in the space of replicas. Indeed, a rotation-

ally invariant ansatz would not produce a physically meaningful result for this problem, as the

“ground state” solution we look for would collapse onto the trivial zero-vector solution. The
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ansätze read

λā = λ ∀ā = 1, . . . ,n , (3.75)

ϕ(~v) = ϕ0

∫
dωdh π (ω,h)

n

∏
a=1

1
Zβ (ω,h)

exp
[
−β

2
ωv2

a +βhva

]
, (3.76)

ϕ̂(~v) = ϕ̂0

∫
dω̂dĥ π̂(ω̂, ĥ)

n

∏
a=1

exp
[

β

2
ω̂v2

a +β ĥva

]
, (3.77)

where

Zβ (x,y) =

√
2π

βx
exp
(

βy2

2x

)
. (3.78)

The justification for this kind of ansatz given for the spectral case in Section 2.5 of Chapter 2

holds here as well. Indeed we are still dealing with an harmonically coupled system, despite

a real-valued Hamiltonian. Hence, our derivation is not that far from the spectral problem of

sparse random matrices for which the assumption of replica symmetry has been established

rigorously in [27]. In (3.76) and (3.77), π and π̂ are normalised joint pdfs of the parameters

appearing in the Gaussian distributions. We employ the name π for the auxiliary distribution

appearing in (3.76) since it will eventually coincide with what found in Section 3.3.2. The ϕ0

and ϕ̂0 are determined such that the distributions π(ω,h) and π̂(ω̂, ĥ) are normalised. A few

remarks are in order.

• The constant ϕ0 in (3.76) is needed since ϕ(~v) is the saddle-point expression of the

integrated order parameter, therby it needs not be normalised.

• The different signs in front of ω and ω̂ in (3.76) and (3.77) are picked with an eye

towards performing the subsequent~v-integrals: since ϕ̂(~v) is not a pdf, ω̂ being positive

is not problematic.

Once inserted into the action (3.67), the replica-symmetric assumptions (3.75), (3.76) and

(3.77) allow one to perform explicitly the ~v-integrals and extract the leading O(n) contribu-

tion to Sn in the limit n→ 0. In this setting, the action (3.67) becomes a functional of π , π̂ and

λ and the path integral over ϕ and ϕ̂ in (3.66) is thus replaced by a path integral over π and π̂ ,

viz.

〈Zn〉J ∝
1

M

∫
DπD π̂dλ exp(NSn[π, π̂,λ ]) , (3.79)

where

Sn[π, π̂,λ ] = S1 [π, π̂]+S2 [π]+S3(λ )+S4[π̂,λ ] , (3.80)
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Extracting the leading n→ 0 contribution yields

S1[π, π̂] =−iϕ0ϕ̂0− iϕ0ϕ̂0n
∫

dπ(ω,h)dπ̂(ω̂, ĥ) ln
Zβ (ω− ω̂,h+ ĥ)

Zβ (ω,h)
, (3.81)

S2[π] =
c
2
(
ϕ

2
0 −1

)
+n

c
2

ϕ
2
0

∫
dπ(ω,h)dπ(ω ′,h′)

〈
ln

Z(2)
β

(ω,ω ′,h,h′,K)

Zβ (ω,h)Zβ (ω ′,h′)

〉
K

, (3.82)

S3(λ ) = i
β

2
nλ , (3.83)

S4[π̂,λ ] = cLog(iϕ̂0)−
kmax

∑
k=0

p(k)Log(k!)+n
kmax

∑
k=0

p(k)
∫
{dπ̂}k Log Zβ

(
iλ −{ω̂}k,{ĥ}k

)
,

(3.84)

where we have introduced the shorthands

Z(2)
β

(ω,ω ′,h,h′,K) = Zβ (ω
′,h′)Zβ

(
ω− K2

ω ′
,h+

h′K
ω ′

)
(3.85)

and {dπ̂}s = ∏
s
`=1 dω̂`dĥ`π̂(ω̂`, ĥ`), along with {ω̂}s = ∑

s
`=1 ω̂` and {ĥ}s = ∑

s
`=1 ĥ`.

We note that the action contains O(1) and O(n) terms as n→ 0: the O(1) terms are

cancelled by the O(1) terms arising from the evaluation of the normalisation constant M at

the saddle-point. Indeed, by following a very similar reasoning as in (3.54), we find that

M =
∫

π

−π

(
N

∏
i=1

dφi

2π

)
e−i∑i φiki exp

[
c

2N ∑
i, j

(
ei(φi+φ j)−1

)]
. (3.86)

We then introduce in (3.86) the scalar order parameter

ϕ0 =
1
N

N

∑
i=1

eiφi (3.87)

via the integral representation

1 =
∫

N
dϕ0dϕ̂0

2π
exp

[
−iϕ̂0

(
Nϕ0−∑

i
eiφi

)]
. (3.88)

By using the same argument as in (3.64), the normalisation constant M can be written in a
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form amenable to a saddle-point evaluation,

M =
∫

N
dϕ0dϕ̂0

2π
exp

[
N

(
−iϕ0ϕ̂0 +

c
2
(ϕ2

0 −1)+ cLog(iϕ̂0)−
kmax

∑
k=0

p(k)Log(k!)

)]

=
∫

N
dϕ0dϕ̂0

2π
exp [NSM (ϕ0, ϕ̂0)] . (3.89)

The stationarity conditions1 for SM are

∂SM

∂ϕ0
= 0⇒ iϕ̂0 = cϕ0 , (3.90)

and
∂SM

∂ ϕ̂0
= 0⇒ iϕ0 =

c
ϕ̂0

. (3.91)

entailing that

iϕ0ϕ̂0 = c , (3.92)

ϕ
2
0 = 1 . (3.93)

The two conditions above exhibit a gauge invariance [44]. Once the same gauge has been

chosen for the saddle-point solution of M and the O(1) terms of the action (3.80) in the

numerator, they cancel out so that the action (3.80) is O(n) as expected. Thus, taking into

account the cancellation coming from (3.92) and (3.93), the action terms in (3.80) read

S1[π, π̂] =−nc
∫

dπ(ω,h)dπ̂(ω̂, ĥ) ln
Zβ (ω− ω̂,h+ ĥ)

Zβ (ω,h)
, (3.94)

S2[π] = n
c
2

∫
dπ(ω,h)dπ(ω ′,h′)

〈
ln

Z(2)
β

(ω,ω ′,h,h′,K)

Zβ (ω,h)Zβ (ω ′,h′)

〉
K

, (3.95)

S3(λ ) = i
β

2
nλ , (3.96)

S4[π̂,λ ] = n
kmax

∑
k=0

p(k)
∫
{dπ̂}k Log Zβ

(
iλ −{ω̂}k,{ĥ}k

)
, (3.97)

We can finally consider the stationarity conditions of the action (3.80) w.r.t. λ , π and π̂ .

1In what follows, we indicate the saddle-point values of ϕ and ϕ̂ without labelling them with a star.
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The stationarity condition w.r.t. λ entails the condition

∂S
∂λ

∣∣∣
λ=λ ?

= 0⇒ 1 =
∞

∑
s=0

pĉ(s)
∫
{dπ̂}s〈v2〉P̄ , (3.98)

where the average 〈·〉P̄ is taken with respect to the Gaussian measure

P̄β (v) =

√
β (iλ ?−{ω̂}s)

2π
exp

−β

2
(iλ ?−{ω̂}s)

(
v− {ĥ}s

iλ ?−{ω̂}s

)2
 . (3.99)

Eq. (3.98) more explicitely reads

1 =
∞

∑
k=0

p(k)
∫
{dπ̂}k

 1
β (iλ ?−{ω̂}k)

+

(
{ĥ}k

iλ ?−{ω̂}k

)2
 , (3.100)

where we note that the β -dependent term vanishes as β → ∞. The stationarity condition w.r.t.

variations of π , δS
δπ

= 0, entails the condition

∫
dπ̂(ω̂, ĥ) ln

Zβ (ω− ω̂,h+ ĥ)
Zβ (ω,h)

=
∫

dπ(ω ′,h′)

〈
ln

Z(2)
β

(ω,ω ′,h,h′,K)

Zβ (ω,h)

〉
K

+
γ

c
, (3.101)

where γ is a Lagrange multiplier introduced to enforce the normalisation of π . Given the

definition of Z(2)
β

, Eq. (3.101) is equivalent to

∫
dπ̂(ω̂, ĥ) lnZβ (ω− ω̂,h+ ĥ) =

∫
dπ(ω ′,h′)

〈
lnZβ

(
ω− K2

ω ′
,h+

h′K
ω ′

)〉
K
+

γ

c
. (3.102)

Since Eq. (3.102) must hold for all ω and h, it follows that

π̂(ω̂, ĥ) =
∫

dωdh π(ω,h)
〈

δ

(
ω̂− K2

ω

)
δ

(
ĥ− hK

ω

)〉
K
, (3.103)

Similarly, the stationarity condition w.r.t. variations of π̂ , δS
δ π̂

= 0, produces the condition

∫
dπ(ω,h) lnZβ

(
ω− ω̂,h+ ĥ

)
=

=
kmax

∑
k=1

k
c

p(k)
∫
{dπ̂}k−1Log Zβ (iλ

?−{ω̂}k−1− ω̂,{ĥ}k−1 + ĥ)+
γ̂

c
, (3.104)

where γ̂ is the Lagrange multiplier enforcing the normalisation of π̂ . We can then conclude
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that the saddle-point pdf π must satisfy

π(ω,h) =
kmax

∑
k=1

k
c

p(k)
∫
{dπ̂}k−1δ (ω− (iλ ?−{ω̂}k−1))δ (h−{ĥ}k−1) . (3.105)

Inserting (3.103) into (3.105) yields

π(ω,h) =
kmax

∑
k=1

k
c

p(k)
∫
{dπ}k−1

〈
δ

(
ω−

(
λ −

k−1

∑
`=1

K2
`

ω`

))
δ

(
h−

k−1

∑
`=1

h`K`

ω`

)〉
{K}k−1

,

(3.106)

where we have also defined λ ≡ iλ ? since it will turn out to be real-valued. The constant λ

needs to be tuned so as to enforce (3.100) for β → ∞, which reads (trading π̂ for π)

1 =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

, (3.107)

Note that Eq. (3.106) is identical to the self-consistent equation (3.35) found for the cavity

fields pdf. Surprisingly, even though the cavity and replica methods depart from completely

different assumptions, they converge towards the same result: this has been already shown

in [38] for the spectral problem in the Erdős-Rényi case.

A few remarks are in order:

• For the action to converge, we need the conditions ω > ζ , ω > ω̂ and λ ≡ iλ ? > {ω̂}k,

where ζ is the upper bound of the support of the bond weights pK(K).

• In Eq. (3.106), the contribution corresponding to k = 1 in the sum gives rise to the term

δ (ω−λ ) on the right hand side. Therefore, we expect to see a pronounced peak at the

location of λ = 〈λ1〉J in the plot of the marginal pdf π(ω) =
∫

dh π(ω,h), once the

contributions coming from nodes of different degrees are “unpacked”. This is confirmed

in Fig. 3.4 below.

• Both the cavity and replica approaches can be applied to any degree distributions p(k),

as long as the mean connectivity c and its variance remain finite as N → ∞, thus con-

siderably enlarging the class of models for which the equivalence between cavity and

replicas holds true.

• The value of λ ≡ iλ ? is real, given the symmetry of the matrix, and corresponds to the

typical value of the largest eigenvalue 〈λ1〉J , as it will be shown in subsections 3.4.1.1
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and 3.4.1.2. This is again compatible with the cavity results.

3.4.1.1 General case: weighted adjacency matrix.

We proceed here with the calculation of the average top eigenvalue of weighted adjacency

matrices of sparse graphs in configuration model ensembles, characterised by the degree dis-

tribution p(k), with finite mean degree 〈k〉 = c, finite variance and bounded maximal degree

kmax. The bond weights are drawn from the pdf pK(K). The pure {0,1}-adjacency matrix case

is recovered considering pK(K) = δ (K − 1). Given the distributions (3.106) and (3.103) at

stationarity and recalling Eq. (3.78), the O(n) terms of the action Sn in (3.80) - keeping only

the leading β → ∞ term - are expressed as:

S1 [π, π̂]'−nc
β

2

∫
dπ(ω,h)dπ(ω ′,h′)

〈(
h+ h′K

ω ′

)2

ω− K2

ω ′

− h2

ω

〉
K

=−nc
β

2
I1 , (3.108)

S2[π]' nc
β

4

∫
dπ(ω,h)dπ(ω ′,h′)

〈(
h+ h

′
K

ω ′

)2

ω− K2

ω
′

− h2

ω

〉
K

= nc
β

4
I1 , (3.109)

S3 (λ ) = n
β

2
λ , (3.110)

S4[π̂,λ ]' n
β

2

kmax

∑
k=0

p(k)
∫
{dπ̂}k

( (
∑

k
`=1 ĥ`

)2

λ −∑
k
`=1 ω̂`

)
. (3.111)

Multiplying and dividing the integrand of (3.111) by λ −∑
k
`=1 ω̂`, and using (3.107), we get

S4[π̂,λ ] = n
β

2
λ −n

β

2

∞

∑
k=1

p(k)k
∫

dπ̂(ω̂, ĥ){dπ̂}k−1

(
∑

k−1
`=1 ĥ`+ ĥ

λ −∑
k−1
`=1 ω̂`− ω̂

)2

ω̂ . (3.112)

Multiplying the second term by 1 =
∫

dωdhδ (ω− (λ −{ω̂}k−1))δ (h−{ĥ}k−1), and using

(3.105) and (3.103), we obtain

S4[π,λ ] = n
β

2
λ −nc

β

2

∫
dπ(ω,h)dπ(ω ′,h′)

〈
K2

ω ′

(
h+h′K/ω ′

ω−K2/ω ′

)2
〉

K

= n
β

2
λ −nc

β

2
I2 .

(3.113)

Summing up all terms, the action at the saddle point reads

Sn =
nβ

2

(
− c

2
I1− cI2 +2λ

)
, (3.114)
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which would imply from (3.52) for the average of the largest eigenvalue the formula

〈λ1〉J =−
c
2

I1− cI2 +2λ . (3.115)

However, we were able to numerically show (see Section 3.6) that at the saddle point

λ = c
(

I2 +
1
2

I1

)
, (3.116)

implying that

〈λ1〉J = λ , (3.117)

as expected from the corresponding cavity calculation. The identity (3.116) can be more easily

checked numerically once expressed in the alternative way

〈λ1〉J = λ = c
∫

dπ(ω,h)dπ(ω ′,h′)

〈(
h+ h′K

ω ′

ω− K2

ω ′

)(
h′+ hK

ω

ω ′− K2

ω

)
K

〉
K

, (3.118)

which has the additional advantage of showing explicitly that λ ≡ iλ ? is indeed a real-valued

quantity.

We apply this formalism to the case of Erdős-Rényi adjacency matrices, for which the de-

gree distribution p(k) is the bounded Poisson degree distribution pc(k) given in Eq. (3.2). Fig.

3.2 refers to the ensemble of pure ER {0,1}-adjacency matrix, with mean connectivity is c = 4

and kmax = 16. The resulting typical top eigenvalue is 〈λ1〉J ≈ 5.254 ,within a 0.001% error

w.r.t. the reference value λ1,∞ = 5.2541 obtained by extrapolation from the direct diagonali-

sation data. The panels in Fig. 3.2 show the marginal distributions π(ω) =
∫

dh π(ω,h) and

π(h) =
∫

dω π(ω,h) referring to this case. Every single peak of π(ω) is due to the contribution

of a specific degree k. In Fig. 3.3, we plot the behaviour of the typical largest eigenvalue of ER

unweighted adjacency matrices as the maximum degree kmax is varied. In this case we consider

the mean connectivity parameter c̄ appearing in (3.2) is set to 4. Clearly, the mean degree c

tends to c̄ = 4 as kmax increases. As expected, 〈λ1〉 grows as kmax increases, but the growth

becomes slower as the probability of finding a node of higher and higher degree becomes neg-

ligible even in the thermodynamic limit. Figure 3.4 instead shows the marginal distributions

π(ω) and π(h) for the ensemble of ER weighted adjacency matrices, with a uniform bond pdf

pK(K) = 1/2 for K ∈ (1,3). Here again the mean connectivity is c = 4 and kmax = 16. The

resulting typical top eigenvalue is 〈λ1〉J ≈ 10.8407, within a 0.12% error w.r.t. the reference
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Figure 3.2: The panels refer to the unweighted Erdős-Rényi (ER) adjacency matrix. The plots are obtained via the population
dynamics algorithm described in Section 3.6. For both panels, the population size is NP = 106. Left panel: marginal
distribution of the inverse single site variances ω . The thick dashed line represents the full pdf, the thinner curves
underneath stand for the single degree contributions, from k = 1 to k = 16. The rightmost peak at ω = λ corresponds
to k = 1: the peaks are centred at lower ω as the degree k increases. Also in this case, only the degree contributions
up to k = 11 are highlighted. Right panel: marginal pdf of the single-site bias fields h. Again, the thick dashed
line represents the full distribution, the thinner curves stand for the degree contributions from k = 1 to k = 16. The
leftmost peak at h = 0 corresponds to k = 1: as h grows, the pdf π(h) receives contributions from higher degrees.
Also in this case, only the degree contributions up to k = 11 are highlighted.

Figure 3.3: The behaviour of the typical largest eigenvalue in the Erdős-Rényi adjacency matrix case as the maximum degree
kmax is varied. The value of 〈λ1〉 is found via population dynamics for any fixed value of kmax. Each value has been
then checked against direct diagonalisation extrapolation at N → ∞. The population size is NP = 106 for any data
point.

value λ1,∞ = 10.8536 obtained by extrapolation from the direct diagonalisation data. The pe-

culiar structure of the distribution π(ω) in the case of the pure adjacency matrix (see Fig. 3.2)

where every single degree contribution corresponds to a specific peak in π(ω) is lost here, due

to the presence of non-trivial bond weights.

3.4.1.2 Random regular graph: adjacency matrix.

We now consider the simpler and analytically tractable case of the random regular graph

(RRG). A RRG with connectivity c is characterized by the property that every node has exactly

c neighbours, or equivalently every row of its {0,1}-adjacency matrix has exactly c nonzero

entries. This implies that the largest eigenvalue of such matrix is 〈λ1〉J = λ = c (deterministi-
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Figure 3.4: Marginal distributions π(ω) and π(h) for the ensemble of ER weighted adjacency matrices. The graphs are obtained
via the population dynamics algorithm, using a population of size NP = 106. Left panel: marginal distribution of
the ω-variables; the thick blue line represents the full distribution, the thinner curves underneath correspond to the
various degree contributions from k = 1 up to k = 16 (labelled and shown up to k = 11). The contribution of nodes
with degree k = 1 corresponds to the peak located at ω = 〈λ1〉J ≈ 10.8407, as expected from Eq. (3.106). Right
panel: marginal distribution of the bias fields h; again, the thick blue line represents the full distribution, while the
thinner curves underneath correspond to the different degree contributions. Again, only the degree contributions up
to k = 11 are labelled.

cally), and its corresponding eigenvector has all identical components vvv1 = (1,1, ...,1)T .

In this case, the degree distribution p(k) featuring in (3.106) is simply δk,c. Furthermore,

if we consider the pure adjacency matrix case (i.e. with pK(K) = δ (K− 1)), Eq. (3.106) and

(3.107) become

π(ω,h) =
∫
{dπ}c−1δ

(
ω−

(
λ −

c−1

∑
`=1

1
ω`

))
δ

(
h−

c−1

∑
`=1

h`
ω`

)
, (3.119)

1 =
∫
{dπ}c

(
∑

c
`=1

h`
ω`

λ −∑
c
`=1

1
ω`

)2

, (3.120)

which can be exactly solved by the ansatz

π(ω,h) = δ (ω− ω̄)δ (h− h̄) , (3.121)

leading to the following equations for the parameters ω̄, h̄ and λ

ω̄ = λ − c−1
ω̄

, (3.122)

h̄ = (c−1)
h̄
ω̄

, (3.123)

1 =

(
ch̄/ω̄

λ − c/ω̄

)2

. (3.124)

Eq. (3.123) entails that ω̄ = c− 1. Then, inserting this value in (3.122), we find λ = c. The
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value of h̄ can then be found exploiting the normalisation condition (3.124), yielding h̄ = c−2.

The action at the saddle-point reads then

Sn = n
β

2
h̄2

ω̄

[
− ω̄ +1

ω̄−1
+

2
ω̄−1

+1
]
+n

β

2
c = n

β

2
c , (3.125)

and therefore entailing for the typical largest eigenvalue

〈λ1〉J = lim
β→∞

2
βN

lim
n→0

1
n

NSn = c , (3.126)

equal to λ as expected.

3.4.2 Density of the top eigenvector’s components

In this statistical mechanics framework, the quantity

ρ̃β (u) =

〈
1
N

N

∑
i=1

δ (u− vi)

〉
(3.127)

is defined such that in the limit β → ∞ it gives the density of the top eigenvector components

for a given N×N sparse symmetric random matrix J. The simple angle brackets 〈...〉 stands for

thermal averaging, i.e. with respect to the Gibbs-Boltzmann distribution (3.6) of the system,

here reported again

Pβ ,J(vvv) =
exp
(

β

2 (vvv,Jvvv)
)

δ

(
|vvv|2−N

)
∫

dvvv′ exp
(

β

2 (vvv
′,Jvvv′)

)
δ

(
|vvv′|2−N

) . (3.128)

Defining an auxiliary partition function as

Z(β )
ε (t,J;u) =

∫
dvvvexp

[
β

2
(vvv,Jvvv)+β t ∑

i
δε (u− vi)

]
δ

(
|vvv|2−N

)
, (3.129)

where δε is a smooth regulariser of the delta function, the quantity (3.127) can be formally

expressed as

ρ̃β (u) = lim
ε→0+

1
βN

∂

∂ t
lnZ(β )

ε (t,J;u)
∣∣∣
t=0

. (3.130)

Averaging now over the matrix ensemble

ρβ ,J(u) =
〈
ρ̃β (u)

〉
J (3.131)
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and sending β → ∞ at the very end, the density of the top eigenvector’s components is eventu-

ally given by the formula

ρJ(u) = lim
β→∞

lim
ε→0+

1
βN

∂

∂ t

〈
lnZ(β )

ε (t,J;u)
〉

J

∣∣∣
t=0

. (3.132)

To compute the average of the logarithm of the auxiliary partition function Z(β )
ε (t,J;u),

we will employ the replica trick once again

〈
lnZ(β )

ε (t,J;u)
〉

J
= lim

n→0

1
n

ln
〈
[Z(β )

ε (t,J;u)]n
〉

J
. (3.133)

We find that the replicated partition function will take the form

〈
[Z(β )

ε (t,J;u)]n
〉

J
∝

∫
DϕD ϕ̂d~λ exp

[
NS(β )n

[
ϕ, ϕ̂,~λ ; t,ε;u

]]
, (3.134)

where ϕ and ϕ̂ are functional order parameters. The integral (3.134) can be evaluated using a

saddle point approximation for large N. As in Section 3.4.1, in order to extract the explicit n-

dependence of the action S(β )n in the limit n→ 0, we consider a replica-symmetric setting where

we represent ϕ and ϕ̂ as an infinite superposition of Gaussians whose parameters fluctuate

according to the pdfs π and π̂ . Thus, the path integral in (3.134) is rewritten in terms of π , π̂

and λ , entailing 〈
[Z(β )

ε (t,J;u)]n
〉

J
≈ exp

[
NS(β )n [π, π̂,λ ?; t,ε;u]

]
. (3.135)

The stationarity conditions defining π , π̂ and λ ? at the saddle point for t = 0 are just identical to

those already found in Section 3.4.1 for the replica calculation for the largest eigenvalue. The

parameter t can be safely set to zero in the stationarity conditions since the partial derivative
∂

∂ t in (3.132) only acts on terms containing any explicit dependence on t, and not through any

other indirect functional dependence. Inserting (3.135) into (3.133), and assuming that

S(β )n [π, π̂,λ ?; t,ε;u]∼ nsβ (t,ε;u)+o(n) (3.136)

as n→ 0, the final expression for the average density of top eigenvector’s components for

N→ ∞ reduces to

ρJ(u) = lim
β→∞

1
β

s′
β
(0,0;u) , (3.137)

where (·)′ stands for differentiation with respect to t.
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In the next subsections, we outline this formalism for the general case of sparse weighted

matrices within the configuration model with degree distribution p(k) with finite mean and

variance and bounded largest degree. We will give numerical results for the case of weighted

ER ensemble. Then we will provide an analytical solution for the case of adjancency matrices

of RRGs.

3.4.2.1 General case: weighted adjacency matrix.

Considering (3.129), the average replicated partition function becomes

〈
[Z(β )

ε (t,J;u)]n
〉

J
=

1
M

(
β

4π

)n ∫ ( n

∏
a=1

dvvvadλa

)
exp
(

i
β

2
N ∑

a
λa

)

× exp

(
−i

β

2 ∑
a

∑
i

λav2
ia +β t ∑

a
∑

i
δε (u− via)

)

×
∫

π

−π

(
N

∏
i=1

dφi

2π

)
exp

(
−i∑

i
φiki

)
exp

[
c

2N ∑
i, j

(〈
eβK ∑a viav ja+i(φi+φ j)

〉
K
−1
)]

. (3.138)

The only difference between Eq. (3.138) and Eq. (3.56) is the presence of the t-dependent

term. The replica derivation thus matches step by step the one presented in Section 3.4.1.

By introducing the functional order parameter (3.58), the replicated partition function can

be once again cast in a form that allows for a saddle point approximation,

〈
[Z(β )

ε (t,J;u)]n
〉

J
∝

∫
DϕD ϕ̂d~λ exp

[
NS(β )n

[
ϕ, ϕ̂,~λ ; t,ε;u

]]
, (3.139)

where the action S(β )n

[
ϕ, ϕ̂,~λ ; t,ε;u

]
is the sum of four terms

S(β )n

[
ϕ, ϕ̂,~λ ; t,ε;u

]
= S1[ϕ, ϕ̂]+S2[ϕ]+S3(~λ )+S4[ϕ̂,~λ ; t,ε;u] . (3.140)

The first three contributions are identical to those appearing in the largest eigenvalue calcula-

tion (see (3.68), (3.69) and (3.70)). The explicit t and u dependence is confined to the fourth

contribution,

S4[ϕ̂,~λ ; t,ε;u] =
kmax

∑
k=0

p(k)
[

Log
∫

d~vexp
(
− i

β

2 ∑
a

λav2
a

+β t ∑
a

δε (u− va)

)
(iϕ̂(~v))k−Log(k!)

]
. (3.141)

We now assume replica symmetry and represent ϕ and ϕ̂ as uncountably infinite superposition
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of Gaussians, whose parameters fluctuate according to joint pdfs π and π̂ , as in (3.75), (3.76)

and (3.77). Such joint pdfs satisfy the very same set of coupled saddle-point equations as in

(3.105) and (3.103) and for these reasons we can use the same labels as before. The only

difference with respect to the previous case is in the extra t-derivative that we have to take from

the contribution S4[π̂,λ
?; t,ε;u]. Inserting the ansatz (3.77) into Eq. (3.141), we obtain (in the

limit n→ 0)

S4[π̂,λ
?; t,ε;u] = n

kmax

∑
k=0

p(k)
∫
{dπ̂}k Log

∫
dvexp

[
− β

2
(iλ ?−{ω̂}k)v2

+β tδε (u− v)+β{ĥ}kv
]
. (3.142)

Therefore, we can isolate the function sβ (t,ε;u) in (3.136) as

sβ (t,ε;u) =
kmax

∑
k=0

p(k)
∫
{dπ̂}k Log

∫
dvexp

[
− β

2
(iλ ?−{ω̂}k)v2

+β tδε (u− v)+β{ĥ}kv
]
, (3.143)

in view of the identification iλ ? ≡ λ as before. Taking the t-derivative and setting t and ε to

zero, we get

s′
β
(0,0;u) = β

kmax

∑
k=0

p(k)
∫
{dπ̂}k

exp
[
−β

2 (λ −{ω̂}k)u2 +β{ĥ}ku
]

∫
dvexp

[
−β

2 (λ −{ω̂}k)v2 +β{ĥ}kv
] .

Taking the β → ∞ limit as in (3.137), we eventually find

ρJ(u) =
kmax

∑
k=0

p(k)
∫
{dπ̂}kδ

(
u− {ĥ}k

λ −{ω̂}k

)
. (3.144)

Expressing Eq. (3.144) in terms of the π-distribution, we eventually obtain

ρJ(u) =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈
δ

u−
∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (3.145)

where π(ω,h) satisfies the self-consistency equation (3.106), supplemented with the normali-

sation condition (3.107). Once again, the brackets 〈·〉{K}k
denote averaging w.r.t. to a collection

of k i.i.d. random variables K`, each drawn from the bond weight pdf pK(K).
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Eq. (3.145) essentially recovers Eq. (3.38) found with the cavity method. As a general

remark, it is worth noticing that the β -dependent distribution ρβ (u) in Eq. (3.131) is related to

the distribution in (3.99) that had already arisen naturally in the eigenvalue calculation when

evaluating the stationarity conditions with respect to λ . Indeed, Eq. (3.131) is obtained by

averaging the pdf (3.99) over {π̂}k and p(k). Moreover, in the cavity formalism, ρβ (u) is also

closely related to the single-site marginal of a single instance (3.28).

We remark once again that – in analogy with the typical largest eigenvalue calculation –

the validity of Eq. (3.145) for the weighted adjacency matrix of any configuration model with a

degree distribution with finite mean, finite variance and bounded maximal degree as a weighted

superposition of delta functions, one for each degree of the graph. It is then natural to identify

the quantity
∑

k
`=1

h`K`
ω`

λ−∑
k
`=1

K2
`

ω`

as the contribution to the density coming from nodes of degree k. The

k = 0 contribution from isolated nodes indeed gives rise to the sharp peak at u = 0.

The ρJ(u) of a Erdős-Rényi {0,1}-adjacency matrix is shown in the panels of the top

row of Fig. 3.5: in the left top panel we compare results for the density of top eigenvector’s

components obtained via population dynamics with results from the direct diagonalisation of

2000 matrices of size N = 5000. In the right top panel we show the contributions from nodes of

various degree k to the full top eigenvector’s components pdf. We clearly observe the aforemen-

tioned peak at u = 0. The bottom row plots of Fig. 3.5 show instead the same kind of plots for

the pdf of top eigenvector’s components of the ensemble of Erdős-Rényi weighted adjacency

matrices, with c = 4, kmax = 16 and uniform bond weight distribution, namely p(K) = 1/2 for

all K ∈ [1,3]. Also in the weighted case, the peak at u = 0 corresponds to the contribution of

isolated nodes (k = 0) whereas larger degree nodes contribute to the tail of the distribution.

The comparison between population dynamics and direct diagonalisation results shows perfect

agreement.

3.4.2.2 Random regular graph: adjacency matrix

In this case, building on subsection 3.4.1.2 and recalling that p(k)= δk,c and pK(K)= δ (K−1),

the ratio in (3.145) simply becomes c(c−2)/[c(c−1)− c] = 1, entailing

ρJ(u) = δ (u−1) , (3.146)

as expected.
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Figure 3.5: Density of the top eigenvector components (3.145) for ER adjacency matrices. All the plots are obtained via the
population dynamics algorithm, using a population size NP = 106. The top row refers to the unweighted case, whereas
the bottom row refers to the weighted case. Top left panel: pdf of the components of the top eigenvector in the case
of ER unweighted adjacency matrices, obtained by population dynamics (red stars) and by direct diagonalisation of
2000 matrices of size N = 5000 (green diamonds) exhibiting excellent agreement. Top right panel: pdf of the top
eigenvector’s components in the ER unweighted case (thick blue line) where the contributions from nodes of various
degree from k = 0 to k = 16 have been disentangled (thinner coloured curves). Only the degree contributions up to
k = 11 are labelled: all the other (larger) degree contributions are barely distinguishable as they fall on top of each
other in the tail of the distribution. Bottom left panel: comparison between results for the density of top eigenvector’s
components obtained with population dynamics (red stars) and direct diagonalisation (green diamonds) in the case
of ER weighted adjacency matrices. Bottom right panel: the full pdf ρJ(u) of the top eigenvector’s components of
weighted ER adjacency matrices (thick blue line) with the thinner curves underneath indicating the various degree
contributions k (labelled up to k = 11 ).

3.5 Application: sparse random Markov transition matrices

In this section, we cross-check the formalism with an ensemble of transition matrices W for

discrete Markov chains in an N-dimensional state space. The evolution equation for the prob-

ability vector ppp(t) is given by

ppp(t +1) =W ppp(t) . (3.147)

The transition matrix W is such that Wi j ≥ 0 ∀(i, j) and ∑iWi j = 1 ∀ j. For an irreducible chain,

the top right eigenvector of the matrix W corresponding to the Perron-Frobenius eigenvalue

λ1 = 1 represents the unique equilibrium distribution, i.e. vvv1 = pppeq. The matrix W is in gen-
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eral not symmetric: however, if the Markov process satisfies a detailed balance condition, i.e.

Wi j p
eq
j =Wji p

eq
i , it can be symmetrised via a similarity transformation, yielding

W S
i j = (peq

i )−1/2Wi j(peq
j )

1/2 . (3.148)

The symmetrised matrix W S will be the target of our analysis: even though it is not itself

a Markov matrix since the columns normalisation constraint is lost, in view of the detailed

balance condition W S has the same (real) spectrum of W , and its top eigenvector vvv1 is given in

terms of the top right eigenvector of W , pppeq, as

v(i)1 = (N peq
i )1/2 . (3.149)

We will consider the case of an unbiased random walk: the matrix W is then defined as

Wi j =


ci j
k j
, i 6= j

1, i = j and k j = 0
, (3.150)

where ci j represents the connectivity matrix and k j = ∑i ci j is the degree of the node j. In

this case, the top right eigenvector of W is proportional to the vector expressing the degree

sequence, i.e. peq
i = ki/(N 〈k〉). The symmetrised matrix W S is expressed as

W S
i j =


ci j√
kik j

, i 6= j

1, i = j and k j = 0
, (3.151)

with its top eigenvector being v(i)1 =
√

ki/〈k〉. Therefore, we expect that

ρW S(u) = ∑
k≥kmin

p(k)δ

(
u−

√
k
〈k〉

)
, (3.152)

where p(k) is the degree distribution of the connectivity matrix {ci j}. In order to avoid isolated

nodes and isolated clusters of nodes, we consider a shifted Poissonian degree distribution with

kmin = 2, i.e.

p(k) =
e−cck−2

(k−2)!
1k≥2 , (3.153)

with mean degree 〈k〉= c+2.
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The single-instance cavity treatment starts from the grand-canonical Gibbs-Boltzmann

distribution

Pβ ,W S(vvv|λ ) =
1
Z

exp

[
β

(
1
2

N

∑
i j

vi
ci j√
kik j

v j−
λ

2

N

∑
i

v2
i

)]
, (3.154)

which, after the change of variable ṽi = vi/
√

ki, becomes

Pβ ,W S(ṽvv|λ ) =
1
Z̃

exp

[
β

(
1
2

N

∑
i j

ṽici jṽ j−
λ

2

N

∑
i

kiṽi
2

)]
. (3.155)

It is convenient to frame and solve the problem in terms of the vector ṽvv, since in this case the

matrix involved in the analysis is just the standard {0,1}-adjacency matrix of the underlying

graph, as in [41, 42]. The cavity single-instance equations for this problem read

ω
(i)
j = λk j− ∑

`∈∂ j\i

1

ω
( j)
`

, (3.156)

h(i)j = ∑
`∈∂ j\i

h( j)
`

ω
( j)
`

, (3.157)

whereas the equations for the single-site marginal coefficients read

ωi = λki− ∑
j∈∂ i

1

ω
(i)
j

, (3.158)

hi = ∑
j∈∂ i

h(i)j

ω
(i)
j

. (3.159)

Therefore, in analogy to Eq. (3.31), Eq. (3.155) can be written as

Pβ ,W S(ṽvv|λ ) =
N

∏
i=1

1
Z̃i

exp
(
−β

2
ωiṽ2

i +βhiṽi

)
. (3.160)

Reversing the aforementioned change of variable and taking the β → ∞ limit in Eq. (3.160),

the components of the top eigenvector of a single instance of W S are given by

PW S(vvv|λ ) =
N

∏
i=1

δ

(
vi−

hi

ωi

√
ki

)
. (3.161)

In the thermodynamic limit N→∞, in complete analogy to Eq. (3.35), Eq. (3.156) and (3.157)
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allow one to define the pdf of the cavity fields as

π (ω,h) =
∞

∑
k=2

k
〈k〉

p(k)
∫ [k−1

∏
`=1

dπ (ω`,h`)

]
δ

(
ω−λk+

k−1

∑
`=1

1
ω`

)
δ

(
h−

k−1

∑
`=1

h`
ω`

)
. (3.162)

Similarly, taking into account Eq. (3.158), (3.159) and (3.161), the density of the top eigenvec-

tor’s components is given by

ρW S(u) =
∞

∑
k=2

p(k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]
δ

(
u−

∑
k
`=1

h`
ω`

λk−∑
k
`=1

1
ω`

√
k

)
, (3.163)

in analogy with Eq. (3.38). Eq. (3.162) and (3.163) must be then complemented by the

normalisation condition

1 =
∞

∑
k=2

p(k)k
∫ [ k

∏
`=1

dπ (ω`,h`)

](
∑

k
`=1

h`
ω`

λk−∑
k
`=1

1
ω`

)2

. (3.164)

As before, Eq. (3.162) is efficiently solved via a population dynamics algorithm. As ex-

pected, the convergence is attained for λ = 1, i.e. in correspondence of the largest eigenvalue

of W S, which is also the only value such that the normalisation condition (3.164) can be satis-

fied. Comparing Eq. (3.152) with Eq. (3.163), one expects that the ratios
∑

k
`=1

h`
ω`

λk−∑
k
`=1

1
ω`

appearing

in Eq. (3.163) should all be equal and constant for any k. Indeed, by looking at the distribution

of these ratios, we exactly find that it converges to a delta peak centred at a finite real positive

value which corresponds to 1/
√
〈k〉 once the normalisation is fixed according to (3.164). In

Fig. 3.6, we compare the population dynamics results with the theoretical predictions for the

density (3.163) of the top eigenvector’s components for sparse Markov matrices (representing

the transition matrices of unbiased random walks) characterised by a shifted Poissonian degree

distribution with minimum degree kmin = 2 and average degree 〈k〉= 6 (c = 4).

3.6 Population dynamics

The population dynamics algorithm employed to solve (3.35) (or equivalently (3.106)) is

deeply rooted in the statistical mechanics of spin glasses [121, 122]. It has already been pre-

sented in Section 2.6. The main difference that can be found in this context is that Eq. (3.35)

only converges for a specific value of the parameter λ . Moreover, here the cavity fields are real

variables and a regulariser is not needed. The algorithm can be summarised as follows.

A population with NP pairs of variables {(ωi,hi)}1≤i≤NP
are randomly initialised, taking



3.6. Population dynamics 103

Figure 3.6: Density of the top eigenvector’s components for symmetrised sparse Markov matrices representing the transition ma-
trices of unbiased random walks in the thermodynamic limit N→∞. The histogram has been produced by population
dynamics with a population of size NP = 106.The simulation results (blue crosses) match the theoretical predictions
(red dashed bars).

into account that ωi > ζ , where ζ is the upper edge of the support of the pdf pK(K).

For any suitable value of iλ ∗ ≡ λ ∈ R, the following steps are iterated until stable popula-

tions are obtained:

1. Generate a random k ∼ k
c p(k), where p(k) is the degree distribution of interest, with

c = 〈k〉.

2. Generate k−1 i.i.d. random variables K` from the bond weights pdf pK(K).

3. Select k−1 pairs (ω`,h`) from the population at random, then compute

ω
(new) = λ −

k−1

∑
`=1

K2
`

ω`
, (3.165)

h(new) =
k−1

∑
`=1

h`K`

ω`
, (3.166)

and replace a randomly selected pair (ω j,h j) where j = 1, ...,NP with the pair(
ω(new),h(new)

)
.

4. Return to (1).

A sweep is completed when all the NP pairs (ω j,h j) of the population have been updated at least

once according to the steps above. At the end of a sweep, the first and second sample moment

of both the ωi and the hi are computed. Convergence is achieved when both moments of both

type of variables become stable, i.e. when their relative variation w.r.t. their values found at the

previous sweep falls below a certain threshold ε , which we choose to be O(10−15).
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The procedure to evaluate (3.37) (or alternatively (3.38)) is almost identical, except for the

details concerning the k-sampling. Starting from two coupled populations with NP members

{(ω̃i, h̃i)}1≤i≤NP , the following steps are iterated:

1. Generate a random k ∼ p(k), where c = 〈k〉.

2. Generate k i.i.d. random variables K` from the bond weights pdf pK(K).

3. Select k pairs (ω`,h`) from the population {(ωi,hi)}1≤i≤NP
at random, then compute

ω̃
(new) = λ −

k

∑
`=1

K2
`

ω`
, (3.167)

h̃(new) =
k

∑
`=1

h`K`

ω`
. (3.168)

4. Replace a randomly selected pair
(
ω̃ j, h̃ j

)
where j = 1, ...,NP with the pair(

ω̃(new), h̃(new)
)
, which is then a new sample from π̃(ω̃, h̃). It can be used via Eq.

(3.38) to create u(new) = h̃(new)/ω̃(new) as a new sample from ρJ(u).

5. Return to (1).

The value of the parameter λ controls the convergence of the algorithm: indeed, the con-

vergence to a non-trivial distribution is achieved only when λ is equal to the typical largest

eigenvalue 〈λ1〉J , as prescribed by the theory: for any λ > 〈λ1〉J , the variables of type h will

shrink to zero, whereas for λ < 〈λ1〉J they will blow up in norm. Hence, the value λ = 〈λ1〉J
is the only value for which the normalisation condition (3.107) (or equivalently (3.40)) can be

satisfied.

In view of the expected behaviour described above, we will initially start from a large

value of λ , which is then progressively decreased until convergence is achieved. A suitable

starting value is given by the largest degree appearing in the connectivity distribution multiplied

by the average bond weight, i.e. kmax · 〈K〉K . The value of kmax is fixed in such a way that

p(kmax)NP ≥ 1: only if this condition is met, the value kmax appears at least once in the degree

array that is created to sample from p(k). Because of this choice, the largest degree depends on

the limits of the machine that is used to run the population dynamics algorithm. For instance, by

using a population size NP = 106 and a parameter c̄ = 4 in (3.2), we are able to reach kmax = 16.

Thus, the normalisation constant N in (3.2) is not very different from 1 and c̄ ' c = 〈k〉,

making the truncation of the Poisson distribution - for all practical purposes - ineffective.
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Once λ has been set to the only value (= 〈λ1〉J) for which a non-trivial finite normalisation

can be found, the value of such normalisation can be adjusted by properly rescaling the h’s.

Such rescaling is always allowed due to the linear nature of the recursion that governs their

update. This recursion will be discussed in detail in Appendix 3.A.

The population dynamics algorithm can also be employed to evaluate numerically the

integral in (3.118). The integral has the following structure:

I =
∫

dπ(ω,h)dπ(ω ′,h′)
〈

f
(
ω,h,ω ′,h′,K

)〉
K , (3.169)

where f is a generic function of the cavity fields and K. Once the correct value of λ = 〈λ1〉J
has been found, a number Neq of equilibration sweeps is performed, following the protocol

illustrated above.

After equilibration, a variable F = 0 is initialised. Then for j = 1, . . . ,Nmeas:

1. Perform a sweep

2. Pick (ω,h) and (ω ′,h′) at random, generate K ∼ pK(K) and compute f (ω,h,ω ′,h′,K).

3. Update F : F = F + f (ω,h,ω ′,h′,K).

The value of the integral (3.169) is approximated by invoking the law of large numbers, as

I ' F
Nmeas

, (3.170)

where the typical fluctuation is of the order of 1/
√

NPNmeas.

3.7 Summary

We have developed a formalism to compute the statistics of the largest eigenvalue and of

the corresponding top eigenvector for some ensembles of sparse symmetric matrices, i.e.

(weighted) adjacency matrices of graphs whose degree distribution is characterised by finite

mean c, finite variance and bounded maximum degree. The top eigenpair problem can be re-

cast as the optimisation of a quadratic Hamiltonian on the sphere: introducing the associated

Gibbs-Boltzmann distribution and a fictitious inverse temperature β , the top eigenvector repre-

sents the ground state of the system, which is attained in the limit β→∞. In order to extract this

limit, we have employed two methods, cavity and replicas, both borrowed from the statistical

mechanics approach to disordered systems. We first analysed the case of a single-instance ma-
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trix within a “grand canonical” cavity framework. The single-instance cavity method quickly

leads to a set of recursion equations for the cavity fields. However, the method essentially turns

the original top eigenpair problem for the N×N single matrix J into the top eigenpair problem

for the associated Nc×Nc non-backtracking operator B, as detailed in Appendix 3.A. There-

fore it does not substantially simplify the search for the solution of the top eigenpair problem

on a single instance.

Nonetheless, the cavity single-instance recursions constitute an essential ingredient to ar-

rive at the equations (3.35), (3.38) and (3.40) for the associated joint probability densities of

the auxiliary fields of type ω and h that characterise both the typical largest eigenvalue and

the statistic of the top eigenvector in the thermodynamic limit N → ∞. Moreover, the ex-

act same equations (see (3.106), (3.145) and (3.107)) are found via the completely alternative

replica derivation, entailing that the two methods are equivalent in the thermodynamic limit.

Within the population dynamics algorithm employed to solve the stochastic recursion (3.35)

(or equivalently (3.106)), we are able to identify the typical largest eigenvalue as the param-

eter controlling the convergence of the algorithm, and unpack the contributions coming from

nodes of different degrees to the average density of the top eigenvector’s components. The

simulations show excellent agreement of the theory with the direct diagonalisation of large

matrices. As a further cross-check of the formalism, we computed the average density of the

top eigenvector’s components of sparse Markov matrices representing unbiased random walks

on a sparse network under the detailed balance condition, thus retrieving the expected relation

between such components and the node degrees of the underlying network.

Our results on the statistics of the top eigenpair can be connected to the analysis of local-

isation properties of the top eigenvector. In principle, the cavity single instance results for a

sample of large N×N sparse symmetric matrices drawn from a certain ensemble can be used

to compute the IPR of the top eigenvector, using the formula (2.150). However, in this work

we did not look at matrix ensembles with a localised top eigenvector. Indeed, we derive our

results with a setup that requires a finite largest degree kmax. On the other hand, the localisation

of the top eigenvector of uncorrelated random networks is driven by the presence of a largest

degree kmax which diverges with the size of the network N [128, 129]. Therefore, our frame-

work prevents us from observing cases in which the top eigenvector is localised. It has been
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noticed [129, 130] that if the top eigenvalue λ1 of an uncorrelated random network is such that

λ1 '
√

kmax >
〈k2〉
〈k〉

, (3.171)

then the corresponding top eigenvector is localised. Precisely, the dense subgraph associated

with the hub (i.e. the node with the largest degree kmax) and its neighbours represents the set

of nodes where the top eigenvector is localised. In none of the examples that we study was

the condition (3.171) met. Conversely, a case in which the top eigenvector is localised can be

represented by the ensemble of random networks with a power-law degree distribution decay-

ing for large k as p(k) ∼ k−γ with γ > 5/2. Moreover, the localisation of the top eigenvector

characterises many real-world networks [131].



Appendices

3.A The single instance self-consistency equations and the non-

backtracking operator.

The set of self-consistency equations (3.26) and (3.27) for the cavity fields, supplemented with

Eq. (3.29) and (3.30) for the coefficients of the marginal distributions, constitutes the full

solution of the top eigenpair problem for a single instance of a sparse matrix. The convergence

of the update equations (3.26) and (3.27) is dictated by the value of the parameter λ , which is

related to the possibility to normalise the resulting top eigenvector.

Indeed, Eq. (3.27) is a linear recursion driven by the operator B, whose elements can be

defined as

B(i, j),(k,`) =


J j`

ω
( j)
`

i 6= `∧ j = k

0 otherwise
. (3.A.1)

The matrix B is an example of non-backtracking operator, first introduced by Hashimoto in

[132]. For a given graph, the Hashimoto non-backtracking operator B̃ in its original form

counts the number of paths from a node i to a node ` passing through a third node j, for every

choice of these three different nodes. It is defined as

B̃(i, j),(k,`) =


1 i 6= `∧ j = k

0 otherwise
. (3.A.2)

In our case, if the absolute value of the largest eigenvalue of the modified non-backtracking

operator B is greater than 1, the absolute values of the cavity fields h(i)j ’s will blow up, whereas

if it smaller than 1, they will shrink to zero. Therefore, λ must be tuned appropriately in Eq.

(3.26) to prevent the linear recursion (3.27) from landing on a trivial solution. Indeed, when λ

is “too large”, the ω
(i)
j ’s will be large too, resulting in a largest eigenvalue of B with magnitude
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smaller than 1. This would suggest to progressively decrease λ from a large value down to its

lower bound λ1, necessary to ensure that the optimisation problem is well-defined. In other

words, the largest eigenvalue of the operator B must be exactly 1 for the h(i)j ’s to have a finite

norm. This will happen only when λ = λ1.

Collecting the h(i)j ’s in a 2M = ∑
N
i=1 ki dimensional vector, Eq. (3.27) can be rewritten as

a linear vector iteration driven by B as

h(i)j = ∑
(k,`)

B(i, j),(k,`)h
(k)
` , (3.A.3)

where the entries B(i, j),(k,`) are defined in (3.A.1). Relabelling with a new, single index a any

pair of connected indices (i, j), Eq. (3.A.3) reads

ha =
2M

∑
b=1

Babhb , (3.A.4)

which can interpreted as a vector linear iteration,

ht = Bht−1 , (3.A.5)

with the index t labelling each iteration.

Starting from a certain initial condition h0, the solution of (3.27) is obtained after succes-

sive iterations according (3.A.5) until ht stabilises. The stability can be assessed by looking at

the norm of the vector ht . After a suitable number of iterations t, expanding the initial condi-

tion vector in the basis {bbbi} formed by the right eigenvectors of B, the leading contribution is

expressed in terms of its top eigenpair

ht = Bth0 = Bt

(
2M

∑
i=1

ci(0)bbbi

)
≈ c1(0)γ t

1bbb1 , (3.A.6)

where the contributions coming from the other eigenpairs {bbbi,γi}i≥2 are exponentially sup-

pressed, all the other eigenvalues of B being smaller than γ1.

The ratio ηt of the norms of two successive iterations approaches a constant value η? as

t→ ∞, corresponding to the absolute value of largest eigenvalue of B,

ηt =
‖ht‖∥∥ht−1

∥∥ =

∥∥Bht−1
∥∥

‖ht−1‖
→ η

? = |γ1| . (3.A.7)
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Figure 3.A.1: Cavity single instance. Top panel: the plot of the ratio η? (see (3.A.7)) as a function of the parameter λ : λ is
lowered (blue diamonds) until η? = 1. In correspondence of this value, λ = λ1 (red circle). Bottom panel: the
histogram of top eigenvector components of the same matrix as predicted by (3.32) shows perfect agreement with
the components obtained by direct diagonalisation.

Thus, the convergence of (3.27) is attained when the value of η? = |γ1| reaches 1 as λ ap-

proaches λ1 from above. We again recall that λ = λ1 is the smallest possible value such that

the cavity partition function (3.20) is well defined, and so the actual value λ1 can be found

by asymptotic extrapolation. Figure 3.A.1 shows an example of this procedure for the case of

a single Erdős-Rényi adjacency matrix of size N = 2000 and mean degree c = 4. The cavity

method predicts the value λ = λ1 = 5.251599, to be compared with the value λ
diag
1 = 5.251575

obtained by direct diagonalisation, resulting in a relative error of 0.001%. We also plot the

corresponding top eigenvector’s components histogram.

We remark that the procedure above holds only if the largest eigenvalue of B is real: if it is

complex, there will be a pair of complex conjugate first eigenvalues, i.e. those with the largest

norm, which dictate the asymptotic behavior of (3.A.5). In this case, the bi-orthonormal basis

of left and right eigenvectors must be taken into account

ht ≈ c1(0)γ t
1bbb1 + c2(0)(γ?1 )

tbbb?1 , (3.A.8)

where the coefficients c1(0) and c2(0) are in general complex. Therefore, the quantity ηt does

not approach a steady limit for large t in this case, and oscillations arise. In fact, it can be
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shown that
‖ht‖

2∥∥ht−1
∥∥2 = η

2

[
|c1|2 + |c2|2 +2acos(2φ t +ψ)

]
[|c1|2 + |c2|2 +2acos(2φ (t−1)+ψ)]

, (3.A.9)

where

a = α|c1||c2| , (3.A.10)

ψ = φ1−φ2 +θ . (3.A.11)

Here, (|c1|, |c2|) and (φ1,φ2) are the moduli and phases of the complex coefficients c1(0) and

c2(0), η is the ratio of the radial part of the vectors ht and ht−1, α and θ are respectively

the modulus and the phase of the dot product between the right (and left) eigenvector bbb1 (re-

spectively bbb?1) with itself, and ρ and φ are the modulus and phase of the pair of the complex

eigenvalues with the largest norm.

In this case, the recursion (3.A.5) does not converge to a single limit, and the cavity

formalism does not lead to an acceptable solution. Therefore, the strongest limitation of the

single instance cavity method is that the largest eigenvalue γ1 of the non-backtracking operator

B associated to the matrix J must be real. This restriction unfortunately rules out a variety of

interesting sparse matrix ensembles.



Chapter 4

Second largest Eigenpair Statistics for Sparse

Graphs

4.1 Introduction

In this chapter we look at the second largest eigenpair problem for a sparse matrix J as the top

eigenpair problem for a deflated version J̃ of the original sparse matrix J. Indeed, the deflation

mechanism consists in “neutralising” the top eigenvector of J by subtracting from the original

matrix the projector onto its first eigenspace. For a suitable amount of deflation, quantified by

the deflation parameter x, the top eigenpair of the deflated matrix J̃ corresponds to the second

largest eigenpair of the original matrix J. Therefore, in order to characterise the statistics of the

second largest eigenpair of J one can study the top eigenpair problem of the deflated matrix J̃.

To this purpose, we will employ the same statistical mechanics setting developed in Chapter 3.

As in Chapter 3, we will show that even for the second eigenpair problem the solution at

the ensemble level is given in terms of functional self-consistency equations. The crucial differ-

ence between the present chapter and Chapter 3 is the presence of the orthogonality condition

between the top and second eigenvectors in the set of final equations. The population dynamics

algorithm employed to solve these recursions is thus complemented by a wise implementation

of the orthogonality constraint, which is essential for the convergence of the aforementioned

self-consistency equations.

The plan of the chapter is as follows. In Section 4.2, we describe the mechanism of the

deflation, outlining the role of the deflation parameter x. We then formalise the top eigenpair

problem of the deflated matrix by adopting the same statistical mechanics setting of Chapter

3. In Section 4.3, we provide a cavity analysis of the problem. Specifically, in Section 4.3.1,

we describe the single-instance scenario for a generic value of x. We then apply the cavity
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approach to fully deflated matrices, first focussing on the single instance case in Section 4.3.2,

and then at the ensemble level in Section 4.3.3. We highlight the role of the orthogonality con-

straint in 4.3.4. To complement the cavity results, we offer an equivalent replica treatment in

4.A. In Section 4.4 we focus on the case of the random regular graph: we analytically show how

the solution for the top eigenpair of the deflated adjacency matrix gets modified as the deflation

parameter is changed. In Section 4.5, we specialise our results to the case of Markov transition

matrices representing random walks on graphs. In Section 4.6, we provide the details of the

population dynamics algorithm, focussing on how the extra orthogonality constraint is imple-

mented. We also provide convincing evidence that – at odds with what is commonly believed –

the algorithm with finite population size NP does not actually capture the thermodynamic limit

N→ ∞, in that there is a non-trivial relation between the size N of the adjacency matrix being

diagonalised, and the size NP of the population one should ideally use to numerically compute

its spectral properties. More precisely, the accuracy – measured with different metrics – with

which the population dynamics algorithm reproduces numerical diagonalisation of matrices

(graphs) of size N has a strongly non-monotonic behaviour as a function of NP, thus implying

that an optimal size N?
P = N?

P(N) must be chosen to best reproduce the diagonalisation results.

Finally, in Section 4.7 we offer a summary of results.

4.2 Formulation of the problem

We consider a real sparse symmetric random matrix J = (Ji j) and assume that its top eigenpair

(λ1,uuu) is known. We define a deflated matrix J̃(x) = (J̃i j(x)) by

J̃i j(x) = Ji j−
x
N

uiu j , (4.1)

where x represents the deflation parameter. The Ji j = ci jKi j are the i.i.d. entries of the original

matrix J. They are defined in terms of the connectivity matrix ci j ∈ {0,1}, i.e. the adjacency

matrix of the underlying graph, and the random variables Ki j encoding bond weights. The

bond weights Ki j will be i.i.d. random variables drawn from a parent pdf pK(K) with bounded

support. The top eigenvector uuu of J, also referred to as the probe eigenvector, is normalised

such that |uuu|2 = N.1 The dense matrix uuuuuuT/N represents the projector onto the top eigenspace

of the original matrix J.

As in Chapter 3, we analyse ensembles of tree-like matrices characterised by a finite con-

1The same normalisation convention applies to all the other eigenvectors of J, vvvα with α = 2, ...,N.
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nectivity, i.e. for which the mean node degree 〈k〉 = c is a finite constant that does not scale

with N (entailing c/N→ 0 as N→ ∞) and also the variance of the degree distribution is finite.

Besides, we will consider bounded degree distributions to ensure that the largest eigenvalue λ1

of J will remain of ∼ O(1) for N→ ∞.

The spectral theorem ensures that J̃(x) can be diagonalised via an orthonormal basis of

eigenvectors vvvα(x) with corresponding real eigenvalues λ̃α(x) (α = 1, . . . ,N),

J̃vvvα = λ̃αvvvα , (4.2)

for each eigenpair α = 1, . . . ,N, where to simplify notation we have omitted the x-dependence.

We also assume that there is no eigenvalue degeneracy, and that they are sorted λ̃1 > λ̃2 > .. . >

λ̃N , and the same holds for the eigenvalues λα (α = 1, . . . ,N) of the original matrix J.

For any value of x, the matrices J and J̃(x) share the same set of eigenvectors (see Section

3.3.2 in [133]). The range of the deflation parameter x is [0,λ1], where the boundaries of this

range correspond respectively to no deflation (x = 0⇒ J = J̃) and full deflation (x = λ1).

• When the value of x is smaller than the spectral gap g = λ1−λ2, the top eigenvalue of

J̃(x) is given by λ1− x with corresponding eigenvector uuu. Indeed:

J̃uuu =
(

J− x
N

uuuuuuT
)

uuu = (λ1− x)uuu , (4.3)

with λ1− x > λ2. We recall that uuuT uuu = N.

• Conversely, when x > g then the second largest eigenvalue of J, λ2, and the correspond-

ing eigenvector vvv2 become the top eigenpair of the matrix J̃. Indeed, following (4.3), the

top eigenvector of J, uuu, is still an eigenvector of J̃ related to the eigenvalue λ1− x but

now λ2 > λ1− x. Clearly,

J̃vvv2 =
(

J− x
N

uuuuuuT
)

vvv2 = λ2vvv2 , (4.4)

in view of the orthogonality between uuu = vvv1 and vvv2.

• In particular, when x = λ1, i.e. the largest eigenvalue of the original matrix J2, the matrix

J̃ is said to be a fully-deflated matrix. The top eigenvector of J, uuu, is still an eigenvector

2In the thermodynamic limit, the value such that full deflation is achieved is actually the average largest eigen-
value 〈λ1〉J of the matrix J.
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of J̃, but corresponding to a zero eigenvalue. Indeed,

J̃uuu =

(
J− λ1

N
uuuuuuT

)
uuu = (λ1−λ1)uuu = 0uuu . (4.5)

• All other eigenpairs are unchanged.

Employing the same statistical mechanics formalism of Chapter 3, we aim to find the

average (or typical) value 〈λ2〉J of the second largest eigenvalue λ2 of J, and the den-

sity ρJ,2(v) =
〈

1
N ∑

N
i=1 δ (v− v(i)2 )

〉
J

of the corresponding second eigenvector’s components,

vvv2 = (v(1)2 , . . . ,v(N)
2 ). The second eigenpair statistics of the matrix J is obtained by finding the

top eigenpair of the deflated matrix J̃(x) when x > g and, in particular, when x = λ1. Namely,

we study the average largest eigenvalue 〈λ̃1〉J̃ and the density ρJ̃(v) =
〈

1
N ∑

N
i=1 δ (v− v(i)1 )

〉
J̃

of the top eigenvector’s components, vvv1 = (v(1)1 , . . . ,v(N)
1 ) of the deflated matrix J̃, where the

average 〈·〉J̃ is taken over the distribution of the matrix J̃.

We will follow the same protocol used in Chapter 3 and frame the search for the top

eigenpair problem of the matrix J̃ as the optimisation of the quadratic function Ĥ(vvv), according

to which vvv1 is the vector normalised to N that realises the condition

Nλ̃1 = min
|vvv|2=N

[
Ĥ(vvv)

]
= min
|vvv|2=N

[
−1

2
(
vvv, J̃vvv

)]
, (4.6)

where the round brackets (·, ·) indicate the dot product between vectors in RN . As shown in

Section 3.2, the “Hamiltonian Ĥ (vvv) is bounded and attains its minimum when computed on the

top eigenvector. Therefore, for a given instance of J̃, in order to compute the minimum in (4.6)

we introduce a fictitious canonical ensemble of N-dimensional vectors vvv at inverse temperature

β , whose Gibbs-Boltzmann distribution reads

Pβ ,J̃(vvv) =
1
Z

exp
[

β

2
(vvv, J̃vvv)

]
δ (|vvv|2−N) , (4.7)

where the delta function enforces normalisation. As before, we expect that in the low temper-

ature limit β → ∞, only the ground “state” corresponding to the top eigenvector of J̃, vvv = vvv1,

remains populated.

4.3 Cavity analysis
In this section we show how to tackle the second largest eigenpair problem using the cavity

approach. We first present the general statistical mechanics treatment of the single-instance
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case. Then, we describe the application of cavity method in the case of full deflation for a

single instance (Section 4.3.2) and in the thermodynamic limit (Sections 4.3.3 and 4.3.4).

4.3.1 Top eigenpair of a single instance: generic deflation case

Using (3.9), given a single instance matrix J̃, its largest eigenvalue λ̃1 can be defined as

λ̃1 = lim
β→∞

2
βN

lnZN , ZN =
∫

dvvvexp
[

β

2
(
vvv, J̃vvv

)]
δ

(
|vvv|2−N

)
. (4.8)

The partition function explicitly reads

ZN =
∫

dvvvexp
[

β

2
(vvv,Jvvv)− βx

2N
(uuu,vvv)2

]
δ

(
|vvv|2−N

)
. (4.9)

The square in the exponent can be written as

1
N
(uuu,vvv)2 = N

[
1
N
(uuu,vvv)

]2

= Nq2 , (4.10)

with the identification

q =
1
N
(uuu,vvv) . (4.11)

The definition of the order parameter q is enforced via the integral identity

1 =
∫

Nβ
dqdq̂
2π

exp(iNβqq̂− iβ q̂(uuu,vvv)) . (4.12)

By also employing a Fourier representation of the Dirac delta enforcing the normalisation con-

straint and including all the pre-factors in C , the partition function becomes

ZN =

(
β

4π

)(
Nβ

2π

)∫
dqdq̂dλ exp

[
βN
(

iqq̂− x
2

q2 + i
λ

2

)]
Z̃N (q̂,λ )

= C
∫

dqdq̂dλ exp
[

βN
(

iqq̂− x
2

q2 + i
λ

2
+

1
Nβ

LogZ̃N (q̂,λ )
)]

= C
∫

dqdq̂dλ exp [βNSN(q, q̂,λ )] , (4.13)
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with

Z̃N (q̂,λ ) =
∫ N

∏
i=1

dvi exp
[
−β

2
(vvv,Avvv)− iq̂β (uuu,vvv)

]

=

√
(2π)N

β N det(A)
exp
(
−β

2
q̂2uuuT A−1uuu

)
. (4.14)

The matrix A−1 = (iλ1N−J)−1 is akin to the resolvent of J. It has the same eigenvectors of J,

thus using the spectral theorem it can be expressed as

A−1 = (iλ1N− J)−1 =
N

∑
α=1

1
iλ −λα

ũuuα ũuuT
α , (4.15)

where the λα are the eigenvalues of J and the ũuuα are their corresponding eigenvectors. We

remark that the ũuuα are normalised such that |ũuuα |2 = 1. On the other hand, the vector uuu appearing

in the exponent of Z̃N is the top eigenvector of J, uuu1, normalised such that |uuu|2 = |uuu1|2 = N.

Therefore,

uuu = uuu1 =
√

Nũuu1 , (4.16)

entailing that

Z̃N (q̂,λ ) ∝ exp
(
−βN

2
q̂2

iλ −λ1

)
. (4.17)

In turn, the partition function (4.13) becomes

ZN = C
∫

dqdq̂dλ exp
[

βN
(

iqq̂− λ1

2
q2 + i

λ

2
− q̂2

2(iλ −λ1)

)]
= C

∫
dqdq̂dλ exp [βNSN(q, q̂,λ )] . (4.18)

Eq. (4.18) can be evaluated with a saddle-point approximation for large β . The stationarity of

SN w.r.t. to λ , q̂ and q implies that

1 =
(iq̂?)2

(iλ ?−λ1)2 , (4.19)

q? =
−iq̂?

iλ ?−λ1
, (4.20)

q?x = iq̂? . (4.21)

Using (4.21) in (4.20), one finds

q? =
−q?x

iλ ?−λ1
. (4.22)
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Two cases can be distinguished, depending on the value of q?.

1. Assuming q? 6= 0, Eq. (4.22) yields iλ ? = λ1− x, while from (4.19) it follows q?2 = 1.

Using these results to express the action SN , one finds

SN =
iλ ?

2
+

x
2
− x

2
=

λ1− x
2

, (4.23)

entailing for the largest eigenvalue λ̃1 defined in (4.8)

λ̃1 = iλ ? = λ1− x . (4.24)

As stated in Section 4.2, this is the top eigenvalue of J̃ when x< g. Indeed, the value q? =

±1 indicates that the the probe eigenvector uuu and the top eigenvector of J̃ corresponding

to λ1− x coincide. Thus, when the deflation parameter x is smaller that the spectral gap

g, there is no need to use the cavity method to obtain the top eigenpair of the deflated

matrix, which is simply given by (λ1− x,uuu).

2. Assuming q? = 0, from (4.21) it follows that q̂? = 0. Thus the action reduces to

SN =
iλ ?

2
⇒ λ̃1 = iλ ? . (4.25)

The case q? = 0 provides the top eigenvalue of the deflated matrix J̃ in the case x > g,

thereby including the case of full deflation x = λ1. Therefore, q? = q̂? = 0 represents

the orthogonality condition between the solution vvv and the probe eigenvector uuu. In this

scenario, the top eigenvalue λ̃1 of the matrix J̃ is the second largest eigenvalue of the

original matrix J, viz.

λ̃1 = λ2 = iλ ? . (4.26)

However, the stationarity conditions (4.19), (4.20) and (4.21) do not provide the (real)

value iλ ? ≡ λ , nor the components of the corresponding eigenvector vvv.

To sum up, the top eigenvalue of the deflated matrix J̃ is always given by the value iλ ? ≡ λ ,

regardless the value of x. However, for x > g this value needs to be determined via the cavity

method, as detailed in the next subsection.
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4.3.2 Cavity derivation for a single instance in case of full deflation

We focus on the case of full deflation x = λ1. This choice is not restrictive, since the solution

does not depend on x, for any x > g. As shown before, in the range x > g one has q? = 0.

However, for the time being we proceed with a generic q?. Its actual value will be made

explicit in the final result.

One looks at (4.13), without performing explicitly the integration in (4.14). Considering

the stationarity of the action SN(q, q̂,λ ) w.r.t. q, q̂ and λ , the following conditions hold,

iq̂? = λ1q? , (4.27)

q? =
1
N

N

∑
i=1

ui 〈vi〉 , (4.28)

1 =
1
N

N

∑
i=1

〈
v2

i
〉
, (4.29)

where the starred quantities indicate the saddle-point values of the parameters. The angular

brackets indicate averaging w.r.t. the distribution

Pβ (vvv|q̂?,λ ?) =
1

Z̃N(q̂?,λ ?)
exp

(
−iλ ? β

2 ∑
i

v2
i − iq̂?β (uuu,vvv)+

β

2
(vvv,Jvvv)

)
. (4.30)

By looking at the saddle point condition (4.27), in what follows we can identify iq̂? = λ1q? =

λ1q (omitting the star for brevity) and define iλ ? ≡ λ , such that Eq. (4.30) becomes

Pβ (vvv|λ1q,λ ) =
1

Z̃N(λ1q,λ )
exp

(
−λ

β

2 ∑
i

v2
i −λ1qβ (uuu,vvv)+

β

2
(vvv,Jvvv)

)
. (4.31)

The components vi are found in the β → ∞ limit by the cavity method applied to the

distribution (4.31), which in analogy to Section 3.3 represents the grand-canonical version

of the Gibbs-Boltzmann canonical distribution (4.7). To keep this chapter self-contained, we

reproduce the key steps of the cavity protocol detailed in Section 3.3.1.

By making a tree-like assumption on the structure of the highly sparse graph encoded in

the original matrix J that we deflate, the marginal pdf w.r.t. a certain component i is given by

Pi(vi|λ1q,λ ) =
1
Zi

exp
(
−β

2
λv2

i −βλ1quivi

)
∏
j∈∂ i

∫
dv j exp(βviJi jv j)P(i)

j (v j|λ1q,λ ) , (4.32)

where ∂ i denotes the immediate neighbourhood of i. The factorisation over the neighbouring
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nodes of i is due to the fact that in a tree-like structure the nodes j ∈ ∂ i are connected with each

other only through i. The distribution P(i)
j (v j|λ1q,λ ) is called marginal cavity distribution: it

is the distribution of the components v j defined on the neighbouring nodes of i, in the network

in which i has been removed.

Following Section 3.3.1, for any j ∈ ∂ i the cavity marginal pdf satisfies the self-consistent

equation

P(i)
j (v j|λ1q,λ ) =

1

Z(i)
j

exp
(
−β

2
λv2

j −βλ1qu jv j

)
∏

`∈∂ j\i

∫
dv` exp

(
βv jJ j`v`

)
P( j)
` (v`|λ1q,λ ) ,

(4.33)

where ∂ j\i indicates the set of neighbours of the node j with the exclusion of i.

A Gaussian ansatz provides the solution to the self consistent equation, viz.

P(i)
j (v j|λ1q,λ ) =

√
βω

(i)
j

2π
exp

(
−

βh(i)j

2ω
(i)
j

)
exp
(
−β

2
ω

(i)
j v2

j +βh(i)j v j

)
, (4.34)

where the parameters ω
(i)
j and h(i)j are called cavity fields. By inserting the ansatz in (4.33) and

performing the Gaussian integrals, the set of self-consistent equations represented by (4.33)

translates into a set of recursions for the cavity fields,

ω
(i)
j = λ − ∑

`∈∂ j\i

J2
j`

ω
( j)
`

, (4.35)

h(i)j =−λ1qu j + ∑
`∈∂ j\i

J j`h
( j)
`

ω
( j)
`

. (4.36)

Likewise, by means of (4.34), the marginal distribution Pi(vi|λ1q,λ ) can be written as

Pi(vi|λ1q,λ ) =
1
Zi

exp
(
−β

2
ωiv2

i +βhivi

)
, (4.37)

where

ωi = λ − ∑
j∈∂ i

J2
i j

ω
(i)
j

, (4.38)

hi =−λ1qui + ∑
j∈∂ i

Ji jh
(i)
j

ω
(i)
j

. (4.39)
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Using the cavity factorisation in (4.37) to express (4.31), we eventually obtain

Pβ (vvv|λ1q,λ ) =
N

∏
i=1

1
Zi

exp
(
−β

2
ωiv2

i +βhivi

)
. (4.40)

In the β → ∞ limit,

Pβ (vvv|λ1q,λ )→
N

∏
i=1

δ

(
vi−

hi

ωi

)
, (4.41)

entailing that the components vi of the top eigenvector of the fully deflated matrix J̃, represent-

ing the ground state of the system with Boltzmann distribution (4.7), are given by the ratios

hi/ωi. The ωi and the hi are determined respectively by Eq. (4.38) and (4.39). Because of the

full deflation, vvv also represents the second eigenvector of the original matrix J.

In terms of Eq. (4.41), the conditions (4.28) and (4.29) read

q =
1
N

N

∑
i=1

ui
hi

ωi
, (4.42)

1 =
1
N

N

∑
i=1

(
hi

ωi

)2

. (4.43)

At this point, we recall that for any x > g (in particular x = λ1), we have q? ≡ q = 0. Therefore

q = 0 must be considered in Eq. (4.36) and (4.39), and the condition (4.42) becomes

0 =
1
N

N

∑
i=1

ui
hi

ωi
. (4.44)

As anticipated in Section 4.3.1, Eq. (4.44) expresses the orthogonality condition between uuu and

vvv. The components ui and vi in (4.44) are naturally referring to the same node i with degree ki

of the network represented by J.

To summarise, when considering a fully-deflated single instance matrix J̃, its top eigenpair

can be found in terms of the cavity recursions (4.35) and (4.36) along with the normalisation

condition (4.43) and the orthogonality constraint (4.44). The value λ = λ2 represents the sec-

ond largest eigenvalue of the matrix J (i.e. the top eigenvalue of the deflated matrix J̃), with

corresponding eigenvalue vvv whose components are defined in Eq. (4.41). According to the

same mechanism explained in Appendix 3.A, λ = λ2 is the only value that satisfies the nor-

malisation condition (4.43).
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4.3.3 Cavity method: thermodynamic limit

Following the reasoning of Section 3.3.2, in the limit N→ ∞ we can consider the joint proba-

bility density of the cavity fields ω
(i)
j and h(i)j taking values around respectively ω and h,

π (ω,h) =
kmax

∑
k=1

k
c

p(k)
∫

duρJ(u|k)
∫ [k−1

∏
`=1

dπ (ω`,h`)

]

×

〈
δ

(
ω−λ +

k−1

∑
`=1

K2
`

ω`

)
δ

(
h−

(
−qu〈λ1〉J +

k−1

∑
`=1

h`K`

ω`

))〉
{K}k−1

, (4.45)

where dπ (ω`,h`)≡ dω`dh`π (ω`,h`), and the average 〈·〉{K}k−1
is taken over k−1 independent

realisations of the bond weights K. Here, ρJ(u|k) is the distribution of the top eigenvector’s

component of J conditioned on the degree k. The distribution k
c p(k) represents the probability

that a randomly chosen link points to a node of degree k and c = 〈k〉, and appears in (4.45)

as cavity fields are related to links. Eq. (4.45) generalises in the thermodynamic limit the

recursions (4.35) and (4.36) in the case of full deflation (x = λ1).

By using the law of large numbers, in the thermodynamic limit the normalisation condition

(4.43) reads

1 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈−qu〈λ1〉J +∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

, (4.46)

whereas the orthogonality constraint (4.42) becomes

q =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈
−qu〈λ1〉J +∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

. (4.47)

Similarly, the distribution of the top eigenvector’s components of the fully deflated matrix J̃,

i.e. the second largest eigenvector of J, is obtained in terms of averages w.r.t. the distribution

π(ω,h) as

ρJ̃(v)= ρJ,2(v)=
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈
δ

v−
−qu〈λ1〉J +∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

.

(4.48)

We notice that in the equations (4.46), (4.47) and (4.48), the degree distribution p(k) naturally

crops up, as they encode properties related to nodes, rather than links. Moreover, Eq. (4.26)
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generalises to the thermodynamic limit case, as

〈λ̃1〉J̃ = 〈λ2〉J = λ , (4.49)

for any x > g. Finally, we remark that Eq. (4.24) generalises at the ensemble level too, entailing

the condition

〈λ1〉J̃ = λ = 〈λ1〉J− x (4.50)

which is valid when x < g.

4.3.4 Cavity method: the orthogonality condition

The condition q = 0, valid whenever x exceeds the spectral gap, holds at the ensemble level

as well. Indeed, when considering q = 0, Eq. (4.47) encodes the orthogonality-on-average

condition between the probe eigenvector uuu and the top eigenvector vvv of the deflated matrix J̃,

corresponding to the second largest eigenvector of the original matrix J. The interpretation of

Eq. (4.47) for q = 0 is made clearer by simply considering the average orthogonality condition

between uuu and vvv, viz.

0 =
∫

dudvPJ(u,v)uv

=
kmax

∑
k=0

p(k)
∫

duρJ(u|k)dvρJ,2(v|u,k)uv

=
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫ [ k

∏
`=1

dπ (ω`,h`)

]〈−qu〈λ1〉J +∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (4.51)

where PJ(u,v) indicates the joint probability density of the first and second largest eigenvector’s

components of J, and the conditional pdf ρJ,2(v|u,k) is obtained from (4.48) erasing the u-

integration and the k-sum. The conditional pdf ρJ(u|k) is given by omitting the k-sum in the

expression for the density of the top eigenvector components ρJ(u) (4.57). Comparing Eq.

(4.51) with (4.47) for q = 0, one observes that they are identical.

Taking into account the average orthogonality condition q = 0, Eq. (4.45), (4.46), (4.47),
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(4.48) and (4.49) simplify to

π(ω,h) =
kmax

∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω−

(
λ −

k−1

∑
`=1

K2
`

ω`

))
δ

(
h−

(
k−1

∑
`=1

h`K`

ω`

))〉
{K}k−1

,

(4.52)

1 =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

, (4.53)

0 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫
{dπ}k

〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (4.54)

ρJ̃(v)≡ ρJ,2(v) =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈
δ

v−
∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (4.55)

〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ , (4.56)

where we have used the shorthand {dπ}k = ∏
k
`=1 dω`dh`π(ω`,h`) .

Enforcing the orthogonality condition given by (4.54) is crucial to finding the correct

solution. The conditional pdf ρJ(u|k) appearing in (4.54) is given by omitting the k-sum in

the expression for the density of the top eigenvector components ρJ(u) (see Eq. (3.38) or

equivalently (3.145)), reported here

ρJ(u) =
kmax

∑
k=0

p(k)
∫
{dπ1}k

〈
δ

u−
∑

k
`=1

b`K`
a`

〈λ1〉J−∑
k
`=1

K2
`

a`

〉
{K}k

, (4.57)

where π1(a,b) indicates the distribution of cavity fields of type a (inverse cavity variances)

and b (cavity biases) for the top eigenpair problem (see Eq. (3.35)). The integration w.r.t. the

conditional distribution ρJ(u|k) in (4.54) generalises to the thermodynamic limit the fact that

both the components ui and vi =
hi
ωi

in (4.44) refer to the same node i with degree ki. Indeed, by

comparing (4.57) with (4.55) and (4.54), we notice that the components of uuu are still coupled to

those of vvv in (4.54) through their structure, as they both refer to the same degree k (see Section

4.6 for more details). The replica derivation in 4.A provides an independent proof of this result.

Therefore, in order to enforce the constraint (4.54) correctly, we need to impose strict or-

thogonality on-the-fly, i.e. while the components of the top eigenvector uuu and the components

of the second largest eigenvector vvv are being evaluated at the same time by averaging w.r.t. re-

spectively π1 and π , as prescribed by (4.57) and (4.52). The way strict orthogonality is imposed
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is via a correction to the components of vvv: the details of this procedure and the corresponding

algorithm are given in Section 4.6.

To summarise, Eq. (4.52), (4.53), (4.54), (4.55) and (4.56) represent the solution of the

second largest eigenpair problem in the thermodynamic limit. This set of equations must be

generally solved by a population dynamics algorithm, as detailed in Section 4.6. It is com-

pletely equivalent to Eq. (4.A.27), (4.A.28), (4.A.29), (4.A.31) and (4.A.30), respectively,

found within the replica framework (See 4.A.2).

The top row and the bottom left plots of Figure 4.1 show numerical results in the case of an

Erdős-Rényi (ER) adjacency matrix with c = 4 and kmax = 12. We find 〈λ2〉J = 4.463, within a

2% error w.r.t. the value λ2,∞ = 4.565 obtained by extrapolation from the direct diagonalisation

data. The bottom right panel of Figure 4.1 refers instead to the case of ER weighted adjacency

matrix with c = 4 and kmax = 12. We consider the case of uniform distribution of bond weights,

pK(K) = 1 for K ∈ [1,2]. In this case, we find 〈λ2〉J = 7.092, within a 0.94% error w.r.t.

the reference value λ2,∞ = 7.159 obtained by extrapolation from the direct diagonalisation

data. In the plot, we compare the pdf of second largest eigenvector’s components obtained

via population dynamics with results from the direct diagonalisation of 2000 matrices of size

N = 5000. The relative error for the two cases studied in Fig. 4.1 is slighlty larger than the

error observed in all other cases studied in Chapter 3 and 4. This is mainly due to two factors.

One the one hand, when looking for the second largest eigenvalue we approach the value of λ

for which the update of the cavity field of type ω , contained in Eq. (4.52), becomes unstable.

On the other hand, an extra source of uncertainty comes from the use of an approximation for

the population dynamics algorithm in the ER case. (see Section 4.6.3).

Figure 4.2 compares the theoretical results for the pdf of the second largest eigenvec-

tor’s components with results of direct numerical diagonalisation for adjacency matrices of ER

graphs with c = 10 and kmax = 22. In this case, we find 〈λ2〉J = 6.656, within a 0.04% error

w.r.t. the value λ2,∞ = 6.658 obtained by extrapolation from the direct diagonalisation data.

We observe that there are finite size effects in the distribution of eigenvector components that

are significantly stronger than those observed in the eigenvalue problem. The bottom panel of

figure 4.2 shows the average second largest eigenvalue 〈λ2〉 as a function of the matrix size

N, obtained via direct diagonalisation of adjacency matrices of ER graphs with c = 10 and

kmax = 22. The data are fitted by a power law curve 〈λ2〉 = aN−b +λ2,∞, with b ' 0.8115 for

this type of network. The inset shows the plot of λ2,∞−〈λ2〉 against N in log scale, confirming
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Figure 4.1: Second largest eigenpair of the ER adjacency matrix. Top left panel: marginal distribution of the inverse single site
variances ω . The thick dashed line represents the full pdf, the thinner curves underneath stand for the single degree
contributions, from k = 1 to k = 12. The rightmost peak at ω = λ corresponds to k = 1: the peaks are centred at lower
ω as the degree k increases. Top right panel: marginal pdf of the single-site bias fields h. Again, the thick dashed
line represents the full pdf, the thinner solid curves stand for the degree contributions from k = 1 to k = 12. Each
curve corresponding to a degree k is symmetric around h = 0. As k grows, their variance broadens and the curves
flatten. Bottom left panel: pdf of the second largest eigenvector’s components (see (4.55)), obtained by population
dynamics (solid blue) and by direct diagonalisation of 2000 matrices of size N = 5000 (red circles) showing excellent
agreement. The population size is NP = 105. The inset shows the right tail of the pdf in log scale. Bottom right
panel: pdf of the second largest eigenvector’s components in the case of ER weighted adjacency matrices, obtained
by population dynamics (solid blue) and by direct diagonalisation of 2000 matrices of size N = 5000 (red circles)
showing excellent agreement. Also in this case, the population size is NP = 105 and the inset shows the right tail of
the pdf in log scale.

that the power law exponent b is positive. The power law convergence is a common behaviour

found in all ensembles analysed in this thesis, though the value of the exponent b depends on

details of the systems.

4.4 Random regular graphs

For non-weighted adjacency matrices of RRGs, the degree distribution is simply p(k) = δk,c,

and the bond weights distribution is trivially pK(K) = δ (K−1), resulting in a constant probe

top eigenvector uuu, i.e. ρJ(u) = ρJ(u|c) = δ (u− 1). The largest eigenvalue λ1 is non-random

and pinned to the value λ1 = c (see Section 3.4.1.2 and 3.4.2.2). The spectral density is given
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Figure 4.2: Pdf of second largest eigenvector’s components in the ER adjacency matrix case, with c = 10 and kmax = 22. Top left
panel: Results from population dynamics (blue thick curve) are compared with diagonalisation of matrices of size
N = 500 (light purple), N = 1000 (green), N = 2000 (red) and N = 5000 (yellow). As N increases, we notice that
the direct diagonalisation curves approach the pdf generated by population dynamics with a fairly large population
size, NP = 105. Top right panel: the (right) tails of the distributions shown in the top left panel, shown in log scale.
Bottom panel: the average second largest eigenvalue 〈λ2〉 as a function of N, obtained with direct diagonalisation.
The power law fit is superimposed in red. As discussed in the main text, the inset shows the plot of λ2,∞−〈λ2〉 vs N
in log scale.

by the Kesten-McKay distribution (see Fig. 4.3 and 2.5 and Appendix 2.F),

ρKM(λ ) =
c
√

4(c−1)−λ 2

2π(c2−λ 2)
, (4.58)

for |λ | ≤ 2
√

c−1, entailing that the spectral gap for this ensemble is gRRG = c− 2
√

c−1.

In this section we look at the behaviour of the solution for a generic value of the deflation

parameter x in the range [0,c], where the boundaries of this range correspond respectively to

no deflation (x = 0) and full deflation (x = c). Therefore, the value of q is in principle non-zero

across the whole range.

For a generic value of the deflation parameter x, the equation (4.45) for π(ω,h), along
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with the conditions (4.46) and (4.47) become respectively

π(ω,h) =
∫
{dπ}c−1δ

(
ω−

(
λ −

c−1

∑
`=1

1
ω`

))
δ

(
h−

(
−qx+

c−1

∑
`=1

h`
ω`

))
, (4.59)

1 =
∫
{dπ}c

(
−qx+∑

c
`=1

h`
ω`

λ −∑
c
`=1

1
ω`

)2

, (4.60)

q =
∫
{dπ}c

(
−qx+∑

c
`=1

h`
ω`

λ −∑
c
`=1

1
ω`

)
, (4.61)

whereas the density of the top eigenvector’s components of the deflated matrix J̃ (4.48) is given

for general x by

ρJ̃(v) =
∫
{dπ}c δ

(
v−
−qx+∑

c
`=1

h`
ω`

λ −∑
c
`=1

1
ω`

)
. (4.62)

We will show that the solution of the self-consistency equation (4.59) along with (4.60), (4.61)

and (4.62) crucially depends on the value of the deflation parameter x. Indeed, we can dis-

tinguish two different regimes, i.e. the outer and bulk regimes. Figure 4.3 explains them

graphically. We anticipate the following results.

1. In the outer regime, i.e. when x < gRRG, unsurprisingly we find that the probe eigen-

vector uuu = {1,1, . . . ,1}, i.e. the top eigenvector of the original matrix J, is also the top

eigenvector of the deflated matrix J̃, with corresponding largest eigenvalue c− x lying

outside the bulk of the Kesten-McKay spectrum [39,40]. This confirms the general result

discussed in Section 4.3.1.

2. In the bulk regime, i.e. when x > gRRG, the pdf of the components of the top eigenvector

of J̃ is a standard normal distribution, with corresponding largest eigenvalue 2
√

c−1.

The probe all-one eigenvector uuu is still an eigenvector of J̃ but refers to an eigenvalue

c− x < 2
√

c−1. In other words, we show that the second largest eigenpair of the RRG

adjacency matrix is given by 〈λ2〉J = 2
√

c−1 and ρJ,2(v) = N (0,1).

The abrupt change of the solution (from constant uuu to normally distributed when x hits the

value gRRG = c−2
√

c−1) reflects the fact that the usual peaked ansatz for the RRG case (see

Section 3.4.1.2) is not valid in the bulk regime gRRG < x ≤ c. Therefore, in order to solve the



4.4. Random regular graphs 129

Figure 4.3: The positive branch of the Kesten-McKay distribution (4.58) in solid red for c = 4. The red dot at λ = 4 represents
the top eigenvalue λ1 = c, which is an outlier. The dashed blue vertical line at λ = 2

√
(c−1) or equivalently

x = gRRG = c−2
√

(c−1) separates the outer regime (light green) from the bulk regime (light yellow).

self-consistency equation (4.59), we choose a “mixed” ansatz of the form

π(ω,h) = δ (ω− ω̄)

√
1

2πσ2 exp
[
−(h− h̄)2

2σ2

]
, (4.63)

for real ω̄ and h̄. We will find that in the range 0 < x < gRRG, Eq. (4.63) reduces to a peaked

ansatz, i.e. σ2 = 0 - just like in the case of the largest eigenpair of the original matrix J -

whereas in the range gRRG ≤ x < c, the variance σ2 must be finite.

Indeed, by inserting Eq. (4.63) into Eq. (4.59) and performing the r.h.s. integrals, we find

π(ω,h) = δ

(
ω−

(
λ − c−1

ω̄

))√
ω̄2

2πσ2(c−1)
exp

−
(

h− (−qx+ h̄
ω̄
(c−1))

)2

2σ2(c−1)/ω̄

 .

(4.64)

Comparing (4.64) with the ansatz (4.63), the following relations must be satisfied, viz.

ω̄ = λ − c−1
ω̄

, (4.65)

h̄ =−qx+
h̄
ω̄
(c−1) , (4.66)

σ
2 = σ

2 c−1
ω̄2 . (4.67)

From Eq. (4.67), we can infer that if σ2 > 0, then ω̄ =
√

c−1, i.e. a finite variance of the
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distribution of components pins ω̄ to a specific value. Only if σ2 = 0 , then ω̄ can assume

values other than
√

c−1, according to Eq. (4.65).

Moreover, inserting the ansatz (4.63) in the normalisation condition (4.60) and in the

condition (4.61), we find two extra equations to fix respectively σ2 and q,

σ
2 =

ω̄2

c

[(
λ − c

ω̄

)2
−
(

c
c
ω̄
−qx

)2
]
, (4.68)

q
(

λ − c
ω̄

)
=

(
c

h̄
ω̄
−qx

)
. (4.69)

By combining (4.65), (4.66) and (4.69), we find an expression for q in terms of ω̄ and h̄,

q =
h̄

ω̄−1
, (4.70)

which in turn can be inserted into Eq. (4.66) to give

h̄
(

1+
x

ω̄−1
− c−1

ω̄

)
= 0 . (4.71)

Comparing eq. (4.65) rewritten as

ω̄
2−λω̄ + c−1 = 0 (4.72)

with a slight rewriting of the condition that the expression in the round brackets of (4.71) be

zero, viz.

ω̄
2− (c− x)ω̄ + c−1 = 0 , (4.73)

we notice that (4.72) and (4.73) can be compatible only if the coefficient of ω̄ is the same,

entailing λ = c− x. Moreover, by solving (4.73) for ω̄ we also find the explicit dependence of

ω̄ on x. Indeed, we get

ω̄(x)1,2 =
c− x±

√
(c− x)2−4(c−1)

2
. (4.74)

By imposing that the radicand be positive in order to get a real solution, we find that Eq.

(4.74) yields a x-dependent real solution only for 0 ≤ x < c− 2
√

c−1. Only in this regime,

ω̄ = ω̄(x) can assume values other than
√

c−1, entailing from (4.67) a peaked solution for
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π .3 Conversely, for any x > c− 2
√

c−1, Eq. (4.74) would produce a x-dependent complex

solution ω̄(x), which is not acceptable for this problem (recall that ω and h must be real), thus

implying

σ
2 > 0⇔ ω̄(x) =

√
c−1 ∀x ∈ [c−2

√
c−1,c] . (4.75)

4.4.1 RRG-deflated top eigenpair: outer regime

From (4.75), it follows that σ2 = 0 in the outer regime. From (4.68) and (4.69), we thus find


(
λ − c

ω

)2
=
(

c h̄
ω̄
−qx

)2

q
(
λ − c

ω

)
=
(

c h̄
ω̄
−qx

) ⇒ q =±1 . (4.76)

When solving (4.76), the other possible solution q = 0 must be discarded since it would not

satisfy the normalisation constraint (4.60). This is in complete agreement with what has been

described in Section 4.3.1.

For any x < gRRG, the comparison between Eq. (4.72) and (4.73) implies that λ = c− x.

Using Eq. (4.50), the average of the largest eigenvalue of J̃ is given by

〈
λ̃1

〉
J̃
= λ = c− x . (4.77)

Therefore, the deflation with a parameter x in the range 0 ≤ x < gRRG = c− 2
√

c−1 has the

effect of decreasing the top eigenvalue c of the original RRG adjacency matrix J by a quantity

x, as long as it lies outside the spectral bulk of the Kesten-McKay distribution.

Moreover, since in the outer regime σ2 = 0, the ansatz (4.63) for π becomes delta-peaked.

Using Eq. (4.63) in Eq. (4.62) and taking into account (4.73) and (4.76), one finds

ρJ̃(v) = δ

(
v−

c h̄
ω̄
−qx

λ − c
ω̄

)
, (4.78)

but, from (4.76), ∣∣∣∣c h̄
ω̄
−qx

∣∣∣∣= ∣∣∣λ − c
ω̄

∣∣∣ , (4.79)

implying

ρJ̃(v) = δ (v−1)⇒ vvv = uuu , (4.80)

3We remark that in this regime a finite variance solution for π that pins ω̄ to
√

c−1 is still possible, but yields
a higher ground state free energy 〈F〉J̃ than the peaked solution. Indeed, 〈F〉J̃ =−

N
2 〈λ1〉J̃ . See Sections 4.4.1 and

4.4.2.
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where the choice of the “+” sign solution is not restrictive.

As expected, as long as the largest eigenvalue c− x of the deflated matrix J̃ lies outside

the spectral bulk (i.e. for 0≤ x < gRRG = c−2
√

c−1), the corresponding top eigenvector vvv is

equal to the probe eigenvector uuu = (1, ...,1)T , i.e. the top eigenvector of J.

4.4.2 RRG top eigenpair: bulk regime

In the regime x > gRRG, we have shown in Eq. (4.75) that the variance σ2 is positive, giving

rise to a mixed “delta-Gaussian” ansatz for π . The parameter σ2 being positive also implies

that ω̄ must be pinned to the value
√

c−1.

According to the general analysis in Section 4.3.1, the bulk regime entails the condition

q = 0, encoding the orthogonality between the probe eigenvector uuu and the top eigenvector vvv of

J̃. As shown in Section 4.3.4, the meaning of the condition q = 0 is made clear by comparing

the average orthogonality condition between uuu and vvv, viz.

0 =
∫

dudvρJ̃(u|c)ρJ̃(v|u,c)uv

=
∫
{dπ}c

∑
c
`=1

h`
ω`
−qx

λ −∑
c
`=1

1
ω`

, (4.81)

with Eq. (4.61) in which q = 0 is considered. In Eq. (4.81), the pdf ρJ̃(u|c) = δ (u−1) is the

conditional distribution of the probe eigenvector’s entries and (4.62) has been used.

Given that ω̄ =
√

c−1 for any x > gRRG, from Eq. (4.65), it follows that λ = 2
√

c−1.

Therefore, using Eq. (4.56) one concludes that the average of the largest eigenvalue of J̃ in the

bulk regime is 〈
λ̃1

〉
J̃
= 〈λ2〉J = λ = 2

√
c−1 , (4.82)

corresponding to the upper edge of the Kesten-McKay distribution and thereby representing

the average second largest eigenvalue of the matrix J. As expected, the eigenvalue does not

depend on the normalisation of the corresponding eigenvector, encoded in σ2.

The change in the ansatz entails a change in the structure of the largest eigenvector vvv of J̃.

Indeed, using that σ2 > 0⇒ ω̄ =
√

c−1 and q = 0 in Eq. (4.68) and (4.69), one obtains that

σ
2 =

ω̄2

c

(
λ − c

ω̄

)2
=

(c−2)2

c
, (4.83)

h̄ = 0 . (4.84)
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Then, inserting the ansatz (4.63) in Eq. (4.62) and considering Eq. (4.75), (4.81), (4.83) and

(4.84), the density of the components of the top eigenvector of J̃ in the bulk regime x > gRRG =

c−2
√

c−1 is given by

ρJ̃(v)≡ ρJ,2(v) =
exp(−v2/2)√

2π
, (4.85)

thus entailing that the eigenvector corresponding to the second largest eigenvalue of a RRG

adjacency matrix J is normally distributed4. We then identify in x = gRRG = c−2
√

c−1 ⇐⇒

λ = 2
√

c−1 a transition point for the structure of the distribution of the top eigenvector’s

components of J̃(x), at which the parameter q changes discontinuously from q =±1 to 0.

We remark that this analytical result is in excellent agreement with the statistics of the

second largest eigenvector components of the RRG adjacency matrices found by population

dynamics, as shown in Figure 4.4. Moreover, it is compatible with previous known results

about eigenvectors of random regular graphs [110, 111].

Figure 4.4: In green, the profile of the distribution of the second largest eigenvector’s components (4.85) obtained via population
dynamics, with population size NP = 106. As a reference, we plot the standard normal distribution (red circles),
showing perfect matching.

4.5 Sparse random Markov transition matrices

In this section, we apply the deflation formalism to characterise the statistics of the second

largest eigenpair of the ensemble of transition matrices W for discrete Markov chains in a

N-dimensional state space, already considered in Section 3.5. We recall here that the second

4We remark that our method cannot provide the eigenvector statistic for x = gRRG = c− 2
√

c−1. Indeed, for
this specific value of x, the probe eigenvector uuu is forced to correspond to the eigenvalue 2

√
c−1, which retains its

own eigenvector, thus artificially creating a degeneracy. Our method is based on the assumption of non-degeneracy
of eigenvalues, so we are not able to give a result about eigenvectors in this marginal case.
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largest eigenpair encodes non-equilibrium properties of a Markov process. Indeed, the inverse

of the (absolute value) of the second largest eigenvalue represents the slowest relaxation time,

whereas the associated second eigenvector is the non-equilibrium mode with the largest relax-

ation time.

We recall that for an irreducible chain, the top right eigenvector of the matrix W corre-

sponding to the Perron-Frobenius eigenvalue λ1 = 1 represents the unique equilibrium dis-

tribution, i.e. vvv(1) = pppeq. As already noted in Section 3.5, the matrix W is in general

not symmetric. However, if the Markov process satisfies a detailed balance condition, i.e.

Wi j p
eq
j =Wji p

eq
i ∀(i, j), it can be symmetrised via a similarity transformation, yielding

W S
i j = (peq

i )−1/2Wi j(peq
j )

1/2 . (4.86)

Despite W S not being itself a Markov matrix, the detailed balance condition W S implies that W S

has the same real spectrum as W . In Section 3.5 we exploited the fact that the top eigenvector

uuu of W S is given in terms of the top right eigenvector of W , pppeq, namely ui = (N peq
i )1/2 for any

i = 1, . . . ,N. Actually, the relation between the eigenvectors of W and those of W S holds in

general and is not limited to the case of the top ones. Indeed, considering a generic eigenvector

uuu(α) of W S corresponding to the eigenvalue λα , one finds

v(α)
i = (N−1 peq

i )1/2u(α)
i i = 1, . . . ,N , (4.87)

where α and i respectively indicate the eigenvector label and the component. For α = 1, the

known correspondence between top eigenvectors is recovered.

The symmetrised matrix W S and its deflated version W̃ S will be the target of our analysis.

As in Section 3.5, we consider the case of an unbiased random walk on a graph. The matrix W

is then defined as

Wi j =


ci j
k j
, i 6= j

1, i = j and k j = 0
, (4.88)

where ci j represents the connectivity matrix and k j = ∑i ci j is the degree of node j. The top

right eigenvector of W is proportional to the vector expressing the degree sequence, i.e. peq
i =
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ki/(Nc). The corresponding symmetrised matrix W S is expressed as

W S
i j =


ci j√
kik j

, i 6= j

1, i = j and k j = 0
.

As found in Section 3.5, the density of the top eigenvector’s components of W S is given by

ρW S(u) = ∑
k≥kmin

p(k)δ

(
u−
√

k
c

)
, (4.89)

where p(k) is the degree distribution. Here, we employ the same technical setup of Section 3.5.

We consider a generic degree distribution p(k) with kmin ≥ 2 and finite mean and variance. We

will then provide numerical results for the case of a shifted Poissonian degree distribution (see

Eq. (3.153)) and the analytical solution for the random regular connectivity case with degree

distribution p(k) = δk,c.

4.5.1 Second largest eigenpair of Markov transition matrices

We focus on the fully deflated symmetrised version of the Markov matrix W by setting x =

λ1(W S) = 1, that is

W̃ S
i j =W S

i j−
1
N

uiu j , (4.90)

where W S
i j =

ci j√
kik j

and uuu represents the top eigenvector of W S, normalised to N, i.e. ui =
√

ki
c .

Here, c represents the mean degree, c = 〈k〉. Our aim is to find the typical largest eigenvalue

and the pdf of the components of the top eigenvector of W̃ S, respectively equivalent to the

typical second largest eigenvalue and the pdf of the components of the second eigenvector of

W S.

Here, using the same formalism illustrated in Section 4.3.3, in conjunction with what we

observed in Section 3.5, we just report the final equations, corresponding to (4.52) along with
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(4.53), (4.54) and (4.56). By taking into account (4.89) and the existence of kmin = 2, we find

π(ω,h) =
kmax

∑
k=kmin

p(k)
k
c

∫
{dπ}k−1δ

(
ω−

(
λk−

k−1

∑
`=1

1
ω`

))
δ

(
h−

(
k−1

∑
`=1

h`
ω`

))
, (4.91)

1 =
kmax

∑
k=kmin

p(k)k
∫
{dπ}k

(
∑

k
`=1

h`
ω`

λk−∑
k
`=1

1
ω`

)2

, (4.92)

0 =
kmax

∑
k=kmin

p(k)
k√
c

∫
{dπ}k

(
∑

k
`=1

h`
ω`

λk−∑
k
`=1

1
ω`

)
, (4.93)〈

λ̃1

〉
J̃
≡ 〈λ2〉W S = λ . (4.94)

We remark that in the Markov case a bounded largest degree is not strictly necessary as the

spectrum is always bounded. However, we will consider a kmax for practical purposes. The self-

consistency equation (4.91) along with the normalisation condition (4.92) and the orthogonality

constraint (4.93) is solved by a population dynamics algorithm (See Section 4.6). The RRG

connectivity case is analytically tractable, as shown in Section 4.5.2.

In analogy to Eq. (4.55), the density of the top eigenvector’s component of the matrix W̃ S,

corresponding to the second largest eigenvector of W S, is given by

ρW̃ S(v)≡ ρW S,2(v) =
kmax

∑
k=kmin

p(k)
∫
{dπ}k δ

v−
∑

k
j=1

h j
ω j

λk−∑
k
j=1

1
ω j

√
k

 , (4.95)

where π(ω,h) satisfies the self-consistency equation (4.91), supplemented by the normalisation

condition (4.92) and the orthogonality condition (4.93).

Figure 4.5 compares the pdf of the second largest eigenvector’s components obtained via

population dynamics with results obtained via direct diagonalisation, for the ensemble of unbi-

ased random walk Markov matrices having a shifted Poisson degree distribution (3.153) with

kmin = 2. We study both a low (c' 6, left panel) and a high (c' 12, right panel) connectivity

case. In the c ' 6 case with kmax = 12, we find 〈λ2〉W S = 0.7456, within a 0.64% error w.r.t.

the value λ2,∞ = 0.7504 obtained by extrapolation from the direct diagonalisation data. In the

c ' 12 case with kmax = 22, we find 〈λ2〉W S = 0.5530, within a 0.11% error w.r.t. the value

λ2,∞ = 0.5524 obtained by extrapolation from the direct diagonalisation data. As a reference

point, the average value of the second largest eigenvalue in the RRG case with the same c is

λ2(W S)RRG = 0.5528. We notice that the agreement near the peak of the distribution is slightly

worse for the low connectivity case: this is in agreement with the finding that finite-size effects
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Figure 4.5: Pdf of the components of the second largest eigenvector for the unbiased random walk Markov matrix case (see
(4.95)), with shifted Poisson degree distribution (kmin = 2). Left panel: mean degree c ' 6 and kmax = 12. Results
from population dynamics with NP = 5000 (solid blue) compared with the direct diagonalisation of 4000 matrices of
size N = 1000 (red circles) finding a good agreement. Right panel: mean degree c' 12 and kmax = 22. Results from
population dynamics with NP = 1500 (solid blue) compared with the direct diagonalisation of 2000 matrices of size
N = 1000 (red circles), with excellent agreement. In both cases, the size of the population used is N?

P, the optimal
value corresponding to the finite size N of the matrices being diagonalised (see Section 4.6.4).

are generally more pronounced for lower c (see also discussion in section 4.6.4).

4.5.2 Unbiased random walk on a RRG: second largest eigenpair statistics

For a random regular graph, for which p(k) = δk,c, we note that the matrix W S reduces to

W S
i j =

ci j

c
, (4.96)

implying that all results about the RRG adjacency matrix case stated in Section 4.4.2 carry

over to this case too, but with all eigenvalues rescaled by 1/c. As expected, λ1(W S)RRG =

1, and the second largest eigenvalue corresponding to a N (0,1)-distributed eigenvector is

λ2(W S)RRG = 2
√

c−1
c . The spectral gap for this kind of Markov matrices as a function of c is

then g(c) = 1− 2
√

c−1
c .

4.6 Population Dynamics

4.6.1 The orthogonality challenge

With the exception of the unweighted adjacency matrix of a RRG, Eq. (4.52) – supplemented

with the conditions (4.53) and (4.54) – must be generally solved via a Population Dynamics

algorithm, a Monte Carlo technique deeply rooted in the statistical mechanics of spin glasses

[121, 122], which we already presented in Section 2.6 and 3.6.

The version of the algorithm that we use for the second largest eigenpair is similar to the

one employed in Section 3.6. Here, we will highlight the main differences that stem from the
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presence of the orthogonality condition (4.54).

Some observations are in order before sketching the algorithm. As we stated in Section

3.6, within the population dynamics algorithm the definition of the h variables in Eq. (4.52)

is effectively converted into a stochastic linear update of h values. Its stability can only be

achieved for λ = 〈λ1〉J . For any λ > 〈λ1〉J , the variables of type h will shrink to zero, whereas

for λ < 〈λ1〉J they will explode in norm. In our scenario, where we consider λ < 〈λ1〉J , the

recursion is thus a priori unstable, unless it is otherwise constrained. Therefore, if uncon-

strained, the population will never spontaneously evolve towards a stable regime, which would

at the same time satisfy the conditions (4.53) and (4.54).

As anticipated in Section 4.3.3, this observation entails that the orthogonality condition

(4.54) must be strictly enforced on-the-fly – by imposing a correction to the fields h, which

once again have no fixed scale given by their update equation. Enforcing the constraint (4.54)

is equivalent to looking for a self-consistent solution of (4.52) in a smaller, constrained space.

Only once the condition (4.54) has been enforced, a new stable non-trivial fixed point arises,

and the behaviour of the h-variables is similar to that in the top eigenvector case: for any value

λ > 〈λ2〉J , the variables h under iteration of the modified population dynamics algorithm shrink

to zero, whereas for λ < 〈λ2〉J they will explode in norm. Hence, Eq. (4.52) – taken together

with the condition (4.54) – admits a stable, hence normalisable solution, such that Eq. (4.53)

is naturally satisfied only for λ = 〈λ2〉J: after the orthogonality correction has been enforced,

the procedure we follow is then exactly identical to that used in Section 3.6.

4.6.2 The algorithm

Taking into account the observations made in Section 4.6.1, we briefly sketch the algorithm in

the case of full deflation.

Two pairs of (coupled) populations with NP members each {(ai,bi)}1≤i≤NP
and

{(ωi,hi)}1≤i≤NP
are randomly initialised, taking into account that both ai and ωi must be

larger than ζ , the upper edge of the support of the bond pdf pK(K). We typically choose

NP = 105 or larger. In what follows, the parameter λ is the candidate second largest eigenvalue

of J, whereas 〈λ1〉J is the average top largest eigenvalue of J. The first population is employed

to solve the top eigenpair problem, and the other to solve the second eigenpair problem; the

latter is constrained by results of the former due to the orthogonality constraint.

We therefore first run a short population dynamics simulation following Section 3.6, in-

volving only the population {(ai,bi)}1≤i≤NP
to find the solution for the first eigenpair problem
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and the value 〈λ1〉J . This first simulation acts as an equilibration phase for the fields contribut-

ing to the largest eigenpair. Then, for any suitable value of λ ∈ R< 〈λ1〉J , the following steps

are iterated until stable populations are obtained:

1. Generate a random k ∼ k
c p(k), where c = 〈k〉.

2. Generate k−1 i.i.d. random variables K` from the bond weights pdf pK(K).

3. Select k− 1 pairs (a`,b`) and (ω`,h`) from both populations at random, where the set

of k− 1 population indices for the two randomly selected samples is the same for both

samples; compute

a(new) = 〈λ1〉J−
k−1

∑
`=1

K2
`

a`
, (4.97)

b(new) =
k−1

∑
`=1

b`K`

a`
, (4.98)

ω
(new) = λ −

k−1

∑
`=1

K2
`

ω`
, (4.99)

h(new) =
k−1

∑
`=1

h`K`

ω`
, (4.100)

and replace two randomly selected pairs (ai,bi) and (ωi,hi) where i ∈ {1, ...,NP} with

the pairs
(
a(new),b(new)

)
and

(
ω(new),h(new)

)
.

4. Compute the components of the top eigenvector uuu and the candidate second largest eigen-

vector vvv. In order to create a sample estimate of the eigenvectors statistics corresponding

to the two top eigenvalues, we initialise two empty vectors, respectively uuu = {u j}1≤ j≤M

and vvv = {v j}1≤ j≤M of size M, where M = [NP/c]. The square brackets indicate the

integer part. Then for any j = 1, ...,M:

(a) Generate k ∼ p(k)

(b) Generate k i.i.d. random variables K` from the weights pdf pK(K)

(c) Randomly select a subset of k indices from the population indices between 1 and

NP. This subset is denoted by S j(k). Then, for any ` ∈ S j(k) select k pairs (a`,b`)
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and (ω`,h`) from both populations; compute

u j =
∑`∈S j(k)

b`K`
a`

〈λ1〉J−∑`∈S j(k)
K2
`

a`

, (4.101)

v j =
∑`∈S j(k)

h`K`
ω`

λ −∑`∈S j(k)
K2
`

ω`

. (4.102)

Each set S j(k) of k population indices labelled by ` contributes uniquely to a single

component j of the vectors uuu and vvv (see scheme in Figure 4.6). In other words,

in view of the rigid matching between each set S j(k) with each component j, each

group of k pairs (a`,b`) and (ω`,h`) takes part in the definition of just one compo-

nent j, respectively u j and v j. Each set S j(k) of k population indices corresponding

to a specific component j is then saved, along with the set of k weights {K`}.

5. Compute q= (uuu,vvv)
|uuu|2 , where (·, ·) indicates the dot product. In order to enforce the condition

q = 0, for any component j = 1, ...,M apply the correction

v j← v j−qu j . (4.103)

In view of the rigid connection between the population indices labelling the fields and ev-

ery specific component of uuu and vvv, the orthogonalisation in (4.103) is practically achieved

by correcting each field h` participating in the definition of every specific component v j.

The values of the indices ` here are those saved in each subset S j(k) in step (4)(c), along

with the corresponding weights K`. For any j = 1, ...,M and for any ` ∈ S j(k) contribut-

ing to the single component j of both uuu and vvv we have

h`← h`−qu j

(
λω`

K`k
−K`

)
, (4.104)

where k = k j is exactly the “degree” drawn from p(k) in step (4)(a) and used to build

each component v j in step (4)(c).

6. Return to (1).

A sweep is completed when all the NP pairs (ai,bi) and (ωi,hi) have been updated at

least once according to the steps above. The update of the pairs (a,b) is stable, thanks to

the prior equilibration phase. The convergence is assessed by looking only at the first two
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moments of the two vectors formed by the NP samples of the pairs (ω,h). The parameter λ is

varied according to the behaviour illustrated in Section 4.6.1: starting from an initial “large”

value λ < 〈λ1〉J , it is then progressively decreased until a non trivial distribution for the h is

achieved, when λ = 〈λ2〉J . Indeed, we observe that for any λ > 〈λ2〉J , the h shrink to zero,

whereas for any λ < 〈λ2〉J , they blow up in norm.

Some comments are in order:

• the condition expressed in (4.103) is a Gram-Schmidt orthogonalisation, taking place

after every microscopic update of the fields;

• the correction does not take place for components v j related to k = 0, as both v j and u j

are zero;

• in step (4)(c), we can clearly see that the components u j and v j are coupled through their

degree and the set of bond weights, as anticipated in Section 4.3.3. Indeed, for any j,

the k i.i.d. realisations of the weights {K}k and the “local neighbourhood” S j(k) that we

dynamically create at every step (c) must be exactly the same for both u j and v j. In other

words, both u j and v j must have the same update history.

4.6.3 Potential for simplifications in special cases

The steps (4) and (5) of the algorithm are computationally heavy. We are able in some cases to

simplify them.

• For adjacency matrices of RRGs, where the variables a,b and ω are constant, the correc-

tion (4.103) translates to forcing the mean of the h to be zero after every update. Both

steps (4)-(5) are then replaced by

hi← hi− h̄ ∀i = 1, ...,NP , (4.105)

where h̄ indicates the sample mean of the h population.

• In the ER case (both weighted and non-weighted), we take advantage of the fact that

in the thermodynamic limit there is no statistical distinction between the cavity fields ω

and h (respectively a and b) and the denominator and numerator in (4.102), (respectively

in (4.101)), even in presence of the truncation of the Poissonian degree distribution5.
5Provided that the largest degree is reasonably large. The only difference between the distribution π(ω,h) and

the distribution of the denominator and numerator of (4.55) can be observed because of the contribution coming
from the largest degree, whose probability to occur is negligible.
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Figure 4.6: A schematic representation of the rigid matching between between each set of k population indices and each com-
ponent j as illustrated in step (iv)(c) of the Population Dynamics algorithm in Section 4.6.2. The labels k j with
j = 1, ...,M denote the number of population indices contributing to each component j, i.e. the size of each set
S j(k = k j).

Hence, we can consider just one couple of fields per species to represent a component,

so we identify M=NP. Steps (4) and (5) are then replaced by

4. Compute eigenvectors uuu and vvv as

ui =
bi

ai
, (4.106)

vi =
hi

ωi
∀i = 1, ...,NP . (4.107)

5. Compute the correction as

hi← hi−ui
(uuu,vvv)
|uuu|2

ωi ∀i = 1, ...,NP . (4.108)

4.6.4 Population dynamics algorithm describes finite-size systems.

When no simplification can be used, as in the case of Markov matrices, the population dynamics

algorithm can be relatively slow, due to the number of nested updates it requires. In these cases,

we have therefore been often forced to consider a population size NP smaller than the values
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we would have typically wished (NP = O(105) or more).

However, what may appear as a limitation at first sight turned out to be a blessing, in that

it made us aware of an interesting interplay between the size NP of the population dynamics,

and the size N of the graph whose spectral properties were to be reproduced.

Indeed, we have collected convincing evidence that population dynamics at finite NP does

not really capture the thermodynamic limit N → ∞: for a given graph size N � 1, there is an

optimal size of the population N?
P = N?

P(N) that best captures the spectral properties of that

finite-size graph, and the degree of agreement between “theory” and numerical diagonalisation

has a strongly non-monotonic behaviour as a function of NP. Similarly, a population of given

size NP reproduces well spectral properties of graphs around a certain optimal size N?, but its

accuracy rapidly deteriorates if the graph size N is markedly different from N?. Of course, the

higher NP (e.g. in cases where it is possible to employ NP = O(105) or larger), the better the

large N limit is captured (see e.g. the case in Fig. 4.2).

This intriguing phenomenon may be related to the existence of cycles, which seem to be

more relevant in the eigenvector problem than the spectral problem. Indeed, whatever NP is,

the cavity fields of type ω and h will have common predecessors within their own species after

∼ ln(NP)/ ln(c− 1) updates. This implies the presence of cycles in the population dynamics

update history, which lead to correlations between different members of the population. There-

fore, the assumption of population elements independently drawn from an ensemble, which

underlies (4.52) (or equivalently (4.A.27)) is violated. That assumption in turn implements the

notion that cycles in the underlying graph that is being described will diverge in the thermody-

namic limit.

To quantify this effect, we compare the cumulative distribution function (CDF) of the sec-

ond eigenvector’s components of Markov matrices with Poissonian shifted degree distribution,

obtained via population dynamics at various NP, with the result from direct diagonalisation

of matrices from the same ensemble at a given size N = 1000 – for both low and high mean

degree.

In Figure 4.7, we assess the similarity of the two distributions using two figures of merit.

The first (left) is the p-value of a 2-sample Kolmogorov-Smirnoff (KS) test: the larger the p-

value, the strongest the evidence in favour of the hypothesis that the two distributions are the

same. The second (right) is based on the analysis of a so-called quantile-quantile plot (Q-Q

plot), which is the scatter plot of the quantiles of the two sets of data. Precisely, we focus on the
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Figure 4.7: Top panels: low mean degree case, c ' 6, reference matrix size N = 1000. The left panel shows the base-10
logarithm of the p-value of the KS two-sample test comparing the two empirical cdfs corresponding to different
population sizes. We notice that the p-values are all rather low, yet there is a clear maximum value at N?

P ' 5000,
and the non-monotonic behaviour is quite pronounced. The right panel shows the slope m of the best-fit regression
line of the Q-Q plot between the 25% and 75% quantiles, for various population sizes. The closer m is to 1, the
better the agreement. The plot confirms again that the best agreement with our reference distribution is obtained with
N?

P ' 5000. Bottom panels: high mean degree case, c ' 12, reference matrix size N = 1000. On the left, we show
the p-value of the KS two-sample test against NP in linear y-scale. The curve is much flatter than the low-c case, and
the p-values are all significant, suggesting a high level of similarity between the two distributions throughout the full
range of NP. On the right, we plot the slope m of the best fit regression line of the Q-Q plot between the 25% and
75% quantiles, for various population sizes. For this figure of merit, we again observe a rather flat value of the slope
between NP ' 2000 and NP ' 6000, where m ' 1 (within a 0.2% error). At high c, we indeed observe negligible
finite size effects in the direct diagonalisation samples at different sizes N, and this phenomenon seems to be present
also in the population dynamics simulations.

slope m of the best fit regression line y = mx+b of the Q-Q plot, considered between the first

and third quartile (respectively, the 0.25 and 0.75 quantiles), to limit spurious effects coming

from the under-sampling of the tails. The slope m is directly proportional to the correlation

coefficient between the quantiles of the two distributions, and m = 1 for identical distributions.

The existence of an optimal population size N?
P for a given graph size N – and the non-

monotonic behaviour of the accuracy with NP – is quite evident in the left panels. The optimal

value of N?
P(N) is consistently identified by both figures of merit. However, the effect is more

pronounced in the case of low connectivity (top row of Figure 4.7) – where finite size effects

are indeed stronger – than in the case of high connectivity (bottom row of Figure 4.7).



4.7. Summary 145

4.7 Summary

We have developed a formalism to compute the statistics of the second largest eigenvalue and

of the components of the corresponding eigenvector for some ensembles of sparse symmetric

matrices, i.e. weighted adjacency matrices of graphs with finite mean connectivity. By assum-

ing that the top eigenpair is known, we show that for a given matrix, computing the second

largest eigenpair is equivalent to computing the top eigenpair of a deflated matrix, obtained

by subtracting from the original matrix the dense matrix representing a rank-one perturbation

proportional to the projector onto its first eigenstate. As in Chapter 3, the search for the top

eigenpair of the deflated matrix is then transformed into the optimisation of a quadratic Hamil-

tonian on a sphere: introducing the associated Gibbs-Boltzmann distribution and a fictitious

inverse temperature β , the top eigenvector represents the ground state of the system, reached

in the limit β → ∞. In order to extract this limit, we have employed two Statistical Mechan-

ics methods, cavity and replicas. We started analysing the case of a single-instance matrix

within the cavity framework, showing how our formulation allows for the inclusion of hard

constraints.

The single-instance cavity method easily leads to recursion equations, which represent the

essential ingredient to obtain the solution of the problem in the thermodynamic limit. We also

obtain the exact same equations using replicas as an alternative approach, confirming the equiv-

alence of the two methods in the thermodynamic limit. We employed an improved population

dynamics algorithm to solve the stochastic recursion (4.52) complemented by the conditions

(4.53) and (4.54), (or equivalently (4.A.27) along with (4.A.28) and (4.A.29)) that enforce nor-

malisation and orthogonality of eigenvectors corresponding to different eigenvalues. We found

that the convergence of the algorithm is driven not only by the largest eigenvalue of the deflated

matrix (i.e. the second largest eigenvalue of the original matrix) but, most essentially, by the

fact that the orthogonality condition (4.54) (or equivalently (4.A.29)) be correctly enforced.

Some ensembles permit simplifications of the algorithm used to enforce orthogonality, which

we exploited to speed up convergence.

We remark that from the theoretical point of view our method is applicable no matter what

the size of the spectral gap is. However, if the gap is very narrow, numerical precision limit

may not allow for a sufficiently accurate determination of λ = 〈λ2〉J .

The simulations show excellent agreement between the theory and the direct diagonalisa-

tion of large matrices, and allow us to unpack the contributions to the average density of the
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second eigenvector’s components coming from nodes of different degrees.

Our study clearly demonstrates that — in contrast to beliefs commonly held in the com-

munity — population dynamics at finite NP is fundamentally incapable of analysing properties

representing the thermodynamic limit behaviour. This discovery is in some sense due to the fact

that finite size effects are much stronger for eigenvectors than for eigenvalues (in particular for

matrices without random edge weights). That finite population size effects are quantitatively

related to finite size effects is, in retrospect, not really surprising, given the clear analogy ex-

isting between the emergence of correlations in population values – through cycles of common

ancestors of population updates – and common ancestors created through cycles in random

graphs of finite size, in which the scaling of cycle lengths with population and graph size fol-

lows basically the same logarithmic law.

In the case of the RRG adjacency matrix, we also analytically studied the pdf of the com-

ponents of the top eigenvector of the deflated matrix as the deflation parameter is continuously

changed, showing the abrupt change of the solution as soon as the deflation parameter becomes

larger than the spectral gap of the Kesten-McKay distribution.

Lastly, we applied our formalism to sparse Markov matrices representing unbiased ran-

dom walks on a network, for which the second largest eigenpair plays an important role encod-

ing non-equilibrium properties.



Appendices

4.A Replica derivation in the case of full deflation

In this section, we evaluate the average (or typical) value of the largest eigenvalue and the

density of top eigenvectors’ components of the matrix J̃ within the replica framework. Our

derivation applies to any configuration model graph with degree distribution p(k) having finite

mean and variance. We also ask that its support be bounded to ensure that their average largest

eigenvalue is finite in the thermodynamic limit. The replica derivation in this appendix matches

step by step that in Section 3.4, with the exception of the deflation term that needs to be taken

into account. Therefore, to avoid repetitions we will just summarise the main steps.

4.A.1 Typical largest eigenvalue

We consider a N×N deflated symmetric matrix J̃i j(x) = ci jKi j− x
N uiu j. The ui represents the i-

th component of uuu, the top eigenvector of the original matrix J (normalised such that |uuu|2 = N)

which we assume to be known. As in Section 3.4, the joint distribution of the matrix entries Ji j

reads

P
({

Ji j
}∣∣{ki}

)
= P

({
ci j
}∣∣{ki}

)
∏
i< j

δKi j,K ji p(Ki j) , (4.A.1)

where the distribution P
({

ci j
}∣∣{ki}

)
of connectivities

{
ci j
}

compatible with a given degree

sequence {ki} is given by

P
({

ci j
}∣∣{ki}

)
=

1
M ∏

i< j
δci j,c ji

( c
N

δci j,1 +
(

1− c
N

)
δci j,0

) N

∏
i=1

δ∑ j ci j,ki , (4.A.2)

and the pdf pK (Ki j) of bond weights (over a compact support whose upper edge is denoted by

ζ ) will be kept unspecified until the very end.

We fix x = 〈λ1〉J: in this setting, the second largest eigenvalue of J is represented by the
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largest eigenvalue of J̃, which can be computed as the formal limit

〈λ2〉J =
〈

λ̃1

〉
J̃
= lim

β→∞

2
βN
〈lnZ〉J̃ , Z =

∫
dvvvexp

[
β

2
(
vvv, J̃vvv

)]
δ

(
|vvv|2−N

)
, (4.A.3)

in terms of the quenched free energy of the model defined in (4.7). We recall that the round

brackets (·, ·) indicate the dot product between vectors in RN . The partition function explicitly

reads

Z =
∫

dvvvexp
[

β

2
(vvv,Jvvv)− β 〈λ1〉J

2N
(uuu,vvv)2

]
δ

(
|vvv|2−N

)
. (4.A.4)

By calling q = 1
N (uuu,vvv), we can linearise the square in the exponent of (4.A.4) by means

of a Hubbard-Stratonovich identity as follows,

exp
(
−β 〈λ1〉JNq2

2

)
=

√
β 〈λ1〉JN

2π

∫
dzexp

(
−β 〈λ1〉JN

2
z2 +β iz〈λ1〉JNq

)
, (4.A.5)

and therefore the partition function reads

Z =

√
β 〈λ1〉JN

2π

∫
dvvvdzexp

(
−β 〈λ1〉JN

2
z2 + iβ 〈λ1〉Jz(uuu,vvv)+

β

2
(vvv,Jvvv)

)
δ

(
|vvv|2−N

)
.

(4.A.6)

The average over J̃ then reduces to computing the average over J. It is computed using the

replica trick as follows 〈
λ̃1

〉
J̃
= lim

β→∞

2
βN

lim
n→0

1
n

ln〈Zn〉J , (4.A.7)

Thus, the replicated partition function is

〈Zn〉J =
(

β 〈λ1〉JN
2π

) n
2
∫ ( n

∏
a=1

dvvva

)〈
exp

(
β

2

n

∑
a=1

N

∑
i, j

viaJi jv ja

)〉
J

n

∏
a=1

δ

(
|vvva|2−N

)
×
∫ ( n

∏
a=1

dza

)
exp

(
−β 〈λ1〉JN

2

n

∑
a=1

z2
a + iβ 〈λ1〉J

n

∑
a=1

N

∑
i=1

zaviaui

)
. (4.A.8)

Since the components of uuu are assumed to be known and fixed, they are not affected by the

ensemble average.

Henceforth, the treatment for the average replicated partition function 〈Zn〉J will exactly

follow the steps in 3.4.1. It can be summarised as follows.

1. Perform the average w.r.t. the joint distribution (4.A.2) of matrix entries in Eq. (4.A.8),

as in Eq. (3.54).
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2. Use in Eq. (4.A.8) a Fourier representation for the Dirac delta enforcing the normalisa-

tion constraint and the Kronecker deltas expressing the degree constraints in (4.A.2).

3. Decouple sites through the integrated version (3.58) of the functional order parameter

(3.57).

4. Use the Law of Large Numbers to evaluate the single-site integral

I =
N

∏
i=1

∫
π

−π

dφi

2π

∫
d~vi exp

(
−iφiki− i

β

2

n

∑
a=1

λav2
ia + iβ 〈λ1〉J

n

∑
a=1

zaviaui + iϕ̂(~vi)eiφi

)

=exp

[
N

∑
i=1

Log
∫

d~vi exp

(
−i

β

2

n

∑
a=1

λav2
ia + iβ 〈λ1〉J

n

∑
a=1

zaviaui

)
(iϕ̂(~vi))

ki

ki!

]

=exp
{

N
kmax

∑
k=kmin

p(k)
[∫

du ρJ(u|k)Log
∫

d~vexp

(
−i

β

2

n

∑
a=1

λav2
a + iβ 〈λ1〉Ju

n

∑
a=1

zava

)

× (iϕ̂(~v))k−Log(k!)
]}

, (4.A.9)

where we have used

1
N

N

∑
i=1

Log f (ki,ui)'
kmax

∑
k=kmin

p(k)
∫

duρJ(u|k)Log f (k,u) . (4.A.10)

Here, p(k) is the degree distribution of the graph and ρJ(u|k) represents the distribution

of the top eigenvector’s components of the original matrix J conditioned on the degree

k. As shown in Chapter 3.4.2, the variables ui are strongly correlated with the ki so their

dependence on the ki must be considered.

5. Evaluate the replicated partition function with a saddle-point approximation, viz.

〈Zn〉J ∝

∫
DϕD ϕ̂d~λd~zexp

(
NSn[ϕ, ϕ̂,~λ ,~z]

)
, (4.A.11)

6. Obtain the stationarity conditions the action Sn w.r.t. variations of ϕ , ϕ̂ , ~λ and~z. The

sought orthogonality condition will rise from the extra stationarity conditions w.r.t.~z.

7. In view of the similarities between the stationarity conditions for this problem with

those for the top eigenpair case (see Eq. (3.72), (3.73), (3.74)), adopt the same replica-

symmetric setting given by Eq. (3.75), (3.76) and (3.77), in which the integrated order

parameter (3.58) and its conjugate are expressed as uncountably infinite superpositions of

Gaussians with a non-zero mean. In (3.76) and (3.77), π and π̂ are auxiliary normalised

joint pdfs of the parameters of the Gaussian distributions. Assume also the condition
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zā = z for any ā = 1, . . . ,n.

8. As in Section 3.4.1, the ansätze (3.76) and (3.77) allow one to express the action Sn as

a functional of π , π̂ , λ and z and perform explicitly the ~v-integrals as n→ 0. The path

integral over ϕ and ϕ̂ in (3.66) is replaced by a path integral over π and π̂ , viz.

〈Zn〉J ∝
1

M

∫
DπD π̂dλ exp(NSn[π, π̂,λ ,z]) , (4.A.12)

9. The O(1) constant terms surviving in the action Sn as n→ 0 are cancelled by the O(1)

terms arising from the evaluation of the normalisation constant M at the saddle-point

(see Eq. (3.89)). The action Sn closely resembles that found in Section 3.4.1. Similarly,

for its convergence we require that ω > ζ , ω > ω̂ and λ ≡ iλ ? > {ω̂}k.

10. The integral (4.A.12) is finally evaluated with a saddle-point approximation, by consid-

ering the stationarity conditions w.r.t. λ , z, π and π̂ as detailed below.

Following Section 3.4.1, the stationarity condition w.r.t. λ entails

∂S
∂λ

∣∣∣
λ=λ ?

= 0⇒ 1 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ̂}k〈v2〉P̄ , (4.A.13)

where the average 〈·〉P̄ is taken w.r.t. the Gaussian measure

P̄β (v) =

√
β (iλ ?−{ω̂}k)

2π
exp

−β

2
(iλ ?−{ω̂}k)

(
v− iz?〈λ1〉Ju+{ĥ}k

iλ ?−{ω̂}k

)2
 . (4.A.14)

More explicitly, the condition (4.A.13) reads

1 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ̂}k

 1
β (iλ ?−{ω̂}k)

+

(
iz?〈λ1〉Ju+{ĥ}k

iλ ?−{ω̂}k

)2
 , (4.A.15)

where the β -dependent term vanishes as β → ∞. Similarly, the stationarity condition w.r.t. z

entails
∂S
∂ z

∣∣∣
z=z?

= 0⇒ z? = i
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫
{dπ̂}k〈v〉P̄ , (4.A.16)

where the average 〈·〉P̄ is taken w.r.t. the Gaussian measure (4.A.14) implying

z? = i
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫
{dπ̂}k

(
iz?〈λ1〉Ju+{ĥ}k

iλ ?−{ω̂}k

)
. (4.A.17)
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The stationarity condition w.r.t. variations of π , δS
δπ

= 0, is

π̂(ω̂, ĥ) =
∫

dωdh π(ω,h)
〈

δ

(
ω̂− K2

ω

)
δ

(
ĥ− hK

ω

)〉
K
, (4.A.18)

whereas the stationarity condition w.r.t. variations of π̂ , δS
δ π̂

= 0, produces the condition

π(ω,h)=
kmax

∑
k=1

p(k)
k
c

∫
duρJ(u|k)

∫
{dπ̂}k−1δ (ω− (iλ ?−{ω̂}k−1))δ

(
h− (iz?〈λ1〉Ju+{ĥ}k−1)

)
.

(4.A.19)

Inserting (4.A.18) into (4.A.19) yields

π(ω,h) =
kmax

∑
k=1

p(k)
k
c

∫
duρJ(u|k)

∫
{dπ}k−1

×

〈
δ

(
ω− (iλ ?−

k−1

∑
`=1

K2
`

ω`
)

)
δ

(
h−

(
iz?〈λ1〉Ju+

k−1

∑
`=1

h`K`

ω`

))〉
{K}k−1

, (4.A.20)

where the brackets 〈·〉{K}k−1 denote averaging with respect to a collection of k−1 i.i.d. random

variables K, each drawn from the bond weight pdf pK(K). The symbol p(k) in (4.A.20) denotes

the degree distribution of the graph with finite mean c, finite variance and bounded maximal

degree. Following Section 3.4.1, we relabel the constant terms λ ≡ iλ ? and q ≡ −iz? since

they both turn out to be real-valued. We eventually find

π(ω,h) =
kmax

∑
k=1

p(k)
k
c

∫
duρJ(u|k)

∫
{dπ}k−1

×

〈
δ

(
ω−

(
λ −

k−1

∑
`=1

K2
`

ω`

))
δ

(
h−

(
−qu〈λ1〉J +

k−1

∑
`=1

h`K`

ω`

))〉
{K}k−1

. (4.A.21)

The parameter λ must be tuned as to enforce the normalisation condition (4.A.15) as β → ∞,

which reads

1 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ}k

〈−qu〈λ1〉J +∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

, (4.A.22)

whereas Eq. (4.A.17) yields the following condition for q, viz.

q =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫
{dπ}k

〈−qu〈λ1〉J +∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

. (4.A.23)
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The structure of the action Sn in (4.A.12) is the same as that found in Section 3.4.1, except

for the term S4(z)≡ S4(q)= n β

2 〈λ1〉Jq2. Therefore, building on the same reasoning, the average

largest eigenvalue of J̃, i.e. the average second largest eigenvalue of J is given by

〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ + 〈λ1〉J q2 , (4.A.24)

where λ and q are defined by (4.A.22) and (4.A.23). As observed in Section 4.3.4, in case of

full deflation we find q = 0, hence
〈

λ̃1

〉
J̃
≡ 〈λ2〉J = λ .

4.A.2 Density of top eigenvector’s components using replicas

In this section, we provide the derivation for the density of components of the top eigenvector

of the matrix J̃, in the case of full deflation (x = 〈λ1〉J). Therefore, the top eigenvector of the

deflated matrix J̃ corresponds to the second eigenvector of the original matrix J.

The exact same procedure presented in Section 3.4.2 applies to this case. However, here

we just take advantage of a convenient shortcut found in that section. Indeed, there we noticed

that the density of the top eigenvector components (3.145) was closely related to the distribution

(3.99) that had arisen in Section 3.4.1 when evaluating the stationarity condition w.r.t. λ .

Moreover, we showed that the joint pdfs π and π̂ appearing in Section 3.4.2 for the eigenvector

calculation satisfied the very same set of coupled saddle-point equations (3.105) and (3.103)

that had been found in Section 3.4.1 for the eigenvalue calculation.

In this context, the equivalent of Eq. (3.99) is the β -dependent pdf (4.A.14). Therefore,

the density of the components of the top eigenvector of J̃ can be obtained by averaging the pdf

(4.A.14) over the factorised joint pdf {π̂}k = ∏
k
`=1 π̂(ω̂`, ĥ`), the conditional pdf ρJ(u|k) and

p(k) and then taking the β → ∞ limit, yielding

ρJ̃(v) = lim
β→∞

kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ̂}kP̄β (v)

=
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ̂}kδ

(
v− −qu〈λ1〉J +{ĥ}k

λ −{ω̂}k

)
, (4.A.25)

where we have used the identifications iλ ? ≡ λ and q ≡ −iz? and the distribution π̂(ω̂, ĥ) is
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given by Eq. (4.A.18). Expressing Eq. (4.A.25) in terms of π (see Eq. (4.A.21)) gives

ρJ̃(v)≡ ρJ,2(v) =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)
∫
{dπ}k

〈
δ

v−
−qu〈λ1〉J +∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

,

(4.A.26)

where we recall that 〈·〉{K}k denote averaging w.r.t. a collection of k i.i.d. random variables K,

each drawn from the bond weight distribution pK(K).

Eq. (4.A.26) represents the resulting probability density function of the top eigenvector’s

component of the deflated matrix J̃ in case of full deflation, which in turn corresponds to the

distribution of the second largest eigenvector’s components of J. This equation is the large

N generalisation of the single-instance result (4.41) found by the cavity method. The set of

equations (4.A.21), (4.A.22), (4.A.23), (4.A.24) and (4.A.26) are exactly equivalent to the

thermodynamic limit equations (4.45), (4.46), (4.47), (4.48) and (4.49) found within the cavity

method in Section 4.3.3.

All the observations made in Section 4.3.4 about the fact that (4.A.23) in case of full

deflation encodes the orthogonality condition (hence q = 0) hold here as well. Taking into

account the average orthogonality condition q = 0, we obtain

π(ω,h) =
kmax

∑
k=1

p(k)
k
c

∫
{dπ}k−1

〈
δ

(
ω−

(
λ −

k−1

∑
`=1

K2
`

ω`

))
δ

(
h−

(
k−1

∑
`=1

h`K`

ω`

))〉
{K}k−1

,

(4.A.27)

1 =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

2〉
{K}k

, (4.A.28)

0 =
kmax

∑
k=0

p(k)
∫

duρJ(u|k)u
∫
{dπ}k

〈 ∑
k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (4.A.29)

ρJ̃(v)≡ ρJ,2(v) =
kmax

∑
k=0

p(k)
∫
{dπ}k

〈
δ

v−
∑

k
`=1

h`K`
ω`

λ −∑
k
`=1

K2
`

ω`

〉
{K}k

, (4.A.30)

〈
λ̃1

〉
J̃
≡ 〈λ2〉J = λ . (4.A.31)

In summary, Eq. (4.A.27), (4.A.28), (4.A.29), (4.A.30) and (4.A.31) provide the solution

of the second largest eigenpair problem in the large N limit. They are identical to eq. (4.52),

(4.53),(4.54), (4.55) and (4.56) found with the cavity method.



Chapter 5

Conclusions and Outlook

The overall aim of this thesis was to obtain and study the statistics of the top eigenpairs of en-

sembles of sparse symmetric random matrices, using methods typically employed in statistical

mechanics.

In Chapter 2 we gave an extensive overview of the replica and the cavity method, i.e.

the two main techniques that we employed across the whole thesis, taking the calculation of

the average spectral density problem for sparse symmetric random matrices as a paradigmatic

example.

In Chapter 3 we built a formalism to compute the average largest eigenvalue and the

density of the components of the corresponding top eigenvector for some ensembles of sparse

symmetric random matrices. This was our first main result. The top eigenpair problem was

recast into the search for the ground state of a system of particles interacting on a sparse graph.

Indeed, the top eigenpair was obtained by analysing the free energy and the Gibbs-Boltzmann

distribution of the system in the zero temperature limit with the cavity and the replica methods,

which proved to be equivalent in the thermodynamic limit. Both provided a solution in terms of

a functional self-consistency equation, which was efficiently solved by a population dynamics

algorithm whose convergence was driven by a parameter that turned out to be the typical largest

eigenvalue of the ensemble. We studied different matrix ensembles, providing numerical results

for ER matrices and checking the formalism against known cases such as the ensembles of RRG

adjacency matrices and sparse Markov transition matrices representing unbiased random walks

on a network.

In Chapter 4, combining the formalism of Chapter 3 with a deflation mechanism, we were

able to compute the statistics of the second largest eigenvalue and the pdf of the components

of the corresponding eigenvector for the ensembles of sparse symmetric matrices considered
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in the previous chapter. This was our second main result. Using the cavity and the replica

methods, we noticed that the solution for the second largest eigenpair was given in terms of

equations similar to those found in Chapter 3, with the main difference being the presence of the

orthogonality condition. The correct enforcement of this new constraint within the population

dynamics algorithm proved to be crucial for its convergence. We found evidence that the

population dynamics algorithm is incapable to reproduce the thermodynamic limit (N → ∞)

properties of eigenvectors when using a finite population of size NP. Our results suggested

that there exists a non-trivial relation between the size N of the matrices of interest and the

finite population size NP used to reproduce the statistics of their eigenvectors. We discussed

numerical results for ER graphs and sparse Markov transition matrices representing unbiased

random walks on a network. We also discussed the ensemble of RRG adjacency matrices,

showing analytically the existence of two separated regimes for the solution.

The validity of our statistical mechanics framework was corroborated by the excellent

agreement between our numerical results and direct diagonalisation results. Despite being

overall slower and less efficient than any direct diagonalisation routine, our approach has the

main advantage of unveiling and explaining quantitatively the heterogeneous structure of the

density of the components of the top eigenvectors, which originates from the degree distribution

of the underlying graph.

We believe that there are still open pathways for further research in this field. On the

one hand, we envisage plenty of possible applications of our formalism. For instance, one

of these would be the computation of eigenvector centrality for large sparse networks [130].

Centrality is a measure of the importance of each node, in terms of the number and importance

of its neighbours. Given a node i, its centrality xi is defined as xi =
1
λ

∑ j∈∂ i Ai jx j, where A

is the {0,1}-adjacency matrix of the network. Asking that the centralities be positive entails

that the vector xxx is simply the top (Perron-Frobenius) eigenvector of A and λ its corresponding

top eigenvalue. Moreover, our framework may be straightforwardly applied to characterise the

top eigenpair statistics of the so-called tilted Markov transition matrix [134] appearing in the

analysis of rare events for random walks on networks [135]. Indeed, the cumulant generating

function in this context is dominated by the top eigenvalue of the tilted matrix. Besides, the

localisation and the mode-switching dynamical phase transitions occurring for such systems as

the deformation parameter is changed are understood in terms of the properties of respectively

the top and both the top and the second eigenvector. Another direction would consist in ap-
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plying our framework to ensembles of sparse matrices with a power-law degree distribution.

Real-world networks are often characterised by such degree distributions too. Thus, compar-

ing the top eigenpair statistics of those ensembles with the results obtained from the analysis

of instances of real complex networks may provide useful insights. Moreover, following [36],

sparse covariance matrices could also be analysed in our setting. Indeed, it would be interesting

to check whether in the dense limit our formalism is able to identify the ensemble average of

top eigenvalue as the upper edge of the Marčenko-Pastur distribution.

On the other hand, we also foresee the chance for a number of theoretical developments.

A further technical advancement would be studying the top eigenpairs of undirected graphs

above the percolation threshold, by isolating the contributions coming solely from nodes on the

giant cluster. To this purpose, the cavity equations can be complemented with self-consistency

equations for indicator variables, signalling whether a node belongs to the giant cluster or

not, as done in [136]. This study would be particularly relevant because it would allow one

to separate between trivial localised eigenvectors related to individual finite clusters and non-

trivial localised states originating from the giant cluster. With reference to the ground state

technique presented in Chapters 3 and 4, we believe that it can be further used for the study

of eigenvectors of sparse matrices. Indeed, an immediate application would be obtaining the

smallest eigenpairs of a sparse matrix A, by applying our formalism to the matrix −A. More

generally, it could be potentially employed to compute the density of the components of any

eigenvector of sparse symmetric random matrices. Indeed, the eigenvectors of a N×N matrix J

represent the zero-energy minima of the “Hamiltonian” H(vvv,λ ) = 1
2 ∑

N
i=1(λvvv−Jvvv)2 subject to

the constraint |vvv|2 = N. We conclude by suggesting another intriguing route. The properties of

the eigenvectors of sparse random matrices may be also investigated by analysing the statistics

of the local resolvent using the cavity method. Indeed, given a N×N matrix J with eigenpairs

{(λα ,uuuα)}α=1,...,N , its resolvent being G(z) = (z1N − J)−1, the following equation holds for

λ ∈ R and for any i = 1, . . . ,N, viz.

εImG(λ − iε)ii = επ

N

∑
α=1

δε(λ −λα)u2
iα , (5.1)

where Gii(z) indicates the i-th diagonal entry of the resolvent and δε(x− x0) =
1
π

ε

(x−x0)2+ε2

approximates the Dirac delta as ε→ 0. When λ = λα , then εImG(λ − iε)ii ' u2
iα +O(ε2). On
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the other hand, one observes that

Re
[

1
ωi

]
= π

N

∑
α=1

δε(λ −λα)u2
iα , (5.2)

where the ωi are defined in Eq. (2.31). Eq. (5.2) suggests that the distribution of the squares

of the eigenvectors can be obtained in terms of that of the ωi. Some preliminary tests found

evidence that Eq. (5.2) may cease to be valid for graphs above the percolation threshold. This

could signal that in this specific case the tree-like assumption upon which the cavity method

is based actually breaks, due to cycles which are present with probability O(1) in graphs with

a giant component. Moreover, another possible cause may be quasi-degeneracy phenomena

for eigenvalues in the continuous part of the spectrum of those graphs. Thus, we foresee that

Eq. (5.2) may be aimed specifically at the analysis of localised eigenvectors of trees and sparse

matrices below the percolation threshold.
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[7] D. Cvetković and S. Simić. Graph spectra in computer science. Linear Algebra and its

Applications, 434(6):1545–1562, 2011.

[8] L. Laloux, P. Cizeau, M. Potters, and J. P. Bouchaud. Random matrix theory and finan-

cial correlations. International Journal of Theoretical and Applied Finance, 3(03):391–

397, 2000.

[9] Z. Burda and J. Jurkiewicz. Signal and noise in financial correlation matrices. Physica

A: Statistical Mechanics and its Applications, 344(1-2):67–72, 2004.

[10] J. P. Bouchaud and M. Potters. Financial applications of random matrix theory: a short

review. arXiv preprint arXiv:0910.1205, 2009.



Bibliography 159

[11] D. Paul and A. Aue. Random matrix theory in statistics: A review. Journal of Statistical

Planning and Inference, 150:1–29, 2014.

[12] J. Bun, J. P. Bouchaud, and M. Potters. Cleaning large correlation matrices: tools from

random matrix theory. Physics Reports, 666:1–109, 2017.

[13] E. P. Wigner. On the distribution of the roots of certain symmetric matrices. Annals of

Mathematics, pages 325–327, 1958.
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[33] R. Kühn. Spectra of sparse random matrices. Journal of Physics A: Mathematical and

Theoretical, 41(29):295002, 2008.
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[121] M. Mézard and G. Parisi. The Bethe lattice spin glass revisited. The European Physical

Journal B-Condensed Matter and Complex Systems, 20(2):217–233, 2001.



Bibliography 168

[122] F. Krzakala, F. Ricci-Tersenghi, L. Zdeborová, R. Zecchina, E. W. Tramel, and L. F.
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