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Abstract: The number of paediatric patients living with a prolonged Disorder of Consciousness 
(DoC) is growing in high-income countries, thanks to substantial improvement in intensive care. 
Life expectancy is extending due to the clinical and nursing management achievements of chronic 
phase needs, including infections. However, long-known pharmacological therapies such as aman-
tadine and zolpidem, as well as novel instrumental approaches using direct current stimulation 
and, more recently, stem cell transplantation, are applied in the absence of large paediatric clinical 
trials and rigorous age-balanced and dose-escalated validations. With evidence building up mainly 
through case reports and observational studies, there is a need for well-designed paediatric clinical 
trials and specific research on 0–4-year-old children. At such an early age, assessing residual and 
recovered abilities is most challenging due to the early developmental stage, incompletely learnt 
motor and cognitive skills, and unreliable communication; treatment options are also less explored 
in early age. In middle-income countries, the lack of rehabilitation services and professionals focus-
ing on paediatric age hampers the overall good assistance provision. Young and fast-evolving 
health insurance systems prevent universal access to chronic care in some countries. In low-income 
countries, rescue networks are often inadequate, and there is a lack of specialised and intensive care, 
difficulty in providing specific pharmaceuticals, and lower compliance to intensive care hygiene 
standards. Despite this, paediatric cases with DoC are reported, albeit in fewer numbers than in 
countries with better-resourced healthcare systems. For patients with a poor prospect of recovery, 
withdrawal of care is inhomogeneous across countries and still heavily conditioned by treatment 
costs as well as ethical and cultural factors, rather than reliant on protocols for assessment and 
standardised treatments. In summary, there is a strong call for multicentric, international, and 
global health initiatives on DoC to devote resources to the paediatric age, as there is now scope for 
funders to invest in themes specific to DoC affecting the early years of the life course. 

Keywords: Paediatric Disorder of Consciousness; treatment of Disorder of Consciousness; pharma-
cology of paediatric brain injury; rehabilitation of paediatric brain injury; children’s brain injury 
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1. Introduction 
Disorders of Consciousness (DoCs, Table 1) represent a small but expanding spec-

trum of rare conditions receiving growing attention due to the associated clinical, emo-
tional, and economic burdens. The number of children with DoC is increasing [1], as sur-
vival and disease prevalence rise. However, the incidence and prevalence of DoC fluctu-
ate between countries, due to diverse socio-cultural factors, health policies, and hygiene 
standards [2]. Furthermore, early withdrawal of care can contribute reducing prevalence 
in some countries [2]. Importantly, more than 62% of children with Unresponsive Wake-
fulness Syndrome (UWS, also termed vegetative state (VS)) regain consciousness within 
the first year post-injury [3], and 27.8% of those with UWS and in a Minimally Conscious 
State (MCS) have disease duration longer than six years [4], supporting the notion that 
younger age is generally associated with greater chances of better outcome compared to 
adulthood [5]. Nevertheless, the chances of poor outcome are still high [6]. It is thus im-
perative for the scientific community to anticipate and safely explore the emerging treat-
ments for DoC in paediatric age. 

Table 1. Disorders of consciousness—definitions (from Edlow et al. [7]) and available ep-
idemiology (overall DoC prevalence: ~0.2 to 3.4 per 100,000 individuals in Europe [2]). 

State  Definition  Available Epidemiology  

Coma  
Complete absence of arousal 

and awareness  

Incidence of non-traumatic 
coma in UK: 

30.8/100,000 children un-
der 16 per year; 

6.0/100,000 of general pop-
ulation per year [8]. 

Vegetative State/Unrespon-
sive Wakefulness Syndrome 

(VS/UWS; formerly also Apal-
lic State)  

Arousal without awareness  

Incidence: ~2.6/100,000 
people [9]. 

Prevalence: ~2.0/100,000 to 
~5.0/100,000 people, de-

pending on national proto-
cols [9]. 

Minimally conscious state mi-
nus (MCS-)  

Minimal, reproducible, but in-
consistent awareness without 

language  

 Prevalence: ~2.2/100,000 
in Europe [2]. 

Minimally conscious state 
plus (MCS+) 

Minimal, reproducible, but in-
consistent awareness with lan-
guage comprehension and ex-
pression (i.e., either command 
following, intelligible verbali-
zation or intentional commu-

nication).   

Emergence to consciousness 
(eMCS), including the Con-
fused-Agitated State (CAS)  

Persistent dysfunction across 
multiple cognitive domains, 
behavioural dysregulation, 

disorientation, also with 
symptom fluctuation.  

Indirectly estimated in: 
~0.4/100,000 in a single 
centre study in Europe 

[10].  

Cognitive Motor Dissociation 
(CMD) * 

Volitional brain activity with 
no behavioural manifestation. Unknown. 

* Recently introduced. 
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Traumatic brain injury (TBI) is still one of the leading causes of paediatric DoC 
(~47.8% [10]). Although TBI is declining in Europe and North America [11–13], low- and 
low-middle-income countries (LMICs) see a worrying increase due to growing motorisa-
tion, affecting especially children in South Asia and the West Pacific [14–16]. Falls and 
violence are major concerns for youth in war conflict areas [14]. Infections are another 
leading cause of DoC in children <5 years [17], with particularly high incidence in sub-
Saharan Africa and South Asia [18]. 

As the causes of DoC are variegated, and the disability often severe and prolonged, 
the treatment course and outcome are highly variable. The assessment of consciousness 
must be performed through standard tools, specifically validated or adapted for paediat-
rics (i.e., CNCS, LOCFAS, and PALOC instruments) [10,19]. Of note, the Coma Recovery 
Scale—Revised (CRS-R) [20], which is the standard in adults, has been increasingly used 
in paediatric research (e.g., [21–24]), but, to date, it has only been tested in healthy chil-
dren, and not yet in children with DoC [25]. Inappropriate use of non-paediatric scales 
can result in motor or cognitive requests beyond the child’s development stage and be-
havioural capabilities. This causes underestimation effects at best, or introduces satura-
tion in measurements, i.e., flooring or ceiling effects, thus distorting or impeding any map-
ping of the patients’ evolution over time, especially in correspondence with treatments. 

A wide range of therapies is available to reduce DoC-related complications (e.g., ep-
ilepsy). In particular, spasticity and dystonia can hamper timely and appropriate delivery 
of rehabilitation and induce pain, and thus need to be treated. General guidelines exist, 
which are not specific to children, although they partially target paediatric needs [26,27]. 
On the other hand, medications for spasticity can induce fatigue as a side effect, thus re-
sulting in a disadvantageous factor to the overall regaining of consciousness and dragging 
patients into a vicious circle. 

In addition to this, no ultimate treatment for consciousness is available. To date, the 
only therapy recommended in clinical guidelines for treating DoC is amantadine [28], but 
evidence from children is low. Amantadine, when prescribed, is prevalently administered 
after severe TBI in paediatrics, and is effective in only ~55% of cases. There are no guide-
lines specific to the treatment of paediatric DoC [28]. For this reason, there is a critical need 
to develop highly evidence-based interventions to promote responsiveness, improve re-
habilitation, and aid treatment decision-making in children. 

2. Neurorehabilitation 
Intensive neurorehabilitation is the elective therapy in paediatric DoC. Due to the 

complexity of the disease, it is commonly delivered in a multidisciplinary approach en-
compassing physical, oral-motor, occupational therapy, and neuropsychological interven-
tions [29]. 

Why and to whom to deliver neurorehabilitation? Neurorehabilitation mainly aims 
at the habilitation of physiological functions otherwise compromised by the disease, and 
relies on training through physiological processes such as repetition and (re)learning 
[30,31]. For these reasons, it has very few side effects, it can be applied to all ages from 
birth, and its principles are not specific to a pathology. A long clinical tradition makes 
neurorehabilitation techniques generally highly documented. Conversely, the limitations 
of neurorehabilitation are that functional targets can be non-specific, the treatment itself 
can be highly subjective to the therapist expertise and approach, demonstration of efficacy 
can be arduous, and precise treatment documentation can be burdensome. 

What is the aim of neurorehabilitation? (Multi)sensory stimulation is at the core of 
early intervention. It aims to generate a comprehensive set of environmental prompts by 
stimulating all the five senses and the motor system [32,33], and it is deemed to favour the 
re-organisation and the re-building of the behavioural repertoire [34]. The ultimate goal 
is to leverage residual activation to—at least ideally—reach out to the entire brain network 
and foster functioning in the damaged neural tissue through facilitation [35]. 
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When to deliver neurorehabilitation? Maximal effectiveness is obtained when the in-
tervention is administered early after the injury, when sufficient stability of the vital pa-
rameters, resolution of fractures, and respiratory capacity allow safe treatment delivery 
[31,36]. Most recent views set the beginning of rehabilitation as during the in-stay in in-
tensive care units, acknowledging that the intervention needs to be modulated according 
to the patient’s own clinical needs [37]. In addition, a critical timeframe may exist, beyond 
which a treatment becomes less effective. However, endotypes have been identified that 
achieve slow but steady progress over several years [38]. 

How to deliver neurorehabilitation? Current research predicates the use of salient 
stimuli (i.e., events with an emotional or affective valence or content) [22,24]. In particular, 
stimulus personalisation using the parent’s voice and touch [24], the live performance of 
preferred lullabies [21], the interaction with (household) pets [39], and themes matching 
pre-injury hobbies and inclinations [40] have been proven effective. In addition, the repe-
tition of stimulation to match the patient’s optimal arousal is also recommended to max-
imise responsivity [22]. However, comparative trials for testing the efficacy of different 
stimulation techniques are missing, as well as studies escalating the number and fre-
quency of sessions to systematically find the best treatment intensity. 

Recent advances have focused on the design of the Rehabilitation Treatment Specifi-
cation System (RTSS) [41,42], a conceptual framework that defines elements of therapy as 
“ingredients of rehabilitation” and links each of these elements to the improvement of 
patients’ specific functions. To standardise the reporting, the International Classification 
of Functioning, Disability and Health—version for Children and Youth (ICF-CY) is rec-
ommended [43]. The joint use of these theoretical frameworks represents a paradigm shift, 
moving from the prescription and reporting of treatment within a broad discipline (e.g., 
5 min sensory stimulation) to the administration of the specific therapeutic element (e.g., 
20 guided hand touches of different textures) to target the corresponding physiological 
function (e.g., hand perceptual increase). The next impelling step is the extension of this 
framework to the patient’s assessment, by linking the content and material of the treat-
ment specification systems to the metrics and possibly the tools for standard assessment 
of paediatric DoC. 

The well-established neurorehabilitation approach is increasingly integrated with 
emerging pharmacologic and technology-assisted interventions. Moreover, global efforts 
are being put in place towards harmonised data collection, the establishment of large da-
tabases, and the deployment of data-driven methods and artificial intelligence. This is ex-
panded in the following sections. 

3. Pharmacologic and Regenerative Therapies 
Pharmacological treatments proposed for DoC target heterogeneous aspects: aware-

ness, consciousness, responsivity, brain connectivity, sleep re-structuring, neuronal sur-
vival, and function. However, none are supported by substantial evidence, as rigorous 
clinical trials are generally lacking. In children, no reliable trials have ever been conducted. 
In adults, only one trial on amantadine was methodologically sound, although affected 
by limitations [44]; the main outcome measured neurological recovery instead of con-
sciousness, amantadine lost efficacy at post-treatment follow-up, and narcotics were used 
more in the placebo group. Recent reviews provide a comprehensive description of other 
disparate treatments tested for DoC (Supplementary Table S1) [45–47]. 

Considering the very heterogeneous drug repertoire and the inconsistency of trial 
results, a conceptual systematisation of current research questions may be useful to pro-
mote methodological improvements. 

Why should drugs be used? The most principled pharmacological intervention for 
DoC involves the anterior forebrain mesocircuit [48]. Monoamine boosting by any means 
involving antidepressants, serotoninergic agonist psychedelics, stimulants, or dopamin-
ergic agents, is believed to promote the recovery of function in the mesocircuit [49,50]. 
GABAergic benzodiazepines and Z-drugs may inhibit neurons in the globus pallidus, 
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relieving inhibition from the mesocircuit [51]. Other treatment approaches promote 
arousal by the orexinergic [52] or melatoninergic [53,54] systems, as well as brain regen-
eration by nerve growth factor [55], cerebrolysin [56], or diverse cell transplantations 
[57,58]. 

The existence of heterogeneous and not fully clear hypotheses underlying DoC, and 
therefore the identification of such diverse therapeutic aims, has led to the testing of var-
iegated treatments and the generation of scattered evidence. There is still uncertainty 
about the precise match between therapeutic aims and therapies, as there is no treatment, 
single or combined, for DoC as a whole. Moreover, there is no guarantee that even great 
efficacy in one aspect of DoC (mesocircuit, arousal, brain regeneration) would allow con-
sciousness recovery. Future studies should identify therapeutic targets first, and then con-
sider drug candidates based on the chosen target. 

Complementary to the stimulation of consciousness, the promotion of sleep restruc-
turing and circadian alternation are concurrently addressed in paediatric DoC, using a 
largely overlapping pool of pharmacological interventions and a timed approach. No spe-
cific recommendations exist for the management of circadian re-organisation in children 
with DoC; however, recent guidelines on the management of sleep in neurological dis-
eases, and severe brain injury in particular, can give precious indications [59–61]. 

What is drug efficacy? Investigation in this field has frequently produced data on 
outcomes different from consciousness itself (e.g., on neurological impairment), inade-
quate statistical power, or biased expectations [62,63]. Future studies need to anticipate 
the therapeutic aim and standardise outcomes (e.g., measures of mesocircuit function, 
arousal, etc). Standard outcome measures allow result comparisons and meta-analyses, 
which may surpass the limitations of small sample sizes. 

Who should be treated with drugs? Brain injury severity and aetiology should be 
considered when assembling cohorts for trials on DoC. Neuroimaging techniques can be 
used to detail the damaged brain areas and functions and define where to expect drug 
effects [64]. Patient age may be a crucial factor to consider, especially with respect to re-
generative medicine approaches involving growth factors and cell transplants. Under a 
principle of precaution, growth factor and stem cell treatments raise greater safety con-
cerns for young patients [65], including those regarding unpredictable effects on brain 
plasticity. 

When should DoCs be treated with drugs? The heterogeneity of time from injury to 
treatment should be reduced in future studies. The recovery phase from injury should be 
described and considered as a confounding variable. Aspects that may change substan-
tially throughout recovery include the level of neuroinflammation [66], the loss of neu-
ronal function in specific areas, and the possible brain remodelling that has already oc-
curred [67]. Most drug treatments may be helpful only in limited windows of opportunity, 
and data are needed in this regard. 

How should drugs be used? Data on drug dosing are missing. Drug distribution and 
pharmacokinetics may differ in damaged, as compared to intact, brains [68,69]. Drug 
safety and overdosing may be difficult to monitor due to the lack of patients’ responsivity. 
Polytherapy [70] and multiple drug interactions may complicate pharmacokinetics and 
safety. In this regard, it is worth mentioning that benzodiazepine or Z-drug overdosing 
would pose much lower threats as compared to, for instance, monoaminergic hyper-stim-
ulation, which is known to trigger excitotoxicity [71]. An open issue is whether treatment 
of DoC should be prioritised over concurrent neurological or internal medicine issues, for 
instance, when using antiepileptic drugs with known adverse effects on cognition or cen-
tral muscle relaxant drugs known to be sedative. 

At present, no treatment recommendation can be made regarding adult and, to a 
greater extent, paediatric patients. It must be stressed that producing more low-quality 
evidence would just add to the confusion. Drug treatments for DoC are still in such a 
preliminary phase that therapeutic targets must first be validated, and this should be done 
with preclinical models to accelerate drug positioning. From a clinical perspective, better 
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integration of neuropsychological assessments, imaging techniques, and clinical pharma-
cology is required to move forward and enable the identification of promising single or 
combined therapeutic strategies. 

4. Medical Technologies for Treatment 
A small subset of therapeutic principles is appealing to the field of paediatric DoC, 

although at different stages of development. Guided by both precautionary principles and 
the need for design and ergonomic refinement, technologies are commonly tested and 
validated on adults first, and then adapted to children. 

Why use technology? Rehabilitation is increasingly based on technology, which gives 
a chance of treatment objectivation and standardisation while preserving therapists’ free-
dom to choose activities and supervise. 

What are the technological approaches? 

4.1. Neurostimulation 
We anticipated that multisensory stimulation is the elective non-pharmacological 

treatment in paediatric DoC. Sensorimotor stimulation is the first candidate for delivery 
via devices. Instrumental early mobilisation [72] of the patient serves the twofold purpose 
of avoiding immobility due to long bedding periods and providing neuromotor stimula-
tion, thus improving DoC outcome [31]. This can be safely and easily achieved through 
tilting mechanics or shape memory alloys [72]. Repetitive Nerve Stimulation aims at 
providing electrical stimulation to a primary nerve afferent to the brainstem (and cortex) 
(Figure 1A) [73,74]. A preliminary report on one child [32] showed both the short- and 
long-term positive effects on functional brain connectivity. 

 
Figure 1. Medical technologies for treatment of Disorders of Consciousness. From left to right: (A) 
neurostimulation, an electrical stimulation to a primary nerve afferent to the brainstem and cortex; 
(B) neuromodulation: a low-intensity electromagnetic treatment delivered to the cortex; (C) focused 
ultrasound: transient, localised, and graded opening of the blood–brain barrier using ultrasounds; 
(D) millirobot: controlled drug delivery to target tissues through soft droplet carriers manipulated 
by external magnetic fields. 

4.2. Neuromodulation 
Low-intensity electromagnetic treatment of the skull aims at manipulating either the 

threshold for or the frequency of the neural action potential firing in the cortex underneath. 
Appropriately prolonged manipulation is deemed to modulate the cortical excitability, 
condition the long-range and inter-hemispheric brain connectivity [75], and induce plas-
ticity, thus promoting the subject’s behavioural responsiveness and improvement [76–79] 
(Figure 1B). The use of Deep Brain Stimulation, the invasive predecessor [80], is discour-
aged due to the risk of severe or catastrophic complications, and after cases of device re-
moval were reported [81]. However, the non-invasive counterpart, referred to as transcra-
nial Electrical Stimulation (tES), has provided a proof-of-concept for improvement of 
function in children with DoC [82]. 
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In principle, neuromodulation can be employed either as treatment per se or for 
priming the brain to enhance response to concurrent pharmacological or neuro-rehabili-
tative treatment [83]. The latter option has already been explored in paediatric motor dis-
orders [84], with conflicting results [85], for reinforcing (physical) therapies aiming to re-
duce specific symptoms. 

4.3. (Targeted) Drug Delivery 
One appealing prospect is the localised, targeted, and minimally invasive delivery of 

tuneable doses of therapeutics to specific anatomical structures, sparing untargeted tis-
sues. Focused ultrasounds [86] allow the transient and localised opening of the blood–
brain barrier in a graded manner for targeted chemotherapy and delivery of neurotrophic 
factors to the central nervous system (CNS) (Figure 1C). Research on the so-called milliro-
bots promises controlled delivery of payloads to target tissues [87] through soft paramag-
netic droplet carriers manipulated by external magnetic fields (Figure 1D). These are able 
to direct the delivery of cellular, molecular, and protein therapies to specific regions of the 
CNS, even against fluid flows [88]. These techniques, albeit in their infancy, have the po-
tential to reduce the overall dosage, increase therapeutic efficacy via targeted delivery and 
enhanced retention, and decrease side effects by minimising off-target deposition, tissue 
absorption, and systemic toxicity (if any). 

Who can benefit from these treatments? Although all three approaches raise interest 
in the field of paediatric DoC, some exclusion criteria apply to each technique (Table 2). 
Neurostimulation has specific ethical implications for patients unable to communicate pain. 
Clinical effects of neuromodulation in adults with DoC are promising but heterogeneous 
(~40% of adults in MCS and ~10% in a vs. improved signs of consciousness [77,78,89–92] 
with transcranial direct current stimulation; safety in children is still under investigation 
[93]). Overall, a one-size-fits-all treatment is unlikely, and we envisage that well-defined 
coma endotypes will receive tailored treatments in the future. 

Table 2. Exclusion criteria for non-invasive brain stimulation, brain modulation, and drug delivery. 

Treatments Exclusion Criteria 

Neurostimulation 
• (Limiting, although not excluding) Inability to 

communicate pain. 

Neuromodulation 

• Presence of epilepsy [94], unless the intervention 
is specifically performed to treat this complica-
tion. This applies to tES in general. However, 
higher associated risk of inducing seizures [95] is 
reported for repetitive transcranial magnetic 
stimulation (rTMS). 

• Presence of subclinical seizures (to be ascertained 
with a neurophysiological examination). 

• Sedative drugs, NMDA receptor antagonists, and 
Na+ or Ca++ channel blockers, which might 
cause (unplanned) interaction with the modula-
tory effect generated by the electrical currents or 
magnetic fields. 

• Metal implants [47]. 
• (Limiting, although not excluding) Presence of 

multiple (focal) lesions, such as in the case of 
traumatic brain injury, which cause the targets to 
be multiple or not identifiable. 

Drug delivery • Allergy to chemical vectors [88]. 
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• Certain inaccessible location of the anatomical
structure to be targeted by drug delivery. 

On a side note, neuromodulation is also deployed for chronic pain treatment. Palliative 
care is probably less explored than consciousness recovery in children with DoC, although 
it is at least equally important in practice. Neuromodulation has shown potentiality for pain 
treatment in adults [96], provided that accurate pain assessment is applicable to the sub-
ject. In children with DoC, the pain assessment remains arduous; however, an appropriate 
scale exists for children aged three years and older: the Non-Communicating Children’s 
Pain Checklist—Postoperative version (NCCPC-PV) [97,98]. Some scales for conscious-
ness employed in paediatrics such as the LOCFAS and CNCS inherently contain one or 
more pain items, as well as the CRS-R. 

When to start treatments? Neurostimulation is generally the earliest treatment admin-
istered along the recovery path, especially when conducted through non-invasive tech-
niques such as the patient’s instrumental mobilisation. When applying neuromodulation, 
the extent of the functional reorganisation in the brain depends, at least to some degree, 
on the patient’s active participation in treatments. For this reason, neuromodulation, com-
bined with manual or robotic physiotherapy and cognitive treatments, is generally pro-
posed later along the recovery course [47]. However, no indication exists on the timeline 
for administering neuromodulation in children with DoC, as the associated mechanisms of 
neuronal potentiation and repair are still largely unknown. 

How to make these technologies applicable? From an engineering standpoint, paedi-
atric applications often impose additional challenges such as miniaturisation, component 
downsizing, weight reductions, and imposition of smaller but more precise forces and 
torques [99]. If electromagnetic energy is applied, intensity reductions might be needed, 
and on-purpose dose-scaled clinical trials or simulations could be required at additional 
costs. In addition, indications for the ethical use of medication for neuroenhancement in 
paediatrics are available [100], but they are specific neither to instrumental stimulation 
nor to DoC patients. 

5. Challenges and Opportunities in Low- and Middle-Income Countries 
Low- and Middle-Income Countries (LMIC) have a higher incidence of acquired 

brain injuries, with TBI twice as common as in High-Income Countries (HIC) and affecting 
ages younger on average [101]. Common causes are poorer conditions and lower safety 
standards of roads, including old or insufficient infrastructure; high rate of infections and 
cerebral malaria in children who tend to be malnourished; war conflicts; governmental 
neglect; and urban-centred services, leaving rural or remote areas underserved. Defective 
emergency transport and technological obsolescence negatively impact trauma survival, 
severity, and outcome [102]. Children pay the highest toll in many LMICs, due to poorer 
socioeconomic conditions affecting parenting and availability of home supervision and 
causing child labour, sometimes in unsafe or unhealthy environments. Other causes are 
the lack of professional training on paediatric trauma care, less specialised paediatric in-
tensive care units, lack of age- or size-appropriate equipment, and underestimation of the 
long-term effects, which leaves the milder cases of TBI unreported and untreated [14]. 

However, for patients with DoC living in LMICs, the chronic lack of post-acute ser-
vices is the real plague [103]. Rehabilitation is often inaccessible to the wider population, 
as governmental rehabilitative services are absent or insufficient. Typically, the national 
healthcare systems (where existing) and health insurance do not cover treatments beyond 
acute care, in contexts of widespread household poverty or economic fragility. This leaves 
the patients to bear the cost of a privately led and poorly quality-assessed rehabilitation 
offer, unless non-governmental organisations (NGOs) take charge of this gap. Intuitively, 
this practice generates greater discrimination in countries with variegated socioeconomic 
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backgrounds, where ethnicities with higher economic capacity show better clinical out-
comes overall [102]. 

However, LMICs can, in many cases, leverage favourable factors. In some contexts, 
prolific families, wide family and community connections, and religious beliefs can pro-
vide patients with a large support network beyond close relatives. In addition, countries 
with political stability and young demography are seeing unprecedented student access 
to university education in healthcare professions, ensuring a new generation of profes-
sionals and creating demand for continuous professional education (CPE) programs. 

6. The Way Forward 
From a worldwide perspective, improvement of treatments for paediatric DoC re-

quires distinct actions, depending on contexts, resources, and primary needs. 
In LMICs, investing in education is crucial to improving healthcare, as increased lit-

eracy enables demand for safer infrastructure and higher-quality health services and 
raises awareness about preventive healthcare measures. Focus should be on both the qual-
ity and the quantity of healthcare services; this involves better organisation, boosting the 
number and preparedness of specialised healthcare professionals, building suitable med-
ical infrastructure, and implementing welfare-based healthcare systems. 

In all countries, and especially where care is more advanced, investing in research 
and setting standards for well-justified treatments for paediatric DoC is crucial. The re-
search literature on paediatric DoC is mainly formed by small-sized studies, which are 
observational in nature, and the reporting of heterogeneous outcome measures. The setup 
of larger interventional trials is limited by the cautionary principle of safety and tolerabil-
ity in children, which very often considers, in the absence of adequate preliminary data, 
the potential life-long effects of the intervention on the developing and plastic brain. A 
combination of good practices can help overcome this paradox of the ‘safeguarded chil-
dren’ and increase the evidence in the field. 

6.1. Standardisation and/or Protocol Adaptation 
Although the prospective recruitment of large cohorts is often unrealistic in paediat-

ric DoC, preventing the conducting of large clinical trials, one might question whether 
this is an insurmountable problem. In fact, the chronic manifestation of DoC offers oppor-
tunities for dosage escalation and systematic dosage exploration within subjects, which 
can similarly contribute to the definition of standards. In instrumental trials, these include 
investigating multiple stimulation parameters and treatment intensities, which should al-
ways be designed depending on age and levels of neurological compromission, evaluated 
within the safety, and efficacy operational ranges and described in the trial protocol. 

Even in cases when an adult-to-child translation of the treatment is technically feasi-
ble [104–107], it should not be aprioristically assumed to be correct. For example, tES pro-
tocols for increasing the motor evoked potential amplitudes in adults can have a paradox-
ical effect in children, thus decreasing those potentials when the same current intensities 
are applied [108] due to the different physical and geometrical properties of the skull [104]. 

6.2. Precision 
In paediatric DoC, precision medicine requires rigorous clinical trial design. DoC en-

compasses heterogeneous aetiologies and severities, which inject variability of response 
into clinical trials. Inclusion criteria relying on narrower endotypes, rather than generi-
cally addressing DoC as a whole, can help obtain larger effects in smaller samples. The 
same result can be achieved with a more stringent selection of treatment windows and 
periods to evaluate (post)treatment efficacy. Biomarkers, including instrumental and 
“wet” markers, can similarly reduce variability by profiling the individual sensitivity to 
treatment, documenting therapy-induced changes, and monitoring undesired effects such 
as maladaptive plasticity. 
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6.3. Investments 
A collaborative effort is essential to attract funds. In the USA, Europe, and world-

wide, recent large-scale initiatives such as TRACK-TBI (Available online: https://tracktbi-
net.ucsf.edu, accessed on 30 January 2022), CENTER-TBI (https://www.center-tbi.eu, ac-
cessed on 30 January 2022), and the more recent Coma Curing Campaign 
(https://www.curingcoma.org/home, accessed on 30 January 2022), to mention a few, have 
partially addressed DoC, paediatric TBI, or both. However, resources are needed to focus 
specifically on the sub-acute and chronic phase of DoC and the paediatric peculiarities of 
the disease. Importantly, funding bodies should regard these specifications as topics de-
serving development and resources rather than niche areas with limited impact or gener-
alisability. Research funding schemes should encourage centres located in middle-income 
countries to participate in multicentre networks and to share scientific knowledge and 
clinical competencies beyond on-purpose global health calls. 

6.4. Comparability, Open-Sourcing, and Data Enrichment 
Rehabilitation trials are long and expensive, with intensive use of highly trained pro-

fessionals. Instrumental trials equally need human resources, have high running costs, 
and often require the availability of infrastructure. For these reasons, multicentric studies, 
comparative research, open data infrastructure, and open access policies for data collec-
tion are crucial tools to achieve the sustainability and equity of research. To inform clinical 
research, statistics and artificial intelligence can provide useful tools such as simulations, 
in silico trials, and digital twins for synthetic data generation or enrichment [109]. How-
ever, these methodological efforts need specific funds and acknowledgement. 

6.5. Ethics 
Intuitively, treatment improvement directly impacts children with DoC, and even 

more so in contexts where end-of-life decisions are taken in consequence of poor response 
to therapies. In any case, the overall higher chances of good long-term prognosis of DoC 
for children compared to adults should be considered [4,5]. In addition, end-of-life deci-
sions should never be taken without a careful pain assessment, including instrumental 
examination. Healthcare professionals should consider that families might be traumatised 
or overloaded with medical information when end of life is discussed. As a result, families 
and caregivers might not have a complete understanding of the reasons guiding thera-
peutic choices and might be unprepared for the expected effects, including risks. This 
might bias communication, creating over- or under-expectations and having an impact on 
irreversible decisions. Conversely, the risks of adverse effects of treatments and maladap-
tive phenomena should be evaluated within the perspective of the entire lifespan. Another 
sensitive topic is the enrolment of placebo groups in clinical trials, which should be 
avoided through advanced trial designs [110]. Artificial intelligence and synthetic meth-
ods should always be used ethically, towards an improved, more focused, or more pro-
ductive use of resources, and never for their calculated subtraction, reduction, or delay. 
Lastly, monitoring activities might be required in countries where the establishment of 
Ethics Committees for human research is still in process, or where boards have less over-
sight on research practices. 

6.6. Strategic Investments in Low- and Middle-Income Countries (LMICSs) 
Some recent virtuous initiatives in LMICs are setting a precedent for how to quickly 

implement strategies to fill gaps and align with high standards of care for paediatric DoC. 
As an example, Armenia, Georgia, and Moldova, three countries with recent historical 
affinity and a common healthcare heritage, have joined forces to attract funds and invest 
in road safety, TBI surveillance, creation of a common data registry infrastructure, post-
acute service delivery, extension of access to post-acute care, and quality assessment of 
their healthcare, including trauma care systems [111]. They have also lobbied to obtain 
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funds specific to education, increase the preparedness of healthcare professionals, and es-
tablish good quality CPE, including the paediatric theme (NIH/NINDS R21 NS098850). 
Governmental awareness and public investments have been crucial in meeting the inter-
national funders’ trust, with the ultimate achievement of reversing the otherwise increas-
ing TBI rates [111]. 

In 2017, the World Health Organization (WHO) issued a call for action to draw atten-
tion to the increasing demand for rehabilitation worldwide, promote rehabilitation in 
health care systems, and support the availability and accessibility of rehabilitation and 
assistive technologies to achieve “healthy lives and wellbeing for all, at all ages” 
(https://www.who.int/disabilities/care/Rehab2030MeetingReport_plain_text_ver-
sion.pdf; https://www.who.int/news-room/fact-sheets/detail/assistive-technology, ac-
cessed on 30 January 2022). One year later, the International Paediatric Brain Injury Soci-
ety and The Eden Dora Trust created a toolbox to assist and guide professionals involved 
in the rehabilitation of children, adolescents and young adults with brain injury 
(https://www.ipbis.org/toolboxupdate2021.html, accessed on 30 January 2022). We be-
lieve that these initiatives, flourishing thanks to increasing awareness of the importance 
of DoC care and post-acute rehabilitation, point to a participative and global future for 
paediatric DoC research. 

7. Conclusions 
In conclusion, the consciousness outcome of children with DoC after injury is gener-

ally more optimistic than observations in adults; survival is long, and late emergence is 
possible, which call for investment in treatment and extreme caution in withdrawal of 
care and end-of-life decisions. The overall advancement in the field of paediatric DoC ul-
timately depends on global awareness of the increasing demand for post-acute care, spe-
cific professional training in paediatric DoC treatment, and focused generation of funds 
for paediatric DoC. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/brainsci12020198/s1, Table S1: Summary of previous clinical studies 
of drug or regenerative treatments for DoC. 
Author Contributions: All the authors contributed to this manuscript. H.I. and E.M. drafted the 
manuscript. E.M. and S.S. conceptualized Section 2. M.P. conceptualized Section 3. E.M., A.M. and 
H.I. conceptualized Section 4. E.M. conceptualized Section 5. N.C., S.C., A.T. (Artashes Tadevosyan), 
C.C., A.T. (Alexander Tsiskaridze) and S.S. conceptualized Section 6. All authors have read and 
agreed to the published version of the manuscript. 
Funding: Hassna Irzan is supported by the EPSRC-funded UCL Centre for Doctoral Training in 
Medical Imaging (EP/L016478/1), the Department of Health NIHR-funded Biomedical Research 
Centre at University College London Hospitals and Medical Research Council (MR/N024869/1). 
Marco Pozzi and Sandra Strazzer are supported by the Italian Ministry of Health (Ricerca Corrente). 
Andrew Melbourne is supported by the Wellcome trust (210182/Z/18/Z, 101957/Z/13/Z, 
203148/Z/16/Z) and the EPSRC (NS/A000027/1). Marc Modat is supported by the UK Research and 
Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare. 
Erika Molteni is funded by an MRC Skills Development Fellowship Scheme at King’s College Lon-
don. For the purpose of open access, the authors have applied a CC BY public copyright licence to 
any Author Accepted Manuscript version arising from this submission. 
Institutional Review Board Statement: Not applicable. 
Informed Consent Statement: Not applicable. 
Data Availability Statement: Not applicable. 
Conflicts of Interest: The authors have no conflicts of interest relevant to this article to disclose. The 
funders did not participate in the work.  

Abbreviations 
CNCS Coma/Near Coma Scale 
CNS Central Nervous System 



Brain Sci. 2022, 12, 198 12 of 16 
 

CPE Continuous Professional Education 
CRS-R Coma Recovery Scale—Revised 
DoC Disorder of Consciousness 
HIC High-Income Countries 
LMIC Low- and Middle-Income Countries 
LOCFAS Levels of Cognitive Functioning Assessment Scale 
MCS Minimally Conscious State 
NCCPC-
PV 

Non-Communicating Children’s Pain Checklist–Post-
operative version 

NGO Non-governmental organization 
PALOC Post-Acute Level of Consciousness scale 
TBI Traumatic Brain Injury 
tES Transcranial Electrical Stimulation 
UWS Unresponsive Wakefulness Syndrome, here used as 

synonym of Vegetative State 
VS Vegetative State, here used as synonym of Unrespon-

sive Wakefulness Syndrome 
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