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QoE Optimization for Live Video Streaming in
UAV-to-UAV Communications via Deep

Reinforcement Learning
Liyana Adilla binti Burhanuddin, Student, IEEE, Xiaonan Liu, Student, IEEE, Yansha Deng, Member, IEEE,

Ursula Challita, Member, IEEE, and András Zahemszky, Member, IEEE

Abstract—A challenge for rescue teams when fighting against
wildfire in remote areas is the lack of information, such as the size
and images of fire areas. As such, live streaming from Unmanned
Aerial Vehicles (UAVs), capturing videos of dynamic fire areas, is
crucial for firefighter commanders in any location to monitor the
fire situation with quick response. The 5G network is a promising
wireless technology to support such scenarios. In this paper, we
consider a UAV-to-UAV (U2U) communication scenario, where
a UAV at a high altitude acts as a mobile base station (UAV-
BS) to stream videos from other flying UAV-users (UAV-UEs)
through the uplink. Due to the mobility of the UAV-BS and
UAV-UEs, it is important to determine the optimal movements
and transmission powers for UAV-BSs and UAV-UEs in real-
time, so as to maximize the data rate of video transmission with
smoothness and low latency, while mitigating the interference
according to the dynamics in fire areas and wireless channel
conditions. In this paper, we co-design the video resolution, the
movement, and the power control of UAV-BS and UAV-UEs to
maximize the Quality of Experience (QoE) of real-time video
streaming. We applied the Deep Q-Network (DQN) and Actor-
Critic (AC) to maximize the QoE of video transmission from all
UAV-UEs to a single UAV-BS to learn the dynamic fire areas
and communication environment. Simulation results show the
effectiveness of our proposed algorithm in terms of the QoE,
delay and video smoothness compared to the Greedy algorithm.

Index Terms—Quality of Experience (QoE), UAV-to-UAV
(U2U) communication, video streaming, Deep Q Network (DQN),
Actor Critic (AC).

I. INTRODUCTION

Over the years, an increasing number of wildfires has
inevitably created new challenges for firefighters to control and
monitor fire in remote areas [1], [2]. Without new technology
to monitor the incident area from the control station, the
current practice of the fire station control lacks the technology
to remotely visualize the dynamic fire situation in real-time
for immediate action [2]. Therefore, monitoring multiple fire-
fighting areas in different locations with dynamic fire heights
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and areas is vital. Unmanned Aerial Vehicles (UAVs) with
low cost, high mobility, and the capability to capture high-
definition video, can be a good solution to oversee the fire
situation, and facilitate the fire commander’s response for the
choice of number of firefighters and firefighting machines.
The use of UAVs provides the fire commander with suf-
ficient information of the overall situation of the fire and
danger, such as explosions or human requiring rescue. More
importantly, it helps to reduce any imminent dangers and
obstacles to firefighters. Existing wireless technologies, such
as WiFi, Bluetooth, and radio wave, can only support UAVs’
communication within a short transmission range, which are
inefficient for multi-UAV collaboration with limited multi-
UAV control [3]. In particular, by using the existing advanced
cellular technologies, cellular-connected UAV has the great
potential to achieve advantage of remote UAV operation with
unlimited range [4]–[7]. Authors in [4] used a commercial
LTE network to study the data collected during drone flights in
the applicability of terrestrial networks for connected drones.
Meanwhile, with advantage cellular networks also can support
the real-time video streaming from UAV users (UAV-UEs)
with beyond the line of sight control, low latency, real-time
communication, and ubiquitous coverage from base stations
(BSs) with wireless backhaul to the core networks. Despite
the growing interests in cellular-connected UAVs, there are still
many unsolved challenges for commercial deployment [3] [8].
Therefore, to achieve the high effectiveness among terrestrial-
UAV, powerful sensing capability should be considered i.e.,
UAV massive MIMO [7], to complementary network-based
and UAV-based solutions. Also, multi-tier UAVs could be
used to assist in wireless communication and improve their
efficiency [9]. To ensure the effectiveness of multi-tier UAVs,
the optimal intensity, altitude of drones, and the specific
network load conditions should be considered to ensure the
deployment of multi-tier UAVs [10].

Therefore, to support an inadequate network, UAV has been
initially proposed as a relay to help other UAVs transmit to
a nearby terrestrial BS with low signal to noise ratio (SNR)
[8]. In addition, the dedicated UAV could employ as aerial BS
(UAV-BS), access points (APs), or relays, to assist the wireless
communications of ground nodes, which we refer to as UAV-
assisted wireless communication [5]. When the distance of
UAV-to-UAV (U2U) communication decreases, the SNR of the
transmission among the UAVs increases resulting in a better
transmission performance [11].
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The use of UAVs in disaster scenarios has been investigated
in literature [12]–[19]. In [12], the UAV was introduced as
an emergency BS to serve the affected ground users with
limited coverage. In [13], multiple mini-UAVs were used to
form flying ad-hoc network (FANET) to explore large and
disjoint terrain in disaster areas while adapting their trans-
mission power to optimize the energy usage. In [17], through
optimizing the trajectory, the transmit power of the UAV and
the mobile device, the outage probability of the UAV relay
network in the disaster area was minimized. In [18], a UAV
platform was developed to compensate the communication
loss during a natural disaster, with the aim to obtain the
optimal flight paths in high-rise urban and urban microcell
environment. In [19], UAV-assisted networks was studied in
disaster area, and the proposed power control optimization
problem was solved via relaxing the non-convex problem.
Nevertheless, no studies have focused on the real-time video
streaming between UAV-UEs and UAV-BS.

Real-time video streaming has higher requirements in terms
of data rate, latency, and smoothness compared to other data
types. In a firefighting scenario, the network channel capacity
fluctuates dramatically with the dynamic environment along-
side the UAVs’ movement, which can cause poor network
performance and undesirable delays. This in turn makes it
harder to learn the pattern variance of the channel capacity,
thus resulting in failure to transmit with high capacity and
high video quality. To capture the practical performance from
testbed, authors in [20] used single UAV to conduct indoor ex-
perimental to measure the video streaming performance from
one LTE base station. Therefore, to overcome the limitation of
fluctuate environment, the authors in [21] applied the Additive
Variation Bitrate (ABR) method with Deep Reinforcement
Learning (DRL) to select proper video resolution based on
previous communication rate and throughput. However, [21]
only focused on a single video source ABR, which was guided
by RL to make decisions based on the network observations
and video playback states for selecting the optimal video
resolution. While managing large firefighting areas, multiple
UAVs are required, authors in [22] used multiple UAVs to
stream a video and optimize the QoE to solved resource
allocation using game theory technique, however, the QoE
utility measurement used error statistic of PSNR and mean of
sum (MOS) scale, which could lead to biased measurement.
Authors in [23] used UAV relay network and considered
two factors, the bit rate of the video and the freezing time
to maintain the quality. However, the dynamic channel and
different requests are not considered. Therefore, we improve
the quality measurement by introducing three video quality
factors, i.e., video resolution measurement, video smoothness,
and latency penalty. Also, our long-term optimization problem
is solved by DRL algorithms. The DRL algorithms can be
adapt to the fluctuated channel quality in networks and ensure
the long-term QoE. However, in large search and rescue
firefighting scenario, a nonordinary optical camera [24] should
be considered to ensure the reception of a high quality video.
To deal with a more complex environment and practical
scenarios, such as search and rescue firefighting scenarios, the
DRL algorithm is a promising tool for solving the problem

Fig. 1. Illustration of System Model

of jointly optimizing the UAVs location while maximizing
the data rate [25], [26]. DRL scheme has been applied to
improve the performance of Vehicular Ad doc networks [27]
and interference alignment problems in wireless networks [28].

In this paper, based on [29] and [30], we consider a cellular-
connected UAV-BS streaming the real-time video captured by
UAV-UEs from the firefighting area for fire monitoring. The
contributions of this paper are summarized as follows:

• We develop a framework for a dynamic UAV-to-UAV
(U2U) communication model with a moving UAV-BS
in multiple firefighting areas to capture a live-streaming
panoramic view. We model the dynamic fire arrival with
different heights in every fire area and UAVs’ request
arrival as Poisson process in each time slot, and design
the UAV-UEs location spaces to capture a full panoramic
view with multiple UAVs.

• To guarantee the smoothness and latency of the live video
streaming among UAV-BS and UAV-UEs in this U2U
network, we formulate a long-term Quality of Experience
(QoE) maximization problem via optimizing the UAVs’
positions, video resolution, and transmit power over each
time slot.

• To solve the above problem, we propose a Deep Rein-
forcement Learning (DRL) approach based on the Actor-
Critic (AC) and the Deep Q Network (DQN). Our results
shown that our proposed AC and DQN approaches out-
perform the Greedy algorithm in terms of QoE.

The rest of this paper is organized as follows. The system
model and problem formulation are given in Section II. The
optimization problem via reinforcement learning is presented
in Section III. Simulation results and conclusion are presented
in Sections IV and V, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a single UAV-BS to
provide a network coverage for multiple UAV-UEs to satisfy
the network rate requirement of each UAV-UE to stream high
quality video of multiple firefighting areas. The UAV-BS is
located at the center of the environment, such as forest area,
with the maximum coverage radius rmax. The UAV-BS is
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connected through wireless network to the fixed or mobile
control station. We assume that the arriving distribution of
the fire video streaming request is the same as that of the
fire arrival distribution [31], which follows Poisson process
distribution with density λa. The reason for this model is that
the authors in [31] used real data of 30 years of annual areas
burned data to model the distributions, where the distributions
of size and arrival time in real data are proved to follow the
Poisson distribution. The UAV-BS receives a request when a
fire event occurs, and the kth UAV-UE automatically flies to
the center of kth flying region FRk to serve the ith fire area
Ai(xi, yi).

We consider a video streaming task that lasts for T time
slots with an equal duration t. The selection of the optimal
location to stream the video plays an important role in en-
suring the UAV-UEs capture the full firefighting area of Ai.
Therefore, the kth UAV-UE needs to find the optimal position
U(x∗k, y

∗
k, h

∗
k) to transmit the video to the UAV-BS. The size

of the kth fire region FRk for the kth UAV-UE depends on the
number of UAV-UEs that perform the video streaming for the
ith fire area Ai. To make sure that all UAV-UEs can jointly
capture the panoramic video of Ai, K UAV-UEs are distributed
evenly around Ai, as shown in Fig. 1. Meanwhile, the UAV-
BS also searches for the optimal location P (x∗BS , y

∗
BS , h

∗
BS)

to satisfy the minimum data rate requirement for all UAV-
UEs. In addition, the safety region of the Ai is considered to
guarantee FRk and Ai, and Ai and Ai+1 are not overlapping
to guarantee that the UAV-BS and UAV-UEs are safe from fire.

A. Request Arrival

The request contains the ith area Ai with its centre at
(xi, yi) with radius ri. We assume that K UAV-UEs serve
each fire area and stream real-time videos simultaneously.
We assume that the height of the fire hi follows Log-normal
distribution [32], thus, the minimum flying height of all UAVs
is hmin, which satisfies hmin = max(hi). All UAV-UEs in
Ai will be operated at the same altitude. The environment
is divided into W square grids, thus, the length, width and
height of each grid are X

3√
W
, Y

3√
W
, Z

3√
W

, respectively. At the

tth time slot, the flying position U⃗(xi,k, yi,k, hi,k) of the kth
UAV-UE can be calculated as

U⃗ t+1(xi,k, yi,k, hi,k) = U⃗ t(xi,k, yi,k, hi,k) + a⃗t(x, y, z), (1)

with

xi − a ≤xi,k ≤ xi + a, (2)
yi − a ≤yi,k ≤ yi + b, (3)
hmin ≤hi,k ≤ hmax, (4)

U t
(i,k=1) = {(x1, y1, h1)|

xi − a ≤ xi,1 ≤ xi + a,

yi + a ≤ yi,1 ≤ yi + b,

hi ≤ h1 ≤ hmax}, (5a)

Fig. 2. Flying boundry of the kth UAV-UE.

U t
(i,k=2) = {(x2, y2, h2)|

xi − b ≤ xi,2 ≤ xi − a,
yi − a ≤ yi,2 ≤ yi + a,

hi ≤ h2 ≤ hmax}, (5b)

U t
(i,k=3) = {(x3, y3, h3)|

xi − a ≤ xi,3 ≤ xi + a,

yi − b ≤ yi,3 ≤ yi − a,
hi ≤ h3 ≤ hmax}, (5c)

U t
(i,k=4) = {(x4, y4, h4)|

xi + a ≤ xi,4 ≤ xi + b,

yi − a ≤ yi,4 ≤ yi + a,

hi ≤ h4 ≤ hmax}. (5d)

where a⃗t(x, y, z) is the action vector to determine the flying
direction of the UAV-UE. The action vector a = ri+ rs limits
the horizontal boundaries of flying UAV-UE, and b = ri +
rs+ l is the vertical boundaries of the UAV-UE. rs is the safe
distance between Ai and FRk to ensure the UAV cannot be
affected by the fire and close enough to stream the fire area, l
is the length of flying region, and hmax is the maximum height
of UAV-UE regulated by the government (i.e. 120 m in UK
[33]). The upper boundaries are introduced to ensure better
uplink performance, capture a clear picture. This is because
the picture frame can be clearer when the UAV-UEs are closer
to the surveillance area. Furthermore, to capture full panoramic
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Fig. 3. UAV-to-UAV communication.

video, we propose the boundary flying area for UAV-UEs in
each fire area, which can be written as Eq. (5).

B. Channel Model

In the wireless network, we assume that the channel model
between the kth UAV-UE and the UAV-BS contains large-scale
fading (path loss and channel gain) and small-scale fading [3].
We assume that the link between the UAVs are line-of-sight
(LoS). Also, we consider that the wildfires have occurred in
rural areas, and the height of the UAV should be higher than
that of the fire to guarantee the UAV cannot be damaged by
the fire. As all UAVs are flying in free space area, there are no
blockages between the UAVs, and the UAVs can capture the
videos following the Rural Macrocell Aerial Vehicular (RMa-
AV) path loss model in 3GPP standard [34, Table B-2]. The
pathloss from the kth UAV-UE to the UAV-BS can be written
as

PLt
LoS,k = 20 log

(
4πfcd

t
k

c

)
+ ηLoS, (6)

where fc is the carrier frequency, c is the speed of light in
vacuum, ηLos is the additional attenuation factors due to the
LoS connection, and dtk is distance between the kth UAV-UE
and the UAV-BS, as shown in Fig. 3, which can be calculated
as

dtk =

√
(xtBS − xtk)

2
+ (ytBS − ytk)

2
+ (htBS − htk))

2
. (7)

In our model, we use the Rician distribution [35] [36] to
define small scale fading pξ(dk), which can be denoted as

pξ(d
t
k) =

dtk
σ2
0

exp

(
−dtk

2 − ρ2

2σ2
0

)
I0

(
dtkρ

σ2
0

)
, (8)

with dtk ≥ 0, and ρ and σ are the strength of the dominant and
scattered (non-dominant) paths, respectively. The Rice factor
κ can be defined as

κ =
ρ2

2σ2
0

. (9)

It is possible that the selected position of each UAV-UE
can generate more interference to the UAVs nearby, which can
result in poor transmission performance and make it difficult
for the UAV-UE to maintain the connection with the UAV-
BS. Power control can be a solution to minimize the uplink
interference among UAV-UEs at appropriate power level [37].
Through properly controlling the transmit power of each UAV-
UE in the uplink transmission, the interference among UAV-
UEs can be mitigated. According to the 3GPP guidelines [34],
we consider fractional power control for all UAVs and the
power transmitted by the kth UAV-UE while communicating
with the UAV-BS can be given by

P t
Uk

= min
{
Pmax
Uk

,
(
10 log10 (B)) + ρuk

PLt
LoS,k

)}
,
(10)

where Pmax
Uk

is the maximum transmit power of the
UAV-UE, B is the channel bandwidth, and ρuk

=
{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is a fractional path loss com-
pensation power control parameter [37].

In the proposed wireless UAV network, the received power
from the kth UAV-UE to the UAV-BS at the tth time slot is
presented as

P t
k = P t

Uk
G
(
dtk
)−α

10
−pξ(dtk)

10 , (11)

where PUk
is the transmit power of the kth UAV-UE, G is

the channel power gains factor introduced by the amplifier
and antenna [8], (dtk)

−α is the pathloss, α is the path loss
exponent, and pξ(d

t
k) is the Rician small scale fading. The

interference from the mth UAV-UE to the UAV-BS at the tth
time slot can be written as

ItU2U =
∑

m∈K\k

ψt
mP

t
m, (12)

where ψt
m = 1 indicates that the transmission between the

kth UAV-UE and the UAV-BS is active, otherwise, ψt
m = 0,

and P t
m is the transmit power of mth UAV-UE. The signal to

interference plus noise ratio (SINR) of the UAV-BS is given
by

γtk =
P t
k

N +
∑

m∈K\k ψ
t
mP

t
m

, (13)

where N is the noise power at the UAV-BS whose elements
are average of independent random Gaussian variables with
the variances σ2

n. Then, the transmission uplink rate from the
kth UAV-UE to the UAV-BS can be denoted as

Rt
k = B log2

(
1 + γtk

)
. (14)
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TABLE I
TYPE OF VIDEO QUALITY [38]

Video Quality Resolution (pixels) Framrate (FPS) Bitrate (average) Data used per minute Data used per 60 minutes
144p 256x144 30 80-100 Kbps 0.5-1.5 MB 30-90 MB
240p 426x240 30 300-700 Kbps 3-4.5 MB 180-250 MB
360p 640x360 30 400-1,000 Kbps 5-7.5 MB 300-450 MB
480p 854x480 30 500-2,000 Kbps 8-11 MB 480-660 MB

720p (HD) 1280x720 30-60 1.5-6.0 Mbps 20-45 MB 1.2-2.7 GB
1080p (FHD) 1920x1080 30-60 3.0-9.0 Mbps 50-68 MB 2.5-4.1 GB

C. Video Streaming Model

In this paper, we consider the long-term video streaming that
are modelled as consecutive video segments. Each segment
consists of multiple frames, and the frame is considered
to be the smallest data unit. The resolution of each frame
corresponds to its minimum data rate requirement. Table I
presents the type of Video Quality [38]. For example, if the
communication rate (bitrate) is between 300-700 kbps, the
video type that we should consider to use is 240 p. Knowing
that 144p corresponds to the smallest size of the video type,
all UAV-UEs need to satisfy the minimum uplink bitrate, i.e.,
Rmin=80 kbps.

Each UAV-UE is equipped with a non-ordinary optical
camera with the resolution of rpx × rpy , and the video is
consisted of multiple consecutive frames [24], which is used to
monitor the fire area with three main goals: 1) detect the size
of fire by continuous capturing the panoramic video; 2) verify
and locate fires reported; and 3) closely monitor a known fire
by streams using distribution relationship around the incident.
The quality of the video frame depends on its resolution of
the ith video frame at the tth time slot vti . Furthermore, for
each video frame, we assume that it has the same playback
time Tl, i.e. 2ms to 4ms, which depends on 30 FPS or 60
FPS. In addition, the delay of the video streaming via UAVs
is consisted of three elements, i.e. capture time, encoding time,
and transmission time. As all UAVs capture a video using the
same resolution, the capture time and the encoding time are
constant. Thus, we mainly focus on the uplink transmission
time, which can be expressed as

T t
i,k =

D(vti)

Rt
k

=
rpx · rpy · b

B log2 (1 + γtk)
, (15)

where b is the number of bits per pixel, and D(vti) is the data
size based on vti . The video frames are processed in parallel in
multi-core processors, and the time consumption at the tth time
slot is T t = max{T t

i,k} [39]. To guarantee the smoothness and
seamless of the video streaming, T t must satisfy the delay
constraint, namely, T t < Tl.

D. Quality of Experience Model

The key parameters of video streaming are video quality,
quality of variation, rebuffer time, and the startup delay [40].
Therefore, QoE is formulated by three factors, 1) the sum of
video quality over K UAV users in ith area, 2) jitter between
video frames (video smoothness penalty), and 3) video latency
(delay penalty), where I is the maximum number of fire
areas at the tth time slot. In practice, the video quality metric

measures each video frame quality based on the selection of
bitrate. However, the quality will decrease if the long-term
video playback is not smooth, so we introduce two param-
eters, namely, video smoothness penalty and video latency.
In long-term scenario, the drastic changes of video resolution
can lead to uncomfortable of firefighters. Therefore, in our
learning algorithm, we consider this element to ensure the
smoothness of the playback. Finally, the latency is determined
by streaming time and transmission time at the tth time slot,
T t, rebuffer time, and the startup delay [42]. According to
[22], the rebuffering time and startup delay can be ignored.
Thus, the video transmission may be suffered from a delay,
which can be calculated as Dt = T t − Tl, where Tl is the
delay constraint. The QoE is denoted as

QoE =
κti,k
IK

( I∑
i=1

K∑
k=1

q(Rt
i,k)− |q(Rt

i,k)− q(Rt−1
i,k )|

)
− ωtDt,

(16)
where q(Rt

i,k) is video quality metrics [41], which can be
written as

q(Rt
i,k) = log

(
Rt

i,k

Rmin(vti)

)
, (17)

where κti,k and ωt are the weights of video quality and delay,
respectively. As our aim is to maximize the QoE, the condition
of κti,k > ωt must be guaranteed, and Rmin(v

t
i) is the minimum

rate that should be satisfied for the selected vti .

E. Problem Formulation

Our aim is to maximize the QoE that jointly exploit
the optimal positions of the UAV-BS and UAV-UEs, power
control, and the optimal adaptive bitrate selection. The fluc-
tuation of the transmission link will cause unstable net-
work performance that leads to low QoE and high delay.
Thus, to minimize the delay and maintain the smoothness
at each Transmission Time Interval (TTI) and maximize the
quality of video streaming. We jointly consider the opti-
mal UAV-BS location P = (xtBS , y

t
BS , h

t
BS), the position

of the kth UAV-UE U = (xti,k, y
t
i,k, h

t
i,k), the maximum

power control of UAV-UE PUk
, the bitrate resolution BV =

{144, 240, 360, 480, 720, and 1080}p, and UAV-UE’s power
PUk

= {23, 25, and 30} dBM, so that the adequate throughput
can be achieved.

In this work, we aim to tackle the problem of optimizing
the control factors defined as At = {BP,BU,BV, PUk

} in an
online manner for every frames. At the tth time slot, the UAV-
BS aims at maximizing the total long-term QoE in continuous
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time slots with respect to the policy π that maps the current
state information st to the probabilities of selecting possible
actions in At. Therefore, based on the QoE of each UAV-UE,
the optimization problem can be formulated as

max
π(At|St)

∞∑
i=t

K∑
k=1

γi−t QoEk(i) (18)

s.t.maxhi > htBS > hmax, (19)

Rt
i,k > Rk

(min)(v
t
i), (20)

vti ∈ {144p, 240p, 360p, 480p, 720p, 1080p} (21)
P(min) > P t

Uk
> P(max), (22)√

(xtBS − xi)2 + (ytBS − yi)2 > ri + rs, (23)

U ∈ Eq.(1). (24)

where the objective function in Eq. (18) captures the average
QoE received at the UAV-BS and γ ∈ [0, 1) is the discount
factor to determine the weight accumulated in the future
frames, and γ = 0 means that the agent concerns only the
immediate reward. The UAV-BS’s height must follow the
condition in Eq. (19). The minimum requirement of data rate
of UAV-UEs based on the adaptive bitrate selection guarantees
Rk obtained from Uk as shown in Eq. (20) and follows
minimum bitrate in Eq. (21) as shown in Table 1, while P t

Uk

in Eq. (22) follows the maximum and the minimum power
constraints. Then, Eq. (23) guarantees that the position of the
UAV-BS will not intersect with the UAV-UE’s flying region. U
follows the requirement of the flying region FRi presented in
Eq. (1). In the experiment, the UAVs are hovering and flying
at a constant speed.

In our study, there are several trafe-offs in this problem:
1) throughput-bit rate trade-off, 2) throughput-power control
trade-off, 3) throughput-distance trade-off, 4) power-distance
trade-off, 5) throughput-video smoothness trade-off and 6)
throughput-delay trade-off. Therefore, to achieve maximum
QoE in long-term time slot, it is important to solve an optimal
trade-off between data rate, bit-rate resolution selection, power
control, and positions, which further motivates us to use the
learning algorithms to jointly optimize the total long-term
QoE of all UAV-UEs. All the factors mentioned above help
to measure the QoE from the selected resolution to maintain
the whole performance in long-term time slots. Also, the
correlation between the video smoothness and the penalty
delay is to ensure the overall video performance from the
beginning to the end.

F. Channel State Information Sharing

Signal exchange happens in the uplink, the UAV-UEs have
to send their locations, fire areas to the UAV-BS, and the QoE
information of each UAV-UE will be readily available at the
UAV-BS. After the learning is performed at the UAV-BS, the
outputs are the actions, including the movement of the UAVs,
selected video resolution, and power. After that, the selected
actions will be sent through the downlink from the UAV-BS to
each UAV-UE for its control. The whole process is illustrated
in Fig. 4.

Fig. 4. UAV-BS to UAV-UE communication information sharing.

III. OPTIMIZATION PROBLEM VIA REINFORCEMENT
LEARNING

In this section, we design several DRL algorithms to max-
imize the long-term QoE in a UAV-to-UAV network. Since
the channel and locations of fire change over time, different
number of UAVs are required at each time slot. In our
problem, we consider the long-term quality and smoothness
of video streaming, which cannot be solved by the traditional
optimization problem. Thus, we deploy deep reinforcement
learning (DRL) to solve the problem. Specifically, we propose
two DRL algorithms, which are Deep Q-Learning and Actor-
Critic, to maximize the long-term QoE of live video streaming
in U2U communication.

A. Reinforcement Learning

For our proposed RL-based method, the UAV-BS acts as
centralized agent to collect video from UAV-UEs while maxi-
mizing QoE. The QoE optimization problem is influenced by
the delay, UAVs’ positions, and bitrate selection during each
TTI, and forms a partially observable Markov decision process
(POMDP). At each TTI, the channel network condition, fire
arrival, and network condition are different. Therefore, through
learning algorithms, the UAV-BS (agent) is able to select
the positions of the UAV-BS, positions of the UAV-UEs, the
adaptive resolution and the maximum power allocation in
order to maximize the individual QoE at each time slot and
the long-term QoE objective.

1) State Representation: The current state st corresponds to
a set of current observed information. The state of the UAV-BS
can be denoted as s = [P,V,U , PUk

,QoE], where P= (xtBS ,
ytBS , htBS) is the position of the UAV-BS, V is the bitrate
selection, U = (xtk, y

t
k, h

t
k) is the positions of UAV-UEs, and

PUk
is k-UAV-UE’s power.

2) Action Space: Q-agent will choose action a =
(BP,BU,BV, P ) from set A. The dimension of the action
set can be calculated as A = BP ×BU i×k ×BV i × P . The
actions for UAVs include (i) UAV-BS’s flying direction (BP),
(ii) UAV-UEs’ flying directions (BU), (iii) resolution of the



7

ith UAV-UE (BV), and (iv) UAV-UE’s power (P). The action
space is presented as

• BP = ( up, down, left, right, ascent, descent or hover )
• BU = ( up, down, left, right, or hover )
• BV= (144, 240, 360, 480, 720, or 1080) p
• P = (23, 25, 30) dBm
To ensure the balance of exploration and exploitation actions

of the UAV-BS, ϵ -greedy ( 0 < ϵ ≤ 1) exploration is deployed.
At the tth TTI, the UAV-BS randomly generates a probability
ptϵ to compare with ϵ. If the probability ptϵ < ϵ, the algorithm
randomly selects an action from the feasible actions to improve
the value of the non-greedy action. However, if ptϵ ≥ ϵ, the
algorithm exploits the current knowledge of the Q-value table
to choose the action that maximizes the expected reward.

3) Rewards: When the at is performed, the corresponding
reward ret is defined as

ret =
ψt
i,k

IK

( I∑
i=1

K∑
k=1

q(Rt
i,k)− |q(Rt

i,k)− q(Rt−1
i,k )|

)
− ωtDt,

(18)
where q(Rt

i,k) is video quality metrics [41], which can be
written as

q(Rt
i,k) = log

(
Rt

i,k

Rmin(vti)

)
, (19)

ψt
i,k and ωt are the weights of video quality and delay, respec-

tively. If Rt
i,k is unable to satisfy the minimum transmission

rate for Rk
min(v

t
i), namely, Rt

i,k < Rk
min(v

t
i), the system will

receive negative reward, which means ret < 0.

B. Q-learning

The learning algorithm needs to use Q-table to store the
state-action values according to different states and actions.
Through the policy π(s, a), a value function Q(s, a) can be
obtained through performing action based on the current state.
At the tth time slot, according to the observed state st, an
action at is selected following ϵ -greedy approach from all
actions. By obtaining a reward ret, the agent updates its policy
π of action at. Meanwhile, Bellman Equation is used to update
the state-action value function, which can be denoted as

Q(st, at) =(1− α)Q(st, at)

+ α

{
ret+1 + γ max

at∈A
Q(st+1, at)

}
,

(20)

where α is the learning rate, γ ∈ [0, 1) is the discount rate
that determines how current reward affects the updating value
function. Particularly, α is suggested to be set to a small value
(e.g., α = 0.01) to guarantee the stable convergence of training.

C. Deep Q-learning

However, the dimension of both state space and action space
can be very large if we use the traditional tabular Q-learning,
which will cause high computation complexity. To solve this
problem, deep learning is integrated with Q-learning, namely,
Deep Q-Network (DQN), where a deep neural network (DNN)
is used to approximate the state-action value function [42].

Q(s, a) is parameterized by using a function Q(s, a;θDQN),
where θDQN is the weight matrix of DNN with multiple layers.
s is the state observed by the UAV and acts as an input to
Neural Networks (NNs). The outputs are selected actions in A.
Furthermore, the intermediate layer contains multiple hidden
layers and is connected with Rectifier Linear Units (ReLu)
via using f(x) = max(0, x) function. At the tth time slot, the
weight vector is updated by using Stochastic Gradient Descent
(SGD) and Adam Optimizer, which can be written as

θ
(t+1)
DQN = θt

DQN − λADAM · ∇L(θt
DQN), (21)

where λADAM is the Adam learning rate, and λADAM ·
∇L(θt

DQN) is the gradient of the loss function L(θt
DQN), which

can be written as

∇L(θt
DQN) = ESi,Ai,Rei+1,Si+1

[(
Qtar −Q(Si, Ai;

θt
DQN) · ∇Q(Si, Ai;θt

DQN)],
(22)

where the expectation is calculated with respect to
a so-called minibatch, which are randomly selected in
previous samples (Si, Ai, Rei+1, Si+1) for some i ∈
{t−Mr, t−Mr + 1, . . . , t}, with Mr being the replay mem-
ory. The minibatch sampling is able to improve the con-
vergence reliability of the updated value function [43]. In
addition, the target Q-value Qtar can be estimated by

Qtar = rei+1 + γmax
a∈A

Q(Si+1, a; θ̄
t
DQN), (23)

where θ̄
t
DQN is the weight vector of the target Q-network to

be used to estimate the future value of the Q-function in the
update rule. This parameter is periodically copied from the
current value θt

DQN and kept fixed for a number of episodes.
The DQN algorithm is a value-based algorithm, which can
obtain an optimal strategy through using experience replay
and target networks. It enables the agent to sample from and
be trained by the previously observed data online. This is due
to the experience replay mechanism and randomly sampling
in DQN, which use the training samples efficiently to smooth
the training distribution over the previous behaviours. Not only
does this massively reduce the amount of interactions needed
with the environment, but also reduce the variance of learning
updates. The DQN algorithm will create a sequence of policies
whose corresponding value functions converge to the optimal
value function, when both the sample size and the number of
iteration go to infinity. The DQN algorithm is presented in
Algorithm 1.

D. Actor-Critic

Different from the DQN algorithm, which obtains the opti-
mal strategy indirectly by optimizing the state-action value
function, while the AC algorithm directly determines the
strategy that should be executed by observing the environment
state. The AC algorithm combines the advantages of value-
based function method and policy-based function method. In
the AC algorithm, the agent is consisted of two parts, i.e., actor
network and critic network, and it solves the problem through
using two neural networks. Meanwhile, the AC algorithm
deploys a separate memory structure to explicitly represent
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Algorithm 1 : Optimization by using DQN
Input: The set of UAV-BS position {xBS , yBS , hBS}, bi-
trate selection V , the position of the kth UAV-UE Uk =
(xtk, y

t
k, h

t
k),
∑
QoE and operation iteration I .

Algorithm hyperparameters: Learning rate α ∈ (0, 1],
ϵ ∈ (0, 1], target network update frequency K;
Initialization of replay memory M , the primary Q-network θ,
and the target Q-network θ̄;
for e← 1 to I do

Initialization of s1 by executing a random action a0;
for t← 1 to T do

if pϵ < ϵ then: Randomly select action at from A;
else select at = argmax

a∈A
Q (St, a, θ) ;

The UAV-BS performs at at the tth TTI ;
The UAV-BS observes st+1, and calculate ret+1 using
Eq. (18);
Store transition (st; at; ret+1; st+1) in replay memory
M ;
Sample random minibatch of transitions
(Si;Ai;Rei+1;Si+1) from replay memory M ;
Perform a gradient descent for Q(s; a;θ) using (22) ;
Every K steps update target Q-network θ̄ = θ.

end
end

the policy which is independent of the value function. The
policy structure is known as the actor network, which is used
to select actions. Meanwhile, the estimated value function is
known as the critic network, which is used to criticize the
actions performed by the actor. The AC algorithm is an on-
policy method and temporal difference (TD) error is deployed
in the critic network. To sum up, the actor network aims to
improve the current policies while the critic network evaluates
the current policy to improve the actor network in the learning
process.

The critic network uses value-based learning to learn a value
function. The state-action value function V (st,wt) in the critic
network can be denoted as

V (s,wt) = w⊤Φ(st), (24)

where Φ(st) = st is state features vector and wt is critic
parameters, which can be updated as

wt+1 = wt + αt
cδ

t∇wV
(
st,wt

)
, (25)

where αc is the learning rate in the critic network. After
performing the selected action, TD error δt is used to evaluate
whether the selected action based on the current state performs
well [44], which can be calculated as

δt = ret+1 + γw(V
(
st+1,wt

)
− V

(
st,wt

)
). (26)

Then, the actor network is used to search the best policy to
maximize the expected reward under the given policy with
parameters θAC, which can be updated as

θt+1
AC = θt

AC + αa∇θACJ
(
πθt

AC

)
, (27)

Algorithm 2 : Actor-Critic Algorithm
Inputs: The set of UAV-BS position {xBS , yBS , hBS}, bi-
trate selection V , the position of the kth UAV-UE Uk =
(xtk, y

t
k, h

t
k),
∑
QoE and operation iteration I .

Algorithm hyper-parameter: Learning rate αc ∈ (0, 1],
ϵ ∈ (0, 1], Target network update frequency K;
Initialization of policy parameter θAC , weight of the actor
network w, value of the critic network V ;
for e← 1 to I do

Initialization of s0 by executing a random action;
for t← 1 to T do

Select action at according to the current policy;
The UAV-BS observes st+1, and calculate ret+1 using
(18);
Store transition (st; at; ret+1; st+1);
Update TD-error functions;
Update the weights w of critic network by minimizing
the loss;
Update the policy parameter vector θ for actor net-
work;
Update the policy θAC and state-value function
V (st,wt).

end
end

Fig. 5. The network architecture designed.

where αa is the learning rate in the actor network, which is
positive and must be small enough to avoid causing oscillatory
behavior in the policy, and according to [44], ∇θAC

J (πθAC
)

can be calculated as

∇θACJ
(
πθt

AC

)
= δt∇θAC ln

(
π
(
at|st,θt

AC

))
. (28)

The AC algorithm is presented in Algorithm 2.
Finally, Fig. 5 shows the network architecture design, where

the current state is input to the neural network for both
algorithms, DQN and Actor-Critic. Next, the RNN based GRU
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network is used to approximate the value function or the policy
of each DRL algorithm. The GRU helps capture the correlation
among the state or action over time, which can help DRL select
more optimal action and guarantee the high quality of video
transmission. While in Actor-Critic, two neural networks are
included in our proposed model. The actor-network is to find a
strategy policy, θAC . Then, the critic network is used to make
an objective assessment and make an accurate assessment for
the current state. The next key step is to determine the action
to be sent to the environment and the reward to measure the
QoE. Then, the new states are generated from observation for
the next round of updates.

E. Analysis Complexity of Reinforcement Learning Algorithms

The computational complexity of the DQN/AC algorithm,
which includes DQN/AC learning architecture, the action
selection of the UAVs, and the downlink transmission, are
given by O(mlogn+2A+NiNk), where m is the number of
layers, n is the number of units per learning layer, A is number
of action, Ni is number of fire area, and Nk is number of UAV
for each fire area.

IV. SIMULATION RESULTS

In this section, we evaluate our proposed learning algo-
rithms in our problem setup. The area of the region is 5000
m x 5000m x 100m. In the simulation, the maximum flying
height hmax of the UAV-BS is 100m, which is satisfied with
the maximum flying height 120m that is stipulated by the
UK government. We assume that the available video bitrates
of the adaptive video streaming for each video frame are
(80, 300, 700, 1000, 2000, 3000)kbps. The target area is cap-
tured by K UAV-UE(s), i.e., K = 4 in the ith fire area
Ai (i = 1, 2, and, 3). At the beginning, the UAV-BS will be
deployed at the centre of the environment, i.e. (1250, 1250,
hmin), where hmin is the maximum height of the fire. When the
fire occurs at the remote area, the UAV-UEs will immediately
reach the fire location to stream and oversee the real-time
situation. The height of the UAV-UEs in each fire area are fixed
and follow the distribution of the fire height [31]. The network
parameters for the system are shown in Table II and follow
the existing approach and 3GPP specifications in [8], [34], and
[45]. The performance of all results is obtained by averaging
around 100 episodes, where each episode is consisted of 100
TTIs. The result is measured for the equal duration of the time
slot at each time slot t and also called as TTI, where each
TTI is equal to 0.5ms as follows in 3GPP [34]. Finally, the
channel model parameters and grid environment parameters
are set according to [8].

Fig. 6 plots the average QoE value over different grid sizes
via AC and DQN algorithms. From the result, it can be seen
the 25m × 25m grid sizes produced the highest average QoE
of the UAV-BS for both DQN and AC algorithms, therefore
in the next simulation, we use 25 × 25m grid size. From the
result, the number of grids will influence the movement of the
UAV, the UAV will move more frequently in small grid size
with more number of grids. In this case, the performance can
be improved due to that the UAV can explore and exploit

TABLE II
PARAMETER

Parameter Value
Number of UAV-UEs 12
Transmission power, PUe 23 dBm [8]
Bandwidth, B 3 MHz
Noise variance σ2 -96 dBm [8]
Center frequency, fc 2 GHz [46, pp. 3777]
Power gains factor, G -31.5 dB [8]
Alpha, α 2
Channel parameter, LoS 0.1 [45, pp. 572]
Channel parameter, NLoS 21 [45]
Channel parameter, a 4.88 [46, pp. 3777], [47, pp. 7]
Channel parameter, b 0.43 [46, pp. 3777] , [47, pp. 7]
Radius of target region 1250 m
Radius of Surveillance region, ri 250 m
Learning Rate 0.1, 0.01
Initial, Final Exploration 1, 0.1
Discount Rate 0.8
Replay memory 1000

Fig. 6. Average QoE of the UAV-BS with different schemes via different
learning algorithms with different grid size of each episode.

the environment more accurately. However, increasing the
number of grids can lead to increased complexity in learning
algorithms. It is because the action space will increase with
more number of grids. In practice, the UAV operator has to
decide what will be the best square size according to the
movement step of each UAV. However, if we want to reduce
the complexity by increasing the grid size or decreasing the
number of grid, the result shows degraded performance of QoE
and it takes more time to obtain the convergence results due
to difficulties in finding an optimal solution in long-term QoE
analysis.

In each scenario, our proposed DQN and AC algorithms are
compared with the Greedy algorithm. The Greedy algorithm
selects the actions based on the immediate reward and local
optimum strategy. The DQN is designed with 3 hidden layers,
which each layer consists of 256, 128, 128 ReLU units,
respectively. For the AC method, the critic DNN consists of an
input layer with 19 neurons, a fully-connected neural network
with two hidden layers, each with 128 neurons, and an output
layer with 1 neuron. The UAV-BS is initially set at the centre of
the environment with the height hmin. In wildfires environment
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Fig. 7. Average QoE value for each frame via AC, DQN and Greedy
algorithms.

problem, the network coverage with smooth streaming needs
to overview the real-time situation. To guarantee high quality
of video transmission from multiple UAVs in continuous time
slots, the Recurrent Neural Network (RNN) is deployed. In
temporal data, RNN based GRU network can approximate
the value function or the policy of each DRL algorithm,
where the stateless RNN does not need to re-initialize the
memory at each training step, while the training progress is
more resource-hungry and less stable [27]. The learning-based
predictor uses a modern RNN model with parameters θ to
predict the traffic statistic at each frame. The use of RNN
is due to its ability to capture the time correlation of traffic
statistics over multiple frames, which can aid in learning the
time-varying traffic trend and improving prediction accuracy.
Thus, RNN can capture the correlation among the state or
action in over time, which can help DRL select more optimal
action, and guarantee the high quality of video transmission.

Fig. 7 plots the average QoE value over all frames via
AC, DQN and Greedy algorithms. It can be seen that DRL
algorithms outperform the non-learning based algorithm, i.e.,
Greedy algorithm. The convergence of the reinforcement
learning algorithms has been proved in [48], [49], an agent of
the Q-learning algorithm is assured to converge to the optimal
Q. Fig. 7 plots the average QoE value over all frames in each
episode via DQN/AC learning algorithms, which shows the
convergence of the proposed two algorithms. It is observed
that the total reward and the convergence speed of these
two DRL learning algorithms follows: AC > DQN . This
is due to the fact that the AC algorithm is updated in two
steps, including the critic step and actor step. At each step,
the critic network judges the action selected by the actor
network, which can select the actions more appropriately.
Moreover, it can be seen that the DRL algorithms outperform
the Greedy algorithm, where the convergence speed of the
DRL algorithms is faster than that of the Greedy algorithm.
Specifically, in the Greedy algorithm, the UAVs only consider
exploiting the current reward, rather than exploring the long-
term reward. Therefore, the UAVs are not able to achieve

Fig. 8. Average QoE of the UAV-BS with different schemes via different
learning algorithms and with different optimization schemes of each episode.

Fig. 9. The request of the UAV-UEs in continuous time slots.

higher expected reward compared to the DRL algorithm.
Fig. 8 plots the average QoE of the UAV-BS with different

video transmission schemes via different learning algorithms
in each episode. For simplicity, “Adaptive Resolution” repre-
sents the scheme with adaptive resolution, “AB” is the scheme
with adaptive resolution and dynamic UAV-BS, and “ABU”
is the scheme with adaptive resolution, dynamic UAV-BS
and UAV-UEs. It is observed that the average QoE of the
AC algorithm outperforms all other algorithms, with it being
able to achieve an optimal trade-off between data rate, bitrate
resolution selection, power control, and positions. From the
result, it is observed that with the dynamic environment and
large size of the action, and the AC algorithm is able to select
proper positions of UAVs and video resolution of video frames.
This is mainly due to the experience replay mechanism, which
efficiently utilizes the training samples, and the actor and critic
functions are able to smooth the training distribution over the
previous behaviours compared to DQN. In addition, we can
observe that the strategies of selecting optimal positions for
UAVs achieve higher performance compared to the UAVs with
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Fig. 10. The power control of the UAV-UEs in continuous time slots with
different learning algorithms.

Fig. 11. The average adaptive resolution of the UAV-UEs in continuous time
slots with different learning algorithms.

fixed locations. This result emphasizes the importance of the
strategy with mobile UAVs. This is due to the fact that mobile
UAVs can move through the network to reach the optimal
positions that are able to adapt to dynamic fire scenarios.

Next, we provide more in-depth investigation of the re-
lationship between the number of UAV request, adaptive
video resolution, adaptive power control, and throughput with
different learning algorithms in continuous 100 time slots. The
results are also compared among the three algorithms, namely
DQN, AC, and Greedy algorithms. The detailed results show
how the optimization control helps UAVs to maximize the QoE
at each time slot.

Fig. 9 plots the UAV’s requests follow the fire arrival
distribution, which follow Poisson process distribution with
density λ. In phase 1, there is a small number of fire arrival
which leads to low request of UAV’s number. However, as the
number of fire increases, more UAVs are needed, as shown in
phase 2. While in phase 3, it shows that the number of request
decreases, so that less UAVs are required. As the number of
requests rapidly changes, we introduce power control to con-

Fig. 12. Average latency of video streaming with different learning algo-
rithms.

Fig. 13. Average smoothness penalty with different learning algorithms.

trol the transmit power at UAV-UEs to mitigate the interference
among UAV-UEs, thus maximizing the achievable rate of each
UAV-UE.

Following the fire arrival requests depicted in Fig 9, Fig.
10 shows the plots of the average power control over all
UAV-UEs in continuous time slots with AC, DQN and Greedy
algorithms. The power control helps mitigate the interference
among UAV-UEs. As shown in phase 1 and phase 3 in Fig.
9, there is a small number of fire requests with small number
of UAVs to transmit the data. However, when the number of
requests increases, a large number of UAVs are demanded as
shown in phase 2 of Fig. 9. As can be seen from Phase 2 of Fig.
10, the DRL algorithms learn the environment and effectively
reduce the transmit power of each UAV-UE, to reduce the
interference from UAV-UEs. We see that the Greedy algorithm
maintains the higher power, even though high power can
provide high received signal, it also causes high interference
at the UAV-BS and failure in transmission.

Following the fire arrival requests depicted in Fig. 9, Fig.
11 shows the plots of the minimum adaptive resolution over
all UAV-UEs in continuous time slots with different learning
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algorithms. It is shown that the minimum video resolution
of the AC algorithm is higher than that of the DQN and
the Greedy algorithm in all scenarios. The AC algorithm is
able to maintain an optimal video resolution at each time slot
and guarantee high quality and smooth video playback with
new request. However, the Greedy algorithm exploits with a
minimum video resolution to maintain high rewards, and it
only uses local optimal policy and causes poor performance.
For phase 1 and 3, when the number of requests is low at the
tth time slot, the power is high, and the throughput increases,
thus, the resolution of video is high. However, when the
number of request is increasing in phase 2, the AC algorithm
is able to maintain a high resolution due to helps of adaptive
power, which leads to better QoE for each UAV-UE. This will
help to reduces the interference and improve the quality of the
video resolution.

In Fig. 12, we plot the average latency of video streaming
of AC, DQN and Greedy algorithms. It can be seen that the
latency performance of the AC algorithm outperforms that
of the DQN algorithm. When multiple video streaming exist
in the U2U communication, the interference among UAV-
UEs occur and causes higher latency. Based on the observed
state, the AC algorithm is able to select proper positions
and transmission power of the UAV-UEs to mitigate the
interference, which further decreases the latency. Thus, the
AC algorithm is able to maximize the average QoE with the
lowest average time latency. However, the Greedy algorithm is
unable to exploit the violation of latency constraints resulting
in higher latency, which leads to lower QoE.

Fig. 13 plots the average smoothness penalty of AC, DQN
and Greedy algorithms. The smoothness penalty demonstrates
the average video stability occupancy of UAV-UEs at each
episode. When the learning algorithm is able to automatically
choose the suitable resolution at the tth time slots and (t−1)th
time slot, it will obtain lower smoothness penalty and higher
QoE. Moreover, the AC algorithm is able to automatically
choose the proper action based on actor and critic function,
which leads to better smoothness of the AC algorithm com-
pared to that of the DQN and Greedy algorithms. It is proves
that the AC algorithm guarantees the smoothness of video
transmission with high QoE. Meanwhile, the Greedy algorithm
shows the worst performance as it only makes local optimal
selections.

Finally, the dynamic movement of UAVs is shown in Fig.
14, and the duration time is 100s. In this simulation, we
assume that all the UAVs moved at a constant speed. At each
time slot, the UAV-BS selects a direction from the action space,
which contains 7 directions, while the action space of the
UAV-UE contains 5 directions. Then, the dynamic movement
maximizes the total long-term QoE of all UAVs. To reduce the
complexity, we select only one UAV-UE for each fire area to
illustrate the optimized trajectory of UAV-BS and UAV-UEs,
which is shown in Fig. 14.

V. CONCLUSION

In this paper, we developed a deep reinforcement learning
approach for the mobile U2U communication to maximize the

Fig. 14. Dynamic trajectory of UAVs when dynamic fire arrives from t=0 to
t=100s.

Quality of Experience (QoE) of UAV-UEs, through optimizing
the locations for all UAVs, the additive video resolution, and
the transmission power for UAV-UEs. The dynamic interfer-
ence problem was resolved by utilizing the adaptive power
control to achieve a higher achievable rate. Through our
developed Deep Q Network and Actor-Critic methods, the
optimal additive video resolution can be selected to stream
real-time video frames, and optimal positions of the UAV-BS
and UAV-UEs can be selected to satisfy the transmission rate
requirement. Simulation results demonstrated the effectiveness
of our proposed learning-based schemes compared to the
Greedy algorithm in terms of higher QoE with low latency
and high video smoothness. In conclusion, AC achieved a
higher achievable rate and QoE in the U2U communication
scenario, because of integrating the advantages of the value-
based and policy-based functions. However, since AC has two
neural networks and needs more parameters to update, AC is
more complex in terms of computation complexity compared
to that of DQN. Thus, in future research, DQN can be more
preferable to use if the scenario is more complex than our
current scenario.
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