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Abstract: 27 

A recently published article by Bian et al. [1] presents a novel plastic optical fibre 28 

coated with hydrogel film to measure dissolved oxygen via luminescence quenching. 29 

The article concludes that “The sensor with biocompatible material is expected to be 30 

applied to the monitor of dissolved oxygen in the domain of biomedicine”. However, 31 

the oxygen sensor presented contains ruthenium, a toxic material that is considered 32 

unsafe for clinical applications. It is unclear whether the hydrogel film coating may be 33 

sufficient to prevent direct contact between ruthenium and human tissue in clinical 34 

applications. However, platinum porphyrin has been used in fibre optic oxygen 35 

sensors in pre-clinical applications. This Comment article provides a brief overview 36 

of some platinum porphyrin-based fibre optic oxygen sensors that, despite an 37 

advanced degree of maturity and biocompatibility, were overlooked in the recently 38 

published article.  39 

 40 

  41 
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The recently published study Dissolved oxygen sensing characteristics of plastic 42 

optical fiber coated with hydrogel film [1] presents a novel methodological approach 43 

to manufacture a plastic optical fibre oxygen sensor based on the luminescence 44 

quenching principle, with a response time of 10 s. This response time is sufficient for 45 

some applications, but thick hydrogel coatings limit the rate of oxygen diffusion; in 46 

this sense, thin sol-gel coating films offer a shorter response time, enabling the 47 

monitoring of biological phenomena that change within less than one second [e. g. 48 

12]. The study mentions that the oxygen sensor is composed of biocompatible 49 

materials, and concludes that it “is expected to be applied in biomedical field”. 50 

However, the luminescence indicator used in this new oxygen sensor is ruthenium 51 

that, being toxic, was reported as unsafe in the clinical setting [2]. The toxicity risk 52 

could be mitigated with the application of protective coating to the fibre (when rapid 53 

response time is not crucial for the application), and successful completion of 54 

leaching studies in the biologically relevant context, for example at the relevant 55 

temperature and humidity. This limitation has so far impeded the translation of this 56 

promising technology to a clinical setting [3,4], where rapid and/or continuous 57 

oxygen sensing could be helpful, for example for patient monitoring [5]. Indeed, 58 

several other luminescence-based fibre optic oxygen sensors have been developed 59 

(e. g. [6–9]). 60 

To overcome the translational limitation associated with the use of ruthenium in fibre 61 

optic oxygen sensors, different research groups have employed a platinum porphyrin 62 

luminophore [10] aiming at different clinical applications, for example the assessment 63 

of the compartment syndrome [11], and to determine ventilatory oscillations in 64 

arterial blood oxygen tension [12]. These studies employing the platinum porphyrin 65 

luminophore have demonstrated a very rapid response time ~100 ms and maturity 66 
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beyond the initial bench testing [13], including experiments to determine the sensors’ 67 

resistance to clotting in blood [14], and several pre-clinical experiments that enabled 68 

unprecedented measurements in vivo in sheep [15] and pig models of the acute 69 

respiratory distress syndrome [16], providing a new tool to measure lung volume 70 

[17], and with the potential to investigate cardiopulmonary function [18,19].  71 

The novel fibre optic oxygen sensor coated with hydrogel film [1] was presented 72 

largely in the context of ruthenium-based oxygen sensors (e. g. [20,21]). Whether the 73 

hydrogel film is sufficient to isolate the ruthenium from human tissues appeared 74 

unclear, as did the potential risks associated with the disconnection of the film from 75 

the fibre. The studies employing the platinum porphyrin luminophore for oxygen 76 

sensing, which appear to have reached relative maturity, were overlooked. The 77 

majority of these studies, the sensors’ development and some of their potential 78 

clinical applications have been recently reviewed [22,23]. 79 

Overall, to facilitate translation of studies to the clinical setting, a greater interaction 80 

between photonics technology developers and clinicians is required. 81 

 82 
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