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Abstract

Oro-pharyngeal cancer incidences have been increasing in recent years and late

detection means that the prognosis is often poor. In spite of under-availability

of trained histopathologists across the United Kingdom, there has been very lit-

tle clinical translation of automated, in vivo diagnostic devices, in spite of their

proven sensitivity. This is potentially due to their requiring widespread change

to the established, gold standard diagnostic work�ow. A device which could be

used to support histopathology in the detection of cancer from thin tissue biopsy

sections may be more easily adopted. Raman spectroscopy has been identi�ed as

a highly speci�c diagnostic tool but it is an extremely time consuming technique

which has prevented simple clinical application and translation. In order to make

Raman a realistic diagnostic aid to histopathology, a rapid pre-processing tech-

nique is required to identify regions of interest to accelerate and streamline its

application. The feasibility of hyperspectral imaging (HSI) for this purpose is in-

vestigated in this project. Three systems were built consecutively; a preliminary,

an improved and a more economical system, respectively. The preliminary sys-

tem, utilising a Halogen source, was used for proof of principle with data collected

from �uorescent dyes, blood, stained oral tissue, saliva and unstained oral tissue.

Using this range of absorbent and non-absorbent, biological and non-biological

samples, spectral accuracy and variations with concentration were demonstrated.

Additionally principal component analysis (PCA) data denoising and k-means

clustering of these hypercubes was shown to be successful, to varying degrees,

even in colourless tissue samples, chie�y being sensitive to �brous tissue and

changes in cell density. The improved system garnered data with an increased

SNR by utilising a powerful white light laser and with the inclusion of a com-

prehensive background removal protocol. Segmentation of malignant tissue with

PCA denoising and k-means clustering showed similarities with histopathologist

cancer selection on corresponding H&E stained tissue sections. Several alterations

to the system and software were made in order to facilitate coregistration, and

quantitative comparison, between the three modes; histopathology, hyperspectral

imaging and Raman spectroscopy. This �nal setup was built to be cost-e�ective

for clinical appeal, with a pulsed Xenon source and �bres replacing a white light

laser, a beam expander and a number of lenses. This system covered a wavelength

range of 521 - 899 nm (6 nm spectral resolution) and performed with an AUROC

(area under receiver operator curve) score of 0.70 on the pixel-wise segmentation of

tongue squamous cell carcinoma in frozen, unstained tissue sections compared to

consensus histopathology-based diagnosis, with a 2 µm spatial resolution. It per-

formed similarly in comparison with Raman spectroscopy, garnering an AUROC

score of 0.69, suggesting that their cancer segmentation is reasonably compatible

and they could be used to good e�ect in a combination system. The comparison
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and evaluation process was vulnerable to tissue sectioning artefacts, which are

unavoidable, and random �uctuations in illumination intensity and suggestions to

limit the impact of these weaknesses in future work are suggested. The system

and quantitative evaluation process requires very little user input and could facil-

itate easy development of this system, and others. This automation, and the fact

that it can be used on thin, unstained tissue sections means that this system has

the potential to dovetail neatly with the current histopathology-based protocol.

With the suggested improvements, this hybrid HSI-Raman system could provide

a second opinion, and potentially evolve to share the load and expedite the oral

cancer diagnostic process and improve survival rates.
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1 Introduction

Oral cancer is a worsening problem, both in the United Kingdom and globally, but

its poor survival rate is improved by nearly 100% if it is detected early, before it has

metastasized.[1] Whilst reliance on self-referral by an under-informed public is the pri-

mary bottleneck in the diagnostic procedure, a nationwide shortage of histopathologists

is now a signi�cant contributing factor. Compounding this issue, there remain signif-

icant time delays in the post-biopsy timeline. To ameliorate the oral cancer progno-

sis, the scienti�c community has designed several point-of-care devices for oral cancer

screening in routine dental appointments. Unfortunately none of these devices have

been widely accepted into NHS clinics as they require substantial deviation from the

established gold standard biopsy and histopathological diagnostic procedure, and from

routine dental check-ups, in addition to requiring clinicians to receive additional train-

ing. An automated, quantitative technique which works on unstained, biopsied tissue

sections may, therefore, have a higher uptake due to its suitability for use by an un-

skilled operator and with the resulting in a reduction in negative checking time and the

added bene�t of increased reliability. To that end, a combination hyperspectral scatter-

ing microscopy and Raman spectroscopy system is proposed, exploiting the speed and

high data dimensionality of one technique and the diagnostic speci�city of the other.

1.1 Oral cancer

In the United Kingdom the annual incidence data indicates that over 8700 cases of oral

or oropharyngeal cancer were diagnosed in 2020, with almost a third of those patients

losing their life to it.[2] This places it in the top 15 most prevalent and most deadly

cancers in the UK, and in the top 10, globally.[3] In spite of ever-growing knowledge

and understanding of oral cancer, its risk factors and its presentations, its prevalence

in England has increased by 58% in the last decade and 97% in the last 20 years, partly

shown in Figure 1 (reproduced from [2]).[2]
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Figure 1: Mouth cancer incidence in the UK, year on year from 2009 - 2019, inclusive.

The ten year survival rate is strongly dependent on the cancer site, lesion size

and aggression (characterised by growth and cancer grade), its invasion (speci�ed by

cancer stage) and rapidity of diagnosis. Early diagnosis has the single largest impact on

outcome, far beyond any technical development in surgical, radio- or chemotherapeutic

technologies. This, alone, can improve chances of survival from 50% to 90%, as shown

in Figure 2 (reproduced from [2]).[4, 5]

Figure 2: Chances of survival based on early and late diagnosis.

The diagnostic gold standard on discovery of a suspicious oral lesion is a biopsy;

the surgical excision of one or more representative samples of the lesion's tissue, which

is �xed and sent to a histopathology lab, where it is traditionally wax embedded (after

decalci�cation if the sample contains mineral), thinly sectioned, stained and examined

by a clinical pathologist.[6] Unfortunately, self-referral is the most common �rst step

in this diagnostic pathway, followed by dentists identifying suspicious lesions during

regular dental appointments. This reliance on self-referral requires that national un-

derstanding of oral cancer is of a high level but unfortunately, while it is improving, it
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is currently very poor with 83% of British adults not knowing the signs and symptoms

of oral cancer.[2] Due to ignorance of the disease, fear of oral healthcare and of cancer,

reliance on self-referral is arguably the greatest contribution to the overall diagnostic

bottleneck.[7] Nonetheless, any potential reduction in overall lead time to establishing

diagnosis and a commitment to treat (or diversion of the patient away from cancer

services in the face of a benign diagnosis), is essential to improve outcomes further.

Correctly diagnosing oral malignancies is vital to ensure timely, suitable treatment

and appropriate aftercare. However, clinical visual inspection alone is woefully inade-

quate as a single simple screening process. Oral mucosal lesions are notoriously �ckle,

being di�cult to distinguish from one another and with some benign-appearing malig-

nant lesions and vice versa.[8] This mandates a signi�cant reliance on specialist oral

pathology services to characterise lesions accurately. Further complications arise with

the increasing recognition of potentially pre-malignant lesions, which may proceed to a

cancer at some stage; the hierarchy of risk increasing from leukoplakias (white patches

with no other aetiopathological1 explanation), through mixed erythroleukoplakias to

erythroplakias (red patches with no other aetiopathological explanation) which are the

least stable of all possible lesions.[9] In addition, more recently recognised lesions such

as proliferative verrucous leukoplakias and the genetic pre-disposition syndromes such

as Fanconi's aplastic anaemia and dyskeratosis congenita (in which 1/3 of children diag-

nosed will have an oral cancer by their 30th year), further complicate the surveillance

and screening exercises. A visual diagnosis of either of these conditions in clinic is

nearly impossible and so depends only on other in�ammatory lesions such as endoge-

nous in�ammation (lichen planus and lupus erythematosus) being discriminated from

the traumatic lesions such as morsicatio (chronic chewing of the tongue, lip or cheek), by

histopathology. The umbrella diagnostic terms and key diagnostic issues in oral health

are the discrimination of benign tumours and lesions (such as pyogenic granulomatous

epulides, giant cell disorders and torus palatinus), oral ulcerative erosive and immuno-

bullous disorder groups, direct traumas such as cheek or tongue bite, infections such as

bacterial, viral or mycological stomatitis, periodontal diseases, haematological impacts

(such as haematinic de�ciencies driving glossitis and leukaemias/lymphomas driving

gingival lesions), leukoplakia and erythroplakia and auto-immune disorders (such as

lupus and oral lichen planus).

To this end, awareness of patterns in malignant transformation potential are also

important and represent another part of the complex diagnostic picture which informs

pathologists in diagnostic and monitoring decisions. Predominantly, even if the precur-

sor lesion appears benign, long term in�ammation is more likely to undergo malignant

conversion in sites of phenotype change. Examples of these sensitive locations include

1Aetiopathology is the study of the cause of a certain pathology.
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the corner of the lips where inner mucosal and external skin types abut, and lateral to

ventral tongue where the specialised papillated dorsal mucosa alters to become the thin

smooth under-surface.

Squamous Cell Carcinoma (SCC) is de�ned as an uncontrolled growth of the squa-

mous cells of the epidermis due to mutations in their DNA and it accounts for about

94% of malignancies of the oral cavity, being the most common metastasising cancer

from this region.[9, 10] As a result it is very dangerous although, as noted above, its high

morbidity and mortality rate is largely due to late detection, degrading the prognosis

more powerfully than nearly all the other lesion characterisations. The time between

the patient �rst experiencing symptoms to their visiting a health care professional has

a mean time of 104.7 days with a notably large range of 0-730 days.[11]

Over half of oral and oropharyngeal cancers are found on the tongue or tonsils, both

of which would typically be squamous cell carcinomas. Whilst the decreasing popularity

of smoking has led to decreases in oral cancer over the last few decades, the incidence of

tongue squamous cell carcinoma has increased.[12] This increase, especially in cancers

on the distal third of the tongue which fall into the category of oropharyngeal cancer,

is linked to increased sexual transmission of the human papilloma virus (HPV) which is

being combatted in part by the nationwide scheme to vaccinate girls (and more recently,

boys) aged 12-13 years against HPV 6, 11, 16 and 18.[13] The impact on cervical cancer

is already beginning to be seen, with oral cancer prevalence in women expected to follow

suit in the near future and, in men, to respond similarly approximately 10 years later

due to the delayed investment in male HPV vaccination.

Metastasis of oral cancer involves detachment of cancer cells from the primary tu-

mour, proliferation and migration, mainly via the lymphatic rather than haematogenous

(blood) or transcoelomic routes.[14] The lungs, bone and liver are the most frequent dis-

tant metastasis sites for oral cancer with the lymph nodes being the primary metastatic

tumour sites.[15] Lymph node metastases are found in approximately 40% of patients

with oral cancer with 15% to 34% of these cases having no clinical manifestation, re-

lying on diagnostic acumen and clinical imaging to locate them.[16, 17] The presence

of metastases, which is re�ected in the cancer staging at diagnosis, has a profound

e�ect on the patient's prognosis with only 25-40% of patients with metastasis to the

lymph nodes surviving for �ve years and almost 90% of patients with no lymph node

metastasis reaching this important milestone.[18, 19, 20]

Time is therefore one of, if not the, most valuable commodity for patients consid-

ering that metastasis is found at �rst inspection in approximately 32.5% [17] of oral

cancer cases. While this thesis does not address the public health issues around delayed

attendance at a clinic or clinical examination, there remain signi�cant time delays in

the post-biopsy timeline which any form of automation could address, but particularly
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image assessment AI technologies which can run 24 hours a day, 7 days a week without

fatigue. Therefore, automating diagnosis of malignancies from biopsied tissue samples

is a logical step towards improving the prognosis of oral cancer su�erers. An important

consideration is the ease of implementing such a system into current practice. The

�nal system should therefore work on biopsied thin tissue sections to align with current

preparation and storage equipment and procedures.

1.1.1 Current Diagnostic Pathway

A wide variety of imaging techniques are employed throughout the current diagnostic

pathway, which is outlined below in Figure 3.[9]

Figure 3: The principles of investigation and diagnosis. Asterisk denotes where our
proposed HSI system could be used in place of some additional techniques which are
used as appropriate on a case-by-case basis (marked with a bracket). Details of each
step are given below.

An oral cancer �check� will begin with discussion of the patient's medical history fol-

22



lowed by an extra-oral, and then an intra-oral, naked eye resolution inspection. From

this stage onwards, a number of imaging techniques are employed for additional di-

agnostic purposes, assuming enough concern has been raised between the patient's

symptoms, signs and history; facilitated by the clinician's interpretation of the constel-

lation of evidential points from the low resolution examination and case history. Not

all of these imaging methods (emboldened in the upcoming sections for clarity) will

be employed for each patient; rather, speci�c queries in each diagnosis will dictate the

required imaging approaches. Nonetheless, tissue biopsy, staining and inspection by a

pathologist is a necessary step in all cases of suspected oral cancer. Surprisingly, as will

become clear, this step utilises the least advanced imaging techniques, is entirely qual-

itative and is highly subjective due to reliance on experienced human interpretation:

This is a challenge which spans all medical disciplines managing cases on the data from

pathological reports.[21]

Identifying Areas of Abnormality

In assessment terms, the hunt for spread as well as assessment of the primary tumour

site is known as �staging the tumour� whose management is critically in�uenced by the

degree of spread beyond the primary tumour site. The following imaging techniques

may therefore be employed both in the process of identifying a primary tumour, and in

locating potential metastases.

Clinical photography and X-ray imaging are usually the �rst techniques em-

ployed by a dental surgeon as the equipment is available in almost all practices. Clinical

photography graphically captures the macroscopic appearance of the lesion at the time,

however ongoing comparisons are challenging due to inconsistent lighting, dissimilar

cameras, resolution limits and image processing for storage and later display, which can

also a�ect the appearance of the image due to varying monitor settings and viewing

environments. The conventional internal imaging available to most general and spe-

cialist dental practices is X-ray based, targeted at hard tissue disease such as dental

decay or intra-bony lesions which can be developmental, in�ammatory, cystic, benign

or malignant. Plain dental �lms (including those with both intra and extra-oral �lm or

detectors), dental panoramic tomographic instruments and the most modern �cone

beam� CT (computed tomography) instruments are all designed for hard tissue assess-

ment. As the system is optimised for imaging of bone and dental mineral structure,

only the lower energy components of the beam are attenuated by soft tissues, leading

to a uniform �shadow� contrast only. This minimises any intra-soft tissue shadow con-

trast, making the systems of little value in cancer diagnostic imaging unless the tumour

has invaded mineralised structures such as bone or has originated from within the jaw,

similarly destroying mineralised tissues on its way to the surface. If a patient requir-
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ing oesophageal cancer assessment cannot tolerate a direct endoscopic assessment, they

may have to employ a contrast agent such as barium (administered by swallowing) to

assist the clinician in outlining invasive lesions from within the lumen or highlighting

exophytic luminal tumours as a contrast �lling defect.

If an oral, oropharyngeal or oesophageal tumour is con�rmed, X-ray based imag-

ing to assess spread elsewhere in the body (most commonly the chest for lung imaging

and the neck for lymph node imaging) can be carried out in a hospital to investigate

the possibility of distant metastases having occurred. This is vital to asses total patient

tumour burden, surgical and overall management decisions, directing intention to cure

or if possible, palliative care intentions at the earliest stage.

For further detail of tumour positions in three-dimensions, computed tomogra-

phy (CT) can be employed. In CT scanning, contrast is provided by the attenuation

of X-rays (selected for their high penetration depth) as they pass through the body,

where they are collected by detectors. The X-ray source and detectors are usually ro-

tated around the body, allowing a 3D rendering of the beam attenuation where contrast

encodes information about the scattering and absorption of all tissues, both hard and

soft, which the beam passes through. Modi�ed algorithms and use of injected atten-

uation contrast agents (often iodine based) can further tailor the system's sensitivity

to soft tissue anatomy. The di�raction-limited focal spot size that can be produced

by X-rays limits spatial resolution of CT scans but, in practice, image reconstruction

processes and the cost and design challenges of closely-packed detectors are greater lim-

iting factors.[22] Commonly, a spatial resolution on the order of millimetres is achieved;

su�cient to detect areas of abnormality, but orders of magnitude larger than the scale

required to identify cancerous cells.

Contrast agents are also used to great e�ect in positron emission tomography

(PET) scans, where radiolabelled molecular probes undergo positron decay which in-

teracts with electrons producing gamma photons. This gamma radiation can be used

to track the path of the compound they are attached to (typically carbon isotopes in

glucose), and therefore probe biological processes. In oral cancer imaging, a radioiso-

tope incorporated into glucose is used to detect metastases (usually in the head, neck

or chest) which, like primary cancers, are �hotspots� of metabolic activity due to the

fast growing cancer cells. This technique relies on relative contrast with respect to

surrounding regions so cancer in areas of high metabolic activity such as the brain,

heart and kidneys are di�cult to detect with PET scans and if indicated, mandating

a separate imaging modality such as MRI. Combined radio and CT detector heads are

now used to coregister and record both positron emission and X-ray attenuation by

voxel, reporting highly metabolically active tissue in the anatomical CT dataset. Both

of these techniques produce substantial levels of ionising radiation which has proven
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carcinogenic e�ects.[23, 24] While the bene�ts outweigh the risks in some cases, use of

these techniques must be limited accordingly.

With no production of ionising radiation, magnetic resonance imaging (MRI)

records the di�erential radio emission potential of each imaged voxel, as a result of

perverting a uniformly applied magnetic �eld, aligning all polarising molecules in the

body. Energy release upon relaxation of every polarisable molecule provides highly

detailed soft tissue contrast data. As bone contains little water and therefore has

low proton density, decreasing its polarisability, it appears as a black void de�ned by

surrounding soft tissues and contained liquid marrow spaces.[25] MRI provides the most

detailed 3D imaging of a patient's soft tissue anatomy and also clearly highlights tumour

invasion of bone. However, its lower spatial resolution, higher running costs and the

more complex images it produces are re�ected in its less frequent use, relative to PET

and CT scanning.[26]

Determining if the Abnormality is Cancer

If X-ray, PET, CT or MRI imaging reveals a head and neck cancer, a sample of

the suspicious tissue must be collected by biopsy from the primary cancer and every

suspected distant metastatic site in order to make a diagnosis of cancer (or cancer-

free). The clinician performing the biopsy is guided by the aforementioned macroscopic

imaging techniques and their direct vision alone. As the volume of tissue being excised

is frequently smaller than the spatial resolution of the screening techniques, the biopsy

and following assessment process are still subject to a range of errors.[27] One study into

sources of discrepancy between biopsy and �nal resection pathology reports found that

60% of discrepancies can be attributed to sampling errors, where the tissue collected is

not a representative sample of the suspicious area.[28]

From this stage, there are a wide variety of techniques used to make a diagnosis.

The questions which inform the selection of techniques used, and how their outcomes

lead to the diagnosis of some of the most common oral malignancies (including cancer)

are outlined in the histopathological decisions �owchart below,Figure 4. Evaluations of

the mostly commonly used, or broadly applicable, techniques follow.
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Figure 4: Example of simpli�ed histopathological decisions �owchart, di�erentiating
multiple benign and malignant pathologies, here using one key criterion for each major
decision branch. In reality many factors can in�uence each decision branch, giving rise
to many of the subjective challenges faced by histopathologists [Claire Lock (Viapath)
and Professor Richard Cook, private communication] Wide�eld microscopy of H&E
stained tissue sections are used to answer queries in blue.
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Almost all oral cancer biopsy tissue samples will be stained with haematoxylin and

eosin (H&E) before being inspected, typically using wide�eld microscopy by an ex-

pert histopathologist. Pathology training takes between 12 and 15 years to complete,

from medical school through specialty training, and years of additional experience;

all of which may be required to identify more subtle indicators of malignancy or pre-

malignancy. This is testament to the complexity of biological tissues and cancer patholo-

gies, a fact which is re�ected in the di�culties faced by scientists who have attempted to

automate this process across the past few decades.[29] Once sampled by biopsy, the soft

tissues are preserved with formalin (or live cell transport media if immuno�uorescence

imaging has been recommended), decalci�ed and impregnated with wax. This para�n

embedding helps preserve the tissue architecture during sectioning where thin slices

of ~4 - 10 µm are taken to minimise scattering contributions from outside the focal

plane, negating the need for imaging techniques which are capable of optical sectioning

such as confocal microscopy.[30] These thin sections are then mounted on glass slides,

stained for tissue contrast enhancement and are preserved under a �nal glass cover

slip. Haematoxylin and eosin are the most commonly used histological stains and, as

they are complementary, they are usually used together. Haematoxylin appears blue

or violet and binds to DNA, RNA, calci�ed material, mucopolysaccharide-rich ground

substances and some other structures such as granules of keratohyalin. Eosin appears

red or pink and binds to the cytoplasm of most cells and of cytoplasmic �laments such

as those found in muscle cells and intracellular membranes, keratin, decalci�ed bone

and collagen.[9]

The main indicators of cancer in H&E stained biopsy samples observed with a simple

wide�eld microscope are as follows, in order of increasing severity.[9] (Sub-�gures of

Figure 5 reproduced, and captions paraphrased from [9] p246-250.)

1. Blue active nuclei seen in supra-basal cell layers of epithelium, indicat-

ing overactive proliferation and often seen increasingly in progressing severity of

dysplasias. (Figure 5 A to B, increasing severity of dysplasia)

2. Blue nuclei (usually in clusters) seen below the basement membrane in-

dicating rupture of the basement membrane and epithelial invasion of the internal

tissues. (Figure 5 C)

3. Subsequent intrusion re�ecting increasing local and distant metastatic spread.

(Figure 5 C and D)

4. Speci�c specialised cell types seen at a distant site, representing metastasis

or invasive spread. (Figure 5D)
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5. The presence of a cell or group of cells that are unidenti�able, or not

re�ecting their appropriate form at the site in question or a distant

metastatic site. This suggests a loss of architectural and functional cell speci-

�city consistent with their departure from normal biological phenotype control

because of genotypic damage: a cancer in progress. (Figure 5 E)

Figure 5: A: Moderate dysplasia. B: Severe dysplasia. C: Squamous carcinoma. D:
Squamous carcinoma with cytologic irregularity. E: Squamous carcinoma with keratin
pearls around neoplastic epithelial cells. Each intense purple nucleus is on the order of
10 μm in diameter.

It is easy to see how the position of the biopsy sample can signi�cantly impact the

reporting of these disease features. For example, a stream of cells invading, having

ruptured the basement membrane may be missed by a 4 - 10 µm thick, essentially two

dimensional, section of tissue. If the biopsy only catches the in�ammatory response

of the patient to the invading tissue, the severity and lesion type can be totally mis-

represented. To minimise this, many sections are reviewed from each block of para�n-

embedded tissue and in most cases this process is su�cient for an accurate and de�nitive

tissue based, gold standard diagnosis.

The diagnosis itself, from H&E stained sections by a histopathologist is a large source

of error in the diagnostic procedure, second only to tissue sampling errors, as indicated
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by the large interobserver variation.[28] Kappa values estimating the magnitude of this

variability range from ~0.15 to 0.61, tending to be higher for higher grade and no

dysplasia and lower for low grade dysplasia. [31, 32, 33] 2

In some cases, H&E staining is insu�cient for making a de�nitive diagnosis and

other stains or imaging techniques (emboldened for clarity) such as immuno�uorescence,

microbial culture and molecular biology must be employed.

Immuno�uorescence uses the speci�city of antigen-antibody binding to highlight

speci�c molecules in tissue samples collected by biopsy (immunohistochemistry) or cell

samples commonly collected by diagnostic blood smears, �ne needle aspirates and swabs

(immunocytochemistry). A �uorescent marker is attached to the antibodies (or often

they are purchased as a conjugate) and they are then incubated with the tissue sec-

tion (which must be processed with live cell transport media in place of formalin)

to encourage binding to the target molecule.[34] Several di�erent �uorescent markers

with di�erent target molecules can be purchased and used in tandem as long as their

absorption and emission wavelengths can be separated, usually with �lters, to prevent

cross-talk between channels and isolation of emission wavelengths. In practice, however,

antibody binding site speci�city is extremely varied ranging from recognition of enan-

tiomers of the same molecule, to only recognising tertiary structure rather than amino

acid sequences.[35] The method can also be in�exible as �uorescence probes that are

able to attach to the necessary antibody may be unavailable. In this case, indirect im-

muno�uorescence can be used which involves attaching one or more secondary, labelled

antibodies to a primary, unlabelled antibody which is complementary to the antigen of

interest. The �exibility of this method is much greater than direct immuno�uorescence

due to the availability of cheap secondary antibodies that �uoresce at a wide variety of

wavelengths. The intensity of the signal they produce can also be increased as more than

one (labelled) secondary antibody can bind to the primary antibody.[36] Unfortunately

oral tissue is highly auto�uorescent, especially at low excitation wavelengths, which

can lead to high levels of background �uorescence, obscuring important features.[37]

In addition, formalinisation further enhances auto�uorescence of structural proteins, in

particular, collagen, further aggravating these issues. Immuno�uorescence is also neg-

atively impacted by photobleaching which occurs when photochemical alterations to a

�uorophore permanently prevent its continued �uorescence. While there is no recog-

nised single antibody marker for oral cancer, immuno�uorescence is increasingly used

to demonstrate cellular lines of origin in poorly di�erentiated tissue and as markers for

behaviour such as epithelial growth factor receptor �uorescence quanti�cation to assess

outcome in oesophageal cancers.[38]

2Kappa value is a measure of agreement where 1 is perfect agreement, ~ 0 represents the agreement
one would get by chance, and < 0 is weaker agreement than by chance.
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In disorders with single diagnostic auto-antibody targets, auto�uorescence has be-

come a simple and e�ective gold standard diagnostic for several oral mucosal diseases

including pemphigus vulgaris, paraneoplastic pemphigus, bullous pemphigoid, epider-

molysis bullosa acquisita, linear IgA disease, dermatitis herpetiformis, lupus erythe-

matosus and lichen planus.[39] Several have the potential to become malignancies in

the long term, or can be a marker for neoplastic disease elsewhere in the body.

Though rarely employed in the oral malignancy diagnostic pathway, the very high

resolution of electron microscopy (conferred by circumventing the di�raction limi-

tations of light by using an electron source in place of a photon source) can also be

exploited to more closely examine ultrastructural cell features that are indicative of

epithelial dysplasia. These include ruptured basal lamina and/or hemidesmosomes,

pathological cytoplasmic processes and a variety of alterations to the keratinization

(such as fewer keratohyaline granules). [40] Whilst light (and occasionally electron)

microscopy of most pre-malignant lesions can de�ne and demonstrate epithelial dys-

plasia, this does not guarantee that the lesion will, or will not, become malignant and

some non-dysplastic lesions may become malignant de facto, without passing through

the phases of dysplasia. Epithelial dysplasia is therefore not a fully reliable marker of

malignant transformation potential although, if persisting after correction for all other

local driving factors such as alcohol, tobacco and betel quid use, can suggest increased

risk of malignant conversion. [41]

In these cases, it is useful to test for the presence of certain biological markers

of malignancy. The method by which these molecules are tested for depends on the

molecule itself and include immuno�uorescence as described above, mass spectroscopy

and biological assays; the latter of which is a delicate procedure and therefore the use

of molecular biological testing is not widespread. Mitochondrial DNA mutations have

been used as disease markers for years and matrix metalloproteinases (MMP) are also

commonly used markers. For example, overexpression of the mRNA of MMP-1 and

MMP-9 have been linked with oral dysplasia progressing to oral cancer.[42] Growth

factors (and their receptors), altered expression of cytokeratin, ανβ6 integrin and blood

group antigens are more recent additions to the array of molecular indicators used to re-

veal malignant potential in oral tissue.[43]Molecular biological testing encompasses

a variety of techniques such as PCR (polymerase chain reaction) for rapidly identifying

bacteria and viruses and cytogenetics and in situ hybridisation for detecting genetic

abnormalities. For example, tetranectin abundance in saliva can be used to distinguish

between primary and metastatic OSCC. These techniques are, however, underused in

dentistry unless faced with a very di�cult diagnosis. This is largely due to their variable

speeds and the expert training or dedicated space in an expertly trained laboratory that

is required, contributing to relatively high overall costs. Haematological testing is used
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more routinely and is instrumental in diagnosing leukaemias, myelomas, some infections

and conditions that are associated with anaemia.[9] Microbial culture is rarely used

in spite of the infective nature of many oral diseases. Gram-stained smears for bac-

teria, PAS (periodic acid Schi�) staining for fungal species such as candida and H&E

staining of tissue sections are very e�ective diagnostic tools to determine most infective

aetiopathologies. Few oral malignancies are associated with bacterial primary infection,

but candida yeast driven hyperplastic mucosal infections and lesions arising from viral

infections (particularly herpes virus serotypes HPV-16 and 18) are accepted as drivers

of potentially malignant lesions. (This fact was one of the important driving factors in

the the National HPV vaccination programme to derive protection for female cervical

cancers and penile and oropharyngeal cancer processes in both genders.)[13] The three

main occasions where microbial culture is used are to determine which pathogens are

present in soft tissue infections to ascertain their sensitivity to antibiotics, to verify

the presence of candidiasis (although it is often clear to a histopathologist from H&E

stained tissue sections) and to screen for viral antigens or identify a virus using viral

culture.[9]

In summary, it is evident that most of these techniques are not broad screening

techniques but require prior knowledge or informed assumptions about potential ma-

lignancy in order to select which biomarkers to test for. Every technique used increases

time, cost, and the potential for error and observer bias. Some techniques may also re-

quire additional clinic-pathological information or additional sampling from the patient

to correlate clinical symptoms and signs with the tissue structural and behavioural data

from the pathology laboratory data. The more stages which require human input, ei-

ther from the patient, clinicians, pathologists or specialised laboratory sta�, the greater

the potential for an additional bottleneck in the diagnostic procedure. Also, while the

arsenal of additional imaging and testing techniques is ever-growing, the stalwart and

compulsory diagnostic step of pathologist-inspected H&E stained tissue sections has

remained largely unchanged for decades. In spite of the years of expertise held by all

practising histopathologists, there is a great deal of subjectivity and variation in can-

cer diagnoses which is an unavoidable attribute of the qualitative techniques currently

employed. It is clear that the gold standard diagnostic procedure has signi�cant poten-

tial for improvement, though it is remarkably successful given the manifold challenges

the tissue faces during the interpretation journey.[28] Optimising the accuracy, reliabil-

ity and speed of this vital step of the diagnostic pathway would, therefore, positively

impact the overwhelming majority of oral tissue diagnoses.
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1.1.2 Automated Diagnosis

General poor tissue contrast makes label-free imaging of oral cancer very di�cult with

alternatives which garner additional contrast from another source not performing well,

usually in terms of a lack of speci�city. For example, auto�uorescence is often strong

from collagens but poor from other tissues and elastography or similar techniques using

tissue texture for contrast struggle to distinguish tumour from scar tissue, amongst

other limitations. Therefore, while proteomics, optical techniques such as second har-

monic generation (SHG) microscopy and OCT, mass spectrometry and other imaging

techniques provide solutions to certain aspects of this vital healthcare challenge, au-

tomated diagnosis is a topic of ongoing research.[44, 45] In order to be a reasonable

adjunct to, and possible future replacement of, histopathology, the system should be

fast, as unsupervised as possible and have high sensitivity and speci�city. Whilst a

point-of-care, in vivo diagnostic device may be the ultimate goal, there are many such

high performing, simple tools which have not yet been adopted by the NHS.[46, 47]

This reticence may be due to the magnitude of procedural and infrastructural changes

that would have to occur to bring these devices into fruitful use.

In order to be easily adopted into the current diagnosis routine, or tested alongside

it, the system should comprise a fully automated work�ow from tissue section scanning

to quantitative diagnostic score. It should also work on tissue sections, primarily as

this is one of the most familiar technologies to the current workforce and reduces risk of

mis-sampled tisue as is the risk with cyto-smear tests.[48] Another potential reason for

these in-clinic devices not being widely utilised is a lack of trust in them. Initially, it is

hoped that the proposed quantitative technique could play a supporting role; improving

consistency between di�erent histopathologists and providing a quick second �opinion�

in complex cases, building trust in their accuracy amongst clinicians.

In the following section we will start by considering, in light of the biological features

of oral cancer, the image contrast mechanisms available when light interacts with tissue.

1.2 Light and Tissue

The interaction between light and matter has been a subject of scienti�c research for

hundreds of years, from the understanding of the sky's blue hue and the lenses in the

eyes to the inventions of the radio and light microscope. The violet to red portion of

light which can be seen with the naked eye is called visible light and is described by

photons (single quanta of light) which exhibit a wavelength of ~ 380 - 750 nm, which

corresponds to an energy range of 0.51 - 0.26 x10-18 m2 kg s-2 by the equation E = hf

where h is Planck's constant and f is wave frequency. Photons can interact with matter

in two ways; absorption and scattering. Absorption occurs when the energy of the
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photon matches the energy gap between two electronic states within the atom causing

electronic transitions as the electron absorbs, and then later re-emits, the photon. Light

scattering can occur irrespective of the energy of the incident photon. When matter

scatters light without fully attenuating it, an interpretable signature of that matter is

encoded in that light. This means we can use light scattering as a means to interrogate

unknown samples.

Light can be described both by quantum and classical mechanics; by considering

light as discrete packets of energy called photons, and as harmonically oscillating elec-

tromagnetic �elds. The classical behaviour of electromagnetic �elds provides more

intuitive explanations of the phenomena being discussed in this work, and can be fully

explained by Maxwell's equations (Equations 1, 2, 3 and 4) where D is electric dis-

placement �eld, ρ is free electric charge density, B is magnetic �ux density, E is electric

�eld, H is magnetic �eld strength and J is free current density.

∇ ·D = ρ (1)

∇ ·B = 0 (2)

∇×E = −∂B
∂t

(3)

∇×H = J +
∂D

∂t
(4)

Broadly, scattering can be split into two categories: elastic and inelastic, depend-

ing on energy transfer during the scattering event. It is possible to use this classical

framework to help us understand elastic and inelastic scattering and their dependencies.

When light, or an electric �eld, are incident on a molecule, it induces a dipole moment

which has a harmonic time dependence characterised by the frequency of the light and

the vibrations of the molecule. The electric properties of a molecule are represented by

the polarizability tensor, α. (For the sake of this broad explanation the faster motion

caused by the excitation of electrons, and which give rise to resonant scattering, will

be ignored.)

The �rst term of the Taylor expansion of the linear induced dipole moment µ(1)

induced by a electric �eld E0 , harmonically oscillating with frequency ω0 on a molecular

system can be expressed as follows, in Equation 5 :

µ(1) = α0 ·E0cosω0t+
1

2

(
∂αk
∂Qk

)
0

·E0Qk0cos(ω0t+ ωkt+ δk) (5)
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+
1

2

(
∂αk
∂Qk

)
0

·E0Qk0cos(ω0t− ωkt− δk)

where α0 is the �rst term (at equilibrium position) of the Taylor expansion of the

polarizability tensor resulting from the kth vibration, t is the period of the harmonic os-

cillation, Qk is a coordinate of normal harmonic vibration at the frequency ωk, described

as Qk = Qk0cos(ωkt+ δk).

This expression has three clear terms which give rise to radiation at ω0, ω0+ ωk and

ω0- ωk which account for Rayleigh, anti-Stokes Raman and Stokes Raman scattering

respectively.[49]

Rayleigh and Raman scattering are two speci�c types of scattering which occur

when light interacts with tissue under certain conditions. They can each be used to

retrieve di�erent information from the tissue according to the mechanism by which they

take place, which is our next topic of enquiry.

1.2.1 Inelastic Light Scattering

In inelastic scattering, the energy and direction of the incident particle changes. In-

elastic light scattering mechanisms include Brillouin, Compton and Raman scattering

where Brillouin and Compton scattering are less probable and occur when photons are

scattered by acoustic phonons and charged particles, respectively. Compton scattering

requires high energy photons such as X-rays or gamma rays in order to overcome the

binding energy of the electrons, and Brillouin scattering involves a change in polariz-

ability of the medium caused by lattice vibrations which are much smaller than the

molecular vibrations which Raman utilises.

Raman Scattering

Raman, which is the primary inelastic scattering contrast mechanism in tissue, is

when light scattering with a vibrational transition occurs where the molecule changes

in polarizability, with the scattered light being emitted in all directions. In the case

of inelastic scattering of light by an atom, ground and excited states correspond to

electronic energy levels. However, in the case of more complex samples from molecules

to dynamic systems like live tissue, the atoms which they are made of rotate and

vibrate relative to one another as well as each having distinct electronic energy levels.

Raman scattering can take two forms; Stokes and anti-Stokes. As shown in Figure 6, the

former is characterised by a decrease in frequency compared to that of the incident light,

whereas the latter is characterised by an increased frequency compared to the incident
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light. Anti-Stokes Raman scattering therefore depends upon the system already being

in an excited state when the light is incident on it, and it is therefore less probable

than the Stokes mechanism. Raman scattering has a lower scattering cross sections

than elastic scattering mechanisms, such as Rayleigh scattering, which means they are

much less likely to occur with just 1 in approximately 10 million photons being Raman

scattered. The infrequency of Raman scattering incidents is due to the improbability of

a change in molecular polarisation and the energetic di�culty of exciting low frequency

vibrations with a high frequency radiation.[50]

Figure 6: Jablonski diagram depicting energetic transitions resulting in Rayleigh Stokes
Raman and Anti-Stokes Raman scattering where ν0is the wavenumber of the illumina-
tion and νm is the wavenumber of the vibrational transition.

As Raman scattering is inelastic and therefore involves some energy transfer which

relates to the atomic structure of the constituents of a sample, the resulting light con-

tains more detailed, chemically speci�c information about it. Raman spectroscopy

provides, without requiring the use of dyes or external contrast agents, sample-speci�c

information about the molecular composition and interactions in the form of a vi-

brational spectrum. As this spectrum is unique to each sample, it is often called a

�molecular �ngerprint�.[51] Raman spectroscopy helps to identify the molecular struc-

ture of materials and is often used to help identify or characterise samples of unknown

composition. This has been exploited to great e�ect for probing biomolecules for over

30 years, and speci�cally for investigating cancer with an aim to diagnose it for over 20

years, starting with the work of Gniadecka et al on basal cell carcinoma.[52][53]

Segmentation of Raman spatial maps of tissue areas show good agreement with
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histopathology and therefore the source of this contrast is a popular line of enquiry.

While there are di�erences in the Raman signatures of di�erent kinds of cancer, a

general increase in the intensity of spectral bands associated with DNA and protein

are often observed in cancer tissue.[54] Biomolecules which can be used to help map

cancer are still being uncovered. Keratin and water have been identi�ed as signi�cant

contributors to the discriminatory components of oral Raman spectra. In the �rst

instance, Chen et al developed a new analysis protocol based on spectral unmixing of

the molecular �ngerprint of the well-known cancer biomolecule, keratin, which could

detect cancerous tissue with 100% speci�city.[55] This is a good example of Raman

spectroscopy's capacity for very high speci�city due to its chemical origins. Secondly,

Barroso et al used the ratio of the Raman bands at 3,390 cm-1 and 2,935 cm-1 to

calculate water concentration in human oral squamous cell carcinoma (OSCC) samples.

Signi�cant di�erences were found, with a decrease from 54% ± 24% to 76% ± 8% across

the healthy tissue-tumour border. This was used very successfully to delineate between

healthy tissue and OSCC with a 98% accuracy. In subsequent work it was shown that

the distance from the tumour border at which water concentration, and its standard

deviation, begin to change is remarkably consistent, at ~1.5 mm. Identi�cation of

adequate tumour resection margins using this principle was evidenced.[56] In work by

Behl et al, in�ammatory cells were successfully di�erentiated from tumour cells, a feat

which would be di�cult to achieve with no chemical information. Morphologically they

can appear similar due to the enlarged nuclei often present in both cell types and the

pattern of in�ammation, which tends to closely precede the leading edge of the cancer.

It may also be of particular note in oral tissues where it is especially challenging to

separate in�ammatory conditions such as lichen planus from pre-malignancies such as

leukoplakia.[57]

In spite of the very high speci�city, high sensitivity to many relevant biomolecules

and the potential for unsupervised analysis which make Raman spectroscopy a highly

suitable technique to support or mimic histopathology, it has several characteristics

which prevent it from being the ideal technique for this purpose. Firstly, it is usu-

ally performed on fresh/frozen tissue as the strong signal (both Raman and auto�u-

orescence) from traditional �xatives obscures important spectral information. Cluster

analysis methods improve base spectrum isolation and may help to alleviate the prob-

lem of �xative signal but, as with many post-processing techniques, it comes at a cost

to the SNR. This can be problematic as biological signatures are often less intense and

spread across ��ngerprint regions� which are unique to di�erent compounds but which

contain many peaks, of which very few are individually identi�able, requiring more

complex identi�cation processes. It does mean, however, that in this respect Raman

spectroscopy is well suited to in vivo application and therefore the development of �opti-
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cal biopsy� systems to prevent destructive cancer sampling for diagnosis is popular.[58]

Unfortunately as Raman scattering is improbable and slow it cannot be used to map

areas in vivo, only to collect point spectra. As the number of Raman-scattered pho-

tons is inversely proportional to the wavelength of the incident light, theoretically the

strength of the Raman signal could be increased by illuminating the sample with shorter

wavelengths. However, in practice this is not possible due to the strong �uorescence of

biological samples in this wavelength range which can mask the weak Raman signal.

Therefore, NIR illumination is preferred for tissue imaging as a compromise between

the undesirable �uorescence at lower wavelengths and the desirable increased Raman

signal yield. Coherent Raman mapping can be performed more quickly, and to a higher

penetration depth, due to the signal enhancement conferred by the coherence of the Ra-

man scattered light (and with decreased potential for �uorescence interference due to

signal collection at the blue end of the visible spectrum).[59] However, as a third order

nonlinear optical technique, it requires two coherent pulsed laser sources to drive the in-

phase molecular vibrations and it is therefore signi�cantly more expensive to build and

run than spontaneous Raman spectroscopy systems which require just one continuous

wave laser.[60] The additive nature of the coherent signals also biases the component

reporting towards the most abundant Raman-active molecule in the illumination spot

which could result in inaccurate segmentation maps.[61]

One idea to economically overcome this speed limitation is combining Raman spec-

troscopy with a fast, wide�eld optical technique for use in a pre-screening protocol

to identify regions of interest (ROIs).[62] Vibrational spectra acquisition could then

be limited to the coordinates of these ROIs. A range of elastic light scattering based

optical techniques were considered for this application.

1.2.2 Elastic Light Scattering

In elastic scattering, a photon interacts with matter but there is no energy transfer

between the two. Gustav Mie was the �rst scientist to calculate Maxwell's equations

for speci�c systems, and he did so �rst for elastic light scattering where the spherical

scattering particles are similar in size to the incident illumination light wavelength.

From this solution, he was also able to use Mie theory to model two other elastic light

scattering domains, covering a large proportion of commonly observed electromagnetic

radiation scattering e�ects. As a result, there are three main models to describe elastic

light scattering which depend on the size of the particles (πd) and the wavelength of the

incident light (λ) which can be combined to create an arbitrarily de�ned size parameter,

x = πd/λ. As well as the relative sizes (and shapes) of scattering particles and the

incident light wavelength, the amount and direction of scattering depends on many

37



other factors including light polarisation and coherence, and its angle of incidence.[63]

There are three sets of constraints, de�ned in terms of x, in which di�erent assumptions

can be applied to the Mie scattering model.

The most complex of the three systems occurs when roughly spherical scattering

particles are illuminated by light with a wavelength similar to the particle size, x ≈
1, and is described by the Mie scattering regime. [64] Mie scattering occurs in all

directions, with a stronger forward-scattering component which increases with particle

size. The theoretical scattering cross section, σs, in the Mie regime is described by

Equation 6.

σs = k−2
2πˆ

0

0ˆ
π

(| S1 + S4 |2 + | S1 + S4 |2)dcosθdφ (6)

where S1 and S4 are terms from the scattering amplitude matrix (which must be cal-

culated from Maxwell's equations for the boundary conditions of the scattering event),

d is the scatterer diameter (assumed spherical), k is the wavenumber, and θ and ϕ are

angles which describe the propagation direction of the scattered light r = r(θ, ϕ).[65]

It is not trivial to solve Maxwell's equations explicitly, which prohibits Mie scattering

solutions from being used for much more than examples of the behaviour of scatterers

of certain shapes or composition. A subset of Mie scattering, called Rayleigh scatter-

ing, occurs when the scattering particles are much smaller than (at most 1/10 of) the

wavelength of incident light, x� 1. This is considered to be a subset of Mie scattering

as, due to their small size, even non-spherical particles can be modelled as spheres of

equivalent volume. The small size of the scatterer relative to the incident light paints

a mathematically relevant picture of the particle being �submerged� in homogeneous

electric �eld. In a Rayleigh scattering event, a photon of a certain wavelength is ab-

sorbed by exciting bound electrons to higher energy states, and another photon of the

same wavelength is emitted simultaneously and isotropically (conserving energy), like a

dipole. The isotropic polarizability α can be used to simplify the scattering amplitude

matrix, reducing the scattering cross section to a much simpler form, shown below in

Equation 7:

σs =
8

3
πk4α2 (7)

As wavelength is the reciprocal of wavenumber, this equation demonstrates the

characteristic λ-4 wavelength dependence which broadly de�nes Rayleigh scattering.

We can see this relation in action when the sky appears blue on a clear day where the

shorter (blue) wavelengths of the white light from the sun are more strongly scattered

by small atmospheric particles than longer wavelength.
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When the scattering particles are much larger than the wavelength of incident light,

x� 1, geometric scattering occurs. When the scattering particle diameter is more than

ten times the wavelength of incident light, whilst Mie theory can be used to describe

the scattering outcomes, it is more common to turn to the simpler laws of geometric

optics to describe the system. In any case, geometric scattering is relatively minimal

in the case of tissue sections, which are rich in features much smaller than the micron

(and above) scale scatterers required to produce geometric scattering of visible light.

As elastic scattering does not involve any energy transfer which relates to the atomic

structure of the constituents of a sample, the information encoded in the scattered light

contains less speci�c, chemical information than light which has been inelastically scat-

tered. However, the higher scattering cross section means that elastic light scattering

comprise the primary mechanisms by which light and tissue interact.

Tissue is an ideal scattering medium, with most comprising structures with a wide

range of sizes from a few tenths of nanometres to a few tenths of micrometres.[66] They

can be described as a random continuum of the inhomogeneities of the refractive index

with a varying spatial scale.[67, 68] A wide range of intracellular structures a�ect tissue

light scattering. The diameters of cell nuclei are on the order of 5-10 µm, mitochondria

~1-2 µm, lysosomes and peroxisomes ~20 nm with structures within organelles ranging

in size from a few to a few hundred nanometres. Many cells and subcellular components

are approximately spherical or ellipsoidal and are therefore often modelled as collections

of homogeneous spherical particles which can be well described by Mie theory.

Previously in the introduction, the H&E-visible features which are the foundation

of the cancer grading system used by histopathologists were outlined (1.1.1). These

features, and other markers of cancer such as enlarged nuclei, can be �translated� into

scattering e�ects whose identi�cation can be automated. For example, measurements

of refractive index across a range of wavelengths could be used to theoretically recover

the distribution of nuclear sizes in a sample for use in a diagnostic capacity.

The refractive index variation within tissues can be quanti�ed by the ratio between

the mean refractive indices in the sample's scattering centres and the refractive in-

dex of its surroundings. This ratio also impacts the e�ciency of the light scattering

that occurs. Squamous cell carcinoma is a common and potentially devastating oral

malignancy which begins in the squamous epithelium. Nuclear-to-cytoplasmic ratio,

and nuclear size have both been observed to increase in cancerous tissue, increasing

three to �ve-fold from ~ 4 - 7 µm in diameter to ~ 20 µm.[69] Epithelial nuclei can be

modelled as spheroidal Mie scatterers with a higher refractive index than surrounding

cytoplasm. Considering nuclei as optically soft 3 and assuming illumination with visible

3Optical softness is when the refractive index of a particle is similar to the refractive index of the
media around it.
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wavelength light which is signi�cantly smaller than the scatterer sizes (λ<�<d), the van

de Hulst approximation for �large� spherical particles can be applied to describe the

elastic scattering cross section of the nuclei as follows, in Equation 8 [70]:

σs(λ, d) =
1

2
πd2

1− 2sinδ

δ
+

(
2sinδ

δ

)2
 (8)

where δ =
2πd(nnucleus−ncytoplasm)

λ0
, d is the particle diameter, n is refractive index and

λ0 is the wavelength of light in a vacuum.

The scattering cross section, therefore, varies periodically with inverse wavelength

which also generates a periodic component in tissue optical re�ectance or transmission.

Fourier space can be used to probe frequency (inverse wavelength) and, in combination

with measurements of refractive index across a range of wavelengths, could be used to

recover the distribution of nuclear sizes in a sample for use in a diagnostic capacity.

This general framework is used frequently in elastic scattering probing of cells and

tissues: mathematical modelling of tissue scattering is developed to describe a system,

the model is varied iteratively until a best �t to the data is achieved and then a known

relationship between a parameter from this model and the physical measurement is

used to estimate said parameter. In reality, the accuracy of both the chosen model

and the selection of �known� values used to constrain the iterative �tting of the model

can vary hugely. This is especially problematic when comparing in vivo and in vitro

measurements which di�er largely due to di�ering hydration levels. With the large

number of assumptions made by this general approach, including scatterer size, shape

and refractive index and tissue morphology and composition, the cumulative errors can

be large.[71]

Light scattering spectroscopy (LSS)

Light scattering spectroscopy (LSS) uses spectra collected from singly scattered pho-

tons to probe tissue morphology, by analysing it with Mie theory or more sophisticated

models, as in the approach outlined above. By creating systems or samples which make

multiple scattering events unlikely, it is possible to attribute changes between proper-

ties of the incident and resultant wave at each point on the detector, to the sample at

the corresponding position. Multiple scattering events add confounding factors, both

in terms of the position of the scatterer, and its properties. The e�ects of each scatter-

ing incident will cumulatively a�ect the incident light, and cannot be uncoupled from

each other with the information available at the point of detection. There are many

means by which scattering is constrained to single events, such as by using illumination

wavelengths with low penetration depths into the medium being imaged, or by creating

very thin samples.
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As previously mentioned, cell nuclei can give rise to Mie-type scattering which is

visible in spectra as a broad sinusoidal curve. As elastic scattering spectra are usu-

ally comprised of various scattering features (Mie and Rayleigh) and absorption bands

(more common in vivo), this slowly �uctuating baseline can a�ect both the wavelength

and the intensity of other spectral features, often broadly called �dispersion artefacts�.

More recent work has shown that these artefacts can be largely explained by resonant

Mie scattering.[72] When resonant Mie scattering occurs, there are several deviations

from basic Mie theory, such as the refractive index becoming wavelength dependent

near absorption bands, requiring application of the Kramers-Kronig relationship.[73]

Additionally, Lau et al have also shown that the regular packing of haemoglobin in

blood vessels is a substantial confounding factor when it comes to model-based LSS

and ESS (elastic scattering spectroscopy) tools, especially in vivo or in bulk tissue ex

vivo.[74]

This diagnostic technique depends on having accurate models to apply to real life

data for extraction of values for parameters such as reduced scattering coe�cient (μs').

Across the visible and infra-red wavelength ranges, recovery of the �pure� spectra (ab-

sorption or an individual scattering type such as non-resonant Mie scattering) required

for this is di�cult, even if the model and parameters selected for this analysis are a

good �t for the real data. This inhibits reliable comparison across samples.[75] With our

understanding of elastic scattering in complex media changing so rapidly, a diagnostic

method which utilises scattering signals without requiring a complete appreciation of

the origins and behaviours of scattered light in tissue would be prudent.

Elastic scattering spectroscopy (ESS)

Elastic scattering spectroscopy (ESS), or di�use re�ectance spectroscopy, utilises the

spectra of light which has been di�usely scattered by tissue to retrieve tissue optical

properties for diagnostic purposes. While ESS spectra can, like in LSS, be analysed by

�tting them to a model, the di�use light scattering spectra produced are signi�cantly

more complex which makes this approach less appealing and less common.[76] Addi-

tionally, as light which has undergone multiple scattering events can be included, ESS

spectra tend to be simpler to collect, lending the technique to in vivo studies. For both

of these reasons, a broader range of potential analysis techniques are apparent in the

literature including direct analysis of speci�c wavelength regions of the spectra and un-

supervised clustering such as by LDA.[77] First and second order derivatives of di�use

re�ectance spectra (DRS), collected at a range of distances by a handheld probe, were

used to develop a classi�cation algorithm in work by de Konig et al.[78] This technique

was designed for ex vivo intraoperative use, to evaluate the deep resection plane of oral

cancers. Many DRS techniques utilise the distribution of coloured molecules in tissue,
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such as haemoglobin to create diagnostic metrics.[79] In this intraoperative application,

the presence of blood which is not contained within vasculature prevented use of this

common approach and necessitated extension of illumination wavelength range into the

near-infra-red (NIR). Diagnostic sensitivity and speci�city using a linear support vector

machine in a �ve-fold cross validation process depended on measurement probe distance

but were as high as 82% and 89%, respectively.

In later work with the same system, it is referred to as near-infrared hyperspectral

imaging rather than di�use re�ectance spectroscopy.[80] This belies the large overlap

between the two techniques.

Hyperspectral Imaging (HSI)

HSI is a broad term referring to techniques which collect the transmission, �uores-

cence, re�ectance or scattering (elastic or inelastic) by a sample of di�erent, discrete

wavelengths of incident light. An intensity against wavelength spectrum for is con-

structed from this information for each pixel or sample region. These spectra are

unique to di�erent materials which can be used to help identify di�erent components

of the sample. Whilst it can be said that Raman spectroscopy and ESS, for example,

are hyperspectral techniques, they would rarely be called HSI. When a more speci�c

de�nition is available for a technique, �hyperspectral� is rarely used to name it. Most

modes of HSI can be performed wide�eld, preventing damage to delicate tissue samples

with low illumination intensity and providing high imaging speeds making it ideally

suited for tissue screening.

There are many ways to illuminate each �pixel� of a sample at multiple wavelengths,

and the technique chosen depends on the application and the available equipment.

There are four modes; spectral, spatial, spatiospectral and non-scanning, each with

several di�erent scanning techniques. Spectral scanning involves taking a 2D (x, y)

image of a sample at every wavelength (λ) within a range to create a �hypercube�, as

shown in Figure 7.
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Figure 7: A hypercube, with di�erent illumination wavelengths (λ) shown as coloured
�elds of view (x,y), stacked into a �cube� of data.

A tuneable light source illuminates the sample at one wavelength and takes a wide-

�eld image. The system then continues to alternate between taking an image and

changing the wavelength until the full wavelength range has been covered. The step

sizes should be as small as possible (to produce the highest spectral resolution) and

found by iteratively decreasing the step size until no additional features appear [81] or

the bandwidth of the light source becomes the limiting factor. The spectral and spatial

data are then combined to make a 3D (x,y,λ) data �hypercube�.

Figure 8: The four main hyperspectral imaging spatial scanning modes.

In spatial scanning hyperspectral techniques, a full slit spectrum is produced for

each pixel or row of pixels by one of four main modes shown in Figure 8. The basic

setup is comprised of a prism-grating-prism optical system (or similar) with a sample

placed on a moving stage so that pointwise or linewise spectra can be collected by

a camera.[82] These point or line scanning techniques are known as whiskbroom and
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pushbroom, respectively. Two rarer scanning techniques are windowing and framing.

The former involves the scanning of a 2D (x, y) frame and the latter creates a grid of

2D frames, each one �eld of view (FOV), that cover the whole sample. [83]

Spatiospectral scanning is the most recently developed mode and it produces di-

agonal slices of the hypercube, each of which is a spatial map of the scene in every

wavelength of the chosen range.[84] The technique is di�cult and its theory was pro-

posed long before it was practically achieved.[85] These setups include a slit with a

dispersive element onto which projections from a pinhole array are projected, and a

camera that adds a 2D (x, λ) strip to the hypercube which is completed by scanning

the camera perpendicular to the slit.

Snapshot and staring hyperspectral imaging are non-scanning modes. Snapshot

HSI systems have no moving parts and instead record the full spatial and spectral details

of a �eld of view with each frame. As the system does not have to scan in any dimension,

it can be used at video-rate to monitor moving objects and active processes.[86] The

wavelength is changed continuously and the full hypercube is recorded in one frame

with no moving parts or scanning required.[87] There are now several di�erent methods

by which snapshot systems work including �bre-reformatting imaging spectrometry,

computed tomographic imaging spectrometry and image mapping spectrometry.

Spatial scanning is used most commonly in remote sensing and surveillance, spectral

scanning in microscopy applications where one �eld of view can cover the majority of

the sample and spatiospectral has potential in monitoring active processes.

HSI Analysis

The data produced by all hyperspectral methods are 3D (x, y, λ) hypercubes.(Figure

7 ) With such large volumes of high-dimensionality data, analysis options are abundant.

Samples produce unique spectra depending on how they interact with photons of dif-

ferent wavelengths. In most �elds utilising HSI, samples are coloured and therefore

most spectral features are from absorption. As a result, a large proportion of HSI

analysis work relies heavily on �matched �ltering� (a type of partial unmixing) where

collected spectra are matched with reference spectra from a relevant library in order

to identify sample components.[88] Mie scattering by nuclei and mitochondria is the

greatest contribution to visible and NIR scattering spectra in tissue so HSI performed

on unstained biological samples will produce spectra mostly comprised of Mie scatter-

ing, some Rayleigh scattering and occasional absorption from residual pigments such

as haemoglobin. As absorption is minimal and the main source of contrast will be

scattering, resulting spectra often lack distinctive features. It is therefore necessary to

characterise sample regions by the overall shape of their spectra rather than by com-

paring speci�c features from reference spectra, which is more time consuming. The
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reference spectrum attributed to a sample region will be the one with the most similar

absorption at the most wavelength values. Even with this constraint, analysis relying

on matched �ltering has two major shortfalls for this application: Firstly, the spectral

libraries available are largely for agricultural and surveillance application with no com-

prehensive biomedical libraries available. Secondly, most systems require the user to

input control spectra of the expected image constituents meaning that prior knowledge

of the image subject is required which is undesirable for our application which aims to

be as automatic as possible with minimal human input. Also naturally occurring ma-

terials, such as those we will be investigating, vary in composition and therefore have

variable absorption spectra making their identi�cation more di�cult than synthetic

materials which tend to be more consistent.

K-means clustering achieves a similar outcome, but without the use of reference

spectra. This allows spectra to be separated into a user-de�ned number of distinct

groups according to how di�erent they are, without de�ning the source or �seed� of each

spectral group. It has been used to great e�ect in separating breast ductal carcinoma

from healthy breast tissue. Hypercubes of unstained tissue sections were collected

with a snapshot HSI system and compared to H&E stained tissue sections segmented

by histopathologists. The k-means-based classi�cation achieved a detection sensitivity

of 85.45%, and speci�city of 94.64%.[89] This technique is often described as semi-

supervised as it only requires the number of sample components to be selected by the

user. A semi-supervised technique allows us to begin answering the question �Can we

segment healthy and/or cancerous tissue in a useful way using HSI?� without making

complex assumptions about the data which can be a source of errors, as in the modelling

based LSS and ESS approaches discussed previously. As we were not aiming to make a

diagnosis based on a speci�c biological or cancer feature or product, this was su�cient.

HSI data has also been successfully classi�ed using supervised machine learning

methods based on multilayer perceptrons and other neural networks. When the data

has a large number of wavelength steps compared to number of spectra collected, how-

ever, these methods su�er from the Hughes phenomenon where the accuracy of the

classi�cation begins to decrease at a certain, high band number.[90] As a result of this

overtraining e�ect, the classi�er can have poor generalization capabilities. A classi�ca-

tion method widely used in HSI that overcomes the Hughes phenomenon is the use of

support vector machines (SVM).[91, 92, 93, 94, 95, 96, 97, 98, 99, 100] Support vector

machine (SVM) based methods are popular due to their good generalization capabil-

ities, ability to classify globally and lack of sensitivity to the number of dimensions

present.[101] These methods do have some limitations, however: Oral tissue is uniquely

complex exhibiting substantial interpatient heterogeneity.[102] The complex anatomy

of the oral cavity with di�erences in histology, keratin content, and diverse lesions
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makes it distinctive from other organs. Large intra-class variation makes oral cancer

particularly di�cult to train diagnostic classi�ers for. Machine learning approaches also

require access to a larger number of representative samples to be used as training data,

and a large time investment from one or multiple histopathologists who would need to

classify each and every case.

In neoplastic tongue tissue feature extraction work by Fei et al, nucleus and cyto-

plasm texture features extracted from the epithelium were regularly selected as the fea-

tures with the greatest discriminatory power.[102] Whilst many studies ignore the spa-

tial content of hypercubes, neighbouring pixels are often highly correlated, and combin-

ing this information with spectral classi�cations can provide additional information.[103]

Texture analysis characterises image regions by looking at the spatial variation of

pixel intensity values. As most samples will contain areas of di�erent textures, locating

and demarcating the boundaries between these textures can provide useful segmenta-

tion. Popular statistical methods for texture examination include �rst order statistics

such as standard deviation of grayscale value, Gabor �lters, fractal textures and second

order statistics derived from the grey-level co-occurrence matrix (GLCM), de�ned by

Haralick et al in 1973.[104]

Texture analysis has been used successfully on a wide range of image types to eluci-

date cancerous cell and tissue alterations. Chalut et al induced apoptosis in MCF7 cells

using two chemotherapy drugs; paclitaxel and doxorubicin. By comparing scattering

images and �uorescent images at di�erent timepoints they were able to link the increase

in the fractal dimension, which correlates with subcellular texture, with mitochondrial

and nuclear alterations due to induced death. 4 Understanding apoptosis is seen as a

key step in understanding cancer biology and these results. The standard deviations

of elastic scattering spectra of tumors are often shown to be much higher than normal

tissues and, in spite of being a di�raction limited technique it is sensitive to spatial

variations in refractive index below the di�raction limit.[92, 106]

Texture analysis has also provided some potential mechanisms which can help to

account for the increased scattering variance in cancer. Modelling of light scattering

by cervical cells with varying degrees of neoplasia by Drezek et al using a sophisticated

�nite-di�erence time-domain model which allows Maxwell's equations to be solved nu-

merically, showed that healthy nuclei are signi�cantly more homogeneous than those

in neoplastic cells due to chromatin clumping which occurs in high grade nuclei. They

also demonstrated an increase in scattering intensity across all detection angles with

neoplasia, in spite of nuclei being predominantly forward-scattering, and an increase in

4Fractal dimension is a statistical measure of textural complexity which probes how the features
change with scale.[105]
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scattering cross section and its variance belying an increase in the nucleus size and DNA

content as well as in range of cell size and shape as expected due to pleomorphism.[107]

Existing Work on HSI for Cancer Detection

HSI has been used for many years in the military for surveillance, in agriculture,

geoscience and astronomy however its use in the biomedical sciences is more recent

and less well explored, particularly in unstained tissue. Work has rapidly progressed

to its diagnostic application in vivo however realising the use of point-of-care diagnosis

techniques in clinics is di�cult. As a very fast technique with high sensitivity and

spatial resolution, its potential for application in a supporting role in histopathology is

clear, and evidenced in the selected works below.

There is little published work on using visible wavelength HSI to image unstained

tissue sections although individual cervical cells have been characterised as cancerous,

pre-cancerous and benign with success rates of 95.8%, 66.7% and 93.5% respectively

using wavelengths 400-1000 nm.[108] Both spectral and spatial information such as

nucleus size were used to make diagnoses. Infra-red (IR) wavelengths have been used

more successfully. Several groups have used the fast tuning bene�ts of quantum cascade

lasers (QCLs) to this end: Kroger-Lui et al rapidly identi�ed goblet cells in unstained,

para�nised thin sections of mouse colon with mid-infra-red (MIR).[109] The spectra

were processed by training a random decision forest classi�er on one sample with a

k-means clustering basis, after which it was successfully applied on �ve more tissue

sections for blind validation. The ratio of absorption at 9294 and 8467 nm and the

absorption integral over the wavelength range 9200 to 9737 nm were used in combination

to identify tissue components, similar to the matched �ltering often performed on non-

biological hyperspectral data. Kroger also led another team in using a similar system

with a microbolometer array detector to successfully image unstained mouse jejunum

with di�raction limited spatial resolution using MIR illumination.[110]

Successful works using HSI for the diagnosis of oral and head and neck cancer (HNC)

have almost exclusively been on stained tissue where absorption is the primary source

of contrast. Research on unstained tissue, inevitably using scattering as the main

contrast mechanism, is less common and analysis of the data in these studies varies

greatly. Ou-Yang et al demonstrated a sensitivity of 90 ± 4.53 % and a speci�city of

87.8 ± 5.21 % in the detection of cancer in stained oral carcinoma biopsies.[111] They

used an embedded relay lens microscopy hyperspectral imaging system (ERL-MHSI) in

transmission and two �uorescence modes, 330-385 nm and 470-490 nm, which bene�ted

from combining morphological and spectral information. The morphological data was

processed using fractal dimensions and �ve di�erent spectral data analysis methods

(selected on a case by case basis depending on a number of factors such as patient age).
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They used 58 training samples and just 10 test samples. Akbari et al reported very good

sensitivity and speci�city of HNC metastasis detection of 92.6% and 97.7% respectively

in lung histological slides and 96.2% and 98.3% respectively in lymph node slides by

imaging H & E stained histopathological slides with a hyperspectral microscopy system

utilising wavelengths in the range of 450-950 nm.[94] The data were classi�ed using a

support vector machine after using 12 slides for training and evaluation by leave-one-

out cross-validation. Whilst the cancer cells themselves started life in the oral cavity,

the surrounding tissue morphology is extremely di�erent, making the generation of

machine-learning based discriminants possible with less risk of overtraining.

Histopathological diagnosis and grading of oral epithelial dysplasia is informed by

both architectural and cytological changes. As a result, focus is shifting to imaging

modalities and analysis methods which can extract information about both facets of

the diagnostic picture; chemical and morphological, such as in the cervical cell work

by Siddiqi et al outlined previously. Most notably, Fei et al used colour, texture,

morphological and topological analysis of RGB images of H&E stained mouse tongue

sections to extract key diagnostic features in identifying neoplasia. These features were

combined to create a predictive model for diagnosis which was evaluated on human

tongue tissue by leave-one-out cross validation, yielding a sensitivity and speci�city of

100% and 82.7%. Hypercubes of the same mouse tongue tissue, in vivo and ex vivo

(fresh), were also collected across a 450 � 900 nm wavelength range. The magnitude

of the Spearman's rank correlation coe�cients (rs)
5 for these di�use scattering spectra

and the key diagnostic features extracted from the histological features were evaluated.

In 8/9 features, rs ≥ 0.5, though overall correlation was slightly lower in the ex vivo

tissue than in vivo.[102] This bodes extremely well for the interrogative and diagnostic

capacity of unstained hyperspectral imaging of oral cancer as a standalone technique.

As HSI has been used successfully in vivo, there appears to be great potential for

HSI as a fast pre-screening technique and perhaps even a diagnostic tool.[112] Due

to the required remodelling of the current diagnostic pathway, point-of-care diagnostic

devices are unlikely to be adopted by healthcare providers, evidenced in part by new

incentives to support innovative medical device uptake.[113] E�cacy of in vivo hyper-

spectral techniques based on di�use elastic scattering is a�ected by the various pigments

which occur naturally in the body, such as melanin and haemoglobin. In HSI, highly

absorbant haemoglobin is such a strong spectral feature that di�use scattering informa-

tion becomes di�cult to retrieve, limiting its useful application to instances where the

haemoglobin distribution and oxygenation itself can be used as the primary diagnos-

5Spearman's rank correlation coe�cient is a measure of the strength and direction of correlation
between two sets of data. It can take values between -1 and +1 with 0 indicating no association
between the two datasets and +1 indicating perfect positive correlation.
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tic feature. Examples include ex vivo, whole fresh excised tissue samples which retain

their blood distribution or in vivo applications such as intraoperative tumor margin

detection.[114, 115] Additionally, in vivo techniques are sensitive to movement and face

the challenge of coregistration with H&E stained sections for validation; a step which is

non-trivial even in ex vivo studies. The di�culty of proving high sensitivity and speci-

�city by this validation process may in part explain low clinical uptake of such devices

as it is an inevitable component of the 501(k) pre-market approval process which brings

most medical devices to market. Nonetheless, given the abundance of simple, in-vivo,

haemoglobin absorption-based techniques available and the minimal uptake in clinic, it

seems prudent to focus on developing techniques which dovetail more neatly with the

current diagnostic pathway.

There is evidence to give hope that the proposed hyperspectral elastic scattering pre-

screening modality may be su�cient to segment and diagnose oral cancer, though in

histologically prepared tissue samples, and in wide�eld transmission mode for maximum

signal intensity and imaging speed, scattering can be di�cult to spatially register as

it may undergo several scattering events. Spatial coregistration with an inelastic light

scattering technique could help in making diagnostically relevant tissue maps, adding

speci�city and meaning to the di�use light scattering. With both elastic and inelastic

scattering-based tissue imaging having major limitations for diagnostic applications, a

combined system exploiting each technique for its best attributes, namely speed and

speci�city, is evidently worthy of investigation.[62]

1.3 Summary

Oral cancer is a globally worsening issue with poor survival rates linked strongly to late

diagnosis. The current diagnostic pathway involves tissue biopsy and diagnosis by a

histopathologist; a process which is qualitative and which therefore has poor repeata-

bility. Hyperspectral elastic scattering microscopy and Raman spectroscopy have been

combined very few times before, and never before on unstained tissue sections which

would be most compatible with the current oral cancer diagnostic process. The main

example of a combined HSI-Raman system comes from Smith et al who built a system

able to perform both imaging modalities simultaneously using a < 10 µm-wide focused

laser spot and collecting the Raman signal in transillumination mode.[116] Spheres of

3nm diameter were resolved by analysis with Lorenz�Mie theory and both modalities

successfully registered di�erences between isolated monocytes and granulocytes.[117]

While this combination system shows great promise for single cell applications, it is not

well suited to a high throughput cancer screening application.

In our proposed �nal combined system, elastic scattering will be exploited for its
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speed as a pre-screening process, aiming to coarsely segment the tissue. It is envisioned

that each of the segmented areas will then be randomly point-sampled using Raman

scattering to make the tissue diagnosis, employing the high chemical speci�city and

proven cancer diagnostic capabilities of Raman spectroscopy.

Both hyperspectral elastic scattering microscopy and inelastic scattering based spec-

troscopy have been shown to be sensitive to cancerous changes in tissue. This does not,

however, mean that they are sensitive to the same biological alterations. It is possible

that the segmentation a�orded by the HSI will be very di�erent to the Raman maps

and the two techniques will not be complementary for this application. In this case,

its performance against the gold standard, histopathological evaluation of H&E stained

tissue, will be evaluated alone. The HSI-based pre-screening process may have merit

as a solo technique for oral cancer tissue section screening as research has shown that

unstained HSI is sensitive to the most in�uential diagnostic features due to scatter-

ing changes produced by altered tissue architecture and morphology during neoplastic

transformation.[102]

Head and neck, and especially oral, tissue is notoriously diverse due to its com-

plex anatomy.[79] Naturally, oral lesions are also complex and varied making it di�cult

to discriminate cancerous tissue from healthy due to the large intra-group variations.

Even when isolating nuclei, characteristics of which encode more cancer information

than other sub-cellular components, cancerous spectra are di�cult to distinguish from

healthy. Ma et al were unable to make this separation in one �fth of their cohort of head

and neck (larynx and hypopharynx) cancer samples, yielding speci�city ranging from

51 - 82 % dependent on analysis method. This once again highlights the importance

of fully exploring the data by using a range of analysis methods. To this end, we will

explore both spectral and spatial analysis techniques, performing PCA for dimension-

ality reduction, k-means clustering for spectral-based segmentation and also texture

analysis based on GLCM statistics. These techniques have performed well in previous

hyperspectral scattering work and require very little user input, making them ideal for

use in an automated clinical system.

1.3.1 Thesis Outline

This thesis will outline the development of a HSI oral cancer tissue segmentation sys-

tem, for use in combination with Raman spectroscopy, for the detection of oral cancer

from unstained, frozen tissue sections. Each of the three Parts details data collected

with, a di�erent system which was improved based on the work undertaken in previous

Part(s) and with its intended clinical application in mind. Full data collection and

correction software will be developed, along with a coregistration work�ow to allow
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comparison between the three segmentation modes; histopathology (gold standard),

HSI and Raman spectroscopy. User input will be minimised in this work�ow with the

aim of complete automation of the �nal system and dissemination of associated soft-

ware for use by others in the �eld, where possible. The performance of the proposed

HSI tissue pre-screening segmentation system will be evaluated with reference to con-

sensus histopathologist diagnosis, and compared with the segmentation achieved by

the Raman spectroscopy to assess their compatibility in a combined system. Potential

application of the HSI or HSI-Raman system for the screening of bioaccumulation of

particulate matter and microplastics will be explored brie�y in Part II, followed by

overall conclusions and recommended future work.
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Part I

Initial HSI System Development and

Proof of Principle

As there was no documented system that successfully used visible wavelength HSI on

unstained oral tissue sections for oral cancer detection, proof of principle was sought

using this preliminary system (Figure 12) at varying stages of its automation.

2 Early Setup and Software Development

The �rst test system was a transmission mode spectral scanning HSI system, com-

prised of a tungsten halogen source , a monochromator (CambridgeLifeSciences Ltd.

SpectraMASTER) with its �monochromatic� (~ 5 nm spectral resolution) output light

coupled via a 50:50 beamsplitter (Semrock) to a microscope (Zeiss Axiovert) with a

CCD camera (Hamamatsu ORCA-03G digital CCD) collecting the wide�eld images of

the sample. As the monochromator software was no longer supported, the wavelength

was initially altered manually.

Two di�erent samples were inspected with this system to assess the potential of the

technique, and to identify necessary alterations to the �rst, basic system. 505/515 nm

FluoSpheres�were dropcast onto a glass microscope slide and dried before being imaged

with a x20, 0.5 NA objective (Olympus) in 20 nm steps across the full wavelength range

of 350-750 nm. Also, an unstained section of submandibular gland was imaged with

x10, 0.25 NA objective (for an increased �eld of view) at a �xed exposure time of 70

ms, in 20 nm steps across the full wavelength range. The resulting hypercubes were

then input into the home-built cluster analysis software that extracts and compares

the transmission spectrum for each pixel of the full image, at each wavelength using

k-means overclustering and principal component analysis (PCA) as detailed in 3.3.

Fluorescent beads were accurately highlighted by the cluster analysis, however small

background contributions were included in the same clusters. This is likely due to the

large wavelength step size inhibiting feature separation. Additionally, the centres (x,y)

and tops (z) of the beads were members of a di�erent cluster to the edges (x,y) and

middles (z), which shows, as expected, a change in focal plane with di�erent illumination

wavelengths which requires correction or compensation.

In the unstained tissue hyperstacks, di�erent wavelengths clearly highlight di�erent

features. For example, ducts are clearly visible at 400 nm but are very faint by 500

nm as shown in Figure 9. These pixel intensities which change with illumination wave-
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length evidence transmission spectral features which could either be caused by photon

absorption or scattering events: As the samples are unstained and colourless and the

spectral features are broad, the former is most probable.

Figure 9: Top: An image of unstained submandibular gland tissue with x10 objective
at 400 nm from hyperspectral datacube. Red box highlights a duct and the scale bar
represents ~ 60 µm. Bottom: An enlargement of that duct at 400 and 500 nm with
scale bar representing 15 µm.

Whilst di�erent features in the tissue sample can be distinguished, decreased wave-

length step size may be required to ascertain the source of the spectral features (ab-

sorption or scattering) and to produce more precise and distinct spectra to facilitate

more informative spectral segmentation. The coarseness of the spectra is evidenced in

Figure 10.

Figure 10: An output from the cluster analysis software calculated from the aforemen-
tioned hypercube, collected across is 350 - 750 nm (step size 20 nm) with exposure time
of 70ms, showing pixels (in white) contributing to the cluster spectrum on the right.
The scale bar represents ~ 60 µm.

Accuracy of the spectra produced were also compromised by source power variation

across the wavelength range which highlighted the need for exposure time correction.
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In order to ameliorate the focus, segmentation and exposure limitations identi�ed

by these preliminary experiments, it was necessary to automate the monochromator

wavelength sweeping. An Arduino Uno microprocessor with an Analog Shield (Digilent,

National Instruments) was used to provide DACs to generate an output voltage within

a ±5V range which, when connected to the monochromator, altered its wavelength

output. This made it more practical to utilise smaller wavelength increments and to

automate basic focus Z Motor (Prior Scienti�c) and exposure time correction routines.

Autocorrelation-based autofocus and iterative autoexposure routines performed well

but substantially extended the data collection time. A compromise between this im-

proved data quality and the increased data collection run time was therefore made:

The autofocus and autoexposure routines were each run once and the optimal focal

plane positions and exposure times for each illumination wavelength were saved in a

simple text �le. For each illumination wavelength during data collection, these values

were read in from their respective text �les, ascribed to the focal position and exposure

time variables and utilised accordingly resulting in signi�cantly faster imaging and was

employed for all systems in this work. Fluctuations in illumination and Z-stage shifts

or drifts between datasets were therefore not accounted for. To minimise the e�ect of

these small changes between datasets, all systems were made light-tight and employed

objective lenses with large focal depths.

These alterations minimised the three main issues discovered during these prelim-

inary experiments but also highlighted the need for a light source spanning a broader

wavelength range in addition to a monochromator with software control which operates

across this range, leading to the development of the �rst proof-of-principle system.

3 Preliminary HSI System and Software

3.1 Setup Development

The improved monochromator required more careful installation and alignment and

to this end, a completely separate preliminary setup was built on an optical bench,

shown in Figure 12. This second system was a transmission mode spectral scanning

HSI system comprised of a microscope (Zeiss Axioskop) coupled to a white light source

(ThorLabs OSL1-EC Fibre Illuminator, ~350-1000 nm) and broader range, fully au-

tomated monochromator (Newport Corporation Oriel Instruments Cornerstone 130,

300-2100 nm with Newport 74027 ruled di�raction grating, 600 l/mm, 700 nm blaze,

450-2000 nm) and camera (Basler ac2040-90um sCMOS). Both the monochromator

and camera had drivers provided which were used in the control software, written using

VB.NET.
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Figure 11: The light path of the preliminary HSI system with labelled areas A and B
corresponding with the photographs in Figure 13.

Figure 12: A photograph of the preliminary system from above with light path.

A �ipping mirror was used to switch between the alignment laser and white light

source to allow alignment to be monitored. The series of alignment optics before the

monochromator entrance slit were initially mirrored identically after the monochroma-

tor output slit. However, test datasets showed image tracking in x and y across the
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CCD with change in wavelength, most likely due to chromatic aberration of a slightly

o�-centred beam. Without signi�cant manual pre-processing, pixelwise spatial analy-

sis would be impaired as subsequent images in the hypercube would not be directly

comparable and the e�ective spatial resolution of the images would be reduced to the

tracking distance in the x and y directions. The optics used to launch the light into

the microscope were therefore replaced by a �bre (Thorlabs M37L 550 µm 0.22 NA

Step-Index Multimode Fiber Optic Patch Cables: SMA to SMA) and a liquid light

guide, before and after the monochromator respectively, to homogenise the light source

and a mirror (Thorlabs PFR10-P01) mounted at a 45° angle to direct the light up

through the sample. This alteration led to a new illumination path, shown in Figure

13, that circumvented the internal microscope optics. Most lenses are only chromatic

aberration-corrected forwavelengths in the visible range, leaving the extremities of our

illumination range vulnerable to aberrations and the associated loss of power. This new

light path almost entirely consisted of re�ective optics which do not rely on refraction

and therefore avoidaberration.

Figure 13: From left to right. The liquid light guide and mirror interface with stage.
The simpli�ed �bre-based optics launching light into, and collecting light exiting, the
monochromator. This �gure corresponds with the sections of the optical path labelled
A and B in the optical path Figure 11.

3.2 Data Collection Software

Control of the monochromator, �ipping �lter, Z-stage and camera was achieved with

VB.NET (Microsoft) and developed into one piece of software. VB.NET was chosen
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in part due to its automatic graphical user interface generation which makes the soft-

ware easy to use and train others on which would be an important aspect of clinical

translation, preventing the need for an expert microscopist to operate the system on a

day-to-day basis, or lengthy training of pathologists to this end. This hardware control

software facilitated the collection of a full hypercube with user-speci�ed wavelength in-

clusion, use of pre-de�ned focal positions at each wavelength (or autofocus, performed

using autocorrelation), use of pre-de�ned exposure times at each wavelength (or autoex-

posure), �lter �ipper control for exclusion of second order light from the monochromator

and concurrent dark �eld stack collection.

Background Correction The illumination being launched close to the sample by

the liquid light guide led to di�culties producing a �at �eld. Test datasets showed that

the resulting bright and dark regions impeded accurate segmentation and, to account

for this, a more comprehensive background removal protocol was developed and added

to the VB.NET control software and work�ow.

The correction was based on the standard �at-�eld correction described by equation

9 but evaluated cumulatively, in sections.

C =
m(R−D)

(F −D)
(9)

where C is the corrected image, m is the image-averaged value of (F-D), R is the

raw uncorrected image, D is the dark frame and F is the �at �eld image. The factor

(m) is collected and applied automatically as part of the exposure correction routine.

The dark frame captures the unilluminated view of the sample, including ambient

light contributions and camera �dead pixels� which are assumed to be constant. The

�at �eld images capture the illuminated view of the light path without the sample in

place, at each wavelength in the range. They predominantly include vignetting e�ects

and artefacts on, or in between, optical components which can appear di�erent as the

illumination wavelength is altered. Flat �eld images are also a�icted with artefacts

isolated in the dark �eld, which is re�ected in Equation 9 and informed the order and

frequency of their collection which is detailed below.

The dark frame collection was added to the VB.NET control software: After each

raw image (R) the monochromator shutter was closed and another frame was captured

(with no illumination) (D) and added to a corresponding dark frame stack which was

subtracted from the raw hyperstack using ImageJ at the end of its collection. With

the monochromator shutter alternating between open and closed, and with no sample

on the stage, a �at �eld hyperstack (F) and its corresponding dark �eld were collected

across the full wavelength range. These were re-collected for each setup permutation
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such as following changes to the light path or objective and the denominator (F-D) was

calculated using ImageJ. The manual ImageJ stack subtractions were not integrated

into the VB.NET control software as it would have greatly increased the run-time of

the software, increasing the likelihood of an incomplete run due to hardware instability.

This would be a simple modi�cation to make in a more reliable future system.

Second Order Contamination

Monochromators use di�raction gratings to select a speci�c wavelength (or wave-

band) from a broadband light source. The angle of di�raction of each wavelength

component of the incoming light can be calculated simply using Equation 10, shown

below.

mλ = dsinθ (10)

where m is an integer describing the di�raction order, λ is the wavelength of the

illumination whose di�raction is being considered, d is the line spacing of the grating,

θ is the angle between the normal vector of the grating and the intensity maximum of

the di�racted ray.

Evidently, for a broad wavelength range, the di�raction angles occupied by subse-

quent orders may not be unique.

Therefore, when setting the desired output wavelength (λ) of a Czerny-Turner

monochromator, higher order radiation (λ/2, λ/3 etc. where the denominator is the

order of di�raction) may contribute to the output, along with the �rst order radiation

(λ/1). When the contribution from this higher order radiation becomes non-negligible,

output light will not be truly monochromatic and therefore images collected with this

illumination will contain additional features highlighted by interactions of that higher

order radiation with the sample. This is unsuitable for spectral scanning hyperspectral

imaging which relies on distinct, monochromatic feature extraction. Higher order con-

tamination more commonly becomes problematic at the extremities of the wavelength

ranges catered to by gratings, due to the increased angles of incidence. In this setup,

second order contamination of ~400 nm became noticeable when the desired output

wavelength was set to ~800 nm. In order to remove this, a long pass �lter (Semrock

FF01-776/LP-25 776 nm blocking edge BrightLine® long-pass �lter) was inserted into

the optical path at the earliest opening in a �ipping mount (Thorlabs MFF102/M

Motorized Filter Flip Mount with Ø2" Optic Holder). This juncture was after the

monochromatic light from the liquid light guide was directed up towards the sample

by the mirror. The VB.NET control software was modi�ed to introduce the �lter from

785 nm to 950 nm and remove it for all wavelengths lower than 800 nm.
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3.3 Preliminary Analysis Software

During the preliminary investigations the source of image contrast was unknown and

therefore the optimum analysis technique was also unknown. A previously developed

cluster analysis programme that was developed in-house to isolate and map the loca-

tion of di�erent tissue regions from Raman spectroscopy data was determined to also

have some merit in separating regions in the hyperspectral data. This is not unex-

pected as Raman data and hyperspectral data are similar in many ways; principally,

their spectrum-per-pixel format. This software utilised PCA-based noise �ltering and

k-means clustering to ensure a good degree of similarity within all clusters, followed by

a unique overclustering �nal step which estimates the number of components automat-

ically meaning no prior information about the sample was required.

3.3.1 PCA and K-means with Overclustering Theory

A new technique was created at KCL, with further development by Renishaw, called

overclustering which utilises the long established k-means clustering as a subroutine. It

works as follows.

1. PCA Noise Filtering

(a) Principle components are curves which show the variance between the spec-

tra. They were calculated by �nding the eigenvectors of the covariance ma-

trix for all the spectra at each wavenumber (or wavelength). The eigenvectors

themselves are the principle components.

(b) They were then ranked according to how great an e�ect they had on the

recalculation of the dataset and assigned a weighting accordingly.

(c) To eliminate noise, only the �rst few principle components were used to

recalculate the spectra in the synthetic (noise-�ltered) dataset.

2. Overclustering

(a) The k cluster centroids (mean spectrum of the cluster) were initialised using

Monte Carlo. How �close� each spectrum was to this centroid was then

calculated in terms of the Pearson Correlation Coe�cient starting at k = 2.

(b) Each spectrum was then assigned to the cluster with the closest centroid,

shown by the largest PCC value (rmax).

(c) The spectrum with the smallest value of rmax (rlow) (the least similar spec-

trum to the two centroids) was then selected to seed a third centroid.
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(d) K-means was then repeated with k = 3, and so on, until rlow changed less

than a set amount. (This eliminates randomness: k-means has randomness

throughout whereas the only random step of this overclustering method is

the seeding of the initial centroid. From k = 2, the method of seeding the new

clusters is systematic which ensures that the same set of data consistently

produces the same clustering results.)

3. Optimal Cluster Number Selection: This step automated selection of the

optimum number of clusters, k, ideally corresponding to all of the separate tissue

constituents. If there are k unique centroids which make up an optimum set,

overclustering will �nd this set and a number of additional clusters. As the

optimum set must cover the full range of the tissue constituents, any additional

clusters must be linear combinations of those in the optimum set. This simple

fact was used to estimate k within an error of ±2 clusters using the following

method.

(a) For each centroid, all of the other centroids were used as a basis to calculate

the least squares �t.

(b) The sum of squares error (SSE) of this �t was then evaluated for each cen-

troid.

(c) The centroid with the lowest SSE was ranked lowest and removed from the

set.

(d) The �rst three steps were repeated until only two centroids remained in the

set.

(e) Simultaneously, a graph of SSE against number of centroids remaining in

the set was constructed. This graph follows a rapidly decreasing trend which

sharply levels o�. Centroids below this levelling-o� value will be unique.

(f) The point at which the plot �attens must was then identi�ed manually:

This process is somewhat subjective as it very rarely occurs at one point,

but usually over two or three.

4. Cluster Assignation

(a) Each of the optimum centroids (as found above) then underwent a least

squares �t with the others in the set as a basis.

(b) The least squares coe�cients were normalised to one and then used to cal-

culate the probability that a particular spectrum is a member of a cluster

given by a speci�c centroid.
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(c) The highest cluster probability score was then used to assign spectra to a

cluster.

(d) Each cluster channel was then represented visually by plotting the pixels

with spectra assigned to that cluster in white, on a black background.

(e) Colour maps could then be generated by randomly assigning a hue to each

cluster and plotting the position of all clusters in their respective colours on

one image.

Output

The segmentation results from the cluster analysis were output in a tabular format

shown in Figure 14, including the spectrum of each cluster and the distribution of those

clusters for each sample. Each cluster spectrum is shown as a red line connecting black

data points with axes of (pixel) intensity and frame number, the latter of which ranges

from 0 - 300, representing each illumination wavelength of the hyperstack; 450 - 750

nm. Showing the cluster distribution in each sample side-by-side allowed comparison

between the distribution of individual spectral components in di�erent samples, assist-

ing identi�cation of the component. Additionally it was possible to output a colour-

coded map condensing all of these segmentation information into one image per sample,

and a corresponding coloured pie chart showing the the relative areas of each sample

described by each cluster. These representations of the data were useful, however in

both instances the colours were randomly generated, which occasionally jeopardised the

clarity of the colour maps.
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Figure 14: A table illustrating the format of the results output by the home built
overclustering software used for the analysis of HSI and Raman data collected using
the early and preliminary HSI systems detailed in Part Is. The spectrum is a plot of
intensity with wavelength (counting from 0 at the start wavelength) which is, practically,
a plot of the grayscale value at each pixel in each slice of the hypercube. The channel
row shows where the corresponding spectrum is present in each sample loaded into the
analysis software simultaneously. The entries (a), (b), (c) etc. show a binary map of
the sample with white pixels indicating the location of that spectrum (row) in that
sample (column) scan area. For example, spectrum distribution map (a) shows where
spectrum 1 can be found in sample 1, (b) shows where spectrum 1 can be found in
sample 2, (c) shows where spectrum 2 can be found in sample 1 etc.

4 Materials and Methods

4.1 Sample Selections and Sourcing

A variety of samples, outlined below, were selected to investigate di�erent aspects of

the system's capabilities.
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Samples Rationale

Fluorescent Dyes Well characterised samples to test system spectral accuracy.
Blood A well characterised biological sample to ascertain the

ability of the system and cluster software to identify changes
in concentration.

Stained Oral
Tissue

To test the performance of the HSI system on an enhanced
(visible wavelength stained) sample of the target tissue.

Whole Mouth
Saliva

A transparent but complex biological sample to ascertain
whether the system could highlight any features invisible to

the naked eye.
Unstained Oral

Tissue
Preliminary proof of principle and to assist software

development and to test the viability of visible wavelength
illumination HSI of unstained tissue.

Table 1: A table outlining the rationale behind the proof of principle samples selected
to investigate the capabilities of the preliminary hyperspectral system (Figure 12).

Reference spectra of �uorescein, rhodamine and blood are included below for ver-

i�cation of the spectral accuracy of the system. The centrepoint of the rhodamine

and �uorescein dye absorption peaks (shown in Figure 15) lie at 560 nm and 488 nm,

respectively. [118]

Figure 15: The absorption spectrum of rhodamine dye (left) and �uorescein dye (right)
made with AAT Bioquest.

The absorption spectra of oxygenated and deoxygenated haemoglobin shown below

in Figure 16 was created from data from Prahl et al.[119]. The peaks would decrease

in intensity on dilution with PBS.
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Figure 16: The absorption spectra of oxygenated and deoxygenated haemoglobin.

As the blood was collected using the �nger prick method, it is capillary blood which

is a combination of arterial and venous blood which are oxygenated and deoxygenated,

respectively.

Patient tissue samples and data were provided by Guy's & St Thomas' Head &

Neck Biobank � part of the KHP Cancer Biobank, which is supported by the Depart-

ment of Health via the National Institute for Health Research (NIHR) comprehensive

Biomedical Research Centre award and Guy's & St Thomas' NHS Foundation Trust.

The biobank has ethical approval from the East of England - Cambridge East Research

Ethics Committee (18/EE/0025).

This study utilised three healthy and three malignant stained, three healthy and

three malignant unstained, oral tissue samples and which were randomly selected from

the sample set of Dr. Manickavasagam to ensure representation of a range of anatomical

sites and malignancies.[120] Imaging was undertaken �semi-blind� in that I was aware

of the diagnosis for each tissue section (in order to select appropriate samples) but not

what features on the slide led to each diagnosis.
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Staining Health Sample

No.

Description

Stained Healthy 8545 Buccal mucosa

3689 Submandibular

gland

780 Parotid

Malignant 7772 Parotid acinic cell

carcinoma

4025 Squamous cell

carcinoma, tongue

5178 Carcinoma, ex

pleomorphic

adenoma

Unstained Healthy 232 Submandibular

gland

4984 Parotid

6111 Floor of mouth

Malignant 8883 Precancerous

adenoma, parotid

8460 Squamous cell

carcinoma, oral

9120 Adenoid cystic

carcinoma, parotid

Table 2: A table including a description of of each tissue sample, its sample number
and whether it is stained or unstained.

4.2 Sample Preparation

4.2.1 Fluids

The �uids rhodamine, �uorescein, blood (3 di�erent dilutions with PBS) and whole

mouth saliva were all prepared similarly by dropcasting directly onto a glass microscope

slide and leaving to air dry. When the samples dried, they did so in a co�ee ring

formation; an e�ect driven by capillary action in particle-containing solutions. The

samples were therefore dried before use to avoid their drying over the course of the

imaging process, changing over time as the �co�ee rings� form and rendering images at

di�erent wavelengths incomparable to one another. The volumes dropcast in each case

were 1 ml, 1 ml, 5 µl and 5 µl, respectively. The blood was diluted with phosphate

bu�er solution (PBS), in order to maintain the structure of the red blood cells, in blood

to PBS ratios of 1:1, 1:2 and 1:3.
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4.2.2 Tissue

Freezing of Fresh Tissue

1. Fresh tissue was harvested from specimen.

2. This fresh tissue was then placed on a piece of cork with OCT.

3. Frozen in iso-pentane cooled with liquid nitrogen.

4. The tissue was then quenched quickly in liquid nitrogen to ensure complete freez-

ing with no ice crystal artefacts.

5. The frozen tissue sample was then placed into a labelled cryovial and stored in

-70°C freezer.

Frozen Tissue Sectioning

The frozen sample was placed on a cryostat chuck and adhered with OCT, which

acts as a glue/support medium, by freezing in liquid nitrogen. Care was taken not to

thaw the tissue during this process.

From each sample, two sections were cut on Leica CM1850 cryostat:

1. H&E

(a) A 4 µm thick section was cut and picked up onto a glass microscope slide

(Surgipath microscope slide: 3808122GCE).

(b) The slide with section was placed in coplin jar with frozen section �xa-

tive (Formaldehyde (40%): Genta Medical EC 200-001-8 EC Label UN2209,

Acetic acid 99-100% (glacial): VWR 20103.295, Industrial Methylated Spir-

its (IMS): Genta Medical EC 200-578-6 EC Label UN1170) for 2 minutes.

(c) The section was then stained by H&E (see staining protocol 4.2.2).

(d) A coverslip (Menzel-Glaser, 22x26 cover glass, 6776311) was then mounted

(Histolab pertex 00801-EX) on the slide, covering the tissue.

2. Laser section

(a) A 10 µm thick section was cut and carefully placed onto a calcium �uoride

slide (Crystran CaF2 20 mm diameter, 0.5 mm thickness, polished Raman

grade).

(b) A second CaF2 slide was gently placed on top of the �rst, with the tissue

section between the two. They were adhered with a thin layer of clear nail

varnish ensuring this did not get drawn into the section by capillary action.
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(c) The glass slide on top was labelled.

(d) The slides were then stored at -70 to -20 °C.

Staining

H&E slides (slide 1 from sectioning protocol 1) were stained on the linistainer (Shan-

don Linistain) using the following sequence and time periods:

1. Industrial methylated spirits (IMS) (Genta Medical EC 200-578-6 EC Label UN1170)

(20 seconds)

2. Tap water (20 seconds)

3. Harris Haematoxylin, non-acidi�ed (Shanon - Harris Hematoxylin, Non-acidi�ed

Thermo Scienti�c 6765001) (40 seconds)

4. Tap water (20 seconds)

5. Acid alcohol comprised of 0.25% hydrochloric acid (Fisher scienti�c Hydrochloric

Acid S.G UN1789) and IMS (Genta Medical IMS EC 200-578-6 EC Label UN1170)

(20 seconds)

6. Tap water (20 seconds)

7. Saturated lithium carbonate solution for bluing (Fisher Chemical Lithium car-

bonate L/2100/50, in deionised water) (20 seconds)

8. Tap water (20 seconds)

9. Eosin Y 1% (Cell Path Eosin Y Stain 1% (Aqueous) RBC - 0100-00A) (20 seconds)

10. IMS (2 x 20 seconds)

11. Xylene (Genta Medical Xylene EC 215-535-7 EC Label UN1307) (2 x 20 seconds)

.

4.3 Data Collection and Processing

All of the HSI datasets were collected as a single �eld of view (no mosaicing) using

a x10, 0.25 NA objective and across a wavelength range of 450-750 nm with spectral

step size of 1 nm. In cases where the full sample could not be imaged in one �eld of

view, the area with the most valuable information (assessed qualitatively, by eye) was

imaged. The process of how the HSI data collection software was setup up and run is

detailed below.
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4.3.1 Hyperspectral Imaging

Figure 17: Graphical user interface for the home-built hyperspectral imaging data col-
lection software.

1. The home-built software was launched, showing the GUI in Figure 17.

2. The sample was placed onto the microscope stage.

3. The desired objective was rotated into place.

4. The same objective was selected from the drop down objective menu on the

software (this ensured that the correct focal plane and exposure time lists were

utilised).

5. The �Live� button was pressed to allow video rate display of the sample for manual

focussing.

6. If necessary (for example if focusing at wavelengths which require a high exposure

time and for which manual focusing is therefore di�cult), the size and number

of z-steps could be set at this stage and the automated autofocus routine then

instigated by pressing the �Autofocus� button.

7. The following checkboxes were ticked by default: Display, Contrast, Background

subtraction, Pre-load Exposure, Pre-load Focus but could be altered at this stage

if necessary.
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8. The minimum and maximum wavelength values of the desired range and the

wavelength step size were then entered.

9. The �Sweep" button was pressed to commence the collection of the dataset.

5 Results and Discussion

The calculation process and output format of the segmentation results is detailed in

3.3.

5.1 Fluorescent Dyes

Approximately one quadrant of both the rhodamine and �uorescein dye droplets were

imaged according to the standard HSI data collection routine (4.3.1) and then background-

corrected (3.2). Both of the resulting hypercubes were input into the cluster analysis

software simultaneously to allow mutual clusters to be identi�ed and to aid compari-

son. As anticipated, the only mutual clusters present in these datasets are self-evidently

background or artefactual as opposed to components within the droplet quadrant itself.
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Figure 18: K-means cluster maps of rhodamine and �uorescein. Red scale bar represents
1000 µm.

Referring to Figure 18, the white quadrant in the cluster location map of the third

channel (from the top) and the seventh channel evidence that these channels represent

the �uorescein and rhodamine drop-quadrants, respectively. This is supported by the

�rst channel which, for both samples, highlights background contributions and which
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covers the inverse area to the aforementioned droplet clusters for each dye. To verify

this, the spectra of these dye clusters were compared to the reference dye absorption

spectra (Figure 15). The cluster analysis software truncated the intensity data and

could not be modi�ed. As a result, it was necessary to plot and extrapolate the two

linear sections of the spectra from clusters 3 and 7 to �nd their intersection points, as

shown in Figure 19. This provided an estimate of the spectral position of the absorption

trough.

Figure 19: Graph estimating the trough turning points of the transmission spectra from
cluster 3 (�uorescein) and 7 (rhodamine). The frame number along the x-axis represent
the frame of the hypercube, each of which is illuminated with a di�erent wavelength
starting at 450 nm (frame 0) and increasing in 1 nm steps with each frame.

The trough of the rhodamine transmission spectrum from cluster 7 centres around

544 nm which is within one standard deviation of the spectral resolution of the rho-

damine absorption peak value (560 nm) of the reference spectrum (Figure 15). Sim-

ilarly the �uorescein transmission spectrum trough from cluster 3 centres about 477

nm, in good agreement with the absorption peak value (488 nm) of the reference spec-

trum (Figure 15). Evidently, the spectral accuracy of the system is su�cient and the

transmission spectra were correctly formulated and then successfully interpreted by the

cluster analysis software.

5.2 Blood

Three 5 µl droplets of blood serially diluted with PBS were imaged in their entirety

according to the standard HSI data collection routine (4.3.1) and then background-

corrected (3.2). The three resulting hypercubes were input into the cluster analysis

software simultaneously to allow mutual clusters to be identi�ed and to aid comparison.

Of the �ve clusters, three of them (2, 3 and 5) appeared to highlight blood, with

each being a di�erent region of the �co�ee ring� formation caused by the surface tension

variation during the drying of the blood droplets. It was hypothesised that the di�er-

ence in blood concentration between the drops would be re�ected in the cluster analysis
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outputs. To verify this, a decreasing percentage coverage with decreasing blood con-

centration was demonstrated using basic quantitative analysis on ImageJ. The cluster

distribution maps were loaded into the ImageJ software. The percentage areas of the

�eld of view covered by each channel were then calculated and plotted for each cluster,

for each blood dilution (Figure 20).

Figure 20: A plot of the percentage of the total image area covered by each of the �ve
clusters for each of the three blood concentrations.

There are three cluster distributions (2, 3 and 5) for which the percentage area

decreases with decreasing blood concentration identi�ed by red, green and blue point

markers in order from top to bottom. These are the same three clusters that were

independently identi�ed as representing blood, showing that the system is capable of

detecting change in concentration.

This may be a useful feature of the system as the concentration of various cofac-

tors can be increased in cancerous regions and could therefore be used to help lo-

cate malignant regions.[121] Whilst no relevant cofactors are as strongly pigmented as

haemoglobin, this result shows that the system has potential to detect and localise

changes in absorber concentration.

5.3 Stained Oral Tissue

One central �eld of view of each of the three healthy and three malignant oral tissue

sections stained with H&E were imaged according to the standard HSI data collection

routine (4.3.1) and then background-corrected (3.2). After collection, the six resulting
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hyperstacks were scaled down to 1022x1022 pixels in ImageJ using bilinear interpolation

to enable simultaneous cluster analysis for easy identi�cation of mutual clusters and to

aid comparison. After PCA denoising and k-means overclustering, the location map

of each cluster for each of the six samples (Figure 21) were output separately in the

tabular format described in 3.3. The colour maps show the distribution of all clusters

across each sample. The colours are randomly assigned to each cluster and do not

encode a known substance however, by analysing all six samples simultaneously, the

colour assignation for each cluster is preserved across the samples.

Figure 21: K-means cluster maps of stained oral tissue samples. Red scale bar represents
1000 µm.

The minimum requirement for a pre-screening process would be tissue and non-tissue
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separation as this alone would improve the e�ciency and speed of Raman-based diag-

nostics by allowing background to be automatically excluded from the time-consuming

Raman data collection process. Tissue and non-tissue regions are accurately separated

for all six stained samples. Additionally some features within tissue boundaries are

highlighted in all samples, particularly in clusters 6 and 7.

Fibrous tissue is consistently selected across all samples, shown in yellow in the

colour maps, and its distribution can be linked to health status. For example, in healthy

tissue section 3689, the �brous runways which take the blood vessels and ducts into and

out of the gland architecture can be seen throughout the tissue in cross section. Playing

a very di�erent role, the �brous region on the left of the parotid acinic cell carcinoma

sample 7772 is a reaction to the tumour and can be seen in Figure 22 attempting to

support the tissue around the tumour as it invades.

Figure 22: Potential �brous tissue in sample 7772 shown lacking in the binary map of
the distribution of cluster 6 (left) and present in 7 (right). Red scale bar represents 500
µm.

While the tumour is seen predominantly in pink in the colour map of this sample

it is important to remember that, on stained tissue, di�erent clusters will group fea-

tures which are stained similarly, though they may not necessarily be the same tissue

component as scattering spectral features will be overwhelmed by strong absorption.

Additionally, cancer is made from cells and therefore stains similarly to healthy cells,

though with di�erences in proportions, such as enlarged purple stained nuclei. This

means that the distribution and density of the clusters will be more useful in detecting

malignancy in stained sections. While the other two malignant samples appear satu-

rated with yellow, the previously identi�ed �brous component, its distribution aligns

with the speci�c pathology associated with the malignancies being presented. For

example, the widespread �brous architecture in sample 5178, a carcinoma ex pleomor-
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phic adenoma, occurs as a response to this tumour which attempts to make epithelial

structures everywhere: Healthy epithelial layers such as skin are ordinarily anchored

to mesothelium by �brous tissue and our body responds to this widespread epithelial

tumour by trying to producing these conjoining �bres, enacting a familiar response to

unfamiliar epithelium. Local �brotic reactions across the tissue section aso explain the

distribution of the yellow cluster in tongue squamous cell carcinoma sample 4025. The

body attempts to create a �brous barrier between the tumour and healthy tissue but,

as it invades, it is constantly broken down and remodelled, leaving widespread �brous

residue and poorly delineated tendrils of cancer in the strip of mixed clusters down the

middle of the �eld of view.

The distribution of cluster 2 appears to represent a large component of the back-

ground for each sample with the distribution of clusters 1, 3 and 4 showing additional

background features for some samples. In an ideal dataset, the background would be

entirely described by one cluster. The fact that this is not the case suggests that there

is �uctuation or unevenness in the sample illumination and that the background cor-

rection is not completely successful in compensating for these. As the dark �eld images

are taken immediately before each corresponding tissue hyperspectral image, this is less

likely to be the source of the inconsistencies as the �uctuations would have to occur on

a very short timescale. One potential method of minimising background �uctuations

in corrected images would be to collect the �at �eld stack in tandem with the raw and

dark �eld images: Unfortunately this is not possible without a motorised stage, which

would allow the sample to be moved out of the light path.

5.4 Saliva

Saliva is a complex biological sample with many components including cells, proteins,

minerals, bu�ers and electrolytes.[122] As the sample is also transparent to the human

eye, it is ideal for testing the potential of the system for imaging unstained, colourless

samples.
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Figure 23: The �nal map of the clusters found in the hyperstack of the saliva droplet
sample and a pie chart showing the relative abundance of each cluster in the sample.
Red scale bar represents 1000 µm.

The pie chart in Figure 23 indicates that ten di�erent components were detected in

the sample showing that a great deal of extra information can be provided by imaging

the sample using HSI rather than the naked eye or conventional wide�eld microscopy,

which are the two most commonly used diagnostic methods employed in histopatho-

logical diagnosis from tissue samples (although they would ordinarily be carried out

on stained tissue). Vibrational spectroscopy would need to be employed in order to

identify the chemical composition of each component but being able to separate and

locate individual components beforehand would aid in developing a more time-e�ective

diagnostic data collection process.
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5.5 Unstained Oral Tissue

Figure 24: K-means cluster maps of unstained oral tissue samples.

The �rst three clusters shown in Figure 24 contain background components, with the

distribution of channel 3 showing the best isolation of background from tissue. The

distribution of cluster 5 isolates tissue features with negligible contribution from back-

ground, and its spectrum resembles Rayleigh scattering with a strong wavelength de-

pendence which favours shorter wavelengths. This channel, which appears to isolate

scattering signal from absorption e�ects, contains the best separation of tissue features

from tissue. Whilst scattering is segmented out in this dataset, there is no similar chan-

nel in the stained dataset. This is likely due to the absence of dominating absorption

features in this unstained data.

77



Figure 25: Channel 5 of the cluster analysis output for the unstained tissue, with
contrast hypothesised to be provided by Rayleigh scattering. Tissue sample numbers
from left to right: 4984, 232, 6111, 9120, 8883, 8460.

Features much smaller than the wavelength of illumination will produce Rayleigh

scattering. The distribution of this cluster (shown in in Figure 25) correlates with

�brous structures: Collagen �brils are ~0.3 µm in diameter with periodic striations

of ~70 nm, and therefore chie�y produce Rayleigh scattering of visible light, though

Mie scattering of collagen �bres >2 µm in diameter becomes signi�cant in the infra-red

wavelength range.[123] Conversely to FTIR where scattering is a hindrance to analysis,

this setup and analysis software is clearly capable of separating scattering completely,

rendering it advantageous. This scattering could be purposely made more prominent

if the setup was altered to utilise longer illumination wavelengths.[124] This cluster is

likely to contain information from other similarly sized tissue features, such as lysosomes

and vesicles, along with �bres though the �brous architecture has the greatest potential

for diagnostic relevance and is likely to be visible even if future systems utilise a lower

magni�cation for faster slide screening.

As in the stained tissue segmentation results discussed previously, the distribution

of this �brous component demonstrates the expected pathology of the samples. In sam-

ple 232 of healthy submandibular gland, we see cross sections of ducts (like in healthy

stained sample 3689) and similarly, we may see �bres tracking a nerve in the adenoid

cystic carcinoma parotid sample 9120. While this sample is malignant, it has a decep-

tively benign histologic appearance with a lower density of cancer cells due to cyst-like

acellular cavities. Sample 8883 is the pre-malignant version of the cancer of the car-

cinoma ex pleomorphic adenoma stained sample we discussed previously and, while it

is currently benign, this �brous Rayleigh scattering channel appears to show architec-

tural changes and variation of structures within the tumour. An unrepresentative �eld

of view was selected from sample 8460, an oral squamous cell carcinoma, with the top

half showing features within the OCT (optimal cutting temperature) compound rather

than the tissue itself: When the OCT contains bubbles or cracks like this, it can be

di�cult to identify the tissue edge. However, at the bottom of the �eld of view, the

tumour appears to be creeping around the tissue in the middle, which appears brighter

due to its innate �brous support which is enhanced as the body responds to the tumour

invasion.
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Scattering aside, the distribution of cluster 8 highlights tissue somewhat successfully,

as do channels 7 and 4 to lesser extents. Where this tissue segmentation fails often

coincides with areas of �xative, which can be observed by comparison of the sample

4984 cluster distribution maps for channels 5 (Figure 24) and 8 (Figure 26). This

issue occurs inconsistently between samples in spite of the same �xative being used

in each case. One potential explanation for this variation is ageing or degradation of

the �xatives which could alter their transmission spectra and which could occur on a

sample-by-sample basis due to slight di�erences in age, storage conditions and number

of freeze-thaw cycles.

Figure 26: Channel 8 of the cluster analysis output for the unstained tissue, exhibiting
successful tissue and non-tissue separation. Tissue sample numbers from left to right:
4984, 232, 6111, 9120, 8883, 8460. Red scale bar represents 1000 µm.

Cluster 2 selects some potentially interesting components such as the central regions

of sample 4984 and 232 which correlate with healthy cellular regions. Cluster 8 (Figure

26) also appears to highlight cellular regions, being distributed more densely in areas of

increased cellular density such as in the malignant cancer regions in samples 9120 and

8460 and the denser glandular healthy samples 4984 and 232. The pleomorphic adenoma

sample, 8883, is named to re�ect the variety of structures it can comprise (including

keratin, glandular tissue and cellular regions) and its characteristically inhomegenous

cellular density is evident in cluster 8. This could suggest that this cluster results from

scattering which is a�ected by cell packing densities and the resulting changes in nuclear

density, though the spectrum of this cluster appears to contain features other than the

�at or decreasing, oscillatory trend we would expect to see from Mie scattering of small

(healthy) and enlarged cancer cell nuclei.

Unstained tissue is essentially colourless and transparent and therefore their trans-

mission spectra do not contain clear absorption features. The majority of contrast in

hyperspectral imaging of colourless samples comes from light scattered by boundaries

between regions of di�erent refractive indices throughout the tissue. Due to the absence

of true background in most images due to the presence of OCT and the small �eld of

view relative to the sample sizes, reliable calculation of the Weber contrast6 was not

possible for this dataset. However, the small dynamic range and relatively even dis-

6Weber contrast describes the luminance of the subject being imaged, relative to the image back-
ground.
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tribution of di�erent pixel intensities within this dynamic range imply that the Weber

contrast of the unstained images (or spectra) is low.Therefore the cluster distribution

maps are mostly low speci�city, with less clearly de�ned di�erences between channels

than in the stained tissue. E�orts to increase the Weber contrast could improve the

segmentation by the cluster analysis. The low spectral resolution of the system was a

likely contributing factor to the lack of speci�city and resulting uncertainty regarding

the clinical relevance of segmentation achieved. The spectral resolution of the sys-

tem was limited by the small illumination beam width on the monochromator grating

(though 1 nm wavelength steps were employed in the hypercube collection for these

exploratory datasets) which led to �ne spectral features, which may have been valu-

able in the segmentation process, being under-sampled. Diagnostic classi�ers must be

identi�ed before the optimum spectral resolution can be identi�ed. Until that point,

adequate sampling of all potentially relevant spectral features must be ensured and, to

that end, the highest possible spectral resolution should be employed.

This hyperspectral system and segmentation software has produced segmentation

with better separation of sample from background and more useful biological informa-

tion than a wide�eld image taken with a single illumination wavelength; this is due

mostly to the Rayleigh scattering cluster. As the speci�city of this cluster channel re-

lates predominantly to feature size rather than chemical composition, it is slightly less

diagnostically informative than auto�uorescence which reports speci�c biomolecules

such as reduced nicotinamide adenine dinucleotide (NADH) and �avin adenine dinu-

cleotide (FAD).[125] However, the size-dependent nature of Rayleigh scattering means

this system also provides segmentation of more tissue features than would be achieved

with auto�uorescence imaging. In contrast to spectroscopic mapping techniques such

as Raman and FTIR, while this system provides similar spatial resolution and signi�-

cantly enhanced speed, its speci�city is poor.[126] While this is inherent in the label-free

imaging of unstained tissue sections due to their low contrast, low speci�city translates

clinically to a high rate of false positive diagnoses which would hinder the current di-

agnostic process rather than streamlining it. Therefore, as a standalone system, this

hyperspectral system and segmentation software would not be adequate for assisting

oral malignancy diagnoses. Optimisation of this HSI system, such as equipment sub-

stitutions to enhance scattering contributions, may yet result in diagnostically relevant

segmentation. However, it would likely require combination with spectroscopic chem-

ical mapping to provide the speci�city required for a stringent diagnostic system for

routine clinical use.
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6 Conclusions

The preliminary investigations showed that the hyperspectral imaging system is spec-

trally accurate, sensitive to changes in concentration of pigmented samples and that

the cluster analysis software can successfully process the large hypercubes produced

and achieve meaningful segmentation from datasets with adequate spectral features.

The broader wavelength source extracted more speci�c clustering including �brous tis-

sue which is well segmented, even in unstained tissue. The newly developed VB.NET

software control facilitated collection of a full wavelength range hypercube, 450-750 nm

with spectral step size of 1 nm, in under 30 minutes.

Two adaptations of the system were recommended as a result of these proof-of-

principle investigations; to use more powerful illumination to increase SNR, and to

extend the illumination wavelength range into the NIR wavelengths to exploit Rayleigh

scattering for feature extraction wavelengths.

Whilst it was practical to build the system with the visible range source and gratings

that were available, a great deal of the successful HSI of tissue in literature has been

performed with infra-red illumination. Whilst the majority of this has been using

mid infra-red (MIR) wavelengths in FTIR, near infra-red (NIR) HSI has been carried

out successfully and should allow non-destructive, rapid imaging of biological tissues

with a less complicated setup and greater penetration depth than MIR.[108] (FTIR

was rejected as a pre-screening process due to its IR wavelength range resulting in

lower di�raction-limited spatial resolution, the expense of IR detector arrays and IR-

compatible optics, its long acquisition time due to scanning components, and because

it requires speci�c sample preparation due to its sensitivity to the O-H bond in water.)

The success of IR imaging of tissues is due in part to contrast provided by the enhanced

optical scattering at these longer wavelengths. As these preliminary results indicated

that scattering is our main contrast mechanism, in the subsequent permutation of the

imaging system the balanced Halogen light source was replaced by a white light laser

to extend the wavelength range into the near infrared; a highly scattering wavelength

region in tissue. Additionally this powerful illumination was intended to increase the

SNR to help increase the segmentation speci�city.7 Due to the slit mechanism of the

monochromator, increasing spectral resolution by decreasing the slit width also results

in a decrease in illumination power. To ameliorate this issue, a beam expander was

installed in the light path to increase the size of the laser spot on the monochromator

7White light supercontinuum sources work by using nonlinear optical processes such as four wave
mixing to broaden the wavelength range covered by a pump beam. They are commonly referred
to as white light lasers as the wavelength components of the resulting supercontinuum have relative
coherence lengths which are approximately the same as that of the incoming laser pulse and therefore
the output behaves, in many ways, like a laser.
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grating. This alone increased the spectral resolution meaning that the slit width was

able to remain more open and allow more of the beam through, keeping illumination

power high. As the beam path was being redesigned to incorporate this beam expander,

re�ective optics were used in place of lenses to ensure that chromatic aberrations were

minimised.

To further ameliorate these chromatic aberrations we attempted to collimate the

diverging light illuminating the sample by installing a �bre collimator just before the

sample. To accommodate this, the liquid light guide was replaced with a single mode

�bre and a ground glass di�user was used to depolarise the light before it reached the

sample. This had the additional bene�t of improving the power density at the sample,

increasing the SNR further.

The �nal modi�cation to was to replace the sCMOS camera with an air-cooled CCD

camera. The quantum e�ciency of the new CCD camera in the NIR wavelength region

was superior to the sCMOS, extending the useable wavelength range of the system

further. An additional bene�t of the new CCD camera was the substantial reduction

of �xed pattern noise. Fixed pattern noise (FPN) is a constant pattern e�ect caused

by di�erences in responsivity across individual detectors in an array; due to their use

of sensor arrays, sCMOS cameras are prone to FPN.

This was signi�cantly inhibiting the performance of the autofocus routine used to

generate the focal plane list required for quick focus control during data collection. The

grid pattern generated by the �xed pattern noise was higher in contrast than some of

the sample features. Therefore, when performing auto-correlation, the software would

try to detect improvement in the sharpness of this pattern with change of focal plane.

Changes in focus detected by the software were often related to the �xed pattern noise

rather than the z-position of the sample, leading to an extended iterative loop which

would never converge on a z-stage position of optimum sample focus. CCD cameras

such as the Hamamatsu ORCA do not have multiple image sensors and therefore are

signi�cantly less susceptible to �xed pattern noise. CCD camera do, however, su�er

from a less problematic random �pixel FPN� due to dark current and variation across

its single sensor device.

Additionally, only being able to take one �eld of view due to the absence of an

automated x,y stage or e�ective FOV stitching software meant that, in many cases,

the edges of the tissue would not be present in the images. Edge features are often

distinctive and provide useful markers which can be used to assist in coregistration of

di�erent imaging modalities. Whilst regions of high contrast within the tissue area can

vary dramatically between imaging modalities, especially between spectroscopic and

optical techniques, edges usually remain clearly visible and unchanged.

The home-built cluster analysis software with overclustering was at the release stage
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and we were unable to access raw output data or alter any aspect of the format in the

which the results were output. To integrate these speci�c spectral occurence maps with

Raman and wide�eld H&E data, new software would be required.
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Part II

Improved Setup

Having demonstrated that hyperspectral images of colourless biological samples con-

tain adequate contrast for segmentation with PCA and k-means clustering, the next

unknown to explore was that of the possibility of coregistration between di�erent imag-

ing modalities. Comparing the HSI segmentation to the Raman segmentation will

demonstrate the potential of the HSI technique as a pre-screening technique to aug-

ment the Raman diagnostic process and make it fast enough to be a practical clinical

aid to diagnosis of oral cancer. It has been shown that Raman area mapping is a highly

sensitive and speci�c oral cancer diagnostic technique. Therefore, if similar regions of

interest are highlighted in the HSI imaging modality, it could be used to generate the

initial segmentation of the tissue. From this map, chemical composition and health of

di�erent tissue regions could be ascertained using Raman spectroscopy. Large di�er-

ences in segmentation between the HSI and the Raman screening methods would mean

the techniques are too incompatible for combination and would imply that, in spite of

adequate contrast, the di�erences in the HSI tissue data which allow for segmentation

are not linked to chemical or morphological di�erences which are indicative of tissue

health. To evaluate the possibility of multimodal comparison, a system which allows

the imaging of the full tissue section, including tissue edges, was required. With no

automated stage available, a software solution was employed.

Secondly, following the successful PCA and k-means segmentation of unstained tis-

sue sections, the diagnostic relevance of the highlighted regions required veri�cation

with respect to the gold standard diagnosis by histopathological evaluation of H&E

stained sections. As a new laser source was installed for this iteration of the setup

which would produce data with a higher SNR and potentially a�ect segmentation, data

for the tissue sections from Part I were re-collected and re-segmented before exploring

the biological details of each region with respect to the H&E selected cancer regions.

Visible tissue edges in this setup also facilitated easier multimodal comparison.

7 HSI System and Software

This setup was designed to increase SNR, and to extend the illumination wavelength

range into the NIR wavelengths to exploit Rayleigh scattering for feature extraction,

leading to the inclusion of a white light laser, re�ective rather than lens-based optics

including a re�ective beam expander and a 12-bit CCD camera. Chromatic aberrations

were also minimised in this setup by the switch to re�ective optics, and by collimating
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the previously diverging light illuminating the sample.

7.1 Setup

Speci�cally, this setup, shown in Figure 28, consisted of a white light laser (Fianium), a

x6 re�ective beam expander (Thorlabs), alignment irises and re�ective focussing optics

(Thorlabs), a monochromator containing a 600 l/mm, 700 nm blaze, 450-2000 nm ruled

di�raction grating (Newport Cornerstone 130 1/8m), 550 µm 0.22 NA single mode �bre,

90° refective �bre collimator (Thorlabs), motorised �lter �ip mount (MFF101, Thorlabs)

containing a 785 nm long pass �lter (Semrock), x4 (0.13 NA) magni�cation objective

(Olympus), 2� achromatic doublet lens (Thorlabs) and 16-bit air-cooled CCD camera

(Hamamatsu ORCA Flash 4).

Figure 27: The light path of the improved HSI system with labelled areas A, B and C
corresponding with the photographs in Figure 28.

85



Figure 28: From top to bottom, left to right in light path order: The optics launching the
white light laser into the monochromator with adjustable mounts for alignment and a
re�ective beam expander to improve spectral resolution. The free space �bre alignment
mount for monochromatic light retrieval at the exit slit of the monochromator. The
re�ective �bre collimator redirecting monochromatic light upwards, through the sample
and into the objective lens, via the optional long pass �lter for removal of second order
light. This �gure corresponds with the sections of the optical path labelled A, B and
C in the optical path Figure 27.

7.2 Data Collection Software

The data collection software remained unchanged from Part I and facilitated the col-

lection of a full hypercube with user-speci�ed wavelength inclusion, use of pre-de�ned

exposure times at each wavelength (or autoexposure), �lter �ipper control for exclu-

sion of second order light from the monochromator and concurrent dark �eld stack

collection. Due to the newly collimated light, use of pre-de�ned focal positions at each
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wavelength was no longer required.

For details about the background correction protocol or the removal of second order

light, refer back to 3.2.

7.3 Analysis Software

7.3.1 Field of View Stitching

The hyperspectral image stacks for each tissue sample were comprised of 1 � 9 FOV

which were stitched together into composite datasets immediately before analysis. The

global positions of the di�erent FOV relative to each other were approximate due to

the use of a manual sample stage so the �Grid/collection stitching� ImageJ macro by

Preibisch et al was used to calculate precise global coordinates as part of the data

processing method outlined in 9.2.1.[127] �Out of memory� exceptions occurred when

attempting to stitch samples comprised of more than two FOV in ImageJ so a memory-

e�cient stitching code was developed and added to the start of the new Matlab PCA

and k-means clustering software, detailed below. This code utilised the global coordi-

nates generated by running the aforementioned macro on just one slice of each FOV

hypercube. To avoid memory issues, the mosaicking algorithm only required one hy-

percube to be open at a time, along with the full tissue sample hyperstack array into

which the values were read, tile-by-tile.

Figure 29: From left to right: An example of a 2x3 (or in Matlab, a 3x2) image mosaic
with 6 FOV. Consider the two �junctions� present in this tile arrangement, j1 and j2.
For j1, from top left tile, step clockwise around the junction opening the image stack
for that tile and inputting their grayscale values. Repeat for j2, but ignoring the �rst
two tiles as they are members of j1. In areas of tile overlap, the maximum value is
selected from contributing tiles.

This was achieved by �lling the values from each tile, moving in a clockwise fashion

around each �junction� (Figure 29), closing individual tile stacks when their values were
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fully transferred to the array which described the complete sample. Testing of di�erent

parameters in the Preibisch et al mosaicking macro showed that blending overlapping

tiles by taking the maximum available pixel value tended to produce sharper features

than linear blending of tiles, as demonstrated in Figure 30.

Figure 30: An example of mosaicking performed utilising the linear blending method
(left) and the maximum method (right). The former takes the mean of the values
which contribute to areas of tile overlap, and the latter picks the maximum value from
contributing tiles.

Therefore, in the Matlab tiling code, pixel values in areas where tiles overlapped were

�lled in and updated iteratively. The maximum available pixel value was evaluated,

and retained, each time another �option� was provided by a new hyperstack tile being

opened.

The home-built cluster analysis software with overclustering used in Part I was at

the release stage. The output graphic from the software a�ected the aspect ratio of

the image which, in combination with the low spatial resolution of the Raman with

the spatial binning required for practical speed, led to distortion of highlighted features

which made them extremely di�cult to match with features in other imaging modalites.

Being unable to access and manipulate the raw output data meant that coregistering

the Raman k-means cluster maps with other imaging modalities for comparison was

extremely di�cult. Therefore a very similar PCA dimensionality reduction and k-

means clustering programme was developed in Matlab. Two main factors in�uenced

the selection of these analysis techniques: the main contrast mechanism being scattering

and the practicality of not requiring prior information about the sample (clinical input)
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or the pathology of healthy and malignant oral tissue (training data). Re-writing this

programme allowed this output to be tailored for comparison with other modalities:

saved as ti� images and matched in pixel dimension to the input data.

7.3.2 PCA Noise Filtering

Principle component analysis (PCA) was performed on the complete mosaicked datasets,

according to the method outlined in step 1 of 3.3.1, before clustering as it improves the

performance of the clustering by eliminating some of the noise in the data. It does this

by reducing the data to its fewest possible dimensions by translating the data into a new

feature space which fully describes the data with linear combinations of the pre-existing

features (principal components). The number of principal components required to fully

describe the data can be identi�ed by plotting the variance of the data explained by each

component; the curve will �atten when the addition of more principal components adds

little value (explains little additional variance of the data). Usually these �additional�

principal components are noise and reconstruction of the data without them increases

its SNR, though this process does risk accidental exclusion of important information.

7.3.3 K-Means Segmentation

Overclustering (step 2), and associated optimal cluster number selection (step 3) of the

analysis software outlined in 3.3.1, were replaced by the following (standard) k-means

clustering protocol which converges signi�cantly more quickly.

1. K-means Clustering

(a) The k cluster centroids (mean spectrum of each cluster) were initialised using

Monte Carlo. How similar each spectrum was to this centroid was then

calculated in terms of the Pearson Correlation Coe�cient starting at k = 2.

(b) Each spectrum was then assigned to the cluster with the most similar cen-

troid, shown by the largest PCC value (rmax).

(c) All of the spectra assigned to each cluster were then averaged to produce

new centroid values for each cluster.

(d) This process was repeated until the spectra assigned to each cluster remained

constant.

The cluster assignation (step 4) outlined in 3.3.1 was then performed. This was the

approach used in Parts II and III.

K-means clustering has been used to good e�ect in similar investigations and pro-

duces segmentation with maximum cluster separation without prior knowledge of the
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separable characteristics of the data, though the initial randomised seeding of these

centroids does decrease repeatability.[89] A �xed cluster number was therefore selected

(discussed in 9.3.2) and these groups within the data were assumed to correspond to

di�erent components within the tissue sample, for example healthy and malignant ep-

ithelial tissue. A randomised colour map of where each of these clusters occurs in the

input image was produced as the output.

8 Raman System and Software

8.1 Raman Setup

The Renishaw InVia Raman spectrometer (Renishaw, Gloucestershire, UK) was used

to collect Raman area maps of the tissue with Renishaw's WiRE 3.4 software. The

spectrometer emits a laser line which is focussed by re�ective optics onto the sample

via a microscope. Both Rayleigh and Raman scattered light is emitted from the sample,

with the former being �ltered out and discarded and the latter being directed onto an

array of �nely spaced lines on a re�ective surface, a grating, which disperses the light

into its constituent wavelengths onto a CCD for recording. The range and precision

of this spectrum depends on the lines/mm of the grating and is chosen based on the

wavenumber of important spectral features, which relate to the chemical bonds present

in the sample. Additionally, the wavenumber range will a�ect the signal-to-noise ratio

(SNR) of the resulting Raman spectra so the intensity of useful spectral features must

also be considered when making this decision. The probability of Raman scattering

is signi�cantly lower than Rayleigh scattering and therefore to produce spectra with

an adequate SNR requires pointwise scanning of the sample which is extremely time

consuming. Renishaw have increased the speed of high SNR area scan acquisitions

by utilising a cylindrical lens to distribute a high power laser line across the sample

surface. This technique and software accommodations, known together as Streamline�,

allows several point spectra along the laser line to be collected simultaneously without

depreciating spatial resolution in x or y and decreases the total time required to scan

the laser across the full surface of the sample.[128]

8.2 Analysis Software

The same home-built PCA and k-means clustering programme used to analyse the HSI

data was used to analyse the Raman spectral maps. For details, see 12.3.1. Tiling was

not required for the Raman dataset as the full tissue area is covered by point-scanning

of the user-de�ned area; usually 0.5-1.5 cm2.
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9 Materials and Methods

The materials used in in Part II were the same as those used in the unstained tissue

investigation in Part I with the hope that improvements between the two systems and

analysis methods would be clearly demonstrable. The methods in Part II are also

similar to the unstained tissue investigation in Part I, but with multiple �elds of view

and an attempt at coregistration and comparison between di�erent imaging modalities.

9.1 Mixed Healthy and Malignant Oral Tissue Sections

9.1.1 Sourcing

Patient tissue samples and data were provided by Guy's & St Thomas' Head & Neck

Biobank � part of the KHP Cancer Biobank, which is supported by the Department of

Health via the National Institute for Health Research (NIHR) comprehensive Biomed-

ical Research Centre award and Guy's & St Thomas' NHS Foundation Trust. The

biobank has ethical approval from the East of England - Cambridge East Research

Ethics Committee (18/EE/0025).

This study utilised three healthy and three malignant oral tissue samples which

were randomly selected from the sample set of Dr. Manickavasagam to ensure a range

of anatomical sites and malignancies were represented. Imaging was undertaken �semi-

blind� in that I was aware of the diagnosis for each tissue section (in order to select

appropriate samples) but not what features on the slide led to each diagnosis.

9.1.2 Preparation

Two subsequent (or as close as possible) tissue sections were cut from each of the listed

tissue samples. One 4 µm section in frozen section �xative was stained with H&E on a

glass microscope slide and topped with a glass coverslip, for histopathological review,

and one 10 µm frozen section was sandwiched between two round Raman-grade calcium

�uoride slides for hyperspectral imaging and Raman spectroscopy. For full protocols,

please refer back to 4.2.2.

9.2 Data Collection

9.2.1 Hyperspectral Imaging

Hyperspectral image stacks were collected using the software detailed in 3.2 with a

x4, 0.13 NA objective lens (Olympus) across a wavelength range of 450-950 nm in

increments of 5 nm producing a 97 slice hyperstack for each �eld of view (FOV). Optimal

camera exposure times and stage focal positions for each wavelength were read in from
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two pre-collected text �les throughout the hyperstack collection process. At 785 nm,

the long pass �lter was inserted into the optical path to �lter out second order light.

Collection of corresponding dark �eld stacks was interleaved with raw image collection

by triggering the automated shutter of the monochromator and taking an unilluminated,

but otherwise identical, image at each wavelength to capture and correct for background

light, dead camera pixels and other dark-visible imaging artefacts. This resulted in a

total, unoptimised run time of approximately 17 minutes.

For full data collection instructions and reference to the software GUI, please refer

back to 4.3.1.

Hyperspectral Data Processing

Shift Correction

The microscope stage was prone to shifting slightly, and inconsistently, in x and y

over time which meant that alignment errors were present in several hyperstacks. As

these position shifts did not happen in a �xed direction or at a constant rate, standard

ImageJ drift correction plugins performed poorly in correcting this. A shift correction

macro was developed which applied a user-speci�ed translation to a subset of stack

slices. The required translation was identi�ed by marking one linear image feature,

both in a wavelength slice before the shift, and in the �rst shifted wavelength slice,

with the line drawing tool in ImageJ. These two selections were then added to the

ROI manager and their relative positions retrieved from their automatically generated

names, which take the format �z position-y position-x position�. Subtraction of one from

the other produces the translation required to correct the shift using the aforementioned

macro.

Brightness Fine Correction

A simple brightness correction macro was also developed in Image J which utilised

a user-selected reference brightness area, selected by a square region of interest (ROI),

to correct the relative brightness of each wavelength slice of the hyperstack. This was

performed on each stack after shift-correction, to ensure intensity measurements were

being compared across the same physical area in each slice.

Flat-Field Correction

Originally, a �at �eld stack was collected once per objective, by taking an exposure

and focus-corrected hyperstack across the full wavelength range with the shutter open

but with no sample on the stage, with the intention of performing �at-�eld correction
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after the data was collected. This allows the capture and correction of inhomoge-

neous illumination, illumination power variation across the wavelength range, specks

of dust trapped in the optical pathway and other light-visible imaging artefacts. In

practice, however, this approach was hindered by interference e�ects which presented

as concentric �squircles�.8 The distance between the rings related to the illumination

wavelength but unfortunately, while the separation of these concentric rings were �xed,

their positions were not. They streamed outwards from the centrepoint of the squir-

cle over time. Broadly, �fringe shifting� occurs when the relative phase of component

sources changes. White light lasers are usually considered to be semi-coherent be-

cause, whilst they produce spatially coherent light, it cannot be spectrally coherent as

it is not monochromatic. Additionally, the measured spectral resolution limit of this

laser used in conjunction with the Cornerstone monochromator is approximately 2 nm.

This not-quite-monochromatic or coherent light provides some of the multiple potential

mechanisms by which this fringe shifting e�ect could occur. The most likely explana-

tions are beating between two modes of the source, a re�ection in the cavity, interference

between di�erent modes of the �bre or interference between dominant wavelengths of

light which are constantly changing due to instability in the laser. This interference,

combined with the slight �icker of the white light laser meant that when dividing the

dark �eld-corrected stack through by the �at-�eld stack, unwanted variations in bright-

ness were added rather than removed. This approach was therefore abandoned in favour

of the simpler ImageJ brightness correction macro detailed above, which was initially

created for �ne correction of minor random source brightness �uctuations.

Field of View Stitching

Multiple �elds of view were collected from the top left, snaking right and down.

Each �eld of view was �at-�eld, shift and brightness-corrected as above, and they were

stitched together using the �Grid/collection stitching� ImageJ macro by Preibisch et

al.[127] Diverging light passing through the sample led to depreciating focus towards

the outer edges of the FOV. As a result, a minimum of a 40% area overlap between

neighbouring �elds of view was required for accurate stitching. If a pre-screening imag-

ing techique which relied on �uorescence had been selected for this application, this

generous overlap area would have risked photobleaching. The parameters that were

most commonly used for the stitching process are shown in Figure 31, with small vari-

ations in percentage overlap dictated by trial and error.

8A squircle is an intermediate shape beween a square and a circle.
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Figure 31: The two GUIs from the Preibisch et al grid/collection stitching macro,
showing adjustable parameters and the values or options most commonly used in this
study.

Initially the intention was to stitch the hyperstacks for each tissue sample together,

in full, to produce one very large 3D dataset for simple display and analysis of each

sample dataset. Unfortunately, the large percentage overlap required due to the un�at

�eld rendered a large proportion of each FOV unusable. This meant that up to 9 FOV

were needed for each sample, each with 97 slices, producing memory errors in ImageJ

when full stitching was attempted. Instead, a more economical stitching method was

developed and built into the analysis software (Figure 29).

9.2.2 Raman Spectroscopy

An RGB image montage of the tissue and surrounding area was taken by the InVia

Raman spectrometer with a x20 (0.45 NA) objective, allowing manual selection of the

desired area for Raman scanning. After which, the Raman spectrometer was run in

Streamline�mode to collect an area map of Raman spectra. A 785 nm diode laser

was used in conjunction with a 600 l/mm grating. This excitation wavelength is ideal
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for tissue as it is non-destructive, results in less tissue auto�uorescence than lower

wavelength sources and produces data with a higher SNR than higher wavelength IR

sources. The low line density grating means that spectra are collected over a broader

wavenumber range (~ 981 � 1719 /cm) with a lower spectral resolution (1.9 /cm per

pixel). This is well suited to the broad �ngerprint regions exhibited by many tissue

components such as collagen.[129] These peaks were also used to inform the central

wavelength of the spectral range, which was chosen to be 1355 /cm. 100% laser power

with a 2 s exposure time was found to be an acceptable balance between SNR and run

time, having set an upper limit of a 16 hour full tissue section scan time. The spatial

resolution (step size) of the area scan was 50 µm in the x-direction and 13.7 µm in the

y-direction, with the WiRE 3.4 software Ybin parameter for Streamline area scanning

set to 5 based on optimisation work performed by Manickavasagam et al.[120]

9.2.3 Histopathology

RGB images of the H&E stained tissue sections were collected with a Olympus BX60

Biological light microscope x10, 0.25 NA objective (Olympus), illuminated with a tung-

sten halogen source and captured with a Basler Pilot piA1600-35gc area scan camera.

Histopathology Data Processing

Field of View Stitching

The �elds of view were mosaicked using the Preibisch et al stitching macro detailed

in 9.2.1, using the �Maximum� method and a 20-30% percentage overlap determined by

trial and error.[127]

9.3 Assessment of Tissue

After collection and processing, the gold standard reference data for each tissue section

was one RGB image, the Raman data was a .wdf �le which stores the Raman spectra

of the area scan as a list of intensity values and the hyperspectral data was a stack of

97 grayscale images. To compare these very di�erent modalities directly, and to assess

their relative potential for identifying cancerous tissue regions, they �rst needed to be

transformed into similar formats and then segmented. For simple and easy-to-interpret

comparison, the desired format for all three modalities was one image with cancerous

regions highlighted by an area outline or �ll.
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9.3.1 Histopathologist Segmentation of H&E Data

The RGB images of the H&E stained tissue sections were evaluated by two expert

histopathologists. In ImageJ, regions of interest were manually selected in the images

of the three tissue samples selected from the KCL biobank library of cancerous oral

tissue (#8460, #8883, #9120). In the case of the three healthy tissue sections (#232,

#6111, #4984), no regions of interest were selected as samples in which precancerous

changes or cancer cells were identi�ed were excluded from this group. Selections were

made using the following protocol.

1. Open .tif RGB image of H&E stained tissue.

2. Select �freehand selection� tool from ImageJ toolbar.

3. Draw around cancerous region with precision on the order of a few cells.

(a) To zoom, hold cursor over desired area and press �Ctrl� + �shift� + �+�.

(b) To view all ROIs simultaneously select the �Show all� checkbox in the ROI

manager.

4. To add �rst selection to ROI manager by clicking �Edit > Selection > Add to

manager� in ImageJ toolbar.

5. To add subsequent selections to ROI manager, click �Add� at the bottom of the

ROI manager or press the �t� key.

6. To save ROIs, select all ROIs in ROI manager and click �More > Save� in ROI

manager.

9.3.2 Segmentation of HSI Data

The segmentation of the HSI data was undertaken using the home built Matlab PCA

and k-means clustering software described in 7.3. The two variables which can be altered

by the user in this software are component number and cluster number; the �rst of which

related to the PCA and the second to the k-means clustering. The component number is

the number of dimensions which are selected to express the image information. Cluster

number is the number of centroids used to seed groups of the data, classi�ed by certain

similarities.

Ordinarily, when investigating known samples with a known technique, knowledge of

the expected SNR can inform the choice of �xed principal component number. Utilising

all of the generated components, for example, would include all of the signal and noise

in a dataset, which could obscure useful segmentation. On the other hand, using too
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few of the components would lead to data with selections which are less speci�c and

which may not contain more subtle separations. Sections of tissue containing absorbant

compounds such as red blood cells may be separated out from the rest due to their

strong contrast but hypothetical areas of slightly increased scattering from increased

nuclear-to-cytoplasmic ratios due to cancer, for example, may not be separated. In this

exploratory work, more was known about the desired tolerance of the outcome than the

quality of the data being used to generate the segmentation. Therefore the component

number selected was based on the turning point of the cumulative plot of percentage

data variance described by each component, shown in Figure 32; to accommodate

di�erences between samples, this was set at 7.

Figure 32: A graph of the variance proportion of the HSI data of the three malignant
oral tissue samples explained by each component as determined by the Matlab software
detailed in 7.3.2.

The selection of a user-de�ned cluster number for the k-means clustering requires a

little more prior knowledge of the sample. Often cluster number is manually selected

on a case-by-case basis by a pathologist who identi�es the number of di�erent tissue

components in the sample. Alternatively multiple segmentation maps are produced,

each with a di�erent cluster number, and the pathologist will identify which map and

associated cluster number most accurately describes the tissue. The k-means overclus-

tering software outlined in 3.3 worked well with the single �eld of view datasets collected

in Part I, however, most datasets collected in Part II were several times larger. The

computing time required to run PCA using this overclustering technique for cluster
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number selection on these signi�cantly larger datasets would be impractical in the clin-

ical setting for which this technique is intended. Instead, to facilitate the use of regular

k-means clustering, a cluster number was chosen for each sample. This was based on

the assumption of one background cluster per �eld of view tile and six main tissue

components found in cancerous oral tissue sections:

1. Healthy epithelium

2. Unhealthy epithelium

3. Muscle

4. In�ammatory cells

5. Connective type tissue (mostly collagen, keratin, walls of ducts etc.)

6. Adipose

9.3.3 Segmentation of Raman Data

The Raman streamline map data, being a .wdf �le type, was rearranged into the stan-

dard x,y,z(λ) format by an open source Matlab programme released by Renishaw called

renishaw_Wire.m. The home-built PCA and k-means clustering software from 7.3 was

used to denoise, and then segment, the Raman data. The component number gener-

ation was automated so that 95% of the data variance was explained and the cluster

number was set to 7, according to the rule outlined above. Raman has been shown to

detect subtle di�erences in tissues of di�erent types and health statuses, such as cancer

and in�ammation, and is therefore sensitive enough to successfully segment the same

tissue with a higher cluster number than is possible with the HSI data. However, re-

ducing the cluster number should reduce the separation to the 7 most clearly delineated

tissue types or features, with the hope being that these are the same 7 clusters which

can be identi�ed in the HSI data.

9.4 Cross-Comparison

Using the open source image processing software GNU Image Manipulation Program

(GIMP), the coloured maps of the three imaging modalities were overlaid and trans-

formed to match each other to allow for clear comparison of the regions of interest

selected by each technique, as shown in Figure 33.

98



Figure 33: Printscreen of GIMP overlaying process.

This process followed the method outlined below:

1. Open the RGB ti� image of the H&E stained tissue section.

2. Identify its most solid edge, which is often the epithelial edge. This is less likely

to have lost fragmented pieces of tissue, changing its shape.

3. Open the PCA map of the HSI or Raman data stack as a layer by clicking �File

> Open as layer�.

4. Use the sliding opacity scale in the �Layers� sidebar, decrease the opacity of the

PCA layer so that the H&E stained tissue is visible through it

(a) a. If necessary, click � > Levels > Color Balance� and alter the sliding scales

to increase the contrast and brightness of the H&E image.

5. Identify the matching solid tissue edge in the PCA image and align it with that

of the H&E stained tissue in the RGB reference image.

6. Using the transform tools available on right-clicking the PCA layer in the layer

sidebar, alter the image orientation and scale iteratively until the two tissue images

match.

7. Save the layer separately to the H&E reference image.

This process allowed spatially matched images from each modality to be produced.

Similarities between regions segmented from each technique were then easily identi�ed

by eye.
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10 Results and Discussion

This study was performed on three healthy tissue samples, two malignant samples

carrying diagnoses of adenoid cystic carcinoma and squamous cell carcinoma and one

benign tumour diagnosed as pleomorphic adenoma. Their various oral cavity sites can

be found in Table 2.

10.1 Healthy Samples

Figure 34: Healthy tissue samples #6111, #232 and #4984 (top to bottom) in pairs
(left to right) of H&E stained section RGB image and coregistered, PCA dimensionality-
reduced, k-means clustered HSI of subsequent tissue section. Black scale bars represent
1000 µm.

Both sections of sample #4984 were dissimilarly fragmented rendering accurate

coregistration impossible (though a best attempt is included in Figure 34). To a lesser

extent, sectioning artefacts have also impacted sections #6111 and #232, with coreg-

istration being successful only on the right hand side of the former, and the left hand
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side of the latter, where matching tissue regions are self-evident. This unfortunately

means that the data on the left of the image of #6111 and the right of the image of

#232 is redundant, having lost the option of comparison with the H&E images of the

associated stained sections. In all sections, a tiling artefact has substantially impacted

the segmentation. This is seen as a vertical or horizontal (before translation for coreg-

istration purposes) line where the colour of a segment changes abruptly from one side

of it to the other (Figure 35).

This occurs because the background of the image is a large, relatively uniform area

which is therefore easy to classify into a single component or small number of compo-

nents. However, slightly di�erent intensity levels between the di�erent images being

tiled mean that background originating from di�erent images is assigned to di�erent

components. For clinical and pre-clinical use, the analysis could be augmented by using

areas of overlap to identify the spectrum of the background cluster across multiple �elds

of view, and then use that to assign a single background segment.

Figure 35: A magni�ed view of an area exhibiting a tiling artefact. Black scale bar
represents 500 µm.

While the tiling artefacts and large and highly varying, squircular background signal

(detailed in 9.2.1) obscure most internal tissue feature segmentation, the tissue is clearly

delineated from the background and the OCT in the clustered HSI. (The distinct black

segment present in sample #6111, predominantly found at the bottom left of the sample,

is suspected to be residual ink from markings made during the tissue biopsy process.)

10.2 Malignant Samples
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Figure 36: Parotid gland adenoid cystic carcinoma #9120 H&E stained section RGB
image and coregistered, PCA dimensionality-reduced, k-means clustered HSI of subse-
quent tissue section (left to right). Black scale bar represents 1000 µm.

Adenoid cystic carcinoma is a malignant secretory epithelial tumour with a de-

ceptively benign histologic appearance which begins in glandular tissue; in this case,

the parotid salivary gland.[130] This sample shows the most common tumour growth

pattern, cribriform, which is a sieve-like collection of small islands or sheets of cancer

cells with cyst-like spaces which can be seen in Figure 36. In H&E stained sections,

these cyst-like acellular cavities containing some secretions which stain light pink with

haematoxylin, and the cancer cells themselves, comprise the rest of the sample and are

characterised by enlarged purple stained nuclei which �ll a large area of the cell. As

there is no solid tumour body, and the cancer is instead interwoven with the cyst-like

spaces throughout the section, it was not possible for histopathologists to select regions

of malignancy.

Evaluating the performance of the segmentation is therefore more challenging. One

histopathologist commented that the centre of the sample is more cystic and the density

of the tumour appears to increase towards the section edges, especially the left, of this

section. Errors introduced by tiling multiple �elds of view are evident in this sample

(see Figure 36), with the pale green segment selected with increasing density to the

left of the tissue area ending abruptly with a vertical tile edge. This segment is not

present along the right hand edge of the section as the histopathologist indicated and

this pale green area correlates with with an suggested area of increased cancer density

if we take the tiling artefact into account. Alternatively, the absence of the pale reen

segment along the right hand edge may be due to a real di�erence between the H&E

stained tissue section and its paired, but not identical, unstained section for HSI.

However, it could be artefactual and caused by blurring which is present in areas

of tile overlap in this sample. The correlation function which the ImageJ mosaicking

macro relies on performs less reliably in samples with multiple feature edges spread

homogeneously across the samples, such as the cyst-like spaces. At the top of the tissue
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it's possible to identify the edges of the central �eld of view tile, of which there are 6

(3 columns and 2 rows). A substantial increase in the area covered by the pale green

segment occurs from the right to the left of this tile alone, suggesting that this is linked

to a real change in tissue characteristics rather than a tiling artefact.

Figure 37: Parotid gland pleomorphic adenoma #8883 H&E stained section RGB image
(left). The green area is an area of cellular pleomorphic adenoma independently de-
marcated on separate but identical images by two histopathologists, and the dotted red
line indicates the position of a series of holes. The coregistered, PCA dimensionality-
reduced, k-means clustered HSI of subsequent tissue section (right) which appears to
have severed, and then fragmented, along the line of holes marked with the red dotted
line in the H&E section. Black scale bar represents 1000 µm.

Unfortunately this sample was mis-�led and is, in fact, a benign tumour, though

it does have high potential for malignant transformation to carcinoma ex-pleomorphic

adenoma which occur in approximately 8.5% of cases, though estimates of this progres-

sion vary and increase dramatically over time.[131] The cellular region appears to have

been segmented (green), though other components have been grouped with it includ-

ing several small areas of keratin, most of the outer tissue edges and areas where the

tissue section has folded (see Figure 37). All of these tissue features, except the tissue

edges, would be expected to have increased scattering compared to the surrounding ar-

eas which are comprised of tumour �brous capsule which accounts for their separation.

This �brous capsule typically envelops these tumours in vivo and is a natural plane of

cleavage, re�ecting the risk of resection at the capsule margin with any tear leading to

tumour spillage and �eld adulteration. Unfortunately the extremely dominant varying

background signal claims most of the �xed number of clusters in the k-means cluster-

ing software. It may be the case that, once this background contribution is minimised

or �attened, or with a higher cluster number input for the segmentation, these tissue

features could be identi�ed as di�erent and assigned to their own clusters. Though

inclusion of a benign sample was not intentional, it has provided additional insight
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into the capabilities of the HSI system's diagnostic capacity. While the cellular region,

keratin and tissue folds have increased scattering compared to the surrounding tissue,

this scattering di�erence is very likely to be less marked than between healthy tissue

and cancer. The technique therefore holds promise for successful segmentation of oral

cancer.

Figure 38: Oral squamous cell carcinoma sample #8460 H&E stained section RGB
image with cancer (green), dysplasia (orange) and hyperplasia (yellow) independently
demarcated on separate but identical images by two histopathologists (top) and coregis-
tered, PCA dimensionality-reduced, k-means clustered HSI of subsequent tissue section
(bottom). Black scale bar represents 1000 µm.

Sample number #8460 was substantially smaller than the other malignant samples

in this study and it was therefore possible to capture the HSI data for the full tissue

slice in one �eld of view. Due to the absence of FOV tiling artefacts, this single �eld

of view dataset reinforces the assertion that the internal tissue area segmentation may

be related to biological features.

Hyperplasia (demarcated in yellow on the RGB images of the H&E stained tissue

section in Figure 38), results from upregulated cell proliferation and causes increased
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cell numbers, dysplasia (orange) is when cell proliferation begins to be unregulated and

they appear abnormal but do not yet meet the criteria for malignant neoplasia (cancer).

Both of these changes predispose the cells to becoming cancerous, but do not guarantee

it, and cells need not progress through these two stages to become cancerous.

The areas of cancer, dysplasia and hyperplasia in the segmented HSI image all

appear to have been selected in green. This implies that, to some extent, unhealthy

oral tissue undergoes changes which are re�ected similarly in their respective elastic

scattering spectra. The common pathological features of hyperplasia, dysplasia and

cancer are increasing cell density as well as increasing size and density of subcellular

features including nuclei and mitochondria. Elastic scattering can be sensitive to all of

these spatial alterations, though it depends on the angle of observation. Wavelength

dependent scattering alterations, at a �xed angle, are predominantly sensitive to the

average size of scatterers.[132]
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Figure 39: A single slice (550 nm illumination) of the HSI stack of oral squamous cell
carcinoma sample #8460 with sample regions of healthy, hyperplastic, dysplastic and
cancerous tissue highlighted in blue, yellow, orange and green (respectively) and graph
with averaged spectra from each area.

Regions of interest were manually selected within the pathologist-selected areas of

hyperplasia, dysplasia, cancer and surrounding tissue which was presumed healthy. The

relatively small areas of each pathology, and discrepancies between the selections made

by each of the two pathologists, limited the size and number of these manually-selected
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regions. Plots of the average transmission spectrum from each of the three regions of

interest show a similar overall spectral shape, di�ering predominantly in magnitude.

The location of the ROIs and their average transmission spectra are shown in Figure

39.

The standard deviations between the three groups, shown in Figure 40, shows that

the di�erence in magnitude is distributed fairly evenly across the full wavelength range,

with di�erent peak separation wavelengths occuring between di�erent unhealthy tissue

pathologies (hyperplasia, dysplasia and cancer) and between these and healthy tissue

regions. There is most variation between the malignant stages between hyperplastic

and cancerous tissue around 540, 785 and >890 nm though the higher wavelengths are

less reliable being more prone to low SNR in this system due to depreciating hardware

e�ciency. There is most variation between the healthy and unhealthy tissue across

the range 540 - 625 nm, potentially suggesting that residual haemoglobin, which has

absorption peaks within this wavelength range, plays an important discriminatory role.

Whilst the bit depth of the camera was 12-bit, the dynamic range of the data was

notably lower than this suggesting that the aforementioned di�erences between the

di�erent pathologies may be signi�cant.

Figure 40: A graph of the standard deviations at each wavelength between HSI spectra
collected from tissue classi�ed by two histopathologists as hyperplastic, dysplastic or
cancerous (purple) and healthy, hyperplastic, dysplastic or cancerous (orange) tissue
from oral squamous cell carcinoma sample #8460.

As malignant transformation is often described as a progression from hyperplasia
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to dysplasia to cancer, it may seem surprising that the hyperplasia and cancer spectra

are more similar than the dysplasia and cancer spectra. However, that progression is in

gradually worsening histological appearance, featuring increasing numbers of adverse

feature accrual. In reality it is not necessarily a linear progesson from normal to cancer

and new lesions often appear further along this traverse without apparently having

transitioned throiugh each earlier descriptive step. The genetic errors accrued to change

from normal to cancer can be acquired in any random order, only becoming signi�cant

when cellular function is disturbed and the disease presents clinically. Hence there

is a huge potential range of DNA damage pro�les that can present and develop into

cancer from many and varied starting points. Additionally, alterations to the scattering

spectra caused by di�erent tissue characteristics cannot be separated, nor can they be

assumed from context in di�use scattering microscopy as the precise spatial position of

individual scatterers cannot be recovered. While this setup approaches single scattering

limits as it is carried out on thin tissue sections, it bears more similarity to di�use

scattering as the sandwiching of the tissue section between two calcium �uoride slides

introduces multiple scattering events. This means that areas of hyperplasia with very

high cell density, and therefore very high nuclear density, may report similarly to areas

of low grade dysplasia with moderately elevated cell/nuclear density and nuclear size,

for example, as an increase in the average size of scatterers will be produced in both

cases. In extreme cases this could lead to the spectra of hyperplastic tissue appearing

closer to neoplasia, than dysplastic tissue.

With such a broad range of malignancies, tissue types and numbers of �elds of

view (and associated errors) it is di�cult to evaluate the e�cacy of HSI for oral tissue

segmentation from this study. It is clear that, in spite of strong background signal,

unstained oral tissue can be separated from the background and from the OCT which

surrounds it using this method, and that some internal tissue features are highlighted,

such as keratin. It appears that hyperplastic, dysplastic and cancerous regions are also

successfully separated from healthy oral tissue, though qualitative evidence from only

one sample is insu�cient to draw signi�cant conclusions.

10.3 Limitations

10.3.1 Raman

Cluster analysis of the Raman data of these samples showed a distinct pattern of

curved stripes, most likely arising from an Etalon e�ect. This is a potential risk of

imaging older samples, and is a disadvantage of Raman relative to HSI (in addition to

the large time investment Raman requires). As these were primary human samples

and Raman requires speci�c mounting it was not possible to create new samples, and
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despite e�orts to change the coverslip spacing we were unable to eliminate the

background artefacts.

The most disappointing outcome of the study was the discovery that many of the

samples were degraded and produced unusable Raman data. Curved stripes covering

the whole �eld of view dominated the k-means clustered maps, as shown in Figure 41.

This meant that a three-way comparison between histopathology, HSI and Raman

tissue maps was not possible. This means we cannot yet determine the compatibility

of the HSI technique to be used in combination with Raman spectroscopy.

Figure 41: A k-means clustered Raman map of sample #4644, a tongue squamous cell
carcinoma showing potential Etalon cavity background e�ects. (left) The e�ect is also
visible by eye, demonstrated with sample #8460, an oral squamous cell carcinoma.
(right)

Our best explanation is that multiple freeze/thaw cycles of the samples have slowly

pushed the two calcium �uoride slides further apart, due to the unavoidable air en-

trapment between the two slides, creating something akin to an Etalon cavity which is

typically made of a transparent plate with two re�ective surfaces. Its transmission spec-

trum as a function of wavelength exhibits peaks of large transmission corresponding to

resonance; a description which could also be ascribed to our Raman area scan maps.

After attempts to heat and reseal the slides closer together failed, it was decided that

new samples would be pursued for the next study.

Di�erences between the results from the remaining two techniques, histopathological

cancer selection and k-means clustering of HSI stacks, come from three main sources:

1. Rotation/shear due to di�erences between imaging systems.
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2. Physical distortion of di�erent samples due to slice di�erences including damage

from the delicate sectioning process.

3. High contrast background di�erences and the dominating e�ect this has on k-

means clustering (also leading to tiling artefacts).

10.3.2 H&E

The poor quality of the RGB images of the H&E stained para�nised tissue sections,

especially the inhomogeneous illumination which led to patchy tiling e�ects, made it

more di�cult for the histopathologists to make accurate selections of regions of interest.

A high magni�cation system with automatic tiling was used for the next study.

Figure 42: The RGB image of a H&E stained section of tissue containing oral squamous
cell carcinoma, marked in green by two histopathologists, independently.

The tissue states hyperplasia, dysplasia and cancer, were demarcated quite di�er-

ently by each histopathologist, as shown in Figure 42; an inevitable feature of the

qualitative nature of pathology reporting.[133] This complicated the critical evaluation

of the performance of the HSI and its segmentation. In order to quantify this gold stan-

dard qualitative diagnosis, one concensus diagnosis must be achieved across the panel

of histopathologists for evaluation. This would also account for interobserver varia-

tion e�ects, which are substantial in practice. The regions of cancer selected by each

histopathologist are shown in Figure 42. There is a core area of agreement to the centre

and left of the areas selected. The areas of disagreement between the histopathologists

cannot be taken as the gold standard diagnosis as, in each case, one histopathologist

diagnosed the region as non-cancerous. For this reason, in the next study, it was de-

cided that the concensus area only should be taken as the �nal cancer segment selected

by this technique, and will serve as the ground truth diagnosis.
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10.3.3 HSI

While the samples in this study (Results 2) were also partly imaged in the �rst

study, it is unfortunately di�cult to compare the datasets. In Results 1 (5.5), it was

only possible to collect HSI of one �eld of view for each sample and, given that the

complete datasets comprise up to 12 �elds of view each and feature extraction is slightly

di�erent due to the changes in equiment between the two studies, it is very challenging

to identify matching sample areas across the two datasets. We can, however, observe

some general di�erences between the HSI data produced by the two setups.

The segment which provides the best internal tissue contrast in Results 1 has a

spectrum which smoothly decreases with increasing wavelength, approximately expo-

nentially. It was hypothesised that this resulted from Rayleigh scattering. The Halogen

light source from Setup 1 (3) was replaced with a white light laser in this setup (Setup

2), with one primary motivation being extending the wavelength range towards the near

infrared in order to maximise this scattering signal. Surprisingly, spectra with this shape

are entirely absent from this dataset. The change from diverging sample illumination

in the initial HSI system , to collimated illumination in this improved system inevitably

decreased the acceptance of signal from higher scattering angles. This may explain the

decreased sensitivity to the more isotropic Rayleigh scattering, relative to Mie scatter-

ing signal contributions which are forward-biased. This also suggests that a primary

source of contrast in this study is absorption, rather than Rayleigh scattering. Spectral

features are sharp rather than slow-changing which supports this assertion, though this

may also be due to decreased overlap between spectral channels.[134] This improvement

was generated by the �ltering out of second order light from the monochromator and the

increased spectral resolution a�orded by the beam expander increasing the laser spot

size on the monochromator grating. Small amounts of residual haemoglobin in vessels

is the most likely source of absorption in unstained samples, though the samples appear

colourless to the naked eye. There is often an increase in vasculature in the vicinity of

tumours as the body responds to the tissue's increased demand for oxygen.[135] This is

usually the primary source of contrast in similar work performed in vivo, or ex vivo on

whole pieces of excised tissue, with blood.[136] If this were the case, we would expect

troughs in the tissue spectra at 540 and 576 nm, and 555 nm around the absorption

wavelengths of oxy- and deoxyhaemoglobin. A clear trough is present at approximately

530 nm, which could be a slightly shifted 540 nm oxyhaemolobin feature, though the

absence of an associated absorption trough at 576 nm in the spectra of all tissue malig-

nancy stages is surprising. While the plot of standard deviation between the healthy,

hyperplastic, dysplastic and cancer spectra supports the assertion that haemoglobin
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contributes key discriminatory absorption spectral features, its fairly �at trend across

all wavelengths shows that all wavelengths contribute to the discrimination between

the spectra of these di�erent tissue pathologies, suggesting that di�use scattering ef-

fects are also important. The broadly increased intensity of malignant tissue compared

to healthy tissue suggests an increase in scattering a�ects in cancer, as anticipated.

However, knowing whether our primary source of contrast is scattering or absorption

is not necessary in unsupervised segmentation such as k-means clustering, though it may

help restrict the analysis parameters. Whether the Rayleigh scattering component is

produced in the �nal dataset and isolated by its analysis, or not, we appear to retrieve

relevant segmentation which is worthy of evaluation.

This apparently meaningful segmentation occurs in spite of three substantial system

limitations; one relating to the equipment, one to the samples and one to the analysis

software. Data taken with this setup (Setup 2) contained a large background component

which was more complex and brighter than with the Halogen source used in Setup 1. A

squircle pattern was produced which constantly evolved, with new squircles starting in

the centre of the image and moving outwards concentrically. The possible reasons for

this artefact are discussed in 9.2.1. Their position was not found to be consistent with

any external input under our control, such as wavelength. This meant both that the

illumination was not �at and that performing �at-�eld background correction would

have depreciated the quality of the data.

The magnitude of these intensity �uctuations was almost a quarter of the magnitude

of the feature �uctuations, decreasing the SNR of the tissue spectra and a�ecting the

segmentation. It also meant that it was not possible to ensure the similarity of the

background of di�erent �elds of view in order to tile them smoothly. Due to this, and

perhaps due to the method chosen to calculate the regions where �elds of view overlap,

the tiling performed poorly and a�ected the data quality. The maximum value for

each pixel was taken in overlapping tile areas. This was decided based on performance

testing of a range of methods using an open source ImageJ macro written by Preibisch

et al.[127] In our implentation, there was no removal of outlier values, as the unfamiliar

data could not be thresholded without potential loss of useful information. This may

have led to the introduction of a greater proportion of random noise in overlapping

areas. The segmentation was a�ected because segments and their assigned colours do

not match across �eld of view tile borders which introduces false boundary features into

the data. This is relatively easy to overlook when visually interpreting the data but

would be a signi�cant source of error in a quantitative diagnostic approach.

Aside from e�ects introduced in the data collection and analysis, the samples them-

selves were challenging to coregister due to tissue cracking, folding, breaking and trans-

lating relative to other parts. This occurred both in the fresh frozen tissue sections
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for HSI (and Raman spectroscopy), and the H&E stained, �xed tissue sections pre-

pared for histopathological evaluation. Unfortunately, this is an unavoidable attribute

of the delicate sample preparation process, but processing pipelines and software solu-

tions must be implemented to minimise its impact on coregistration and segmentation

quanti�cation.

11 Conclusion

For identi�cation of segmentation channels containing useful diagnostic information,

and to evaluate the e�ectiveness of our HSI system compared to the current gold stan-

dard, a quantitative comparison must be facilitated between the HSI data and quali-

tative diagnosis from H&E stained sections by a histopathologist. The addition of a

comparison between the HSI data and Raman spectra maps will show the compatibility

of the two systems for a combination technique, though this was not unfortunately pos-

sible in this study due to the depreciatory e�ects of multiple freeze/thaw cycles on the

samples and resulting Raman data. Automating comparison across imaging modalities

is a complex problem. The primary di�culty is in coregistering the very di�erent out-

puts from each of the three modalities, although tiling multiple �elds of view making

distinctive tissue edge features visible has made it possible to identify common tissue

areas which was not possible in Part I (5.5). The coregistration process is further com-

plicated by the high contrast and varying background introduced by the �bre-coupled

white light laser which decreases the image quality and inhibits smooth tiling of multiple

�elds of view. Both equipment and software solutions were explored further to ensure

this error was minimised in Part III. Similarly, areas containing sizeable sample defects

must be excluded from the area of quantitative comparison. While poor coregistration,

due to sample di�erences or the coregistration method itself, would negatively impact

the outcome of the system evaluation, it would not a�ect the proposed combination

HSI-Raman system itself in which only one sample would be utilised: No coregistration

will be required once the e�cacy of this technique has been established.

The outcomes of the preliminary data collection in Part I (5.5) necessitated three

main changes to the setup: the addition of a white light laser (and �bre-coupling and

collimation in place of an uncollimating liquid light guide) in order to increase SNR

and the wavelength range, a beam expander to improve spectral resolution and a long

pass �lter to exclude second order light produced by higher order contributions from

the monochromator at the longer wavelengths provided by the laser. The anticipated

improvement in the precision of wavelength-speci�c spectral responses of the tissue,

expected due to the removal of second order light and improved spectral resolution,

was di�cult to isolate as multiple alterations were made to the system simultaneously.
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Nonetheless, the narrow bandwidth (�monochromatic�) illumination was con�rmed with

a spectrometer and can only improve the quality of the hypercubes produced. Unfortu-

nately, the successful extension of the wavelength range of the system did not obviously

confer signi�cant additional scattering contributions to the HSI data itself, given that

Rayleigh scattering spectra were not identi�ed and separated by the clustering software

as they were in Part I.

The light was collimated in this setup by a re�ective �bre collimator, whereas it

was diverging directly from a liquid light guide in Setup 1. This may have resulted in

increasing the detection of forward (Mie) scattered and unscattered light with Setup 2,

whereas Setup 1 was more sensitive to more isotropically (Rayleigh) scattered light due

to the di�erent light path geometries through the sample to the camera. Nonetheless,

the addition of longer wavelengths does add some useful information, as is clear from the

approximately �at wavelength dependence of the discriminatory information between

hyperplasia, dysplasia, cancer and healthy oral tissue shown in the standard deviation

plot in Figure 39. The high frequency features present in the spectra also imply the

anticipated improvement in spectral resolution and SNR conferred by the more powerful

source and expanded beam incident on the monochromator grating.

This study has con�rmed that the inclusion of tissue edges is worthwhile in im-

proving the coregistration process and facilitating direct comparison between the RGB

image and the HSI hypercube. This is expected to similarly improve the ease of com-

paring the HSI and Raman data which was excluded from this study due to damaged

frozen samples. New samples were therefore collected to carry out a successful three-

way comparison in Part III. Large variations between the three malignancies selected

for this study, and their oral tissue types, made it more di�cult to draw conclusions

about the diagnostic value of the HSI segmentation. Constraining the samples to one

common malignancy in one region of the oral cavity will allow spectral changes to be

more speci�cally linked to the malignant transformation itself, on which diagnostic clas-

si�ers will be based in future work. This will also assist in constraining the analysis

parameter options, which is vital when dealing with such large and information-dense

datasets.
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Part III

Economic Setup

White light lasers have a reputation for being temperamental, with the most common

issues relating to damage to the microstructured optical �bres which are used to gener-

ate the nonlinear optical processes required to broaden the wavelength range spanned

by the input pump beam source to create the supercontinuum. Additionally they are

expensive, although their price has decreased rapidly over the past decade. For these

reasons, including a white light laser in a setup intended for commercial production

seemed ill-advised and when the nonlinear �bre burnt, the decision was made to try

a cheaper and more reliable non-laser source; the Avantes Avalight-XE pulsed Xenon

source. This substitute required several compromises, most notably decreased power,

beam divergence, decreased spectral range and decreased spectral resolution due to

decreased spot size on the monochromator grating and due to the entrance slit of the

monochromator needing to be wider to ensure adequate power. Aside from the price

and reliability, bene�ts included diminished interference patterns (improved further

with the addition of a ground glass di�user) which had been a major confounding ele-

ment in the segmentation of the data and a simpler light path due to the source being

�bre coupled which would also decrease the build costs for commercial production.

This �bre coupling also contributed to the reduction of �eld curvature. This in-

creased the focussed area of each �eld of view so fewer were required for the imaging of

a whole tissue section, speeding up the data collection and analysis processes; a vital

consideration for a clinical tool. Imaging of full tissue sections, including distinctive

tissue edges, in Part II facilitated comparison between HSI datasets and RGB images

of H&E stained tissue sections for the �rst time, showing promising results. The devel-

opment of a robust coregistration process was, therefore, a primary focus in Part III as

part of the overall aim to quantify performance of the HSI system with respect to the

gold standard.

The updated system was tested on HeLa cells with nuclear irregularities introduced

by treatment with Paclitaxel. This informed the decision to also design texture analy-

sis software to exploit the valuable spatial information present in the hypercube. This,

and the previously outlined PCA denoising and k-means clustering software, were then

quantitatively evaluated with respect to histopathology (and Raman spectroscopy) on

healthy tongue and tongue squamous cell carcinoma thin tissue sections. This is the

main study of the thesis and is the culmination of the system modi�cations and im-

provements detailed in Parts I and II.
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Microplastics

Given recent concerns around bioaccumulation of particulate matter and microplas-

tics and their potentially detrimental e�ects to health, including carcinogenic activity,

preliminary work on their detection with HSI is included at the end of Part III (15.3).

The COVID-19 pandemic this year brought single-use plastics into the spotlight, and

additional fears surrounding the shedding of plastic �bres from surgical masks over

time. The aim of this collaboration with Wright et al (Environmental Research Group,

Imperial College London) is to develop a method to detect microplastics in tissue, with

a view to screening human tissue biopsy samples for the presence of particulate matter

and, especially, microplastics as an indication of exposure and uptake either via the lung

or the gut. Particles < 2.5 μm in aerodynamic diameter may reach the deep airways

where mucociliary clearance is no longer in e�ect, but they are commonly cleared by a

variety of other biological mechanisms such as phagocytosis.[137] Larger particles which

more commonly remain uncleared can lead to a variety of negative outcomes, such as

in�ammation.[138] The work of Wright et al has so far utilised Raman spectroscopy

to image small sample areas, though the impracticality of this approach for a high-

throughput, high resolution screening process is clear. A pre-screening system which

locates potential particulate matter and microplastics �rst, and then collects Raman

spectra from those same coordinates would be more suited to the desired application

and aligns well with the overall aim of this work; development of a pre-screening process

to enhance the clinical viability of Raman spectroscopy so its high speci�city can be

exploited. While environmental microplastics often contain dyes, colourless microplas-

tics such as PMMA spheres are so devoid of clear spectral absorption features that they

are often used to create tissue scattering phantoms. Their detection and subsequent

segmentation in tissue with elastic scattering methods such as our HSI system was

expected to be challenging.
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12 HSI System And Software

12.1 Economic Setup

The light path adaptations that were made to to accommodate the �bre-coupled pulsed

xenon source in the �nal, economic HSI setup are pictured below, in Figure 44.

Figure 43: The light path of the �nal, economic HSI system with labelled area A
corresponding with the photographs in Figure 44.
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Figure 44: Top and side view of the light path adaptations to accommodate the new
�bre-coupled pulsed xenon source. White light enters the monochromator through a
�bre collimator (red dot in side view), monochromatic light is collected by a second
�bre collimator (red dot in side view) into a �bre towards the 90° re�ective �bre col-
limator which diverts the light up through the sample and to the camera. This �gure
corresponds with the section of the optical path labelled A in the optical path Figure
43.

The �nal setup is comprised of an Avantes Avalight-XE pulsed Xenon source trig-

gered with an Avantes AvaSpec-2048-USB2 spectrometer, coupled with a Thorlabs 550

µm 0.22 NA step-index multimode �bre optic patch cable with a Thorlabs F220 SMA-

A �xed focus collimator to a Newport Cornerstone 130 1/8m monochromator and

holographic di�raction grating (1800 l/mm, 560 nm blaze, 320-1070 nm range). The

monochromatic light from the output slit of the monochromator is collected with an

0.22 NA �bre collimator and 550 µm 0.22 NA single mode �bre pair from which the

monochromatic light is directed via a second �bre collimator into a �bre, up to the

sample stage by a Thorlabs 90° re�ective �bre collimator through a ground glass dif-

fuser (1500 Grit. Thorlabs), through a 785 nm long pass �lter (Semrock) in a motorised

�lter �ip mount (MFF101, Thorlabs), then collected by a x4, 0.13 NA Olympus objec-

tive held in the turret of a Zeiss Axiovert microscope and focused onto the CCD of a

ORCA-Flash4.0 V3 Digital CMOS camera by an achromatic doublet lens (f=100 mm,

Thorlabs, AC508-100-A-ML, Ø2", ARC: 400-700 nm).
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The Avantes Avalight-XE pulsed Xenon source required at least 30 minutes to sta-

bilise after switching on, before use. Whilst this could appear problematic for the

proposed application and the high speed system it necessitates, in a professional lab-

oratory this system would be rarely turned o�, negating any signi�cant time losses to

equipment start-up.

12.2 Final Data Collection Software

The data collection software remained unchanged from Part I and facilitated the collec-

tion of a full hypercube with user-speci�ed wavelength inclusion, autoexposure, �lter

�ipper control for exclusion of second order light from the monochromator and concur-

rent dark �eld stack collection. As in Part II, collimated sample illumination meant

that the use of pre-de�ned focal positions at each wavelength was no longer required.

For full details, refer to 3.2.

12.3 Final Segmentation Software

12.3.1 PCA and K-Means Segmentation

The home-built Matlab PCA dimensionality reduction and k-means clustering software

outlined in 7.3 was utilised again for this study.

As literature suggest that classi�ers which use both spectral and spatial information

perform best, a spatial analysis technique was also employed for testing.1.2.2

12.3.2 Texture Analysis

Texture analysis characterises image regions by quantifying the �textures� of which it

is comprised. As most samples will contain areas of di�erent textures, locating and

demarcating the boundaries between these textures can provide useful segmentation.

Physical textures such as smoothness or bumpiness are identi�ed by looking at the

spatial variation of pixel intensity values.

A statistical method for texture examination which has proven value for tissue

segmentation is the grey-level co-occurrence matrix (GLCM). According to the original

de�nition of the GLCM, made by Haralick et al, for an image I with N greyscale levels,

is a square matrix G of order N where the (i,j)th element of G represents the number of

instances of a pixel with value i being adjacent to a pixel with value j. Adjacent in this

case means �neighbouring� and can be in any of the four possible directions relative to

the pixel in question.
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This adjacency criterion can be altered to search for larger texture features by

increasing the magnitude of the o�set from 1 (neighbouring pixels) to n (pixels which

are n pixel �steps� away from the pixel in question).

When a sample is known, or contains well-de�ned textures, the o�set direction and

size can be tailored to the sample. For instance, stripes of known size and separation

in Type I collagen �bres could be targeted speci�cally. In exploratory work such as

this, however, it is common to create GLCMs for multiple o�set directions and sizes

(or a �patch�) and take the average for each texture feature calculated for each di�erent

o�set. The most commonly used texture features are the Haralick textures: contrast,

correlation, energy and homogeneity which are de�ned below.

Texture Feature De�nition

Contrast Magnitude of local greyscale variations
Correlation Probability of the occurrence of the pixel pair in

question
Homogeneity Uniformity of pixel greyscale values

Energy Closeness of the distribution of elements in the
GLCM to the GLCM diagonal

Table 3: Descriptive de�nitions of the four Haralick textures contrast, correlation,
homogeneity and energy.

A programme was developed in Matlab to create a texture map of each wavelength

slice of a HSI stack. For each wavelength slice, the four texture values are calculated

for a patch of a �xed size, P, which is moved over the full image with �xed step sizes

in x and y, Sx and Sy. Each texture value is converted into a grayscale pixel intensity

value which is assigned to area of size Sx x Sy the in the top left of the patch before the

patch is moved (by Sx or Sy) to its next calculation position.
9 This windowing approach

enhanced the e�ective spatial resolution of the technique without making the patch too

small to detect textures, which often require a degree of repetition for recognition. The

resulting output of this texture analysis was four texture image stacks, each the same

size as the input hypercube but with a spatial resolution in x and y of Sx and Sy ,

respectively.

These four texture image stacks were then segmented by k-means clustering, but

with no dimensionality reduction as all the tissue components were required to explain

a high percentage of the data variance.

9This top left patch �lling necessitated an additional translation to coregister other modalities before
tile scoring. Filling in the centre of the patch would have prevented this and will be implemented in
future.
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13 Raman System and Software

13.1 Raman Setup

The Renishaw InVia Raman spectrometer (Renishaw, Gloucestershire, UK) was used

to collect Raman area maps of the tissue with Renishaw's newer WiRE 4.4 software.

Renishaw have increased the speed of high SNR area scan acquisitions by utilising a

cylindrical lens to distribute a high power laser line across the sample surface. This

technique and software accommodations, known together as Streamline�, allows several

point spectra along the laser line to be collected simultaneously without depreciating

spatial resolution in x or y and decreases the total time required to scan the laser across

the full surface of the sample.[128]

13.2 Analysis Software

The home-built Matlab PCA dimensionality reduction and k-means clustering software

outlined in 7.3 was utilised again for this study, though Raman does not require �eld

of view tiling as it is a point scanning technique.

14 Materials and Methods

14.1 HeLa Cells with Paclitaxel

A preliminary investigation into whether the �nal HSI system could di�erentiate be-

tween cancer-like and healthy cells was undertaken with paclitaxel-treated and un-

treated HeLa cells. Paclitaxel is a chemotherapeutic drug used to treat several cancers

by inhibiting the proliferation of cancer cells by inhibiting the mitotic spindle. This

means that it can change healthy cells in ways which make them appear cancer-like:

At low concentrations (5 - 10 nM) it causes aberrant mitosis, with ~ 55% of cells being

multinucleated after 20h of treatment, and higher concentrations cause terminal mitotic

arrest with aneuploidy until cell death.[139, 140] Aneuploidy (cells with an abnormal

number of chromosomes) is a feature of most cancers and can be detected by elastic

scattering spectroscopy as elastic scattering results from changes in refractive index

including changes caused by nuclear chromatin content.[141, 142]

14.1.1 Sample Sourcing and Preparation

(Samples prepared by Mark-Alexander Gorey)

121



1. Human cervical cancer cells (HeLa) were thawed and cultured in Dulbecco's Mod-

i�ed Eagle Media (DMEM) 1% Penicillin and Streptomycin (PS, Sigma[1]P0781),

10% Foetal Bovine Serum (FBS, HyClone-SV30160.03) and 1% L-Glutamine (L-

Glu, Sigma[1]59202C).

2. Cells were transferred to a T25 �ask (Cellstar-690175) and incubated at 37°C and

7% Carbon dioxide.

3. Passaging cells were trypsinized with 10% trypsin (Sigma-T4174) diluted in Phosphate-

Bu�ered Saline (PBS, Sigma-D8537), for 5 min once cells reached 80% con�uence.

4. Complete DMEM was added to neutralize trypsin and centrifuged at 1200 rpm

for 3 min.

5. The supernatant was aspirated, and cells were resuspended in 5ml of complete

DMEM.

6. The cells were then seeded on two glass microscope slides and kept in separate

dishes, submerged in DMEM until they formed a 70% con�uence monolayer.

7. After two days, the medium was replaced with

(a) Fresh, paclitaxel-free complete medium in one dish.

(b) Complete medium containing paclitaxel (Sigma Aldrich Paclitaxel, Taxus

sp. - CAS 33069-62-4) at a 20nM concentration in the other dish.

8. After 6 hours at 37�C the paclitaxel-containing medium was replaced with fresh,

paclitaxel-free medium. (Lower concentrations of paclitaxel applied for longer

time periods, as suggested for aberrant mitosis, resulted in cell death and inability

for the treated HeLa cells to approach con�uence.)

9. Both the healthy and paclitaxel-treated HeLa cells received an additional change

of medium (paclitaxel-free).

10. Incubation was continued until 100% con�uence was achieved for both samples.

(In practice, the treated cells did not exceed 80% con�uence.)

11. Both samples were then �xed with PFA 4% for 15 min.

12. They were then mounted with Merck Millipore FluorSave Reagent (345789) and

topped with a glass cover slip.(If possible, the samples would have been left un�xed

but our small stage meant that keeping them submerged in media was not possible,

and the imaging protocol was too long for them to be left dry.)
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14.1.2 Data Collection

Hyperspectral Imaging

Hyperspectral image stacks were collected with a x4, 0.13 NA objective lens (Olym-

pus) across a wavelength range of 521 - 899 nm in increments of 6 nm producing a 64

slice hyperstack for each �eld of view (FOV). Optimal camera exposure time for each

wavelength were read in from a pre-collected text �le throughout the hyperstack collec-

tion process. At 785 nm, the long pass �lter was inserted into the optical path to �lter

out second order light. Collection of corresponding dark �eld stacks was interleaved

with raw image collection by triggering the automated shutter of the monochroma-

tor and taking an unilluminated, but otherwise identical, image at each wavelength to

capture and correct for background light, dead camera pixels and other dark-visible

imaging artefacts. Additionally, one �at �eld stack was collected per objective lens, to

allow for manual completion of the �at �eld background correction protocol. This re-

sulted in a total, unoptimised data collection run time of approximately 12 minutes per

repeat. Unfortunately the camera rolling shutter, which we were unable to change with

this VB.NET software, in combination with the new pulsed source required 6 repeats

of each dataset in order to correct for the horizontal striping artefacts. This unfortu-

nately increased total data collection time per hypercube to over an hour, though this

challenge is not insurmountable for future permutations of the system.

For full data collection instructions and reference to the software GUI, please refer

back to 4.3.1.

Data Processing

The data was then processed by the method outlined in 9.2.1. The home-built shift

and brightness �ne correction ImageJ macros (9.2.1, 9.2.1) were utilised as previously

described. The change of illumination source from a laser to a pulsed-Xenon source

removed the constantly varying squircles which prevented the full background correction

of the data in Part II so the full �at-�eld background correction procedure could be

used as intended (9.2.1). The dark �eld corrected stack was divided, slice-by-slice, by

the (dark �eld corrected) �at �eld stack producing a hypercube ready for analysis. No

�eld of view stitching was required as only one was collected.
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14.2 Tongue Squamous Cell Carcinoma and Healthy Tongue

Samples

14.2.1 Sample Sourcing

Patient tissue samples and data were provided by Guy's & St Thomas' Head & Neck

Biobank � part of the KHP Cancer Biobank, which is supported by the Department of

Health via the National Institute for Health Research (NIHR) comprehensive Biomed-

ical Research Centre award and Guy's & St Thomas' NHS Foundation Trust. The

biobank has ethical approval from the East of England - Cambridge East Research

Ethics Committee (18/EE/0025).

This study utilised six healthy tongue sections and six tongue sections which carried

a diagnosis of squamous cell carcinoma, selected from the sample set of Dr. Manick-

avasagam. The reasoning behind enforcing these two criteria is discussed in section 11.

Imaging was undertaken �semi-blind� in that I was aware of the diagnosis for each tissue

section (in order to select appropriate samples) but not what features on the slide led

to the diagnosis.

14.2.2 Sample Preparation

Two subsequent (or as close as possible) tissue sections were cut from each of the listed

tissue sections. One 4 µm section in frozen section �xative was stained with H&E on a

glass microscope slide and topped with a glass coverslip, for histopathological review,

and one 10 µm frozen section was sandwiched between two round Raman grade calcium

�uoride slides for hyperspectral imaing and Raman spectroscopy.

For full protocols, please refer back to 4.2.2.

14.2.3 Data Collection

Hyperspectral Imaging

Hyperspectral image stacks were collected with a x4, 0.13 NA objective lens (Olym-

pus) across a wavelength range of 521 - 899 nm in increments of 6 nm producing a 64

slice hyperstack for each �eld of view (FOV). Optimal camera exposure time for each

wavelength were read in from a pre-collected text �le throughout the hyperstack collec-

tion process. At 785 nm, the long pass �lter was inserted into the optical path to �lter

out second order light. Collection of corresponding dark �eld stacks was interleaved

with raw image collection by triggering the automated shutter of the monochroma-

tor and taking an unilluminated, but otherwise identical, image at each wavelength to

capture and correct for background light, dead camera pixels and other dark-visible

imaging artefacts. Additionally, one �at �eld stack was collected per objective lens, to
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allow for manual completion of the �at �eld background correction protocol. This re-

sulted in a total, unoptimised data collection run time of approximately 12 minutes per

repeat. Unfortunately the camera rolling shutter, which we were unable to change with

this VB.NET software, in combination with the new pulsed source required 6 repeats

of each dataset in order to correct for the horizontal striping artefacts. This unfortu-

nately increased total data collection time per hypercube to over an hour, though this

challenge is not insurmountable for future permutations of the system.

For full data collection instructions and reference to the software GUI, please refer

back to 4.3.1.

Data Processing

The data was then processed by the method outlined in 9.2.1. The home-built shift

9.2.1 and brightness �ne correction 9.2.1 ImageJ macros were utilised as previously

described. The change of illumination source from a laser to a pulsed-Xenon source

removed the constantly varying squircles which prevented the full background correction

of the data in Part II so the full �at-�eld background correction procedure could be

used as intended (9.2.1). Additionally, �atter focus across the �eld of view increased

its useable area and decreased the number of �elds of view required to image a full

sample clearly, though the stitching process in the analysis software was still governed

by global coordinates retrieved using the ImageJ �eld of view stitching macro, run after

data collection as described in 9.2.1.[127]

Raman Spectroscopy

The Raman data collection was performed in the same way and using the same

parameters as in Part II; a full tissue area scan taken in Streamline�mode with the

WiRE 4.4 software using a x20 (0.45 NA) objective, a 785 nm diode laser at 100%

power and a 2s exposure time, a 600 l/mm grating over a ~ 981 � 1719 /cm wavenumber

range with a spectral resolution of 1.9 /cm per pixel and a Ybin parameter of 5 yielding

e�ective spatial resolution of 50 µm in the x-direction and 13.7 µm in the y-direction.

For full data collection instructions and parameter rationales, please refer back to

9.2.2.

Histopathological Images

Full slides were scanned at x40 magni�cation using a Hamamatsu Nanozoomer

2.0HT with a LX2000 Lightning Exciter source.

14.2.4 Assessment of Tissue

Overview of Comparative Study
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The improvements to the system, software and comparison methods culminatede

in the development of an analysis work�ow which is automated at almost every stage

and requires little human input bar the necessary histopathological diagnoses. This

will allow the performance of the system to be evaluated in a simple and repeatable

manner after future alterations and could be adapted for release, allowing its use by

other groups with di�erent systems. It uses ImageJ and Matlab only, both widely used

in the �eld and with open source options available.

As the development of this system was piecemeal in response to the outcomes of

the smaller studies in Parts I and II, and the three datasets (HSI image stacks, Raman

spectral area maps and RGB histopathology images) require di�erent treatment, its

work�ow may be unclear at this stage. For clarity, a �owchart depicting the procedure

from data collection to quantitative evaluation is shown below (Figure 45). Some of

the steps, such as the a�ne transformation for coregistration, will be introduced for

the �rst time later in this subsection (14.2.4). The reader is encouraged to refer back

to this �owchart throughout Part III, whenever necessary.
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Figure 45: A work�ow outlining the process from collection of HSI (red rectangle),
Raman (green parallelogram) and RGB image (blue oval) collection, through their
correction, segmentation and performance analysis. Colour �lled boxes indicate where
the data from the three modes is in the same format or undergoes the same process.
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Cross-Modal Coregistration

The a�ne transformation-based coregistration software processes are outlined and

depicted below (Figures 46 and 47), separately to the segmentation software as they

are performed at di�erent stages on each dataset. The HSI stacks are transformed

to match the H&E tissue area before analysis as the texture analysis �pixels� were

designed to align perfectly with the scoring tiles, thus providing an immediate diagnosis

for each texture tile according to whether or not it is �lled with the cancer texture

hue. The Raman data was segmented before a�ne transformation as it was prone to

transformation errors due to its low spatial resolution (discussed further in 15.2.4) and

propagating these errors throughout the segmentation would have lead to more time

consuming re-analysis. Additionally, scaling up the size of the image int the a�ne

transformation to match the larger, higher resolution modes inevitably leads to some

scaling errors which were better handled by running the segmentation before performing

the a�ne transformation.

A�ne Transformation

In order to relate the manually-segmented H&E stained colour images, the segmen-

tation of the hyperspectral image stacks and the Raman maps, the tissue areas must

be coregistered. This allows for pixel-wise comparison by correcting for di�erences in

the �eld of view, translational o�sets and rotational di�erences inherent in imaging a

sample on a circular slide (calcium �uoride) on di�erent equipment, along with any

transformations that take place within the analysis software. The most commonly

used multimodal coregistration technique is a�ne transformation; a linear mapping

technique used to correct for geometric deformations and distortions such as cropping,

resizing, rotating, shear mapping and translating. Points, straight lines and planes are

all preserved.

In order to calculate the required a�ne transformation in Matlab, three sets of

well-spread feature coordinates which were identi�able in each modality were manually

located in GIMP using the same overlaying method as in Part II (9.4). The manual

identi�cation of �ducial markers can be quite time consuming and is vulnerable to hu-

man error. Unfortunately, given the numerous complications (circular calcium �uoride

slides, sectioning artefacts, changes in tissue morphology across non-subsequent slices

etc.), human involvement for this step was unavoidable. This non-automated step,

however, does not impact on the automation of the hyperspectral diagnostic work�ow,

only on this exploratory comparative work. The coordinates of these three points were

input in the home-built Matlab software and used to calculate the a�ne transformation

to coregister the HSI stacks and the Raman spectroscopy area scans of the unstained

tissue section to the RGB image of the corresponding H&E stained tissue section. The
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a�ne transformation settings were set such that the transformed images would also be

padded in x and y to match the RGB image of the H&E section. These settings are

vital to automating the coregistration of the images after they have been transformed

and their implementation in Matlab is included below.

Aslice = imwarp(slice, tform,′OutputV iew′, imref2d(size(P )));

where �slice� is the slice of the hypercube or Raman spectral stack which will be a�ne

transformed and padded, �tform� is the previously calculated a�ne transformation,

�Aslice� is the a�ne transformed and padded image (HSI or Raman), and �P� is the

RGB image of the H&E stained section being used as a reference for the post-a�ne

padding.
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Figure 46: 1. Separate H&E and HSI images. 2. Coregistered by selecting 3 common
reference markers in each image and performing an a�ne transformation in Matlab.

This a�ne transform was then applied, slice by slice, to the HSI and Raman data.

The H&E image was chosen as the reference image as the histopathologists' cancerous

region selections on the stained sample represent the gold standard diagnostic procedure

to which all other approaches should be compared. Additionally, the cancer regions

of interest selected in ImageJ by the histopathologists are di�cult to transform, and

subsequently analyse, without loss of important information.

Tissue Edge Cropping Macro

Due to the large amount of white space surrounding the tissue in in all modes after

padding to match the RGB image of the H&E stained section, the (now matching)

datasets were cropped to avoid time-consuming processing of empty tiles. An ImageJ
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macro was developed which generated an automatic tissue outline by converting the

image from type RGB to HSB (hue-saturation-brightness) and performing an auto-

thresholding of either the hue or saturation images (this inconsistency was a result

of staining variability between di�erent samples). This selection was converted into

an ImageJ ROI (region of interest), from which the size and position of its bounding

rectangle can be extracted using the macro language function �getSelectionBounds�,

and saved as a text �le. This macro was run on all of the RGB histopathology images

before coregistration software was run on the other two modes so that the bounding

rectangle details could be input into the coregistration software for cropping of the

a�ne transformed and padded HSI and Raman datasets.

Figure 47: 3. The H&E image was cropped to the outer boundaries of the tissue with an
ImageJ macro. By recalculating the positions of the common a�ne transform reference
coordinates with reference to the new origin (top left corner of the cropped H&E image)
the a�ne transformed HSI image was cropped to match.

This step required a little human input as the bounding rectangle details were

collected in ImageJ and had to be manually transferred to Matlab for use in the coreg-

istration software, however this is a feature of the evaluation system which would not

be present in the proposed combination HSI-Raman benchtop diagnostic system. In

such a system, the HSI and Raman datasets would be co-occurring by nature as they

would be collected in succession on the same tissue section on the same stage.

Segmentation
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Segmentation by Histopathologists

Cancerous regions were selected by histopathologists according to the protocol de-

tailed in 9.3.1, but for this study three histopathologists independently made these

demarcations. This allowed interobserver variation to be accounted for.

Interobserver variation is an indicator of one of the greatest downfalls of the current

histopathological process; it's lack of repeatability. However, as histopathology is the

current gold standard for the diagnosis of oral cancer, the performance of new tech-

niques must be measured relative to this. To try and overcome the potential impact

of interobserver variation on the accuracy of this comparative study, the consensus di-

agnosis was calculated from the regions of interest selected independently by the three

histopathologists using method detailed in 14.2.5.

Segmentation of HSI Data

Texture Analysis

Texture analysis was performed as an additional technique to attempt to enhance

segmentation of the HSI data and the software is outlined in 12.3.2. As recommended

in exploratory work, a GLCM was created for multiple o�set directions (0�, 45�, 90�

and 135�) and sizes (1, 2, 3 and 4 pixels) for a patch size of 396 pixels which equates

to 798 µm. The mean texture value across all o�sets was then taken for each texture

feature (contrast, correlation, homogeneity, energy) and the top left 99 pixels (200 µm)

of the patch (the texture �pixel�) were then �lled in with a grayscale value equal to the

o�set-mean patch texture value. The patch was then moved across the HSI hypercube

slice with a step size of 99 x 99 pixels (200 x 200 µm) and this process was repeated

across the full HSI image stack to produce four texture image stacks per HSI dataset.

Patch sizes which are too large will not be sensitive to early cancer invasion and

patch sizes which are too small may not detect patterns or textures. With these con-

siderations in mind, parameters were utimately chosen so that each complete texture

�pixel� matched the position and dimension of each scoring tile, the dimensions of which

were selected with reference to the di�erent patterns of cancer invasion and the average

size of squamous epithelial cells, discussed in full in 14.2.5.

PCA and K-Means Segmentation

As in Part II (9.3) the component number for the PCA denoising software was se-

lected was based on the turning point of the cumulative plot of percentage data variance

described by each component, shown in Figure 48. The processed HSI (processing de-

tailed in 14.2.3) was denoised with PCA, however the four texture stacks produced from
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the processed hypercubes were not, as a clear noise threshold for exclusion could not be

determined from the graph of variance explained by each component which exhibited

no clear turning point.

Figure 48: A graph of the variance proportion of the HSI data of the six tongue squa-
mous cell carcinoma samples explained by each component as determined by the Matlab
software detailed in 7.3.2.

A component number of 5 was selected for the processed HSI accordingly: Smaller

than the component number of 7 selected in Part II, this suggests either than that this

data has a lower SNR resulting in fewer valuable components, that use of the white

light laser in Part II added additional information which was not available with the

pulsed-Xenon source or that the two additional components in the results from Part II

correspond with intense noise features such as the varying background squircles which

could not be successfully removed.

The processed HSI and the four texture stacks produced from those hypercubes

were �nally segmented by k-means clustering. The cluster number for each sample was

assigned according to the assumption of one background cluster per �eld of view tile

and six main tissue components found in cancerous oral tissue sections, as discussed in

7.3.3.

Segmentation of Raman Data

The Raman data was noise �ltered by PCA with a component number which ex-

plains 95% of its variance: The high SNR achieved with Raman scattering means it

requires minimal noise �ltering and this 95% threshold is commonly used.[143] It was
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then k-means clustered with a �xed cluster number of 7, dictated by the rule of thumb

successfully applied in previous work; 6 tissue components and one background contri-

bution per �eld of view (of which there is always 1 for the Raman data).

Automated Cancer Region Selection from HSI, HSI Texture and Raman

K-Means Segmentation

Converting K-Means Segments to Regions of Interest

The single a�ne transformed, cropped grayscale output image produced by the

coregistration and segmentation software for each mode (PCA dimensionality-reduced

HSI, each of the four HSI textures, PCA dimensionality-reduced Raman) needed to

be quantitatively compared with the gold standard consensus segmentation a�orded

by the histopathologists in the format of ImageJ regions of interest (ROIs). Basic

manipulation of these ROIs is well provided for in ImageJ but exporting them for use

in other software is di�cult. Therefore an ImageJ macro was written for converting the

segmented grayscale images to tissue segment ROIs. Before running, a sample area of

each background segment must be selected by the user; this is used to reject background

ROIs and automate selection of the tissue area. At this stage, the macro identi�es every

grayscale value within the tissue boundaries and, using thresholding, separates areas of

each grayscale value into a separate segment ROI.

Samples which this protocol performed worst on were those with little tissue con-

trast, poor tiling performance, high contrast background features or artefacts close to

the tissue itself. For example, presumed Etalon cavity e�ects which were detrimental to

the Raman datasets in Part II (10.3.1) also a�ected sample #4644 causing an intense,

striped background across the scan area which was visible over the tissue area in some

places. These stripes were assigned to two clusters which were also present within the

tissue area in places, inhibiting the macro from being able to detect the tissue edges

clearly: one of these two clusters is shown in orange in Figure 49
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Figure 49: Etalon cavity e�ects in the Raman area scan of tongue squamous cell car-
cinoma sample #4644 inhibiting automated tissue area selection. One segment, found
in the background and the tissue area, is selected in orange.

In these few cases, some manual intervention was necessary to tailor the macro to

overcome these artefacts.

Selection of Cancer Region

As there are limited examples in published literature of hyperspectral scattering

microscopy on thin, unstained oral tissue sections the aim of this work was, in part,

to identify diagnostically relevant features of the data. Without this prior knowlede

of the diagnostic features of the spatial and spectral facets of this data, segmentation

based on HSI diagnostic classi�ers was not possible. It was therefore decided that the

data would be arbitrarily segmented using k-means clustering and, for each sample,

the most similar segment to all three of the histopathologist-selected cancer regions

would be identi�ed using a home-built ImageJ macro based on overlap coe�cients.

The overlap coe�cient (OC) is a measure of similarity between two sets (A and B) and

is de�ned as follows.

OC(A,B) =
|A ∩B|

min(|A|, |B|)

In this case, A would be the gold standard histopathologist selected cancer ROI

and B would be an individual segment ROI of the grayscale segmented image (k-means

clustered HSI, HSI texture or Raman). (The histopathologist consensus cancer ROI and

the intersection of these two ROIs can both be found by using the �AND� command in

the ROI Manager and the smallest ROI can be determined by comparing their measured

areas.) For each such image, the overlap coe�cient was calculated for each segment
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ROI and the segment with the highest similarity to the gold standard was selected as

the �cancer ROI�.

Fundamentally, k-means clustering separates areas with the greatest spectral dif-

ferences into individual segments and therefore, retrospectively identifying the spectral

features which delineate each segment from the others is an acceptable way to begin

the process of identifying potential diagnostic classi�ers.

14.2.5 Quantitative Cross-Comparison

Tile Scoring

The a�ne and cropping step facilitates direct comparison between corresponding

tissue areas of di�erent sections of the same sample. From this point, each coregistered

modality for the same sample was broken into identical tiles of a �xed size, as shown in

Figure 50, and the percentage coverage of each tile by its cancer ROI (tile score) was

calculated. An ImageJ macro was developed to perform this process which we refer to

as �tile scoring�.

Figure 50: A coarse tiling representation to show how the a�ne and cropping facilitates
easy tile-wise comparison between the di�erent modalities. Red box indicates image
edges and small black squares represent tiles.

To decide the tile size for quanti�cation of the cancer segments, we referred back

to our original aim; the early, automated detection of oral cancer for improved survial

rates. While just one epithelial cell the wrong side of the basement membrane would still

be classi�ed as in�ltrating cancer, the likelihood of that single cell being successfully

captured in a biopsied tissue section and detected by the histopathologist (our gold

standard reference diagnosis) is low. (Additionally, this same tile size must be assigned

to the step size, or e�ective pixel size, of the texture analysis. A single squamous cell
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can range in size from ~ 40 - 60 µm and, with a spatial resolution of ~2µm, a single cell

patch size is unlikely to return reliable texture values.) Therefore we looked to cancer

in�ltration patterns for a more practical suggestion. Once the basement membrane is

breached and cells start to stream from the epithelial to the mesenchymal side, which is

the de�nition of in�ltration, this stream of cells can in�ltrate by single-cell or collective

migration, classi�ed as less, or more, than 15 cells across, respectively.[9] Very small tile

sizes would lead to less reliable cross-comparison due to decreased likelihood of identical

areas being contained within matching tile numbers across di�erent imaging modalities

due to the human errors which are inherent in the coregistration process. With this

in mind, it was decided that collective in�ltration would be considered in this study.

Therefore a patch size of 200 µm was selected; equating to a cluster of 16 squamous

cells (arranged 4 x 4) with an average size of 50 µm. This tile size was �xed and tile

scoring was only performed on tiles completely within the tissue area.

Histopathologist Consensus Calculation

At the tile scoring stage, the tile becomes an e�ective pixel with one descriptive

value, its score, and we no longer take into consideration the positions of the cancer

regions within each tile. Therefore for each tile, the minimum percentage coverage

assigned by any of the three histopathologists was taken as the consensus diagnosis.

Tile Exclusion

One of the main limitations of the investigation has its roots in the a�ne transfor-

mation step. As, in practice, there are between 10 and 50 µm (1 - 5 tissue sections)

between the unstained and corresponding stained tissue sections, the morphological dif-

ferences can be pronounced. Other sectioning artefacts which we encountered included

folding, wrinkling and cracking, with or without additional translation or rotation of

the separated area. A�ne transforms are unable to account for any of these artefacts.

Therefore, a two-stage process of excluding tiles falling within areas of these artefacts

was developed in ImageJ.

Automatic

The tissue area ROIs created previously for the H&E stained sections and the un-

stained sections used for the HSI and Raman data collection (in the tissue edge cropping

macro (14.2.4) and the segment ROI creation macro (14.2.4), respectively) were saved

and re-used in this stage to identify large areas of disagreement. The included tiles

were initially restricted only to those fully contained by the union of the tissue outline

ROIs from all three modes. The numbers of included tiles were identi�ed in an ImageJ

macro and returned as a list which was used in combination with Excel �ltering and
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sorting functions to include only the the tiles fully within the tissue area boundaries in

all modes, rejecting fragments and dislocations and partially accounting for changes in

tissue shape between sections..

Manual

Manual tile exclusion was not intended from the outset, but the samples required

it. While large areas of dislocation were e�ectively excluded by the automated tile

exclusion macro, some artefacts such as tissue folds did not meet the auto-exclusion

criteria and were manually identi�ed and excluded before implementing the included

tile list by �ltering and sorting in Excel.

Evaluation of Tile Scores

The performance of the tissue segmentation by HSI and Raman was evaluated in

the form of sensitivity and speci�city of the technique. Sensitivity records the true pos-

itive rate: the proportion of cancerous tissue which is correctly identi�ed as cancerous.

Speci�city returns the true negative rate: the proportion of non-cancerous tissue which

is correctly identi�ed as non-cancerous.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

where TP (true positives) are tiles where the cancer segment from the mode under

evaluation and the histopathology cancer segment both cover more than DT% of the

tile area, TN (true negatives) are tiles where the cancer segment from the mode under

evaluation or the histopathology cancer segment both cover less than DT% of the tile

area, FP is where the cancer segment from the mode under evaluation covers more than

DT% of the tile area but the histopathology cancer segment does not and FN is where

the cancer segment from the mode under evaluation covers less than DT% of the tile

area but the histopathology cancer segment covers more than DT% where DT is the

de�ned diagnostic threshold (discussed and selected in 15.2.4).

14.3 Microplastics

14.3.1 Sample Sourcing

Particulate Matter from Air Filters
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The particulate matter sample was collected from an air quality monitoring supersite

at Marylebone Road, over a 24 hour sampling period.[144] Collection used a Thermo-

scienti�c Partisol 2025i with a PM10 size selective inlet which selects particulate matter

(PM) below 10 D μm in aerodynamic diameter which is generally considered to be of

�inhalable� size.[145]

Microplastics in Mouse Pulmonary Tissue

Mouse pulmonary tissue sections collected from lungs dissected from terminated

control mice were borrowed in collaboration with Wright et al (Environmental Research

Group, Imperial College London). Pulmonary tissue was selected as the respiratory

system, along with the digestive system, are hypothesised to be the main sites for

microplastics (and particulate matter) to enter, and potentially cause damage in, the

body.

14.3.2 Sample Preparation

Air Filter Samples

The PM present in the air sample was added to water (concentration was not spec-

i�ed as dropcasts do not preserve concentration) and a 10 µl drop was dropcast onto

a calcium �uoride slide (Crystran CaF2 20mm diameter, 0.5mm thickness, polished

Raman grade). The sample was left to dry slowly (without heat) to avoid dramatic

co�ee ring e�ects, and on an orbital shaker (Stuart) at a low speed to avoid particle

aggregation which would erroneously enhance detection of small particles.

Microplastic-Perfused Mouse Pulmonary Tissue

1. Lungs were dissected from terminated control mice. Frozen tissue (A) was in�ated

with OCT and formalin-�xed tissue (B) was in�ated with PBS.

2. Plastic microbead mix was made up to 0.01% �nal concentration in in�ating

media. It contained equal concentrations of polymethylmecrylate (PMMA) beads

(5 � 27 µm), polyethylene (PE) beads (10 � 27 µm) and polystyrene (PS) beads

(4 and 10 µm).

3. Frozen tissue (A) was in�ated with OCT:PBS (1:1) containing plastic microbeads

(as detailed above) and then frozen in OCT using dry ice.

Tissue was then processed as follows:

1. Frozen samples were cut into 10 µm sections at -20�C using a cryostat (Bright,

UK).
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2. Sections were a�xed onto Superfrost Plus slides (Thermo Scienti�c Menzel, UK)

and left to dry overnight in the fume cabinet.

14.3.3 Data Collection

Hyperspectral Imaging

Hyperspectral image stacks were collected with a x4, 0.13 NA objective lens (Olym-

pus) across a wavelength range of 521 - 899 nm in increments of 6 nm producing a 64

slice hyperstack for each �eld of view (FOV). Optimal camera exposure times for each

wavelength were read in from a pre-collected text �le throughout the hyperstack collec-

tion process. At 785 nm, the long pass �lter was inserted into the optical path to �lter

out second order light. Collection of corresponding dark �eld stacks was interleaved

with raw image collection by triggering the automated shutter of the monochroma-

tor and taking an unilluminated, but otherwise identical, image at each wavelength to

capture and correct for background light, dead camera pixels and other dark-visible

imaging artefacts. Additionally, one �at �eld stack was collected per objective lens, to

allow for manual completion of the �at �eld background correction protocol. This re-

sulted in a total, unoptimised data collection run time of approximately 12 minutes per

repeat. Unfortunately the camera rolling shutter, which we were unable to change with

this VB.NET software, in combination with the new pulsed source required 6 repeats

of each dataset in order to correct for the horizontal striping artefacts. This unfortu-

nately increased total data collection time per hypercube to over an hour, though this

challenge is not insurmountable for future permutations of the system.

For full data collection instructions and reference to the software GUI, please refer

back to 4.3.1.

Data Processing

The data was then processed by the method outlined in 9.2.1. The home-built shift

and brightness �ne correction ImageJ macros (9.2.1, 9.2.1) were utilised as previously

described. The change of illumination source from a laser to a pulsed-Xenon source

removed the constantly varying squircles which prevented the full background correction

of the data in Part II so the full �at-�eld background correction procedure could be,

and was, used as intended (9.2.1). No �eld of view stitching was required as only one

was collected.
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15 Results and Discussion

15.1 Preliminary Study - HeLa Cells Treated with Paclitaxel

In order to study the di�erences between the healthy and paclitaxel-treated HeLa cell

HSI data, they were grown in monolayers across separate glass microscope slides, �xed

and topped with a cover slip, and imaged side-by-side in the same �eld of view to

ensure intensity variations across di�erent datasets did not inhibit direct comparison.

As paclitaxel induces mitotic arrest, the cells did not form an even monolayer after

treatment; this is an important limitation of this preliminary study as cell packing

impacts elastic scattering spectra.[146] This, in combination with the criterion that

only cells near the slide edges could be included in one �eld of view, impacted the

unbiased selection of representative areas of cells from each sample.

Therefore, the centre strip was selected from each sample (in one dataset), positioned

only to avoid out of focus areas at the edge of the �eld of view and areas at the slide edges

with very poor cell coverage. As previously, segmentation map colours are randomly

assigned to each cluster within each dataset, however their assignation can often be

inferred from the image and associated sample knowledge. The (light) blue segment

appears to demarcate cell nuclei which are evidently di�erent after treatment with

paclitaxel (Figure 52). Therefore, masks of the blue (nucleus) segment were created

from both of the sample areas described previously, to facilitate collection of nuclear

area and perimeter statistics. These masks for paclitaxel-treated and untreated Hela

cells are shown as binary maps in Figure 51, to the right of their associated segmentation

maps.

Figure 51: K-means cluster map with corresponding mask of nuclei of of healthy HeLa
cells (left) and paclitaxel-treated HeLa cells. Scale bar represents 150 µm.
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Analysis of nuclear area and nuclear perimeter were peformed on these whole re-

gions, in spite of varied con�uence of the paclitaxel-treated cells. The paclitaxel-treated

nucleus data is slightly less reliable than the healthy cell data due to a lower cell count

in this region due to the aforementioned inhibited proliferation.

Feature Healthy Paclitaxel-Treated

Mean Nuclear Area (px) 9.9 12.0
Nuclear Area Std. Dev. (px) 8.5 11.1
Mean Nuclear Perimeter (px) 11.3 11.7

Nuclear Perimeter Std. Dev. (px) 6.6 7.15

Table 4: Mean values of nuclear area and perimeter in healthy and paclitaxel-treated
HeLa cells, and the standard deviations of these feature measurements for each group
(1 d.p.).

Both the average nuclear area and nuclear perimeter, and their standard deviations,

show an increase with paclitaxel treatment. This supports the hypothesis that our

HSI system with k-means clustering is able to detect di�erences between healthy and

cancerous cells, as paclitaxel treatment mimics several of the cellular changes of cancer

such as aneuploidy. This is also in agreement with studies comparing nuclear features

in oral squamous cell carcinoma, our target sample set, and healthy oral tissue.[147]

Smaller areas containing successful monolayers of healthy untreated, and paclitaxel-

treated HeLa cells were isolated to visually demonstrate the nuclear area and perimeter

di�erences identi�ed.

Figure 52: K-means cluster map of an area of healthy HeLa cells (left) and HeLa cells
that have been treated with paclitaxel. Scale bar represents 50 µm.

The cell packing irregularity in paclitaxel-treated cells is also evident in this �gure

(Figure 52), suggesting that spatial analysis will be a useful addition to the analysis

process.
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Unfortunately, the inhibited proliferation of the paclitaxel-treated HeLa cells led

to patchy cell coverage and varying cell packing densities which inhibited broader seg-

mentation of the �eld of view to show global di�erences between the two di�erent

cell states. If cell coverage had been even, showing larger areas similar to Figure 52,

statistics regarding segment coverage across the whole slide could have been utilised to

more coarsely segment the image. For example, patches or tiles with more than 40%

covered by the blue hue (assumed nuclei and suggesting a high nuclear-to-cytoplasmic

ratio which could be assumed cancerous/cancer-like) could be selected automatically.

Fortunately, cell con�uence is not a concern when utilising tissue sections.

This preliminary work evidencing that di�erences between healthy and cancer-like

cells can be detected by this HSI system when segmented by k-means clustering provided

hope that this system would perform equally well, or better, on tissue.

15.2 Main Study - Tongue Squamous Cell Carcinoma Segmen-

tation

Due to the huge variety of tissue types and structures within the oral cavity, variation

between the dissimilar components of healthy samples could be as large as variation

between healthy and diseased (e.g. malignant) tissues. For this reason, a subset of

malignant oral tissue samples has been selected which are expressing the most common

serious oral malignancy, squamous cell carcinoma, and are from the region of the oral

cavity most commonly a�ected; the tongue. These malignant areas were compared

with healthy regions contained within the same samples, and also with healthy tongue

samples. Limiting the source of variation to the cancer itself allows us to demonstrate

the capability of the system to quickly delineate between healthy and malignant or

unusual tissue.

Performance was predominantly evaluated using receiver operator curves (ROC)

which plot true positive rate against false positive rate. They are a popular way to

represent the diagnostic ability of a system which makes a binary classi�cation; in

this case a cancerous or non-cancerous tile of tissue.[148, 149] ROC curves illustrate

the compromise between sensitivity and speci�city by plotting how they alter with the

application of di�erent discrimination thresholds; in this case, what percentage coverage

of a tile by a cancer segment classi�es the whole tile as cancerous. (The segmentation

of all modes produce tiles with partial cancer coverage, except for the texture analysed

HSI data which classi�es full tiles due to application-informed patch size constraints.)

Selecting a diagnostic threshold requires a compromise between false positives and

false negatives, each with di�erent negative clinical implications. The former assigns a

cancer diagnosis to a healthy sample, triggering unnecessary and expensive diagnosis
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and treatment advancement steps. The latter has an even graver outcome, missing

the cancer and labelling the tissue as healthy, diverting the patient away from the

required treatment path and decreasing their chance of survival. The practical and

moral implications of selecting a diagnostic threshold are substantial and the selection

should be made only when the diagnostic technique has been fully optimised and found

worthy of clinical translation. Potential appropriate diagnostic thresholds are brie�y

discussed later, nonetheless. In order to evaluate the performance of the technique

without ascribing a �xed diagnostic threshold, the area under the receiver operator

curve, or AUROC, score represents the separability performance of the technique across

all possible discrimination thresholds. The AUROC score can take any value between

0 and 1, and the higher its value, the more successfully the two classes (in this case

cancer and non-cancer) are separated. Usually a classi�cation model or system with an

AUROC score > 0.60 is considered to have fair class separation capacity, >0.70 is good,

>0.80 is very good and >0.90 is excellent and 1 is a perfect. Using this performance

metric allowed the system to be fully evaluated without having to select an appropriate

diagnostic threshold.

15.2.1 Interobserver Variation

Many investigations into potential histopathology adjuncts or replacements reference

high interobserver variation but do not account for it in practice. This may be due to

fear of depreciated diagnostic performance of systems compared to a more conservative

gold standard, in spite of the potential for increased accuracy and precision.
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Figure 53: RGB image of tongue squamous cell carcinoma sample #9806 with demar-
cation by each of the three histopathologists with scoring tiles overlayed in red and
numbered for reference (one image enlarged for clarity of tile numbers). Note partial
tile coverage by cancer, requiring a discrimination threshold for assigning tile-wise la-
bels of true positive, true negative, false positive and false negative for the other modes,
in comparison with this gold standard. Each tile is 200 x 200 µm in size.

Looking at the cancer segments selected by the three histopathologists for sample

#9806 in Figure 53, there are areas of substantial disagreement. The rectangle of

unselected area in the bottom left of the green-selected image, suggests that some of
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those areas of disagreement could be erroneous rather than truly representatative of a

di�erent diagnostic opinion. While the ROI selection technique (9.3.1) was reasonably

simple and robust, it was vulnerable to some errors. Predominantly, human errors in

precise and accurate selection of intricate cancer in�ltration patterns, but also a feature

of ImageJ ROI selection which automatically closes open ROI edges with a straight line

once the mouse is released. This is likely to be the cause of the rectangular region

across tiles 506 - 511 of the green-selected image, and may have overwritten some small

areas which were intentionally not selected in this same sample. This contributed to

the decision to utilise the histopathologist consensus diagnosis, rather than the mean or

maximum which would contain increasingly more potentially erroneous contributions.

Additionally, the consensus diagnosis is often used as the gold standard in studies which

look into di�erences in the diagnoses provided by multiple histopathologists.[150] Even

though the yellow and orange-selected cancer regions appear very similar for this sample

at �rst glance, there are di�erences at closer inspection. For example, in the bottom

left column of the dataset (tiles 421, 449, 477, 505, 533, 561, 589, 617 and 645) show

large di�erence with the yellow-marking histopathologist diagnosing cancer only in the

very bottom tile, the orange-marking histopathologist diagnosing cancer only in the top

half of that column, and the green-marking histopathologist detecting almost complete

cancer coverage across these tiles.

Di�erent varieties of Kappa values, especially Cohen's Kappa, are often cited as

measures of interobserver agreement.[151] Unfortunately Cohen's Kappa metric are only

suitable for two-way comparisons within discrete data. Percentage agreement between

histopathologists is another popular measure of interobserver variation, occasionally

favoured in diagnostic imaging as it provides more clinically relevant (absolute, rather

than relative) information, in spite of not accounting for chance where Kappa statistics

do.[150] It unfortunately requires that potential outcomes are binary which necessitates

the setting of a diagnostic threshold. Rather than make underinformed assumptions

about this threshold, the intra-sample and inter-sample mean standard deviations of

the percentage coverage of cancer selected by each of the three histopathologists was

evaluated.

The mean intra-sample standard deviation ranged from 2.4% in tongue squamous

cell carcinoma sample #9890 to 12.6% in sample #4644. The smaller standard de-

viations often correlated with samples containing less cancer. Where there is more

healthy tissue in a sample containing cancer, the number of zero-cancer-coverage tiles

increases. These are often the simplest to locate and the least contentious between

di�erent histopathologists. Tiles containing cancer, or near a main tumour island, are

likely to require more complex discriminatory decisions by the evaluator such as dif-
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ferentiating between cancer and dysplasia or hyperplasia. Additionally, the manual

selection of the cancerous region is subject to human error whereas fully healthy tissue

tiles are not. It is important to remember that this ImageJ selection process (and its

associated human error) is not representative of the diagnostic process undertaken by

histopathologists on a daily basis, but is instead a necessary feature of a comparative

study such as this.

Taking the mean of these intra-sample standard deviations gives us an estimate of

how varied the percent cancer coverage is, per tile, across all of the cancer-containing

samples: This value was evaluated as 6.7%. While comparison with other studies of

interobserver variation would be informative, this is di�cult due to the range of metrics

utilised. The e�ect of interobserver variation is not negligible in this study, which is

in general agreement with literature and supports using the consensus area of cancer

coverage per tile as the gold standard.

15.2.2 Sources of Error

When we evaluate performance of an imaging technique by calculating sensitivity and

speci�city we are, in reality, evaluating the imaging technique (within certain parame-

ters dictated by the equipment and other practical limitations, such as the magni�cation

used), the process by which the resulting images are quanti�ed (including the choice of

analysis parameters) and the process by which these quantitative results are compared

to the reference mode. Performance metrics can therefore be substantially impacted

by errors in any of those steps. From the �owchart depicting the process from data

collection to �nal evaluation (Figure 45), we can identify the following steps which may

depreciate the apparent performance of the HSI screening technique:

1. Processing the multiple HSI repeats to correct for the rolling shutter (potential

loss of useful information by taking the maximum at each pixel across all repeats)

2. Tiling multiple HSI �elds of view (potential acceptance of more noisy pixels,

raising the SNR, by taking the maximum at each pixel in tile overlap areas)

3. Finding common coordinates between the three datasets (HSI, Raman and RGB

image of H&E) for a�ne transformation to allow cross-comparison.

(a) Sampling errors and sample artefacts will also become apparent in this step,

as even a perfect coregistration technique cannot match and align data from

two di�erent samples (HSI and Raman data on the fresh frozen tissue section

and the RGB image of the H&E stained, para�n-embedded, separate tissue

slice, each with their own artefacts).
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4. Analysis parameters chosen based on small bodies of evidence and/or logical as-

sumptions, such as k-means cluster number and spatial texture o�set step sizes

and directions.

The table below shows which of these limitations has particularly a�ected each sam-

ple, referenced using the numbers from the list above, and links them to a speci�c

sample feature. This will be explored further in the sample-wise evaluation of the

HSI-segmentation technique.

Sample Number Dominant Limitations

9806 3a - Broken tissue
2217 3, 3a - A sample artefact caused by a cracked slide
4644 3a - Minimal healthy tissue present in sample
2577 2 - Tiling artefact. 3, 3a - Fragmented frozen section
9890 2 - Four �elds of view so increased tiling artefact
4734 2 - Four �elds of view so increased tiling artefact. 3a - Many folds in H&E section

Table 5: A table outlining the limitations (from the numbered list above) most a�ecting
the HSI datasets of each malignant sample.

The magnitude of each contribution to the total error is di�cult to estimate, though

we may exploit the fact that the HSI and Raman spectroscopy were performed on the

same sample to gain some additional insight. When we evaluate the performance (sen-

sitivity and speci�city) of the HSI with respect to the gold standard histopathology, the

outcome is likely to contain contributions from all of the error sources outlined above.

However, if we evaluate the performance of the HSI with respect to the Raman �cancer�

segment (selected by highest overlap coe�cient with respect to the histopathologists'

combined cancer ROI), it will contain fewer errors due to sample artefacts as both

techniques are performed on the same tissue section, though errors may still have been

introduced in the a�ne transformation used to coregister the two modalities. Unfortu-

nately, these performance metrics would only re�ect agreement between the HSI and

Raman cancer segmentation. However, the higher the sensitivity and speci�city of the

Raman data with respect to the histopathology (indicating accuracy with respect to the

gold standard), the more diagnostically relevant this would be. As Raman spectroscopy

has proven diagnostic power, with cancer diagnostic sensitivities and speci�cities of over

90% encountered regularly in literature, we may consider this a valid comparison.[152]

15.2.3 Raman Performance Evaluation

Our Raman spectroscopy system, in combination with the process by which we com-

pared it with the gold standard histopathology-based diagnosis, performed quite poorly

relative to leading literature garnering an AUROC score of 0.69, where scores of 0.95

have been reported with the use of a similar segmentation technique and a PCA-hLDA
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based diagnostic classi�er.[152] In this study, exposure time was sacri�ced in order to

utilise the broad wavenumber range required to include the most discriminatory spec-

tral features. The application our system was designed for necessitated the use of full

tissue sections. Raman spectroscopy is a notoriously slow technique, and imaging tis-

sue sections of ~1 cm2 with an adequate pixel size, exposure time, spectral range and

resolution can take over 24 hours. This decision to compromise on exposure time may

have been more detrimental given the number of freeze/thaw cycles our samples had

experienced prior to �nal data collection, which can lead to diminished intensity of

chemical peaks (requiring maximising of the available signal such as by increasing the

exposure time).[120] However, given the clinical application this system is designed for,

even with the Raman scan area decreased substantially by a HSI pre-screening and

segmentation process, speed must be considered at every stage. All chemically speci�c

sample mapping modalities which do not require markers, such as Raman and FTIR

spectroscopy, are comparably slow by nature. While developments in laser technology

are beginning to enhance the speed of FTIR, at a cost, and its resulting appeal, Raman

spectroscopy facilitates the most convenient sample preparation for work on full tissue

sections and is therefore the most suitable option. Therefore, practicality imposed a

16 hour scan time limit resulting in a two second limit on the exposure times used for

all samples, and therefore depreciating the SNR and potentially impacting the segmen-

tation performance. In the proposed HSI-Raman combination system, the impact of

time-consuming nature of Raman spectroscopy will be signi�cantly mitigated by the

sparser sampling facilitated by the HSI pre-screening process. Therefore this limited,

two second exposure time will not be a limiting factor in the �nal combined system and

its e�ect on the data is a feature of this preliminary study only.

Nonetheless, random sampling from the spectra of cancerous regions of our sam-

ples show features at many of the characteristic wavelengths suggesting that the data

is accurate, if not particularly high in quality. Spectral di�erences between healthy

oral tissue and oral squamous cell carcinoma peaks were most commonly noted at

1341 cm-1 and 1265 cm-1. The former has been correlated with dead cells, which has

clear histopathological relevance.[153] In spite of angiogenesis in the tumour vicinity

to accommodate its rapid metabolism, necrosis occurs in tumour centres as access to

nutrition and oxygen is restricted as the tumour grows. The peak indicates the presence

of adenine and guanine of DNA; adenine has been proven to be a reliable biomarker of

oral cancer discriminant in Raman spectroscopy by Dai et al.[154] The second peak, at

1265 cm-1, is associated with protein. Increased protein and DNA in cancer cells aligns

well with the global picture of cancer pathology.[54]
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15.2.4 HSI PCA and K-means Segmentation

Performance Evaluation

The ROC curve in Figure 54 shows the power of HSI imaging with PCA-based

dimensionality reduction and k-means clustering as a standalone tongue squamous

cell carcinoma discriminatory technique as it compares it only to the gold standard

histopathologist-segmented RGB images of the corresponding H&E stained sections

(ground truth).

Figure 54: ROC curve for segmentation by k-means clustering of dimensionality-reduced
HSI of tongue SCC tissue with respect to the consensus histopathologist segmentation
of the subsequent tissue section. Black dashed line represents a worthless diagnostic
test (chance).

The AUROC score is 0.70 which means that k-means clustering of dimensionality-

reduced HSI has good capacity for separation of tongue squamous cell carcinoma from

healthy tongue tissue. Given that the HSI and Raman spectroscopy both use the same

tissue section, we would expect better performance of the HSI with respect to the

Raman rather than the histopathology. The segmentation produced by the HSI system

compared to the Raman clustering as the ground truth did garner a slightly higher

AUROC score of 0.73, though the improvement is not as marked as anticipated. This

can be interpreted in three potential ways, either the coregistration between those two

modes has performed badly or the Raman-based segmentation is of poor quality, or it is
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is incompatible with the HSI-based segmentation suggesting that their discriminatory

spectral features come from dissimilar tissue areas or components. The Raman datasets

are more prone to coregistration errors as the raw datasets are very small (in x and

y) due to the low spatial resolution and must, therefore be scaled up in size during

the a�ne transformation. This means that any small human errors introduced in the

a�ne coordinate selection process are also scaled up, resulting in worse tissue area

matching. This is likely a major source of error, along with the poor quality Raman

data discussed previously (15.2.3), in the reporting of performance of HSI with respect

to Raman segmentation and Raman segmentation with respect to histopathology as

the ground truth.

While comparing the HSI-histopathology performance in tandem with the HSI-

Raman performance can illuminate the important sources of error in the HSI technique,

clearer understanding of the diagnostic potential of the HSI segmentation technique

itself could be retrieved by combining the HSI and Raman imaging into one system to

remove the need for coregistration between these two imaging modalities, and/or by

using the same tissue section for all data collection. These options and their bene�ts

will be discussed more fully in the future work section, along with methods to diminish

error contributions 1 and 2 from the list above which could be directly applied to the

current system.

Below is a table showing the sensitivity and speci�city of the HSI with k-means

cancer segmentation for each cancerous sample, and the technique as a whole across

all samples, with two diagnostic thresholds; 12% and 8% tile coverage classi�ed as a

cancerous tile, versus the consensus tile cancer coverage of the three histopathologists.

The standard deviation for the sensitivity and speci�city of the technique across all

samples in given in the �nal row.

The two diagnostic thresholds selected are 12% and 8% area coverage of a tile by the

cancerous segment. The former was chosen to maximise both sensitivity and speci�city,

as would be required if HSI were to be used as a standalone diagnostic technique. The

latter was chosen to maximise sensitivity without losing so much speci�city that the

false positive level becomes impractical. The 8% threshold was also the closest (of the

thresholds selected for a smooth ROC curve) to the size of one squamous cell, of which

only one is required the wrong side of the basement mebrane to garner a diagnosis

of invasive cancer. In a combination HSI and Raman system, the initial HSI-based

segmentation must have high sensitivity to ensure all potentially cancerous regions

are highlighted for further interrogation with Raman spectroscopy. As the results are

discussed in more detail and compared to work carried out by other groups, it seems

prudent to highlight that the sensitivity and speci�city of a diagnostic technique can
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broadly refer to two di�erent things. Firstly, to its potential to classify whole samples

as containing, or not containing cancer. Secondly, to the proportion of a single sample

which is correctly identi�ed as cancerous or non-cancerous tissue. The former is more

common but, as we are not yet training a diagnostic classi�er but instead determining

the worth of pursuing a certain technique for that purpose, this thesis will adopt the

latter, more stringent de�nition of sensitivity and speci�city henceforth.

Sample no. 12% Sens (%) 12% Spec (%) 8% Sens (%) 8% Spec (%)

9806 80 67 84 62
2217 58 86 74 61
4644 84 15 97 9
2577 33 43 61 15
9890 89 39 91 33
4734 22 81 43 62

All samples 66±28 66±27 79±20 51±24

Table 6: Table showing the sensitivity and speci�city of the HSI and k-means cancer
segmentation for each cancerous sample, and the technique as a whole across all samples,
with two thresholds; 12% and 8% tile coverage classi�ed as a cancerous tile, versus the
consensus tile cancer coverage of the three histopathologists. The standard deviation
for the sensitivity and speci�city of the technique across all samples in given in the �nal
row.

As this is the �rst body of work which speci�cally probes the (tongue squamous

cell carcinoma) diagnostic capacity of (the k-means clustering segmentation of PCA

dimensionality-reduced) hypercubes utilising visible and NIR light, collected on un-

stained tissue sections, there are no fully relevant comparisons to be made. Many other

visible and NIR elastic light scattering techniques used to diagnose oral cancer have

achieved excellent diagnostic performance, though in every case the hyperspectral data

has been collected either in vivo, or in ex vivo tissue which has not been sectioned.

Both of these sample types contain blood which has proven high discriminatory worth

in cancer detection and which produce sharp and intense absorption features with high

classi�cation power.[79]

The extensive work of the Fei group falls within this category, achieving AUROC

scores as high as 0.88 in diagnostic tests across samples from multiple patients, as in

this study. In tumour-normal interface tissue, they achieved a diagnostic sensitivity,

and speci�city of 66 and 76%, respectively, where their de�nition of tumour-normal

interface tissue applies to all of the samples used in this study. Their comparison to

the gold standard histopathological diagnosis was also performed in a tile-wise fashion

rendering its methodology very similar to this work.[155] In the relative absence of large

quantities of highly cancer-correlated, absorbant haemoglobin, the performance of our
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HSI technique with k-means clustering segmentation has exceeded expectations.

Our lower speci�city score is expected as the source of absorption spectral features

can be speci�cally identi�ed whereas di�use scattering signals are comparitively non-

speci�c. The formidable diagnostic performance achieved by hyperspectral imaging by

Fei et al was achieved using a Maestro (PerkinElmer Inc., Waltham, Massachusetts)

imaging system which is signi�cantly more expensive than the cost of our system,

though its speed of data collection will be much higher due, in part, to the use of a

non-pulsed Xenon source. The skeleton methodology of the work of Fei et al is very

similar to this study, though the use of fresh excised tissue sections yields very di�erent

spectra and discriminatory spectral features, and would slot less e�ciently into the

current gold standard diagnosis work�ow. Nonetheless, their work on incorporating

spatial hypercube features inspired our investigation into utilising texture analysis as

a potential segmentation and diagnostic aid in our own system, on unstained frozen

tissue sections.

No studies utilising vis-NIR di�use scattering spectra to discriminate oral cancer

from thin, unstained tissue sections were found in the current body of literature. How-

ever, infra red microspectroscopy has been used successfully in this way. Long acquisi-

tion times plagued the early FTIR-based diagnostic systems, with a full tissue area scan

taking several hours: almost as long as Raman spectroscopy. Kuepper et al exploited

the growing availability of quantum cascade lasers to create an infra red microspec-

tropy capable of detecting Stage II and III colorectal cancer with 96% sensitivity and

100% speci�city compared to histopathology, in 30 minutes or less and with less than

an hour of analysis time per tissue section.[156] This performance is comparable to

Raman spectroscopy and signi�cantly faster, and has potential to be an ideal solution

to the growing pressure on UK histopathologists. It is, however, an expensive sys-

tem containing both a costly microbolometer focal plane array (FPA) detector and a

quantum cascade laser, known for their clinically-prohibitive expense.[157] IR detectors

tend to limit the spatial resolution of the technique, though improved resolution can

be achieved at a signi�cant cost. The work by Kuepper et al used a microbolometer

with 4.25 Ö 4.25 µm spatial resolution, half as �ne as our 2 x 2 µm pixel size. This

comparison is only signi�cant in comparison to an HSI standalone system, rather than

the HSI-Raman combination system we are primarily recommending which would limit

the system's spatial resolution rendering a high resolution pre-screening process obso-

lete. Unfortunately, until further developments in semiconductor science, build costs

will likely prohibit its clinical translation and widespread use.

Sample-Wise Performance Evaluation

The performance of the HSI, PCA-based dimensionality reduction and k-means
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clustering technique varied signi�cantly between individual samples in ways that can be

tied to the speci�c limitations of that dataset (Table 5). Identifying connections between

the performance of the HSI technique and speci�c sample or dataset challenges allows

us to see the potential of the system once these sample-based limitations are minimised.

Some potential solutions for these limitations are also suggested, while considering the

total cost, speed and practical implementation of this approach.

The greatest limitation of the tilewise scoring evaluation technique is di�erences

(both artefactual and real) between the �xed, H&E-stained tissue sections and the

frozen, unstained HSI/Raman tissue section. Tongue squamous cell carcinoma sam-

ple #9806 (shown in Figure 55) includes examples of all main types of sample er-

rors/di�erences:

1. Severing (Either complete, or with rotation) (top right)

2. Folds (bottom left)

3. Change in porosity/holes between sections (in main cancer area, marked green)

While the ideal solution to this would be utilising the same tissue section for all imag-

ing modalities by performing HSI and Raman on a frozen section which is stained

with H&E later for histopathological evaluation, this comes with several practical dif-

�culties. Instead, simple software solutions were employed to ignore areas with large

di�erences between H&E and HSI/Raman tissue section such as severed/folded/rotated

areas. However, very porous or damaged tissue is di�cult to correct for as can vary dra-

matically between sections and greatly a�ect individual tilescores across an otherwise

uniformly �cancerous� region. Tiles in these areas could be automatically excluded, but

in many cases this would leave insu�cient tiles for robust performance evaluation.

The aforementioned separated and rotated area of sample #9806 contained several

lobes of in�ammation and, had it not been automatically excluded as coregistration

was not possible, would have decreased the speci�city score of the HSI technique for

this sample.

154



Figure 55: Comparison of cancer segmentation a�orded by histopathologists ( 1 =
cancer consensus between three histopathologists, 2 = in�ammation demarcated by
one histopathologist), dimensionality-reduced and k-means clustered HSI and Raman
spectroscopy (top to bottom, left to right) of tongue SCC sample #9806. Scale bar
represents 500 µm.

When imaged by HSI, the areas of in�ammation are separated into the same cluster

as cancer itself which suggests that HSI cannot reliably separate cancer and in�amma-

tion. The in�ammation was only selected by one histopathologist on three of the six

samples so there is no quantitative accounting for interobserver variation, nor su�cient

sample repeats for reliable assertions.

There are, however, similarities between some in�ammatory cells and cancer cells

which could a�ect the scattering spectra similarly given that ESS has been been shown

to be sensitive to subcellular changes in optical index of refraction.[158] Common fea-

tures of in�ammatory cells, and cancer cells, primarily occur in relation to the nucleus,

which is known to be the source of several important discriminatory features in elastic-

scattering based cancer diagnostics including nuclear size, pleomorphism, increased
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levels of chromatin and increased nuclear-to-cytoplasmic ratio.[159] For example, hall-

mark multinucleated giant cells of chronic in�ammation could exhibit similar elastic

scattering e�ects to a cancer cell which commonly contain large, pleomorphic, unusu-

ally shaped nuclei.[147] This confusion between in�ammation and cancer has also been

reported by other HSI research groups, including Jerjes et al who hypothesised this

could be to blame for the high false positive rate in their visible range ESS-probed

�xed oral squamous cell carcinoma samples.

The body's natural in�ammatory-based defence response at the tumour margin fur-

ther compounds the discrimination challenge at the most important interface; cancer

lesion and the sound host tissue. An over-estimation of cancer would be safer as more

would be resected giving clearer margins. However in critical sites where no spare

margin exists, such as when cancer impinges on a vital structure like nerves or blood

vessels, this could risk a decision for inoperability and palliation where a cure was

possible. This disadvantage of the HSI technique could be signi�cantly mitigated by in-

cluding Raman spectroscopy in a combination technique. Unlike ESS based techniques,

Raman spectroscopy is chemically speci�c and is therefore less susceptible to confusion

between these two cell types and has been proven to be able to discriminate between

in�ammation and cancer.[160] This aligns with the comparison �gure above, where the

Raman map area corresponding with the in�ammation selected by the histopathologists

is separated into multiple segments (green cancer, royal blue and blue).

Attempts to quantify this confusion identi�ed that the three samples on which

in�ammation was demarcated by a histopathologist happened to have higher sensitivity

and speci�city than other samples. Therefore, the following ROC curves in Figure 56

were evaluated only with those three samples, #9806, #2217 and #4644 to avoid bias.
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Figure 56: ROC curve for max of all histos with and without in�ammation. (just
samples 9806, 2217 and 4644)

As predicted, the HSI-based segmentation performed slightly better with respect to

the gold standard when in�ammation was included in a true positive tile diagnosis, with

an AUROC score increasing from 0.77 to 0.79 in this case. Chronic in�ammation has

been shown to be an important factor in promoting tumorigenesis in oral cancer and

therefore, its inclusion in the initial segmentation provided by the HSI in a combined

HSI-Raman system may still be relevant in disease progression monitoring.[161] This

line of enquiry should be expanded to include other samples and in�ammation demar-

cation by additional histopathologists, but appears worthy of further investigation.

In contrast to the high sensitivity achieved by the HSI cancer segmentation of sample

#9806, the sample which reported the lowest sensitivity was sample number #4734.

This was one of the two samples which required four �eld of view tiles in order to capture

the full tissue area. This means there is a large cross-shaped area of overlapping tiles,

roughly centred to the tissue section. The area of overlap su�ers from two potential

sources of error: Firstly in the method chosen which selects the maximum at each pixel

in overlapping area which will, by nature, accept a higher proportion of bright pixels and
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outlier pixel values such as those from dead pixels. This increases the average grayscale

intensity and decreases the SNR in these regions, relative to the rest of the tissue area.

This decreases the likelihood of the same segments being consistently selected across

overlapping and non-overlapping tissue areas. Secondly and similarly, if overlapping

�elds of view are not of similar brightnesses in these areas, the k-means segmentation

cannot identify common segments across their joining boundary, breaking up a segment

of one feature into multiple, and under-representing the sensitivity of the HSI technique

to cancer in that sample.

In order to mitigate the latter source of tiling error, the white light laser source

utilised in Setup 2 (7.1) was replaced with an incoherent pulsed Xenon light source.

This facilitated a complete �at-�eld background correction protocol by removing the

shifting squircle background which prevented this and plagued the data in Results 2

(10).

In addition to this background correction, an ImageJ macro was designed to perform

�ne corrections to match the brightness of subsequent wavelength slices to each other

(9.2.1). In most samples this generated a signi�cant improvement in tiling artefacts,

even with the continued use of the maximum pixel value tiling method. In some samples,

there was very little suitable background to select an area for the ImageJ brightness

matching macro which rendered its performance worse.

Additionally, there were two samples, #4734 and #9890 which required twice as

much tiling as the others and which therefore su�ered in quality and reported sensitivity.

The large overlapping regions of #4734 were particularly problematic due to the relative

position of the cancerous region, whereas in #9890, the o�-centre cancer segment was

less a�ected. The poor SNR of the overlap areas in #4734 meant that segments were

disjointed and sparse, as was the case with the selected cancer hue. Due to the absence

of sizeable areas of connected segments, the sensitivity of the HSI imaging process on

this sample was low and, in a sense, under-reported. This did, however, translate to

relatively high speci�city as the small and sparse cancer segment was almost completely

within the bounds of the gold standard histopathologist-selected cancer area. The

multiple folds in the H&E stained tissue section, which can be seen in Figure 57, also

a�ected the quality of the gold standard diagnosis as a�ne transformations cannot

reproduce a folding e�ect on the HSI data to perfectly coregister the two datasets.

Even if the HSI and histopathology selected cancer segments matched perfectly, this

folding would decrease true positives and true negatives by requiring compression of

the HSI dataset to �match� the folds, decreasing the reported sensitivity and speci�city.

The e�ect on the speci�city was diminished again in this case by the very small cancer

segment selected by the HSI inside the cancer region selected by the histopathologists.
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Figure 57: Comparison of cancer segmentation a�orded by histopathologists (consensus
between 3, shown in green), dimensionality-reduced and k-means clustered HSI (royal
blue) and Raman spectroscopy (white) (top to bottom, left to right).The k-means
clustered map of tongue squamous cell carcinoma sample #4734.

When we add the Raman data into the comparison, our evaluation of this sam-

ple changes again. There are no segments in the Raman which appear to match the

gold standard diagnosis well. This means either that the Raman cancer segmenta-

tion performed poorly on this sample, or that the position of the cancerous tissue

regions changed dramatically between tissue sections. The average of �ve Raman spec-

tra sampled from the the white segmented cancer region in the Raman area map were

plotted, along with �ve spectra sampled from elsewhere in the sample (diagnosed as
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non-cancerous by the histopathologist consensus). The ratio of the 1455 (related to

relative proportions of lipids and proteins) and 1655 cm-1 (C=O stretching of collagen

and elastin) Raman spectral peaks have been used as a quick diagnostic test for several

varieties of cancer, with a value of > 1 being generally accepted as the healthy tissue

range and <1 indicating cancer.[162] In the white segmented area of the Raman scan,

this ratio comes to ~ 0.98, just meeting the criterion for cancer. This implies that the

Raman cancer segmentation may be correct and a comparison between the Raman and

HSI datasets is more diagnostically relevant in this instance. A higher sensitivity score

of the HSI cancer segmentation compared to the Raman segmentation might therefore

be expected, however this is not the case with 18% and 38% sensitivity reported for the

8 and 12% diagnostic thresholds, respectively. Visual comparison, bearing in mind the

potential for hue-switching across tile boundaries, shows some similarities between the

Raman and HSI segmentation, particularly in the central island of cancer (royal blue

in the HSI segmentation map) and bottom left (orange segment in HSI). Unfortunately

the current inter-modal comparison process cannot take this hue switching tiling error

into account like the human brain can.

Interestingly, the tissue holes selected in red in the Raman map are frequently

included in the cancer segment in the HSI. Where forward Mie scattering contributions

are hypothesised to increase in areas of high nuclear density and size, an increased

intensity across all wavelengths would be expected. In HSI these regions could report

similarly to image holes which would also exhibit higher pixel intensities due to relatively

uninhibited transmission of light through the calcium �uoride slides. This confusion

could also explain why we do not see the improved sensitivity we expect when we

compare the HSI to the Raman, in spite of their observable similarities. Additionally,

the Raman datasets are more prone to coregistration errors (as discussed in 15.2.4)

which could decrease reported sensitivity, especially in the case of very small selected

cancer areas such as in this sample. Re-collecting the HSI data for this sample at a

lower magni�cation with little or no tiling would be an interesting exercise and could

help illuminate the contribution of the tiling errors to the performance evaluation. This

is discussed further in the Future Work section (16).

The sample which reported the lowest speci�city in its cancer hue selection was

#4644. This sample contained one central region of good quality in both the H&E

stained section and the frozen section with one small area which is detached and trans-

lated, and one large hole with neighbouring tissue folds. Unfortunately, a very large

proportion of this high quality sample region contained cancer and the healthy tis-

sue was mostly present at the tissue edges, leading to its exclusion by the tile selection

macro (14.2.5). This dramatically reduced the sampling of true negatives and decreased
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the reliability of the speci�city evaluation.

Figure 58: The RGB image of the H&E stained squamous cell carcinoma tongue tis-
sue sample, #4644, with concensus histopathologist cancer demarcation in green, the
in�ammation demarcated by one histopathologist (orange) and areas of damaged or
translated tissue areas separated by red lines, with only the central strip being consid-
ered for comparison.

Earlier in this section, it was hypothesised that the HSI technique was not sensitive

to the di�erences between cancer and in�ammation and therefore struggled to discrim-

inate them. If this is the case, the area of tissue which would garner a �healthy� tissue

diagnosis is smaller still (Figure 58), further decreasing the reported speci�city.

The lowest overall performance of the HSI segmentation technique was on #2577

which su�ered from the largest selection of speci�c limitations of any sample (Table

5). An already small sample at < 7 mm in its largest dimension, large portions of

the datasets were rendered unusable due to the high proportion of fragmentation that

occurred in the frozen section which can be seen clearly in Figure 59. This small area of

inclusion decreased the reliability of sensitivity and speci�city measures for this sample.

Coregistration was also complicated, with a higher probability of human error in the

selection of the common coordinates, for use in the a�ne transformation, across the

three di�erent datasets.
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Figure 59: Comparison of cancer segmentation a�orded by histopathologists (consensus
between 3, shown in green), Raman spectroscopy (pink) and dimensionality-reduced and
k-means clustered HSI (pale blue) of tongue squamous cell carcinoma sample #4644
(left to right, top to bottom). The scale bars represent 500 µm.

Again, the tiling artefact has selected what appears to be the incorrect cancer seg-

ment due to the hue-switching across the overlapping �eld of view tile boundaries. While

the new background and brightness correction protocols have decreased the number of

samples which are a�ected by tiling artefacts in comparison to Results 2, it was still a

substantial source of error in three of the six samples. Writing the HSI data collection

software on a platform which facilitates the triggering of the pulsed Xenon source by

the camera would help to stabilise the brightness at each wavelength across multiple

datasets. A platform with this capability such as LabView may also allow disabling of

the rolling shutter in preference of a global shutter. Without the correction step the

rolling shutter required, which involved taking multiple datasets and then taking the

maximum pixel value at each position across all repeats, less noise would be introduced

into the HSI data as a whole. This would be a prudent consideration for future work
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on this system.

The selected Raman cancer hue (pink) appears to correlate with holes in the sam-

ple, suggesting it is incorrect. The orange and lime green hues appear to overlap more

with the cancerous region selected by the histopathologists. Inspection of the Raman

spectra in the orange and green regions suggest that the former is the cancerous tis-

sue: Along with protein-correlated peaks in both segments, Raman spectra from the

orange segment reported the presence of guanine, adenine ring breathing.[54] Where

the protein increase might suggest hyperplasia or dysplasia, the presence of additional

spectral contributions from DNA implies aneuploidy and/or multinucleation which is

characteristic of cancer cells. The low Weber contrast of the Raman data prevented the

identi�cation of more clear spectral peaks.

This low Weber contrast also implies a low SNR, which di�ers from Weber contrast

in that it is a measure of the �contrast� of only the desired signal component relative

to noise or background. Without having identi�ed speci�c diagnostic classi�ers, iden-

tifying the desired signal component is not possible and the SNR cannot be calculated

explicitly. When trialling various light sources and monochromator slit widths, observ-

ing the transition between meaningless and meaningful tissue segmentation facilitated

an assertion that the SNR of both modalities is low. Nonetheless, in order to further

characterise the system performance and to chart changes to its performance with sys-

tem modi�cations the SNR of both the HSI data and the Raman data will be calculated

once diagnostic classi�ers have been selected.

Cancers which have been sectioned at an angle to their in�ltration often exhibit these

�nger like islands of tumour, rather than a large body of cancer such as in sample #9806,

pictured in Figure 55. These islands are likely to look very di�erent in subsequent tissue

sections, in spite of occupying a similar region of the tissue. In cases like this, if the

outer boundaries of the cancer island-�lled region were selected as the gold standard

diagnosis we would more accurately select corresponding segments in other measures

by the overlap coe�cient method (14.2.4). We would also retrieve more representative

performance measures. Though the matter of exactly how to de�ne the edges of such

regions for delineation is non-trivial.

The pale blue cancer segment selected as cancer in the HSI dataset, potentially

erroneously, is di�cult to see in the �gure as it is di�usely present over most of the

top left region of the tissue, to the left of the erroneous tile hue switch. The sparseness

of this segment would contribute to its low sensitivity score, similar to sample #4734.

If we instead assume that the orange and green segment in the Raman area scan is

malignant as a result of the evidence presented above, then we begin to see some

similarities between the Raman and HSI data. For example, to the right of the tile hue

switch in the HSI data, the royal blue and pink segments match the green and orange
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Raman segments well, implying hyperplasia or dysplasia, and cancer respectively.

The HSI tissue segmentation performed well on sample#2217, but there were some

sample artefacts which became apparent in the later stages of analysis and which can be

seen in Figure 60. Two very �ne cracks in the very fragile calcium �uoride slides caused

a slight separation between the slides where part of the tissue section was adhered to

the top slide, and some to the bottom. In the Raman spectroscopy area scan of this

sample, due to its confocality, only information about the top layer of the tissue is

reported. In the data collected with the transmission-mode HSI system with the high

�eld depth objective lens, some information is retrieved from all parts of the tissue,

though features from the di�erent layers of tissue have been segmented separately even

though they may be of the same pathology.

Figure 60: Evidence of the slide crack-induced artefact in tongue squamous cell car-
cinoma sample #2217. Cancer segmentation a�orded by histopathologists (consensus
between 3, shown in green) and in�ammation segment by one histopathologist (orange),
dimensionality-reduced and k-means clustered HSI and Raman spectroscopy area scan
(top to bottom, left to right). Scale bars represent 500 µm.

The orange and white regions in the Raman equivalent (bottom right of Figure 60)

appear to show the tissue adhered to the top cover slip and can be correlated with the

magenta and green regions in the HSI k-means cluster map (bottom left of Figure 60).

They di�er slightly in the areas which they occupy, especially in the bottom right of
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the tissue area, with the Raman detecting a smaller area as expected by its �ltering

out of out-of-focus contributions which is not a feature of the HSI system. The other

hues in the Raman map, green and blue, are randomly distributed across the entire

background and therefore do not re�ect useful information gleaned from the tissue it-

self. On the other hand, the sparse yellow and mustard yellow segments in the HSI map

can be seen to concentrate in the cancerous and in�amed regions indicated by the gold

standard diagnosis, commonly co-occurring with the green segment highlighted in the

foreground tissue. This co-occurence implies that both segments, and therefore both

the foreground and background tissue artefactual �layers�, contain important diagnostic

information. As these two tissue layers are forced into separate clusters by their arte-

factual separation and the associated changes to their reported spectra, the sensitivity

of the HSI technique's performance on this sample is likely under-reported relative to

the gold standard histopathology-based diagnosis.

Due to to its larger area, the mustard yellow exhibited the highest overlap coe�cient

with the histopathologist-selected cancer region and was therefore selected as the cancer

hue rather than the green. With information from this deeper tissue area not accessible

by Raman spectroscopy, the cancer segments from both the HSI and Raman data agree

poorly with each other. This is can be seen clearly if we calculate the sensitivity and

speci�city of the HSI performance on this sample, taking the Raman cancer region as

the gold standard: It performs with sensitivity and speci�city of 34 and 63%, compared

with 58 and 86% with respect to histopathology. Using an objective lens with an even

lower numerical aperture would further increase the depth of �eld, ensuring samples

with a range of slide separations could still be segmented by HSI, though this would

only be useful in a standalone HSI system, not a HSI-Raman hybrid system. As a lower

magni�cation objective is already a suggested solution for minimising tiling artefacts

this could be explored in tandem.

Adaptations for Clinical Application

The use of an objective lens with a lower magni�cation and NA could be accompa-

nied by further potential bene�ts to the industrial application of this system: increased

speed of data collection due to shorter required exposure times provided by increased

light acceptance and increased analysis speeds due to much smaller datasets. Addi-

tional ways to reduce run time include reducing wavelength range or step size. The

PCA data collected from our datasets to inform their dimensionality reduction also

assist us in identifying which wavelengths contribute most important information and

which wavelengths could be cut out of the hyperstack collection.
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Figure 61: Coe�cients against variable (wavelength) plot for the tongue squamous cell
carcinoma sample #9806 hypercube.

Each principal component is a linear combination of of all variables which con-

tribute to the data: In our data, the variables correspond to the di�erent illumination

wavelengths. The larger the magnitude of the coe�cient, the more important the corre-

sponding wavelength is in calculating that component, and its sign indicates positive or

negative correlation of that compoent with that wavelength feature. This relative com-

ponent importance and the correlation direction is depicted with a graph of coe�cient

against variable in Figure 61.

PC1, which describes over 80% of the variance of the datasets from every sample,

is described by a remarkably evenly weighted linear combination of every wavelength

in the range. This is in keeping with many other studies which failed to identify

more valuable wavelength regions.[163] Mie scattering across this wavelength range

for scatterer sizes of ~ 3 µm and ~ 9 µm corresponding with healthy cell nuclei and

cancerous nuclei (chosen with reference to HeLa cell data and [69]) di�ers most at our

shortest wavelengths, with decreasing di�erence as the wavelength increases, as shown

in Figure 62.
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Figure 62: Plot of Mie scattering (at 0º) intensity against wavelength for monodispersed
healthy size nuclei (~ 3 µm) and cancerous nuclei (~ 9 µm) using Philip Laven's open
source MiePlot software. (Air was selected as the material either side of the sample,
though calcium �uoride was tested and yielded a similar enough trend for the purposes
of this discussion.)

This decreasing scattering intensity with increasing wavelength means that the best

Mie scattering-based discrimination occurs in the same spectral regions which contain

potential contributions from residual haemoglobin, discussed below. This wavelength

dependent component of Mie scattering may, therefore, be obscured by more intense

and distinctive haemoglobin absorption features. Discriminatory value gleaned can still

be gleaned from Mie scattering as the intensity of scattering is consistently higher from

large, cancerous nuclei than smaller, healthy nuclei: This could be the primary source

of principal component (PC1).

While the order of importance of subsequent principal components varies between

di�erent samples, PC1 is always comprised of an approximately even contribution of

information from each wavelength. (For this reason, the principal component plots were

not average across all samples and the plot above is just for samples #9806, though

these important wavelength regions are present across all samples)

PC2 has increasing contributions above 700 nm until the upper limit of the wave-

length range (899 nm) which correlate with the scattering properties of �brous tissue

components such as collagen.[164] Collagen and elastin �bres change in many ways as
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tissue progresses from healthy to neoplastic, including decreasing in order and packing

density.[165] We would, therefore, expect negative coe�cients at these wavelengths as

the increasing sparseness of �bres in oral cancerous tissue should lead to diminishing

spectral contributions in this range. This is observed in PC4 which is a less in�uential

component than PC2 which shows the opposite: positive correlation of data variance

explained by spectral features in the �bre-scattering-encoded wavelength. This increas-

ing sparseness and diminished spectral contribution of �bres in oral cancerous tissue,

however, could be attributed to an increase in Type III collagen, which primarily occurs

in single �bres rather than bundles.[166] This potential increase in Type III collagen

would likely occur in tandem with a enzymatic degradation of Type I collagen which

could explain this dichotomous result.

The apparent in�uence of data collected at high wavelengths could also be an arte-

fact of decreasing SNR due to the lower e�ciency of the optical components and camera

sensor as wavelengths increase above ~ 850 nm.

PC3 shows a peak around 540 nm, with high coe�cient numbers from the start-

ing wavelength (515 nm) to approximately 580 nm. This range encompasses every

potential spectra feature which could be produced by residual haemoglobin in the sam-

ples; absorption at 540 and 580 nm for oxygenated haemoglobin and at 560 nm for

deoxyhaemoglobin. A change in the balance between oxygenated and deoxygenated

haemoglobin could lead to a broad contribution of discriminatory power between these

wavelengths, as exhibited in the principal component plot. This discriminatory power

could also be bolstered by the probable increase in blood residue present in cancerous

tissue samples due to angiogenesis in cancerous tissue, instigated by chemical signals

produced by the tumours themselves to provide additional oxygen and nutrients to

accommodate upregulated cell proliferation and waste production.[167] These wave-

lengths may also contain important scattering-based spectral features, as ~550 nm was

also identi�ed as the most important discriminatory wavelength by Khouj et al in their

work on segmenting unstained, formalin-�xed ductal carcinoma tissue sections.

Given that the samples are colourless themselves and unstained, we may expect

Mie scattering e�ects to be a primary contributor of diagnostic information in all can-

cerous samples with the proportion of �brous tissue and residual haemoglobin varying

more dramatically between samples according to inter-patient variation, biopsy location

(even within the tongue), and small di�erences in sample preparation. Multiple prin-

cipal components in this plot show combinations of features at the highest and lowest

wavelengths which we have tentatively assigned to blood and �brous spectral contri-

butions. In cancerous tissue, we expect some increases (deoxyhaemoglobin and Type

III collagen, for example) and some decreases (Type I collagen and oxyhaemoglobin)

of tissue components with spectral features in both of these wavelength ranges. There-
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fore, multiple principal components with di�erent combinations of positive and negative

coe�cients in these regions are to be expected.

The three main peaks displayed by PCs 2 - 4 were used to select three wavelength

regions, 521 - 635 nm, 605-755 nm and 815 - 899 nm, which are weighted more heavily

in their contribution to these principal components. It is worth noting that, between

them, they span almost the entire wavelength range which supports the assertion that

all wavelengths are important for discriminating oral cancer from healthy tissue using

elastic scattering-based hyperspectral techniques. Nonetheless, with the aim of improv-

ing the speed of the system, three sub-stacks of the aforementioned wavelength ranges

were generated from the 9806 HSI data and segmented with k-means clustering for

qualitative evaluation (Figure 63).

Figure 63: False coloured k-means clustered HSI of cancerous sample #9806. From left
to right, top to bottom with cancer hue indicated in brackets: Full wavelength range
521 - 899 nm, 5 principal components (green), 521 - 635 nm (light blue), 605-755 nm
(magenta) and 815 - 899 nm (orange), all principal components. Scale bar represents
500 µm.

The presence of both main segments (orange and magenta) across the entire tissue

area in the highest wavelength hypercube (815 - 899 nm) evidences less speci�c seg-
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mentation. Additionally, tiling errors are more prevalent as can be seen at the bottom

left of the main cancer region where the hue switches from magenta to orange across

the tile overlap area boundary. Both of these outcomes could be due to the lower SNR

in these wavelengths due to system instability and lower illumination power.

The resulting increase in erroneous pixels was also exacerbated by their preferential

acceptance both in the rolling shutter correction macro and in the maximum-pixel-value

tiling method. Due to the random nature of this noise, false discriminatory spectral

features will be present in this wavelength range, and inseparable from real diagnostic

features such as a general signal increase due to decreased attenuation by the tissue.

In the current permutation of the system (Setup 3) and its associated software, this

wavelength range alone does not provide the level of segmentation speci�city required

from a pre-screening process to be used in tandem with Raman spectroscopy for oral

cancer diagnosis, though it does add some value in a full-wavelength hypercube.

On the other hand, the �rst two wavelength ranges appear to perform very similarly

to the full wavelength range, though with some minor tiling based errors visible in the

bottom left of the the main cancer area. There appears to be a slight increase in

random noise which could be due to the absence of dimensionality reduction by PCA in

this section of the investigation. Interestingly, they both appear to provide additional

segmentation within the lobes of in�ammation at the top right of the tissue, compared

to the full hypercube. The shapes and patterns of the segments here can be visually

correlated with the corresponding region in the Raman dataset in Figure 55, suggesting

this may be related to the separation of in�ammation from cancer.

When the in�ammation study is expanded for signi�cance, this potentially wavelength-

dependent in�ammation segmentation would be an interesting line of enquiry to pur-

sue in tandem. Quantitatively comparing the performance of the system over these

two reduced wavelength ranges by calculating tile scores and comparing them with the

consensus histopathology diagnosis, with and without dimensionality reduction by prin-

cipal component selection, would be a worthwhile future endeavour in the development

of this combined system for clinical application.

15.2.5 HSI Texture Analysis and K-Means Clustering

Preliminary testing of HSI on HeLA cells, with and without nuclear disruption with

paclitaxel (15.1), suggested that spatial information may be important in separating

regions with di�erent scattering responses.

Work on automated feature extraction and ranking by Fei et al found that texture

features extracted from the cytoplasm and nuclei of H&E stained oral epithelium were

often ranked highly for discrimination of oral neoplasia from healthy tissue and cor-
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relation with spectral HSI information.[102] Speci�cally they found that, in neoplasia,

fractal dimension measures increased in tandem with re�ectance, and the mean perime-

ter of Delauney triangles decreased. They hypothesised that these signi�cant textural

alterations were linked to loss of cellular organisation and nuclear consistency, along

with nuclear crowding in malignant tissue. Nuclear crowding, in a transmission system

such as ours, could lead to increased re�ection away from the detector, and a result-

ing decrease in detected signal intensity. The texture metric �contrast� measures the

magnitude of intensity di�erences between each pixel and those around it, making it

suitable for reporting the regions of crowded nuclei associated with cancer. It may also

report smaller crowding-like textural e�ects caused by increased nuclear inconsistency

in these regions as ESS is sensitive to subcellular features, however work con�rming this

has ordinarily been performed at a signi�cantly higher magni�cation than our system

utilises, with many other groups utilising x40 magni�cation where we use x4 for speed

of data collection for practical clinical application.

In the wavelength range reduction discussion, we identi�ed that �bres such as col-

lagen undergo changes in a cancerous environment in order to facilitate cancer cell

in�ltration. Therefore, texture alterations in collagen were also considered in the se-

lection of speci�c texture metrics. Mostaco-Guidolin et al reported more signi�cant

detection of �brous changes by GLCM texture metrics than �rst order statistics, bol-

stering our decision to look at local contrast. Their work showed that the homogeneity

(or inverse di�erence moment) texture metric exhibited di�erentiating power between

di�erent collagen morphologies: Local homogeneity is higher in regions of organised

and low contrast features, such as collagen in healthy tissue and healthy tissue itself,

compared with the disorder which plagues both in neoplasia.

All of the standard GLCM texture metrics (contrast, correlation, homogeneity and

energy) were calculated in tandem for each sample in Matlab but contrast and ho-

mogeneity were hypothesised to produce the most relevant di�erences between cancer

and non-cancer (15.2.5). These texture image stacks were then segmented by k-means

clustering, with no prior dimensionality-reduction with PCA.

Performance Evaluation

ROC curves plotted for each texture, and its segmentation peformance relative to

the gold standard histopathological diagnosis, are not illuminating. AUROC scores are

improved by the plotting of multiple di�erent sensitivity and speci�city pairs achieved

by applying di�erent diagnostic thresholds. Due to the patch-wise output of the tex-

ture analysis (designed to match the evaluation tiles), each tile is classi�ed by the

texture analysis as either 100% cancerous or non-cancerous. Unfortunately that means

that the diagnostic threshold (the percentage tile area coverage by the cancer segment
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which leads to a tile diagnosis of �cancerous�) is e�ectively set at 100% and varying of

the diagnostic thresholds for the calculations of true/false positives/negatives does not

a�ect the performance outcome. The ROC curve is, therefore, mostly a straight line

which adds little value in the performance evaluation of the texture-based segmenta-

tion, and substantially under-reports the AUROC score of the technique. A qualitative

evaluation of the segmentation a�orded by the texture analysis is su�cient to identify

some of its strengths and limitations, and to suggest parameter alterations for improved

future work.

The selected patch size (200 x 200 µm) meant that this analysis was sensitive to

larger tissue features such as holes and cracks, which are unavoidable with such a

delicate tissue preparation procedure. Often they are grouped into one segment with

the healthy tissue, but occasionally they are too di�erent in texture to any other tissue

component or feature and therefore occupy an entire cluster of their own. As there are

a �xed number of clusters, this �wastes� more meaningful segmentation opportunities.

This would be di�cult to overcome with a simple software solution due to the range

of artefacts which might ellicit this clustering outcome. This is not the only common

source of limitations which the texture analysis shares with the direct clustering of

the HSI data. It appears that the tiling slightly depreciates the performance of the

texture analysis too, but predominantly due to the increased random noise which a�ects

the reporting of co-occurrence matrices and textures calculated from them. Fractal

dimension, as utilised by Lu et al and Ou-Yang et al are less sensitive to noise, though

they require either longer run times or more powerful computers, both of which a could

not be widely a�orded a benchtop clinical technique.

The contrast and energy maps showed more heterogeneous segmentation than the

correlation and homogeneity maps, which rarely had tissue-wide assignation of more

than 3 di�erent clusters. This may mean that they are sensitive to tissue features other

than, or in addition to cancer. The e�ective pixel size of this technique (200 x 200

µm) must be reduced if the more complex contrast and energy segmentation is to be

attributed to real tissue features, with the help of histopathologists.
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Figure 64: K-means clustered maps of the di�erent texture analysis stacks produced
from the HSI data from tongue squamous cell carcinoma sample #9806. Scale bar
represents 500 µm. Top to bottom, left to right: contrast, correlation, homogeneity
and energy texture metrics.

In sample #9806, the least relevant segmentation is produced by the correlation

texture metric. Correlation is a measure of the dependence of a pixel's grayscale value

on the grayscale values of the pixels around it. High correlation suggests one or multiple

repeating patterns occur within the GLCM calculation patch area. Large tissue areas

under such low magni�cation such as this exhibit little regularity, and sample artefacts

such as folding also disrupt pattern forming; therefore we did not predict high perfor-

mance segmentation with this texture. In�ammation selected by one histopathologist

in the top right of the tissue area is not demarcated on this �gure as that portion of

the tissue has severed and rotated away from its original position meaning a direct

comparison here is not fruitful. Nonetheless, a comparison of this area, best selected

in the energy (uniformity) texture map in Figure 64, with the hypothesised Raman

in�ammation segment (shown in blue in the aforementioned Figure) shows promising

similarity. The homogeneity texture segmentation has performed remarkably well, ap-
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proximately selecting unhealthy tissue (cancer and in�ammation) and everything else

(healthy tissue, holes and and cracks in the section) in two widespread segments. This

is representative of the performance of this texture metric on all of the tongue SCC

samples, shown in Figure 65.

Figure 65: K-means clustered homogeneity texture-based segmentation of tongue squa-
mous cell carcinoma samples #9806, #2577, #2217, #4644 (left to right, top to bot-
tom). Consensus histopathology cancer segmentation is outlined in red. In�ammation
demarcated by one histopathologist in royal blue on #2217 and #4644. Scale bar rep-
resents 500 µm.

Similarly to the in�ammation point mentioned previously in relation to sample

#9806, the perceived performance of the texture-based segmentation on these four

samples is improved further with the consideration of the following points:

� Sample #2577 (top right): The histopathologists demarcated additional cancer

areas on the fragmented section of tissue on the right, which supports the contin-

uation of the orange cancer segment across the tissue break.

� Sample #2217 (bottom left): Two of the three histopathologists demarcated the

main cancerous region extending further towards the centre of the tissue area,

especially at the bottom which potentialy correlates better with the texture-based
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segmentation, though the erroneous layer separation of this sample has somewhat

a�ected classi�cation performance by every method utilising that tissue section.

� Sample #4644: The histopathologist consensus demarcation ends cleanly at its

left and right edges; this is due to a large hole in the H&E stained section on the

right and separation and translation of the lobe on the left. These regions are

therefore excluded from comparison.

Figure 66: K-means clustered homogeneity texture-based segmentation of tongue squa-
mous cell carcinoma samples #4734 and #9890 (left to right). Consensus histopathol-
ogy cancer segmentation is outlined in red. Scale bar represents 500 µm.

As previously discussed, the random noise introduced by the tiling method depreci-

ated the texture-based segmentation. Samples #4734 and #9890 (shown in Figure 66)

, containing four �eld of view tiles rather than two, were worst a�ected again.

Once the parameters, such as patch size, are optimised and �nal improvements

have been made to the imaging system and software this data should be re-collected to

determine whether homogeneity maps are useful, and if texture segmentation could be

improved by combining it with another texture metric with �ner tissue clustering, such

as contrast or energy. As ESS techniques are not chemically speci�c, healthy tissue is

still classi�ed into multiple segments, even though it only contains healthy tissue, as

long as there are regions of textural di�erence, such as �bres.

While the texture based segmentation system still requires tweaking, it has other

diagnostic value, in its current state: t-tests suggest that the contrast and energy stan-

dard deviations show statistically signi�cant (p-value < 0.05) di�erences between the

175



healthy and SCC tongue tissue groups with p-values of 0.005 and 0.03 (1 s.f.), respec-

tively, as shown in the box and whisker plot in Figure 67. Additionally, the di�erence

between the mean contrast texture values of healthy tongue and tongue SCC is close

to statistical signi�cance with a p-value of 0.09. Drezek et al showed increased magni-

tude of forward scattering in cervical cells with increasing neoplastic progression.[107]

Increased forward scattering would lead to increased pixel intensities with decreased

uniformity, increasing contrast and energy texture values respectively.

Figure 67: Box and whisker plots for contrast and energy texture value standard de-
viation,showing statistically signi�cant di�erences between healthy tongue and tongue
samples containing squamous cell carcinoma.

We can use this data set to create a diagnostic classi�er based on one or both of

these texture statistics. Testing should then be performed on a larger sample set of

tongue squamous cell carcinomas, followed by other oral tissue sites and malignancies

if it performs well in the �rst instance. Additionally, if the k-means clustering of the

HSI data performs well after the suggested wavelength range truncation, the perfor-

mance of this texture-based quick diagnostic screening would need to be re-evaluated

with the new wavelength range. It could be a valuable time saving technique, used to

exclude healthy samples from further investigation with Raman spectroscopy. Wave-

length range truncation may lead to greater similarity between the contrast and energy

standard deviations of cancerous and healthy oral tissue. Generally, but especially in

this instance, multivariate analysis combining spatial (texture) features and spectral

features may lead to the best possible diagnostic power and should be considered for

future work.

A combination system in which the initial segmentation is performed by HSI, and

the chemically speci�c/diagnostic info is provided by Raman sectroscopy would save

a substantial amount of time compared to utilising Raman alone. This would allow

for longer exposure times to be used for the Raman, if necessary, and especially if the
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HSI-based segmentation could be trusted to the extent that only a handful of point-

Raman-scans would be required to chemically evaluate each segment for diagnosis.

15.3 Additional Study - Bioaccumulation of Microplastics

15.3.1 Air Filter Samples

Air �lter samples can contain a wide range of materials with 27% of total atmospheric

fallout measured, in a study undertaken in China, con�rmed to be plastic.[168] In a

similar study in Paris, the range of microplastic particle diameters was 7 - 15 μm,

suggesting that some may be present in this sample.[169]

As inhalable particles (smaller than 10 µm) were preferentially selected for this

study due to their clinical relevance, the high spatial resolution of the HSI system was

advantageous.[170] We would expect the transmission spectra of these small particles

to show elements of absorption features (high frequency) and scattering features (low

frequency). Depending on the relative dominance of each component, the segmentation

capabilities of the HSI system could vary dramatically. This uncertainty is demon-

strated in the segmentation map in Figure 68 below, produced by k-means clustering

of the hypercube and manual selection and subsequent removal of the two background

clusters: The cluster identities appear to be correlated with particle size which may be

a result of scattering changes a�ected by particle packing density, where �nal particle

packing density after drying of the droplet will be related to particle diameter and mass.

It may be, however, that the clusters also correspond to di�erent materials which are

more likely to create particles of a certain size range.
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Figure 68: K-means clustered hypercube of dropcast of ambient particulate matter,
reconstructed without the two background components for clarity (top). The mean
transmission spectra of each of the three clusters, colour coded to match (bottom).

Raman is the ideal tool to ascertain the source of the spectral di�erences which

produced this HSI clustering. Being a dropcast, coregistration between the HSI and

Raman datasets would ordinarily be impossible, however in this instance the artefact at

the top of the drop could be used as a marker. Preliminary Raman data was collected

to probe the clustering basis of the HSI, and its precision by comparing the number and
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location of particulate matter clusters identi�ed in each modality with the knowledge

that Raman segmentation is based on chemical di�erence. This data collection was not

detailed in the Methods section (14.3.3) as only exploratory work has been possible

so far. While this question remains unanswered, the Raman map showed dominating,

distorted spectral responses correlating with the largest particles which do not align

with a Raman response (separated into the blue cluster in Figure 69 below).

Figure 69: K-means clustered Raman map of ambient particulate matter dropcast
showing suspected auto�uorescence artefacts. The black scale bar represents 500 µm.

As laser re�ection and Rayleigh scattering are �ltered out inside the Raman InVia

spectrometer, and resonant Mie scattering would a�ict a smaller size range of particles,

the current hypothesis is that auto�uorescence is the source of these anomalies. This

suggests that the blue channel represents biological material, or material with biological

matter on its surface. This aligns with literature on air particulate matter samples

which con�rm that Raman spectral interference due to auto�uorescence is common.

One of the main con�rmed causes of this is bio�lms which grow on microplastic (and

some other particle) surfaces, made possible by the microbial communities found in the

near-atmosphere.[171] Alteration of the selected Raman wavenumber range for future

work could diminish the impact of this auto�uorescence.

15.3.2 Microplastic-Perfused Mouse Pulmonary Tissue

Scattering spectra extracted from within the bead areas of this hypercube, highlighted

by the red boxes in Figure 70, show surprisingly large variation. The spherical shape

of the microplastic inclusions in the pulmonary tissue, combined with the high spatial

resolution of the system, means that scattering varies across the 2D image area of each

bead. Di�erent parts of the bead are therefore assigned to di�erent clusters.
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Figure 70: K-means clustered hypercube of mouse lung tissue perfused with colourless
beads (left). A mask of the royal blue hue with �lled holes (right).

This also happens, to some extent, with the tissue but the e�ect is less pronounced.

As the tissue, perfused with beads up to 27 µm in diameter, is sectioned thinly to

10 µm; the contained beads are sectioned concurrently. Therefore, the depth-based

cluster variations are assumed to be more apparent in the beads due to their three

dimensionally symmetrical shape and consistent refractive index, where the refractive

index variation of the pulmonary tissue is more inhomogeneous.

Decreasing the spatial resolution of the system by using a lower magni�cation ob-

jective may ameliorate these cluster �rings� by minimising detected spectral variation.

However, the perfect circular cross section of the bead, and the aforementioned ring

pattern of the clusters are the most distinctive features by which the bead could be

identi�ed. It is not yet clear whether the beads could be distinguished from the tissue

without these features, at a lower magni�cation and resolution.

Plots of a range of spectra from each bead in this �eld of view (mean spectra shown

in Figure 71) do show a smaller standard deviation than spectra from the tissue, with

the two beads exhibiting mean spectral standard deviations of 0.47 and 0.85 (left to

right) and the tissue, 1.08.
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Figure 71: Graph of mean transmission spectra of the microplastic bead on the left
of the �eld of view (L Bead) in Figure 70, the right hand bead (R Bead), and the
pulmonary tissue itself.

This aligns with expectations as the tissue scattering variation is impacted by in-

ternal refractive index variation oweing to the distribution of subcellular components,

whereas the bead scattering is impacted by a �xed range of depth variation due to

section positioning. This increased standard deviation could potentially be used to

discriminate the tissue from the beads. However, beads which are attached to, or im-

mediately next to, the tissue of the alveolar sacs may not be successfully identi�ed as

separate scattering bodies requiring separate spectral standard deviation probing.

Texture analysis, or other spatial analysis, parameters could be constrained to detect

circular particles which would be e�ective on this dataset (see the �lled mask on the

right of Figure 70). It is not, however, representative of environmental microplastics

which would be the target sample in a screening protocol. In order to exploit a similar

approach, any consistency in the shape and size of di�erent environmental microplastic

particles should be investigated.

The HSI spectra produced by all three dominant components in the particulate

matter sample are su�ciently di�erent to the spectra of colourless microplastic beads

to facilitate their separation from each other: A mixed test sample will be created and

imaged in con�rmation of this assertion. The main questions posed by this preliminary
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study relate to the separation of colourless microplastics from tissue. In tandem with

investigating the size and shape distributons of environmental microplastics, their ab-

sorbant properties will be investigated in the hope of identifying a source of additional

spectral contrast.
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16 Future Work

Future work mostly pertains to the main study on the identi�cation of oral cancer (in

this study, speci�cally tongue squamous cell carcinoma) from unstained tissue sections;

the primary motivation behind the development of this system.

Suggested future work can be broken into three categories; those which can be

attempted with the existing data, those which require moderate alterations either to

the hyperspectral microscope, the data collection software or the analysis software, and

those which require substantial alterations to the system.

Firstly, the clinical viability of this potential HSI-Raman combination technique

could be immediately bolstered by quantitatively evaluating the performance on the

suggested wavelength subsets, 521 - 635 nm, 605 - 755 nm, which were extracted from

the current hypercubes. (Their segmentation is shown in Figure 63.) Cutting down the

wavelength range would decrease data collection time, and processing time. Qualitative

evaluation shows promisingly similar segmentation in both ranges compared to the

full wavelength range hypercube, though quantifying its e�ect on the sensitivity and

speci�city of the technique may impact decisions regarding future modi�cations to the

system.

It would also be prudent to know some key wavelengths prior to creating diagnos-

tic classi�ers, which can begin in earnest now. While the k-means clustered maps of

the wavelength-truncated HSI data appear very similar, the proposed coarse screening

based on contrast and energy texture value standard deviations, for example, could

be dramatically a�ected by wavelength cutting. Similarly, multivariate analysis which

combines spatial texture metrics with spectral features as recommended in 15.2.5, may

be greatly a�ected, although this analysis approach holds the greatest potential for

high discriminatory power and should be investigated. Sensitivity and reliability must

remain the priority through the process of identifying �xed diagnostic thresholds for

the HSI pre-screening process. A wide range of classi�ers have already been deter-

mined for Raman spectroscopy, prioritising speci�city, which could be explored once a

combination system is built.

Secondly, as combining spectral and spatial analysis approaches can improve overall

classi�cation performance and stabilise the �decision making� process of classi�cation

a spectral texture analysis programme has been written.[172] Spectral texture analysis

utilises the same texture metrics calculated from the grey level co-occurrence matrix

(GLCM) as spatial texture analysis. However, where the latter looks at each pixel

and the kernel of pixels around it to calculate the texture for each wavelength, the

former looks at each wavelength point on the spectrum and the kernel of spectral

points around it to calculate the texture for each pixel. Providing similar information
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to Fourier transform methods, but in the same texture value-encoded grayscale image

stacks as the spatial texture outputs to facilitate simple combination of the spectral

texture, spatial texture and raw HSI data or their k-means cluster maps in multivariate

analysis. Following the exploration and analysis of the data in this work, parameters

can be selected to begin work with this spectral texture analysis. It must be noted

that the texture analysis further increases the dimensionality of the data which ulti-

mately requires compressing into a segmented, 2D representation. With speed being

an important feature of this proposed system, analysis timelines must be held in mind

as additional analysis options are considered. The spatial texture analysis parameters

used in this work also made it vulnerable to degradation by sample artefacts such as

tears, folds and holes. While the homogeneity texture value appeared to contain some

useful discriminatory information at this patch size (200 x 200 µm), a smaller patch

size may be more robust when faced with tissue artefacts and should be tested.

In the data collection software, two changes could bring about a signi�cant improve-

ment in the SNR of the data: If the camera shutter could be changed from rolling to

global, this would remove the horizontal striping artefact achieved for short exposure

times and remove the need to perform maximum pixel acceptance corrections which are

costly to the signal. This shutter settings change should be possible, but may require a

change of platform for the data acquisition software. A new software platform may also

facilitate the triggering of the pulsed Xenon source by the camera, which would result

in a more consistent intensity at each wavelength in di�erent datasets, helping prevent

tiling artefacts. These are caused by the calculation of grayscale values in overlapping

tile areas and introduce noise and segmentation errors at tile boundaries.

On a similar vein, the SNR and tiling errors could be further improved by utilising a

lower magni�cation objective lense, such as x1.25 in place of x4, which would decrease

the �eld of view tiling required to image one full tissue section. The increased angle of

acceptance may also lead to a moderate increase in signal. One of the tongue squamous

cell carcinoma samples from the main study, #4644, was imaged with a x1.25, 0.04 NA

objective (Olympus) and k-means clustered with the parameters used in Figure15.2,

but without coregistration (Figure 72).
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Figure 72: The RGB image of the H&E stained squamous cell carcinoma tongue tis-
sue sample, #4644, with concensus histopathologist cancer demarcation in green, the
in�ammation demarcated by one histopathologist (orange) and areas of damaged or
translated tissue areas separated by red lines, with only the central strip being con-
sidered for comparison (left). PCA dimensionality-reduced and k-means clustered HSI
taken with a x1.25, 0.04 NA objective, with unmasked background (right).

Figure 73: Masks of consensus histopathology (including in�ammation), HSI x4 and
HSI x1.25 cancer segments of tongue squamous cell carcinoma sample #4644 selected
using the overlap coe�cient macro with respect to histopathologist consensus diagnosis.
Scale bar represents 500 µm.

Comparing the masks of the corresponding segments in the x1.25 and x4 segmented

images shown in Figure 73 shows decreased sparsity with decreased magni�cation. It

may be that a lower magni�cation and spatial resolution is more appropriate for making

global maps of the tissue and its health status and that the x4 data was more sensitive to

�ner, perhaps subcellular, information which lead to less homogeneous region selection.

For many reasons, this is worthy of further investigation.

Thirdly, and most signi�cantly, more accurate inter-modal comparison could be

achieved if we utilise the same frozen sections for all three imaging modes and if we

build a HSI-Raman system.

Utilising the same frozen sections for histopathology, HSI and Raman would elimi-

nate the most widespread sources of error across all tissue samples in this thesis; inher-

ent di�erences between consecutive (or near-consecutive) tissue sections and dissimilar

sampling artefacts between these sections. Achieving this is not a trivial problem: If we
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aim to retrieve the histopathologists' diagnoses �rst, a H&E stain wash which does not

leave a residual Raman spectrum will have to be identi�ed. If we aim to stain it after

collecting the HSI and Raman data, we would have to modify the method by which we

sandwich it between two calcium �uoride slides to prevent drying out, shrinking and

distorting over the long Raman collection process. It would have to remain airtight,

but soft enough to allow separation of the slides for staining afterwards without be-

ing drawn into the sample by capillary action. Both of these considerations are surely

possible, but may require a period of development.

Adding a HSI mode onto a Raman system would facilitate wide�eld HSI pre-

screening and subsequent Raman scanning for automated diagnosis with inherent coreg-

istration. In addition to the HSI microscope components (12.1) our current Raman

system (Renishaw InVia) would require only one major alteration; an automated ob-

jective lens turret to execute a switch between the HSI wide�eld objective (x4 or x1.25

magni�cation) to x20 for confocal Raman scanning. In order that a complex coregistra-

tion is not required, this objective turret must have high precision so that coordinates

from the HSI segmentation can be directly applied, without a�ne transformation, to

the Raman scan. Creating a hybrid system will also allow optimisation of the Raman

data collection parameters which are chie�y limited by the time required to image a

full tissue section with an acceptable resolution. The HSI-based pre-screening process

will decrease the area which requires further probing with Raman. This will then per-

mit use of a longer exposure time, increasing the SNR of the spectra and enhancing

performance of segmentation software. A more accurate measure of performance can

then be calculated to inform future work and feasibility of clinical translation.

17 Conclusion

This thesis outlined the development of a HSI-based cancer selection system for use

with Raman spectroscopy for the detection of oral cancer from unstained, frozen tis-

sue sections. Parts I and II explored the e�ects of various modi�cations to the sys-

tem, including changes to the illumination source, and the development of a robust

coregistration and evaluation work�ow. With the �nal system and software in Part III,

near-automation was achieved at every stage, with most user input required for the eval-

uation process rather than the data collection and segmentation process inherent to the

system itself. Its performance was quantitatively compared to consensus histopathol-

ogist diagnosis, to evaluate sensitivity and speci�city, and to Raman spectroscopy to

con�rm compatibility of the two techniques and the segmentation they produce.

This developmental work con�rmed the importance of a powerful broadband white
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light source with reliable intensity: A pulsed Xenon source is a suitable, economic

choice and it is best suited to this application if triggering can be performed by the

camera. Introduction of a re�ective �bre collimator in Setup 2 dramatically ameliorated

chromatic aberrations, improving focus across each �eld of view and removing the need

for Z-stage control to account for a changing focal plane over the wavelength range. Use

of diverging sample illumination prior to this setup addition, however, appeared to add

a unique and useful scattering contribution. This may be explained by the acceptance of

signal from higher scattering angles, potentially conveying sensitivity to more isotropic

scattering such as Rayleigh scattering, over forward-biased Mie scattering. While this

additional scattering appeared to contain useful information, the manifold bene�ts of

using collimated light were prioritised given that adequate tissue information is retrieved

without it.

Solutions to the two remaining limitations of the HSI microscope itself are detailed

in the Future Work section (16): Use of a global camera shutter and camera-driven

source pulse triggering would allow the removal of two data processing steps; taking

the maximum intensity of each pixel over six dataset repeats, and the correction of

small brightness variations across the wavelength range in spite of optimised exposure

times. Exclusion of both of these steps would lead to improved SNR of the data and

signi�cantly decreased system run-time, improving classi�cation and its suitability as

a clinical diagnostic aid.

The near-total automation of the hyperspectral imaging, coregistration, segmenta-

tion and scoring means that the e�ects of modi�cations to any part of this process can

be swiftly and easily quanti�ed. Human input is only absolutely necessary in the selec-

tion of three sets of a�ne coordinates for the coregistration step (and for collecting the

gold standard histopathologist' diagnosis for reference). Additionally, many of our soft-

ware solutions are suitable for open-source distribution and were purposely developed

on commonly used platforms; Matlab and ImageJ.

Aside from data collection equipment and processing methods, the largest source of

error across all three Parts of this work come from the tissue sections themselves. Firstly,

the inherent di�erences in tissue features between the consecutive (or near-consecutive)

sections collected to facilitate the preparation of stained sections for histopathological

review and unstained, frozen sections for collection of HSI and Raman spectroscopy

data. Secondly, tissue sectioning artefacts such as breakage and folding which often oc-

cur dissimilarly between the two corresponding sections and complicate coregistration.

This is unavoidable; the sectioning process is extremely delicate and these artefacts

occurred in spite of careful sample preparation by an expert. Methods to minimise the

impact of changing or erroneous tissue section features on the segmentation process
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and its evaluation are detailed in Future Work (16). They include include development

of a protocol which allows the same frozen section to be used for all modes, including

histopathology, improving the accuracy of the performance evaluation. Subsequently,

the building of a HSI-Raman combination system will remove the requirement for coreg-

istration between the two modes, shedding more light on the compatibility of the two

modes and producing diagnostic information in its �nal form.

The di�culties faced throughout this work relating to the sensitivity of Raman

spectroscopy to sample storage and degradation would also be minimised in its intended

clinical form and application. Histopathological review of tissue sections occurs in a

timely manner after biopsy-collection and extended storage before initial evaluation

would be extremely unlikely.

Histopathological segmentation was another source of uncertainty in the data: Us-

ing a qualitative technique as the gold standard is unusual outside of medical �elds

and carries inherent limitations. Interobserver variation was discussed and quanti�ed,

with a standard deviation of 6.7% across three histopathologists. To account for this

substantial variance, the gold standard oral cancer segmentation was therefore de�ned

as the consensus between all histopathologists, which produced conservative, but more

reliable, cancer selections.

The low e�ective resolution of the preliminary texture analysis impeded evaluation

using a ROC curve. However, statistically signi�cant di�erences between healthy tongue

tissue sections and tongue sections containing squamous cell carcinoma were observed:

The di�erence in standard deviations of the contrast and energy texture values across

hyperstacks of cancerous tissue and healthy tissue were both statistically signi�cant (p

< 0.005 and 0.03, respectively). This could be exploited for an initial exclusion protocol,

excluding healthy samples from further examination by histopathologists or the HSI-

Raman system: This could be a signi�cant time-saving step, well suited to improving

oral cancer survival rates which su�er from late detection. Di�erences between mean

contrast texture values in tongue squamous cell carcinoma and healthy tongue were

close to statistical signi�cance (p < 0.09), and would likely become signi�cant after the

proposed modi�cations to the system and their associated SNR improvement.

PCA denoising and k-means clustering of the HSI data provided the best segmen-

tation, and the quickest analysis time (< 30 minutes for one �eld of view), garnering

an AUROC score of 0.70 with respect to the gold standard. Comparison with the two

most similar studies rate its performance very di�erently. Fei et al achieved a diagnostic

sensitivity, and speci�city of 66% and 76% in ex-vivo tumour-normal interface tissue.

Given the presence of intensely absorbant and clinically informative haemoglobin in
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their samples, which are minimal in our unstained thin tissue sections, our system

has performed well and would not require remodelling of the diagnostic procedure for

widespread use. With this system they were able to garner an AUROC score of 0.88

for sample-wise diagnosis. Given our similar sensitivity and speci�city (dependent on

selection of diagnostic threshold), we might hope to achieve a similar AUROC with

our current system for sample-wise diagnosis.[155] On the other hand, performance is

poor compared to the 96% sensitivity and 100% speci�city achieved with the quantum

cascade laser-based IR microspectrometer system from the work of Kuepper et al.[156]

However, this work is performed on colorectal cancer which may have less intraclass

variation and the system has a lower spatial resolution than Raman spectroscopy and

contains several expensive components which may prohibit its clinical translation.

It may be the case that, once the suggested modi�cations are made to the system and

diagnostic classi�ers are identi�ed from the k-means segmentation already achieved, the

HSI pre-screening process will be su�cient as a standalone oral cancer detection system.

As it stands, however, the HSI system does not reliably separate in�ammation and

cancer and achieved an AUROC score of 0.70 with respect to histopathology. Adding the

chemical speci�city of Raman spectroscopy by creating a hybrid system would ensure

successful separation and the AUROC score of the HSI segmentation technique with

respect to Raman (0.69) suggests that their segmentation is compatible. This should

be re-evaluated once the system modi�cations are complete, and again once the hybrid

HSI-Raman system is constructed. Diagnostic performance of the �nal, hybrid system

with AUROC score of > 0.90 with respect to the gold standard histopathology, and

with an AUROC score >0.85 when evaluating the HSI pre-screening segmentation with

respect to the Raman (given that areas of in�ammation are likely to be in disagreement

between the HSI and Raman modes) would warrant pursuit of clinical translation.

This would be especially worthwhile if the suggested wavelength truncation for speed

is successful. Given the range and magnitude of limitations in the current system, this

may be achievable.

Preliminary work suggests that the system may be suitable for application in the

screening for bioaccumulated particulate matter and microplastics, which are a growing

source of interest and concern. Further work with environmental plastic samples is

required to con�rm this, with suitable samples being readily available.

A HSI pre-screening system was constructed which (if the camera shutter mode

can be altered from rolling to global, reducing collection time six-fold) can collect a

hypercube of a tissue section up to 4 x 4 mm in area across a 521 - 899 nm wavelength
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range in ~ 15 minutes with a spectral resolution of 6 nm and spatial resolution of ~ 2

µm. Hyperstacks across substantially smaller wavelength ranges (521 - 635 nm or 605

- 755 nm) appear to produce similar segmentation, though performance has not been

quantitatively evaluated. A�ne transformation-based coregistration followed by PCA

denoising and k-means clustering appears to produce the most diagnostically relevant

clustering, garnering a pixel-wise cancer segmentation performance AUROC score of

0.70 with respect to consensus histopathologist diagnosis in < 30 minutes per �eld of

view. Although texture analysis parameters have yet to be fully explored, preliminary

work shows statistically signi�cant di�erences between cancer and non-cancer in the

standard deviations of contrast (p < 0.005) and energy (p < 0.03) texture values. The

segmentation provided by Raman spectroscopy correlates well with it, and a hybrid

HSI-Raman system is proposed to exploit the speed of the former and the speci�city

and proven diagnostic power of the latter. The HSI system alone, or with Raman

spectroscopy, has the potential to �t into the current diagnostic �ow with no additional

preparation or prior knowledge of the sample required, to support histopathologists in

the quest for early diagnosis of oral cancer to improve survival rates.
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B Open Source Software

A selection of the software solutions designed and employed in this project will be made

available on the following webpage: https://github.com/a-jarman
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