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Abstract 

The work presented in this thesis uses large-scale data collection and analysis techniques to 

understand the factors modifying ALS risk and phenotype. I test the hypotheses that overall 

incidence of amyotrophic lateral sclerosis (ALS) in the UK is similar to previously reported values, 

smoking is a modifier of disease risk in ALS and SOD1 mutations are modifiers of ALS phenotype. 

Amyotrophic lateral sclerosis is a neurodegenerative disease characterised by death or loss of 

function of upper and or lower motor neurons leading to paralysis. There is currently no cure for 

ALS, and symptoms are relentlessly progressive with most people dying within 2-3 years of diagnosis, 

generally of respiratory failure.  

ALS has a variable phenotype, with age of onset and progression differing between people. 

Additionally, although genetic modelling shows that up to 40% of variance in liability could be 

attributable to environmental factors, these have yet to be established.  

Disease risk and phenotype modifiers can only be understood by analysing detailed genetic, 

environmental and clinical information on large numbers of people, using multiple methodologies. 

In this thesis I report an updated incidence estimate for the UK based on data from the newly 

established MND Register for England, Wales and Northern Ireland. I also present work on whether 

people in the UK who smoke are at risk increased of ALS by using a novel to ALS methodology to 

quantify smoking intensity, and follow up with a Mendelian Randomisation study to provide 

corroboration with our findings. Finally, I present a global study of clinical phenotype in people with 

ALS who have tested positive for mutations in the SOD1 gene. 

We find that ALS incidence in the UK is similar to previously reported values. Smoking is unlikely to 

be a risk factor for ALS, and that people with SOD1 ALS have a distinct phenotype from those with 

sporadic ALS. 
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Chapter 1 Introduction 

1.1 Clinical summary of Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (also referred to as motor neuron disease in the UK) is the umbrella 

term for a group of related diseases characterised primarily by progressive loss of function or death, 

of upper and or lower motor neurons. The first known descriptions of ALS cases are from reports 

written in 1824 by Charles Bell, however Jean-Marie Charcot associated clinical symptoms with 

corticospinal tract pathology, and first coined the term Amyotrophic Lateral Sclerosis (Charcot, 

1874). 

The cellular pathological process leads to clinical symptoms of progressive paralysis with death often 

from respiratory failure (Brown and Al-Chalabi, 2017). Onset of motor symptoms is usually focal and 

spreads, either within the same body region for example, starting in the foot and spreading to the 

whole leg, or through neurologically connected areas for example rostro-caudal (head to tail) or 

contra-lateral (eg right side central nervous system (CNS) damage affecting left side) (Dharmadasa, 

Matamala, Howells, Vucic, & Kiernan, 2020; Ravits and La Spada, 2009). Any voluntary muscle can be 

affected, and symptoms could start in any area the disease can affect. Although exact proportions 

vary between geographic regions, onset of motor symptoms is most commonly observed in the 

limbs followed by onset in the bulbar region (changes affecting speech or swallowing) and in rare 

cases onset of motor symptoms is in the thoracic region (affecting respiratory function) (Marin et al., 

2016). The sphincter, ocular muscles and hearing associated musculature are not usually affected 

until very late in the disease and are muscles that are not paralysed in rapid eye movement sleep, 

which is consistent with the idea of shared motor networks (Turner and Al-Chalabi, 2020). 

Proportion of upper and lower motor neuron degeneration is not uniform between people and 

under the ALS umbrella are three main diagnostic groups based on motor neuron involvement. 

Classic ALS (referred to as ALS in the UK) involves degeneration of both upper and lower motor 

neurons; Primary Lateral Sclerosis (PLS) describes when only upper motor neurons are affected, and 

this remains the case over time; Progressive Muscular Atrophy (PMA) is the diagnosis given if only 

lower motor neurons are affected, and again this remains the case over time (Al-Chalabi et al., 2016; 

Swinnen and Robberecht, 2014). Between the extremes of PLS and PMA there are upper and lower 

motor neuron predominant forms of ALS, although some regard all patterns, including PLS and PMA, 

as forms of ALS. Motor neuron loss may be confined to certain body regions in combination with 

restricted involvement of upper and or lower motor neurons. For example, flail arm variant, involves 

lower motor neuron degeneration in the upper limbs with possible upper motor neuron involvement 

in the lower limbs, and progressive bulbar palsy affects lower motor neurons in the bulbar region 
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(Al-Chalabi et al., 2016; Swinnen and Robberecht, 2014). Diagnoses require monitoring over time as 

symptoms in second or third CNS regions (regions mapping to upper limbs, lower limbs, bulbar and 

thoracic), or signs of motor involvement may appear much later in the disease course. 

The clinical symptoms of lower motor neuron loss are fasciculations, muscle wasting, weakness and 

hyporeflexia, and of upper motor neuron loss include hyperreflexia and spasticity (de Carvalho, 

Kiernan, & Swash, 2017; Huynh et al., 2016). Needle-point electrophysiology is used in addition to 

clinical assessment to measure lower motor neuron loss (de Carvalho et al., 2008). ‘Split’ syndromes 

caused by dissociated muscular atrophy are a feature of ALS motor symptoms. The first to be 

described, and most widely recognised, is split hand syndrome where thenar muscles and the lateral 

interosseus muscles are affected but hypothenar muscles are not (Wilbourn, 2000). The split hand 

index, developed to quantify the phenomenon, is both sensitive and specific for ALS, so can be used 

diagnostically (Menon, Kiernan, Yiannikas, Stroud, & Vucic, 2013). More recently split elbow (where 

the biceps are more affected than triceps) and split leg syndrome (ankle plantar flexors are more 

affected compared to dorsiflexors) have also been described – although these have not been 

validated as diagnostic tools (Khalaf et al., 2019; Simon et al., 2015). It has been suggested these 

syndromes provide evidence for a positive link between cortical representation and risk of 

degeneration (Vucic, 2019). 

Many non-motor symptoms of ALS have been reported with common symptoms including cognitive 

and behavioural changes, and weight loss (T. Fang, Jozsa, & Al-Chalabi, 2017). These symptoms may 

appear before, contemporaneously, or after appearance of motor symptoms. Cognitive impairment 

is present in 50% of people with ALS and as many as 15% of these people will reach criteria for a 

diagnosis of frontotemporal dementia (FTD) (Raaphorst, de Visser, Linssen, de Haan, & Schmand, 

2010; Ringholz et al., 2005). There are three main forms of cognitive impairment that are seen in 

people with ALS; these are: executive dysfunction where people struggle with planning, problem-

solving, organisation and time management; problems with working memory, language impairment, 

social cognition; and behaviour changes such as ego centric or selfish behaviours and apathy. There 

is some genetic overlap between FTD and ALS, in that risk genes such as C9orf72, FUS, TBK1, TARDBP 

and VCP are associated with both diseases (Abramzon, Fratta, Traynor, & Chia, 2020). There is 

cellular pathological overlap in the form of TDP-43 protein aggregates and clinical overlap where 

some people with FTD also have motor symptoms and go on to develop ALS (Ferrari, Kapogiannis, 

Huey, & Momeni, 2011; Scotter, Chen, & Shaw, 2015). 

Another behavioural change is pseudobulbar affect (sometimes called pseudobulbar palsy), which is 

characterised by frequent, spontaneous involuntary laughing and or crying that is discordant to how 
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a person is feeling or the underlying situation and is observed in 15-60% of people with ALS (Brooks, 

Crumpacker, Fellus, Kantor, & Kaye, 2013). Severe weight loss is a frequent occurrence in people 

with ALS and is associated with worse prognosis (Desport et al., 1999; Moglia et al., 2019). It is not 

completely clear why people lose weight and is probably due to malnutrition, hypermetabolism, 

cachexia (wasting of the body due to severe chronic illness) and loss of appetite (T. Fang et al., 

2017).  

Due to the variability of symptoms and the spread of disease, people need multidisciplinary care, the 

nature of which will change over time (Balendra, Al Khleifat, Fang, & Al-Chalabi, 2019). Specialist 

multidisciplinary clinics have been shown to improve outcomes (Hardiman et al., 2017; Martin et al., 

2017; Rooney et al., 2015).  

1.1.1. Diagnosis of ALS 

Diagnosis of ALS takes on average a year, likely due to a combination of time-consuming factors such 

as referral to specialist centres, exclusion of ALS mimics and the need to show the disease is 

progressing (Richards, Morren, & Pioro, 2020). This is compounded by the lack of a diagnostic test, 

and the lack of an effective therapy for what is a devastating diagnosis, so that doctors wait until 

they are very certain of the diagnosis before referral. The diagnosis is clinical, meaning it is based on 

symptoms of motor neuron involvement, patient history and negative tests for other motor 

disorders. In some cases, genetic testing may be undertaken as part of diagnosis, but this is usually 

for people with a reported positive family history and does not replace clinical diagnostic workup 

(Shefner et al., 2020).  

The El Escorial criteria, and their Arlie House and Awaji revisions are used as a diagnostic framework 

for ALS, and are detailed in table 1.1 (Brooks, 1994; Brooks, Miller, Swash, & Munsat, 2000; de 

Carvalho et al., 2008). They have now been superseded by the Gold Coast Criteria (Shefner et al., 

2020). A simplification of these criteria is that, the body is divided into central nervous system 

regions (upper limb, lower limb, bulbar and thoracic) and depending on the number of regions with 

presence of upper and or lower motor neuron symptoms people are assigned diagnostic categories. 

A recent revision, the Awaji criteria, categorises people as having Possible, Probable or Definite ALS 

(de Carvalho et al., 2008). The revisions have clarified acceptable lower motor neuron signs and 

improved on diagnostic accuracy (both sensitivity and specificity) (Boekestein, Kleine, Hageman, 

Schelhaas, & Zwarts, 2010; Johnsen et al., 2019). However, the category nomenclature does not 

reflect diagnostic certainty, interrater reliability is low, and people with PLS may be included 

(Johnsen et al., 2019; Shefner et al., 2020). To address these limitations, and to simplify the 

diagnostic categories into a minimum criterion needed to be diagnosed with ALS, the ‘Gold Coast 



12 
 

Criteria’ have been developed (Shefner et al., 2020). If someone has progressive motor impairment, 

upper and lower motor neuron symptoms in one body region or lower motor neuron symptoms in 

two body regions and other causes have been excluded then they meet minimum diagnostic criteria. 

The Gold Coast Criteria represent a consensus of experts and the diagnostic category is not yet 

clinically validated. The current frameworks do not include presence of non-motor changes, and 

further revision may be required with the development of serological and radiological biomarkers 

(Verber et al., 2019).
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Criteria Definite ALS Probable ALS Laboratory supported 

probable ALS 

Possible ALS Suspected 

ALS 

El Escorial 

criteria 

(1994) 

Three CNS regions with UMN 

and LMN signs 

Two CNS regions with 

upper and LMN signs, 

with UMN signs rostral to 

LMN signs  

n/a One CNS region with UMN 

and LMN signs, UMN signs 

only in two regions or LMN 

signs rostral to UMN signs 

Two or more 

CNS regions 

with LMN 

signs only 

Arlie house 

criteria 

(2000) 

(Awaji-

Shima 

criteria 

2008) 

Clinical and 

electrophysiological 

evidence of UMN and LMN 

signs in the bulbar region 

and at least two spinal 

regions and LMN signs in 

three spinal regions 

Clinical or 

electrophysiological 

evidence of UMN and 

LMN in at least two 

regions with some UMN 

signs rostral to lower 

motor neuron signs 

Clinical evidence of UMN and 

LMN signs in only one region 

or UMN signs alone in one 

region and evidence of LMN 

signs in at least two regions 

(removed for Awaji-Shima 

revision) 

Clinical or 

electrophysiological 

evidence of UMN and LMN 

signs in only one region or 

UMN signs alone on two or 

more regions or LMN signs 

rostral to UMN signs 

n/a 

 

 Minimum criteria for diagnosis of ALS (diagnosis is either ALS or not ALS) 

Gold coast 

criteria 

(1) progressive motor impairment documented by history or repeated clinical assessment, preceded by normal motor function; (2) 

presence of UMN and LMN signs in at least 1 body region (with UMN and LMN dysfunction noted in the same body region if only one body 

region is involved) or LMN dysfunction in at least 2 body regions; and (3) investigations excluding other disease processes 

 

Table 1-1 ALS diagnostic criteria. CNS = central nervous system, UMN = upper motor neuron, LMN = lower motor neuron
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Phenotypic traits such as age and site of onset of disease symptoms, presence of family history, 

severity of symptoms, degree of involvement of motor neurons and presence of cognitive changes 

have been used in diagnostic description (Al-Chalabi et al., 2016). Some of these traits have clinical 

implications for disease progression and care needs, such as site of onset. Many of these features 

are continuous traits with non-standardised definitions which can make comparisons and pooling 

data from different sources challenging, although standardisation efforts are underway due to 

initiatives such as TRICALS (https://www.tricals.org). 

1.1.2. Disease progression 

The simplest way of quantifying disease progression in ALS is by measuring time from onset of motor 

symptoms to death, and mortality is a common endpoint in research studies. As there is currently no 

cure for ALS, disease prognosis is an important part of information given at diagnosis. Many models 

that use data collected at first presentation to predict disease duration have been developed and 

the most comprehensively validated model of European survival is the ENCALS model based on the 

records of 11,475 people with ALS from 9 countries (Westeneng et al., 2018). From this dataset, time 

from onset of symptoms to either death, tracheostomy or use of non-invasive ventilation for >23 

hours/day is accurately modelled as being in one of 5 categories that range from a median survival 

of 17 months to a median survival time of 7 years, demonstrating the variability of survival in ALS 

(Westeneng et al., 2018). 

Simple measures of survival time do not account for disability progression as muscles lose function. 

The ALS functional rating scale - revised (ALSFRS-R) measures a range of daily living activities and 

respiratory measures, focussing on those activities affected by motor symptoms (Cedarbaum et al., 

1999). It is possible for patients to self-report their score online and the score is used as an outcome 

in many clinical trials (Maier et al., 2012). The rate of change in score can be used as an indication of 

how quickly disease is progressing and is included in some prediction models (Steinbach et al., 2020; 

Westeneng et al., 2018). The scale has been criticized, both for its statistical properties and in 

particular, the poor assessment of respiratory function (van Eijk and van Den Berg, 2020). What 

constitutes a clinically meaningful change in the ALSFRS-R scale is hard to determine and the scale is 

ordinal so parametric statistics may not be appropriate without conversion to an interval or ratio 

scale. 

Staging systems are clinical tools that put people into groups depending on the severity of disease, in 

a way that is therapeutically and prognostically meaningful. There are two widely used staging 

systems in ALS. The King’s staging system allocates people into categories ranging from 1-5, where 1 

is symptom onset and 5 is death (Balendra et al., 2019). Stages 2 and 3 indicate involvement of two 
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or three CNS regions respectively while stage four is needing gastrostomy and or non-invasive 

ventilation (Balendra et al., 2019). The stage at which a patient is at on the King’s staging system can 

be estimated from ALSFRS-R scores and has shown to have good interrater reliability (Balendra et al., 

2014). The Milano and Torino Staging (MITOS) system directly uses the ALSFRS-R to define domains 

(for example respiratory or speech) and the stages are based on domains where function is lost 

(Chiò, Hammond, Mora, Bonito, & Filippini, 2015). There are six stages ranging from 0-5 where 0 is 

no functional domains lost and 5 is death (Chiò et al., 2015). 

ALS is in almost all cases progressive, although short plateaus in progression as detected by repeat 

measurements of the ALSFRS-R are not uncommon (Bedlack et al., 2016). In very rare cases, people 

diagnosed with ALS have been recorded to make full recoveries. It is not yet clear why this is, the 

cases recorded are not typical of the normally progressive population – and are often associated 

with concurrent autoimmune diseases such as myasthenia gravis (Harrison et al., 2018). 

1.1.3. Treatments and clinical trials 

There are two approved pharmacological treatments that slow ALS progression, riluzole and 

edaravone (Abe et al., 2017; Bensimon, Lacomblez, & Meininger, 1994). Additionally, nuedexta has 

been approved to treat symptoms of pseudobulbar palsy (Cruz, 2013), and anecdotally may also 

improve bulbar function generally. Non-invasive ventilation and gastrostomy are physical 

interventions undertaken in the late stages of disease that treat symptoms of breathlessness and 

dysphagia and also prolong life (Bourke et al., 2006; Group, 2015).  

Riluzole is a glutamate blocker and was investigated because glutamate-induced excitotoxicity is a 

pathological consequence of ALS. Riluzole was shown to be effective in a clinical trial in 1994, is safe 

(provided blood count and liver enzymes are monitored regularly) and is now widely available to 

patients (Bensimon et al., 1994). Meta-analysis of clinical trial evidence has shown that riluzole 

extends median survival by approximately 3 months (on average in a trial with a 12 month end-

point), although reviews considering data from clinic databases and population registers suggest 

that the survival benefit is more than this (Andrews et al., 2020; Hinchcliffe and Smith, 2017; R. G. 

Miller, Mitchell, & Moore, 2012). Post-hoc analysis of the original riluzole trial shows that most of 

the survival benefit can be attributed to extending a later clinical stage of ALS, which may be less 

desirable for patients as this is a stage of the disease where there is more disability (T. Fang et al., 

2018); this study did not have people in Stage 1, and subsequent study of other data showed that 

there is also a benefit in Stage 1 disease (de Jongh, van Eijk, & van den Berg, 2019). 

Edaravone, is a neuroprotective drug that may reduce oxidative stress. Although an initial trial did 

not find a positive effect of drug treatment, post-hoc analysis identified a group of people with rapid 
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disease progression who did respond (Yoshida et al., 2006). Another phase 3 trial was undertaken to 

include people who matched the clinical phenotype of responders and Edaravone was shown to 

reduce speed of decline of ALSFRS-R score in these patients (Abe et al., 2017). A replication trial in 

Italy did not show a positive effect and so far the drug is only licenced in Japan, the USA and Canada 

(Lunetta et al., 2020). 

Antisense oligonucleotides are an emerging molecular therapy that target and block the RNA of 

genes that cause disease, reducing their translation into damaging protein products (Klim, Vance, & 

Scotter, 2019). In human clinical trials for antisense oligonucleotide therapies are being conducted, 

and include the targets SOD1, C9ORF72, ATXN2 and FUS (Amado and Davidson, 2021). The SOD1 

antisense oligonucleotide therapy, torfersen, has been tested in phase II trials, and has shown a 

bigger effect in subgroups of people with faster progressing SOD1 ALS, although the trials were not 

designed to test efficacy, and phase III trials are ongoing. (T. Miller et al., 2020).    Clinical trials to 

find effective treatments for ALS are ongoing alongside efforts to develop solutions to common trial 

design problems (Kiernan et al., 2020). Large platform trials, where multiple compounds are tested 

under one master protocol  can improve efficiency by streamlining movement from phase two to 

phase 3 trials and reducing the proportion of people recruited to placebo arms (Hirakawa, Asano, 

Sato, & Teramukai, 2018; Saville and Berry, 2016). Patient stratification by clinical or genetic 

characteristics may increase power through reduction of heterogeneity, with the trade-off of a loss 

of power of ALS through smaller numbers and increased time to recruit eligible patients. Getting the 

balance of stratification right is key as stringent stratification can lead to a lack of generalisability, a 

criticism of the Edaravone phase 3 trial; but lack of stratification may lead to missing subgroups of 

people who benefit from a therapy, for example the post-hoc finding that people with UNC13A 

variants benefit from lithium treatment while the general ALS population do not (Hardiman and van 

den Berg, 2017; van Eijk et al., 2017). Reform of patient eligibility criteria from lists of univariate 

criteria designed to reflect likely progression to multivariate models of predicted disease course may 

also help increase power (van Eijk et al., 2019). Reducing measurement error in trial outcomes 

through harmonising reporting standards and training on progression measures like the ALSFRS-R 

and clinical staging is ongoing work of the TRICALS project. 

Alternative and off-label treatments are commonly marketed to people with ALS, many being 

recommended to people with ALS based on anecdotal evidence. ALSUntanged is an initiative where 

these treatments are reviewed and rated by groups of experts to inform the ALS community of likely 

effectiveness (Bedlack and Hardiman, 2009). 
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1.1.4. Clinical subgroups of ALS 

Heterogeneity of aetiology, presentation and progression necessitates the identification of clinically 

meaningful subgroups of ALS. Many different phenotype descriptions are used by ALS clinicians and 

researchers, which can make pooling data challenging (Al-Chalabi et al., 2016). 

Subgroups may be defined based on individual clinical features obvious to physicians at presentation 

such as site of onset, this is meaningful as it has care and prognostic implications and is easy to 

identify but it does not fully account for variation. Subgroups have also been defined using statistical 

learning techniques such as latent class clustering analysis but these groups have not been validated 

with external datasets (Ganesalingam et al., 2009).  

More broadly, neurodegenerative diseases involve death or loss of function of a particular type of 

neuron alongside predominant pathological hallmarks, such as intracellular inclusions and protein 

aggregates. It may be appropriate to group diseases with distinct clinical characteristics but shared 

neuropathology, for example TDP-43 proteinopathy occurs in most cases of ALS and some cases of 

frontotemporal dementia in addition to there being shared genetic risk factors (Neumann et al., 

2006; Scotter et al., 2015). Some disease-causing genetic variants can cause different 

neurodegenerative conditions as in the case of C9orf72, which has been associated with 

frontotemporal dementia and schizophrenia as well as ALS (McLaughlin et al., 2017).  Basket studies, 

such as those in cancer research, that group a disease by common biology rather than clinical 

features may be appropriate in ALS, although some work would be needed for find appropriate 

outcomes in the trials - the ALSFRS-R as an outcome measure would not be appropriate for someone 

with TDP-43 FTD but no motor symptoms (van Es, Goedee, Westeneng, Nijboer, & van den Berg, 

2020). 

1.2 Epidemiology of Amyotrophic Lateral Sclerosis 

Global average estimated ALS incidence is 1-2 per 100,000 person-years, and the prevalence is 

approximately 5 per 100,000 persons (Chiò et al., 2013; Logroscino et al., 2018; Marin et al., 2017; 

Xu et al., 2020). When incidence and prevalence are estimated at sub-continent levels the variation 

is more like 1-3 per 100,000 person years incidence and prevalence of 2-10 per 100,000 person 

years, the highest incidence being recorded in Western Europe and the lowest in South Asia (Xu et 

al., 2020). Although ALS incidence is low, the lifetime risk of ALS is approximately 1 in 350 in men 

and 1 in 340 in women, with the risk increasing steadily, until it levels off at about 80 (Clare A 

Johnston et al., 2006; Ryan, Heverin, McLaughlin, & Hardiman, 2019).  

Peak age of incidence and proportion of people with different sites of focal onset vary between 

countries (Marin et al., 2018). In analysis based on data from clinic registers, ALS is diagnosed more 
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frequently in men than women, with a male: female ratio of about 3:2, the difference reducing as 

age increases. In population registers, although the proportion of men is still higher, the ratio may 

be closer to 1:1, possibly due to the greater capture of older people with ALS (Chiò et al., 2013). 

Additionally, the proportion of people with different sites of onset varies between countries in which 

this is studied. Differences in the presentation and progression of ALS between countries probably 

reflects an interplay between genetics, healthcare system, behavioural differences in uptake of 

interventions and possibly environmental factors (Chiò et al., 2010; Zou et al., 2017).  

Clinical and demographic data about people with ALS comes from clinic databases at specialist 

centres, population registers and other research studies, including clinical trials. Population-based 

registers collect data on all cases in a defined geographical area and provide unbiased insights into 

the epidemiology and aetiology of ALS (Hardiman et al., 2017; Logroscino et al., 2008). Clinic 

databases and data from research studies provide the most detailed level of diagnostic and 

progression information but on a biased subset of the population. Population registers will suffer 

ascertainment bias in very elderly people with multiple comorbidities, because the condition may go 

undetected for example, symptoms such as weakness may be considered a normal consequence of 

ageing, or people may be too ill to attend a hospital-based clinic for a formal diagnosis. Inclusion of 

hospices as data collection sites may ameliorate the second problem if consultant neurologists are 

able to run clinics in hospices, but the first will be more challenging to address. The MND Register 

dataset includes data collection on comorbidities, and detailed analysis of these comorbidities may 

elucidate disease networks, so it may be possible to advise checking for symptoms of ALS in people 

with other diseases that co-occur with ALS, for example FTD. 

Healthcare system and geography informs the design of population-based registers. In some 

countries there are single centres that see most people with ALS, in these cases a single clinic 

database can also act as the population register, with some supplementary data capture from other 

care providers. In other places, where there is well organised, centralised data sources national 

healthcare statistics can be used. Insurance data may be a good source of healthcare information, 

web-based systems such as self-registration websites or centralised care planning databases have 

also been designed in some areas. In the UK there are 22 specialist ALS centres. In addition, people 

are diagnosed in general neurology clinics and treated by clinical nurse specialists and in palliative 

care settings such as hospices. All sites should be included to obtain the most complete case 

ascertainment. There are some population registers already in existence and care planning and 

recording of patient data varies locally. An efficient approach in the UK is to allow data collection to 

be organised locally and collecting and cleaning the data centrally. 
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The aim of the MND Register for England, Wales and Northern Ireland is to act as a central source of 

data for all people with ALS in the area defined. Although there are other motor neuron diseases, 

the aim of the database was determined by funding constraints and because of an unmet need for 

an ALS population register.  

1.2.1. Genetic risk factors for Amyotrophic Lateral Sclerosis 

Approximately five to 20 percent of people with ALS have a positive family history of ALS, according 

to prospective, population-based studies (Byrne et al., 2011; Ryan et al., 2018). What constitutes a 

positive family history in terms of which relatives and diseases to include is not standardised (Al-

Chalabi, 2017; Byrne, Elamin, Bede, & Hardiman, 2012). All genetic variants that are causal for ALS 

that have been identified in people with a family history of ALS have been found in sporadic cohorts 

and clinically and pathologically there is no difference between people with a family history and 

those without. Additionally, although age of onset is lower in familial ALS compared with apparently 

sporadic ALS, this is not the case when compared with those  people with apparently sporadic ALS 

but harbouring a variant in an ALS risk gene of Mendelian inheritance (Mehta et al., 2019). In other 

words, the presence of a Mendelian gene is driving the lower age of onset, not the presence of a 

family history. Familial ALS, which may be thought of as a subtype of ALS describes those people 

with a high liability for ALS, likely due to a genetic cause. Due to small family sizes and incomplete 

penetrance this category will not be sensitive enough include everyone with a high genetic liability, 

and disagreements about eligibility of positive family history lead to measurement error, so it is 

flawed. Despite its flaws, it can be used meaningfully in genetic risk factor research and may be 

useful to identify people in clinic who are likely to benefit from genetic testing before all people are 

able to be genotyped (Kenna et al., 2016). 

Through genetic linkage analysis, SOD1 was the first gene in which variants were found to be 

associated with ALS, in 1993 (Rosen et al., 1993). Since then, about 150 genes have been recorded as 

associated with ALS; approximately 20 are considered to have enough evidence to be classified as 

having variants that can cause an ALS phenotype, with many more having their association 

replicated in independent studies (Brown and Al-Chalabi, 2017) (www.alsod.ac.uk).  

Estimates of heritability, the amount of phenotypic variance attributable to genetic variation, vary by 

methodology. Twin-based studies have the highest estimation of approximately 60%, concordance 

rates amongst parent-offspring pairs estimate heritability at 50% and common SNP-based 

heritability is estimated at 10-20% (Al-Chalabi et al., 2010; McLaughlin, Vajda, & Hardiman, 2015; 

Wingo, Cutler, Yarab, Kelly, & Glass, 2011). The difference between estimates, or ‘missing 

heritability’ may be explained by rare, private mutations that are not sampled in traditional GWAS 
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studies, or by the presence of structural variants (McLaughlin et al., 2015). Another possibility is the 

presence of somatic mutations, not generally detected by peripheral blood based genetic testing. 

Large whole genome sequencing association studies of people with ALS show that it is likely private 

mutations with medium effects that cause ALS in a lot of cases (van Rheenen et al., 2016). 

The genetic architecture of ALS seems to comprise a mixture of simple Mendelian inheritance, 

oligogenic inheritance and polygenic inheritance patterns seen in common complex diseases 

(Veldink, 2017). Genograms of people with a family history of ALS show Mendelian inheritance 

patterns of disease, and the most common, large effect genes such as SOD1, TARDBP, FUS and 

C9orf72 have Mendelian inheritance. Oligogenic inheritance, where there are variants in more than 

one disease causing gene, is seen in 0.4-1% of people. Estimates from GWAS summary statistics 

show polygenic risk accounts for approximately 5% of heritability (McLaughlin et al., 2017; van 

Rheenen et al., 2016). Sporadic cases with a genetic background are found in ALS as would be 

expected by a polygenic model of disease risk (Yang, Visscher, & Wray, 2010).  

Another source of genetic variability may be found in somatic mutations accumulating in cells during 

replication (D’Gama and Walsh, 2018). A study of C9orf72 ALS post-mortem tissue samples does not 

support this finding, although there could be attrition due to cell death (Ross et al., 2019).  

1.2.2. Environmental risk factors for ALS 

Heritability estimates of less than 1 (or 100%), indicate the possibility that the remainder of the 

variability is due to sampling or measurement error, random noise, or environmental factors. 

Environmental risk factors in ALS have proven difficult to identify, in part because of problems 

common to all environmental studies such as an infinite exposome but also ALS-specific problems of 

disease heterogeneity and long disease lead in time (Al-Chalabi and Hardiman, 2013). For some risk 

factors that are being tested, such as smoking, a finding of a positive association would not change 

public health advice but confirming such a causal link would be invaluable in elucidating disease 

mechanism and informing drug development. 

Smoking may be associated with increased risk of ALS, although the data are not conclusive. Meta-

analysis of case-control and cohort studies show a slight increased risk of smoking, with a stronger 

effect shown in cohort studies (Alonso, Logroscino, & Hernán, 2010a). Since then there have been a 

mix of positive and negative studies, and there may be a higher risk in some subgroups (Alonso, 

Logroscino, Jick, & Hernán, 2010b). Individual studies have shown dose dependent effects by age of 

smoking initiation and time since smoking cessation reducing risk (Peters et al., 2019; H. Wang et al., 

2011). Mendelian randomisation studies to investigate causality have reported positive and negative 

associations (Bandres‐Ciga et al., 2019; Zhan and Fang, 2019). 
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There are several high-profile sports people who have been diagnosed with ALS. Additionally, many 

people with ALS have higher levels of voluntary sports participation and a low BMI on presentation 

(Scarmeas, Shih, Stern, Ottman, & Rowland, 2002). It is not clear whether participating in high levels 

of physical activity raises the risk of ALS and, if it does, whether it is directly a consequence of the 

exercise or some form of shared genetical predisposal between sporting prowess and ALS (Lacorte et 

al., 2016). Additionally, low BMI may be confounded with the pathological processes of disease. 

Trauma, including head injury which may occur as a result of sporting activity, also appears to be a 

risk factor according to meta-analysis (M. D. Wang, Little, Gomes, Cashman, & Krewski, 2017). 

It is not clear whether there are occupational exposures that cause ALS, and there is mixed evidence 

for associations between occupational exposures such as pesticides, heavy metals, solvents, 

electromagnetic fields, cyanotoxins, electric shock and diesel exhaust fumes (Abhinav, Al-Chalabi, 

Hortobagyi, & Leigh, 2007a; Bozzoni et al., 2016; Delzor et al., 2014; Dickerson et al., 2018; Fischer et 

al., 2015; Koeman et al., 2017; Malek et al., 2015; Pamphlett and Rikard-Bell, 2013; Rooney et al., 

2016; Sutedja et al., 2009).  

Specific occupations that have replicated associated with ALS are military service with deployment 

and football (Beard and Kamel, 2015; Blecher et al., 2019; Chiò et al., 2009a; Pupillo et al., 2020; Tai 

et al., 2017). Both occupations represent a wide range of exposures including toxins, physical activity 

and psychological stress and it is not clear what the causative factor would be.  

1.2.3. Observational study biases 

Many environmental risk factors that are the subject of analysis such as smoking, head injuries, 

electrical shock and chemical exposure are investigated because they are known to cause other 

diseases. It is therefore unethical to investigate the effect of these kinds of exposures on an outcome 

using a randomised controlled trial to experimentally demonstrate causality. In these cases, 

observational research is undertaken where the proportions of people who have encountered an 

exposure with and without developing the disease are compared. While this is ethically necessary, 

there are several methodological pitfalls that make determining causality more difficult.  

Observational studies have the potential to suffer from unmeasured confounder bias due to the 

unrandomized nature of the design. Unmeasured factors that are associated with the factors under 

investigation in the study may be driving the association, rather than the measured factor 

(Greenland and Neutra, 1980). Multivariate analysis, where outcomes can be adjusted for the 

presence of confounding is common practice to mitigate some of the effects of confounders (Skelly, 

Dettori, & Brodt, 2012). Adjusting for all possible confounders is almost impossible, and confounders 
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could be important at stages of life much earlier than when the disease develops (Lawlor et al., 

2005).  

If an exposure and an outcome both affect how likely someone is to be sampled for a study this can 

lead to spurious causal associations driven by collider bias (Cole et al., 2010). For example, moderate 

exercise  may slow disease course in people with ALS (McCrate and Kaspar, 2008). Additionally, 

people who are enrolled in clinical studies tend to have a slower disease course to have enough time 

to be included in the study. Therefore, sample selection bias could produce a correlation between 

physical activity and ALS where there isn’t one in the ALS population more generally – so population 

level data are preferred. A recent, large population-based study using data from the Netherlands, 

Ireland and Italy found a small but significant increased risk of ALS with different levels of physical 

activity, although the project was population based, the percentage of responders, and their clinical 

phenotype compared to non-responders, was not reported (Visser et al., 2018).  

Retrospective observational studies that reply on questionnaire data may suffer from self-reporting 

biases (Althubaiti, 2016). One such bias is recall bias, which causes people to over or underestimate 

an exposure (Neugebauer and Ng, 1990). Another bias is social desirability bias – people may over-

estimate their participation in socially acceptable or desirable behaviours, such as healthy eating and 

underestimate undesirable behaviours such as drinking alcohol. Despite this, the retrospective 

design is generally favoured in ALS due to the rarity and older age prevalence of the disease meaning 

prospective cohort studies would suffer from problems of scale (Al-Chalabi and Hardiman, 2013). 

Prospective studies investigating other diseases, or studies such as the UK Biobank can be used to 

look for associations and this will help attenuate recall bias. 

Measurement error, although not confined to observational studies, can affect both independent 

and dependent variables and lead to regression dilution. If there is measurement error in the 

independent variable this will bias the effect size to zero; if the error is in the dependent variable, 

the effect size will not be biased, but the test is less likely to show a strong correlation between the 

variables (K. Liu, 1988). Measurement error may derive from situations such as people interpreting 

the same questions differently in a survey, variables that measure more than one exposure, human 

error in recording, and the variable not accurately measuring the exposure (Coggon, Rose, & Barker, 

2003). ALS as an outcome could suffer measurement bias through misdiagnosis (O'Reilly, Brazis, & 

Rubino, 1982; Traynor et al., 2000).  

Replication of studies is essential to strengthen findings, particularly as gene-environment effects 

may mean in some populations effects between exposure and risk are not seen. However, as bias 

can be replicated, later studies must also address different sources of bias and not be simple 
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replication of previous methods. This kind of replication, to vary the source of bias has been termed 

triangulation or consistency (Lawlor, Tilling, & Davey Smith, 2017).  

1.2.4. Phenotype modifiers of Amyotrophic Lateral Sclerosis  

As well as predisposing people to increased risk of ALS, genetic, demographic, and environmental 

factors can affect disease course. The factors that affect prognosis are not necessarily the same as 

those that are associated with increased risk (Chiò et al., 2009b). While therapeutics are confined to 

treating the disease rather than primary prevention, targeting factors that are phenotype modifiers 

will have the most effect on disease course (Shatunov and Al-Chalabi, 2020).   

Age and sex strongly affect phenotype characteristics such as site of onset of symptoms, proportion 

of upper and lower motor neuron involvement and cognitive impairment, with genetic variation 

having a smaller effect (Chiò et al., 2020). 

Smoking at time of diagnosis has also been found to affect progression rate in ALS, and this has some 

dose dependency in that people who used to smoke have a slightly faster progression than those 

who have never smoked (Calvo et al., 2016). 

1.2.5. Models of ALS aetiology 

The multistep hypothesis of ALS is a model that conceptualises the pathological development of ALS 

as a sequence of steps (Al-Chalabi et al., 2014). Consistent with this hypothesis, if the log incidence 

of ALS is plotted against the log age of onset the resulting slope is linear, and the regression 

coefficient can be used to quantify the number of steps needed for disease development, with the 

number of steps being regression coefficient (b)+1. Analysis of data from Australian, Japanese and 

South Korean registers have replicated the initial finding from multiple European registers that on 

average, people with ALS will take 5-6 steps to reach ALS (Vucic et al., 2020; Vucic et al., 2019). 

Analysis of incidence in people with ALS that have variants in ALS causing genes show that in people 

with SOD1 variants on average 2 steps are needed to develop disease, C9orf72 it is 3 steps and 

TARDBP it is 4 steps (Chiò et al., 2018). A study comparing risk of prior diagnosis of schizophrenia 

and prior diagnosis of cardiovascular disease found that after controlling for prior death as a 

competing risk, people with prior cardiovascular disease have 3 steps needed to develop ALS 

(Garton, Trabjerg, Wray, & Agerbo, 2020). Men also have on average, half a step less than women to 

develop ALS. Each step is not thought to be exposure to an individual risk factor, but likely 

represents a biological process, possibly happening at a cellular level. Population-level data is 

required to test whether incidence as a function of age is mathematically consistent with a multistep 

process. To find subgroups with different numbers of steps required for disease onset, detailed 

genotype and phenotype information needs to be available on all people within a population. People 
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develop ALS after encountering fewer additional exposures, such as those with SOD1-mediated ALS 

may provide subgroups with a smaller exposome to investigate potential environmental triggers of 

ALS. Establishing a population register in for ALS in the UK will lay the foundation for data collection 

needed for ALS subgroup analysis. 

The multistep model is also consistent with the liability-threshold model of disease risk (Al-Chalabi 

and Hardiman, 2013). Liability is defined as the burden of exposures, which may be a mixture of 

genetic or environmental factors, and everyone will have a different liability, assumed to be 

normally distributed,  and if an individual’s liability is above the disease threshold then disease 

develops (Falconer, 1996; Read, 2018).If liability is based on inherited genetic risk then it is 

determined at birth and does not change, however the multistep model conceptualises it as being 

time-associated so differs from the liability threshold model in this way. . Features of ALS, such as 

lower age of onset in people with a family history or Mendelian variant of ALS, support this model 

because people with genetic risk variants of ALS have a higher liability (Mehta et al., 2019).  

1.3 Conclusions 

ALS is likely to be the result of complex interactions between genetic and environmental risk factors, 

which can affect both risk of developing the disease as well as the clinical course once someone is 

affected. There have been significant advances in our understanding of ALS through the discovery of 

genetic risk factors. The optimal phenotype subgroups of ALS and whether environmental risk 

factors have a role to play in disease risk, is not yet fully clear.  

Disease risk and phenotype modifiers can only be understood by analysing detailed genetic, 

environmental and clinical information on large numbers of people, using multiple methodologies. 

Data collection efforts and technologies are increasingly able to provide this level of detail on people 

with ALS. 
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Chapter 2 Summary of thesis objectives 

It is not known how many people in England, Wales and Northern Ireland are diagnosed with ALS 

every year, all estimates are extrapolated from local population registers. In this thesis I report the 

set-up of the MND Register for England, Wales and Northern Ireland (the MND Register), a project 

that aims to collect clinical information on everyone with ALS in England, Wales and Northern 

Ireland. I also report the first results of updated incidence estimate for the UK based on an area of 

England where there has not been data reported previously, collected as part of the MND Register. 

In this project we test the hypothesis that incidence in this area of England is like estimates 

previously reported in the UK and in other European databases. 

To test the hypothesis that people who smoke are at risk increased of ALS, I have analysed a dataset 

of questionnaires, collected from centres in England. I used a novel to ALS methodology to quantify a 

continuous measure of smoking and investigate dose-dependency. I followed this up with a 

Mendelian Randomisation study to provide corroboration with our findings using a different 

epidemiological method to assess causality of exposure. 

Finally, I present a global study of clinical phenotype in people with ALS who have tested positive for 

mutations in the SOD1 gene. The dataset is the largest dataset of people with SOD1 ALS and the 

genotype-phenotype correlations identified show there may be subtypes of SOD1 ALS defined by 

clinical variant. 
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Chapter 3 Methods 

This section expands on the main statistical methods used in chapters 4-6, particularly where journal 

space restricted provision of more detailed explanation. The methods are addressed in order of 

appearance in each chapter. 

3.1 Incidence 

Incidence measures the rate of novel cases of a disease that occurs in a defined population of 

disease-free individuals in a specific timeframe. It can be conceptualised using equation 1 (Critchley, 

2004). 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑟𝑖𝑠𝑘
 𝑖𝑛 𝑎 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡𝑖𝑚𝑒  (1) 

ALS is a relatively rare event and large populations must be observed over a period of several years 

to estimate incidence. When incidence is reported in ALS, the ‘period of time’ is usually a yearly rate 

and the population at risk is typically measured in summed person-years of observation using the 

population size from a census. When population estimates are used, there will be a few people not 

at risk because they have the disease. As ALS is a rare disease, this is unlikely to affect the estimate 

greatly. 

Crude incidence rates are the proportion of people that develop a disease, divided by the overall 

population, usually multiplied by 100,000 for readability. When using census data, if the period of 

observation is two years, the number of person-years is the number of people in one year multiplied 

by two. As ALS risk varies by age and sex, age and sex-specific rates are calculated by dividing the 

population into age groups by sex and separately calculating incidence rates. To compare incidence 

rates between different geographical populations the crude rate must be standardised to a 

reference population. This is because even if the risk of disease is the same in different age groups, if 

there are different age structures in two populations, the incidence will be different. The age-

standardized rate can be a theoretical rate that would occur if the rates occur in a fabricated 

population structure (for example the European standard population) or could be taken from census 

data from a particular country. 

The standard error for the direct standardisation method can be calculated using the binomial or 

Poisson approximations – they are similar and either can be used (Bowden et al., 2016b; Keyfitz, 

1966; Ulm, 1990). From the standard error, the variance and confidence intervals can be calculated 

using the appropriate standardised normal deviate. 
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3.2 Multiple imputation 

Imputation is a method to estimate data where it is missing using information gleaned from other, 

complete cases in the dataset (Rubin, 1987). Multiple imputation describes when this process is 

repeated to generate multiple possible datasets by introduction of an element of randomness in 

generating dummy values in place of missing values. Multiple imputation is preferred to mean or 

median value imputation, because mean and median imputation decrease the variance in the 

dataset.  

In the MND Register dataset, there were many cases of missingness of date of diagnosis. Although 

date of onset of symptoms could arguably be used instead, due to lag times between onset and 

diagnosis, it is possible we would miss new cases. Instead, we decided to impute diagnostic delay 

from the other values in the sample and add that to date of onset to estimate date of diagnosis. This 

was repeated 20 times, as there were 20% of date of diagnosis values missing (Bodner, 2008; White, 

Royston, & Wood, 2011). Predictive mean matching was used to estimate diagnostic delay values. 

Predictive mean matching is where a regression is used to estimate values for a particular record and 

then records with full data that closely match the predicted value are used to pick an imputed value 

from (White et al., 2011). Pooled parameter and standard error estimates are calculated using 

Rubin’s rules (Rubin, 1987). To calculate the pooled parameter estimate, the mean of all imputed 

incidence calculations were taken (Enders, 2010). To calculate the pooled standard error, the within 

imputation variance (squared standard error of each dataset divided by the number of datasets) and 

the between imputation variance (variance of each imputed incidence calculation) are combined 

(Enders, 2010). The variance derived from these estimates are not directly comparable to historical 

estimates but confidence intervals from unimputed data were provided as well as pooled incidence 

estimates to give an indication of data spread. Multiple imputation was performed in R, using the 

‘mice’ package and incidence estimates were calculated in MS Excel (Groothuis-Oudshoorn, 2011; 

Team, 2018). 

3.3 Measures of smoking exposure 

Smoking is a multidimensional exposure that may be measured in a variety of ways, using both 

categorical and continuous variables. Categorical variables include whether someone has ever 

smoked, or whether they are currently smoking and are relatively easy to collect and these 

measures are common in ALS smoking literature (Alonso et al., 2010a). Continuous variables of 

smoking exposure include, age started smoking, years of smoking (duration), cigarettes smoked per 

day (intensity) and time since cessation. Using these variables, it is possible to investigate dose 

dependency – which provides further evidence towards causality in observational research.  
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Dose dependency is commonly assessed using cigarette pack years, a model that assumes that risk 

increases linearly with increased smoking exposure and that intensity and duration are equally 

important to risk (Prignot, 1987). Additionally, time since cessation is absorbed into this measure but 

may be separately important. Including time since cessation as well as age of initiation as separate 

variables in a regression is inappropriate because of variable co-dependency. Cigarette pack years is 

calculated as described in equation 2: 

𝑃𝑎𝑐𝑘 𝑦𝑒𝑎𝑟𝑠 =  
𝑖𝑛𝑡

20
 × 𝑑𝑢𝑟  (2) 

int = cigarettes per day, dur = duration of smoking calculated for current smokers as [current age – 

age started smoking] or for former smokers as [age stopped smoking – age started smoking]. 

The Comprehensive or Lifetime Smoking Index (I will refer to it as the lifetime smoking index) is a 

non-linear model of smoking exposure that takes all measures into account. To calculate a lifetime 

smoking value for an individual, values of half-life (τ) and lag time (δ) are calculated (Leffondré, 

Abrahamowicz, Xiao, & Siemiatycki, 2006). Half-life captures the exponentially decreasing effect of 

smoking on an outcome and lag-time accounts for the reverse causality seen with other diseases 

when quitting smoking (Leffondré, Abrahamowicz, Siemiatycki, & Rachet, 2002). Lifetime smoking 

index is calculated using equations 3-5: 

  𝑡𝑠𝑐∗  = max(𝑡𝑠𝑐 −  𝛿, 0) (3) 

𝑑𝑢𝑟∗  = max(𝑑𝑢𝑟 + 𝑡𝑠𝑐 −  𝛿, 0) − 𝑡𝑠𝑐∗ (4) 

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒 = (1 − 0.5𝑑𝑢𝑟∗/𝜏)(0.5𝑡𝑠𝑐∗/𝜏) ln(𝑖𝑛𝑡 + 1)  (5) 

where  = half-life,  = lag time, tss = time started smoking (age of initiation), dur = duration of 

smoking (calculated as above), tsc = time since cessation, int = cigarettes per day. 

Values of tau and delta can be set a priori, in this case values of δ and τ were simulated and those 

that fit the dataset best, determined using the Aikike Information Criteria, were used to calculate 

values of smoking exposure that can be included in a regression model (Akaike, 1998). Calculation of 

tau and delta was undertaken in R. 

3.4 Logistic regression 

Research investigating the relationship between an exposure (such as smoking) and a binary 

outcome (such as disease state) involves quantifying the chance of each outcome in the case of 

exposure to the factor under consideration. Calculating chance might involve working out ‘risk’, the 

chance of an outcome as a proportion of all outcomes, or ‘odds’ which refers to the chance of an 
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outcome occurring compared to the chance of the outcome not occurring. To calculate risk, the total 

number of people at risk is required however, to calculate an odds ratio two groups can be 

compared without knowing the overall prevalence to exposure, so it is suitable for case-control 

studies (Bland and Altman, 2000). Odds can be calculated using the equation 6 where p(x) refers to 

probability of an outcome occurring. 

𝑂𝑑𝑑𝑠 =  
𝑝(𝑥)

1 − 𝑝(𝑥)
  (6) 

The ratio of the odds is a univariate analysis, which compares the odds of an outcome in a group of 

people exposed to the factor under consideration compared to the event occurring in a group not 

exposed to the factor. Table 1 is a contingency table of a hypothetical scenario being investigated in 

a case-control study. Using the example in table 1, a hypothetical odds ratio can be calculated using 

equation 7. 

Group Exposed Not exposed 

Cases a b 

Controls c d 

 

Table 3-1: Example contingency table for calculating odds ratio 

𝑂𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 =  
(𝑎

𝑐)⁄

(𝑏
𝑑)⁄

  (7) 

Log transforming the odds of an outcome allows it to take any value between negative and positive 

infinity, so it can be used as an outcome in multiple regression. This means that two groups can be 

compared while controlling for confounding variables. Regression using the transformed odds, or 

‘logit’ function as the outcome is called logistic regression (Sperandei, 2014).  

log(
𝑝(𝑥)

1 − 𝑝(𝑥)
) =  𝛽0 +  𝛽1𝑋  (8) 

Taking the inverse of the logit function gives the sigmoid function, which can be used to predict the 

probability of being in either group 1 or 2 given the values of the regression coefficients.  

  𝑝(𝑥) =  
𝑒𝛽0+ 𝛽1𝑋

1 +  𝑒𝛽0+ 𝛽1𝑋
(9) 

Maximum likelihood estimation is a machine learning method which finds the set of regression 

coefficients for which the likelihood of observing the data is maximum and it is typically used to 
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estimate regression coefficients. Power calculation for logistic regression can be performed using the 

power calculation method for a chi squared test. 

3.5 Mendelian randomisation 

A method of analysis that is designed to address confounder bias is instrumental variable analysis, a 

technique originating from the field of econometrics. An instrumental variable is one that is 

correlated with the variable of interest but not confounded with other variables that may bias 

analysis. For example, it was first used to investigate lifetime earnings in people who were eligible 

for military deployment, rather than those that were deployed, to mitigate the effect of confounding 

from socioeconomic status (Angrist, 1990). During the Vietnam War, people were drafted based on 

their date of birth, with dates of birth chosen randomly by lottery. This set up a natural experiment, 

‘randomising’ people to military service by birth date, so reducing the effect of confounding. Using 

draft eligibility of 19-year olds in the period of 1950 to 1953 as an instrumental variable for 

deployment an unbiased effect of military deployment on lifetime earnings was calculated. 

The concept of using genotype as an instrumental variable for epidemiological exposures such as 

smoking, has been developed into a method called Mendelian Randomisation (Davey Smith and 

Ebrahim, 2003; Davey Smith and Hemani, 2014). Two-sample Mendelian Randomisation compares 

the effect size of genetic variants from summary statistics of two genome-wide association studies, 

one looking for effect of genotype on the exposure, the other at the effect of genotype on the 

outcome. If the assumptions are met, an unbiased effect of an exposure on an outcome can be 

calculated by calculating the ratio of the effect size on likelihood of exposure and the effect size on 

likelihood of outcome. The instrument can be made up of a single variant, in which case the 

calculation is called the Wald ratio, in the case of multiple variants the ratios are meta-analysed 

using inverse variance weighted analysis. 

More explanation about the assumptions of MR and the assumptions of different methods of 

analysis can be found in section 6.11.5 on page 68. 

Mendelian randomisation was performed in R using the Two sample MR package (Hemani et al., 

2018b). 

3.6 Polygenic risk score analysis 

If individual level genome-wide genetic data are available, it is possible to calculate the genetic 

liability to a phenotype using summary statistics from a genome-wide association study (Choi, Mak, 

& O’Reilly, 2020). The genetic liability to the phenotype takes is a single, composite score of the risk 

alleles for a phenotype, weighted by the effect size of the allele and is called a polygenic risk score 
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(PRS). Variants that meet a lower threshold than genome-wide significance are included in the 

composite score as they increase predictive power. We used data from the UK Biobank to calculate 

polygenic risk scores for smoking and used the score as a covariate in logistic regression to analyse 

whether it increased the risk of ALS in the UK Biobank sample. 

3.7 Time-to-event analysis 

Time-to-event data (also termed survival data) is the name for data that describes the time from a 

starting point, for example study entry or disease onset to an end point, for example disease 

recurrence or death (Altman, 1990). As the follow-up time will not cover everyone having 

experienced the event, other methods for analysis of continuous data are not suitable because they 

do not fully account for the uncertainty produced by censored events. Instead, data are usually 

visualised using Kaplan-Meier plots that make it easy to interpret differences in time-to-event 

between groups and obtain a rough estimate of median survival (Bland and Altman, 1998). Kaplan-

Meier plots show a step function as the proportion changes only when there is an event of interest. 

The Kaplan-Meier curve makes the following assumptions, that losing people to follow-up is 

unrelated to their prognosis, that the event of interest, for example death or disease recurrence, 

happened at the time recorded, and that survival probabilities are unrelated to study recruitment 

time (Bland and Altman, 1998).  

The log rank test is used to test the null hypothesis that there is no difference in the probability of an 

event happening between groups, at any given time (Altman, 1990). Proportions of people 

experiencing the event change over time (and will start and end as equal proportions) so the log 

rank test works by calculating the expected number of events every time an event happens. From 

the calculations at each event, the total observed and expected deaths are calculated by adding up 

the values at each time point and a chi squared test is used to compare them and generate a p-

value. Median survival, or survival comparisons at a pre-specified time can be used to quantify the 

difference between groups.  

Cox proportional hazards regression is used to quantify the overall difference in likelihood of an 

event between groups, and to control for confounder variables (Cox, 1972). The hazard rate is the 

likelihood that an event will happen at any time – and is the same as the incidence. The hazard ratio 

is the ratio of the hazard rate in one group compared to another group and is analogous to the odds 

ratio. As is the case with the odds ratio, taking a logarithm of the hazard ratio allows it to be 

modelled as a regression. This is demonstrated in equation 10 where h(t) represents the hazard rate, 

h0(t) represents the hazard rate of the baseline or comparator group, β1 is the estimate of covariate 

effects derived from the Cox regression model, and X a value of a given covariate. 
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ℎ(𝑡)

ℎ0(𝑡)
= 𝑒𝛽1𝑋   (10) 

 

Cox proportional hazards regression models are referred to as semi-parametric (Cox, 1972). The 

baseline hazard function can take any shape and there are no restrictions put on it, however the 

covariates are assumed to act linearly on the outcome – known as the proportional hazards 

assumption. This can be tested visually using a log(-log(S(t))) v t plot (where S(t) is the survival 

function and represents the probability that an individual is still alive at time t) and checking the 

lines are parallel, as well as testing whether there is a significant relationship between the 

Schoenfield residuals and time, if there is a relationship then the proportional hazards assumption is 

violated. 

Violated assumptions may be corrected by creating a variable with a time interaction term and re-

running the Cox proportional hazards model. Alternatively, other models such as accelerated failure 

time models may be more appropriate for the dataset. The variable that is time dependent, may still 

be associated with survival, but the hazard ratio may not be a reliable indicator of increased risk at 

any time point. 

Kaplan-Meier analysis, log rank tests and Cox proportional hazards regression were performed in R 

using ‘ggplot2’ and ‘Survival’ (Therneau, 2020; Wickham, 2016). 
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4.1 Abstract 

Introduction 

Amyotrophic lateral sclerosis (ALS) has a reported incidence of 1-2/100,000 person-

years. It is estimated that there are 5000 people with ALS in the UK at any one time; 

however the true figure, and geographical distribution, is unknown. In this study we 

describe the establishment of a population register for England, Wales and Northern 

Ireland and report estimated incidence. 

Methods 

People with a diagnosis of ALS given by a consultant neurologist and whose postcode 

of residence is within England, Wales or Northern Ireland were eligible. The catchment 

area was based on six data contributors that had been participating since 2016. All 

centres included in this analysis were in England, and therefore Wales and Northern 

Ireland are not included in this report. Crude age- and sex-specific incidence rates were 

estimated using population census records for the relevant postcodes from Office of 

National Statistics census data. These rates were standardised to the UK population 

structure using direct standardisation. 

Results 

There were 232 people in the database with a date of diagnosis between 2017 and 2018, 

when missing data were imputed there were an estimated 287-301 people. The 

denominator population of the catchment area is 7,251,845 according to 2011 UK 

census data. Age- and sex- adjusted incidence for complete cases was 1.61/100,000 

person-years (95% confidence interval 1.58, 1.63), and for imputed datasets was 2.072 

/100,000 person-years (95% CI 2.072, 2.073) 

Discussion 

We found incidence in this previously unreported area of the UK to be similar to other 

published estimates. As the MND Register for England, Wales and Northern Ireland 

grows we will update incidence estimates and report on further analyses.  

Keywords: epidemiology, incidence, population register 
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4.2 Introduction 

Motor neuron disease, also known as amyotrophic lateral sclerosis (ALS), is an adult-onset 

neurodegenerative disease affecting upper and lower motor neurons. Estimated global incidence of 

ALS has been reported as 1-2/100,000 person years (Logroscino et al., 2018; Marin et al., 2017; Xu et 

al., 2020) . Due to geographical variation the range of estimated incidence by subcontinent is 1-

3/100,000 person years, with the highest incidence rates reported in Western Europe (Marin et al., 

2017; Xu et al., 2020). ALS causes progressive weakness and paralysis, with death from respiratory 

failure usually between 2 and 3 years after diagnosis, but clinical presentation and disease 

progression are highly variable (Westeneng et al., 2018). There is currently no cure for ALS although 

riluzole and, more recently in some countries, edaravone are approved drugs that modestly extend 

survival for some people (Abe et al., 2017; Bensimon et al., 1994). Since the initial discovery that 

mutations in the SOD1 gene can cause ALS, there has been considerable progress in the 

identification of genetic risk factors (Bowling, Schulz, Brown, & Beal, 1993). Despite these advances, 

disease aetiology in the majority of cases is not understood. Heritability estimates are compatible 

with the possibility that non-genetic factors such as stochastic biological events in ageing, 

environmental exposures or lifestyle choices contribute to disease risk, but there is no consensus on 

what these factors are. 

Population registers collect information about every person diagnosed with a given condition in a 

defined geographical area, providing a source of representative data that can be used by researchers 

and authorities responsible for healthcare funding and organisation (Chiò et al., 2013).  

ALS is highly variable in its presentation and clinical course.  Collection of population level data about 

the clinical features in ALS, including cognitive impairment, has led to a greater understanding of 

prognostic significance of phenotypic subgroups of ALS (Ganesalingam et al., 2009; Phukan et al., 

2012). Data from several European population registers has been used to create an accurate disease 

progression model which has helped inform care planning and communication with patients about 

prognosis (Westeneng et al., 2018). Population register data was used to show that a multistep 

model of disease may be relevant to ALS aetiology, and to estimate the number of ‘steps’ likely to be 

involved (Balendra et al., 2014; Chiò et al., 2018; Vucic et al., 2019). Information from population 

registers has also been used to estimate the projected number of people with ALS in the future if 

current population demographic trends persist, as well as for modelling the potential effects of 

future disease modifying treatments (Arthur et al., 2016; Gowland et al., 2019). 

Population-based datasets eliminate the inherent ascertainment bias of intervention and case 

control studies based on referral cohorts (Hardiman et al., 2017), providing unbiased estimates of 
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the effects of exposure to risk factors associated with ALS (de Jong et al., 2012). Comparisons of 

clinical characteristics of patients enrolled in drug trials and population-based data from the same 

recruiting area show large differences that might help explain lack of generalisability of results from 

intervention trials.  

There are some trends in ALS that are consistently reported between countries, for example, most 

people present with symptoms in the limbs (Marin et al., 2016). However, the incidence, pattern of 

disease progression and phenotypic spectrum of ALS differ between countries as shown by studies 

quantifying peak age of onset of symptoms, proportions of people with different sites of 

presentation, and survival time (Marin et al., 2018; Marin et al., 2016). These differences are 

probably due to complex demographic and healthcare factors; therefore, it is important to collect 

information at a local level to inform patients and healthcare professionals. In the UK there are five 

regional population registers for ALS: the South East ALS (SEALS) Register, Peninsula Network, South 

Wales Register, Northern Ireland register, and MND Care in Scotland, as well as many long-standing 

databases that document the attendees of specialist ALS clinics (Abhinav et al., 2007b; Donaghy et 

al., 2010; Forbes, Colville, Parratt, & Swingler, 2007; Imam, Ball, Wright, Hanemann, & Zajicek, 2010; 

J. D. Mitchell, Gatrell, Al-Hamad, Davies, & Batterby, 1998). All have provided insight into the overall 

picture of ALS in the UK and have contributed to estimates of UK-wide incidence, prevalence, and 

lifetime risk. There are an estimated 5,000 people living with ALS in the UK at any one time, but 

whether this is the true figure and how people with ALS are geographically distributed is not known. 

In this paper we describe the creation of the MND Register for England, Wales and Northern Ireland 

through the incorporation of local population registers, use of data collected routinely to organise 

ALS clinics, and involvement of people with ALS directly through a self-registration website. We also 

report initial findings on incidence for areas with complete case ascertainment. 

4.3 Methods 

4.3.1. Patient eligibility 

Eligible individuals were defined as having been diagnosed with ALS, Primary Lateral Sclerosis (PLS), 

or Progressive Muscular Atrophy (PMA) by a consultant neurologist. Where motor neuron 

involvement appeared to be restricted to the upper or lower motor neurons (including flail limb 

variants), but time since diagnosis was less than 4 years, the diagnostic category was recorded as 

‘upper motor neuron predominant ALS’ or ‘lower motor neuron predominant ALS’, with a free text 

box available for provision of more detail if needed. Site of onset of first focal weakness, El Escorial 

category, and co-existing dementia were considered as phenotypic modifiers and recorded as 
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separate variables (Al-Chalabi et al., 2016). People with cognitive impairment, including those with 

fronto-temporal dementia were eligible. People with Kennedy’s disease were not included.  

People with ALS provided informed consent for the inclusion of identifiable data in the register to 

their healthcare professional or via our website (details below). As an informed consent discussion 

may not always be appropriate during a clinic appointment, or progression may be so rapid as to 

preclude an approach for informed consent, an anonymised data capture protocol was devised. 

4.3.2. Identifying data sources 

It is estimated that 90% of people with ALS will visit a specialist ALS service as part of their pathway 

of care in the UK; many of these services are funded in part by the ALS charity the Motor Neurone 

Disease Association and are referred to as MND Care and Research Centres or Networks (90% figure 

from internal report from Motor Neurone Disease Association). Therefore, we specifically invited all 

of these services to contribute data. To ensure complete case ascertainment, we identified other 

services, including general neurology clinics, community services, clinical nurse specialists and 

hospices where people with ALS also receive care.  

4.3.3. Catchment areas 

Specialist centres generally oversee a defined geographic area of the country. We asked each site to 

identify the areas in which every incident case of ALS would be referred to them to map areas of 

complete ascertainment. This information was generally provided in the form of UK postcode 

districts (for example, SE22 or SE5), unitary authorities, or counties. Many areas were overlapping 

between centres, so cases were sometimes reported more than once.  

4.3.4. Data collection and transfer 

The project has been designed to avoid duplication of data collection efforts for health professionals 

and researchers. Where there was a local population register or long-standing clinical database 

already in use, the local dataset was aligned with the agreed Register dataset. Where there was no 

database in use we provided a Microsoft Access template with data export functionality. There are 

many pieces of information that are collected to facilitate routine care organisation and some of 

these, such as postcode, name, hospital identifier, and sex are also part of our dataset. The template 

database was designed to be compatible with use as part of routine care to avoid duplication of the 

data collection effort. A minimum dataset of name, date of birth, unique national health service 

identifier, date of diagnosis, diagnosis (subtype of ALS), date of first weakness, site of first weakness, 

sex, and postcode of residence was requested to ensure the ability to estimate incidence and 

identify duplicate records.  
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People with ALS in the UK will encounter a variety of services, including tertiary referral 

centres, general neurology clinics, general practitioners, clinical nurse specialists, and local therapy 

teams. ALS is a clinical diagnosis which needs to be monitored over time, and people often see more 

than one consultant neurologist to confirm the diagnosis. As a consequence, duplicate records could 

be generated for the same patient by different data contributors. We used pseudonymisation to 

differentiate duplicate records while maintaining confidentiality of participants.  

4.3.5. Website for patient self-registration 

A website was developed to allow people living with MND to self-register for inclusion in the 

database and to provide consent for access to their clinical information (https://mndregister.ac.uk) 

with the aim of increasing direct patient participation and case ascertainment. At registration, 

participants were asked to indicate the neurologist who provided their diagnosis or ongoing care, to 

facilitate confirmation of clinical details from the medical record.  

4.3.6. Statistical analysis 

For this analysis data were extracted from local databases and sent to the central database during 

September 2019, our final cut-off for data transfer was October 2019. The data included complete 

records from people who had provided consent, as well as de-identified records from individuals 

who could not be approached for informed consent.  

We used disease diagnosis date to estimate incidence, focusing on the years 2017 and 2018 to 

include the most complete dataset based on available records.  

Patients were grouped by age at diagnosis and sex in five-year age bands. We had an open-ended 

cohort for individuals over 85 years at the time of disease diagnosis, so everyone with an age of 

diagnosis of more than 85 years were analysed together. Crude age-and sex-specific incidence rates 

were estimated using age- and sex-specific 2011 population census records for the relevant 

postcodes from Office of National Statistics (ONS) census data, the estimates are reported in person-

years, taking into account that data were extracted over two years (LC1117EW – Sex by age, 2011). 

These rates were standardised to the UK population structure as measured by the 2011 UK census, 

the US population structure as measured by the US 2010 census and the European standard 

population using the direct standardisation method. We received residential data from people who 

had not provided consent for transfer of identifiable data at postcode area level (e.g., SE) to ensure 

anonymity. Our denominator population was made up of postcode areas where we had 100% 

capture, which was a subset of our total catchment area (darker grey areas in Figure 1).  
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Confidence intervals for crude rates were estimated using the exact method for Poisson intervals 

(Ulm, 1990). Confidence intervals for overall age- and sex-adjusted incidence rates were estimated 

at the 95% level using an approximation of the standard error for a binomial proportion (Keyfitz, 

1966). 

4.3.7. Multiple imputation 

To estimate date and age of diagnosis for those records with date of onset only we used predictive 

mean matching to generate 22 datasets (as 22% of cases were missing diagnostic delay) and 

calculated standardised incidence for all datasets (Bodner, 2008; White et al., 2011). The model for 

predictive mean matching included data collection centre, age of onset, gender, diagnosis subtype, 

site of onset and family history. We calculated pooled estimates of incidence and 95% confidence 

intervals using Rubin’s rules (Rubin, 1987). Imputation datasets were generated using the R package 

‘mice’. (Groothuis-Oudshoorn, 2011; Team, 2018). 

4.4 Results 

We defined an area of complete data capture by combining the catchment areas of six data 

collection centres that had been participating continuously since 2016. The complete postcode area 

for the catchment zone, the denominator population, represents a population of over seven million 

people and is indicated by the darker grey areas in Figure 1.  
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Figure 4-1 Map of catchment areas of clinics included in the incidence estimate 

The map shows catchment areas of each clinic in light grey, with the whole postcode areas shaded in darker 

grey. 

As of October 2019, there were 5066 records in the MND Register, through data transfers from 17 

centres, including 426 people who had signed up online. We extracted data based on postcode area 

of residence at diagnosis. After data cleaning there were 1748 records, of these, 232 recorded a date 

of diagnosis between 2017 and 2018, referred to as the complete case dataset. 312 people had no 

date of diagnosis recorded, but all had a date of onset. We used imputed values of diagnostic delay 

to estimate date of diagnosis (figure 2). 
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Figure 4-2 Modified consort diagram showing details of included cases 

The case mix of the complete case dataset is shown in table 1. 

Variable Total = 232 Female  Male 

Sex ratio F:M (n not recorded) 1:1.3 (2) 100 130 

Diagnosis 

N (%) 

Amyotrophic lateral sclerosis 106 (45.7) 91 (91) 107 (82) 

Lower motor neuron 

predominant ALS 
8 (3.4) 

2 (2) 6 (4.6) 

Upper motor neuron 

predominant ALS 
8 (3.4) 

2 (2) 6 (4.6) 

Primary lateral sclerosis 7 (3.01) 2 (2) 5 (3.9) 

Progressive muscular atrophy 3 (1.3) 3 (3) 0 (0) 

Site of 

onset 

N (%) 

Bulbar 67 (28.9) 42 (42) 25 (19.2) 

Spinal 118 (50.9) 41 (41) 76 (58.5) 

Respiratory 6 (2.6) 2 (2) 4 (3.01) 

Generalised 13 (5.6) 5 (5) 8 (6.2) 

Not recorded 28 (12.1) 10 (10) 17 (13.1) 

Mean age of onset (SD) 

64 (12) 27 

records missing 

data 

67 (12) 13 

records 

missing data 

62 (12) 13 

records 

missing data 

Table 4-1 Basic demographics and clinical features of people with ALS 
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Counts of people in the catchment area by age and sex (from the complete case dataset) are 

reported in table 2.  

 

Overall Female Male 

n Local population n Local population n Local population 

16-44 16 3507543 5 1746724 21 1760819 

45-49 8 664362 3 334775 5 329587 

50-54 17 572399 7 286996 10 285403 

55-59 32 498531 8 252548 23 245983 

60-64 31 530802 13 271113 18 259689 

65-69 31 423035 14 217876 17 205159 

70-74 41 339173 16 177671 24 161502 

75-79 25 281413 13 153323 12 128090 

80+ 31 434587 21 272241 10 162346 

Table 4-2 Population counts for men and women in each age group 

Ages 16-44 are shown as one category but were analysed in 5- year age bands (except 16-19 which was 4 

years). Ages 80-84 85+ were also analysed separately but are displayed in aggregate. The local population 

numbers were multiplied by 2 to calculate person-years. 

After multiple imputation, estimated numbers of people diagnosed between 2017 and 2018 ranged 

from 287-301. The pooled and complete case incidence estimates are presented in table 3. The 

estimated age and sex adjusted incidence for the UK is 1.61/100,000 (95% confidence interval 1.58, 

1.63) based on complete case analysis and 2.07/100,000 (95% CI 2.072, 2.073) people based on the 

imputed dataset. 

 Overall Female Male 

Complete 

case 

analysis 

England, Wales and 

Northern Ireland 

1.61 (1.58, 1.63) 

 

1.35 (1.31, 1.38) 

 

1.85 (1.8, 1.9) 

 

European standard 1.76 (1.73, 1.78) 

 

1.41 (1.37, 1.45) 

 

2.07 (2, 2.13) 

 

US 2010 census 1.45 (1.43, 1.47) 1.21 (1.18, 1.24) 1.67 (1.63, 1.71) 
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Imputed England, Wales and 

Northern Ireland 

2.072 (2.072, 

2.073) 

 

1.775 (1.774, 

1.777) 

 

2.356 (2.353, 

2.359) 

 

European standard 2.267 (2.266, 

2.268) 

 

1.874 (1.872, 

1.876) 

 

2.63 (2.626, 2.635) 

 

 

US 2010 census 1.874 (1.873, 

1.874) 

 

1.59 (1.589, 1.591) 

 

2.133 (2.13, 2.135) 

Table 4-3 Standardised incidence estimates  

Incidence calculations are presented for men and women separately, standardised to different reference 

populations. Imputed rates are shown to three decimal places to reflect the accuracy needed to display the 

pooled 95% confidence intervals.  
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4.5 Discussion 

We have established a population register that identifies records from multiple sources and uses 

data that are often available as part of routine data collection for care. The base population for our 

incidence calculation is over seven million people and therefore represents a large register 

compared to others globally. Once the MND Register includes data from all areas of the UK, which is 

the aim of the project, it will represent a database of a scale not yet reported. There are significant 

challenges in organising and maintaining a database for a population this size, including the co-

ordination of data collection across independent hospital systems.  

Organising a population register as a federated database can result in selection bias because of 

boundary effects. Through annexation of areas of complete ascertainment over time, it will provide 

a more complete, unbiased picture of the disease. Although the catchment area is constructed from 

the catchment areas of 6 centres, extracting data by postcode of residence instead of by attendance 

at a centre meant including data from 8 centres rather than 6, so some databases may be missing 

cases from their databases. 25 cases were transferred by the two extra centres.   

UK geography is organised into many partially overlapping administrative units. Postcode is 

ubiquitously recorded but hospital catchment areas and population estimates are made up of 

county or unitary authority boundaries that are not always congruent with postcodes. This and the 

transfer of anonymised data that includes high-level postcode rather than the full postcode data has 

made estimating incidence challenging while there are few centres participating. This is expected to 

improve as the MND Register includes more data contributors over time. Our study is part of the UK 

Clinical Research Network, so other services not included in this mapping effort will potentially be 

notified of the project and be incentivised to participate. The MND Register team regularly attend 

symposia and local conferences and use social media in order to raise awareness about the project, 

including the self-registration website. There are regular campaign efforts from the MND Association 

including a spread about the Register in their quarterly magazine and videos to help people self-

register. 

The advantages of collecting clinical data from already existing databases is that it reduces burden 

on healthcare professionals who may have to collect similar data for a range of different reporting 

processes and care tasks and is relatively inexpensive. It is a system that is successfully used by other 

population registers in the UK. The disadvantages are that there is less control over the format of 

data collected and it cannot be easily modified to incorporate other data collection. Although 

centralised databases have worked successfully in smaller areas such as Scotland and Northern 

Ireland, the scale of NHS services in England and Wales mean this is unlikely to be possible at 



45 
 

present. Through establishment of contributing centres in many different locations throughout 

England, Wales and Northern Ireland we have encountered variation in care processes locally. 

The use of patient reported data as an additional source of information is used by the National 

Amyotrophic Lateral Sclerosis Registry in the US and by the TREAT-NMD neuromuscular network 

(Antao and Horton, 2012; Bladen et al., 2014). As well as using a website, the US Registry collects 

clinical data from administrative datasets, a method we would like to use to supplement our data 

collection in the future. Detailed analysis of case ascertainment of the US Registry shows variation by 

race and insurance use (Kaye, Wagner, Wu, & Mehta, 2018). Although everyone is eligible to use 

NHS services in the UK we may not be counting privately treated patients who prefer not to register 

online, although this is expected to be a small number of people as NHS services provide high-quality 

multidisciplinary care. 

Using this new register, we have estimated the incidence of ALS for previously unreported areas of 

England. We estimate that age- and sex-adjusted UK incidence is 1.61/100,000 person-years and 

2.07/100,000 person-years using imputed data. The comparison of rates will focus on the imputed 

incidence because it is less likely to be an under-estimate. . The imputed estimated incidence is 

slightly lower than what has been reported in some smaller population registers in the UK, for 

example the rate of 2.52/100,000 in Devon and Cornwall, 2.1/100,000 in the South East ALS 

Register, and higher than 1.76/100,000 previously reported in Lancashire (Gowland et al., 2019; 

Imam et al., 2010; J. D. Mitchell et al., 1998).  

Incidence was reported as 1.4/100,000 person-years in Northern Ireland, standardised to the 

European standard population (Donaghy et al., 2010). Our imputed estimate standardised to the 

European standard population is higher than this at 2.26/100,000 person years. In the most recent 

report from the Scottish register the incidence rate standardised to the US 2010 census population 

was reported as 3.83/100,000 person years, our imputed estimated standardised to the same 

population is lower at 1.87/100,000 person-years, but is comparable to the 1.89/100,000 person 

years reported for Northern Europe in 2017, also standardised to the US 2010 census population 

(Leighton et al., 2019; Marin et al., 2017). 

The EURALS consortium reported average crude incidence rate of 2.16/100,000 person-years, the 

imputed crude incidence rate is similar to this, being 2.06/100,000 person-years (Logroscino et al., 

2010). Our crude imputed incidence rate is between the 2.40 and 1.49/100,000 person-years 

reported for Northern and Southern Europe in a recent global incidence study (Xu et al., 2020). 
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Our estimates are based on data from areas that have not been sampled before, so the results may 

reflect true lower incidence in these parts of the UK. It is also possible that there are areas of low 

case ascertainment in our sample. The MND Register as a federated database is relatively new, and 

the collection of data was initiated at different times by individual participating sites. Detailed 

reporting by population register in the Republic of Ireland and Scotland have shown that data quality 

and ascertainment improves over time (Leighton et al., 2019; Rooney et al., 2017; Rooney et al., 

2013). As more centres contribute data, we will be able to perform capture-recapture analysis of 

overlapping areas allowing more accurate incidence estimates. 

In the future we will estimate prevalence and lifetime risk, as well as mapping incidence compared 

to healthcare provision. Collecting large, national datasets has helped improve care and 

understanding of other diseases and we have laid the groundwork and generated the momentum to 

do this for ALS as well. 
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5.1 Abstract 

Introduction 

Susceptibility to amyotrophic lateral sclerosis (ALS) is associated with smoking in some studies, but it 

is not clear which aspect of smoking behaviour is related. Using detailed records of lifetime smoking 

we investigated the relationship between smoking and ALS in a UK population. 

Methods 

In this retrospective case-control study, smoking status was collected using environmental 

questionnaires from people diagnosed with ALS between 2008 and 2013 and from age, sex and 

geographically matched controls. Categorical measures of smoking behaviour were: smoking at time 

of survey and smoking initiation; continuous measures were intensity (cigarettes per day), duration 

(years from starting to stopping or time of survey), cigarette pack years, and comprehensive smoking 

index (CSI), a measure of lifetime smoking. We used logistic regression to assess risk of ALS with 

different combinations of smoking variables adjusted for age at survey, gender, level of education, 

smoking status and alcohol initiation, selecting the best model using the Akaike Information 

Criterion.  

Results 

There were 388 records with full smoking history. The best fitting model used CSI and smoking status 

at time of survey. We found a weak association between current smoking and risk of ALS, OR 3.63 

(95% CI 1.02-13.9) p-value 0.05. Increase in CSI score did not increase risk of ALS: OR 0.81 (95% CI 

0.58-1.11) p-value 0.2.  

Conclusion 

There is weak evidence of a positive effect of current smoking on risk of ALS which does not show 

dose-dependence with higher levels of lifetime smoking and may be a false positive result. 
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5.2 Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive 

death of motor neurons leading to relentlessly worsening weakness and death, usually from 

respiratory failure due to involvement of the diaphragm, 2-3 years after diagnosis (Brown and Al-

Chalabi, 2017; Westeneng et al., 2018). Although there is an evident genetic component, heritability 

studies indicate that environmental (and probably stochastic) factors also contribute (Al-Chalabi et 

al., 2010; Longinetti and Fang, 2019; McLaughlin et al., 2015; Smith, 2011). 

There is evidence from multiple studies that smoking is associated with ALS, but no agreement over 

which aspect of smoking behaviour is related to ALS (Alonso et al., 2010a; Alonso et al., 2010b; de 

Jong et al., 2012; F. Fang, Bellocco, Hernán, & Ye, 2006; Gallo et al., 2009; Kamel, Umbach, Munsat, 

Shefner, & Sandler, 1999; H. Wang et al., 2011; Weisskopf et al., 2004). Despite an evidence-based 

literature review that concluded that smoking can be considered a risk factor for ALS, it remains 

unclear if there is a dose-response effect, or what the biological mechanism might be (Armon, 2009). 

In addition, confounding cannot be discounted, since ALS is also associated with military service, 

education and socioeconomic status, which are also associated with smoking status (Beard and 

Kamel, 2015; Sutedja et al., 2009).  It is biologically plausible that smoking could be a risk factor 

through oxidative stress or exposure to potentially neurotoxic chemicals, and so it remains an 

attractive candidate for studies of environmental aetiology (D’Amico, Factor-Litvak, Santella, & 

Mitsumoto, 2013; Roberts, Johnson, Cudkowicz, Eum, & Weisskopf, 2015).  

The comprehensive smoking index (CSI) estimates lifetime smoking by combining duration, intensity 

and time since cessation into a score allowing all factors to be considered while avoiding issues of 

multicollinearity between smoking exposure variables (Leffondré et al., 2006). CSI has not previously 

been used to investigate the role of smoking in ALS risk.  

We therefore analysed retrospective case-control data to determine whether smoking is related to 

ALS in a UK population, investigating the relationship between different smoking variables including 

CSI and other regularly used measures, and risk of ALS. 

5.3 Methods 

5.3.1. Case-control study design 

The data were obtained from the Motor Neurone Disease Association of England, Wales and 

Northern Ireland (MNDA) Collections collected as part of the MNDA Epidemiology Study, REC 

reference 07/MRE01/57. People diagnosed with definite, probable or possible ALS according to the 

El Escorial criteria between 2008 and 2013 were included (Brooks, 1994). Three tertiary centres in 

London, Sheffield and Birmingham acted as data collection hubs but people with ALS were recruited 
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at secondary centres such as district general hospitals, therefore these are incident cases 

representative of the ALS population. General practitioners from the general practice of the person 

with ALS were asked to invite 10 healthy controls to participate in the study via post. The research 

team matched people on age (within 5 years of the person with ALS) and gender in a 1:1 ratio. 413 

participants provided informed consent, 405 undertook a telephone interview about their lifestyle 

including smoking undertaken by a trained nurse. 3 participants gave no information on smoking 

behaviour. 

5.3.2. Definition of smoking status 

Categorical measures were: smoking at time of survey (current, former, never), smoking initiation 

(ever, never). 

To define former smokers we used logistic regression modelling to compare ALS risk between 

current smokers and ex-smokers, using never smokers as a reference. Few people had recently quit 

(n=3 within one year of survey) so we grouped ex-smokers into 5-year time since cessation intervals 

up to 20 years which was aggregated to 20+. ALS risk reduced from an odds ratio of 2.02 to 0.79 for 

current smokers compared to people who had quit within 5 years so former smokers were defined 

as having given up at least a day before the survey. 

Continuous measures included: intensity (cigarettes per day), duration of smoking (years from 

starting to stopping or time of survey), pack years (intensity x duration), and CSI. The CSI is a non-

linear model of smoking exposure that combines duration of smoking, time since cessation and 

smoking intensity into a continuous score which can be used in a regression model representing 

lifetime smoking (Leffondré et al., 2006). The model involves simulation of tau and delta from the 

dataset. Delta, or half-life, reflects the exponential decay in the effect of smoking on health 

outcomes during a lifetime. Tau, or lag-time, reflects that smokers may be at a higher risk of disease 

immediately after quitting due to reverse causality. The equations for CSI are as follows: 

tsc* = max(tsc - , 0) 

dur* = max(dur + tsc - , 0) – tsc* 

comprehensive smoking index = (1 – 0.5dur*/) (0.5tsc*/) ln(int+1) 

tsc = time since cessation,  = lag time, tss = time started smoking, dur = duration of smoking 

(calculated as age-tss for people currently smoking or [age-tsc]-tss for former smokers),  = half-life, 

int = cigarettes per day. 
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5.3.3. Logistic Regression 

Data were analysed using R. Continuous demographic characteristics were compared by Student’s t-

Test or Mann-Whitney U test. Categorical variables were compared by chi-squared or Fisher’s exact 

test. The primary outcome, whether smoking increases risk of ALS, was analysed using logistic 

regression with maximum likelihood estimation. We generated 8 models with combinations of one 

categorical and one continuous measure of smoking, comparing the Akaike Information Criterion 

(AIC) of the models to assess fit (Akaike, 1998). Odds ratios were adjusted for age, educational 

attainment, gender and alcohol consumption.  

Assuming an odds ratio of 1.8, a 20% smoking rate in the control population and alpha of 0.05, we 

had 71% power with a sample size of 400 cases and controls in a 1:1 ratio. 

5.4 Results 

There were 202 cases and 200 control records available for analysis. The two groups were similar 

except for educational attainment and alcohol status. The details are shown in table 1.  

Demographic/behavioural measure Case  

(n=202) 

Control  

(n=200) 

p-value (test) 

Gender ratio, Female:Male % (n) 41:59 (85:117) 44:56 (88:112) 0.77 (Chi 

squared test) 

Educational 

attainment % (n) 

Primary school 1.5 (3) 1 (2) 0.0041 

(Fisher’s exact 

test) 

Secondary school 38.1 (77) 30.5 (61) 

College 31.2 (63) 23.5 (47) 

Technical school 8.4 (17) 12 (24) 

University 14.4 (29) 29 (58) 

Other 5.5 (12) 3.5 (7) 

Missing 0.5 (1) 0.5 (1) Not analysed 

Mean age at survey (standard deviation) 63.1 (10.53) 64.5 (10.52) 0.12 (t-test) 

Alcohol use % (n)  Alcohol status  

Never : Ever 

8:62 (17:184) 12:88 

(24:176) 

0.32 (Fisher’s 

exact test) 

Site of onset % (n) Bulbar 21.7 (44) n/a  

Spinal 73.3 (148) n/a  

Not known/recorded 5 (10) n/a  

Mean age at onset (SD)  60.7 (10.6) n/a  

Median months onset – diagnosis (IQR) 12 (13) n/a  

Median months onset – survey (IQR) 28.1 (21.5) n/a  

Table 5-1 Unadjusted comparisons of demographics and behaviour in ALS cases and controls.  
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The three centres are tertiary referral centres with about a third of the patients diagnosed at the centre, and 

the remainder diagnosed elsewhere first. SD = standard deviation, IQR = interquartile range n/a =Not 

applicable. 

The optimal CSI variables were tau = 2 and delta = 3.6. There were no differences between groups in 

unadjusted smoking behaviours, as shown in table 2.  

Smoking measure Case  Control p-

value  

Smoking 

behaviour % (n) 

Smoking initiation  

(ever smokers) 

47 

(94) 

53 

(105) 

0.27 

Smoking status  

Never : Former : Current 

47:44:9 

(94:90:18) 

53:44:3 

(105:88:7) 

0.065  

Median age smoking initiation (n) 16 +-  3 (108) 16 +-  3.5(94) 0.94  

Median cigarettes per day (n) 17 +- 10 15 +- 10 0.88  

Median duration smoking 23.5 +- 25.6 23 +- 24 0.58  

Median cigarette pack years  20+-27.27 16+-28.4 0.7  

Median comprehensive smoking index values 0.031 +- 1.85 0.0053 +- 1.36 0.33  

Table 5-2 Smoking variables and crude comparisons.  

Chi squared tests were used for categorical variables and Mann-Whitney U for continuous variables as all were 

non-normally distributed. 6 people were missing duration information, 4 missing smoking intensity. Records 

with missing data were excluded from analysis. 

388 records had full smoking history available for logistic regression analysis. Table 3 gives the 

results of the best fitting logistic regression model which included the CSI and smoking status at time 

of survey with AIC 543.77. The highest AIC, representing the worst fitting model, was for smoking 

initiation and number of cigarettes per day at 553.23. An increase in the value of CSI did not increase 

the risk of ALS: OR 0.81 (95% CI 0.57-1.11) p-value 0.2. Current smoking increased the risk of ALS, OR 

3.62 (95% CI 1.02-13.9) p-value=0.05, a Bonferroni correction shows that this is likely a false positive 

result because of multiple testing.  

Variable Odds ratio Lower 

CI 

Upper CI P value 

Smoking 

status 

Current smoker 3.62 1.02 13.8 0.05 

Former smoker 1.08 0.67 1.74 0.74 

Comprehensive smoking index 0.81 0.58 1.11 0.2 

Age 0.98 0.96 1 0.07 
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Ever drinker 1.33 0.65 2.75 0.43 

Male 1.05 0.68 1.63 0.83 

Education 

level 

Primary School 2 0.05 78.4 0.68 

Secondary School 1.27 0.05 33.2 0.87 

Technical School 0.73 0.03 19.4 0.83 

College 1.32 0.05 34.4 0.85 

University 0.44 0.02 11.7 0.58 

Other 1.6 0.06 45.7 0.75 

Table 5-3 Best fitting logistic regression model for smoking and risk of ALS. 

 

Figure 5-1 Comprehensive smoking index distributions by case control status 

a) density plot of CSI value by case control status b) box plot of CSI value by smoking status at time 

of survey, points coloured by case control status. Both graphs are in ever smokers only. 

 

5.5 Discussion 

We found a weak association between current smoking and risk of ALS using traditional 

epidemiology methods to explore association. We report an uncorrected p-value of 0.05, and several 

models tested for fit, suggesting that this is in fact a false positive result. We also found that using 

CSI to measure lifetime smoking exposure resulted in a better fitting model for our data than using 

cigarette pack years, but we found no evidence of a dose-dependent response of ALS risk to 

smoking. 
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Our results are similar to those from a study conducted in the Netherlands which found current 

smoking to be associated with ALS in an incident cohort but no strong dose-dependent relationship 

(de Jong et al., 2012). The strength of association between smoking and ALS was reported as weak in 

a meta-analysis of case-control and cohort studies, with a higher effect in women (Alonso et al., 

2010a). This weakness may be due to the reliance on prevalent and clinic cohorts which would 

under-represent smokers because their survival is shorter (de Jong et al., 2012).  

A pooled analysis of prospective studies found that there was an increased risk of ALS in former and 

current smokers (H. Wang et al., 2011). Two large prospective cohort studies included in the pooled 

analysis were originally set up as prospective studies into environmental exposures and cancer risk 

(Gallo et al., 2009; Weisskopf et al., 2004). People with ALS were identified from death certificates, 

which may over-represent people who smoke as their survival is shorter. 

The CSI is more useful than cigarette pack years to investigate dose-dependency, as it formally 

considers the decreased risk of disease after smoking cessation. The CSI had a bimodal distribution 

of smoking exposure in both cases and controls, corresponding to smoking at time of survey. The 

mean CSI of current smokers is slightly higher in cases than controls and so dose-dependency in 

current smokers should be investigated further. 

Median age of smoking initiation was around the late teens in both groups, and it has been reported 

that frontotemporal dementia, a behavioural change that occurs in some people with ALS is not 

associated with smoking behaviours, so association is unlikely to reflect reverse causality (Tremolizzo 

et al., 2017).  

The strengths of this study are that we have detailed environmental data on incident cases of ALS 

and controls. A limitation is the sample size which means it is only powered to detect relatively large 

effect sizes with odds ratios of the order of 1.8 or higher. Retrospective case-control studies 

generally suffer from recall bias. This study may suffer the effect of two opposing sample biases: 

people in an environmental study of lifestyle may be more likely to smoke heavily, and some people 

in this ALS study  attended specialist clinics so may be less likely to smoke. Additionally, we do not 

know how many controls who were contacted declined to participate, so the control population may 

be biased. There were no current smokers in the controls recruited in London, although a subgroup 

analysis in the other two areas show that odds ratios for current smoking are consistent between 

the remaining areas. 

We found that people with ALS were less likely to drink alcohol, but our survey responses do not 

support a protective relationship as ALS was cited as the reason for not drinking in most cases. 
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Despite controlling for drinking and educational status, it is not possible to completely rule out the 

effects of confounding.  

In this study of smoking and ALS, we do not find strong evidence to support smoking as a risk factor, 

even using lifetime smoking exposure as measured by the CSI. 
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Appendix for Chapter 5 – Data collection questions and options for lifestyle and socioeconomic 

covariates 

Data were collected using paper forms and entered into a Microsoft Access database. 

Tobacco history questions Tobacco History options 

Q34. Frequent cigarette smoker? Yes/No 

Q35. Age started smoking Integer 

Q36. Still smoke Yes/No 

Q36a. Age stopped smoking Integer 

Q37. Other periods stopped Yes/No/Don’t know 

Q37a. Years not smoking Integer 

Q38. Cigarettes per day Integer 

Alcohol consumption questions Lifetime Alcohol Consumption options 

Q27. Drunk alcohol in 6 month period Yes/No/Don’t know 

Q28. Age started drinking Integer 

Q29. Still drink alcohol Yes/No 

Q30. Age stopped drinking Integer 

Q31. Reason for stopping drinking Free text 

Q32. Frequency of drinking (amount) Integer 

Q32. Frequency of drinking (per?) Day/Month/Year 

Q33. Number of drinks per session Integer 

sr_sociobackground Socio-economic Background options 

Q19. Level of Education 
Primary/Secondary/Technical 
School/College/University/Other 

Table 5-4 Questions as worded on questionnaires for variables analysed 
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6.1 Abstract 

Objective: Smoking has been widely studied as a susceptibility factor for ALS, but results are 

conflicting and at risk of confounding bias. We used the results of recently published large genome-

wide association studies and Mendelian randomisation methods to reduce confounding, to assess 

the relationship between smoking and ALS.  

Methods: Two genome-wide association studies investigating lifetime smoking (n=463,003) and ever 

smoking (n=1,232,091) were identified and used to define instrumental variables for smoking. A 

genome-wide association study of ALS (20,806 cases; 59,804 controls) was used as the outcome for 

inverse variance weighted Mendelian randomisation, and four other Mendelian randomisation 

methods, to test whether smoking is causal for ALS. Analyses were bi-directional to assess reverse 

causality. 

Results: There was no strong evidence for a causal or reverse causal relationship between smoking 

and ALS. The results of Mendelian randomisation using the inverse variance weighted method were: 

lifetime smoking odds ratio 0.94 (95% confidence intervals 0.74,1.19), p-value 0.59; ever smoking 

odds ratio 1.10 (95% CI 1,1.23), p-value 0.05. 

Conclusions: Using multiple methods, large sample sizes, and sensitivity analyses, we find no 

evidence with Mendelian randomisation techniques that smoking causes ALS. Other smoking 

phenotypes, such as current smoking, may be suitable for future Mendelian randomisation studies 
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6.2 Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons, resulting in 

progressive paralysis of skeletal and bulbar muscles, with death from neuromuscular respiratory 

failure typically occurring within two to three years of symptom onset (Brown and Al-Chalabi, 2017). 

ALS has an incidence of 1-2 per 100,000 person-years and a lifetime risk of about 1 in 300 (Chio et 

al., 2013; C. A. Johnston et al., 2006). It has a peak age of onset of 58 and affects men slightly more 

frequently than women (Chio et al., 2013). In 5% there is a family history of ALS in a first degree 

relative, but twin and other studies have shown that apparently sporadic ALS has a heritability of 

60%, leaving the possibility that up to 40% of the contribution could be environmental (Al-Chalabi et 

al., 2010). There are currently no agreed environmental risk factors for ALS, although smoking has 

been widely studied with mixed results (Alonso et al., 2010a; Alonso et al., 2010b; de Jong et al., 

2012; Pamphlett and Ward, 2012; H. Wang et al., 2011; Yu et al., 2014).  

Summary statistics from genome-wide association studies allow us to use genetic predisposition for 

environmental risk factors to investigate causality, using Mendelian randomisation (Davey Smith and 

Ebrahim, 2003; Richardson, Harrison, Hemani, & Davey Smith, 2019). Mendelian randomisation is 

based on Mendel’s laws of inheritance, allowing genotype to be used as an instrumental variable 

when studying the effect of an environmental exposure on an outcome (Lawlor, Harbord, Sterne, 

Timpson, & Davey Smith, 2008). Genotype is considerably less likely to be confounded with other 

exposures that may bias the results of observational studies (Davey Smith et al., 2007). Mendelian 

randomisation can also help to reduce bias from reverse causation, because the genetic variants one 

is born with are unchanged through a lifetime. This means the outcome, for example ALS, cannot 

change an individual’s genetic predisposition for the exposure, for example smoking. In population-

based genetic association studies, as opposed to parent-offspring or between-sibling studies, the 

randomisation is only approximate, and horizontal pleiotropy (where the genetic variants being 

tested increase the risk of both the environmental exposure and of ALS) can in any setting distort 

findings.  A series of sensitivity analyses are available that can uncover such biases (Davey Smith and 

Ebrahim, 2003; Davey Smith and Hemani, 2014; Davies et al., 2019).  

Mendelian randomisation analysis has previously been used to assess the causal relationship 

between smoking and ALS with conflicting results (Bandres‐Ciga et al., 2019; Zhan and Fang, 2019). 

Since then, updated genome-wide association studies for smoking and ALS have been published, 

with much larger numbers, allowing a new analysis with the advantages of sufficient power and 

updated methods. We performed two-sample Mendelian randomisation analyses to assess whether 
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there was evidence for smoking being causal for ALS and, as a sensitivity analysis, in the other 

direction to test if ALS liability might be causal for smoking. 

6.3 Methods 

Two-sample Mendelian randomisation analysis enables the summary statistics of genome-wide 

association studies to be used to estimate the causal effect of an exposure on an outcome based on 

the effect sizes of genetic variations on the exposure and on the outcome in the separate samples 

(Pierce and Burgess, 2013). The effect estimate from a Mendelian randomisation study is an 

estimation of the true causal effect of an exposure on the outcome of interest. In the case of ALS 

diagnosis, this will be expressed as an odds ratio. 

We defined an instrument for lifetime smoking index, a continuous measure of smoking exposure 

from a genome-wide association study of 463,033 people, with 126 independently associated single 

nucleotide polymorphisms (SNPs) of genome-wide significance that explained 0.31% of the variance 

in lifetime smoking (Wootton et al., 2018). We also defined an instrument for ‘Ever smoking’ a 

binary measure of smoking exposure from a genome-wide association study of 1,232,091 

individuals, with 378 genome-wide significant SNPs accounting for 4% of variance (M. Liu et al., 

2019). The variance explained in both studies is in line with genome-wide association studies that 

have been used to assess the causality of smoking for other conditions. 

More details of how the phenotypes were defined can be found in the supplementary file. 

We used summary data from the most recently published genome-wide association study for ALS 

(Nicolas et al., 2018). The study reported 10 SNPs to be independently associated with risk of ALS, in 

a population of 80,610 (20,806 cases and 59,804 controls).  

6.3.1. Statistical Analyses 

To perform the Mendelian randomisation analysis, we used the ‘TwoSampleMR’ package, an R 

package and genome-wide association study summary data library, developed as a platform for 

performing Mendelian randomisation tests and sensitivity analyses (Hemani et al., 2018b).  

We applied five different Mendelian randomisation methods: inverse-variance weighted, MR Egger, 

weighted median, weighted mode, and MR using robust associated profile score (MR RAPS).  Each of 

these methods make different assumptions about pleiotropy and instrument strength so a 

consistent effect across the multiple methods gives us the strongest evidence for causality (Hemani, 

Bowden, & Davey Smith, 2018a). For details of these and other sensitivity analyses, please see 

supplementary materials. 
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As an additional, supportive analysis, we defined genetic risk scores for smoking and used the UK 

Biobank data to test whether genetic risk score for smoking predicts ALS case control status. Details 

of the methods can be found in the supplementary file under the heading ‘Genetic risk score 

analysis’. 

6.4 Results 

Details of sensitivity analyses performed can be found in supplementary information (tables S1-S5). 

All instruments passed sensitivity analyses except for: heterogeneity tested using Cochran’s Q (table 

S3); and a minority of SNPs did not pass Steiger filtering analysis (table S4), however re-running the 

Mendelian randomisation analyses without these SNPs did not change the results (table S5). After 

quality control, the number of SNPs making up each instrument were n=119 for lifetime smoking 

exposure and n=353 for ever smoking. Genome-wide association study summary statistics for each 

SNP making up the instruments are found in supplementary file 2. Graphs showing scatter plots of 

effect sizes of SNP on exposure and outcome variable, leave-one-out analyses and single SNP 

analyses are shown in figures S1-S12. 

The results of the Mendelian randomisation analyses for each instrumental variable are shown in 

figure 1. We did not find strong evidence that lifetime smoking or ever smoking were causal for ALS. 

The result of the inverse variance weighted method for lifetime smoking index was odds ratio 0.94 

(95% confidence intervals 0.74, 1.19) p-value = 0.59, and for ever smoking, OR 1.10 (95%CI 

1.00,1.23) p-value=0.05. We did not find that ALS liability was causal of smoking status (table S6). 

Odds ratios tended to be >1 for the instruments testing if having ever smoked was associated with 

ALS, and <1 for the lifetime smoking instrument.  A forest plot of results is shown in figure 1.  
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Figure 6-1 Forest plot of Mendelian randomisation analyses 

Using genetic risk score analysis we found no association between smoking and ALS case control 

status (table S7). 

6.5 Discussion 

Using instruments defined from recently published, large-scale genome-wide association studies, 

and numerous Mendelian randomisation methodologies and sensitivity analyses, we found no 

evidence that smoking causes ALS. Our result is supported by a lack of association found when 

performing genetic risk score analysis. We also found no relationship between genetic liability to ALS 

and likelihood of smoking, suggesting that reverse causality is not driving the association between 

smoking and risk of ALS reported in some epidemiological studies. 

Two previous studies have used 2-sample Mendelian randomisation analysis to assess the causal 

relationship between smoking and ALS. One reported a positive association between ever smoking 

and ALS using inverse variance weighted Mendelian randomisation analysis, but the result was not 

replicated with other Mendelian randomisation analyses and no other sensitivity analyses were 

reported. The ever smoking instrument was defined from (the Social Science Genetic Association 

Consortium (SSGAC)) genome-wide association study, which has a smaller sample size than GSCAN. 

The outcome SNPs were from an ALS genome-wide association study published previously to the 

one used here (van Rheenen et al., 2016).  With a larger genome-wide association study we replicate 

the inverse variance weighted result with borderline significance, p-value 0.05, (figure 1) but do not 

consider this evidence of causality in the context of the results of the other Mendelian 

randomisation analyses presented. The other Mendelian randomisation study found no association 

using smoking instruments from a smaller smoking genome-wide association study and the same 

ALS genome-wide association study used here (Bandres‐Ciga et al., 2019; Zhan and Fang, 2019). 

Our study is necessary to analyse the larger genome-wide association studies available, and to 

report all sensitivity analyses needed to interpret Mendelian randomisation results. 

Large numbers of SNPs and high F statistic values mean the genetic instruments had enough 

strength to detect associations using the inverse variance weighted method (Burgess and Thompson, 

2011). The I2 statistic quantifies regression dilution, which can be caused by measurement error 

(Bowden et al., 2016b). When using linear regression analysis (as is the case with MR Egger), 

measurement error in the exposure variable will cause the effect size to tend to the null, and in the 

outcome will reduce statistical power (K. Liu, 1988). All smoking instruments had I2 values of <0.9, 

indicating some regression dilution. In cases where I2 >0.6 SIMEX modelling was undertaken to 
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estimate regression values and the results support the findings from other Mendelian randomisation 

models used. 

For Mendelian randomisation to be valid, the genetic variants used as instrumental variables must 

mediate an effect only through the exposure of interest (the risk of ALS is only increased due to 

smoking, not through another effect of the variants), i.e. there should be no horizontal pleiotropy. A 

limitation of this study is that we are unable to fully discount this pleiotropy using statistical 

techniques. All genetic instruments tested positive for heterogeneity using Cochran’s Q statistic, 

which may be caused by pleiotropy (Bowden, Hemani, & Davey Smith, 2018).  MR Egger intercept 

analysis did not find evidence to support the presence of directional pleiotropy. However, low I2 

values may invalidate the intercept estimation from MR Egger regression.  A previous study used 

linkage disequilibrium regression score analysis and found that exposure to tobacco smoke in the 

home and being a light smoker (<100 cigarettes in a lifetime) are genetically related to ALS, which 

may support pleiotropy (Bandres‐Ciga et al., 2019). Horizontal pleiotropy can cause false positives 

and false negatives. We used 5 Mendelian randomisation models that vary in their assumptions of 

pleiotropy to try account for these potential errors, although future models of Mendelian 

randomisation and how they account for pleiotropy may be better suited to identifying association 

between ALS and smoking.  Use of a binary outcome measure (which is the case in this study) or 

otherwise invalidated modelling assumptions may cause heterogeneity tests to produce positive 

results(Hemani et al., 2018a).  

Inverse variance weighted method will estimate the true causal effect of an exposure if all 

Mendelian randomisation assumptions hold; if not, other methods have been developed (Bowden, 

Davey Smith, & Burgess, 2015; Bowden, Davey Smith, Haycock, & Burgess, 2016a; Bowden et al., 

2016b; Hartwig, Davey Smith, & Bowden, 2017; Kang, Zhang, Cai, & Small, 2016). It is suggested best 

practice to use multiple Mendelian randomisation methods to check for consistency of estimated 

effect (Hemani et al., 2018a). Following this approach, we find a consistent lack of relationship 

between smoking and ALS. However, UK Biobank data contribute to the study cohorts of the lifetime 

smoking index and ever smoking instrument so the exposure phenotype populations are not 

completely independent. 

The advantage of the instrumental variables we used is that they can be used in an unstratified 

population (we do not need to know the smoking status of people in the outcome genome-wide 

association study)(Wootton et al., 2018). However, ever smoking is not consistently associated with 

ALS in epidemiology studies. A meta-analysis of case-control and cohort studies did not find strong 

supportive evidence of risk of ALS in people who had ever smoked (OR 1.12, 95%CI 0.98, 1.27) 
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(Alonso et al., 2010a). Since then an association has been reported in some studies but not others 

(Alonso et al., 2010b; H. Wang et al., 2011). Lifetime smoking index can be used to assess dose-

dependency, important contributory evidence to showing causality. Evidence of a dose-dependent 

effect of smoking on ALS risk is rarely shown, although a dose-dependent effect of reduced risk of 

ALS with increased time since smoking cessation when comparing former to current smokers has 

recently been reported (Peters et al., 2019). The only ALS risk study to use the lifetime smoking 

index did not find an association (unpublished data). 

The most powerful Mendelian randomisation evidence on a potential effect of heaviness of smoking 

on ALS risk would require individual level data on a large sample, in which the CHRNA5 variant – 

related to heaviness of smoking amongst smokers – can be related to ALS risk by strata of smoking 

behaviour (Millard, Munafo, Tilling, Wootton, & Davey Smith, 2019). There is currently no 

adequately powered study allowing such analyses. 

Triangulation of multiple strands of epidemiological evidence makes findings more robust (Lawlor et 

al., 2017). Since the 1960’s, smoking rates in many countries globally have been falling. It may be 

possible in the future to detect decreased rates of ALS in the population if smoking is a causal risk 

factor. 

Using robust methods to detect association and estimate causal effects with summary statistics from 

genome-wide association studies we do not find strong evidence to support a relationship between 

smoking and ALS.  
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6.11 Supplementary file 

6.11.1. Smoking phenotypes 

We investigated whether smoking is causal of ALS using two smoking phenotypes: the lifetime 

smoking index, a continuous measure of smoking exposure; and ever smoking, a binary measure of 

smoking exposure.  

The lifetime smoking index is a model that combines multiple aspects of smoking behaviour 

including smoking initiation, heaviness, duration and cessation with two constants: tau, the levelling 

off of risk with increased smoking exposure; and delta, the lag in drop of disease risk after cessation 

due to reverse causality (Leffondré et al., 2006). The lifetime smoking index model can be used to 

provide a lifetime smoking exposure score per individual that can be used in statistical models. The 

UK Biobank has been used to develop an instrumental variable for lifetime smoking index which has 

been validated with positive control MR studies in diseases in which smoking is established as a risk 

factor such as coronary heart disease (Wootton et al., 2018).  

Ever smoking, was defined by Genome-wide association study and Sequencing Consortium of 

Alcohol and Nicotine use (GSCAN) as those people who had ever reported; 1) being a regular smoker 
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in their life, 2) having smoked over 100 cigarettes over the course of your life or 3) have you ever 

smoked every day for at least a month? (M. Liu et al., 2019).  

6.11.2. Instrument strength  

Instrument strength (a measure of how related the SNPs are to the exposure) can be quantified 

using the F statistic, and regression dilution as a result of random error in the SNP-exposure effects 

can be summarised using the I2
GX

 statistic(Bowden et al., 2016b). The results of each test are detailed 

in table S1. 

Smoking causal for ALS 

Instrument F statistic I2
GX unweighted I2

GX weighted 

Lifetime smoking index 44.0 0.64 0.42 

Ever smoking 44.9 0.60 0.47 

ALS liability causal for smoking 

Instrument F statistic I2
GX unweighted I2

GX weighted 

Lifetime smoking index 50.4 0.60 0.47 

Ever smoking 50.4 0.91 0.71 

Supplementary table 6-1 mean F statistic of each SNP, unweighted and weighted I2
GX statistics for MR analyses in both 

directions.  

6.11.3. Pleiotropy tests 

Cochran’s Q statistic is used to detect heterogeneity which can be caused by horizontal pleiotropy, 

the results of this test can be found in table S2 (Bowden et al., 2018). The MR Egger intercept test to 

estimates the bias from directional pleiotropy and results are shown in table S3 (Bowden et al., 

2015). 

Smoking causal for ALS 

Instrument (exposure) Method Q Q_df Q_pval 

Lifetime smoking index MR Egger 185.62 117 5.55E-05 

Inverse variance weighted 187.77 118 4.64E-05 

Rucker’s Q 2.16 1 1.42E-01 

Ever smoking MR Egger 467.64 351 2.96E-05 

Inverse variance weighted 469.53 352 2.68E-05 

Rucker’s Q 1.89 1 1.70E-01 

ALS liability causal for smoking 

Instrument (outcome) Method Q Q_df Q_pval 
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Lifetime smoking index MR Egger 7.89 7 0.34 

Inverse variance weighted 11.40 8 0.18 

Rucker’s Q 3.51 1 0.06 

Ever smoking MR Egger 9.73 7 0.20 

Inverse variance weighted 10.77 8 0.21 

Rucker’s Q 1.04 1 0.31 

Supplementary table 6-2 heterogeneity analyses using Cochran Q statistic for MR analyses in both directions  

Smoking causal for ALS 

Instrument MR Egger intercept SE p-value 

Lifetime smoking index 0.008 0.007 0.25 

Ever smoking 0.005 0.004 0.24 

ALS liability causal for smoking 

Instrument MR Egger intercept SE p-value 

Lifetime smoking index -0.003 0.002 0.12 

Ever smoking -0.002 0.003 0.42 

Supplementary table 6-3 pleiotropy tests using MR Egger intercept  

6.11.4. SNP filtering 

Steiger filtering is used to check for reverse causation by testing whether the association between 

instrumental variable SNPs and the MR exposure measure is greater than the association between 

those same SNPs and the MR outcome measure (Hemani, Tilling, & Davey Smith, 2017). The results 

of this test are shown in table S4. 

Smoking causal for ALS 

Instrument Total SNPs Unable to find LD 

proxy 

Palindromic SNPs 

with intermediate 

frequencies 

Failed Steiger 

filtering 

Lifetime smoking index 126 0 7 4 

Ever smoking 378 5 20 52 

ALS liability causal of smoking 

ALS and lifetime smoking 10 1 0 0 

ALS and ever smoking 10 1 0 0 

Supplementary table 6-4 Numbers of SNPs that were removed from instruments for either not finding a match in the 

outcome dataset, being ambiguous matches, as well as those not passing Steiger filtering. 
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Supplementary table 6-5 Results of MR analyses with only variants passing Steiger filtering. 

6.11.5. Mendelian Randomisation analyses 

For results of a Mendelian randomisation analysis to be valid, three assumptions must be satisfied 

(Lawlor et al., 2008). One assumption is that the instrument, in this case SNPs, used to assess the 

relationship between the exposure and outcome must be strongly associated with the exposure, in 

this case smoking. Another assumption is that SNPs are not confounded with factors that also 

confound the exposure, for example, that SNPs are not confounded with a factor such as 

socioeconomic status, also associated with smoking. The final assumption is that the effect of the 

SNPs on the outcome is only through their effect on the exposure. If the SNPs affect the outcome 

through another effect of the gene (in this case if the SNPs cause ALS in some other way not just 

through increased smoking) this is referred to as horizontal pleiotropy. 

Inverse variance weighted Mendelian randomisation is a meta-analysis of the ratio of SNP-exposure 

effects on SNP-outcome effects weighted by the inverse variance of the outcome effects (Johnson, 

2012). Random effects Inverse variance weighted Mendelian randomisation will return an unbiased 

estimate of the effect of the exposure on the outcome if model assumptions are met and  the 

direction of effect of horizonal pleiotropy is balanced; it is the default inverse variance weighted 

method in the TwoSampleMR package (Bowden et al., 2017). We used this as our main analysis with 

each of the other methods providing a sensitivity analysis.  

MR Egger analysis regresses SNP-exposure effects on SNP-outcome effects but does not constrain 

the intercept to pass through the origin as is the case in inverse variance weighted Mendelian 

randomisation (Bowden et al., 2016b). Not constraining the intercept to pass through the origin 

means the intercept from MR Egger can be used to estimate bias from directional pleiotropy (other 

effects of the SNPs than just those on the exposure of interest) and that the slope estimate can still 

Exposure 

Instrument 
Method N SNPs P-value 

Odds 

ratio 
95% CI 

Smoking causal for ALS 

Lifetime smoking 

index 

Inverse variance weighted 115 0.51 0.92 0.75, 1.16 

Weighted median 115 0.14 0.81 0.61, 1.07 

Weighted mode 115 0.28 0.71 0.39, 1.32 

Robust adjusted profile score (RAPS) 115 0.33 0.89 0.71, 1.12 

Ever smoking 

Inverse variance weighted 301 0.17 1.07 0.97,1.17 

Weighted median 301 0.58 1.04 0.91,1.19 

Weighted mode 301 0.67 0.90 0.56,1.44 

Robust adjusted profile score (RAPS) 301 0.05 1.07 0.97,1.18 
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be valid in the presence of unbalanced pleiotropy. We used simulation extrapolation (SIMEX) 

corrections to MR Egger estimates where there was evidence of regression dilution (low I2
GX value, 

see table S1) (Bowden et al., 2016b).  

The weighted median method assumes half of all SNPs are valid instruments and more heavily 

weights the SNPs that are more strongly associated with the exposure (Bowden et al., 2016a).  

The weighted mode method clusters SNPs into groups and estimates causal effect from the largest 

group, weighting each SNPs contribution to the clustering by inverse variance of its outcome 

(Hartwig et al., 2017).  

MR RAPS penalises SNPs based on their individual estimated pleiotropic effect calculated using a 

robust adjusted profile score (Zhao, Wang, Hemani, Bowden, & Small, 2018).  

The results of the Mendelian randomisation analyses in both directions are found in table S6. 
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Supplementary table 6-6 Table S6 results of MR analysis in both directions 

  

Exposure 

Instrument 
Method N SNPs P-value 

Odds 

ratio 
95% CI 

Smoking causal for ALS 

Lifetime smoking 

index 

Inverse variance weighted 119 0.59 0.94 0.74, 1.19 

Weighted median 119 0.15 0.81 0.60, 1.08 

Weighted mode 119 0.25 0.72 0.41, 1.26 

Robust adjusted profile score (RAPS) 119 0.36 0.89 0.70, 1.14 

MR-Egger, SIMEX - unweighted 119 0.09 0.47 0.19,1.12 

Ever smoking 

Inverse variance weighted 353 0.05 1.10 1.00,1.23 

Weighted median 353 0.39 1.06 0.93,1.21 

Weighted mode 353 0.81 0.94 0.60,1.49 

Robust adjusted profile score (RAPS) 353 0.04 1.11 1.00,1.23 

MR-Egger, SIMEX - unweighted 353 0.18 1.47 1.04,2.09 

ALS liability causal for smoking 

Outcome 

Instrument 
method N SNPs p-value 

Odds 

ratio 
95% CI 

Lifetime 

smoking index 

Inverse variance weighted 9 0.99 1.00 0.99, 1.01 

Weighted median 9 0.88 1.00 0.99, 1.01 

Weighted mode 9 0.79 1.00 0.99, 1.02 

Robust adjusted profile score (RAPS) 9 0.63 1.00 0.99, 1.02 

MR-Egger, SIMEX - unweighted 9 0.98 1.00 0.97,1.03 

Ever smoking 

Inverse variance weighted 9 0.71 1.00 0.99,1.02 

Weighted median 9 0.83 1.00 0.98,1.01 

Weighted mode 9 0.59 0.99 0.97,1.04 

Robust adjusted profile score (RAPS) 9 0.93 1.00 0.99,1.01 

MR-Egger 9 0.38 1.01 0.98,1.05 
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6.11.6. Genetic risk score analysis 

Genetic risk score analysis uses genome-wide association summary statistics to create individual 

genetic risk scores for a trait that can be used to predict development of the same trait in different 

people or can be correlated with development of other traits. P-value thresholds for included SNPs 

can be relaxed compared to those used to define genetic instruments in Mendelian randomisation, 

and typically genetic risk score analysis is used as a first step to generate hypotheses for causality that 

can be more rigorously tested using Mendelian randomisation (Richardson et al., 2019). Smoking has 

already been associated with ALS in some observational literature so in this case we have used genetic 

risk score to check for concordance with Mendelian randomisation analysis.  

We generated genetic risk scores for lifetime smoking index and ever smoking using the SNPs reported 

as reaching genome-wide significance from the GWASs defined above and used them to predict ALS 

in data from UK Biobank (194 ALS cases; 384,970 controls). Lifetime smoking index score was derived 

using 126 SNPs and GSCAN ever smoking score using 378 SNPs. To test bi-directionality, the 

association between a genetic risk score for ALS and various smoking variables in UK Biobank was 

assessed (385,164 individuals with available genotype and phenotype data). For the 135 variants 

associated with ALS (threshold for association with ALS p < 5x10-5), 128 SNPs were used to generate a 

genetic risk score for ALS (Nicolas et al., 2018). Smoking variables included participant responses to 

having “ever smoked” (UK Biobank number 20160), “number of cigarettes currently smoked daily” 

(UK Biobank number 3456), “number of cigarettes previously smoked daily” (UK Biobank 2887), 

“current tobacco smoking” (UK Biobank number 1239) and “past tobacco smoking” (UK Biobank 

number 1249).  

All SNPs were ensured to be independent of each other (r2 < 0.001) using genotype data from 

European individuals (CEU) from phase 3 of the 1000 Genomes Project as a reference. For SNPs that 

were not present in the UK Biobank genotype data, a suitable proxy was selected (r2 > 0.8). The risk 

score was weighted by the effect size (beta) of the reported effect allele and normalised to have a 

mean of zero and a standard deviation of one. Individuals with evidence of genetic relatedness or who 

were not of European ancestry were excluded, as well as those who had withdrawn consent. Further 

QC measures that have been applied to the UK Biobank genetic data set have been described 

previously (R. Mitchell, Hemani, G., Dudding, T., Corbin, L., Harrison, S., Paternoster, L. , 2018).  

Regression analyses were completed in R, where linear regression was applied to analyse continuous 

traits, logistic regression for binary traits and ordinal logistic regression for ordered categorical traits. 

All analyses were adjusted for age, sex, 10 principal components of ancestry and the genotyping chip 

used to generate the genetic data for participants. Results of GRS analyses are found in table S7. 
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Smoking GRS OR 95% CI Beta SE P N Model AUC 

Directionality: Smoking causal for ALS 

Lifetime smoking index 1.07 0.93, 1.23 0.07 0.07 0.34 385,164 OLR 0.66 

Ever smoking 0.96 0.84, 1.11 -0.04 0.07 0.59 385,164 OLR 0.66 

Directionality: ALS liability causal for smoking 

Ever smoked 1.00 0.99, 1.01 0.00 0.003 0.91 383,828 GLM 0.58 

Current tobacco smoking 1.01 1.00, 1.02 0.01 0.01 0.12 384,917 OLR n/a 

Past tobacco smoking 1.00 0.99, 1.01 0.00 0.003 0.82 356,231 OLR n/a 

Number of cigarettes currently 

smoked daily (current cigarette 

smokers) n/a n/a 0.03 0.05 0.60 27,226 LM 

n/a 

Number of cigarettes previously 

smoked daily n/a n/a -0.03 0.03 0.37 91,492 LM 

n/a 

Supplementary table 6-7 Bi-directional genetic risk score analysis. OLR: ordinal logistic regression, GLM: generalized linear 

model, LM: linear model. AUC: area under the curve 
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6.11.7. Scatter plots 

 

Supplementary figure 6-1 Scatter plot of SNP effect on Lifetime smoking index and ALS 
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Supplementary figure 6-2 Scatterplot of SNP effect on ever smoking and ALS 

  

 

 

SNP effect on ever smoking 



75 
 

 

Supplementary figure 6-3 Scatter plot of SNP effect on ALS and lifetime smoking 
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Supplementary figure 6-4 Scatter plot of SNP effects in analysis of ALS liability being causal of ever smoking 
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6.11.8. Individual SNP plots  

Individual SNP plots show the results of single SNP analyses compared to the methods using multiple 

SNPs. 

 

 

Supplementary figure 6-5 Single SNP analysis of lifetime smoking index and ALS 
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Supplementary figure 6-6 Single SNP analysis ever smoking and ALS 
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Supplementary figure 6-7 Single SNP analysis of ALS liability and lifetime smoking index 
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Supplementary figure 6-8 Single SNP analysis of ALS libaility ever smoking 
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6.11.9. Leave one out analyses 

In this analysis the rows represent MR analysis of smoking on ALS using all of the SNPs available in 

each instrument except for the SNP listed on the y-axis. The point shows the effect size of the 

analysis with that SNP removed and the line represents the standard error. 
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Supplementary figure 6-9 Leave one out analyis of lifetime smoking index on ALS 
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Supplementary figure 6-10 Leave one out analyis of ever smoking on ALS 
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Supplementary figure 6-11 Leave one out analysis of ALS liability on CSI 



85 
 

 

Supplementary figure 6-12 Leave one out analysis of ALS liabilty on ever smoking 
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Chapter 7 Analysing phenotype by variant in people with SOD1 ALS 

7.1 Introduction 

In 1993, variants in the gene superoxide dismutase 1 (SOD1) were identified as a causal factor in 

people with ALS through linkage analysis of 13 different families with 11 different SOD1 missense 

mutations (Rosen et al., 1993). SOD1 variants are reported in 15% of people with familial ALS in 

European populations and 30% of people with familial ALS in Asian populations, and 1-2% of people 

with sporadic ALS in both populations (Zou et al., 2017). Since the discovery that variants in SOD1 

can cause an ALS phenotype, over 160 variants throughout the gene have been reported 

(https://alsod.ac.uk). It is generally assumed all variants reported in SOD1 are causal variants, with a 

few exceptions such as the variant N20S (Vela et al., 2012). 

Several clinical and demographic factors have been associated with differences in disease 

progression in ALS. In the ENCALS model of survival prediction the site of onset, age of onset, 

presence of a C9orf72 expansion variant, diagnostic category, lung capacity at diagnosis and ALSFRS-

R score at diagnosis were all shown to be predictive of ALS survival – although this was a study to 

optimise a predictive model of ALS rather than determine which variables cause shorter survival 

(Westeneng et al., 2018). Within the SOD1 ALS population, certain variants are associated with 

atypical disease progression. For example, the A5V variant is associated with shorter survival and the 

D91A variant is associated with longer survival (Bali et al., 2017; Parton et al., 2002). Demographic 

factors also correlate with survival, for example men with ALS and SOD1 variants have shorter 

survival than women (Tang, Ma, Liu, Chen, & Fan, 2019).  

SOD1 is commonly expressed in cells of the central nervous system, making up 1-2% of total soluble 

protein. SOD1 is a cytosolic and mitochondrial antioxidant enzyme, which catalyses the dismutation 

of superoxide radicals. It may have other roles such as an endoplasmic reticulum activating zinc 

sensor, a transcription factor and an autophagy regulator (Bunton-Stasyshyn, Saccon, Fratta, & 

Fisher, 2014). The wild-type SOD1 protein goes through a complex process to maturation, the final 

step of which is homodimerization and there are many steps along the way that could be disrupted 

and lead to misfolding. SOD1 aggregates are found in post-mortem CNS tissue of people with SOD1 

ALS and the aggregates are thought to protect against the toxic effects of soluble misfolded SOD1 

protein (Gill et al., 2019). Other than the dimer interface, the main functional domains of the 

enzyme are the electrostatic loop and the zinc binding domain (Galaleldeen et al., 2009). The effect 

of the change in amino acid by codon location on SOD1 ALS phenotype in a large dataset has not 

been previously investigated.  
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In this study we aimed to collect a large, international dataset of people with ALS that have a 

recorded SOD1 variant to inspect the demographic and phenotypic characteristics and analyse 

survival by variant. 

7.2 Methods 

7.2.1. Data sources 

Data were collected from a variety of sources including: case reports of individuals or families with 

SOD1 ALS; anonymised records from specialist ALS centres that perform genetic testing; and entries 

from the ALS Online Database (https://alsod.ac.uk), a resource that compiles data from studies and 

submitted by people who treat people with ALS. Additionally, we included data from Project MinE, a 

global whole genome sequencing project. In the instance of missing data from case reports, 

corresponding authors were contacted to ask for further information on cases. 

7.2.2. Clinical and demographic variables 

We collected or requested amino acid change (codon number was assigned taking into account the 

initial methionine for example variants were labelled as A5V/D91A instead of A4V/D90A). People 

were eligible if they had a recorded diagnosis of ALS made by a neurologist, or their diagnosis was 

published as ALS in the literature. Two people had ALS-flail limb, and these were coded as ALS. We 

collected sex at birth and age of onset in years of first motor symptoms of ALS. Site of onset was 

coded as bulbar, spinal, respiratory and mixed. We asked whether people had a family history of ALS 

as reported by their clinician with no specific definition. To record disease progression, we collected 

or requested the time in months from onset of motor symptoms to diagnosis as well as the months 

onset to death, or their most recent appointment date. Finally, we asked whether the person had 

been diagnosed with dementia; this was not specified as being a formal diagnosis of frontotemporal 

dementia. 

7.2.3. Annotation of amino acid changes 

Amino acids that are within 6Å of the dimer interface were classed as being within the dimer 

interface. The codons making up the electrostatic loop and dimer interface were defined according 

to those amino acids identified as being in those areas according to the literature (Galaleldeen et al., 

2009). If the codon was in the dimer interface and the electrostatic loop or the zinc loop, they were 

classified in those locations rather than in the dimer interface. The codon numbers and their 

corresponding location are shown in Table 7-1. 

Location Codon number 

Dimer interface 4-10, 18-20, 50-55, 60-62, 112-116, 148-154 
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Electrostatic loop 122-143 

Zinc loop 51-84 

Table 7-1 Codon numbers by functional protein region 

7.2.4. Statistical analysis 

Data were analysed and graphs made in R using the packages ‘ggplot2’, ‘rworldmap’ and ‘surv’. The 

methods used to analyse the survival distributions and whether variant location had an effect on 

survival were Kaplan-Meier analysis, the log-rank test and Cox proportional hazards regression 

(detailed in section 3.7). 

7.3 Results 

Once data were cleaned, there were 1,383 cases, each with a non-synonymous variant we were able 

to analyse. Of these, 1086 had information on disease duration available. For more details please see 

consort diagram (Figure 7-1).  

 

Figure 7-1 Consort diagram of people included in the study  

Modified consort diagram showing number of records in the dataset and numbers of records excluded. 
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Variable Total n = 

1383 

Percent Total n = 1086 Percent 

Diagnosis ALS (incl flail limb) 1366 98.7 1071 98.6 

PLS 1 0.1 1 0.1 

PMA 16 1.2 14 1.3 

Site of onset Spinal 1026 74.2 842 77.5 

Bulbar 108 7.8 93 8.6 

Mixed 8 0.58 6 0.55 

Respiratory 8 0.58 6 0.55 

Not recorded 233 16.8 139 12.8 

Mean age of onset years  48.9 

(12.8) 

NA 49.2 (12.6) NA 

Gender Female : Male : 

Not recorded 

655 : 

726 : 2 

47.4 : 52.5 : 

0.1 

524 : 564 : 1 48.2 : 51.7 : 

0.1 

Family history Yes : No : Not 

recorded 

969 : 

185 : 229 

70.1 : 13.4 : 

16.5 

798 : 144 : 

144 

73.4 : 13.3 : 

13.3 

Median diagnostic delay months (723 

missing) 

10 (19.3) NA 10 (24.9) NA 

Median disease duration months 27.7 

(61.0) 

NA 27.7 (61.0) NA 

Dead Yes : No 861: 522 62.3 :37.7 828:258 76.2:23.8 
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Table 7-2 Demographic features of people with SOD1 ALS. 

The table includes the full dataset, and the characteristics of those people in the dataset where disease 

duration was available for all records. 

 

Table 7-2 shows the clinical and demographic variables collected as part of the dataset. The 

percentages of cases in each category are similar between then the larger dataset of complete 

records and the smaller dataset of people with disease duration recorded. 

Country Number of records 

Australia 27 

Austria 5 

Belgium 6 

Bulgaria 4 

Canada 1 

China 89 

Finland 9 

France 50 

Germany 2 

Hungary 4 

Iran (Islamic Republic of) 3 

Ireland 2 

Italy 68 

Japan 41 

Korea (the Republic of) 11 

Netherlands (the) 7 

Pakistan 3 

Poland 11 

Portugal 3 

Russia 9 

Slovenia 8 

Spain 18 

Sweden 8 
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Taiwan (Province of China) 3 

Turkey 66 

United Kingdom of Great Britain and Northern Ireland (the) 49 

United States of America (the) 542 

Not recorded 37 

Table 7-3 Number of records by country 

 



92 
 

 

Figure 7-2 World map showing the 34 countries data were obtained from. 

Data from 34 countries were included in the dataset. The majority of cases came from US medical datasets, making up almost half of the cases in the 

dataset with survival data. Accordingly, the A5V variant is highly represented in the dataset. 
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Figure 7-3 Box plots of age of onset and disease duration by variant 

a) box plot showing age of onset by variant b) box plot of survival by variant for those variants where there were >5 cases. Both graphs were created with the dataset of 

people with complete duration data only (n=1086). 
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Figure 7-4 Kaplan-Meier curves of survival and time to onset of symptoms compared by location of variant in the SOD1 protein 

a) survival in months from onset of symptoms with cases grouped by location in the variant, b) time to onset in years group by location in the variant. 

 

Functional location Number of records Median survival (months) Median age of onset (years) 

Electrostatic loop 59 37 51 

Dimer interface 478 15 50 

Other 525 51 48 

Zinc loop 24 50 46 

Table 7-4 Median survival and age of onset by functional location of codon 
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Log rank tests to determine whether there was a difference between groups showed an effect for 

survival (p <0.001) but not for age of onset (p = 0.4). Running a Cox proportional hazards model to 

quantify the contribution of location to the hazard ratio and control for age, sex, site of onset and 

whether someone has an A5V variant gave the following results as shown in table 7-5  

Variable Hazard ratio (se) p-value 

Duration dataset Duration dataset (time-

varying covariate adjusted) 

Duration dataset no A5V 

Electrostatic loop 1.30 (0.18) 0.17 0.95 (0.75) 0.30 1.30 (0.19) 0.17 

Interface 1.29 (0.1) 0.01 1.44 (0.35) 0.60 1.28 (0.1) 0.02 

Zinc loop 0.87 (0.28) 0.6 0.56 (1.1) 0.66 0.89 (0.68) 

Other 1 1 1 

Table 7-5 Cox PH results of functional location by survival 

On testing the proportional hazards assumption, this is violated for functional location, with a log(-

log) plot showing the two lines crossing (zinc loop and other). Testing the Schoenfeld residuals with 

time found a significant relationship. Re-running the model with location of variant as a time-

dependent covariate changed both their estimates and the p-values.  
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Figure 7-5 Kaplan-Meier curve comparing survival distribution of A5V variants with other variants in the dimer interface 

Median survival for people with A5V variants was 12 months, compared to 29 months for people 

with variants in all other parts of the dimer interface, log rank test p-value < 0.001.   

7.4 Discussion 

In this study we report on the most comprehensive dataset of ALS cases with an SOD1 variant ever 

recorded. SOD1 ALS does appear to have a distinct phenotypic profile compared to sporadic ALS: 

there is a higher proportion of people with classic ALS, almost 99% of cases were given this 

diagnosis, although relative motor neuron contribution was not requested.  

Additionally, there was a higher proportion of limb onset, 75% compared to 60%, which is consistent 

with evidence from Italy whereby SOD1 variants increased the likelihood of limb onset (Chiò et al., 

2020). There were more men than women with SOD1 ALS, which would not be expected from a 

disease with high genetic load that is not X-linked. SOD1 is not 100% penetrant, and in multistep 

model analysis there are two remaining steps, so SOD1 does not fully account for risk. It is possible 

that whatever risk is associated with being male still has some effect. Average age of onset is lower 

than in sporadic ALS, by about 15 years, but not much lower than those people with ALS of a genetic 

cause (Mehta et al., 2019). As would be expected from a dataset of people with a genetic risk factor, 

there is a high proportion of people with familial disease, although there are still some people with 

no recorded family history. Differences from the general ALS population may be reflective of 

different cellular pathological changes in SOD1 ALS – for example TDP-43 pathology is not observed 

(Mackenzie et al., 2007).  

I have investigated whether grouping variants by the site of the protein they are in is an informative 

way of classifying variants. There is an association  with survival time, where variants in the dimer 

interface and electrostatic loop are associated with  with shorter survival time, as shown on a 

Kaplan-Meier plot. The Cox proportional hazards model estimates should not be considered an 

indication of the true hazard, as there is violation of the proportional hazards assumption and a 

different, parametric model may be more appropriate to quantify the effect of location on survival 

time. However, the violation of proportional hazards is an interesting finding, as it is possible that 

the variant has an effect on survival differently at different times during the disease. If it has a higher 

effect later on for example, then starting treatment as soon as symptoms start may have more of an 

effect than later on. This should be tested by further modelling. 

In addition to the violation of proportional hazards, it is not clear whether the dimer interface as a 

location overall is important, or whether that area happens to be the site of a few very pathological 
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variants. Since A5V has poor prognosis and is located in the dimer interface we might expect the 

survival distribution of other variants in the dimer interface to have the same survival distribution as 

A5V if codon location is important, this is not the case as shown in figure 7-5. It is possible there is an 

interaction between location and other properties of the changed amino acid. In Figure 7-3, the 

shorter survival groups seem to be at the N terminal of the protein, and particularly, changes at 

residues 5 and 7 look severely pathological. There are four different variants at codon position 7 and 

variants of Cys-7 have been shown to cause protein misfolding (Leinartaitė and Johansson, 2013; 

Toichi, Yamanaka, & Furukawa, 2013). 

There does not appear to be a correlation with location of the variant and age of onset, adding to 

evidence that onset and disease process are two different mechanisms. As shown in figure 7-3 the 

age of onset looks much more uniform between variants than the survival time.  

Those variants that change survival are likely to show the highest benefit in clinical trials of antisense 

oligonucleotides where progression time is an outcome. The results of trials will therefore likely vary 

by variant population and this should be considered in interpretation, as well as trying to balance 

variants on randomisation. If anti-sense oligonucleotides are used to prevent disease onset the 

particular variant change may affect outcomes differently. As people born with no functioning SOD1 

protein tend to have severely adverse outcomes, it may not be safe to administer anti-sense 

oligonucleotides from a young age for disease protection (Andersen et al., 2019). In addition, the 

tolerability of spinal delivery multiple times per year for gene therapy strategies that require this, 

and the costs involved, would need to be assessed. 

There are several disadvantages to this study. Of the 150 variants in the dataset of cases with 

disease duration data, 80 only have one or two records, so there are too few in each category to 

analyse the effect of variants at each codon. The majority of the data are from the US dataset and 

the A5V variant is therefore over-represented. The A5V variant has such a strong effect on survival 

that this effect will skew the survival data. The dataset is not population-based so results are likely 

not generalisable to the whole SOD1 ALS population. There are many cases from specialist centres or 

that were published because they represented the identification of a new variant and subsequent 

cases may not have been considered interesting enough to publish. The data definitions were not 

tightly specified and we only analysed missense mutations rather than structural genetic variants. 

There is substantial missing data, and work should be done trying to impute the data. 

Despite these limitations, this study remains the largest and most comprehensive analysis of the 

relationship between genotypic variation and phenotype for any gene in ALS, and one of the largest 

in any neurodegenerative disease. Although C9orf72 phenotype has been extensively studied, that 
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represents a single variant in a gene rather than the many variants studied here. The insights and 

approach used show that similar methods could be applied to other Mendelian causes of ALS and 

are likely to yield insights about mechanism and genetic clinical trial interpretation. 
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Chapter 8 Conclusions and further studies 

The estimated incidence of MND in the UK from MND Register data is similar to previous estimates 

from the UK and incidence reported in other European population registers. The MND Register is 

organised to collect data from a variety of sources including specialist centres, general neurology 

clinics and hospices, as well as allowing self-registration by people with ALS. Although the data 

represents a subset of the total area the register aims to cover, and there are some issues with 

missing data, the design seems to facilitate collection of accurate population level data. Collecting 

data from a variety of sources in such a densely populated area, combined with data from other 

registers in Scotland, Ireland and in other areas of Europe means the MND Register will become a 

hugely important resource. In the future we will investigate prevalence, update estimates of lifetime 

risk of ALS and geographical patterns of spread. 

I have performed an observational study on the risk of smoking and ALS, followed by instrumental 

variable analysis and polygenic risk score analysis to triangulate evidence and investigate causality. 

The results strongly indicate that smoking is not a risk factor for the general ALS population. This 

does not exclude the possibility that there is a gene-environment interaction in a sub-group. 

Smoking has been shown to affect disease progression, which may make smoking an important 

explanatory variable in studies of prognosis. It is possible that environmental factors in ALS have a 

similar effect on risk as is thought to be the case in ALS genetics where a small number of exposures 

have medium effect on risk. It may not be possible to detect risk factors using individual study and 

environmental-wide association studies may be more appropriate (Patel, Bhattacharya, & Butte, 

2010). Unlike in the case of genome-wide association studies on single nucleotide polymorphisms, 

the coding of environmental exposures would be very challenging. To use two-sample MR to test 

causality in newly identified subgroups of ALS, GWAS studies would need to be repeated on these 

subgroups, and this may be possible with Project MinE data. It may also be possible to run a much 

larger scale polygenic risk score analysis to re-run the logistic regression with polygenic risk score as 

a covariate presented in this thesis. A further study on smoking and risk of ALS would be to use 

methylation information to proxy smoking exposure and compare risk between smokers and non-

smokers by presence of CHRNA5 variation that predicts smoking intensity, a study that would also be 

possible using Project MinE data. 

Using a dataset with phenotype and genotype information about people with SOD1 ALS, I have 

found that survival distribution in people with SOD1 ALS, may be related to the location of the 

variant in the protein. The location of the variant within the protein does not appear to affect age of 

onset, implying that disease onset and risk are not equally affected by variant in SOD1 ALS. 
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Subgrouping in ALS is probably one of the factors that would accelerate the understanding and 

treatment of the disease and it appears that even within an already small subgroup of people with 

ALS there are further subgroups. It is also likely the case that there should be separate subgroups for 

risk and progression. 

The location of the variant in the protein may affect the survival benefit elicited from a trial so the 

likely makeup of people entering trials should be considered in power calculations. In SOD1 trials, 

randomisation to match genetic variant may also be useful, although it is possible that this would 

slow recruitment.  
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