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Abstract

Functional magnetic resonance imaging (fMRI) is conventionally performed using echo-

planar imaging (EPI)-based acquisition methods. These acquisition methods produce

high acoustic noise during scanning, which presents significant limitations to fMRI studies.

For example, the loud scanning noise affects the comfort and anxiety levels of study

participants, which can lead to those with a particularly low tolerance for loud noise

requesting removal from the scanning environment. Higher anxiety levels can also lead

to higher participant motion, corrupting the acquired data.

Furthermore, high acoustic noise during scanning has been shown to confound fMRI

results across numerous paradigms, limiting the interpretability and generalisability of

fMRI studies. This especially affects studies investigating auditory processing due to

the interaction of the scanner acoustic noise with auditory stimuli. As fMRI indirectly

measures neural activity, eliminating any external confound is essential to improving the

reliability and specificity of the technique. As a result, conventional auditory fMRI studies

typically require complex workflows or advanced equipment, often unique to each study

site, to circumvent the acoustic noise and present auditory stimuli.

Recently, a new fMRI acquisition technique has been developed known as Looping

Star. Looping Star is a three-dimensional, non-Cartesian, multi-echo, T2*-weighted pulse

sequence that reduces the acoustic noise of scanning to ambient level. The acoustic

noise is minimised at its source by reducing the gradient switching, without requiring

advanced adaptations to the scanner hardware such as vacuum isolation of the gradients.

As it is an entirely novel technique, in-depth investigations of its characteristics have
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been limited. Additionally, the capabilities of Looping Star as a multi-echo fMRI modality

had not been explored prior to the initiation of this project.

This thesis characterises the Looping Star pulse sequence in phantoms and participant

cohorts, evaluating its use as an acoustically silent, multi-echo, fMRI acquisition method.

The image quality and temporal stability produced by Looping Star were explored across

a range of acquisition parameters, as was the functional sensitivity of Looping Star to

neural activity in response to a variety of fMRI paradigms. Crucially, Looping Star was

compared with both single-echo and multi-echo gradient-recalled echo echo-planar imaging

(GRE-EPI) acquisitions, which are the standard techniques for fMRI investigations.

Ultimately it was found that Looping Star is not only functionally sensitive to the

detected neural responses to a range of task-based paradigms, but can also be used for

the identification of core resting-state networks. It was also established that Looping

Star is compatible with conventional analysis methods. Looping Star produced adequate

results relative to GRE-EPI, although differences between modalities were also found.

These differences present interesting avenues for further research, including exploring

methods for disentangling the impact of acoustic noise from the impact of the pulse

sequence.

Finally, potential future directions for further optimisation of Looping Star were inves-

tigated. These ranged from its application to quantitative susceptibility mapping to

improvements in image reconstruction that could benefit its spatial and temporal resolu-

tion. These areas of optimisation will further facilitate the translation and application of

Looping Star to a wide range of fMRI studies across cohorts, improving the accessibility

and scope of fMRI research.
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Summary

This chapter presents an introduction to:

• The physical principles of magnetic resonance imaging (MRI) relevant to functional

neuroimaging.

• Image encoding and formation of MRI.

• The physiological basis of the functional magnetic resonance imaging (fMRI) signal.

• Conventional fMRI using gradient-recalled echo echo-planar imaging (GRE-EPI).

• The core concepts of fMRI analysis and statistical inference.

• Multi-echo GRE-EPI and its application to fMRI.

• Limitations and advances of conventional fMRI with GRE-EPI.

Overview

In this chapter, the key concepts and physical principles that form the basis of this thesis

are detailed. General terminology that will assist with the understanding of this thesis

will also be introduced.
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1.1 The Static Magnetic Field and Particle

Physics

The key components of an MRI scanner are the static magnetic field, the gradient coils

and the RF coils. The static magnetic field strength of the scanners used in this thesis is

3 Tesla (3 T), with appropriate spatial uniformity across the centre of the bore. Spatial

uniformity, or spatial homogeneity, of this large static magnetic field is vital to ensure that

there are no dramatic signal changes within the region under investigation (Bushberg

et al., 2012; Dale et al., 2015; Huettel et al., 2014).

Some subatomic particles possess a property known as angular momentum. In the case

of protons, angular momentum is composed of the spin angular momentum and orbital

angular momentum. For MRI, the spin angular momentum is crucial as this property

interacts with electromagnetic fields (Bushberg et al., 2012; Dale et al., 2015; Huettel

et al., 2014). These particles also have a finite magnetic dipole moment, meaning they

have their own inherent magnetisation. Classical mechanics dictates that a magnetic

dipole with spin angular momentum, in the presence of a large magnetic field, will precess

at the Larmor frequency (ω). This precession is of the spin axis, about the magnetic

field direction, and its dependency on the magnetic field strength (B0) is described by

Equation (1.1).

ω0 = γB0 (1.1)

This equation is known as the Larmor equation, where a constant known as the gyro-

magnetic ratio (γ) scales the Larmor frequency ω0, and the value of γ is specific to each

nuclear species (Dale et al., 2015).

According to the Zeeman effect, particles with a spin value equal to 1/2 will split into

either spin-up or spin-down energy states when subject to an external magnetic field

50



(Brown et al., 2014; Dale et al., 2015). Protons are one such particle, and they are

abundant in the human body. Assuming no interactions between protons, there will be a

tendency for a net number of protons to exist in the lower energy state, which is aligned

parallel to the static magnetic field (Hanson, 2008). The collection of protons that form

the small majority are referred to as the net magnetisation, as seen in Figure 1.1

Figure 1.1: (left) Individual spins randomly distributed, where blue arrow indicates magnetic moment
and orange circle represents proton. (right) 2D visual representation of a small majority of protons,
where white arrows indicate direction of magnetic moments and black arrow indicates net magnetisation.
Direction of main static magnetic field B0 indicated by large dark grey arrow. Inspired by Hanson
(2008).

Specifically, the number of spins in excess (Ne) compared with the number of spins in

the total sample (Ns) is approximately

Ne = Ns
h̄ω0

2kT
(1.2)

where h̄ is the reduced Planck constant, ω0 is the Larmor precession frequency, T is the

temperature, and k is the Boltzmann constant. The net magnetisation (< µ >) can be

derived (Hanson, 2008) and approximately equals to
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< µ >≈ h̄2γ2B0

4kT
(1.3)

To produce an image in MRI, this net precessing magnetisation must be detected by

an external coil and made spatially dependent. Once detected, it will produce a current

in said coil via the electromotive force, therefore producing a signal (Huettel et al.,

2014). One of the most convenient ways for signal detection to occur is to excite the net

magnetisation into a different plane from the large static magnetic field using magnetic

resonance (Section 1.2).

1.2 Origins of Magnetic Resonance

Resonance in MRI occurs when the frequency of the applied electromagnetic radiation is

equal to the natural frequency of the precessing proton (i.e. the Larmor frequency). A

convenient way to do this is in the form of a pulse at RF because the Larmor frequency

of a proton in a static magnetic field of strength 3 T falls within the RF field range.

Applying an RF field waveform with equal frequency to the proton Larmor frequency in

the static magnetic field will lead to energy deposition and absorption, i.e. resonance

(Brown et al., 2014; Dale et al., 2015; Huettel et al., 2014).

In the case of a collection of protons, the RF field excitation bandwidth must encompass

the range of Larmor frequencies of the distribution of protons. This then causes a rotation

of the collective spin distribution out of alignment with the static magnetic field, referred

to as excitation, facilitating their detection with external coils (Hanson, 2008). The

spins continue to precess after this excitation is turned off, however in the interest of

relevance to this thesis the rotating frame of reference is adopted, which is a coordinate

system rotating at the Larmor frequency (Brown et al., 2014). The degree at which the

excitation occurs can be characterised by the FA and is calculated based on the pulse

shape, amplitude and time duration of the RF pulse.
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Once the net magnetisation has been excited into a different plane from the static

magnetic field, all of the protons (for a given magnetic field strength) will precess in

phase φ0 and with a particular frequency ω0, equal to the phase and frequency induced

by the RF field. The magnetisation at time t after application of the RF field (i.e. once

excitation stops) in the x-y plane is defined as in Equation (1.4) (Brown et al., 2014) .

M+(t) ≡Mx(t) + iMy(t) = M0e
−iω0t+iφ0 (1.4)

When the RF field is no longer applied, interactions between protons occur that lead the

net magnetisation to dephase and return to its low-energy state: in alignment with the

static magnetic field. This is known as relaxation (Section 1.3).

1.3 Spin Relaxation Properties

Relaxation occurs through multiple interaction mechanisms, though in general the

processes are different for the transverse (perpendicular to the static magnetic field

and described by time constant T2) and longitudinal magnetisation (described by time

constant T1).

The relaxation properties of protons are of particular importance to fMRI, as will become

apparent in Sections 1.4 and 1.7, and are unique to the tissue under investigation. T1

and T2 can be mathematically defined by a semi-classical approximation known as the

Bloch equation (Bloch, 1946), shown in Equation (1.5), where ~M is the magnetisation

vector in three-dimensions, ~B is the magnetic field vector in three-dimensions and t is

the time point.

d ~M(t)

dt
= ~M(t)× γ ~B(t) (1.5)

53



The full phenomena of relaxation in both transverse and longitudinal dimensions is given

as

d ~M(t)

dt
= γ ~M × ~B +

1

T1

( ~M0 − ~Mz)−
1

T2

( ~Mx + ~My) (1.6)

In living systems, T1 recovery often occurs on a much longer time scale than T2 relaxation

and involves the interaction of spins with their environment (Brown et al., 2014). These

interactions stimulate the protons to lose energy and return into alignment with the

static magnetic field, known as thermal equilibrium (Buxton, 2013). Energy deposition is

induced by the local magnetic field perturbations of neighbouring protons. T1 recovery

for a single spin species is defined to a first approximation by the following solution of

the Bloch equation (Equation (1.7))

Mz(t) = M0 − (M0 −Mz(t = 0))e
− t

T1 (1.7)

Any mechanism that affects T1 relaxation can also affect T2 relaxation, though T2

relaxation can also occur independently of T1 as it is independent of energy transfer.

Instead, T2 relaxation is dependent, at first, on dephasing of the protons induced by

disturbances in the local magnetic field (Buxton, 2013). The impact of T2 on the

evolution of the net magnetisation is given (to a first approximation) by the following

solution of the Bloch equation (Equation (1.8))

M(t)x,y = M0(e
− t

T2 ) (1.8)

Proton dephasing also occurs due to external magnetic field inhomogeneities. For example,

magnetic susceptibility differences in tissues, particularly at air-tissue interfaces, can

impose further local magnetic field changes. This effect causes a faster T2 relaxation,

which is referred to as T2*. In fMRI, tissues with additional inflow of oxygenated blood,
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induced by neural activity, produce a different extent of T2* -induced decay than tissues

with reduced blood inflow (Huettel et al., 2014). T2* is therefore a core mechanism

exploited in fMRI, whereby image contrast is produced as a result of changes in regional

oxygenation of the blood. This is discussed in more depth in Section 1.7 and 1.8.

The relationship between T2*, T2 and the relaxation rate due to field inhomogeneities

(T2’) is given by

1

T2∗
=

1

T2

+
1

T ′2
(1.9)

where T ′2 is reversible signal decay. Therefore, the time at which the signal decay is

sampled is vital for ensuring as much signal is acquired as possible. The decay immediately

after excitation (in the absence of the gradients) is known as the FID, and due to the

speed at which the signal decays it is usually very challenging to acquire an image of this

initial decay.

From the Bloch equations above (Equations (1.7) and (1.8)), the T1 of a tissue is

quantified as the time point at which the longitudinal component of the magnetisation

recovers to 1− 1/e (approximately 63 %) of its initial value, whereas the T2 is the time

point at which the signal (transverse component of the magnetisation) decays to 1/e

(approximately 37 % ) of its initial value (Dale et al., 2015). In cerebral tissues at 3 T,

the T1 and T2 values are shown in Table 1.1, adapted from Stanisz et al. (2005), Lu et al.

(2005), Wright et al. (2008), and Piechnik et al. (2009).

These relaxation times are critical as they affect the choice of imaging parameters,

discussed in Section 1.4.
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Table 1.1: Average T1 and T2 values at 3T for different brain tissues from the literature (Lu et al.,
2005; Piechnik et al., 2009; Stanisz et al., 2005; Wright et al., 2008).

Tissue T1(ms) T2(ms)

Grey matter 1607 ± 112 99 ± 7

White matter 838 ± 50 69 ± 3

Cerebrospinal fluid 3817 ± 424 503 ± 64

Blood 1932 ± 85 275 ± 50

1.4 Image Acquisition and Contrast

To acquire images using only the FID, an acquisition method with sufficient speed of RF

and magnetic field gradient application would be required to collect the signal prior to

substantial decay. This method would have very limited contrast between tissues, given

the speed of decay across tissues (Table 1.1). To achieve the best image contrast between

tissues at a more convenient timescale in relation to the relaxation times, a concept

known as echo-based imaging can be employed. There are two forms of echo-based

imaging, known as spin echo and gradient echo.

Spin echo imaging involves applying an RF pulse, known as the refocusing pulse, ideally of

flip angle π (180◦), after the initial, usually π/2 (90◦), RF excitation (Hahn, 1950). The

first RF pulse excites the net magnetisation into the transverse plane, which begins to

decay (i.e. FID) after excitation stops. The phases of the proton spins that accumulate

during decay are then inverted by the second RF pulse, refocusing the spins to their initial

phase to recover the signal lost from the initial dephasing. Since the phase dispersion

induced by external field inhomogeneities is refocused, this is referred to as a T2, rather

than T2*, based technique (Huettel et al., 2014).

The time between the application of the initial RF excitation and the time the recovered

“echo” signal reaches a maximum is known as the echo time (TE). Since the rate at
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which the “new” phase is accumulated is the same as the rate of initial decay, all of the

spins will return approximately to the original phase at the echo time, maximising the

signal (Brown et al., 2014). The echo time is selected during image acquisition and is

double the time between the application of the exciting RF pulse and the refocusing RF

pulse. The TE selection must consider the tissue contrast desired as different tissues

have distinct T2 decay values, and so they will produce different signal intensities at

different echo times (Figure 1.2). However, the amplitude of the signal at the echo time

will still be lower than the initial signal (M0). This loss of signal originates from the local

magnetic field distortions, which are effectively randomly varying fields. These distortions

lead to spin-spin interactions, such that spins partially cancel each other out (Buxton,

2013).

Figure 1.2: Net transverse magnetisation (Mxy) decay plots in time for blood (blue), grey matter
(yellow), white matter (purple) and CSF (orange), using the average T2 values from Table 1.1.

When multiple cycles of exciting RF pulses are applied (i.e. π/2 - π/2 - π/2. . . ), the

repetition time (TR) must also be considered. This is the time between the RF pulses

that excite the net magnetisation into the transverse plane (i.e. π/2 - π/2). The selection

of TR also contributes to the extent of FID signal decay after a series of excitation cycles,

and can therefore affect the image contrast, as described by Equation (1.10) (Brown

et al., 2014).
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Mx,y(tn) = M0(1− e−
TR
T1 )e

−tn
T2 (1.10)

where Mx,y(tn) is the evolution of the net magnetisation in the transverse plane in the

nth cycle, and tn is the time after n echoes. For an excitation-refocusing cycle, the

transverse magnetisation at the time of a given echo can then be derived in terms of TR

and TE (Brown et al., 2014)

Mx,y(TE) = M0(1− e−
TR
T1 )e

−TE
T2 (1.11)

Where TE is the time at which the echo occurs.

For gradient echo imaging, the same concepts of echo time and repetition time apply.

To visualise a gradient echo in its simplest form, consider only two consecutive gradients.

A gradient echo is produced by applying a gradient pulse that creates additional phase

dispersion, followed by applying a refocusing gradient (i.e. of the same net amplitude

but opposite sign) to recover the induced dispersion of the first gradient pulse (Buxton,

2013). This means any further decay (i.e. not induced by the gradient) will not be

recovered, hence its sensitivity to T2*.

The effect of the refocusing gradient is best explained mathematically, as described by

Brown et al. (2014). Consider a constant negative gradient lobe applied in the time

interval (t1, t2), followed by a second positive gradient lobe during the time interval (t3,

t4). The phase behaviour after application of these gradients (φG) can be described as

φG(z, t) = +γGz(t2 − t1)− γGz(t− t3) (1.12)

where Gz is the gradient lobe and γ is the gyromagnetic ratio of the nuclear species.

The induced additional phase will therefore return to its original value, as if no gradient
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pulse had been applied, at the specified time t (Equation (1.13))

t = t3 + t2 − t1 (1.13)

Inserting this time t into the phase dispersion equation, Equation (1.12)

φG(z, t3 + t2 − t1) = +γGz(t2 − t1)− γGz(t2 − t1) = 0 (1.14)

Therefore the phase returns to where the decay of the FID would have been at that point,

as if no gradient pulses had been applied.

Both spin echo and gradient echo techniques have been employed in functional imaging

as reviewed across numerous studies, for example Boyacioǧlu et al. (2014); Halai et al.

(2014); Norris (2012); Zhao et al. (2004), however gradient echo imaging is generally

preferred due to its greater sensitivity to changes in blood oxygenation on T2* , as

explained in Sections 1.7 and 1.8.

1.5 Basics of Image Encoding

Translating the MR signals described previously into images requires spatial encoding of

the MR signal. Signal encoding in conventional MRI begins with "slice" selection. Based

on the Larmor frequency equation (Equation (1.1)), a range of magnetic field strengths

for the same nuclear species will produce a range of Larmor frequencies. This range of

magnetic field strengths can be produced in MRI, by means of a magnetic field gradient,

i.e. increasing or decreasing field amplitude as a function of position across space (Figure

1.3). By selecting an RF excitation bandwidth encompassing only a range of frequencies,

a specific portion of the object of interest can be excited (Brown et al., 2014; Huettel
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et al., 2014).

Figure 1.3: Simplified example of 2D slice selection for spatial encoding along the z-direction in k-space.
Dark blue diagonal angle represents magnetic field gradient along z, defined by dBz

dz . The dotted black
line represents the RF excitation bandwidth. The excited protons (i.e. those within the dotted black
lines, forming a large "slice") will resonate at different Larmor frequencies, due to the presence of the
magnetic field gradient.

Producing a range of frequencies across space distinguishes the spins across a given

direction. To encode signals for a three-dimensional (3D) image, it follows that gradients

must be produced for all three Cartesian dimensions. To achieve this, conventional

imaging involves selecting a thin "slice" along a single direction (e.g. in the z-direction),

then applying two additional magnetic field gradients in the x- and y-directions, known

as the phase and frequency encoding gradients. This procedure will produce a unique

combination of x-, y-, and z- encoding gradients for a specific position in space (Bushberg

et al., 2012; Dale et al., 2015; McRobbie et al., 2017).

To demonstrate this mathematically, consider the following derivation by Brown et al.

(2014). A spatially varying field in the z-direction is added to the large static field (B0).

This field affects the overall gradient in the z-direction as given by

Bz(z, t) = B0 + zGz(t) = B0 + z
dBz

dz
(1.15)

Where the time dependency refers to any time-dependent changes in the gradient. This

translates to frequencies as
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ω(z, t) = ω0 + ωGz(t) (1.16)

Adding a second gradient, but in the x-direction that previously has not experienced any

static gradients

Bx(x, t) = x
dBx

dx
(1.17)

Such that the overall frequencies in these two dimensions become

ω(x, z) = ω0 + ωGz + ωGx (1.18)

Where ωGz = γzGz and ωGx = γxGx. This combination of frequencies will encode a

specific plane in space. The encoding gradients are applied in different planes and for

different durations, depending on the acquisition technique used. In echo-planar imaging,

the most commonly used pulse sequence for fMRI, the phase encoding gradient is usually

applied for a short period. When switched off, the frequencies will retain the imposed

phase, which provides another unique identifier for the position in the slice (McRobbie

et al., 2017). This is discussed specifically for conventional fMRI in Section 1.8.

1.6 K-space and Image Reconstruction

Different gradients generate different distinguishing phases and frequencies in an object,

and the application of these gradients can be visualised using a concept known as k-space.

K-space can be considered a “map” of the gradients applied to generate the image, and

each point in k-space represents the inverse domain of the object that is being imaged. In

other words, points in k-space correspond to spatial frequency components in the image,
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and can also be viewed as the frequency encoding produced by the time integrals of the

gradients (Bernstein et al., 2004; Huettel et al., 2014).

To visualise this, consider a 2D Cartesian grid of perpendicular gradient (or k-space)

directions kx, ky, which is at a particular selected slice in the z-direction (Figure 1.4).

By exciting the sample, signal is encoded at the centre of k-space. Application of the

appropriate pre-phasing gradients for a period of time after slice selection generates a

trajectory in k-space to a chosen location in one of the corners of the k-space domain,

as shown in Figure 1.4. An encoding gradient along the x-direction in space can then

be applied for a period, and the signal from the slice during its application is collected;

filling the first line of the k-space Cartesian grid.

To move through the second (perpendicular) dimension, y, of the Cartesian grid, a

perpendicular encoding gradient can be applied. Once again, the signal received whilst

applying the gradient in the perpendicular direction is collected and fills the perpendicular

line of k-space. In Figure 1.4, this is applied for a shorter period of time; hence a shorter

distance in k-space is encoded. The pattern of x- and y- dimension signal encoding can

then be repeated to encode signals for the entire Cartesian plane of the slice.
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Figure 1.4: Simple example of 2D encoding for a single slice in k-space, whereby a thin slice is selected
in the z-direction consisting of an x-y plane (blue). After slice selective RF excitation (dotted central
sphere), application of pre-phasing gradient lobes in both the x and y direction directs the k-space
trajectory to one of the corners of the k-space domain (dark blue arrow). The x-direction encoding
gradient then samples along kx for a time period (grey arrow) and the y-direction encoding gradient
samples along ky (white arrow) for a time period. The length of the arrow indicates the duration of the
gradient applied, as k-space represents time integrals of the gradients.

Though k-space can be used to visualise the result of frequency encoding by magnetic

field gradients in a sequence, it is not trivial how this relates to image space as the

signal from the entire object is constantly collected under different applied gradients.

Explicitly, under the assumption of no relaxation and diffusion effects, the MR signal

is the phase-dependent sum of all the signals from all positions and dependent on the

product of the net magnetisation and coil component in the transverse plane (Buxton,

2013). This is described by Bernstein et al. (2004), whereby the signal is defined in

Equation (1.19)

S(t) =

∫
M(~r)B(~r)e−iφ(~r,t)d3r (1.19)

where S(t) is the signal received at time point t, M is the net transverse magnetisation,

and B is the component of the receive coil B1 field in the transverse plane, across all

directions ~r. φ is the accumulated phase at a given position and time point, defined as
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φ(~r, t) = γ

∫
~r · ~G(t′)dt′ (1.20)

where ~G is the gradient amplitude vector. Using the relationship of accumulated phase

and frequency φ(~r, t) = 2π~k(t), k-space can then be defined as

~k(t) =
γ

2π

∫
~G(t′)dt′ (1.21)

One point in k-space can therefore be interpreted as the change in phase produced by the

gradients across all points in space and after a time period (Buxton, 2013). The signal

can therefore be represented as the Fourier transform of the transverse magnetisation in

real space

S(t) =

∫
M(~r)B(~r)e−i2π

~k(t)~rd3r (1.22)

Equation (1.22) demonstrates that k-space is the Fourier conjugate of image space,

requiring a Fourier transformation to produce images from the data. As a result of

this inverse relationship, one point in k-space equates to a signal contribution from

the complete image, not one point in image space. Signals near the centre of k-space

represent contributions from lower spatial frequencies, containing information on the

image intensity, whereas signals in the outer edges of k-space represent contributions to

higher spatial frequencies, related to fine details in the image. The centre of k-space is

the time point at which the signals from all voxels have identical phase, representing all

of the transverse magnetisation within the slice (Huettel et al., 2014). If no gradients

were applied, all of the data would be encoded in the centre point of the k-space domain.

By sampling k-space at an appropriate distance between k-space points, translating

to appropriate times in acquisition space, a resolved image containing high and low

spatial frequency will be created after Fourier transformation. K-space can therefore be

considered a map of spatial frequencies, inversely proportional to the ‘spatial wavelength’

64



(Buxton, 2013).

A fully sampled k-space relates to the FOV such that ∆k = 1/FOV and the coverage

of k-space determines the theoretical spatial resolution. The only way to change the field

of view is therefore to change the spacing between k-space points. For example, if the

maximum length of k-space traversed is preserved but alternate phase encoding steps

are removed, the FOV will be halved in the direction that the phase encoding steps are

missed (Bernstein et al., 2004; Hollingsworth, 2015). K-space is also linked to the spatial

resolution, whereby if the maximum distance of k-space traversed by the gradients is

halved but ∆k is preserved, the resultant image will have half the spatial resolution (i.e.

a larger pixel size).

Given that ∆k is a time interval that is also proportional to the gradient amplitude,

stronger gradients will sample k-space faster. However, they must also be able to be

rapidly reversed in the case of fast acquisition schemes such as those used in conventional

fMRI (Section 1.8). The ability of magnetic field gradients to change their amplitude can

be quantified by the slew rate (Brown et al., 2014; Buxton, 2013), i.e. their maximum rate

of change of amplitude. Manipulating the gradients in this manner creates a trajectory

in k-space, and the speed of trajectory traversal in k-space is determined by the change

in the gradient amplitude (Bernstein et al., 2004).

When collecting the data, all of k-space may not be sampled by the encoding gradient,

but the trajectory defined by the gradient will be traversed. Assuming constant spacing

between samples, the time between samples (∆t, or the "dwell time") is given by the

inverse of the readout bandwidth (or bandwidth of the frequency encoding gradient). For

example, the readout bandwidth might be ±31.25 kHz, meaning that a sample of the

MR signal from the entire object will be taken every 16 µs. If this bandwidth is increased,

the time between samples will decrease. The relationship of this timing with the distance

between samples in k-space (∆k) for a constant readout gradient (Gx) can therefore be

given as (Bernstein et al., 2004)
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∆kx =
γGx∆t

2π
(1.23)

These concepts of k-space are crucial for understanding the relationship between the

series of gradients, or "pulse sequence", applied and the images produced in MRI.

1.7 Physiological Principles of Functional MRI

The goal of fMRI is to detect changes in neuronal activity and their overall communicative

structure. This neural activity can be related to the presence or absence of a given

stimulus. MRI cannot directly measure neuronal activity; this would require measurements

of highly localised and rapid changes in electromagnetic fields (Huettel et al., 2014).

Alternatively, the MR signal is sensitive to the local rate of blood flow (or cerebral blood

flow (CBF)) and the oxygen extraction fraction in the tissue.

This relationship was first determined by Ogawa et al. (1990), who found that when a

rat breathed CO2-enriched air, which increases brain blood flow while keeping oxygen

metabolism constant, there was less signal loss near the blood vessels in the brain (Buxton,

2013). This reduced signal loss was explained by the oxygenation level of the venous

blood: the venous blood was more oxygenated as a result of a disproportionate increase

in blood flow, reducing the relative concentration of deoxyhaemoglobin in the venous

domain. Given that deoxyhaemoglobin is paramagnetic (Pauling and Coryell, 1936), it

changes the magnetic susceptibility of blood, speeding up the T2* decay. MR signal is

then lost at a faster rate when more deoxyhaemoglobin is present in a tissue.

As a result, if a series of MR images are collected rapidly through time, changes in signal

intensity are observed during neural activity as activity triggers changes in the level of

blood oxygenation. The change in signal observed is referred to as the blood oxygen

level dependent (BOLD) response, which produces a contrast of around 1-5% difference

between the active tissues during rest and active tissues in response to a stimulus. The
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BOLD response has been shown to evolve on the order of seconds in response to tasks

(Kwong et al., 1992; Ogawa et al., 1992).

What continues to be debated are the biological and physiological underpinnings, and

therefore the interpretability, of the BOLD signal. For example, blood oxygen changes

detected in fMRI can be accentuated by the presence of large draining veins, which are

downstream of the initial neural activity (Chen and Cohen-Adad, 2019; McRobbie et al.,

2017) but it has also been shown that both local field potentials and single-unit activity

are highly correlated with the BOLD signal (Berens et al., 2010; Logothetis et al., 2001;

Logothetis and Wandell, 2004; Mukamel et al., 2005). This topic is discussed in depth

by Buxton (2013) and Attwell and Iadecola (2002).

The accepted view on the origins of the BOLD signal is that it is facilitated by neurovascular

coupling, as reviewed by Phillips et al. (2015): oxygen is delivered to the brain via arterial

blood when activity occurs, in order to facilitate enhanced metabolism of oxygen to

support the neural activity. As metabolism occurs, the amount of deoxyhaemoglobin

increases, potentially reducing the MR signal. However, a surplus of oxygenated blood

is delivered due to increases in metabolism, which reduces the decay of the signal after

depletion as oxyhaemoglobin is diamagnetic, producing a signal contrast. The temporal

characteristics of the MR signal change can be modelled by the HRF, which is discussed

in Section 1.11.

The BOLD response incorporates both intravascular and extravascular components,

though the extent to which each contributes to the signal depends on the magnetic field

strength and acquisition method employed (Chen and Cohen-Adad, 2019). For spin echo

EPI, particularly at field strengths above 4T, intravascular contributions can be detected

due to the suppression of magnetic field-induced inhomogeneities as discussed in Section

1.4 (Boxerman et al., 1995; Duong et al., 2003). These contributions arise from dynamic

dephasing induced by the paramagnetic field changes produced by deoxyhaemoglobin.

The susceptibility differences in this case produce a reduction in T2 localised to the

capillaries, venules and veins, constituting up to 70 % of the total BOLD signal (Chen

and Cohen-Adad, 2019).
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For GRE-EPI at 3 T, the BOLD response is primarily sensitive to downstream effects of

neural activity, i.e. in large draining veins. These involve static dephasing produced by

the susceptibility differences between tissue and deoxygenated blood, which induce T2*

shortening. Despite its lower specificity to the location of neural activity, the functional

sensitivity of this technique is much higher than spin echo EPI (Chen and Cohen-Adad,

2019). The technicalities of this method are discussed in more depth in Section 1.8.

1.8 Conventional Functional MRI with

Echo-Planar Imaging

The most popular acquisition method to date for fMRI is GRE-EPI. EPI (Mansfield,

1977) involves encoding multiple gradient echoes in the course of one RF excitation,

hence allowing rapid acquisition of images. Pre-phasing gradients are applied prior to the

series of both frequency and phase encoding gradients to move to the bottom corner

of k-space (Bernstein et al., 2004; Brown et al., 2014). GRE-EPI is performed using a

bipolar oscillating readout gradient, where a series of readout gradient lobes are applied

with alternating polarity. Between each gradient lobe, a short phase encoding gradient, or

“blip” (Stehling et al., 1991), is applied to transition the sampling across k-space (Figure

1.5). An exemplar GRE-EPI pulse sequence is shown in Figure 1.5 with trapezoidal

waveforms, though sinusoidal waveforms can also be used (Stehling et al., 1991).

Figure 1.5: (left) Simple example of the GRE-EPI pulse sequence, where Gx, Gy, Gz are the gradient
waveforms in the x-, y- and z-directions. The x-direction involved the bipolar oscillating readout, the
y-direction indicates the phase encoding blips, and the z-direction in combination with the RF pulse
produces slice selection. (right) Simple example of a slice in k-space, where kx, ky are the k-space
encoding directions colour-coordinated with the pulse sequence.
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GRE-EPI acquisitions for fMRI are often ‘single-shot’, encoding multiple lines of k-space

after one RF excitation. Each line of k-space is encoded by an echo, produced by the

oscillating bipolar gradient. However, the echoes produced decrease in amplitude with

time, affecting the signal contribution to the portion of k-space encoded. For example,

the final echo in the "echo train" could be at a later echo time, where the signal will have

decayed substantially (see Figure 1.2 and Equation (1.11)). Less signal will therefore

contribute to the designated portion of k-space, affecting image contrast (Bernstein et al.,

2004; Brown et al., 2014).

The time at which the k-space sampling passes through the centre of k-space in GRE-

EPI determines the extent of T2* weighting of the image, which directly relates to the

sensitivity of the technique to the BOLD response (Ogawa et al., 1992); hence this is the

echo time of interest for fMRI (Brown et al., 2014; Dale et al., 2015). In other words, the

TE is the time delay between excitation and the data collection at the centre of k-space

(Buxton, 2013; Huettel et al., 2014; Ljungberg et al., 2021a). The T2* of the tissue of

interest must therefore be carefully considered when determining the TE employed by

the GRE-EPI acquisition.

GRE-EPI can collect an entire 2D k-space slice using one RF excitation, therefore the

total time to acquire a volume is simply a product of the number of slices and the time

to acquire one slice. One slice is acquired on the order of tens of milliseconds in order to

collect the data before significant T2* decay, typically producing a TR on the order of

2-3 seconds (Huettel et al., 2014). The main sacrifice is that of spatial resolution, as

the size of the k-space matrix must be lower to traverse k-space so quickly. Standard

GRE-EPI acquisitions involve a 64 x 64 matrix size, with approximately 3 mm resolution,

though numerous advances have improved the spatial and temporal resolution of GRE-EPI

(Section 1.9).
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1.9 Advances in Functional MRI

Methods to circumvent the spatiotemporal limitations of GRE-EPI have ranged from

novel sampling schemes to advanced image reconstruction techniques. Parallel imaging

has accelerated GRE-EPI acquisitions, as it does not require full k-space coverage to

acquire an image of appropriate spatial resolution (Brown et al., 2014). Instead, image

reconstruction incorporates the sensitivity patterns from the elements of the receive coils

to compensate for missing k-space data, producing high quality images across techniques

(Hamilton et al., 2017). For example, this technique has been used for spin echo fMRI

with Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE), yielding fewer

artefacts and accelerating acquisition (Ye et al., 2010).

Single-shot GRE-EPI is typically a 2D slice-selective technique, meaning a 3D image is

formed through "stacking" the acquired slices. Timing differences between the slices are

then addressed in post-processing. Single-shot approaches to 3D imaging, whereby the

whole volume is excited, have been applied with EPI (Mansfield et al., 1989) and then

extended to fMRI studies (Mansfield et al., 1995b; Van Der Zwaag et al., 2006). The

core limitations have been lower spatial resolution and longer sampling times, though

these have been circumvented using numerous techniques such as integration with parallel

imaging and multi-band acquisitions (Narsude et al., 2016; Posse et al., 2012; Rabrait

et al., 2008). Multi-band acquisitions in particular are gaining widespread popularity in

fMRI, as they can substantially reduce acquisition time (Feinberg and Yacoub, 2012;

Kundu et al., 2017; Preibisch et al., 2015; Yang et al., 2020). These techniques acquire

different portions of k-space data through using multiple RF excitations, followed by

combining the images at the reconstruction stage, which benefits spatial resolution in

both 2D and 3D (Graedel et al., 2017; Jorge et al., 2013; Krämer et al., 2012; Menon

et al., 1997; Van Der Zwaag et al., 2012).

Methods for 3D GRE-EPI with alternative sampling techniques have also been developed

with success. For example, hybrid methods that segment the acquired trajectories have

been shown to improve the temporal resolution (Beckett et al., 2020; Goerke et al., 2005;
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Graedel et al., 2017; Stenger et al., 1998). Radial 2D GRE-EPI acquisition schemes (Silva

et al., 1998) have been extended to 3D by incorporating multi-shot functionality, i.e.

segmenting the acquisition, demonstrating repetition times of 400 ms per volume at 3.75

mm isotropic resolution (Lee et al., 2010). More recently, such techniques have been

applied at as short as 22 ms per volume (Rettenmeier et al., 2021), though fluctuations

in aliasing patterns were of concern. Temporal acceleration of 3D GRE-EPI is an exciting

area of development, particularly as it could better disentangle the contributions of

physiological noise from neural activity, especially at high magnetic field strengths ( > 3

T) (Bollmann and Barth, 2020; Francis and Panchuelo, 2014; Jorge et al., 2013; Narsude

et al., 2014; van der Zwaag et al., 2016).

Despite these excellent advances in implementing 3D GRE-EPI, many of the technical

developments have been tailored to specific sites, paradigms, or mechanisms behind

the BOLD response, and can also be computationally demanding (Bollmann and Barth,

2020). This limits the accessibility of these advances for widespread fMRI research; hence

2D single-shot GRE-EPI remains the most common fMRI acquisition method. One of

the more widely used developments of GRE-EPI has been multi-echo fMRI, as discussed

in Section 1.10.

1.10 Multi-echo Functional MRI

Multi-echo fMRI with GRE-EPI is a simple extension that produces a separate time

series for different echo times, sampling the k-space domain at multiple time points

within one RF excitation (Posse et al., 1999). This procedure means that the volumes

acquired from each echo will have a different amount of T2* weighting but consistent T1

weighting, allowing better identification of non-BOLD-related noise sources in the fMRI

signal (Posse, 2012; Speck and Hennig, 2005). The method of extracting these noise

sources is described by Kundu et al. (2012), whereby the signal S at echo time TEn can

be described as
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S(TEn) = S0 exp(−R2 ∗ TEn) (1.24)

where R2∗ = 1/T2∗ and S0 is the initial signal intensity at TE = 0. Changes in signal

can then be defined by a simple two-component model (Equation (1.25))

∆S

S
=

∆S0

S0

−∆R2 ∗ ·TE (1.25)

where ∆S is the signal change for a given echo time, ∆S0 represents non-BOLD signal

changes and ∆R2∗ represents BOLD-related signal changes. The change in signal overall

will increase with TE for the BOLD signal changes, but non-BOLD signal changes will

be relatively constant across echo times or not show an exponential dependence (Figure

1.6). Non-BOLD signal changes typically include motion, fluctuations in MR hardware

(known as thermal noise) and physiology (Kundu et al., 2017).

Figure 1.6: Example of signal dependence in multi-echo fMRI. (top) For non-BOLD-related signals,
the signal amplitude (S) will decay in a similar manner during the state of activation (orange) or the
state of no activation (blue). (middle) The difference between these states (∆S) shows that the change
in signal decays exponentially in time, whereas the percentage signal change (∆S

S ) will be constant with
increasing echo time. (bottom) Alternatively, BOLD related signals will evolve differently between the
two states, leading to an increase in percentage signal change with increasing echo time. The T2* values
employed for this simulation were 66 ms for no activation and 80 ms for activation states, derived from
Table 1.1. Based on Figure 1 by Kundu et al. (2012).
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Multi-echo fMRI not only enables separate statistical maps to be created for each echo,

but the echoes can also be combined to maximise the BOLD contrast-to-noise ratio

(Poser et al., 2006; Posse et al., 1999). Producing a weighted summation of the T2*

images allows modelling of the noise in the BOLD time course without making any

assumptions about its characteristics (Gowland and Bowtell, 2007; Kundu et al., 2012).

One of the most accepted strategies to date is an optimal combination weighting (Kundu

et al., 2012; Posse et al., 1999).

After optimal echo combination, Independent Component Analysis (ICA) is often used

as a de-noising strategy to extract or remove non-BOLD components (Evans et al.,

2015; Kundu et al., 2012). ICA can be used both for task-based (Gonzalez-Castillo

et al., 2016; Moia et al., 2021) and resting-state data (Lynch et al., 2020; Olafsson

et al., 2015; Waltmann et al., 2019). Alternatively, sparse paradigm-free mapping is

a novel deconvolution technique applied to multi-echo fMRI, which can be used to

extract ∆R2∗-related signal changes for tasks where event timing may not be known

(Caballero-Gaudes et al., 2019).

In single-echo acquisitions, the echo time is selected to be close to the T2* of grey matter

in the region of interest to maximise functional contrast. For multi-echo fMRI, the choice

of the range of echo times of multi-echo fMRI is important to optimise BOLD sensitivity,

and a lower receiver bandwidth should be used to maximise SNR (Gowland and Bowtell,

2007).

Other considerations for multi-echo fMRI are highlighted by Kundu et al. (2017), including

the impact of the unmet assumption that noise is isotropic and homogeneous in multi-echo

data and whether global signals should be removed. The employment of multi-band

multi-echo imaging has also overcome temporal limitations the technique (Boyacioğlu

et al., 2015; Olafsson et al., 2015), and the benefits of multi-echo fMRI have also been

demonstrated at 7 T (Poser and Norris, 2009).
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1.11 Functional MRI Experiment Design

At this stage the physics behind conventional fMRI has been detailed, highlighting that

the technique involves collecting an entire brain volume image (or, for multi-echo fMRI,

a group of images) as rapidly as possible (i.e. using a short TR). Rapid sampling ensures

that the signal evolution for the duration of the experiment can be acquired. Each

voxel will then contain a time-dependent signal, or time series, sampled every TR (e.g.

2-3 seconds). These time-evolving signals are influenced by the BOLD response: when

neural activity occurs, the blood-oxygen-level phenomenon leads to variations in the

time-dependent signal, relative to regions of reduced activity. It is now important to

highlight the practicalities of fMRI experiment design.

The most common fMRI experiment design, or task-related paradigm, is a simple

block-periodic design stimulation. This design involves a stimulus (A) presented for

approximately 15 - 30 seconds, followed by a period of either no stimulus presentation

or a ‘control’ stimulus (B). This is repeated in an A-B-A-B manner. With this design,

periodic signal changes in the time series are (in theory) generated in response to the

stimulation in areas of the brain engaged in the execution of the paradigm. Even the

briefest stimulation will induce a response, and this can be characterised in a linear

manner (Boynton et al., 1996, 2012). Linearity in this context means that the amplitude

of the response scales with the intensity of the stimulus, and if two stimuli are applied in

quick order they will superimpose. However, Vazquez and Noll (1998) found that the

amplitude can only be predicted in this manner for stimuli of at least 6 seconds.

Event-related designs differ from block designs as they involve presenting short stimuli (a

few seconds), usually in a ‘jittered’ order (Watanabe et al., 2013). Event-related designs

enable probing of more specific cognitive mechanisms, such as episodic memory (Buxton,

2013). The key consideration for such studies is the timing between stimuli, particularly

considering the impact of non-linear contributions to the BOLD signal (Monti, 2011).

A full review of study design considerations is given by Amaro and Barker (2006) and

Poldrack et al. (2011), with some of the pitfalls of particular designs outlined by Haller
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and Bartsch (2009).

1.12 Functional MRI Analysis

1.12.1 Haemodynamic Response Function

In order to interpret which brain regions are active (i.e. those that are demonstrating

the BOLD response), a model is used to represent the expected change in signal. The

most common model used is the convolution of the input stimulus paradigm and the

hypothesised HRF, which is often modelled by a Volterra or Gamma-variate function

(Friston et al., 2000b; Uludağ et al., 2015). At times, the haemodynamic response

function (HRF) is used interchangeably with the BOLD response, though it should be

noted that the HRF is a linear impulse function used to describe the MR signal changes

from the initiation of a stimulus (Poldrack et al., 2011). The HRF consists of the following

key components: the initial dip of the signal amplitude, the rise to the peak, the fall,

and the undershoot (Figure 1.7).

Figure 1.7: Example of the haemodynamic response function, generated with ’spm _hrf’ function (FIL
Methods Group, 2020) using TR = 0.7, number of time bins used to generate function = 16, response
delay 6 s, delay of undershoot 16 s, dispersion of response = 1, dispersion of undershoot = 0.5, ratio of
response to undershoot = 6, onset of activation at 0 s and length of kernel 32 s.

75



Different models have been used to interpret these dynamics on a physiological basis

(Buxton, 2013; Poldrack et al., 2011). The initial dip is a 1 - 2 second interval before the

positive rise in signal, where it is thought that there is an increase in the concentration

of deoxygenated haemoglobin without an increase in regional blood flow; hence a signal

reduction is seen. This initial dip, however, is not always easily observed, and the

physiological interpretation of this has not been straightforward (Ances, 2004).

Following the initial dip, there is an increased inflow of oxygenated blood which leads to

signal recovery and rise to the signal peak as more oxygenated blood is delivered than

extracted, peaking at around 5 seconds after the initial stimulus (Huettel et al., 2014).

After the response to the stimulus stops, the blood outflows and the signal decreases

to baseline. However, it produces a post-stimulus undershoot thought to be related to

venous expansion or the maintenance of increased neuronal activity in the absence of

reactive hyperaemia (Buxton et al., 1998; Friston et al., 2000b).

Characterisation of the haemodynamic response is an ongoing field of research, vary-

ing from identifying activity in cortical columns at increasing field strengths, enabling

techniques such as Vascular Space Occupancy (VASO) (Huber et al., 2018; Lu et al.,

2003) which indirectly measures cerebral blood volume, to using high spatiotemporal

resolution across the cortex to refine modelling (Taylor et al., 2018). The shape and

dynamics of the haemodynamic response can also vary not only between individuals

(Badillo et al., 2013; Handwerker et al., 2012) but between stimuli (Haigh et al., 2015)

and brain regions (Handwerker et al., 2012). Furthermore, the coupling between neural

activity and haemodynamic signals can vary in strength and pattern (Drew, 2019). These

are vital considerations for fMRI analysis.

1.12.2 General Linear Model

The most common framework used to model the fMRI time series, upon selection of an

appropriate haemodynamic response function, is known as the general linear model (GLM).

The GLM involves correlating the measured time series for each voxel with a reference
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model, which is defined by a design matrix including the stimulus pattern and selected

regressors (Poldrack et al., 2011). Voxels with signals that are tightly correlated (i.e.

statistically significant) with the model used are considered “active”. As described by

Pernet (2014), the GLM is defined by the following matrix equation (Equation 1.26)

y = Xβ + ε (1.26)

where y is the column vector of the time series from each voxel, X is the experimental

design matrix convolved with the haemodynamic response function, and β represents the

coefficients (or weightings) of each of the experimental conditions contained in the design

matrix. The β coefficients are needed to fit the design matrix to the signal, minimising

the difference between the design and the measured signal. ε is the error term. Figure

1.8 demonstrates the fMRI design matrix.

Figure 1.8: Visualisation of the fMRI design matrix format. The time series per voxel is modelled using
a design matrix containing the model and regressors that are weighted in contribution according to their
β parameters. The first component of the design matrix is the task convolved with the appropriate HRF,
with the following components being motion regressors. An error term is also included in the model.
Inspired by Jenkinson et al. (2017).
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The set of model β parameters can therefore be obtained by matrix inversion:

β̂ = (XTX)−1XTy (1.27)

where X is the design matrix, XT is the transpose of the design matrix, y is the vector

of the time series, and β̂ is the predicted beta values. The variance in the data σ̂2 is

then given by

σ̂2 =
êT ê

n− rank(X)
(1.28)

where n is the number of dimensions of the matrix and ê are the estimated residuals.

The model for a given contrast of interest c is deemed significant through the use of the

Students t-distribution, whereby

t =
cT β̂√

σ̂2cT (XTX)−1c
(1.29)

The T-statistic is not a direct measure of neural activity but is proportional to the ratio

of the BOLD signal change evaluated by the contrast vector and the variance. The

T-statistic is influenced by the variance in the noise characteristics; hence the HRF used

to model the BOLD signal must be appropriate (Chen and Cohen-Adad, 2019). In terms

of statistical inference, either voxel-level or cluster-level interpretations can be made

from the statistical T-maps produced, each with their own conditions for appropriate use

(Poldrack et al., 2011).

Once the t-value, or T-statistic, has been determined, statistical significance can be

computed. At this stage, it is vital to consider the thresholds used for significance testing,

which must be justified (Constable, 2006), and the correction for multiple comparisons

as many thousands of voxels are simultaneously activated. Correction for multiple
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comparisons is described in depth by numerous sources (Eklund et al., 2016; Lindquist

and Mejia, 2015; Loring et al., 2002; Poldrack et al., 2008; Woo et al., 2014), though in

brief: as many hundreds of thousands of voxels are present and simultaneously tested

in fMRI GLM analysis, assuming that all voxels with a p-value < 0.05 are significant

would imply that 5 % of the voxels are false positives; hence the threshold for statistical

significance must be controlled for the number of related tests (Poldrack et al., 2011).

Other regressors can be included to model the signal drift and motion parameters,

to further account for variability in the model. There are other contributions to the

signal variance, which arise from thermal noise, from the electronics of the system, and

physiological noise, which usually falls within the frequency range of the TR, i.e. 0.3 -

0.5 Hz (cardiac 1 Hz, vasomotion 0.1 Hz, breathing 0.3 Hz, as described by Chen et al.

(2019). Equally, however, it is important not to overparametrise the model (i.e. add too

many regressors) as this can change the statistical outputs of the model (Pernet, 2014).

Methods to enable flexibility in modelling are reviewed by (Monti, 2011) and can include

using temporal derivatives to account for variability in the haemodynamic response

function. Nonparametric statistics have also been implemented for fMRI to address a

few of the assumptions that are not valid for fMRI (Eklund et al., 2016; Winkler et al.,

2016), and although they can improve the accuracy some paradigms, they cannot be a

universal solution (Brown and Behrmann, 2017; Kessler et al., 2017).

’Resting-state’ fMRI, i.e. in the absence of an applied stimulus, involves an alternative

analysis technique from the GLM presented above. In this case, an explicit model is

not used as there is no contrast of interest for the design matrix; the participant is ‘at

rest’ (Huettel et al., 2014). The interest lies in the spontaneous fluctuation of neural

activity and the characterisation of networks based on intrinsic correlations between the

time series of the different brain regions (Poldrack et al., 2011). Regressors are used to

de-noise the signals to give rise to the inherent correlations induced by the haemodynamic

response, though various methods can be used to analyse this data that range from

model-based to model-free techniques (Lee et al., 2013).

79



1.13 Limitations of Conventional Functional MRI

with Echo-Planar Imaging

Conventional fMRI with GRE-EPI is highly advantageous as it can acquire volumes at a

fast rate. Furthermore, the sensitivity of the static dephasing mechanism is substantially

higher at conventional field strengths (3 T) than that of other methods sensitive to

functionally-induced changes, such as VASO or Arterial Spin Labelling (ASL). However,

there are several technical considerations to address when using EPI. The first is that

of image aliasing in the phase encoding dimension. The distance between samples in

k-space corresponds to the inverse of the length of the field of view. If the field-of-view

selected is too small, a “wrapped” image will appear at the edges of the field of view

(Brown et al., 2014). Nyquist ghosting is another form of aliasing which originates from

phase shifts produced in the time-reversal application between phase-encoding steps in

EPI for image reconstruction. These phase shifts produce an overlapping “ghost” in the

image (Bushberg et al., 2012; Dale et al., 2015).

Phase shifts between data acquisition steps can arise from numerous sources, including

local field inhomogeneities, eddy currents, subject movement or temporal changes in

signal amplitude (Bernstein et al., 2004). Phase shifts can also be induced by different

tissues in the brain, as different molecules may shift the frequency of precession relative

to the receiver frequency. These phase shifts are known as chemical shifts, which can

manifest as another artefact in the direction associated with the lowest gradient amplitude

(Brown et al., 2014). Chemical shift is particularly prevalent in the presence of fatty

tissues. Signal dropout is also common, where the neighbouring magnetic susceptibility of

different tissues can cause rapid signal decay or spin cancellation (Bushberg et al., 2012;

Huettel et al., 2014), and dynamic changes in local field gradients will be incompletely

refocused (Logothetis, 2008).

GRE-EPI is especially sensitive to local field inhomogeneities that cause image distortions,

originating from phase shifts that translate to spatial misregistration of spins (Brown et al.,
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2014; Huettel et al., 2014). Such inhomogeneities are often caused by the susceptibility

differences between, for example, bone, tissue, and air. In the case where the full

background gradient is inhomogeneous, these distortions can translate as stretching or

shearing in the image, though this can almost be resolved by post-processing methods

(Jezzard and Balaban, 1995). Spin-history artefacts are another misregistration artefact,

whereby spins with different magnetisation levels are introduced into incorrect slices

via through-plane motion, producing exaggerated signals that could be task-correlated

(Yancey et al., 2011).

Of particular importance to GRE-EPI for fMRI is the echo-shift effect, where if the phase

dispersion occurs to a greater extent during the dephasing gradient lobe than expected,

due to magnetic field inhomogeneities, then the time point at which these phases fully

refocus upon application of the rephasing gradient lobe will be affected (Brown et al.,

2014). Given the dependence of the BOLD signal on the T2∗ of a tissue, an incorrect

echo refocusing time would limit the signal received at the selected echo time on the

scanner interface. This effect is visible in the k-space data as the centre of k-space will

appear shifted. If the temporal shift is substantial, signal dropout will occur as the signal

will fall outside the acquisition window.

Another limiting factor to MRI in general, but especially to fMRI with GRE-EPI, is

inflow effects. These effects originate from the regional blood flow, where the incoming

or outgoing blood in an MRI slice effectively carries magnetisation states from other

areas (Gao and Liu, 2012). For fMRI, signal fluctuation can confound the localisation of

functionally induced signal changes. It can also lead to modulation of the BOLD signal

amplitude and interfere with the temporal characteristics of the signal. The specificity of

the BOLD signal is also affected in GRE-EPI, as increases in neural activity will produce

oxygenation changes in all vessels, with exceptionally high magnitude in the larger draining

vessels, that may mask the changes specific to capillary beds (Logothetis, 2008).

Though EPI is generally a very efficient method for traversing k-space rapidly, the raw

data requires substantial sorting prior to reconstruction that can lead to ghosting if

performed incorrectly (Huettel et al., 2014). Advances using spiral imaging have been
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implemented that can address this, however these schemes remain prone to distortion

artefacts (Glover et al., 2012). The critical limitation of interest to this thesis is the

acoustic noise of GRE-EPI, which is discussed in the next part of the introduction.
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Summary

This chapter covers the following topics:

• The origin of acoustic noise in conventional fMRI.

• Safety concerns of scanner acoustic noise.

• The impact of acoustic noise across studies and cohorts.

• Alternative strategies for reducing acoustic noise.

• Principles of zero echo time (ZTE) and radial imaging.

Overview

The origins of acoustic noise in GRE-EPI are discussed in depth in this chapter, as this

forms one of the key phenomena under consideration in this thesis. The limitations im-

posed by the scanner acoustic noise across studies and participant cohorts are highlighted.

The background of acoustic noise reduction techniques for fMRI is outlined, and the core

principles behind the development of Looping Star are introduced.
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2.1 Origins of Acoustic Noise in MRI

Acoustic noise is measured using the sound pressure level in the air, in units of decibel

(dB, Pulkki and Karjalainen (2014)). Sound pressure level measurements are commonly

used as they account for environmental contributions to acoustic noise. This level can

be weighted towards specific frequencies to better relate to the frequencies heard by the

human ear, as the sensitivity profile of human hearing across frequencies is not uniform

(McJury, 2021)

Explicitly, human hearing sensitivity is highest between 3 - 4 kHz and lower for less than

250 Hz and higher than 5 kHz (Pulkki and Karjalainen, 2014). A-weighting is used to

weight the sound pressure level towards mid-range sound frequencies, i.e. attenuating

the low and high frequencies, therefore better representing human hearing (Pulkki and

Karjalainen, 2014). This measurement is referred to as LAeq with units of A-weighted

decibels, dB(A). The C-weighted sound pressure level is weighted towards lower frequencies

to represent what humans hear during loud noise, with the absolute peak written as

LCpeak with units of dB(C). As described by McJury (2021), the loudness of a sound is a

mental response to the sound intensity and is approximately proportional to the intensity

over several orders of magnitude; hence the use of the decibel, which is a log-scale based

measure.

The acoustic noise of MRI pulse sequences such as GRE-EPI originates from Lorentz

forces. The Lorentz force is a physical principle whereby a force is generated by a

time-varying current in a coil within a magnetic field (Grant and Phillips, 1990). For a

small element of the coil, it is described by Equation (2.1)

F = B0 × Idl (2.1)

where B0 is the static magnetic field strength and I is the gradient current through wire
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element of length dl. The total force on the coil is the integral of the above equation

over the entire coil.

As rapid gradient switching occurs in GRE-EPI, forces are repetitively produced in a short

period, manifesting as vibrations of the gradient coil. Given that these coil vibrations

are occurring within the housing of the scanner and that sound is simply the projection

of vibrations through the air, these vibrations manifest as loud acoustic noise (Shellock

et al., 1998). Other sources of noise in the MR facility include that of the cryopump

and influences of the RF radiation, the latter of which is known as RF hearing (McJury

and Shellock, 2000), but this section will focus on the scanner noise produced by the

vibrations induced from gradient switching only.

Acoustic scanner noise, particularly in GRE-EPI, is periodic due to the repetitive structure

of MR pulse sequences (Counter et al., 1997). The periodicity in the acoustic profile of

EPI is related to the acquisition time per slice, and reducing the time between gradient

amplitude changes will increase the noise (Rizzo Sierra et al., 2008). The acoustic

noise also increases with decreases in slice thickness, FOV and echo time, as these all

lead to more rapidly occurring changes in gradient amplitude within the pulse sequence

(McJury, 2021). The gradient slew rate also affects the acoustic noise, with faster

gradient slew rates increasing the acoustic noise. This is because faster switching occurs,

which increases the forces produced (Ott et al., 2016). Moelker et al. (2003) also showed

that the acoustic noise increases with magnetic field strength, supported by Equation

(2.1).

Table 2.1 shows the range of recorded sound pressure levels of EPI-based acquisitions

across a few studies at 3 T. The methodology is not consistent, and different manufacturers

and decibel weightings are used. The more recent GRE-EPI acquisitions indicated in

Table 2.1 produce lower acoustic noise levels due to technological advances in scanner

technology, such as improved gradient performance.
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Table 2.1: EPI-based acquisitions and reported sound pressure level across studies

Authors Sound

Pressure

Level

Decibel

Weighting

Acquisition Type

Peelle et al.

(2010)

90.2 dB(A) Siemens 3 T Tim Trio (Siemens Medical

Systems, Erlangen, Germany). GRE-EPI:

TR = 2.8 s, TE = 30 ms, Bandwdith =

2230 Hz/Px, 284 scans, 19.2 cm FOV, 64

x 64 mm matrix

Solana et al.

(2016)

114.0 dB(A) GE 3 T MR750w (GE Healthcare, Wauke-

sha, Wisconsin, USA). GRE-EPI: TR =

2.5 s, TE = 30 ms, 22 cm FOV, 3.4 x 3.4

x 3 mm voxel size

Rizzo Sierra

et al. (2008)

102 dB Philips Intera 3 T. EPI: TR = 3 s, TE =

35 ms, 46 slices, 64 x 64 matrix, 22.4 cm

FOV, 925 Hz dominant readout train

Price et al.

(2001)

118.3 dB(A) Varian 3.0 3 T (Varian Inc., Palo Alto,

USA). GRE-EPI: TR = 3 s, TE = 5 ms,

Slice width = 5 mm, matrix size 64 x 64,

25 cm FOV

Foster et al.

(2000)

127 dB 3 T 100-cm-bore Oxford Magnet Tech-

nology. EPI (MBEST) Clustered Volume

Acquisition. (exact parameters not speci-

fied in detail)

Zapp et al.

(2012)

88.7 dB Manufacturer and field strength not spec-

ified. Conventional EPI: matrix size 64 x

64, readout 725 Hz, TE = 50 ms, FOV

22 cm, slice thickness 4 mm.
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Andoh et al.

(2017)

74.8 dB 3 T Siemens Tim Trio (Siemens Medical

Systems, Erlangen, Germany). GRE-EPI:

Slice thickness 3.5 mm, 36 slices, 22.4 cm

FOV, 64x64 matrix size, in plane resolu-

tion 3.5 x 3 x 5 mm, acquisition bandwidth

2442 Hz, TR = 2.79 s, TE = 30 ms

Ravicz et al.

(2000)

131 dB GE Signa 3 T. Spin echo EPI: TR = 2 s,

slice thickness = 5 mm, matrix size 128 x

64

2.2 Safety Concerns of Acoustic Noise in MRI

The range of human hearing frequencies is between 20 Hz - 20 kHz, with the majority of

energy in EPI scanning within the audible range (i.e. up to 1 kHz) (Hall et al., 2009;

Talavage and Hall, 2012). Given that hearing sensitivity increases for the audible range of

frequencies, hearing ability is susceptible to damage if loud noise occurs in this frequency

range (McJury, 2021; Pulkki and Karjalainen, 2014). As earphones and earplugs tend

to perform better at higher frequencies than lower frequencies (Brunnquell et al., 2020;

McJury et al., 1997), they are the preferred method of dampening acoustic noise and

are mandatory for participants being scanned in the United Kingdom (Published by the

Medicines and Healthcare products Regulatory Agency, 2021).

However, despite the use of earplugs and earphones being compulsory, the concern

regarding participant safety remains. Foster et al. (2000) explored the acoustic noise

generated during an EPI acquisition at 3 T and performed five measurement sessions,

finding that the sound pressure level ranged from 123 to 132 dB(A). This study highlighted

that these sound levels could cause hearing damage without sufficient hearing protection,

based on the noise limitations outlined by international guidelines. Sheppard et al. (2018)

also reviewed two studies that indicated temporary hearing loss after scanning, stating
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that regular MR scanning and absence of earplugs could significantly increase the risk of

permanent damage. This supported the findings of Brummett et al. (1988), who found

distinct differences in hearing loss between participants wearing earplugs and those that

were not.

Sheppard et al. (2018) also stress the importance of appropriate earplug fitting, which

is further supported by Viallet et al. (2015) who highlighted the variability of sound

attenuation with earplugs. McJury (2021) also describes the importance of earplug

application, as well as considerations regarding hidden hearing loss. Radomskij et al.

(2002) showed that MRI noise affected otoacoustic emissions, which quantify the operation

of the inner ear, with the value decreasing after exposure to MR noise. Govindaraju et al.

(2011) also presented a case study of hearing loss and tinnitus post-MRI in a patient

case study, and Bongers et al. (2017) showed that acoustic noise exposure increases the

rate of change of hearing threshold level, producing some hearing loss.

Another safety concern is that anxiety is a common response to the MR environment

(Quirk et al., 1989), with advice in place suggesting the use of music during scanning

to lower this effect (Oztek et al., 2020). However, this remains difficult to implement

effectively in the noisy scanning environment. Furthermore, although a foetus is protected

by surrounding tissues, low-frequency energy levels of sound can penetrate tissue, which

could be of concern (Gerhardt and Abrams, 2000). However, no evidence for safety

concerns has been recorded to date (Jabehdar Maralani et al., 2021). Shifts in hearing

have also been seen in preclinical studies, with interaction effects observed with cisplatin

injection (Laurell, 1992) indicating that caution may be advised for studies involving

certain drugs.

Finally, the companions and workers in the MR environment must also be considered.

For example, Lauer et al. (2012) highlighted that animals (which may be present for

assistive needs of patients) could experience hearing damage due to MRI scanner noise.

Radiographers also spend a long period in the scanning facility, which could also pose

safety concerns (Price et al., 2001).
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2.3 Impact of Acoustic Noise: Non-auditory fMRI

Tasks

The acoustic noise in fMRI is generally constant across the duration of a scan. For

task-based paradigms, it has been assumed that the constant scanning noise is common

to both the active and the reference conditions and can therefore be ignored in analysis.

This is based on the principle of "pure insertion", whereby contrasting fMRI conditions

is considered a simple additive process, which may not be the case when background

acoustic noise is present (Di Salle et al., 2003). Studies have shown across various tasks

that the acoustic scanning noise interacts with the functional sensitivity of the study. This

has been seen in tasks that do not explicitly require auditory recruitment, as discussed in

this section.

Tomasi et al. (2005) identified increased BOLD-related responses in the cerebellum,

multiple frontal gyri and the fusiform and lingual gyri when implementing a working

memory task during periods of increased scanner noise, achieved by deliberately changing

the resonant vibration modes of the gradient coil. Another example was produced by

Cho et al. (1998b), who investigated the impact of acoustic noise by producing a silent

condition with an acoustic shield for the ears and a noisy condition by playing a recording

of the scanner noise through the shield. They found that when comparing the silent

condition of a visual task compared with the noisy condition, there was reduced visual

activation for the noisy condition. They also investigated the impact on motor activation,

which was increased during the noisy condition.

Other studies have employed sparse scanning techniques to explore the impact of acoustic

noise on the neural response to a variety of tasks, which involve applying a stimulus in

blocks without MRI acquisition (i.e. in silence) followed by acquiring the signal changes

rapidly after the stimulus ends (Hall et al., 1999). Explicitly, the amplitude of the scanner

noise is the same as conventional fMRI when scanning occurs, but acquisition occurs in

short blocks after stimulus presentation in silence. This is described in more depth in
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Section 2.6.2.2. Contrary to Cho et al. (1998b), Elliott et al. (1999) demonstrated no

impact of acoustic noise on both visual and motor tasks using sparse sampling, though

decreased activation was seen during an auditory task for the sparse sampling method.

Identification of resting-state networks has also been affected when comparing their

characteristics between sparse and continuous acquisitions (Yakunina et al., 2015). A

method of sparse sampling known as Interleaved Silent Steady State (ISSS) has also

shown that the connectivity between resting-state networks is affected by acoustic noise

(Andoh et al., 2017). Another method of adapting the fMRI scanner noise is presented

by Haller et al. (2005). In this case, the scanner noise is, again, of the same amplitude as

conventional fMRI, however the EPI noise is tuned to be either continuous or pulsed. They

found differential activation across the cortex between techniques, although differences

in the sampling schemes between techniques may have affected the results.

One method to address the scanner acoustic noise volume is to employ noise-cancelling

headphones (described in Section 2.6.1.3). These headphones can be also be used to

simultaneously cancel the scanning noise and play auditory stimuli. Such hardware has

demonstrated interesting behavioural effects from the acoustic noise from fMRI. For

example, recorded acoustic scanner noise played through noise-cancelling headphones

affected the olfactory detection threshold score in an olfactory task (Fjaeldstad et al.,

2019). However, the acoustic noise of fMRI did not affect taste perception in a separate

study using similar methodology (Lorentzen et al., 2021). Playing recorded acoustic

scanner noise through insert earphones has also been shown to significantly reduce

unpleasantness ratings in a heat-related pain paradigm (Boyle et al., 2006).

The scanner noise itself has also been integrated as part of the fMRI paradigm, where

Zhang et al. (2005) suggested that gradient acoustic noise reduced activity in the visual

cortex using a cross-modal paired stimuli paradigm. This paradigm involved presenting

a flashing light after the scanner acoustic noise with a varying delay. They found that

the visual activity differed based on the duration of the delay, with significant signal

reduction in the visual cortex occurring when the flashing light was presented 300 ms

after the acoustic noise. In this case, a conventional multi-slice fMRI acquisition was
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used with a 1.35 second delay applied between volumes. These studies suggest that the

interpretability of many tasks may be affected by the acoustic background noise.

2.4 Impact of Acoustic Noise: Auditory

Processing fMRI Studies

Although scanner acoustic noise can affect other regions of interest as described in Section

2.3, the region that is predominantly affected by acoustic noise is the auditory cortex, as

highlighted by the following studies. The methodological challenges of auditory fMRI are

reviewed by Peelle (2014).

Bandettini et al. (1998) demonstrated the impact of acoustic noise by mapping the regions

of the brain that are reactive to acoustic scanner noise. The study was performed by

creating a contrast between one sequence which collected the EPI signal, as normal, and

another sequence that applied only the gradients initially then applied the RF excitation

after some time. Based on changes in the steady-state MR signal, they found auditory

regions with enhanced BOLD contrast induced by the noise of the gradient pulses.

Talavage et al. (1999) also demonstrated that the spatial extent and the z-scores of

regions activated by an auditory paradigm decreased with a longer duration of gradient

noise from the scanner using a GRE-EPI acquisition. Extended durations of acoustic

noise were applied using gradient switching without slice excitation.

In a two-part study, Gaab et al. (2007b) first showed increased signal within Heschl’s

gyrus for a word-processing task when employing clustered-volume and sparse temporal

sampling acquisitions in comparison with continuous scanning. Gaab et al. (2007a)

then showed that during the same word-processing task, but with different levels of

scanner background noise, there was an interaction effect of the acoustic noise that

impacted the contrasts of the experimental and baseline conditions. Both studies primarily

detected changes within Heschl’s gyrus, though they comment on effects seen in other

auditory-related brain regions.
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Acoustic noise can also have behavioural effects in response to auditory paradigms. For

example, Pripfl et al. (2006) demonstrated that participants with a low tolerance for fMRI

acoustic noise performed worse during a mental reasoning task, using an EEG acquisition

with fMRI background noise applied. Shah et al. (2000) also showed that scanner noise

affected task performance when acquisition involved short repetition times, likely due

to significant acoustic masking from the background noise. Jäncke et al. (1998) also

showed that increasing auditory stimulus intensity, when avoiding masking effects using

appropriate acquisition and paradigm timing, can increase the spatial extent of the fMRI

response.

PET is an interesting technique to use in combination with recorded fMRI noise as PET

acquisition is silent. Using 15O labelled water, PET can measure radionuclide uptake due

to increased cerebral blood flow induced by neural activity. Mazard et al. (2002) used

PET during a visual mental imagery task with fMRI-like noise applied during acquisition,

demonstrating that the acoustic noise increased the regional cerebral blood flow in the

anterior cingulate cortex and Wernicke’s area. Furthermore, they found that more errors

in the task took place during acoustic noise condition. Chonde et al. (2013) also showed

that MR acoustic noise was related to a specific increase in FDG uptake in the primary

auditory cortex. Magnetoencephalography (MEG) has also been used as another silent

acquisition technique to explore the impact of recorded fMRI noise. Novitski et al. (2006)

showed that fMRI acoustic noise reduced the amplitude of the MEG responses to different

acoustic tones, especially for higher frequency tones.

Further studies of the auditory cortex include that of Peelle et al. (2010), who compared

a quieter EPI sequence, which employed sinusoidal readout gradients to produce a narrow-

band acoustic frequency spectrum, with conventional EPI and found that the quieter

sequence provided more robust activation in the auditory regions. Similarly, Mueller et al.

(2011) compared sparse temporal sampling, ISSS and conventional continuous scanning

of the same acquisition length and found that ISSS had the best sensitivity to more

subtle activity in subcortical brain regions in response to music. This study was further

supported by Schmidt et al. (2008), who compared conventional fMRI and clustered sparse

acquisition and found more robust functional responses across the superior temporal
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plane during sparse acquisition during an auditory language comprehension task.

Not only does the acoustic noise affect the amplitude of the response in the auditory

cortex, but also Langers et al. (2005b) showed that the shape of the haemodynamic

response was affected by the scanner noise. They found that interactions were more

substantial and more complex in shape when the spectral content of the tone stimulus

and scanner noise were more similar. This interaction was also shown by Ranaweera

et al. (2011), as the haemodynamic response changed for different temporal patterns of

background scanning noise. The impact of acoustic noise on subcortical structures linked

to auditory processing has also been explored: Sigalovsky and Melcher (2006) found

increased activation with increasing sound level for the cochlear nucleus, superior olive,

inferior colliculus and auditory cortical areas using sparse sampling.

The impact of auditory noise, applied in bursts using sparse temporal sampling, has also

demonstrated an effect on the time course of the BOLD response in the auditory cortex

(Hall et al., 2000). Longer TRs are recommended for such acquisitions to reduce the

interaction of the scanner noise on any tasks, as scanner noise could affect the effect of

interest in the auditory cortex. Tamer et al. (2009) also characterised the haemodynamic

response to a single block of fMRI scanning noise and found an estimate for the peak

magnitude change from baseline in the auditory cortex of around 0.29 % in the right

hemisphere and 0.48 % in the left hemisphere. Ulmer et al. (1998) demonstrated that

large auditory and language cortices are bilaterally activated by scanner noise using a

task that included an audio recording of scanner noise overlaid on spoken texts.

2.5 Impact of Acoustic Noise: Participant and

Patient Cohorts

Acoustic noise from MRI scanning can also significantly impact the participant experience

and inclusion in MR research, ultimately limiting the inferences that can be made

and therefore limiting investigations of biomarkers that could be crucial for treatment
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development.

In particular, participants who demonstrate sound aversive symptoms such as hyperacusis

(Baguley, 2003; Baguley and McFerran, 2011) will typically be excluded from fMRI

studies, limiting the inferences that can be made of such cohorts (Davies et al., 2014;

Golm et al., 2013). Koops and van Dijk (2021) recently demonstrated that participants

with hyperacusis can experience significant discomfort during fMRI scanning. Hyperacusis

is particularly prevalent in disorders such as the Tullio phenomenon (Watson et al.,

2000) and tinnitus (Baguley, 2003; Chen et al., 2015). Another sound aversive trait is

misophonia, which is defined as autonomic arousal to innocuous or repetitive sounds

(Cavanna and Seri, 2015; Edelstein et al., 2013). Such sounds are indeed present in MRI

scanning, which then limits the investigations that can be performed with this cohort.

Participants with autism spectrum disorder are another cohort that commonly reports

hypersensitivity to acoustic noise, though its prevalence is likely to differ across individuals

(Stiegler and Davis, 2010). Such hypersensitivity is also supported by non-MRI based

studies that highlight that noise can significantly affect children with autism spectrum

disorder (Kanakri et al., 2017). Children without diagnoses of autism spectrum disorder

have also demonstrated inhomogeneous symptoms of sensitivity to sound (Rosing et al.,

2016).

Furthermore, although there is theoretically no damage to the foetus in pregnancy

(Mervak et al., 2019), there are concerns regarding the scanning of neonates. Neonates

can experience detrimental effects as a result of high acoustic noise (Graven and Browne,

2008a,b) so acoustic noise reduction is vital. Philbin et al. (1996) also demonstrated

that MRI scanning might alter the vital signs of neonates, signalling potential distress.

Tkach et al. (2014) devised an MR system to reduce this noise level in one example,

and acoustic hoods have been developed to reduce acoustic noise impact on this cohort

(Nordell et al., 2009).

It is important also to address that even participants without a formal diagnosis of a

sound aversive condition can be affected by acoustic noise. For example, Sartoretti et al.
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(2020) showed that reduced acoustic noise reduced patient discomfort, which is supported

by McNulty and McNulty (2009) who demonstrated that participants were far more

tolerant, via an acceptability rating questionnaire, of quieter scanning systems. Dewey

et al. (2007) also showed that reduced scanner acoustic noise correlated with a reduced

incidence of claustrophobia in a cohort study of 55,000 patients. Quirk et al. (1989)

demonstrated that anxiety in patients during an MRI scan was affected by scanner noise.

The fMRI environment, including the loud acoustic noise, can also exacerbate anxiety in

the most vulnerable patient groups, demonstrated by Mutschler et al. (2014) in carriers

of genetic polymorphism for anxiety vulnerability.

2.6 Strategies to Reduce Acoustic Noise using

GRE-EPI

It is clear from the previous section that conventional fMRI with GRE-EPI produces

concerns regarding interpretability of results and accessibility of MR research to all cohorts.

However, GRE-EPI-based adaptations to reduce acoustic noise remain preferable given its

sensitivity to the BOLD response. Numerous techniques have been applied, both in terms

of hardware and software adaptations, to reduce acoustic noise. Gradient acoustic noise

is dependent both on the position in the scanner and the forces applied to the gradient

coils, as well as the shape and timing of pulses (Hedeen and Edelstein, 1997), hence

both software and hardware are important to consider. Given that EPI and fMRI are of

interest for this thesis, this section will focus on techniques applicable in these contexts.

2.6.1 Hardware Modifications

The most commonly applied hardware is that of earplugs, earmuffs and helmets to reduce

the impact of acoustic scanning noise (Ravicz and Melcher, 2001). However, acoustic

noise can be conducted through body tissues to the middle ear; therefore this hardware
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may not always provide sufficient attenuation (Di Salle et al., 2003). Additionally, as

mentioned previously, appropriate attenuation relies on correct application of earplugs

(Sheppard et al., 2018).

Scanner architecture is a critical component for understanding and resolving the acoustic

noise that originates from vibrations in the gradient structures (Edelstein et al., 2002).

For example, open MRI scanners are low field and also have a very different gradient

coil mounting design, both of which contribute to lower acoustic noise (McJury, 2021;

Price et al., 2001). Scanner structure can also generate standing acoustic waves in the

bore. These standing waves can then vary the sound pressure levels across the different

directions within the bore (More et al., 2006).

2.6.1.1 Gradient Isolation

One hardware-based technique to reduce the acoustic noise of the scanner is gradient

shielding, which aims to prevent the propagation of vibrations that constitute sound. Air

vacuums and separate gradient supports can also significantly dampen acoustic noise.

Edelstein et al. (2002) explored various pathways for noise propagation across scanner

components, testing different strategies for noise reduction such as vibration isolation,

vacuum isolation and damping. In a standard scanner, they found that a substantial

contributor to acoustic noise was the vibration in the gradient supports. They addressed

this by sealing the gradient assembly in an airtight enclosure.

However, upon isolation of these vibrations, Edelstein et al. (2002) also found further

contributions to acoustic noise. Electromagnetism-based noise was identified, including

eddy-current induced vibrations within the cryostat inner bore, RF body coil and patient

tube. These were addressed using low-eddy-current RF coils, constrained-layer damping

and acoustic absorption. They demonstrated noise reduction in the cryostat bore for spin

echo EPI of 16 dB(A). The same group later developed further electromagnetic shielding

produced by eddy currents induced by “warm bore” cylinder, suggesting the installation of

passive copper shielding Edelstein et al. (2005). A model for computation of the vibration
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modes of these “warm bore” cylinders was studied in depth by Taracila et al. (2005).

Gradient vibration isolation through the use of vacuum chambers for spin echo EPI was

also explored by Katsunuma et al. (2002). They also built a separate support for the

gradient coil and employed similar methods for reducing electromagnetic induction in

the RF coils to achieve, overall, a 33.5 dB reduction in acoustic noise. Acoustic barriers

and sound-absorbing foam have also been used to isolate gradients. For example, one

study showed the use of acoustic absorbers in the scanner bore, which reduced the

acoustic noise in the acoustic frequency range of an MPRAGE sequence (i.e. above

1100 Hz) (Li and Mechefske, 2010). The same group had previously also demonstrated

that an acoustic liner could reduce the sound pressure level for EPI by more than 20

dB (Mechefske et al., 2002). However, the implementation of these gradient isolation

systems, as well as any retrofitting to reduce coil vibration (Lin et al., 2009; Mechefske

et al., 2002), can be costly and cannot necessarily be applied to installed scanners (Okada

and Nakai, 2003); hence these procedures are limited across applications.

2.6.1.2 Gradient Coil Design

Gradient coils can be designed to reduce acoustic noise by devising the coil loop such

that the Lorentz forces are coupled and balanced (Bowtell and Mansfield, 1991; Haywood

et al., 2007; Mansfield et al., 1994, 2001, 1995a; Roozen et al., 2008). These gradient

coil systems have been successfully applied for EPI acquisitions at 3 T, although there

are limitations to their efficiency as reviewed by Hidalgo-Tobon (2010).

Alsop and Connick (1996) also designed gradient coils that balanced the torque on a

cylindrical coil. Where force is dependent on the current density, element area and

magnetic field, the torque also considers angular and rotational effects. This method

demonstrated benefits to the performance compared to force-balanced acoustic screening,

though there are no comments on whether it significantly reduced acoustic noise. More

recently, a low cryogen compact 3 T scanner with an asymmetric force and torque-

balanced gradient head coil and sinusoidal gradient pulses has been employed for diffusion
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imaging with EPI, which not only improved efficiency but also lowered acoustic noise

by 8.5 dB(A) - 15.6 dB(A) relative to whole-body MRI (Tan et al., 2018). It has not,

however, been extended for use with fMRI.

Forbes et al. (2007) computed an analytical method to aid the design of coil windings in

order to reduce the acoustic noise. At 7 T, Lorentz forces can become of great concern

for acoustic noise amplification (see Equation (2.1)). However, the gradient coil geometry

can be designed to cancel net forces and effectively dampen the impact (Winkler et al.,

2018). Another approach to gradient coil design was presented by Cho et al. (1998a),

who demonstrated a rotating direct current gradient coil to remove acoustic noise, though

it was limited by its need for projection image reconstruction.

2.6.1.3 Active Noise Cancellation

Active Noise Cancellation (ANC) involves the development of a waveform that destructively

interferes with the acoustic noise produced by the scanner. One of the first examples

of this technique is demonstrated by (McJury et al., 1997), who produced an antiphase

waveform to the noise recorded at the scanner bore centre. This waveform was played

through an error microphone (essentially a loudspeaker) in the scanner bore to generate a

quiet region produced by destructive sound interference. Different algorithms can be used

to generate the optimal antiphase waveform given the complexity of scanner noise, as

well as the variability across sequences (Chen et al., 1999; Kannan et al., 2011; Lee et al.,

2017; Reddy et al., 2011). Li et al. (2011a) review the history of active noise control

in their study, and also demonstrate an active noise control system with a magnetic

compatible headset optimised for higher acoustic frequencies.

A recent study by Dewey et al. (2020) used ANC headphones during fMRI scanning

to explore lifetime noise exposure levels of individuals and their relationship to neural

responses using an auditory paradigm, and found that lifetime noise exposure may be

associated with central hyperactivity in young adults with normal hearing thresholds.

The same group also published a study demonstrating differences between the results of
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continuous and sparse sampling during an auditory processing study when using ANC in

both cases (Dewey et al., 2021). Interestingly, although ANC should theoretically benefit

the interpretation of auditory studies (Hall et al., 2009), significant improvements in

activity maps across studies have not been observed (Blackman and Hall, 2011; Talavage

et al., 2014). Reviews suggest that this may indicate the importance of stimulus parameter

selection or could suggest that there remains a presence of sub-threshold acoustic energy

that interacts with neural activity (Blackman and Hall, 2011; Hall et al., 2009; Talavage

et al., 2014).

2.6.2 Software Modifications

Hardware-based modifications for removing or reducing acoustic noise can be costly and

challenging to implement across sites; hence software-based (i.e. pulse sequence-related)

approaches are preferred. These can vary from adapting timings in the pulse sequence to

different gradient waveform applications. Software methods for reducing acoustic noise

in structural imaging have not significantly affected image quality, so they are of great

interest (Fuelkell et al., 2018; Matsuo-Hagiyama et al., 2016).

2.6.2.1 Gradient Pulse Shapes

One of the pulse sequence modifications employed is the “soft tone parameter”, or soft

gradient pulses, which decreases the gradient slew rate. Soft gradient pulses were first

devised by Hennel et al. (1999) for gradient echo, spin echo and Rapid Acquisition

with Relaxation Enhancement (RARE) acquisitions. The trapezoidal pulse waveforms

of the gradients are band-limited to lower acoustic frequencies and convolved with a

cosine window to smoothen the gradients, reducing the acoustic noise. Rondinoni et al.

(2013) used a soft-tone parameter technique with EPI for exploring differences between

rest conditions in noisy and quieter scans. The insula, left middle frontal gyrus and

right precentral and left inferior parietal lobules showed significant differences between

resting-state networks depending on the noise condition. Loenneker et al. (2001) also
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used soft gradient pulses with simultaneous multi-slice gradient echo imaging to maximise

volume coverage, retaining low acoustic noise and T2* sensitivity.

Alternatively, Schmitter et al. (2008) developed an EPI sequence where narrow-band

acoustic frequencies are produced using a sinusoidal readout echo train. This implemen-

tation leads to a low acoustic noise sequence as smoother transitions between gradient

directional switching are produced. This technique was evaluated by Peelle et al. (2010)

for suitability in an auditory task in comparison with three other sequences. They found

that the quieter sequence produced robust activation in response to a sentence listen-

ing task in some regions, though loss of activation in others. Zapp et al. (2012) also

demonstrated the benefits of sinusoidal readout gradients for fMRI, not only reducing

the acoustic noise by 11.1 dB but also improving the temporal resolution. Rather than

reduce the acoustic noise of scanning, another technique is to "tune" the pulse sequence

to produce a less distracting sound characteristic. For example, Seifritz et al. (2006)

presented a technique that produced continuous rather than pulsed sound with the same

acoustic amplitude that enhanced the BOLD response for a range of tasks.

2.6.2.2 Sparse Sampling and Clustered Volume Acquisition

The primary alternative for auditory fMRI is sparse temporal sampling, also referred to

as Clustered Volume Acquisition (CVA). The principle of these techniques is to apply

the stimulus in silent blocks followed by the conventional noisy image acquisition during

the peak of the haemodynamic response. This method is feasible as the haemodynamic

response peak is approximately 3 - 5 seconds after the stimulus onset. The terminology of

“sparse temporal sampling” was initially developed by Hall et al. (1999), whereas clustered

volume acquisition was devised by Edmister et al. (1999). The origins of the techniques

are discussed in depth by Talavage and Hall (2012), with the main difference between

them being that sparse sampling tends to involve longer interscan intervals.

Sparse sampling has also been incorporated with multi-band acquisition, facilitating

longer periods of silence between acquisitions (De Martino et al., 2015). The benefits
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of sparse sampling-based techniques for BOLD signal detection have been highlighted

across numerous studies (Di Salle et al., 2001; Eden et al., 1999; Edmister et al., 1999;

Gaab et al., 2003; Langers and Van Dijk, 2012; MacSweeney et al., 2000; Schmithorst

and Holland, 2004; Skouras et al., 2013; Yang et al., 2000). Crucially, interval timing

must be taken into account with sparse sampling; for example, Liem et al. (2012)

demonstrated that the interval timing between periods of scanner noise with short cluster-

onset asynchrony produced better results than those with longer cluster-onset asynchrony.

Perrachione and Ghosh (2013) summarised the considerations of sparse-sampling fMRI,

highlighting the intricacies and limitations of the technique.

Another important consideration is the inter-subject variability of the time to peak of the

haemodynamic response, as this can affect the peak BOLD signal received. Furthermore,

as the acoustic noise produced by the readout will initiate a BOLD response, the readout

duration must be short to avoid contaminating the response to the stimulus of interest.

(Di Salle et al., 2003). Andoh et al. (2017) recently evaluated an evolution of sparse

sampling known as ISSS (Schwarzbauer et al., 2006) by comparing resting-state results

with conventional fMRI. This technique involved the rapid acquisition of a set of echo-

planar imaging volumes following silent periods, during which steady-state longitudinal

magnetisation was maintained with a train of relatively silent slice-selective excitation

pulses. They found high reproducibility across days and increased connectivity between

and within a variety of networks.

2.6.2.3 Other Software-Based Techniques

The standard parameters of EPI can also be used to reduce the acoustic noise. For

example, McJury (2021) suggests the use of spin echo sequences with 2D functionality

and low gradient amplitude to reduce acoustic noise. Parallel imaging techniques such as

SENSE can also be employed for acoustic noise reduction as they can facilitate reduced

slew rates, given that fewer lines of k-space are required (De Zwart et al., 2002). Tomasi

and Ernst (2003) also demonstrated the importance of considering the frequency of

the EPI readout trains and frequency of the gradient coil vibrations, as resonant modes
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can induce vibrations. Counter et al. (1997) also showed that for a range of MRI pulse

sequences, slice thickness and sound pressure level were inversely related.

As will be discussed in more depth in the following section, gradient trajectories can

also be adapted to reduce acoustic noise. For example, spiral readouts have inherently

lower acoustic noise levels (Oesterle et al., 2001) but produce inhomogeneity artefacts

that are more difficult to correct (Graedel et al., 2019). BURST is another example of

an alternative acquisition technique, whereby a train of excitation pulses is followed by

a train of echoes, therefore not requiring rapidly switched gradients and thus reducing

acoustic noise, though producing images with lower signal to noise (Di Salle et al., 2003;

Hennig and Hodapp, 1993). Another recent development is that of supersonic EPI, where

gradient switching exceeds the acoustic threshold for human hearing (Versteeg et al.,

2020).

Other pulse sequence design methods have also been applied across different manufacturers

for a range of imaging techniques beyond GRE-EPI, including ComforTone by Phillips

(Yamashiro et al., 2019), Piannissimo TM by Toshiba (Toshiba America Medical Systems,

2014), Silenz by GE Healthcare (Alibek et al., 2014) and the Quiet Suite by Siemens

(Aida et al., 2016; Ida et al., 2015), the details of which are not widely available.

2.7 Acoustic Noise Reduction via Radial fMRI

A fundamental limitation to the range of acoustic noise reduction techniques employed

for GRE-EPI is that no single technique is employed accessibly across sites and paradigms.

A useful solution would be a pulse sequence-based technique that eliminates acoustic

noise at its source, as this could be used across sites without requiring advanced or

costly setups. This aspiration was one of the factors that reignited the interest in ZTE

techniques, as they inherently reduce the acoustic noise of scanning since rapid gradient

switching is not used. Instead, small incremental changes in the gradient direction are

applied with the net amplitude of the gradient remaining constant. A complete overview
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of silent ZTE techniques is presented in a review that I co-authored (Ljungberg et al.,

2021a); therefore, this section focuses on specific highlights relevant for fMRI.

The application of the RF pulses in combination with a readout gradient produces three-

dimensional sampling “spokes” in k-space that sample the FID. Zero echo-time refers to

the time at which the signal sampling crosses the centre of k-space, which is effectively

zero since RF excitation and readout bandwidths are applied simultaneously. Considering

k-space, the delay between the centre of the RF pulse and the time at which the centre

of k-space is sampled is directly related to the T2* weighting (Section 1.8); hence the

term "zero echo-time" is used to describe these sequences (Ljungberg et al., 2021a).

ZTE acquisition schemes were initially established with the intention of imaging flow, as

they avoid the timing delays of slice-by-slice images that can give rise to motion artefacts

(Jezzard and Clare, 1999; Madio and Lowe, 1995). Furthermore, 3D radial ZTE-based

methods are robust to phase distortions induced by motion as artefacts manifest as image

blur rather than phase wrapping. These sampling schemes also require short, hard pulses,

which produce very low flip angles, in order to produce large excitation bandwidths that

uniformly excite the full readout bandwidth (Weiger and Pruessmann, 2012), meaning

they are also robust to slice profile effects (Ljungberg et al., 2020).

RUFIS was devised over 20 years ago (Madio and Lowe, 1995) and it is widely accepted

as one of the simplest ZTE acquisition schemes. The RUFIS pulse sequence is detailed

in-depth in Section 3.1. In brief: as the RF excitation is applied simultaneously with the

readout gradient, image encoding begins immediately, barring the brief dead time where

no data collection takes place between the coil switching from transmit to receive (Weiger

and Pruessmann, 2012). Solana et al. (2016) developed a adaptation to the RUFIS pulse

sequence, incorporating a T2 preparation module before the RUFIS acquisition. This

method weighted the signal towards T2 decay and provided comparable sensitivity to spin

echo EPI in a motor fMRI paradigm.

Multi-band SWeep Imaging with Fourier Transformation (SWIFT) is another ZTE-based

development applied mainly in preclinical scanners thus far. A 9.4 T scanner produced

104



32 dB reduction in peak sound pressure level and 20 dB reduced average sound pressure

levels than EPI with typical fMRI parameters (Idiyatullin et al., 2015). The key difference

relative to T2 prepared RUFIS is its use of sweeping RF pulses, with multi-band referring

to the multiple sidebands of the excitation profile in the readout dimension used to

achieve a high bandwidth (Idiyatullin et al., 2015). Multi-band SWIFT has been applied

in EEG-fMRI (Paasonen et al., 2020) and alongside deep brain stimulation (Lehto et al.,

2017) in rats, producing similar activation levels to that of spin echo EPI. Another

preclinical application is that of contrast agent-enhanced ZTE, though this is an invasive

technique and hence not preferable for human use (MacKinnon et al., 2020).

The limitation of both SWIFT and T2 prepared-RUFIS is functional sensitivity, as GRE-EPI

is significantly more sensitive to changes in T2*. It is for this reason that ZTE-based

techniques that produce a later echo were developed. One such technique is a ZTE

method using a burst of short RF pulses (BURST), which has been applied structurally

(Crémillieux et al., 1997; Jakob et al., 1997) and recently extended to fMRI (Lancione

et al., 2019; Schulte et al., 2019). BURST involves reversing the direction of k-space

traversal after the excitation, returning to the centre of k-space by retracing the steps out

of k-space. BURST has demonstrated high quality T2* and T2 weighted images, though

its functional extension has been limited due to the long repetition times (Lancione et al.,

2019; Schulte et al., 2019).

Looping Star, the method of interest for this project, was developed from these principles

and is discussed in depth in Section 3.1. To briefly introduce the technique: where BURST

involves refocusing by repeating the trajectory, effectively “rewinding” the sequence,

Looping Star involves a time-multiplexed gradient refocusing mechanism that produces

loops in k-space (Wiesinger et al., 2019). These loops can then be repeated in time,

producing multi-echo images. Given that only incremental changes in gradient direction

are required to fulfil the refocusing criteria, the silent acquisition is retained.
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Summary

This chapter covers the following topics:

• An introduction to Looping Star via RUFIS.

• Looping Star pulse sequence, k-space trajectory and technical considerations.

• Bloch simulations and point spread functions of Looping Star.

• Implications of under-sampling on the image quality of Looping Star data.

• Computations of spatial profile, Ernst angle and signal-to-noise efficiency of Looping

Star.

Overview

This chapter details the key concepts of the Looping Star pulse sequence, including the

physics and technical implementation involved in the method. The parameters involved in

the Looping Star pulse sequence are described. The impact of under-sampling and signal

decay on the point spread function of Looping Star are also shown. Simplified Bloch

simulations of the pulse sequence are also presented, and the signal-to-noise ratio (SNR)

efficiency is explored.
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3.1 RUFIS and Looping Star Pulse Sequences

Looping Star is based on a ZTE sequence known as RUFIS (Madio and Lowe, 1995).

RUFIS involves applying a non-selective RF excitation after the gradient has been ramped

to a constant value. The gradient direction is then changed by a small amount after the

initial signal decay, and the next excitation is performed at a new gradient step (Figure

3.1A). It is this minimal directional gradient change that leads to significant acoustic

noise reduction, as reduced gradient switching minimises the vibrations produced by the

Lorentz forces that manifest as sound in the scanner (see Section 2.1).

The signal from the entire volume of interest is received, as the excitation bandwidth of

the RF pulse encompasses the readout bandwidth (Weiger and Pruessmann, 2012). The

excitation bandwidth is the range of frequencies encompassed by the RF field, whereas the

readout bandwidth is the range of frequencies encoded by the gradient within the volume

of interest. The readout bandwidth is also usually broader than the range of frequencies

of interest to avoid wrapping artefacts (Bernstein et al., 2004). The excitation bandwidth

encompasses the full receiver bandwidth by means of the excitation employing a short,

hard RF pulse, with very low flip angle ( < 5◦). These pulses have been compared with

swept frequency pulses, and their ease of use has been highlighted (Weiger et al., 2011).

The spatial profile of the RF excitation pulse is described in further detail in Section 3.6.

As previously mentioned, the echo time can be defined as the time between the initial

signal excitation and when it is sampled through the centre of k-space (Boss et al., 2015;

Ljungberg et al., 2021a; Weiger and Pruessmann, 2012). In RUFIS, this time is effectively

zero as the excitation is applied after the gradient is ramped. Sampling therefore begins

very close to the centre of k-space (Section 3.9.3). The cumulative trajectory (i.e. the

trajectory after applying all gradients ’steps’ in the series) extends outwards in k-space,

beyond the matrix for the field of view specified (kmax), and does not return to the centre

of k-space (Figure 3.1B); hence refocusing of the magnetisation is never achieved, and

an echo is not produced. Instead, only the initial signal decay is sampled, referred to

as the FID despite the gradient presence (Section 1.3), and an image is produced with
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predominantly proton density-weighted contrast.

Figure 3.1: A) Diagram of RUFIS pulse sequence across time with hard block RF pulses, and gradients
in two dimensions (Gx, Gy). The data is continuously sampled (i.e. the analogue-to-digital converter
(ADC) is on) during the gradient directional changes. The net gradient amplitude is also shown (|G|).
The time points of the first four RF excitations are indicated as t1, t2, t3, t4 B) Cumulative trajectory in
k-space after the first four excitations, colour coordinated to match the RUFIS pulse sequence, with
the four time points labelled. Arrows indicate direction of cumulative trajectory. kmax is the maximum
extent of k-space sampled, depending on the matrix size and spacing.

As described in Sections 1.7 - 1.8, conventional functional imaging (i.e. based on

the static dephasing phenomenon) requires a T2*-weighted echo, therefore the RUFIS

scheme described above is largely insensitive to changes in neuronal activity. Either a

magnetisation preparation pulse needs to be applied before RUFIS readout, as performed

by Solana et al. (2016), or the cumulative sampling trajectory needs to be modified

to return the transverse magnetisation component to the centre of k-space to refocus

the transverse magnetisation and collect an echo. The Looping Star pulse sequence,

developed by our collaborators at GE Healthcare (Wiesinger et al., 2019), achieves

the latter by building on RUFIS, modifying the gradient directions so that the k-space

trajectory returns to the centre of k-space after a number of gradient steps (Figure 3.2).
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Figure 3.2: Diagram of the Looping Star pulse sequence across time with hard block RF pulses, and
gradients in two dimensions (Gx, Gy). The net gradient amplitude is also shown (|G|). The first portion
of the pulse sequence is RUFIS-like, with eight gradient steps encoding the FID. The gradients are
applied such that the cumulative trajectory returns to the centre of k-space, and the second portion
then repeats the gradient steps in the absence of RF excitation to encode the echo. The first two RF
excitation time points are labelled as t1, t2.

The portion of the trajectory encoded by each RF excitation and accompanying gradient

in 3D is referred to as a "spoke". As in RUFIS, Looping Star also involves ramping the

gradients and, after ramping (i.e. when the gradients reach their required amplitude),

then applying a hard, non-slice-selective, RF excitation (Wiesinger et al., 2019). However,

the pulse sequence differs from standard RUFIS in how the gradients are applied. The

number of gradient "spokes" chosen is applied in a “looping” directional sequence, making

the net vector sum of the trajectory k equal to zero and their net amplitude is constant

throughout the loop (Equation (3.1)).

m=NSpkPerLoop+n∑
m=n+1

km = 0 (3.1)

where NSpkPerLoop is the total number of spokes in a "loop", i.e. the total number of

gradients applied for the “looping” trajectory (Wiesinger et al., 2019). km is the vector

of the spoke trajectory with spoke index m. For example, for NSpkPerLoop = 4, the spoke

indices will range from km=n+1 to km=n+4. If the trajectory from the first spoke n = 1

is studied, then it would be seen that the cumulative trajectory will return back to the

point of the first spoke at km=4+1=5 (i.e. k2 + k3 + k4 + k5 = 0), meaning spoke k5

would begin the sampling of the echo.
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As the cumulative trajectory returns to and crosses the centre of k-space, effectively

self-refocusing, an echo is produced. The ‘echo time’ is given by the time it takes to

apply the chosen number of gradient spokes. This “looping” gradient waveform can then

be repeated without the RF excitation to produce gradient echoes separated by the same

TE; hence the technique is inherently multi-echo.

These cumulative trajectory “loops” occur for each spoke, therefore multiple loops are

co-occurring with each loop starting from each successive RF pulse (Figure 3.3A). It is for

this reason that Looping Star is sometimes referred to as a ‘time-multiplexed’ technique

(Ljungberg et al., 2021a; Wiesinger et al., 2019) since multiple coherences are excited

and self-refocused simultaneously. The refocusing will occur at different time points for

each RF excitation (Figure 3.3B).

Figure 3.3: A) Cumulative trajectory for all eight spokes in k-space, colour coordinated with pulse
sequence. The first two time points of the k-space trajectory evolution are shown (Figure 3.2). The
central area kmax represents the matrix size and the encoding of the FID portion of the signal. It can
be seen that continuing this cumulative trajectory for all spokes will result in refocusing, highlighting
the management of multiple coherences. B) "Zoomed-in" version of cumulative trajectory for the first
two RF excitations. It can be seen that the cumulative trajectory of the first excitation refocuses at t8,
and the second excitation will then refocus at t9.

To summarise, the set of initial excitations produce the proton density-weighted image,

referred to as the FID. After refocusing, producing the first trajectory "loop", the first

echo is generated, and any following loops produce additional echoes. The total number

of loops plus the initial excitation is equal to the FID plus the number of echo images.

The number of spokes per loop determines how many coherences are simultaneously

managed (Wiesinger et al., 2019). The refocusing nature occurs over multiple excitations,
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similarly to PRinciples of Echo-Shifting with a Train of Observations (PRESTO) (Liu

et al., 1993), and is therefore highly efficient. One of the consequences of this type

of refocusing mechanism is echo-in/echo-out interference, whereby the spokes entering

kmax at the end of the loop overlap with the first spoke of the following loop exiting

kmax; this is discussed in more depth in Chapters 9 and 10.

3.2 Technical Considerations of Looping Star

In Section 3.1, the number of spokes per loop (NSpkPerLoop) and the number of loops

(NLoops), i.e. the number of initial excitations and the number of echoes refocused plus

the FID image, were used to describe the pulse sequence. In practice, Looping Star

involves a segmented application in 3D, where “loops” occur in different conical planes

(i.e. the plane being the flat portion of the cone, also known as the base) for full k-space

coverage. The number of spokes in one segment (NSpkPerSeg) therefore includes the

total number of spokes within a conical plane, based on NSpkPerLoop and NLoops.

NSpkPerSeg = NSpkPerLoop ×NLoops (3.2)

Hence one segment constitutes a conical plane of k-space coverage. This segmented

structure is fundamental for describing trajectory generation, which is covered in Section

3.3.

The terms segments, spokes and loops describe the entire 3D encoding and sampling

of k-space in the Looping Star acquisition. How the trajectory relates to the temporal

parameters of the pulse sequence in Looping Star can now be addressed. A number

of points along one radial spoke is collected for the duration of the gradient whilst the

amplitude is “flat”, i.e. after the ramping before the RF excitation and before ramping

down for the next gradient step. The duration of the gradient is referred to as dtflat.
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The TE is therefore given by Equation (3.3), representing the time at which the echo is

encoded at the centre of k-space

TE = dtflat ×NSpkPerLoop (3.3)

The relationship between the duration of the “flat” portion of the applied gradients and

the sampling time of each point along the spoke, also known as the dwell time (dtdwell,

which is proportional to the inverse of the readout bandwidth), depends on the number

of sampling points acquired along the spoke (Nsamples)

dtflat = dtdwell ×Nsamples (3.4)

The acquisition time for one volume (TRvol), being equivalent to the repetition time in

conventional single-shot fMRI since Looping Star is not slice-selective, is calculated based

on the ramping times and the time required to acquire all of the segments within the

volume (Equation (3.5)). The ramping times must be included; the readout gradients are

ramped down and up in between segments. This is performed in a soft and unbalanced

manner to reduce acoustic noise (Wiesinger et al., 2019) and effectively "gradient spoils"

the signal.

TRvol = ((TE ×NLoops) + (2× Tramp))×NSegs (3.5)

NSegs is the number of segments and Tramp is the ramping time of the gradients.

The optimum number of spokes per volume can be determined from the image matrix

size required. For example, for an isotropic FOV of 19.2 cm and a 3 mm isotropic spatial

resolution, each line of k-space collected would need to consist of 64 samples. For full

coverage of an equivalent 64 × 64 rectangular matrix size with 64 slices, 4096 spokes per
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volume would be required, with each spoke collecting 64 samples. If it is assumed that

a dtflat ≈ 1024µs, for a ±31.25 kHz bandwidth with 64 samples, this would produce

TRvol = NSpokesPerV olume × dtflat ≈ 5.1s.

This time can be shortened by increasing the readout bandwidth, but this will increase

acoustic noise. Although the readout bandwidth is not inherently linked to acoustic noise,

increasing the readout bandwidth in Looping Star produces both a shorter dtflat and

a higher gradient amplitude, which amounts to higher acoustic noise (see Section 2.1).

This mechanism ensures the same extent of k-space is filled, i.e. maintaining the gradient

integral in k-space (Section 1.6). One of the benefits of radial acquisition is the distinct

impact of under-sampling on artefact production (compared with an equivalent Cartesian

matrix), which can be used to accelerate imaging as discussed in Section 3.4.

Furthermore, it should be noted that given that the echo time and repetition time

in Looping Star are dependent on the readout bandwidth and number of spokes per

loop as described above, these timings cannot be arbitrarily selected. Therefore, the

timing parameters must be carefully considered and calculated based on the parameters

mentioned above for comparative studies with GRE-EPI.

3.3 K-space Trajectory of Looping Star

As described in Section 3.2, the Looping Star k-space trajectory has a segmented structure

where one segment involves the number of spokes in a loop and the number of times

these spokes are repeated. This structure provides an efficient method for generating full

volume coverage in k-space, such that each segment is rotated relative to another until

homogeneous k-space sampling of the volume is complete. In the case of Looping Star,

this rotation can be generated analytically or in a random fashion depending on the type

of k-space coverage desired. For the majority of the work in this thesis, a pseudo-random

trajectory generation technique (Wiesinger et al., 2019) was used unless stated otherwise.
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To produce the pseudo-random trajectory, an initial randomly-positioned loop is generated,

and the second loop is then selected from an assigned number of random ’test’ loops,

equivalent to the first but in different spatial positions. The way this second loop is

selected from the collection of test loops is determined using a model of charged point

sources (Wiesinger et al., 2019). From fundamental physics principles, the electrical

potential energy between charged point sources is dependent on their distance from one

another (Grant and Phillips, 1990). By assuming the points on a trajectory loop are

a distribution of charged point sources, the following loop can be specified to be at a

distance that minimises the overall electrical potential between the two loops of charged

points. The second loop in the generated collection of loops that minimises this electrical

potential will then be selected (Wiesinger et al., 2019).

This calculation is performed iteratively until the necessary number of segments is

produced for the number of spokes desired in the volume of interest. The number

of test loops used to select the following loops can be chosen manually. Figure 3.4A

demonstrates the trajectory “loop” of the endpoints for an 8 spokes per loop acquisition in

their corresponding conical planes, and Figure 3.4B demonstrates the centre-out spokes

of each loop.

Figure 3.4: A volume of 16 spokes with 8 spokes per loop is shown in two formats. A) Blue and red
lines represent “loops” (or joined endpoints) of the generated spokes. One segment corresponds to one
loop, multiplied by the number of times the loop is repeated. B) Blue and red lines correspond to each
loop, but with coverage of the spokes in centre-out format. A different, randomly selected starting loop
is selected between A) and B), with the second loop being selected after 10 test loops.

In the above case, the spokes are ‘straight’ (i.e. linear from centre-out). However,
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the spokes employed in Looping Star are not straight as Looping Star minimises the

acoustic noise by employing gradient smoothing within the trajectory of each spoke.

Gradient smoothing involves producing curved spokes to minimise the steps between

gradients, hence minimising gradient switching. Smoothing the transition between spokes

is performed similarly in variable density spiral sampling (Tsai and Nishimura, 2000). A

higher GSF will produce more bending along the length of the spoke such that spoke

endpoints are spatially nearer. RUFIS, on the other hand, uses a ‘spiral phyllotaxis

method’, where spokes are applied from the centre out along the planes of a 3D spiral

(Piccini et al., 2011). Figure 3.5 details the comparison for gradient smoothing factors

for Looping Star.

Figure 3.5: Comparison of centre-out spoke pattern for 32 spokes a GSF of (left) 1 and (right) 14.

This trajectory generation method is just one potential technique to determine the

orientation of the loops analytically in order to gain homogenous k-space coverage.

Alternative approaches can include, for example, computing the ‘golden angle’ between

spokes or planes, which is a geometric principle related to the sectioning of a circle using

the golden ratio (Benkert et al., 2018; Chan et al., 2009; Feng et al., 2014). There may

also be scope for defining the endpoints of the spokes using hybrid cones for trajectory

generation (Johnson, 2017).

Non-cartesian trajectories have attractive benefits to numerous acquisition methods.

They are robust to respiratory motion due to the over-sampling of the centre of k-space
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(Glover and Pauly, 1992), applied in lung imaging (Boucneau et al., 2021). They can also

be useful for ‘sensitivity-encoded reconstruction’, i.e. for parallel imaging (Pruessmann

et al., 2001). As Looping Star is not slice-selective and a single spoke will encode all

three dimensions of k-space, there is also scope to employ under-sampling without the

significant aliasing seen in Cartesian imaging, as discussed in Section 3.4.

3.4 Accelerating the Looping Star Acquisition

As described in Section 3.2, the number of spokes required to achieve the equivalent

sampling density of conventional Cartesian methods can be high, posing issues in terms

of both acquisition speed and data storage. One important constraint to evaluate when

reducing the number of spokes is the Nyquist criterion. The Nyquist criterion dictates

that in order to prevent aliasing of a signal of frequency v, the time between samples of

the signal (∆t) should be at least

∆t =
1

2× (2∆v)
(3.6)

where 2∆v is the total readout bandwidth for GE Healthcare scanners, accounting for the

full diameter of k-space. The temporal Nyquist criterion also applies to k-space sampling,

as described by Bernstein et al. (2004), such that the Nyquist requirement of the spacing

between k-space points ∆k links to the selected field-of-view (L)

∆k =
1

L
(3.7)

However, in the case of Looping Star, bent radial spokes of data samples are acquired

across a sphere, and the samples between spokes are more densely packed towards the

centre of k-space than towards the edges of k-space. Computing the number of radial
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spokes needed to meet the Nyquist criterion is therefore not trivial.

One approximate measure to compute the number of spokes required to fulfil the Nyquist

criterion is to consider the azimuthal angle in k-space (Winkelmann et al., 2007). If the

sampling interval along the length of the spoke (∆k = ∆kL) satisfies the field of view

requirement of the Nyquist criterion in Equation (3.7), then the Nyquist criterion will be

satisfied if the angular distance between spokes (∆kθ) does not exceed this value. The

spherical distance between two points is given as

∆kθ = r∆θ (3.8)

where r is the radius of the sphere and ∆θ is the angle between two points. The radius

of the sphere in k-space can be given as

r =
∆kLM

2
(3.9)

Where M is the matrix size (i.e. number of sampling points along the diameter of the

sphere). As stated above, to satisfy the Nyquist criterion, the angle between spokes must

be chosen such that

∆kθ =
∆kLM

2
∆θ ≤ ∆kL (3.10)

∆θ ≤ 2

M
(3.11)

The number of spokes that fulfil this criterion depends on the surface area of the sphere

sampled, whereby the number of spokes multiplied by the angular distance between
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spokes should be equal to the surface area of the sphere at appropriate Nyquist sampling

Nspk∆kθ = 4π(
∆kLM

2
)2 (3.12)

Nspk
∆kLM

2
∆θ = 4π(

∆kLM

2
)2 (3.13)

2Nspk

M
= 4π

∆kLM

2
(3.14)

Nspk =
πM2

L
(3.15)

For an fMRI image, where M = 64 and L = 19.2cm, the number of spokes required

to satisfy the Nyquist criterion of the spherical acquisition is Nspk ≈ 670. Compared

with the requirement of 4096 spokes per volume derived in Section 3.2, 670 spokes is a

much lower required number of spokes per volume and would constitute a TRvol ≈ 0.7s.

These equations indicate that fewer spokes than required for full k-space sampling of the

Cartesian grid can be employed without significant issues from aliasing, accelerating the

acquisition substantially. Empirically, Maier et al. (2021) have shown that it is possible

to acquire a smaller number of spokes without significant artefacts, and this has been

further supported by 3D radial EPI imaging (Lee et al., 2010).
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3.5 Bloch Simulation of the Longitudinal

Magnetisation Evolution during Looping Star

3.5.1 Impact of Excitation Pulse Series

Bloch simulations are a valuable tool in MRI to determine the evolution of net magneti-

sation. Looping Star excites multiple coherences, is 3D, and the spokes have a curved

trajectory, so calculating the evolution of the magnetisation of an entire volume, including

the echoes, is not trivial. For simplicity, consider an example that includes only the first

segment of a Looping Star pulse sequence. As stated previously, one segment is equal to

one conical plane, consisting of a number of spokes per loop applied for a number of

loops (i.e. FID plus echoes). In this section, the magnetisation evolution caused by eight

sequential RF excitations, or spokes, in the absence of a gradient is shown.

Starting with the FID-portion of Looping Star, multiple RF pulses are applied sequentially

with interleaved soft and unbalanced gradient ramping to spoil the signal (Wiesinger

et al., 2019). Considering the evolution of the net magnetisation in the absence of the

gradients, the longitudinal magnetisation after the first excitation pulse (MzB) is given

by Bernstein et al. (2004)

MzB = MzAcos(α) (3.16)

Where α is the FA of the RF pulse and MzA is the longitudinal magnetisation prior to

the excitation pulse. In between the application of the first and second RF pulse, T1

relaxation occurs as defined by the Bloch equations (Bernstein et al., 2004; Bloch, 1946)

MzC = MzBe
−

TRrf
T1 +M0(1− e−

TRrf
T1 ) (3.17)
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Where M0 is the initial net magnetisation, usually set as M0 = 1, and TRrf is then the

time between RF pulses, approximately the duration of the spoke for Looping Star. Using

this formula, the evolution after, for example, eight RF pulses, followed by iteratively

calculating the net magnetisation until it enters the steady-state, can be determined.

This is shown in Figure 3.6 (top).

By iteratively computing the magnetisation evolution of the RF pulses, the number of

spokes required to reach steady-state can be found. From Figure 3.6 (bottom), it can

be seen that steady-state is achieved by approximately 3000 RF excitations for these

parameters, with an amplitude reduction of 50%, indicating significant T1 saturation. It

should be noted that the flip angles employed by Looping Star are very small, which

drives the high number of spokes required.

Given that a conventional fMRI acquisition with Looping Star would consist of approxi-

mately 1000 spokes (or RF excitations) per volume, it can be assumed that steady-state

will be reached after the first ≈ 5 - 10 volumes. These first volumes of any acquisition

should therefore be investigated and discarded if necessary. However, as the decay is

related to TR/T1 and is affected by the number of spokes per volume, it is crucial to

visually evaluate the number of volumes required for the longitudinal magnetisation to

stabilise.
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Figure 3.6: (top) Evolution of net longitudinal magnetisation at each time point, where odd time
points are RF excitations and even time points are signal decay between spokes. (bottom) Evolution
of net longitudinal magnetisation with number of excitations. Simulation performed using FA = 3◦,
T1 = 1000ms, and TRrf = 840µs.
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3.5.2 Bloch Simulation of the Transverse Magnetisation

Evolution during Looping Star

To evaluate the transverse component of the net magnetisation, consider the impact of

the rotations produced by the net gradient at each time point. The effect of applying

the gradients in the absence of RF excitations for the echo generation can be explored.

The gradients do not effect the amplitude of the longitudinal magnetisation; they rotate

the trajectory of the transverse magnetisation. This process can be crudely approximated

iteratively: the rotation of the magnetisation produced from the first excitation can be

combined with the rotation produced by the average gradient magnitude across the three

dimensions.

The evolution of the transverse magnetisation after an 8 spoke per loop trajectory with

no gradient smoothing is calculated. For compatibility with the units in the foundation

scripts employed for Bloch simulations (Hargreaves, 2002), the average trajectory across

the three dimensions was multiplied by the following conversion factor Gconv:

Gconv =
4π ×BW
γ × FOVx

T

m
(3.18)

Gconv =
4π × 62.5× 103

42.58× 106 × 0.192

T

m
(3.19)

Where γ is the gyromagnetic ratio (4258×104Hz), BW is a typical full readout bandwidth

employed for Looping Star, and FOVx is a typical field of view in one direction. To move

from T per metre (T/m) to Gauss per centimetre (G/cm)

1
T

m
= 100

G

cm
(3.20)
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Gconv

100

T

m
= Gconv

G

cm
(3.21)

The conversion factor, to be multiplied with the net gradient, is therefore

Gconv = 9.60× 10−4 G

cm
(3.22)

Considering the net gradient at time point 1 (t1) (Ḡt1)

Ḡt1 =


0

0

1

 (3.23)

The net gradient at the first time point is, therefore, the conversion factor divided across

the three directions

Ḡt1 =
9.60× 10−4

3
= 3.20× 10−4 G

cm
(3.24)

Eight RF excitation pulses with FA = 5◦ were designed in the Bloch simulation script,

as this is the upper limit of hard pulses in ZTE imaging (Weiger et al., 2011). The

T1 and T2 values were set to 1000 ms and 100 ms respectively, as approximate values,

with the time between RF excitation pulses (TRrf ) as 840 µs (for a ±31.25kHz readout

bandwidth, commonly used for Looping Star).

To compute the rotation of the net magnetisation after the first RF excitation, both the

precession about the z-axis (Rz) and the excitation into the transverse plane (Rx) must

be considered. The latter involves using the RF excitation flip angle (ϕ), whereas the

former involves the precession angle (θ). θ is set to zero to consider a static frame of
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reference.

ϕ =
π

36
(3.25)

θ = 0 (3.26)

Using the rotation matrices for the given directions Rz and Rx

Rz =


cos(−θ) −sin(−θ) 0

sin(−θ) cos(−θ) 0

0 0 1

 =


1 0 0

0 1 0

0 0 1

 (3.27)

Rx =


1 0 0

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ) cos(ϕ)

 =


1 0 0

0 0.996 −0.087

0 0.087 0.996

 (3.28)

The total rotation to the transverse plane (Rth) is then calculated

Rth = R−1
z ∗Rx ∗Rz =


1 0 0

0 0.996 −0.087

0 0.087 0.996

 (3.29)

which is then used to calculate the magnetisation after the first RF pulse (Mt1)
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Mt1 = M0 ∗


1 0 0

0 0.996 −0.087

0 0.087 0.996

 (3.30)

Mt1 =


1 0 0

0 0.996 −0.087

0 0.087 0.996

 ∗


0

0

1

 =


0

−0.087

0.996

 (3.31)

The rotation (φ) from the net gradient applied simultaneously with this first excitation

for the time between the RF pulses (TRrf ) is then calculated as

φ = γ ∗ 2π ∗ TRrf

1000
∗ Ḡt1 (3.32)

where Ḡt1 is the net gradient at the first time point and the factor of 1000 converts

the TRrf to seconds. This angle was then used in the same equation for Rz above and

multiplied with Mt1.

After these two rotations, one about the z-axis and one about the x-axis in the rotating

reference frame, the free precession can be computed for the duration of the spoke. The

net magnetisation at the time point of the next RF excitation (Mt2) is then defined by

the transverse and longitudinal decay (A and B, respectively) using T1 = 1000 ms and

T2 = 100 ms.

At this next time point, the transverse decay A is given by the T2 decay multiplied by the

rotation produced by the next net gradient at time point t1 (Equations (3.32) & (3.27))
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A =


e
− t1

T2 0 0

0 e
− t1

T2 0

0 0 e
− t1

T1

 ∗Rz(φ =
2π ∗ t1
1000

) =


0.992 0 0

0 0.992 0

0 0 0.999

 (3.33)

B =


0

0

1− e−
t1
T1

 =


0

0

0.00084

 (3.34)

Mt2 = (A ∗Mt1) +B (3.35)

This series is then repeated for each of the RF pulses and corresponding gradients. The

total evolution of the net transverse magnetisation across all eight repetitions of the

RF pulse is seen in Figure 3.7 up to the dotted line. As small flip angles are used, it is

unsurprising that such a small fractional signal intensity is produced. From the dotted

line onwards, the only rotation applied to the magnetisation is that of the net gradient

at each gradient step (i.e. 8 steps to match the 8 spokes per loop), which simulates

how the accumulation of transverse magnetisation then changes in the absence of RF

excitation, for a single spin with T2* = 30 ms.
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Figure 3.7: Bloch simulation of the evolution of the transverse magnetisation from the first eight
RF spokes followed by eight consecutive gradients applied. Dotted line indicates point at which RF
excitation stops and only gradients are applied.

3.6 Spatial Excitation Profile of Looping Star

In conventional imaging, the slice profile calculation evaluates the homogeneity of the

signal intensity across the slice. In Looping Star, the RF excitation bandwidth encompasses

the entire FOV. Although the RF bandwidth is broad, applying a pre-ramped gradient

leads to a 3D slice selection effect that is dependent on the orientation and amplitude of

the encoding gradients (Grodzki et al., 2012; Jang et al., 2016; Ljungberg et al., 2020).

As described by Ljungberg et al. (2020), the excitation profile across position x, for an

RF pulse of amplitude B1(x), can be determined by the duration of the RF pulse (τrf )

and the gradient magnitude (ωG) via the normalised sinc function.

B1(x) = sinc(τrf ∗ ωG) (3.36)

where
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ωG = γ ∗ Ḡ ∗ x (3.37)

max|ωG| = BW (3.38)

Ḡ is a vector describing the gradient direction and γ = 42.58MHz/T . Figure 3.8

demonstrates the spatial excitation profile across the positions of -20 cm to 20 cm for a

20 µs hard pulse in one dimension.

Figure 3.8: Spatial excitation profile in one dimension for a range of gradient amplitudes (GA) and
20µs hard pulse

The spatial excitation profile shows that the signal drops by less than 5 % over a 20 cm

distance from the isocentre for Looping Star. The RF pulse flip angle most commonly

employed in Looping Star is 2 ◦, which has an approximate duration of 8 - 12 µs
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depending on specific absorption rate (SAR) limitations. Based on the above equations,

this produces an even smaller amplitude change across the profile.

3.7 Looping Star Ernst Angle

Another consideration for Looping Star acquisitions is the optimum flip angle. This

is typically known as the Ernst angle, which maximises the signal received for a train

of pulses with constant TR, and is calculated as in Bernstein et al. (2004) (Equation

(3.39)).

α = arccos(e
−

TRrf
T1 ) (3.39)

where TRrf is the time between RF excitations. For the initial part of Looping Star, i.e.

the set of RF pulses, this is approximately equivalent to the duration of a single spoke. A

value of 840µs was employed based on the typical value of a Looping Star protocol with

64 points and a bandwidth of ±31.25 kHz. Figure 3.9 shows the effect of TR on the flip

angle by selecting a range of values for the TR.
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Figure 3.9: Ernst angle calculated for range 0.5 ms < TRrf < 2 ms and T1 = 1000 ms.

However, Looping Star differs from conventional sequences as there is a period between

sets of RF pulses where only gradients are applied. This increases the available longitudinal

magnetisation as more T1 recovery occurs in the "gradient-only" portion compared with

the "RF plus gradient" portion. The optimum excitation angle therefore becomes

dependent on the decay between the last RF excitation of the first set of RF pulses to

the first RF excitation of the second set (TRsets) (Equation (3.40))

αsets = arccos(e
−TRsets

T1 ) (3.40)

As an example, for an 8 spoke per loop acquisition with a TRrf of 840µs and T1 = 1000

ms, the equivalent Ernst angle between RF pulses can be calculated as

α = arccos(e
− 840×10−6

1000×10−3 ) = 2.35◦ (3.41)
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Whereas the optimum excitation angle between sets of RF pulses (i.e. after the 8

gradients applied between RF sets) is given as

αsets = arccos(e
− 8×840×10−6

1000×10−3 ) = 6.63◦ (3.42)

As it is not trivial to determine the impact of the two effects in combination, we employed

a range of flip angles between 1 - 3 ◦ across this thesis and evaluated the tSNR of the

images to justify the use of selected parameters.

3.8 Signal-to-Noise Efficiency of Looping Star

The efficiency of the SNR quantifies the relationship between SNR and acquisition speed.

It has proven useful for diffusion imaging (Engström et al., 2015) and steady-state MRI

(Weiger et al., 2005), to name two examples. SNR efficiency can be approximately

characterised using the derivation by Reeder and McVeigh (1994) including using the

repetition time and bandwidth

SNRefficiency(α) =
SNR(α)√
TRrf

≈
signal(α)√

BW√
TRrf

=
signal(α)√
BW ∗ TRrf

(3.43)

Where α is the chosen flip angle. As Looping Star operates with short TRs and low flip

angles, it is arguably highly SNR efficient (Miller et al., 2011). This is only the case if we

consider the time between RF pulses, rather than the overall volume acquisition time.

To explore how the bandwidth can be used to make gains in SNR efficiency, if the Ernst

angle (α) is used, then it can be stated that if the signal is at steady-state the SNR

efficiency can be represented as
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signal(α) =

√√√√1− e−
TRrf
T1

1 + e
−

TRrf
T1

(3.44)

Knowing that TRrf << T1 and using the first order Taylor expansion, since TRrf <<

T2, T1

signal(α) =

√
1− e−

TRrf
T1

1 + 1
=

√
1− (1− TRrf

T1
)

1 + 1
=

√
TRrf

T1

2
=

√
TRrf

2 ∗ T1

(3.45)

Then incorporating this back into the SNRefficiency

SNRefficiency(α) =

√
TRrf

2∗T1√
BW ∗ TRrf

=
1√

2 ∗BW ∗ T1

(3.46)

Therefore, a lower imaging bandwidth will lead to a gain in SNR efficiency, though this

would come at the cost of acquisition speed. This relationship is consistent with all MR

methods, i.e. the higher the bandwidth used, the more noise is introduced in the receiver.

3.9 Image Reconstruction of Non-Cartesian

Acquisitions

Looping Star is a non-Cartesian acquisition technique; therefore, conventional reconstruc-

tion methods that rely on Fourier transforms alone cannot be used. There are three

key considerations: moving from non-Cartesian to Cartesian coordinates for the Fourier

transformation, density compensation for the changes in sampling density at different

points in k-space and filling the central dead-time gap that leads to missed samples.
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3.9.1 Gridding

One of the common methods for translating non-Cartesian data coordinates to Cartesian

space, to ensure the Fourier transform can be used, is known as gridding. Gridding

involves resampling the non-Cartesian coordinates to points on a Cartesian grid and

Fourier transforming the data once interpolated to Cartesian space. As described by

Bernstein et al. (2004), this method is time-efficient and can be simply computed by

interpolating the data after convolution with a smooth function.

Prior to gridding, the influence of respiration on the signal phase in the centre of k-space is

corrected via normalisation (Dionisio-Parra et al., 2020; Wiesinger et al., 2019). Looping

Star uses one of the simplest gridding techniques, known as nearest-neighbour gridding,

where the k-space coordinates are rounded to the nearest coordinate value of a two-fold

oversampled Cartesian grid, and the signal intensity for the original k-space coordinate is

assigned to this new coordinate. This is visualised in two dimensions in Figure 3.10.

Figure 3.10: From (left) non-Cartesian to (middle) Cartesian grid, where it can be seen that the
radial sampling points (white) may not necessarily align with the nearest Cartesian point (black).
(right) Nearest neighbour gridding involves rounding the radial sampling points to the nearest Cartesian
coordinate, demonstrated by colour coordination of k-space samples (circles with thick lines) with grid
points (smaller circles with thin lines). As the k-space samples spread with distance from the centre, a
one-to-one relationship begins to arise. At the centre, a many-to-one relationship exists.

The Cartesian grid used for nearest-neighbour gridding is twofold interpolated in order

to reduce aliasing, avoiding the need for sinc interpolation to the grid (Bernstein et al.,

2004). This technique is one of the simplest approaches, as weighting criteria are not
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used to assign the intensity values from non-Cartesian to Cartesian coordinates. The

k-space trajectory used in image reconstruction is derived from the nominal gradient

waveform of the pulse sequence (Wiesinger et al., 2019). No additional k-space trajectory

calibration is used. A simple sum of squares coil combination is then computed after the

Fourier transform for each volume.

One important point to consider is that since the sampling trajectory is non-Cartesian, the

matching coordinates with Cartesian space will not be produced and the signal intensity

will not be gridded in a Cartesian manner, as described above. This leads to an inherent

blurring in image space after Fourier transformation that becomes more obvious at lower

spatial resolutions and lower spokes per volume, as fewer samples are collected and then

interpolated in k-space. The degree of blurring can be quantified by point spread function

simulations, however there are limitations to the accuracy of such simulations as discussed

in Section 3.10.

Alternatively, iterative techniques can be used to determine the optimal grid interpolation

(Benkert et al., 2018; Gabr et al., 2006; Lustig and Pauly, 2010; Smith et al., 2019; Song

and Qing, 2006), but these come at the expense of reconstruction time. Section 11 will

cover an advanced image reconstruction technique beyond nearest-neighbour gridding

employed with Looping Star.

3.9.2 Density Compensation

Although gridding works well as a simple technique for image reconstruction of non-

Cartesian data, it must be considered that there is not a simple one-to-one match in

terms of the coordinates of the samples to the Cartesian grid. This is clearly shown

by the oversampled centre in Figure 3.10, where one point in Cartesian space may be

crossed by multiples points in non-Cartesian space (i.e. the centre of k-space is more

densely sampled than the periphery of k-space). When the non-Cartesian data is then

gridded, this will mean that lower spatial frequencies, nearer the centre (i.e. being a low

contrast-based spatial frequency), will be more heavily sampled than others, producing
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an imbalanced contrast.

A function is therefore necessary to compensate for this unequal contribution of the data

for each coordinate in non-Cartesian to Cartesian space. This is the density compensation

function, which weights the higher number of samples crossing different regions of k-

space with the goal of effectively “flattening” the contributions of each sample point.

For example, if five non-Cartesian points contribute to one Cartesian point, a density

compensation function may be created that averages these points to account for this

higher contribution.

In nearest-neighbour gridding, which is employed by Looping Star, a simple averaging

method is used for density compensation. An example of the effect of density compensation

on a gridded dataset is shown in Figure 3.11.

Figure 3.11: Example of image reconstruction for an 18 cm diameter homogeneous spherical pink ball
phantom (GE Healthcare, Milwaukee, WI, USA) collected using the following parameters: ±31.25 kHz,
GSF = 14, 32 spokes per loop, 1024 spokes per volume, 32-channel coil, 3 mm spatial resolution. (top)
no density compensation and (bottom) density compensated, with (left) k-space at the log scale and
(right) image space. k-space was thresholded at 0 - 10 and image space was thresholded at half the
maximum amplitude.

More advanced methods, such as using a Kaiser-Bessel kernel to compute the optimal
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weighting for each point rather than simply computing an average can be computationally

expensive without much visual benefit to the image (Maier et al., 2021). In iterative

reconstruction, on the other hand, a good density compensation function will lead to faster

convergence and can facilitate a flexible compromise between image contrast and spatial

resolution (Tan and Zheng, 2005). Another consideration with density compensation is

that it can influence the intensity profile if inaccurate and downweighting the edges of

k-space will produce blurred images.

Figures 3.12 - 3.13 demonstrate the impact of density compensation on the point spread

function, with Figures 3.14 - 3.15 including temporal decay along the radial spokes. It can

be seen that excluding density compensation leads to the highest signal intensity being in

the centre of k-space, with little weighting towards the edges of k-space. This manifests

as a blurred point spread function, as high spatial frequencies have little contribution

to the image. Including T2* decay during sampling along the spokes produces the same

effect.

Figure 3.12: Impact of no density compensation without T2* decay on k-space (top left), image space
in 2D (top right) and image space in 3D (bottom) of point spread function from a single coil. FWHMx

= 5 pixels, FWHMy = 4 pixels. Parameters were: ±31.25 kHz, GSF = 14, 32 spokes per loop, 1024
spokes per volume, 3 mm spatial resolution, time per spoke = 840 µs.
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Figure 3.13: Impact of density compensation without T2* decay on k-space (top left), image space in
2D (top right) and image space in 3D (bottom) of point spread function from a single coil with density
compensation. FWHMx = 2 pixels, FWHMy = 3 pixels. Parameters were: ±31.25 kHz, GSF = 14,
32 spokes per loop, 1024 spokes per volume, 3 mm spatial resolution, time per spoke = 840 µs.

Figure 3.14: Impact of no density compensation on k-space (top left), image space in 2D (top right)
and image space in 3D (bottom) of point spread function from a single coil with an added T2∗ = 30ms
decay along the spokes. FWHMx = 5 pixels, FWHMy = 6 pixels. Parameters were: ±31.25 kHz,
GSF = 14, 32 spokes per loop, 1024 spokes per volume, 3 mm spatial resolution, time per spoke = 840
µs.
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Figure 3.15: Impact of density compensation on k-space (top left), image space in 2D (top right) and
image space in 3D (bottom) of point spread function from a single coil with density compensation
and with an added T2∗ = 30ms decay along the spokes. FWHMx = 3 pixels, FWHMy = 3 pixels.
Parameters were: ±31.25 kHz, GSF = 14, 32 spokes per loop, 1024 spokes per volume, 3 mm spatial
resolution, time per spoke = 840 µs.

3.9.3 Filling the Dead-time Gap

The final consideration for image reconstruction is that although the gradients and RF

pulses may be applied at the same time point, there is an inherent delay before sampling

begins known as dead-time where the coil transitions from “transmit” mode to “receive”

mode. This means there are missing samples at the centre of k-space, though the delay

also depends on the receiver coil used. For an 8-channel GE head coil this amounts to

around 24 µs of missing data. This is shown in Figure 3.16, where it is clear that the

centre of k-space is not sampled.
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Figure 3.16: (left) Missing samples shown in pulse sequence, with (right) missing k-space samples in
the centre

For effective image reconstruction of the FID, this gap must be filled, as a significant

amount of signal evolution takes place that is unsampled. This results in missing data

in the low spatial resolution regions of k-space, producing poor proton density-weighted

contrast. This is not required for the echoes as the signal has been refocused at the

point of sampling, meaning that the T2*-weighted signal is fully sampled.

To address this missing data, a second acquisition can be incorporated into the pipeline

to “fill” the missing samples. This was originally presented by Wu et al. (2007) through a

technique known as Water and Fat Suppressed Proton Projection MRI (WASPI), which

is incorporated into Looping Star image reconstruction (Wiesinger et al., 2019) (Figure

3.17). This is done by acquiring a single volume with lower gradient strength, as this

allows samples to be collected from closer to the centre of k-space, followed by a simple

addition of these samples into the reconstruction (Ljungberg et al., 2021a).
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Figure 3.17: Visualisation of WASPI filling (blue) of missing k-space samples

WASPI differs from Pointwise Encoding Time Reduction with Radial Acquisition (PETRA)

(Grodzki et al., 2012) as it involves consistently using a radial trajectory, whereas PETRA

separates the k-space trajectory into radial imaging at the periphery and Cartesian filling

at the centre. A full review on methods for filling the dead-time gap was presented by

Froidevaux et al. (2018).

Furthermore, a technique known as HY-FI (Froidevaux et al., 2021) has been recently

developed that retrieves the inner k-space data using a stack of shells technique. An

example of the impact of including WASPI with Looping Star is shown in Figure 3.18,

where it can be seen that the absence of k-space filling leads to loss of low spatial-frequency

information.

Figure 3.18: Example of FID image of an 18 cm diameter homogeneous spherical pink ball phantom
(GE Healthcare, Milwaukee, WI, USA) reconstructed using the following parameters: ±31.25 kHz, GSF
= 14, 32 spokes per loop, 1024 spokes per volume, 32-channel coil, 3 mm spatial resolution, time per
spoke = 840 µs. FID image with (left) dead-time filled and (right) no dead-time filling.
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3.10 Point Spread Function of Looping Star

The point spread function is used to determine the smallest structure that can be resolved

by an imaging system. It is more commonly used in methods that produce images known

as ‘linear’ and unlikely to demonstrate shifts, for example in fluorescence microscopy.

This assumption is not the case for MRI, as MRI is affected by time-dependent motion,

time-varying magnetic fields and the relaxation effects of the tissue signal. However, it

has been used to compute the theoretical spatial blurring of different techniques and the

nature of spatial distortions (Robson et al., 1997; Tsao et al., 2006).

For Looping Star, the point spread function was defined by setting the k-space data to a

value of one along all of the spokes and completing the defined gridding steps for a given

trajectory and set of acquisition parameters. A direct Fourier transform was then applied

to the data after interpolation to the oversampled grid (Section 3.9.1) to visualise the

point spread function in image space.

Figures 3.19 - 3.21 show the point spread function and accompanying k-space for an

acquisition sampled with 1024, 512 and 256 spokes per volume after the conventional

nearest-neighbour gridding pipeline for Looping Star. In this case, alternate spokes

were removed for the simulation, however in practice the under-sampling would involve

removing entire segments rather than alternate spokes. It can be seen that streaking

begins to appear in the side lobes of the point spread function with decreasing angular

samples, however the full-width-half-maximum remains unchanged. This highlights the

benefits of radial imaging, whereby the spatial resolution is not substantially affected by

under-sampling as the length of the spoke and distance between k-space samples along

the spoke are unchanged (Ljungberg et al., 2021a).
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Figure 3.19: Point spread function for a 1024 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2, including: (top left) density compensated image space at log-scale, (top
right) image space of absolute value of point spread function, (bottom left) point spread function
amplitude of image space in x-direction and (bottom right) point spread function amplitude of image
space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1 to 1,
image space thresholded from 0 to half FWHM amplitude, point spread function single dimension plots
normalised to 0 to 1.

Figure 3.20: Point spread function for a 512 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2, including: (top left) density compensated image space at log-scale, (top
right) image space of absolute value of point spread function, (bottom left) point spread function
amplitude of image space in x-direction and (bottom right) point spread function amplitude of image
space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1 to 1,
image space thresholded from 0 to half FWHM amplitude, point spread function single dimension plots
normalised to 0 to 1.
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Figure 3.21: Point spread function for a 256 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2, including: (top left) density compensated image space at log-scale, (top
right) image space of absolute value of point spread function, (bottom left) point spread function
amplitude of image space in x-direction and (bottom right) point spread function amplitude of image
space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1 to 1,
image space thresholded from 0 to half FWHM amplitude, point spread function single dimension plots
normalised to 0 to 1.

To consider the impact of the sampling pattern with T2* decay, T2* = 10, 20, 30 ms

decays were simulated along the length of each spoke using the Bloch equation (Equation

(3.47))

M = M0e
− t

T2∗ (3.47)

Figures 3.22 - 3.24 demonstrate that changing the values of T2* in calculating the point

spread function has no impact on the full-width at half-maximum (FWHM) of the data,

suggesting no changes to the spatial resolution of the point. However, there is an evident

profile change with decreasing T2* values, with more prominent side lobes arising for

T2* = 10 ms. This is due to the decay characteristics, whereby the 10 ms model decays

much faster across the first half of the spokes than the 20 ms and 30 ms decay profiles.

This means that most of the signal is near the centre of k-space for the 10 ms decay,

producing more noise in the image background as there is a lower contribution to higher

spatial frequencies.

144



Figure 3.22: Point spread function for a 1024 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2 with T2* = 10 ms, including: (top left) density compensated image space at
log-scale, (top right) image space of absolute value of point spread function, (bottom left) point spread
function amplitude of image space in x-direction and (bottom right) point spread function amplitude of
image space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1
to 1, image space thresholded from 0 to half FWHM amplitude, point spread function single dimension
plots normalised to 0 to 1.

Figure 3.23: Point spread function for a 1024 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2 with T2* = 20 ms, including: (top left) density compensated image space at
log-scale, (top right) image space of absolute value of point spread function, (bottom left) point spread
function amplitude of image space in x-direction and (bottom right) point spread function amplitude of
image space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1
to 1, image space thresholded from 0 to half FWHM amplitude, point spread function single dimension
plots normalised to 0 to 1.
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Figure 3.24: Point spread function for a 1024 spokes acquisition with one coil after standard nearest
neighbour gridding at Z/2 with T2* = 30 ms, including: (top left) density compensated image space at
log-scale, (top right) image space of absolute value of point spread function, (bottom left) point spread
function amplitude of image space in x-direction and (bottom right) point spread function amplitude of
image space in y-direction (FWHMx = 3 pixels, FWHMy = 3 pixels). k-space thresholded from -1
to 1, image space thresholded from 0 to half FWHM amplitude, point spread function single dimension
plots normalised to 0 to 1.

Another consideration for Looping Star is that radial sampling can lead to less localised

aliasing in comparison with Cartesian methods (Weiger and Pruessmann, 2012). For

example, if the edges of the brain are outside the FOV, then streaks will be generated at

the distance of the effective field of view for each voxel and the amplitude of the streaks

will be as high as the signal intensity (Bernstein et al., 2004). However, Looping Star is

less susceptible to motion artefacts as motion will manifest as blur rather than phase

wrapping due to its sampling characteristics (Wiesinger et al., 2019).
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The key aims of this thesis are to:

1. Evaluate the acoustic noise and MR signal characteristics of single-echo and multi-

echo Looping Star relative to GRE-EPI in phantoms.

2. Quantify the signal characteristics and functional sensitivity of single-echo and

multi-echo Looping Star in vivo using a simple paradigm.

3. Explore the capabilities of Looping Star with auditory and resting-state paradigms

in comparison with GRE-EPI.

4. Investigate the compatibility of Looping Star with conventional analysis and pre-

processing techniques.

5. Evaluate further applications and areas of optimisation for Looping Star for future

work.

It was hypothesised that Looping Star would provide adequate functional sensitivity to

a range of functional paradigms, given its T2* sensitivity. There is also scope for it to

provide more meaningful information in auditory paradigms given the minimisation of

acoustic noise. Distinct signal properties for Looping Star relative to GRE-EPI were also

expected due to its 3D radial sampling nature.
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Summary

This chapter details the following general methods for this thesis:

• Ethical approval and recruitment procedures.

• Scanners and paradigm equipment used.

• List of toolboxes employed.

• Technical descriptions of key methods.

Overview

This section describes the core general methods used in this thesis, particularly those that

appear repetitively. The details and parameters used for specific techniques are included

in each independent chapter. A list of toolboxes employed in this thesis and information

regarding the ethical approval and recruitment procedures are also provided.

150



5.1 Ethical Approval and Recruitment

Ethical approval was obtained for physics development and testing of the Looping Star

sequence under the following research ethic committee (REC) application details, unless

stated otherwise:

• London - Camberwell St Giles REC: 04/Q0706/72 (Before 2020)

• King’s College London REC: HR-20/21-21138 (From 2020)

In accordance with these ethics, participants were recruited from within the university

based on whether they were deemed “MR-Knowledgeable”. All data was stored on the Neu-

roimaging Analysis Network and pseudo-anonymised (i.e. all personal identifiers removed,

no de-facing applied). Informed written consent was obtained from all participants.

5.2 Scanning Procedures

The scanners employed for the studies included in this thesis were:

• King’s College London: Clinical Research Facility 3T GE Healthcare MR750 (Mil-

waukee, WI, USA)

• King’s College London: Centre for Neuroimaging Sciences 3T GE Healthcare

MR750 (Milwaukee, WI, USA)

The receive-only head coils used were:

• 32-channel Nova Medical receive-only head coil (Wilmington, MA, USA)

• 12-channel GE Healthcare receive-only head coil (Milwaukee, WI, USA)
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All GRE-EPI and inversion-recovery prepared spoiled gradient echo (IR-SPGR) data were

reconstructed with the standard image reconstruction used online for GE Healthcare

scanners. All Looping Star datasets employed in this thesis were reconstructed with nearest

neighbour gridding unless stated otherwise, with scripts provided by our collaborators

at GE Healthcare (Section 3.9.1). The trajectories used were those generated pseudo-

randomly, as described in Section 3.3, using scripts provided by our collaborators at GE

Healthcare.

5.3 Paradigm Software

In house paradigm software was employed that included MR safe pneumatic headphones

(MR Confon, Cambridge Research Systems, UK), a two-index button box, and an MR

compatible projector with an accompanying screen. The screen was visible through a

reflective mirror attached to the head coils, and it was ensured that the entire screen

was encompassed by the mirror through communication with the participants. The tasks

employed in this thesis were implemented via the local Microsoft VB.NET framework

(Hill and Dalton, 2017). The screen distance was also adjusted to ensure the projector

was correctly focused.

5.4 Physiological Recordings

An MR compatible pulse oximeter and respiratory belt were used to acquire physiological

data. Analysis was conducted in SPM-12 (https://www.fil.ion.ucl.ac.uk/spm/

doc/) using the TAPAS PhysIO toolbox (Kasper et al., 2017), with data cleaning

performed in the Kubios Heart Rate Variability (HRV) software (Tarvainen et al., 2014,

2019).
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5.5 Acoustic Recordings

Acoustic noise measures were collected using a Casella 62X (Casella Solutions, Bedford-

shire, UK) sound meter in all cases in this thesis. The MR safe microphone for sound

recording was positioned at the centre of the magnet bore through attachment to a

phantom placed in the head coil and specifying a landmark that ensured it was central in

the bore.

The Casella Insight software outputs Cumulative, Octave and Period data. An octave is

defined as a range over which the frequency doubles. The Octave output includes the

LAeq measurements for the 1/1 octave, which contains 11 bands of centre frequencies

from 16 Hz to 16 kHz. The LAeq measure is weighted to the human ear and therefore

measured in dB(A) (Casella Solutions, 2010, 2021).

5.6 Toolboxes and Software

Specific details of the software used are outlined in each methods section, and in some

cases particular version numbers were used based on compatibility with toolboxes, though

the following general tools were used:

• AFNI 17.2.17 (Cox, 1996)

• Anaconda (Anaconda Inc, 2020)

• BioImage Suite Web: MNI to Talairach Converter (BioImage Suite Web, 2021;

Lacadie et al., 2008)

• Bland-Altman Analysis and Correlation Plot (Klein, 2021)
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• BRAMILA (Power et al., 2012)

• Casella Insight (Casella Solutions, 2010, 2021)

• CONN, version 19.c (Whitfield-Gabrieli and Nieto-Castanon, 2012)

• conn tools (Vallat, 2017)

• FSL (most commonly version 5.0.11) (Jenkinson et al., 2012)

• G*Power 3.1 (Faul et al., 2007)

• IBM SPSS Statistics (IBM Corp, 2020)

• ICC Toolbox (Caceres et al., 2009)

• Kubios Heart Rate Variability Standard (Tarvainen et al., 2014, 2019)

• MarsBaR (Brett, 2016; Brett et al., 2002)

• MATLAB R2015 - R2021 (Mathworks, 2021)

• MRICRON 2019 (Rorden and Brett, 2000)

• N4 ITK Bias Field Correction (Tustison et al., 2010)

• Neurosynth (Yarkoni, 2011)

• NiLearn (The Nilearn developers, 2021)

• SEPIA Toolbox 0.8.1.1 (Chan and Marques, 2021)

• SPM-12 (most commonly version 7487) (FIL Methods Group, 2020)
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• TAPAS PhysIO Toolbox, version 3.2.0 (Kasper et al., 2017)

• TEDANA (tedana community et al., 2021)

• Violinplot (Bechtold, 2016)

5.7 Technical Concepts

This section outlines the commonly employed technical concepts in this thesis.

5.7.1 Temporal Stability Measures

A 15 x 15 pixel ROI located at the centre of the image was used to compute the

summary measures described below. An 18 cm diameter homogeneous spherical pink ball

phantom (GE Healthcare, Milwaukee, WI, USA) was used. In-house scripts, a mixture of

personally derived and those provided by Dr Brian Burns (GE Healthcare), of the following

calculations were used to compute the Looping Star temporal stability measures, as

defined by Friedman and Glover (2006). A 2D ROI was selected to ensure comparability

with GRE-EPI.

5.7.1.1 Temporal Signal-to-Noise Ratio

The temporal signal-to-noise ratio (tSNR), referred to as the SFNR in Friedman and

Glover (2006), is calculated for each voxel. This involves computing the temporal mean

of the time series signal amplitude, then dividing the temporal mean by the temporal

standard deviation of its residuals after second-order polynomial detrending, i.e. ε = y− ŷ

(Equation (5.1)), using the polyfit and polyval functions in MATLAB.
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tSNR =
ȳ

σε
(5.1)

where ȳ is the temporal mean of the signal y(t), and σε is the standard deviation of the

residuals of y(t) after detrending. A high tSNR would therefore indicate a high signal

amplitude relative to its variability, indicating good temporal stability.

5.7.1.2 Static Spatial Noise

The static spatial noise (SSN) is computed by the sum of the even volumes subtracted

by the sum of the odd volumes (Equation (5.2)).

SSN =
∑

volodd −
∑

voleven (5.2)

The number of odd and even volumes must be equal for an accurate SSN measure. A

high SSN would further indicate variability between volumes, being particularly sensitive

to drifts in amplitude and geometry (Friedman and Glover, 2006). Since Looping Star

and GRE-EPI produce images of different image intensity values, via the scaling employed

in image reconstruction, the SSN was normalised between -1 and 1.

5.7.1.3 Signal-to-Noise Ratio

The SNR is computed in the aforementioned ROI. First, an average temporal image is

computed v̄ol. The average spatial amplitude across voxels in the ROI of the average

temporal image is then computed ¯volROI , as well as the spatial variance across this ROI

(σ2
volROI

). The spatial SNR for the ROI is then computed as (Equation (5.3))
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SNRROI =
¯volROI

(σvolROI
/N)

(5.3)

where N is the number of volumes and σvolROI
is the square root of the variance, i.e. the

standard deviation (Edelstein et al., 1986). The noise outside the image is not used given

that this is not a reliable measure of noise for fMRI and can produce large variability

(Goerner and Clarke, 2011; McCann et al., 2013; Welvaert and Rosseel, 2013). The

noise outside the image would also not be consistent between GRE-EPI and Looping

Star, given the different reconstruction schemes employed.

5.7.1.4 Percentage Signal Fluctuation and Drift

The percentage signal fluctuation (PSF) involves calculating the temporal mean of the

spatially averaged time series across the ROI ( ¯yROI), as well as the temporal standard

deviation of the residuals (εROI = yROI − ŷROI) from the spatially averaged time series

across the ROI (σεROI
). The PSF is then defined by Equation (5.4). This summary value

quantifies the amount of signal fluctuation that takes place.

PSF = 100× σεROI

¯yROI
(5.4)

The percentage signal drift (PSD) is given by subtracting the minimum temporal signal

fit value min( ˆyROI) from the maximum fit value max( ˆyROI). The fit described is from

second order polynomial detrending. This is then divided by the temporal mean signal

intensity across time for the spatially averaged time series of the ROI ¯yROI (Equation

(5.5)). This summary value quantifies how the signal linearly drifts in time.

PSD = 100× max( ˆyROI)−min( ˆyROI)

¯yROI
(5.5)
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5.7.1.5 Weisskoff Analysis

Weisskoff analysis (Weisskoff, 1996) involves computing the spatially averaged time

series across an ROI yROI , followed by calculating its temporal mean signal ¯yROI and its

temporal standard deviation σyROI
. This is then calculated for incrementally increasing

ROI sizes. The coefficient of variation (COV) (Equation (5.6)) for each ROI size is then

plotted on a log scale.

COV =
σyROI

¯yROI
(5.6)

In theory, if there is no consistent noise present, then the relationship between the log of

the coefficient of variation (log(COV )) and the log of the ROI size M (log(M)) should

be linear and negative. This is because larger spatial averages across voxels should reduce

the noise contribution, decreasing the coefficient of variance by the square root of the

number of voxels in the volume.

The radius of decorrelation (RDC) is then determined as the ROI size at which the

linear relationship is no longer present, with larger RDC values indicating better temporal

stability. To compare this plot with the expected linear relationship, the first COV value

is used and a linear relationship is extrapolated from this value. This is referred to in

this thesis as the "expected" Weisskoff curve, compared with the "measured" curve

calculated from each ROI size.

5.7.1.6 Fourier Analysis

Fourier analysis was also used to explore the main frequency components in the signal.

This involved computing the power spectrum of the spatially averaged time series from the

ROI after detrending with a second-order polynomial. This is done using the fast Fourier

transform in MATLAB and the power is then plotted against the range of frequencies
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determined from the TR.

High amplitude of a specific frequency can be useful for indicating the presence of

fluctuations that may suggest the presence of natural frequencies that occur outside of

the expected frequencies of the sequence. It can also be useful for identifying scanner

instabilities.

5.7.2 Functional Sensitivity

The primary measure for functional sensitivity is the percentage signal change (PSC)

when presenting a stimulus during the fMRI paradigm. This can either be measured

from the beta parameters in the general linear model (Pernet, 2014), which describe the

relative fit of the time series in a voxel to the model design, or directly from the time

series as demonstrated in Solana et al. (2016) (Equation (5.7))

PSC = mean((
max(fMRIsignal)−min(fMRIsignal)

mean(fMRIsignal)
)eachcycle) (5.7)

Measuring from the extracted time series is not recommended as overestimation of the

change can occur in the case of the signal containing outliers (i.e. high maxima or low

minima) (Pernet, 2014).

In the case of measuring the PSC from the beta parameters, the MarsBaR software can

be used with the GLM (Brett, 2016; Brett et al., 2002). The functionality of this software

is best described using an example, such as a simple ABAB block design (see Figure 1.8).

In analysis, the design matrix would be set up such that the model is a HRF convolved

with ABAB block design. The following columns in the model would be any additional

regressors. The best estimate of the MR signal of interest for the response to the ABAB

stimulus is the first β parameter multiplied by the set of regressors X (see Figure 1.8).
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The first step is therefore to estimate the design but only in the ROI, producing a set of

regressors and beta parameters only for the ROI (βROI , XROI). As mentioned previously,

the first beta parameter in this design is the effect of interest (βROIHRF
).

To compute the percentage signal change in the ROI, MarsBaR creates a new regressor

for a single block (XA). The duration of the block is specified, matching that of the

task (A), and this single block is run through the SPM design matrix to create the

regressor of interest. This accounts for the scaling of the design matrix, i.e. the height

of the regressors, to avoid exaggerating the percentage signal change (Pernet, 2014).

Multiplying the average of the first beta parameter from the ROI (βROIHRF
) by XA then

produces the estimated response for the single event across the ROI, and the maximum

height of the response is the signal change.

The signal change computed at this point will be scaled relative to the whole brain mean

signal. To calculate the percentage signal change relative to the ROI baseline, the last

β parameter of the ROI design matrix can be used as it represents the mean signal

(βROIlast). The final percentage signal change is then given by

PSCROI = (
βROIHRF

∗XA

βROIlast
)× 100 (5.8)

5.7.3 Conventional Pre-processing

A standard SPM-12 pre-processing pipeline consists of realignment, co-registration to the

T1-weighted image, spatial normalisation to Montreal Neurological Institute (MNI) space

(see Chau and McIntosh (2005) for further details) and spatial smoothing (FIL Methods

Group, 2020). Slice timing correction is also included for GRE-EPI data, but is not

required for Looping Star given that it is not slice-selective. Specific details are provided

in relevant sections, and Poldrack et al. (2011) provide a useful review of pre-processing

steps.
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5.7.4 General Linear Model Analysis

A standard SPM-12 analysis pipeline consists of modelling the onsets of the task in the

GLM (see Section 1.12 and Figure 1.8) and including the motion regressors at first-level,

followed by taking the contrast file from first-level to second-level for group analysis (FIL

Methods Group, 2020). Specific details are provided in relevant sections. Brodmann

areas were used to determine cortical regions (for details see (Zilles and Amunts, 2010)).
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Summary

This chapter involves the following evaluations of Looping Star in a spherical phantom:

• Acoustic noise measures for different Looping Star acquisition parameters.

• A range of standard MRI temporal signal stability measures for characterising

Looping Star.

• Comparisons of Looping Star with single echo and multi-echo GRE-EPI.

Overview

This chapter evaluates the signal stability produced by Looping Star acquisition parameters

in a phantom. The sequence performance is characterised, independent of physiological

noise and other subject-dependent factors. The acoustic noise levels for various parameters

are also explored. The temporal stability of Looping Star is compared with single and

multi-echo GRE-EPI acquisitions.
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6.1 Chapter Introduction

Any potential source of temporal instability in the MR signal jeopardises the ability to

detect the BOLD signal in vivo. This is because the percentage signal change of interest

is incredibly small and can therefore be masked by non-BOLD related signal changes.

To characterise signal changes that are independent of human contributions, imaging

phantoms are frequently employed (Friedman and Glover, 2006). Since phantoms do not

include any physiological noise sources, only scanner stability and the impact of the pulse

sequence on the signal are evaluated.

Characterising the temporal stability of novel pulse sequences in phantoms can also help

with disentangling noise sources from the BOLD signal during in vivo studies. This is

since the MR signal in a phantom should be time-independent in the absence of any

signal noise or instability (i.e. it should have low signal variance through time), differing

from in vivo noise sources such as physiological noise. Physiological noise has been shown

to affect sensitivity and statistical accuracy of fMRI analysis (Krüger and Glover, 2001;

Triantafyllou et al., 2005, 2011; Wald and Polimeni, 2017) and different brain tissue

types are also affected by physiological noise to different extents (Bodurka et al., 2007;

Gonzalez-Castillo et al., 2011). Identifying and eliminating temporal instabilities prior to

in vivo scanning therefore enables more accurate identification of in vivo noise sources

and can streamline the pre-processing pipeline.

Phantoms have been employed across GRE-EPI studies to evaluate adaptations to pulse

sequences (Giannelli et al., 2010; Van Der Zwaag et al., 2012) and changes in scanner

stability that may occur day-to-day (Durand et al., 2001). One standard method for

quantifying the variability in fMRI signal is to use the Functional Biomedical Informatics

Research Network (FBIRN) consortium software suite (Friedman and Glover, 2006; Liu

et al., 2015b). This includes measures of signal drift and fluctuation, temporal signal-to-

noise ratio, frequency decomposition of the signal and ‘Weisskoff analysis’ (Weisskoff,

1996), all of which are described in depth in Section 5.7.1.
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Given that acoustic noise can induce anxiety in participants (Quirk et al., 1989; van

Minde et al., 2014) and anxiety can lead to additional head movement that affects fMRI

data (Havsteen et al., 2017; Maknojia et al., 2019; Nguyen et al., 2020; Power et al.,

2019), it is also important to characterise the acoustic noise levels of Looping Star.

Different parameters affect not only the acoustic noise but also the temporal parameters

of Looping Star (Section 3.2), hence both temporal stability and acoustic noise measures

should be computed across different parameter combinations.

This chapter aims to fully characterise the Looping Star pulse sequence across a range

of parameter combinations. Alongside these calculations, the acoustic noise measures

of the different acquisitions are presented. GRE-EPI and Looping Star acquisitions were

compared to validate the findings in an established modality. For this reason, only the

gradient echo of Looping Star was investigated since the FID would not be comparable

with GRE-EPI. The key methods used for the stability measures are described in Section

5.7.1. A 32-channel coil with an 18 cm diameter spherical GE Healthcare phantom was

employed across all studies (Section 5.2 and 5.7.1).

6.2 Acoustic Noise Frequency Profile of Looping

Star and GRE-EPI

6.2.1 Background

Understanding the acoustic noise level produced during scan acquisition is vital as

discomfort could lead to head movement artefacts in vivo (Nguyen et al., 2020; van

Minde et al., 2014). Furthermore, different acoustic noise characteristics can affect

whether auditory stimuli are clearly heard in task-based fMRI paradigms (Perrachione and

Ghosh, 2013) and therefore correctly attributed to brain regions of interest (Barker et al.,

2012; Olulade et al., 2011). This section characterises the acoustic noise of Looping

Star by exploring its frequency composition and peak amplitude across the frequency
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spectra. Looping Star was expected to be quieter than GRE-EPI and that any change in

Looping Star acquisition parameters that increase the distance between gradient steps

will increase the acoustic noise (Section 2.1).

6.2.2 Methods

The data was collected from the 3 T scanner at the Centre for Neuroimaging Sciences

(Section 5.2). Acoustic noise measures were recorded as detailed in Section 5.5 and

the recorded scan durations were approximately 40 seconds. Table 6.1 describes the

acquisition parameters used. All scans involved a FOV = 19.2 cm, isotropic voxel size =

3 mm, spokes per volume = 1024, and FA = 1◦. The acquisition parameters used for

GRE-EPI are taken from one of the most widely used GRE-EPI acquisition protocols at

my institution.

Table 6.1: Looping Star acquisition parameters for acoustic noise frequency profile generation. All
Looping Star scans involved a FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per volume = 1024,
and FA = 1◦.

Acquisition Parameters

FID + echo, ±31.25 kHz readout bandwidth (BW), 32 spokes per loop (spl), GSF = 14,

TR = 2.13 s, TE = 26.88 ms

FID + echo, ±15.60 kHz BW, 32 spl, GSF = 14, TR = 3.19 s, TE = 43.0 ms

FID + 2 echoes, ±31.25 kHz BW, 32 spl, GSF = 12, TR = 2.91 s, ∆TE = 26.1 ms

FID + 2 echoes, ±46.88 kHz BW, 32 spl, GSF = 10, TR = 2.49 s, ∆TE = 21.8 ms

FID + 3 echoes, ±46.88 kHz BW, 16 spl, GSF = 8, TR = 3.55 s, ∆TE = 10.75 ms

FID + 3 echoes, ±62.5 kHz BW, 16 spl, GSF = 10, TR = 3.01 s, ∆TE = 8.70 ms

GRE-EPI, ±250 kHz BW 1, slice thickness = 3 mm, number of slices = 38, slice gap =

0.3 mm, TR = 2 s, TE = 28 ms, FA = 75◦, FOV = 21.4 cm, dummy acquisitions (DDAs)

= 0

1Ramp sampling used
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6.2.3 Results

Figure 6.1 shows the acoustic noise profiles for the acquisitions in Table 6.1, displayed as

the sound level amplitude (weighted to the human ear, i.e. A-weighted) relative to the

frequency. The peak sound level occurs at frequency 1 kHz for GRE-EPI and exceeds 100

dB(A) in amplitude, whereas the highest amplitude of a Looping Star acquisition was 86

dB(A) at 125 Hz. All Looping Star scans presented peak amplitude at a lower frequency

relative to GRE-EPI, indicating the dominant presence of low amplitude “rumbling” sounds

in Looping Star compared with the high amplitude “drilling” of GRE-EPI.
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6.2.4 Discussion

All Looping Star acquisitions presented a lower sound frequency at which the peak

amplitude occurred, as well as a lower peak amplitude of acoustic noise, compared with

GRE-EPI. These findings are consistent with expectations, as Looping Star demonstrated

reduced acoustic noise relative to GRE-EPI. Additionally, the Looping Star scans that

required larger gradient direction changes produced higher acoustic noise (i.e. 16 spokes

per loop), as expected.

Looping Star may therefore improve the interpretation of studies of the auditory cortex,

particularly for stimuli that have acoustic frequencies higher than 125 Hz (i.e. above

the peak sound frequency for Looping Star). This is because different sound stimulus

characteristics give rise to different neural responses (Brechmann et al., 2002; Hart et al.,

2003; Langers et al., 2007), so removing as much background noise as possible will

improve the specificity of the response.

6.3 Average Acoustic Noise of Looping Star and

Conventional MRI across Parameters

6.3.1 Background

Characterising the acoustic noise of Looping Star across different parameters can guide

parameter selection for future studies, particularly those prioritising sound reduction

due to the inclusion of sound-averse participants. The impact of changing three core

parameters expected to affect the average acoustic noise was explored whilst keeping

all other parameters constant. These three parameters were spokes per loop, readout

bandwidth and gradient smoothing factor. The effects of these parameters were also

compared between high spatial resolution and low spatial resolution scans.
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Looping Star acquisitions were also compared with those of conventional MRI, particularly

GRE-EPI and IR-SPGR acquisitions. As the gradient amplitude increases with increasing

readout bandwidth for Looping Star, to facilitate full k-space coverage (Section 3.2),

higher readout bandwidths would increase the acoustic noise. It was expected that a

higher gradient smoothing factor and a higher number of spokes per loop should reduce

the acoustic noise, given that they reduce the distance between directional gradient steps.

6.3.2 Methods

The acoustic noise measures were collected from the 3 T scanner at the Centre for

Neuroimaging Sciences (Section 5.2). The method for acoustic noise recording is given in

Section 5.5. Static average LAeq values were read from the device after 15 s of recording

each scan and outputs were A-weighted, meaning they are weighted towards the sound

heard by the human ear (Section 2.1).

Table 6.2 shows the fMRI acquisition parameters used for comparing the average acoustic

noise. All scans involved a FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per

volume = 1024, and a FA = 2◦ . All scans collected the FID plus a single echo. For

the bandwidth comparison, the highest bandwidth (±62.5 kHz) required a lower GSF to

avoid gradient smoothing exceeding the scanner capability.
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Table 6.2: Looping Star acquisition parameters for average acoustic noise measurements, low resolution.
All Looping Star scans involved a FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per volume =
1024, and a FA = 2◦. All scans collected the FID plus a single echo.

Acquisition Parameters

±31.25 kHz BW, 32 spl, GSF = 1, TR = 1.97 s, TE = 25.4 ms

±31.25 kHz BW, 32 spl, GSF = 8, TR = 1.98 s, TE = 25.6 ms

±31.25 kHz BW, 32 spl, GSF = 10, TR = 1.98 s, TE = 25.6 ms

±31.25 kHz BW, 32 spl, GSF = 12, TR = 2.02 s, TE = 26.1 ms

±31.25 kHz BW, 32 spl, GSF = 14, TR = 2.07 s, TE = 26.9 ms

±15.625 kHz BW, 32 spl, GSF = 14, TR = 3.13 s, TE = 43.0 ms

±46.88 kHz BW, 32 spl, GSF = 14, TR = 1.71 s, TE = 21.5 ms

±62.5 kHz BW, 32 spl, GSF = 12, TR = 1.51 s, TE = 18.4 ms

±31.25 kHz BW, 8 spl, GSF = 14, TR = 3.10 s, TE = 6.72 ms

±31.25 kHz BW, 16 spl, GSF = 14, TR = 2.41 s, TE = 13.4 ms

Table 6.3 shows the acquisition parameters for high spatial resolution structural scans,

likely to be used for T2* imaging and quantitative susceptibility mapping (QSM). All

acquisitions involved FOV = 19.2 cm, 1 mm isotropic voxel size, 36864 spokes per volume,

FA = 2◦ and collected an FID plus echo image.

Table 6.3: Looping Star acquisition parameters for average acoustic noise measurements, high resolution.
All Looping Star acquisitions involved FOV = 19.2 cm, 1 mm isotropic voxel size, 36864 spokes per
volume, FA = 2◦ and collected an FID plus echo image. The TR is equivalent to the scan time.

Acquisition Parameters

±31.25 kHz BW, 8 spl, GSF = 1, TR = 101 s, TE = 14.6 ms

±31.25 kHz BW, 8 spl, GSF = 8, TR = 101 s, TE = 14.6 ms

±31.25 kHz BW, 8 spl, GSF = 10, TR = 102 s, TE = 14.7 ms

±31.25 kHz BW, 8 spl, GSF = 12, TR = 102 s, TE = 14.7 ms

±31.25 kHz BW, 8 spl, GSF = 14, TR = 102 s, TE = 14.8 ms

±15.625 kHz BW, 8 spl, GSF = 14, TR = 167 s, TE = 27.3 ms

±46.88 kHz BW, 8 spl, GSF = 14, TR = 86 s, TE = 11.6 ms

±62.5 kHz BW, 8 spl, GSF = 14, TR = 70 s, TE = 8.5 ms

±31.25 kHz BW, 4 spl, GSF = 8, TR = 135 s, TE = 7.3 ms

±31.25 kHz BW, 16 spl, GSF = 14, TR = 84 s, TE = 29 ms
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For comparison, a multi-echo and a single echo GRE-EPI acquisitions, as well as an

inversion-recovery spoiled gradient echo (IR-SPGR) (Alzheimer’s Disease Neuroimaging

Initiative, 2017; Leung et al., 2015) acquisition, were obtained (Table 6.4).

Table 6.4: Conventional MRI acquisition parameters for average acoustic noise measurements

Acquisition Parameters

GRE-EPI: ±250 kHz BW 1, slice thickness = 3 mm, number of slices = 39, slice

gap = 0.3 mm, TR = 2 s, TE = 30 ms, FA = 75◦, FOV = 21 cm, DDAs = 0, 100

volumes

Multi-echo GRE-EPI: TE = 12 ms, 28 ms, 44 ms, 60 ms, TR = 2.5 s, FA = 80◦,

slice thickness = 3 mm, 1 mm slice gap, FOV = 21 cm, number of slices = 32,

DDAs = 4, ±250 kHz BW 1, 100 volumes

IR-SPGR: FOV = 27 cm, slice thickness 1.2 mm, 200 slices, 1.05 mm in plane

resolution, TE = 3 ms, inversion time (TI) = 400 ms, FA = 11◦, ±23 kHz BW,

scan time = 5 mins 37 s

6.3.3 Results

Figures 6.2A-C demonstrate the impact of the number of spokes per loop, readout

bandwidth and gradient smoothing factor on the average sound level in an fMRI acquisition

(Table 6.2). Higher gradient smoothing factor and number of spokes per loop reduce

the acoustic noise whereas higher readout bandwidth increases acoustic noise. Figure

6.2D shows that the GRE-EPI and IR-SPGR acquisition (Table 6.4) sound levels are

much higher. The ±15.625 kHz Looping Star acquisition has a comparable noise level to

ambient scanner room noise.

1Ramp sampling used
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Figure 6.2: Acoustic noise levels (LAeq) of acquisitions in Table 6.2 and Table 6.4. A) Impact of
increasing gradient smoothing factor. B) Impact of increasing readout bandwidth. C) Impact of
increasing spokes per loop. D) Conventional MRI acquisitions and ambient scanner room noise.

Figures 6.3A-C demonstrate the impact of spokes per loop, readout bandwidth and

gradient smoothing factor on acoustic noise in a single volume high spatial resolution

acquisition (Table 6.3). The same patterns are visible in comparison with the fMRI

acquisitions, though are generally higher in amplitude.

Figure 6.3: Acoustic noise levels (LAeq) of acquisitions in Table 6.3. A) Impact of increasing gradient
smoothing factor. B) Impact of increasing readout bandwidth. C) Impact of increasing spokes per loop.

173



6.3.4 Discussion

The average acoustic noise levels of Looping Star for a range of parameters were compared

with conventional MRI acquisitions. The results demonstrate the patterns expected and

highlight the importance of considering which acquisition parameters are selected given

their impact on acoustic noise. These results should ideally be used in conjunction with

an evaluation of signal stability (Sections 6.4 - 6.6) and the acoustic noise frequency

characteristics (Section 6.2) to identify the best acquisition parameters for each study,

based on the paradigm and cohort of interest. However, as different Looping Star

acquisition parameters affect the TR and TE (Section 3.2), compromises on acoustic

noise may be required to boost SNR or to use multi-echo acquisition with good temporal

resolution.

6.4 Impact of Flip Angle on Temporal Stability

with Looping Star

6.4.1 Background

Evidence has indicated that lower flip angles can be used in fMRI with GRE-EPI without

significant impact on the tSNR in the case where SNR is high (Gonzalez-Castillo et al.,

2011). To explore whether this is also true for Looping Star, particularly since it involves

short, hard, RF pulses, the impact of flip angle on temporal stability was characterised.

This is also crucial for ensuring sufficient signal amplitude for fMRI (Haase et al., 1986;

Miller, 2012; Park et al., 2011). It was expected that increasing flip angle would increase

the tSNR due to the increased signal amplitude, with no effect on temporal stability.
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6.4.2 Methods

The spherical phantom data was collected from the 3 T scanner at the Clinical Research

Facility (Section 5.2 and 5.7.1). Table 6.5 describes the acquisition parameters employed

for Looping Star. All scans involved a FOV = 19.2 cm, isotropic voxel size = 3 mm, 50

volumes and spokes per volume = 1024. The temporal stability measures are described in

Section 5.7.1. The first four volumes were neglected in analysis to allow the longitudinal

magnetisation to reach steady-state, supported by the calculations in Section 3.5, which

found that signal stability for Looping Star occurred after approximately 4000 spokes.

Table 6.5: Acquisition parameters for evaluation of flip angle impact on Looping Star signal stability.
All scans involved a FOV = 19.2 cm, isotropic voxel size = 3 mm, and spokes per volume = 1024. 50
volumes were acquired per acquisition.

Acquisition Parameters

FID + 3 echoes, BW = ±62.5 kHz, 16 spl, GSF = 8, TR = 3 s, ∆TE = 8.7 ms, FA = 1◦

FID + 3 echoes, BW = ±62.5 kHz, 16 spl, GSF = 8, TR = 3 s, ∆TE = 8.7 ms, FA = 2◦

FID + 3 echoes, BW = ±62.5 kHz, 16 spl, GSF = 8, TR = 3 s, ∆TE = 8.7 ms, FA = 3◦

6.4.3 Results

The impact of increasing flip angle on the third gradient echo is shown in Table 6.6.

Increasing flip angle correlates with increasing SNR and tSNR for all echoes acquired.

Generally, there was little difference in PSD and PSF, and the highest RDC was for the

third echo of flip angle 1◦ and the lowest for the first echo of flip angle 3◦
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Table 6.6: Temporal stability analysis of 2D ROI (15 x 15 pixel) for same acquisition with increasing
flip angles. Note: GRE, GRE2, GRE3

Acquisition SNR tSNR PSF (%) PSD (%) RDC

FA 1◦ GRE 120.32 141.57 0.099 -0.19 6.09

FA 1◦ GRE2 85.18 88.79 0.133 -0.17 9.16

FA 1◦ GRE3 57.80 58.68 0.176 -0.20 10.82

FA 2◦ GRE 142.63 141.82 0.070 0.08 9.71

FA 2◦ GRE2 90.49 90.61 0.121 0.02 8.66

FA 2◦ GRE3 61.39 58.02 0.205 -0.13 8.02

FA 3◦ GRE 265.55 259.59 0.062 -0.03 5.03

FA 3◦ GRE2 154.74 156.01 0.057 -0.04 9.88

FA 3◦ GRE3 94.81 97.01 0.130 0.01 9.74

Figure 6.4 shows that there were no major changes in tSNR characteristics across flip

angles, beyond the correlation of higher flip angle producing higher tSNR values, which

is to be expected with scaling signal amplitude. There were no differences for the SSN

images, which produced values around zero across the image with no structural detail.

The appearance of an air bubble within the spherical phantom is visible in the tSNR

images. Upon further investigation, the "hot spots" in the tSNR image appeared to be

related to lower temporal standard deviation, increasing the tSNR in these regions. This

could be linked to inhomogeneities in the phantom.
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The Weisskoff curves are comparable between the curve measured from the data and the

curve estimated assuming a linear relationship across all acquisitions (Figure 6.5), though

with the earliest plateaus visible in the first gradient echo of the FA = 3◦ acquisition, as

supported by Table 6.6.
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Figure 6.6 also shows that there were no changes in dominant frequencies for increasing

flip angles across echoes. The power in the frequency spectra was also low across all

frequencies for all acquisitions.
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6.4.4 Discussion

Looping Star demonstrated the expected pattern of increasing tSNR with increasing

flip angle, with no unexplained deviations in frequency or fluctuations. SNR and tSNR

increased with flip angle, with the largest jump in values between FA = 2◦ and FA = 3◦.

This could indicate that FA = 3◦ is nearer to the optimal angle for the phantom, which

would be the case for a TRrf = 544 µs (for a ±62.5 kHz acquisition) and T1 < 500

ms for the phantom. The T1 value of the phantom requires further investigation. For

future studies, the priority should be to employ the optimal angle and ensure maximal

SNR efficiency (Section 3.8).

6.5 Impact of Readout Bandwidth on Temporal

Stability with Looping Star

6.5.1 Background

For all MRI acquisitions, higher readout bandwidths lead to reductions in SNR as more

noise is received in the larger readout frequency range, although the sampling time (TR)

is reduced (Bernstein et al., 2004). As high temporal resolution is required in fMRI,

characterising the extent of increasing signal noise for Looping Star with increasing readout

bandwidth is essential for devising an optimal compromise during image acquisition. The

impact of increasing readout bandwidth on Looping Star data was investigated, with an

increase in temporal noise with increasing bandwidth expected. However, there may also

be an impact due to the shortening of the echo time with increasing readout bandwidth

(Section 3.2) that may counteract the temporal noise with higher signal amplitude.
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6.5.2 Methods

The data was collected from a spherical phantom on the 3 T scanner at the Centre

for Neuroimaging Sciences (Section 5.2 and Section 5.7.1). Table 6.7 describes the

acquisition parameters employed for Looping Star. All scans involved a FOV = 19.2 cm,

isotropic voxel size = 3 mm, spokes per volume = 1024, and a FA = 2◦ . All scans

acquired the FID and one echo image and 100 volumes. The temporal stability measures

are described in Section 5.7.1. The first four volumes were neglected in the Looping Star

analysis for steady-state to be reached, supported by the calculations in Section 3.5.

Table 6.7: Acquisition parameters for increasing readout bandwidth. All Looping Star scans involved a
FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per volume = 1024, and a FA = 2◦ , and acquired
the FID and one echo image. 100 volumes were acquired per acquisition.

Acquisition parameters

±15.625 kHz BW, 32 spl, GSF = 12, TR = 3.13 s, TE = 43.0 ms

±31.25 kHz BW, 32 spl, GSF = 12, TR = 2.02 s, TE = 26.1 ms

±46.88 kHz BW, 32 spl, GSF = 12, TR = 1.71 s, TE = 21.5 ms

±62.5 kHz BW, 32 spl, GSF = 12, TR = 1.51 s, TE = 18.4 ms

6.5.3 Results

Table 6.8 compares the effects of incremental increases in readout bandwidth (Table

6.7). For the gradient echo (GRE), SNR and tSNR were highest for the ±46.88 kHz

acquisition and lowest for the ±15.625 kHz acquisition. The percentage signal fluctuation

and drift were low, with the highest RDC for the ±62.5 kHz gradient echo acquisition.

Investigating the standard deviation of the temporal signal within the ROI, it can be seen

that the signal variance increases with bandwidth.
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Table 6.8: Temporal stability analysis of central 2D (15 x 15 pixel) ROI in gradient echo (GRE) for
same acquisition with increasing bandwidths.

Acquisition SNR tSNR PSF (%) PSD (%) RDC σεROI

±15.625 kHz

GRE

99.29 96.41 0.147 0.08 5.84 2.18× 107

±31.25 kHz

GRE

119.61 121.15 0.104 -0.19 8.16 6.99× 107

±46.88 kHz

GRE

126.83 123.43 0.113 -0.14 7.98 1.33× 108

±62.5 kHz

GRE

120.60 107.57 0.115 -0.27 8.30 2.16× 108

Figure 6.7 shows the tSNR and SSN images for each bandwidth. It can be seen that

the tSNR is fairly consistent between the ±31.25 kHz, ±46.88 kHz and ±62.5 kHz

acquisition. Lower mean signal appeared to be responsible for the "shadows" in the

phantom tSNR images, likely linked to phantom inhomogeneities as seen previously.

There appeared to be a more blurred structure in the ±15.625 kHz acquisition tSNR plot.

The SSN values in the phantom structure were generally consistent across acquisitions.
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Figure 6.8 shows the corresponding Weisskoff curves across readout bandwidths for the

gradient echo images of Looping Star. All readout bandwidths produced Wiesskoff curves

where the measured and estimated trends were consistently linear.
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Figure 6.9 indicates the presence of a very low amplitude low frequency signal drift (i.e.

< 0.05 Hz) across readout bandwidths and in the echo images, with marginally higher

peak power in the ±31.25 kHz (peak of 0.074 at 0.0152 Hz) and ±62.5 kHz (peak of

0.0797 at 0.0203 Hz) datasets compared with the ±15.625 kHz (peak of 0.065 at 0.0489

Hz) and ±46.88 kHz data (peak of 0.0695 at 0.0179 Hz).
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6.5.4 Discussion

As mentioned previously, the readout bandwidth is inherently linked to the echo time for

Looping Star. This means that larger readout bandwidths produce shorter echo times,

and so produce inherently higher signal amplitudes. As expected, higher tSNR and SNR

were seen for larger bandwidths given their higher mean signal amplitudes. For this

reason, it was essential to study the temporal variance of the data and it was found

that there was increasingly higher signal standard deviation with increasing bandwidth.

This suggests that although greater noise may be present at higher bandwidths, the

entanglement of the echo time with the readout bandwidth inherently boosts the mean

signal and therefore counteracts the acoustic noise, as expected. The prevalence of a

low frequency peak in the power spectra across bandwidths was of substantially low

amplitude that it was not deemed of concern.

6.6 Impact of Number of Spokes Per Loop on

Temporal Stability with Looping Star

6.6.1 Background

The number of spokes per loop is another parameter that changes the TE and TR of

Looping Star acquisitions. Though the SNR measures will predominantly be affected

by the different signal intensities resulting from the different decay times, the temporal

stability should be largely unaffected. Theoretically, any even number of spokes per loop

would correctly refocus the signal, however imperfections in the gradients would produce

phase errors; hence it is important to quantify the temporal stability of this parameter

despite its entanglement with scan timings. It was expected that a higher number of

spokes per loop would be more susceptible to phase errors and would therefore have

worse temporal stability.
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6.6.2 Methods

The data was collected from a spherical phantom on the 3 T scanner at the Centre

for Neuroimaging Sciences (Section 5.2 and Section 5.7.1). Table 6.9 describes the

acquisition parameters employed for Looping Star. All scans were acquired with a FOV

= 19.2 cm, isotropic voxel size = 3 mm, spokes per volume = 1024, and FA = 2◦ . All

scans acquired a FID and a single echo image and 100 volumes. The temporal stability

measures are described in Section 5.7.1. The first four volumes were neglected in the

Looping Star analysis, supported by the calculations in Section 3.5.

Table 6.9: Acquisition parameters for Looping Star with a range of number of spokes per loop. All
scans were acquired with a FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per volume = 1024,
and FA = 2◦. All scans acquired a FID and a single echo image and 100 volumes.

Acquisition parameters

±31.25 kHz BW, 8 spl, GSF = 14, TR = 3.10 s, TE = 6.72 ms

±31.25 kHz BW, 16 spl, GSF = 14, TR = 2.41 s, TE = 13.4 ms

±31.25 kHz BW, 32 spl, GSF = 14, TR = 2.07 s, TE = 26.9 ms

6.6.3 Results

The impact of increasing the number of spokes per loop is shown in Table 6.10. The

gradient echo for Looping Star demonstrated the highest SNR and tSNR in the 8

spokes per loop acquisition and the lowest SNR and tSNR in the 32 spokes per loop

acquisition. Signal fluctuation and drift remained low across acquisitions, although the

highest fluctuation and lowest drift were seen for the 32 spokes per loop acquisition. The

standard deviation of the temporal signal was also lowest for the 32 spokes per loop

acquisition.

191



Table 6.10: Temporal stability analysis of spokes per loop for 2D 15 x 15 pixel ROI.

Acquisition SNR tSNR PSF (%) PSD (%) RDC σεROI

8 spl GRE 268.49 281.77 0.056 0.10 6.07 1.41× 108

16 spl GRE 213.22 207.83 0.087 0.29 5.91 1.46× 108

32 spl GRE 128.28 115.42 0.125 -0.03 6.67 7.59× 107

The highest tSNR was observed for the 8 spokes per loop acquisition (Figure 6.10),

compared with the higher number of spokes per loop acquisitions, and the lowest SSN

appeared to be the 16 spokes per loop acquisition. Upon further investigation, once

again, the lower mean signal was responsible for the "shadows" in the phantom tSNR

images, likely linked to the phantom inhomogeneities mentioned previously.

Figure 6.10: Impact of spokes per loop (spl) on tSNR and SSN for gradient echo of Looping Star.
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Figure 6.11 shows the Weisskoff measures across spokes per loop, where the plateau

began at a lower RDC value for the 8 spokes per loop acquisition.

Figure 6.11: Impact of spokes per loop (spl) on Weisskoff coefficient of variance (CoV) analysis of
gradient echo for Looping Star.

Figure 6.12 shows signal versus time plots and the power spectra for each number of

spokes per loop. These demonstrate a peak low frequency (i.e. < 0.05 Hz) fluctuation

in all acquisitions, with marginal differences between them: 8 spokes per loop (peak of

0.0368 at 0.0165 Hz), 16 spokes per loop (peak of 0.0616 at 0.017 Hz) and 32 spokes

per loop (peak of 0.064 at 0.0148 Hz).

193



Figure 6.12: Impact of spokes per loop (spl) on frequency spectra and raw signal in 15 x 15 pixel ROI
for gradient echo of Looping Star.

6.6.4 Discussion

As in Section 6.5, the number of spokes per loop is also inherently linked to the echo time

for Looping Star. Fewer spokes per loop produce shorter echo times, producing higher

signal amplitudes. This explains the higher tSNR and SNR for fewer spokes per loop,

as well as the higher percentage signal fluctuation of the 32 spokes per loop acquisition

given the dependence of the PSF measure on signal amplitude (see Section 5.7.1).

Alternatively, the 32 spokes per loop acquisition had the lowest temporal standard deviation
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and percentage signal drift and highest RDC, suggesting greater signal stability. These

results indicate that Looping Star is not especially susceptible to gradient imperfections

in the phantom, given that the 32 spokes per loop acquisition provided good temporal

stability in comparison with the 8 spokes per loop acquisition. Future studies should

consider the required tSNR (and hence the necessary echo times) when deciding on the

number of spokes per loop to use.

6.7 Comparing the Temporal Stabilities of

Looping Star and GRE-EPI

6.7.1 Background

Evaluating the stability of Looping Star relative to GRE-EPI is important since GRE-EPI

is the conventional technique used for functional MRI. Single and multi-echo GRE-EPI

acquisitions were therefore compared with single-echo Looping Star of similar echo times.

It was expected that since Looping Star involves very low flip angles, the tSNR would be

lower.

6.7.2 Methods

The data was collected from a spherical phantom on the 3 T scanner at the Centre

for Neuroimaging Sciences (Section 5.2 and Section 5.7.1). Table 6.11 describes the

acquisition parameters employed for GRE-EPI, as well as the parameters of Looping Star

acquisition. The acquisitions were collected on the same day in the same session.

The TE and TR were as closely matched between techniques as possible, given the

technical implications of Looping Star that limit the flexibility of these timing parameters

(Section 3.2, therefore only the second echo of the multi-echo GRE-EPI dataset was used.
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The temporal stability measures are described in Section 5.7.1. The first four volumes

were neglected in the Looping Star analysis, supported by the calculations in Section 3.5.

The first four volumes from the single-echo GRE-EPI acquisition were also removed for

consistency.

Table 6.11: Acquisition parameters of Looping Star and single and multi-echo GRE-EPI sequences,
each collecting 100 volumes

Acquisition parameters for each modality

Single-echo GRE-EPI: ±250 kHz BW 1, slice thickness = 3 mm, number of slices

= 39, slice gap = 0.3 mm, TR = 2 s, TE = 30 ms, FA = 75◦, FOV = 21 cm,

DDAs = 0

Multi-echo GRE-EPI: ±250 kHz BW 1, slice thickness = 3 mm, number of slices

= 32, 1 mm slice gap, TR = 2.5 s, TE = 12 ms, 28 ms, 44 ms, 60 ms, FA = 80◦,

FOV = 21 cm, DDAs = 4

Looping Star: FID + echo, ±31.25 kHz BW, 32 spl, GSF 14, TR = 2.07 s, TE =

26.9 ms, FOV = 19.2 cm, isotropic voxel size = 3 mm, spokes per volume = 1024,

FA = 2◦

6.7.3 Results

The GRE-EPI results for both single and multi-echo acquisitions, as well as the Looping

Star result, are shown in Table 6.12. Single echo GRE-EPI and the second echo of

multi-echo GRE-EPI had higher SNR and tSNR than Looping Star. Looping Star had a

shorter RDC and higher percentage signal fluctuation, though lower percentage signal

drift.

1Ramp sampling used
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Table 6.12: Temporal stability analysis of single echo and multi-echo GRE-EPI acquisitions and Looping
Star of comparable echo time in 15 x 15 pixel ROI.

Acquisition SNR tSNR PSF (%) PSD (%) RDC

EPI 168.62 155.54 0.087 -0.28 7.13

MEPI GRE2 131.55 143.38 0.070 -0.29 10.07

Looping Star

GRE

128.28 115.42 0.125 -0.03 6.67

Figure 6.13 shows that, as expected, single-echo (SE) GRE-EPI and ME GRE-EPI have

higher tSNR compared with Looping Star, although the ME GRE-EPI and Looping

Star acquisitions had similar levels of SSN. The Looping Star images are not cropped

compared with the GRE-EPI datasets. Additionally, the measured Weisskoff curves and

frequency spectra were comparable across acquisitions.
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The relationship between tSNR and SNR between modalities for the range of acquisition

parameters presented in this chapter (all echoes of Looping Star echoes, GRE-EPI and

ME GRE-EPI) was also evaluated to ensure that the same relationship holds between

modalities. This was found to be the case, as seen in Figure 6.14.

Figure 6.14: tSNR versus SNR for all Looping Star and GRE-EPI acquisitions in this chapter, with
best fit line

6.7.4 Discussion

The temporal signal characteristics of Looping Star and the GRE-EPI datasets are similar,

with little oscillation or impact of fluctuation and drift. However, the tSNR and SNR

in the ROI are lower in Looping Star, likely due to the low flip angles used. For both

datasets, minima were found in the tSNR that appeared to be linked to lower mean

signal in these regions. This could indicate inhomogeneities in the spherical phantom,

that produce different apparent spatial characteristics in each modality.

The higher SSN of Looping Star and ME GRE-EPI indicates that there are differences

between odd and even volumes that are absent in single-echo GRE-EPI, which could
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suggest higher sensitivity of these modalities to scanner instabilities. On the other hand,

no highly-powered frequency oscillations were seen for any modality. These results can be

used in conjunction with the acoustic noise measures to determine the optimal acquisition

for the paradigm of interest.

6.8 Chapter Discussion

To summarise, this chapter sought to characterise the signal produced from Looping

Star acquisitions in the context of a phantom i.e. in the absence of physiological noise.

Understanding the temporal signal noise characteristics in a phantom is key for identifying

requirements for pre- and post-processing to maximise the functional sensitivity of fMRI

data. This may also affect the paradigm design employed, particularly when determining

a compromise between tSNR and temporal resolution (Friman et al., 2004). The results

were also compared with those of GRE-EPI and the acoustic noise properties of Looping

Star were investigated. Together, the acoustic noise and temporal stability measures can

be used to determine the optimal acquisition parameters for future studies.

The acoustic noise results indicated that lower readout bandwidths in combination

with any method of reducing the distance between gradient steps (i.e. higher gradient

smoothing factor or higher number of spokes per loop) would produce quieter acquisitions.

Different readout bandwidths and number of spokes per loop, however, also affect the

tSNR and temporal stability. Higher flip angles, longer readout bandwidths and lower

spokes per loop shorten the echo time, which inherently boosts the tSNR. On the other

hand, a higher number of spokes per loop and shorter readout bandwidths reduce the

temporal instability. The differences between employed acquisition parameters were

marginal, but are vital for future studies to consider depending on their priorities of tSNR,

signal variance, acoustic noise and echo time.

It was found that the range of Looping Star acquisition parameters employed produced

reliable temporal signal stability compared with single and multi-echo GRE-EPI, though
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generally lower tSNR and SNR for the same echo time. The lower tSNR of Looping

Star can largely be explained by the low flip angles employed by Looping Star. Although

Looping Star did not demonstrate high signal fluctuation in the ROI, neither via the

PSD, PSF nor temporal standard deviation, it was seen that Looping Star and ME

GRE-EPI generally had higher SSN than single-echo GRE-EPI, which could indicate

higher sensitivity to scanner instabilities.

Ultimately, Looping Star demonstrated good temporal stability both across parameters

and in comparison with GRE-EPI. The acquisition method chosen for a study will depend

on the importance of particular acquisition timing, tSNR and acoustic noise levels. To

further support the use of Looping Star, the next chapter will demonstrate its functional

sensitivity in vivo.
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Summary

In this chapter:

• Single and multi-echo Looping Star are characterised in vivo using a visual and an

auditory blocked-design paradigm.

• Comparisons of power, percentage signal change and task-related functional corre-

lations for both paradigms are computed.

• The impact of spatial smoothing and temporal autocorrelation correction functions

is evaluated for Looping Star to identify whether alternative pre-processing steps

are required relative to GRE-EPI.

• The functional sensitivity of Looping Star is compared with GRE-EPI.

Overview

An evaluation of the Looping Star pulse sequence in vivo is presented, characterising its

signal properties using conventional blocked-design sensory paradigms. Whether there

are specific spatial smoothing thresholds or temporal autocorrelation correction functions

required for Looping Star that may differ from those employed in conventional fMRI was

also evaluated. The results from both single and multi-echo Looping Star acquisitions

were compared with closely temporally matched GRE-EPI acquisitions in small cohorts.
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7.1 Chapter Introduction

Although phantom investigations are important for understanding non-physiological

(i.e. scanner and pulse sequence-dependent) signal characteristics and artefacts, in vivo

characterisation is essential. This is since the brain consists of tissues with distinct

magnetic properties that can dramatically impact the sensitivity to the BOLD contrast

(Hutton et al., 2002; Schwarzbauer and Porter, 2010). Understanding the complex effects

of different tissues, resolving different structures, and obtaining functional sensitivity

measures can provide insight into the practical capabilities of novel fMRI pulse sequences.

As previously shown, Looping Star produces good temporal stability alongside the reduced

acoustic noise relative to GRE-EPI (Section 6.8). Computing the tSNR is helpful for

in vivo studies, though characterising the sensitivity to the BOLD response is the most

important evaluation of an fMRI pulse sequence in vivo. One primary measure of

functional sensitivity is the percentage signal change (PSC) when presenting a stimulus

during the fMRI paradigm. The methodology to derive this measurement is described in

depth in Section 5.7.2. Investigating the fMRI time series can also be useful for evaluating

the MR signal correlation with the task (Bandettini et al., 1993), as well as identifying

temporally correlated brain regions as discussed in Section 8.1.

Functional sensitivity is not only dependent on the signal detected by the pulse sequence,

but also on the pre-processing and analysis steps employed (Botvinik-Nezer et al., 2020;

Bowring et al., 2019). Novel pulse sequences may require alternative pre-processing

and analysis steps based on their signal characteristics, particularly given that most

pipelines are designed for 2D EPI-based imaging and therefore may not generalise across

acquisition methods. Exploring the impact of aspects of the pre-processing pipeline can

therefore reveal further information on the signal characteristics of a pulse sequence. The

following studies are particularly interested in characterising the presence of any inherent

spatial smoothing of Looping Star, as well as its temporal autocorrelation characteristics,

as these factors in the pre-processing and analysis pipeline affect functional sensitivity

(Arbabshirani et al., 2014; Chen and Calhoun, 2018; Liu et al., 2017a; Molloy et al.,

204



2014; Olszowy et al., 2019; Pajula and Tohka, 2014).

In this chapter, the aforementioned pre-processing steps were investigated as well as the

signal properties of both single and multi-echo Looping Star in the context of a simple

visual checkerboard blocked-design paradigm and an auditory speech-processing blocked-

design paradigm. The core signal characteristics were evaluated using the temporal

signal-to-noise ratio, percentage signal change and time series correlations with the tasks

employed. The data used for this chapter was collected using a 3 T MR750 GE Healthcare

scanner based at the Centre for Neuroimaging Sciences (Section 5.2).

7.2 Visual Checkerboard blocked-design

Paradigm

7.2.1 Task-related Signal Correlation of Looping Star

7.2.1.1 Background

A block-periodic, visual checkerboard paradigm is one of the most commonly used for

signal characterisation in vivo, as the visual response is robust across participants and

through the scan duration (DeYoe et al., 1994; Di and Biswal, 2017). In this study,

the visual checkerboard paradigm was used to investigate the functional sensitivity of

single-echo Looping Star relative to single-echo GRE-EPI. A standard pre-processing

pipeline and GLM analysis was used and the resultant statistical maps were compared.

This was followed by visual inspection of the extracted time series to evaluate the temporal

correlation of the MR signal with the task. Part of this data was presented at the British

and Irish Chapter of International Society for Magnetic Resonance in Medicine (ISMRM)

Annual Meeting 2018 (Damestani et al., 2018).
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7.2.1.2 Methods

Eight healthy participants (3 female; 1 left-handed) volunteered for the study, and were

scanned using a 32-channel receive-only head coil (Section 5.2). Participants performed

a visual paradigm involving an 8 Hz checkerboard (Figure 7.1) alternating with a fixation

cross, encompassing the entire field of view of the screen via the mirror setup (Section

5.3). The visual checkerboard duration was 40 seconds and the rest duration was 32

seconds.

Figure 7.1: Visual checkerboard paradigm

The echo times acquired were matched between GRE-EPI and Looping Star as closely

as was practically possible given the differences in the pulse sequence (see Section 3.2).

The acquisition parameters for single-echo Looping Star were: spokes per loop = 32, FA

= 1◦, TR = 2410 ms, TE = 0 ms, 30.4 ms, 225 volumes, matrix size = 64 x 64 x 64,

FOV = 19.2 cm, readout bandwidth ±31.25 kHz, GSF = 14, scan time 7 mins 49s.

The single-echo GRE-EPI acquisition was collected with the following parameters: FA =

75◦, TR = 2000 ms, TE = 30 ms, 180 volumes, slice thickness = 3 mm, slice gap =

0.3 mm, matrix size = 64 x 64 x 38, FOV = 21.1 cm, scan time 6 mins. A 1.055 mm

in-plane resolution IR-SPGR acquisition was also acquired, with TE = 3.016 ms, TR =

7.312 ms, TI = 400 ms, number of slices = 196, slice-gap = 1.2 mm, flip-angle = 11◦,

FOV = 27 cm.

The acoustic noise level was measured as described in Section 5.5 with the microphone

placed at the centre of the scanner bore. The duration of recording was approximately

40 seconds.
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The datasets were reconstructed separately (Section 5.2). The scanning order was

single-echo Looping Star followed by single-echo GRE-EPI for all participants due to

practical implementation requirements. Only the echo images for Looping Star were used

for pre-processing and analysis. The final volumes of the Looping Star data were removed

to equate the number of volumes between acquisitions at 170 volumes, to limit bias in

the statistical power.

The first ten volumes were removed from GRE-EPI and Looping Star to allow the

longitudinal component of the magnetisation to reach steady-state. Pre-processing in

SPM-12 (FIL Methods Group, 2020) included bias field correction and segmentation of

the T1-weighted image, slice timing correction only for the GRE-EPI data, realignment,

co-registration to the T1-weighted image, spatial normalisation to MNI space with images

saved at 2 mm isotropic resolution, and 8 mm FWHM smoothing. The tSNR was

computed for the spatially normalised volumes of each participant after second-order

polynomial de-trending of the signal in each voxel (Friedman and Glover, 2006), then

averaged across participants.

The first level GLM included motion regressors and the visual onsets; the rest blocks

were not modelled to avoid over-parametrisation (Pernet, 2014). A 128 s high-pass filter

to reduce the presence of low frequency drift was included, and the standard canonical

double-gamma haemodynamic response function was used. The autocorrelation AR(1)

model was also used for Restricted Maximum Likelihood (ReML) parameter estimation

(Poldrack et al., 2011). Cluster-level inference using a primary uncorrected cluster-forming

threshold of p < 0.001 (Woo et al., 2014; Worsley et al., 1996) was employed at group

level. Only clusters surviving family-wise error (FWE) correction at the cluster-level (i.e.

pFWEc < 0.05) were deemed significant.

A spherical ROI of 10 mm radius was created for each participant in MarsBaR (Brett,

2016; Brett et al., 2002), centred on the voxel with the highest peak T-statistic, within

the cluster with the highest significance (i.e. pFWEc < 0.05) for Looping Star. This ROI

defined for Looping Star was also applied to GRE-EPI as different spatial localisation of

peak T-statistics was identified between modalities (see Results; Figure 7.3, bottom),
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which affected the comparison. A direct comparison of the functional sensitivity of the

modalities was not computed using the percentage signal change as a result, though

the normalised (i.e. scaling the signal to have a mean = 0 and standard deviation = 1)

signal time series from the ROI for each modality and participant, after pre-processing,

was plotted.

7.2.1.3 Results

The acoustic noise level (LAeq) of Looping Star was 66.2 dB(A) compared with 106.8

dB(A) for GRE-EPI and 64.2 dB(A) for the ambient scan room noise. An example of raw

Looping Star images in comparison with GRE-EPI can be seen in Figure 7.2, alongside

the average tSNR maps. Looping Star generally had lower tSNR than GRE-EPI, and

some frontal lobe dropout was visible relative to GRE-EPI.

Figure 7.2: (left) Single subject raw image of each acquisition for equivalent echoes (right) Group
averaged tSNR across spatially-normalised participant data. Images produced in FSL (Jenkinson et al.,
2012).

The group level activity maps can be seen in Figure 7.3 (top), with accompanying

statistics in Table 7.1. Both modalities presented statistically significant visual activity,

although single-echo Looping Star had the largest cluster size and higher T-statistic.
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Upon investigating the single-subject maps (Figure 7.3, bottom) it was found that the

GRE-EPI acquisitions produced more spatially varied localisations, impacting the group

level analysis given the small group size. Although there were statistically significant

activations in the visual cortex for GRE-EPI single-subject maps, the peak T-statistic

and most significant cluster occurred in regions such as the precuneus, which has been

affiliated with episodic memory and visuospatial imagery (Cavanna and Trimble, 2006).

Figure 7.3: (top) Group level activity maps for Looping Star and GRE-EPI, with labelled T-statistic
range. Images produced using NiLearn (The Nilearn developers, 2021). (bottom) Overlaid single subject
activity maps for Looping Star and GRE-EPI in FSL (Jenkinson et al., 2012), with T-statistic range for
all images in distinct colours. For both, images were thresholded for statistical significance using the
appropriate cluster-extent threshold, and presented visually at threshold T-statistic = 2. Arrows indicate
affiliated regions determined by Neurosynth (Yarkoni, 2011) and BioImage Suite Web (BioImage Suite
Web, 2021).
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Table 7.1: Cluster-level statistical results for group level activity during visual checkerboard paradigm
for each modality. Brodmann areas defiined using BioImage Suite Web (BioImage Suite Web, 2021).

Acquisition Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE

Cluster

Size

Single-echo

Looping Star

32 -92 0 18 (R) 15.30 < 10−3 ** 2007

Single-echo

GRE-EPI

26 -60 -24 N/A 8.88 0.028 * 211

-32 -90 10 18 (L) 7.61 0.002 ** 372

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas

Figure 7.4 highlights the extracted normalised signal time series from the defined 10

mm radius spherical ROI for each participant. As mentioned previously, the ROI was

derived from the most significant Looping Star cluster given the apparent varied spatial

localisation of GRE-EPI across participants. Both techniques demonstrated clear task-

related correlations in the visual cortex. The percentage signal change was not computed

to avoid bias, given the ROI was derived from Looping Star.

210



Figure 7.4: Extracted normalised signal time series from 10 mm radius spherical Looping Star ROI for
each participant (blue) with task onsets (black). (top) Looping Star acquisitions and (bottom) GRE-EPI
acquisitions. Looping Star ROIs shown at bottom of figure. Time series extraction and ROI display
using MarsBaR (Brett, 2016; Brett et al., 2002).

7.2.1.4 Discussion

The results indicate that Looping Star produces good sensitivity to the BOLD response

compared with GRE-EPI, evidenced by the temporal correlations of the MR signal with

task onsets in the ROI within the visual cortex. Both modalities also produced statistically

significant functional activity in the visual cortex. This is despite the lower tSNR of

Looping Star, which is likely driven by the low flip angles included in the sequence.

Interestingly, both modalities at single-subject level presented significant activations

outside the visual cortex, with GRE-EPI in particular demonstrating multiple subjects

with significant activity in the precuneus. This could explain the smaller significant visual

cluster identified at group level for GRE-EPI, and could be linked to an interaction effect

with the acoustic noise as the precuneus has demonstrated higher BOLD responses during

continuous sound fMRI (Haller et al., 2005). The practical limitations present in this

study were addressed to better explore and directly compare the functional sensitivity
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between modalities in Section 7.3.

7.2.2 Impact of Smoothing and Temporal Autocorrelation

on Looping Star

7.2.2.1 Background

It has been demonstrated that a standard pre-processing pipeline in SPM-12 (FIL Methods

Group, 2020) can be used with single-echo Looping Star data (Section 7.2), producing

clear sensitivity to the BOLD response to the visual checkerboard paradigm. Previous

studies have shown that the different steps in the pre-processing and analysis pipeline

can affect the functional sensitivity detected in conventional fMRI (Botvinik-Nezer et al.,

2020; Bowring et al., 2019). As Looping Star has different spatial characteristics driven

by 3D radial sampling of non-constant density in k-space, it was expected that functional

sensitivity may differ with distinct spatial smoothing thresholds in a unique manner

relative to GRE-EPI.

Looping Star may also present different temporal characteristics and therefore distinct

autocorrelation behaviour. Autocorrelation can be a product of non-neuronal noise

sources, leading to the power spectrum of the fMRI signal having disproportionate power

at low frequencies (Aguirre et al., 1997; Bullmore et al., 2001; Woolrich et al., 2001)

and varying noise structure across brain regions (Zarahn et al., 1997). To avoid bias in

the general linear model estimates, this autocorrelation must be removed from the data

(Poldrack et al., 2011).

Autocorrelation is addressed by fitting the GLM to the data at each voxel to produce

the residuals, and using these residuals to estimate the autocorrelation structure. Using

this estimate of the autocorrelation structure, the data and design matrix implemented

are then "pre-whitened", counter-balancing the variance and its structured noise with

a known white noise source. The residuals are used to avoid affecting the task-related
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signal (Poldrack et al., 2011)

However, the accuracy of autocorrelation correction depends on the correctness of the

model. Two models are explored in this thesis: the auto-regressive, or AR(1), model, which

assumes the variance of each time point is equal to one and that the correlation between

data samples are spatially dependent and also incorporates white noise (Arbabshirani

et al., 2014; Poldrack et al., 2011; Worsley et al., 2002), and the FAST algorithm,

which involves a more complex dictionary of basis sets to estimate the serial correlations

Bollmann et al. (2018); Corbin et al. (2018), both of which are implemented in SPM-12

(FIL Methods Group, 2020).

To evaluate the spatial characteristics of Looping Star, its functional sensitivity was

explored at different smoothing thresholds in comparison with GRE-EPI. The impact

of the autocorrelation functions was then assessed at each smoothing threshold. The

power spectra of the residuals across participants after pre-whitening was also explored.

Supposing that there are no differences in the group level results produced using the two

autocorrelation models for both Looping Star and GRE-EPI, and similar power spectra for

the residuals are seen, it can be deduced that the temporal autocorrelation structure of

Looping Star can be well explained by both models typically used for GRE-EPI, suggesting

similar temporal correlation behaviour.

7.2.2.2 Methods

The same Looping Star and GRE-EPI datasets were employed from Section 7.2. Standard

SPM-12 (FIL Methods Group, 2020) pre-processing including bias field correction and

segmentation of the T1-weighted image, slice-timing correction for GRE-EPI, realignment,

co-registration to the T1 and spatial normalisation to MNI space with images saved

at 2 mm isotropic resolution. The group level activity maps were calculated after no

smoothing, 4 mm and 8 mm FWHM spatial smoothing for both modalities, with the

first-level GLM including the motion regressors and visual onsets in the model as well

as a 128 s high-pass filter and the standard canonical double-gamma haemodynamic

213



response function.

The FAST and AR(1) autocorrelation methods for ReML parameter estimation were

explored at each smoothing level for both modalities. Cluster-level inference using a

primary uncorrected cluster-forming threshold of p < 0.001 (Woo et al., 2014; Worsley

et al., 1996) was employed. Only clusters surviving family-wise error correction at the

cluster-level (i.e., pFWEc < 0.05) were deemed significant. The residuals after model

estimation in the first level GLM were extracted for each participant, and its power

spectrum was computed on average across the whole brain. The average power spectra

across participants was then computed using the square of the discrete Fourier transform,

whereby the time series of the residuals were normalised (i.e. variance = 1) to facilitate

group level inference. These power spectra were produced using MATLAB scripts adapted

from those provided by Olszowy et al. (2019).

The correlation scatter and Bland-Altman (Altman and Bland, 1983; Bland and Alt-

man, 1999) plots were plotted to compare the group level T-maps produced between

autocorrelation functions at each smoothing threshold for Looping Star and GRE-EPI.

Bland-Altman analysis can be used to evaluate the correlation of results between two

methods, assuming the same result should arise from both techniques (Altman and Bland,

1983; Giavarina, 2015). Explicitly, the absolute difference between the T-maps (DiffBA)

and their combined and averaged mean (MeanBA) are computed and plotted against

one another (Equations (7.1) - (7.2)).

DiffBA = TFAST − TAR(1) (7.1)

MeanBA =
TFAST + TAR(1)

2
(7.2)

Where TFAST and TAR(1) are the group level T-maps for each respective autocorrelation

correction function. To avoid skewing towards low T-statistics, only the group level
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T-maps thresholded at the appropriate cluster-extent threshold for statistical significance

were compared. Zero values (originating outside the brain) were removed to avoid biasing

the result towards a zero mean.

The differences between the group level T-maps were tested using the Kolmogorov-Smirnov

test and for 4 mm and 8 mm smoothing level; hence non-parametric Bland-Altman analysis

was used (Klein, 2021). As the range of differences between T-maps was deemed non-

Gaussian, the reproducibility coefficient was also computed based on the interquartile

range of the differences (1.45 × IQR) rather than the standard deviation, to compare

with the computed limit of agreement (1.96 × standard deviation of the differences)

(Klein, 2021). The limits of agreement (LOA) are also given as a percentage (Equation

(7.3))

LOA(%) = 1.96× σ(
DiffBA
MeanBA

)× 100 (7.3)

where σ is the standard deviation for the fraction of the difference and the mean

computations in Equations (7.1) - (7.2). The skewness of the differences and their

coefficient of variation (Equation (7.4)) were also calculated. For the 0 mm smoothing

level dataset, parametric statistics were used as the differences were Gaussian.

CV (%) =
σ(DiffBA)

MeanBA
× 100 (7.4)

7.2.2.3 Results

Figure 7.5 demonstrates the impact of different spatial smoothing levels for single-echo

Looping Star with autocorrelation correction using the AR(1) function or FAST method.

The GRE-EPI results are not shown as only the 8 mm smoothed dataset, shown in Section

7.2, produced statistically significant results. The accompanying group level statistics are

215



shown in Table 7.2. Group level significant activity was seen for all smoothing thresholds

with Looping Star. For the FAST autocorrelation function the same effect was seen, where

Looping Star produced significant activity at all smoothing thresholds whereas GRE-EPI

only demonstrated significant visual activity with 8 mm smoothing, with accompanying

statistics table shown in Table 7.3.

Figure 7.5: Group level activity maps for different smoothing thresholds for the autocorrelation functions
AR(1) (top) and FAST (bottom) for single-echo Looping Star. GRE-EPI only demonstrated significant
activity at 8 mm smoothing, producing the same result for both autocorrelation methods as seen in
Section 7.2. Images produced using NiLearn (The Nilearn developers, 2021). Each image was thresholded
at the appropriate cluster extent for significance, and each image is displayed at T-statistic threshold T
= 2.
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Table 7.2: Cluster-level statistical results for group level activity during visual checkerboard paradigm
at each smoothing threshold using AR(1) autocorrelation correction.

Acquisition Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Single-echo

Looping Star,

Smooth 0mm,

AR(1)

2 -94 -20 N/A 14.88 < 10−3 ** 272

Single-echo

Looping Star,

Smooth 4mm,

AR(1)

30 -94 6 18 (R) 15.16 < 10−3 ** 636

Single-echo

Looping Star,

Smooth 8mm,

AR(1)

32 -92 0 18 (R) 15.30 < 10−3 ** 2007

Single-echo

GRE-EPI,

Smooth 0mm,

AR(1)

48 20 48 N/A 10.67 0.528 8

Single-echo

GRE-EPI,

Smooth 4mm,

AR(1)

-24 -34 -10 36 (L) 13.09 0.972 11

Single-echo

GRE-EPI,

Smooth 8mm,

AR(1)

26 -60 -24 N/A 8.88 0.028 * 212

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas
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Table 7.3: Cluster-level statistical results for group level activity during visual checkerboard paradigm
at each smoothing threshold using FAST autocorrelation correction.

Acquisition Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Single-echo

Looping Star,

Smooth 0mm,

FAST

2 -94 -20 N/A 14.61 < 10−3 ** 277

Single-echo

Looping Star,

Smooth 4mm,

FAST

30 -94 4 18 (R) 15.07 < 10−3 ** 616

Single-echo

Looping Star,

Smooth 8mm,

FAST

-10 -88 -20 N/A 13.76 < 10−3 ** 1935

Single-echo

GRE-EPI,

Smooth 0mm,

FAST

48 20 48 N/A 10.67 0.528 8

Single-echo

GRE-EPI,

Smooth 4mm,

FAST

-24 -34 -10 36 (L) 13.09 0.972 11

Single-echo

GRE-EPI,

Smooth 8mm,

FAST

26 -60 -24 N/A 8.88 0.028 * 212

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas
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The differences between autocorrelation functions for Looping Star were explored in

more depth at each smoothing level using correlation scatter and Bland-Altman plots

(Figures 7.6 - 7.8). Only GRE-EPI at 8 mm smoothing presented significant results; hence

Bland-Altman analysis was only performed on this GRE-EPI dataset. No differences were

found between the group level maps with different applied autocorrelation functions for

the 8 mm smoothed GRE-EPI dataset. High Pearson correlation coefficients were found

across Looping Star smoothing levels indicating good agreement between the T-maps.

The Bland-Altman plots demonstrated that the majority of the data fell within the

limits of agreement for all Looping Star smoothing levels. The reproducibility coefficient

decreased and the coefficient of variation increased with increasing smoothing levels.

Given that the differences were clustered around zero, and using the range of Bland-

Altman differences found between fMRI analysis software methods by Bowring et al.

(2019), it was determined that these differences between autocorrelation functions are

not substantial.

Figure 7.6: (left) Correlation scatter and (right) Bland-Altman plots comparing autocorrelation functions
AR(1) and FAST for 0 mm FWHM smoothing. SSE = sum of squared error, r = Pearson correlation
r-value, p = Pearson correlation p-value, RPCnp = non-parametric reproducibility coefficient, LOA (%)
= limits of agreement, CV = coefficient of variation, KS p-value = Kolmogorov-Smirnov test p-value
(Klein, 2021). The KS p-value indicated that the data is normally distributed.
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Figure 7.7: (left) Correlation scatter and (right) Bland-Altman plots comparing autocorrelation functions
AR(1) and FAST for 4 mm FWHM smoothing. SSE = sum of squared error, r = Pearson correlation
r-value, p = Pearson correlation p-value, RPCnp = non-parametric reproducibility coefficient, LOA (%)
= limits of agreement, CV = coefficient of variation, KS p-value = Kolmogorov-Smirnov test p-value
(Klein, 2021). The KS p-value indicated that the data is not normally distributed.

Figure 7.8: (left) Correlation scatter and (right) Bland-Altman plots comparing autocorrelation functions
AR(1) and FAST for 8 mm FWHM smoothing. SSE = sum of squared error, r = Pearson correlation
r-value, p = Pearson correlation p-value, RPCnp = non-parametric reproducibility coefficient, LOA (%)
= limits of agreement, CV = coefficient of variation, KS p-value = Kolmogorov-Smirnov test p-value
(Klein, 2021). The KS p-value indicated that the data is not normally distributed.

The average power spectra across the whole brain and all participants of the residuals

after model estimation can be seen in Figure 7.9. This was only computed for the 8

mm smoothing levels of GRE-EPI and Looping Star as this was the only threshold at

which GRE-EPI demonstrated significance. The expected pattern should be flat if all

autocorrelation has been removed (Olszowy et al., 2019). It can be seen that Looping Star

produced a flatter spectrum than GRE-EPI but both contained fluctuations, indicating

that both would benefit from more accurate autocorrelation models.
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Figure 7.9: Power spectra (against frequency in Hz) of the residuals derived from the whole brain,
averaged across participants of Looping Star and GRE-EPI for each autocorrelation function at 8 mm
smoothing (Olszowy et al., 2019).

7.2.2.4 Discussion

Looping Star produces significant activity even in the absence of spatial smoothing

in pre-processing, whereas GRE-EPI did not. This indicates that the Looping Star

data is inherently smooth and therefore may already meet the requirements of random

field theory (Nichols, 2012; Worsley et al., 1992). Kasper et al. (2014) showed that

smoothing of 2D EPI data in k-space also improved the statistical sensitivity, supporting

that inherent smoothing of Looping Star could be one of the mechanisms behind the

functional sensitivity observed.

No differences were found between using the AR(1) or FAST autocorrelation models

for the 8 mm smoothed GRE-EPI. However, for Looping Star, though the differences

were small (based on the range of differences found in a previous study of conventional

fMRI (Bowring et al., 2019)), differences were found between the T-maps produced

using the two autocorrelation functions at all smoothing levels. The differences also

increased for higher smoothing thresholds, indicated by the larger coefficient of variance

and lower reproducibility coefficient with increasing smoothing. Furthermore, the FAST

autocorrelation function produced smaller cluster sizes and lower T-statistics for all
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smoothing thresholds relative to AR(1).

This could suggest that a more accurate autocorrelation model is required for Looping Star.

On the other hand, neither Looping Star nor GRE-EPI produced completely pre-whitened

data according to the average power spectra of the residuals. Future work should explore

the autocorrelation functions used across analysis software to further characterise the

temporal autocorrelation requirements of Looping Star.

7.2.3 Power Calculation for Visual Checkerboard

7.2.3.1 Background

Statistical power is defined as the probability of rejecting the null hypothesis when the

alternative is true (Mumford, 2012). Power calculations can be helpful for determining

the sample size required for a desired effect in future studies. Pilot data can be used to

determine the power, using them as provision of a-priori knowledge. Most fMRI studies

will aim for approximately 80 % power to allow for smaller sample sizes to be used for

cost-efficiency (Mumford, 2012). This study provides a power calculation for GRE-EPI

and Looping Star using the visual study presented in this chapter (Section 7.2). However,

it must be acknowledged that power calculations are heavily dependent on the paradigm

employed (Cremers et al., 2017).

7.2.3.2 Methods

A map of the effect size across voxels was calculated for each modality from the results

of Section 7.2 by averaging the beta maps for the visual activation across subjects and

dividing by their standard deviation across subjects (Geuter et al., 2018; Jackson et al.,

2020). The effect size was then averaged across a 10 mm radius spherical ROI centred

at x, y, z = 0, -86, 0 mm in MNI space. These coordinates were selected based on a
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functional ROI derived from Neurosynth (Yarkoni, 2011), for a meta-analysis for the term

"visual" thresholded at z-score = 7.92 (Figure 7.10). The average effect size from this

ROI was then inputted into G*Power (Faul et al., 2007), for 8 subjects per modality using

the post hoc power analysis for the difference between two dependent means (matched

pairs) and an α = 0.05.

Figure 7.10: 10 mm spherical ROI employed in the visual cortex

7.2.3.3 Results

Figure 7.11 demonstrates the effect size map for both modalities. It can be seen that

the spatial extent of higher effect sizes was larger for GRE-EPI than Looping Star.

Figure 7.11: Effect size map for GRE-EPI and Looping Star in visual task

Table 7.4 shows the results of the effect size and power in the 10 mm spherical ROI

centred on the visual cortex (Figure 7.10). Looping Star had lower power in the ROI,

compared with GRE-EPI.
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Table 7.4: Power calculation for eight subjects using average effect size from ROI for each modality,
computed in G*Power (Faul et al., 2007).

Acquisition Effect Size in

ROI

Power in ROI

(%)

Single-echo Looping Star 0.3666 23.9

Single-echo GRE-EPI 1.0901 86.9

7.2.3.4 Discussion

Looping Star produces lower statistical power in the chosen ROI than GRE-EPI for

eight participants, which was expected given its lower tSNR. This suggests that to

obtain comparable functional sensitivity to GRE-EPI, across either different conditions or

different cohorts, more participants would be necessary for a study employing Looping Star.

Future studies may benefit from these results for a-priori power calculations, although

the sensitivity to the paradigm will also play a part given that this calculation originated

from the beta parameters. Other methods of calculating power can also be explored in

the future (Durnez et al., 2016; Joyce and Hayasaka, 2012; Ostwald et al., 2019).

7.3 Auditory Speech-processing Paradigm

7.3.1 Characterising the Functional Sensitivity of Looping

Star

7.3.1.1 Background

Looping Star demonstrated sensitivity to significant functional activity during a visual

paradigm, presenting clear temporal correlations to the task. To thoroughly validate its

functional sensitivity, an auditory paradigm was employed and a direct comparison of the
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percentage signal change of the BOLD response detected by Looping Star with that of

GRE-EPI was computed. Auditory paradigms are crucial for evaluating any benefits of

acoustic noise reduction for studying sound processing (see Section 2.4). This work was

presented at the ISMRM Annual Meeting 2019 (Damestani et al., 2019b).

7.3.1.2 Methods

Eight healthy participants (two female; mean age = 35 ± 12 years; two left-handed;

three native English speakers) were scanned whilst engaged in an auditory paradigm.

English words were played through MR-compatible headphones during blocks of 24-second

durations. The speed at which the words were played was different for each block (30, 60,

90 and 120 words per minute), and the order of the block was randomised (i.e. the speed

did not steadily increase or decrease with consecutive blocks, but randomly changed).

A fixation cross was displayed during the paradigm and participants were asked to keep

their eyes open. Rest blocks of 24-second durations involved a fixation cross with no

auditory stimulation (Figure 7.12). The paradigm set-up is described in Section 5.3.

Figure 7.12: Auditory speech-processing paradigm, wpm = words per minute. The screen visually
presented a fixation cross throughout the paradigm, the speech bubbles visualised here indicate the
words being spoken.

The following acquisition parameters were used, closely matched between modalities

given the practicalities of Looping Star (Section 3.2), using a 12-channel receive-only

head coil (Section 5.2). Three echo GRE-EPI involved the parameters TE = 17 ms, 34

ms, 51 ms, TR = 2.1 s, 180 volumes, matrix size = 64 x 64 x 32, slice thickness = 3

mm, number of slices = 32, slice gap = 1 mm, FOV = 24 cm, FA = 80◦.

225



FID + two echo Looping Star involved the parameters TE = 0 ms, 17.4 ms, 34.8 ms,

TR = 1.87 s, number of volumes = 180, matrix size = 64 x 64 x 64, resolution = 3 mm,

FOV = 19.2 cm, 32 spokes per echo, 96 spokes per segment, 960 spokes per volume, FA

= 3◦). The number of volumes was set to be equivalent between acquisitions, despite

the different TRs. A structural IR-SPGR image was also acquired (TE = 3.016 ms, TR

= 7.312 s, TI = 400 ms, matrix size = 256 x 256, in-plane resolution = 1.055 mm, 196

slices, FOV = 27 cm). Image reconstruction was performed as described in Section 5.2.

The acoustic noise level was measured as described in Section 5.5 for approximately

one minute of scanning with each modality. To allow the longitudinal magnetisation

component to reach the steady-state, the first ten volumes were removed from the

Looping Star acquisition (see Section 3.5) and four volumes were removed from GRE-EPI.

The acquisitions were randomised between participants to avoid bias from order effects.

A standard SPM-12 (FIL Methods Group, 2020) pipeline was used for single-echo pre-

processing, including slice-timing correction for GRE-EPI, segmentation and bias field

correction of the T1-weighted image, realignment, co-registration with the T1 image,

spatial normalisation to MNI space with images saved at 2 mm spatial resolution, and

smoothing with an 8 mm FWHM kernel.

For optimal echo combination, high frequency artefacts were removed (i.e. despiking).

Optimal echo combination was performed after the realignment step for each echo within

the multi-echo independent component analysis (ME-ICA) toolbox (Kundu et al., 2012),

excluding Principal Component Analysis (PCA) de-noising and filtering. The optimal

combination method used was that of T2* weighting Posse et al. (1999). All three

echoes for GRE-EPI and the FID + 2 echoes for Looping Star were combined using

z-concatenation with AFNI (Cox, 1996), followed by employing the “opt _com” command

from “tedana.py” (Kundu et al., 2012).

Co-registration of the optimally combined data with the T1 image was then performed,

followed by spatial normalisation to MNI space with images saved at 2 mm spatial

resolution, and 8 mm FWHM spatial smoothing. The motion regressors were extracted
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from the FID for Looping Star and the first echo of GRE-EPI.

Fixed-effects and group-level fMRI analyses were also conducted with SPM-12. The main

effect of sound was evaluated through modelling the auditory blocks. The main effect of

frequency of words spoken (or word frequency) was explored by modelling the parametric

modulator with its first-order derivative. This model was used as it was expected that the

required activation would increase with speed, though the volume of the words remains

the same.

A 128 s high-pass filter was also included in the analysis to remve low frequency drifts,

and the standard canonical double-gamma haemodynamic response function was used.

The AR(1) autocorrelation correction function was also employed for ReML parameter

estimation (Poldrack et al., 2011). Cluster-level inference using a primary uncorrected

cluster-forming threshold of p < 0.001. (Woo et al., 2014; Worsley et al., 1996) was

employed. Only clusters surviving family-wise error correction at the cluster-level (i.e.,

pFWEc < 0.05) were deemed significant.

A spherical ROI was produced with 10 mm radius for each subject using MarsBaR (Brett,

2016; Brett et al., 2002), centred on the cluster with highest significance (i.e. highest

T-statistic and pFWEc < 0.05) for each modality. Where this cluster was outside the

auditory cortex, the local maximum of the T-statistic within the auditory cortex was

selected. Percentage signal change was calculated within the ROI for each participant

(Section 5.7.2). The normalised time series (i.e. scaling the signal to have a mean = 0

and standard deviation = 1) for this ROI was then plotted to evaluate the correlation of

the detected BOLD response with the task.

To further quantify the differences between modalities, a paired T-test between the

contrast maps for both the contrast of the main effect of sound and the main effect

of word frequency was computed. Cluster-level inference using a primary uncorrected

cluster-forming threshold of p < 0.001 (Woo et al., 2014; Worsley et al., 1996) was

employed. Only clusters surviving family-wise error correction at the cluster-level (i.e.,

pFWEc < 0.05) were deemed significant.
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7.3.1.3 Results

Firstly, acoustic noise (LAeq) was measured at 74.3dB (A) for Looping Star and 108

dB(A) for GRE-EPI. Figure 7.13 shows the tSNR of both modalities. The second echo

of the Looping Star acquisition had much lower tSNR relative to GRE-EPI, though the

tSNR was boosted by optimal-echo combination.

Figure 7.13: tSNR measures for GRE-EPI and Looping Star acquisitions at same echo times and
optimally combined, displayed in FSL (Jenkinson et al., 2012).

The group-level activity maps for the main effect of sound (Figure 7.14) show that

GRE-EPI produced significant bilateral activity for equivalent echoes and echo combined

data. On the other hand, Looping Star only produced significant bilateral activity for the

second echo and was otherwise significantly left-lateralised. Upon further investigation,

this did not appear to be related to the tSNR. The accompanying statistical results are

shown in Table 7.5.
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Table 7.5: Cluster-level statistical results for group level activity auditory paradigm for main effect of
sound

Acquisition Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Looping

Star, Echo 1

-40 -24 6 41 (L) 18.94 < 10−3 ** 1034

Looping

Star, Echo 2

58 -34 -12 21 (R) 20.36 0.001 285

Looping

Star, All

Comb

-36 -22 0 13 (L) 9.54 < 10−3 ** 525

GRE-EPI,

Echo 1

62 -10 -6 22 (R) 28.09 < 10−3 ** 1998

GRE-EPI,

Echo 2

44 -32 6 22 (R) 19.47 < 10−3 ** 1643

GRE-EPI,

All Comb

-66 -34 12 22 (L) 17.86 < 10−3 ** 1049

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas

The group level activity maps for the effect of parametric modulation for the speed at

which words were spoken showed that only Looping Star produced statistically significant

activity (Figure 7.15), which was once again left-lateralised, with accompanying statistics

shown in Table 7.6.

230



Figure 7.15: Group level activity maps for each acquisition at the same echo times, as well as for
the echo combined datasets, for the main effect of word frequency. Only Looping Star demonstrated
significant activity, hence GRE-EPI images are not shown. Images produced using NiLearn (The Nilearn
developers, 2021). T-statistics were thresholded at T = 2, and each image was thresholded at the
appropriate cluster extent to produce only the statistically significant clusters.
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Table 7.6: Cluster-level statistical results for group level activity auditory paradigm for main effect of
parametric modulation for word frequency

Acquisition Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Looping

Star, Echo 1

-54 -28 8 41 (L) 11.23 < 10−3 ** 368

Looping

Star, Echo 2

-62 -24 -6 21 (L) 10.55 < 10−3 ** 523

Looping

Star, All

Comb

-48 -20 -2 22 (L) 11.03 < 10−3 ** 518

GRE-EPI,

Echo 1

-54 -8 -6 22 (L) 7.64 0.352 95

GRE-EPI,

Echo 2

-52 -12 4 41 (L) 7.02 0.402 86

GRE-EPI,

All Comb

-52 -14 6 41 (L) 5.51 0.896 25

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas

The normalised time series extracted from the 10 mm radius spherical ROI for each

participant and modality, for the optimally combined echo datasets, are shown in Figure

7.16. For both acquisitions there was high signal noise present for some participants,

particularly for Looping Star, though generally a clear task-correlated pattern could be

seen.
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The percentage signal change on average was greater for optimally-combined GRE-EPI

relative to optimally-combined Looping Star, demonstrated by the violin plots in Figure

7.17. Some participants produced similar percentage signal change for Looping Star with

those in GRE-EPI.

Figure 7.17: Violin plot for percentage signal change in 10 mm spherical ROI for each modality.
Violinplot tool from github was used (Bechtold, 2016).

No significant differences were found using the paired T-test for the contrast of the

main effect of word frequency, though GRE-EPI demonstrated significantly higher activity

bilaterally in the auditory cortex for the main effect of sound (Table 7.7).

Table 7.7: Paired T-test for main effect of sound contrast between modalities

Comparison Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

GRE-EPI > LS -60 -20 10 1 (L) 13.40 < 10−3 ** 460

54 -14 8 41 (R) 11.49 < 10−3 ** 488

234



* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas

7.3.1.4 Discussion

GRE-EPI had a higher average percentage signal change, consistent with its higher tSNR,

although there was substantial overlap with the percentage signal change identified for

Looping Star for some participants. It was therefore determined that Looping Star and

GRE-EPI had comparable functional sensitivity to the main effect of sound. A paired t-test

showed that GRE-EPI produced significantly greater activity bilaterally relative to Looping

Star for the main effect of sound. This could be due in part to an interaction effect with

the background acoustic noise of scanning, as the background acoustic noise has been

shown to affect activation in the auditory cortex (Gaab et al., 2007a,b; Ranaweera et al.,

2016).

Interestingly, only Looping Star could identify significant auditory activity to the speed at

which words were spoken. Importing the coordinates of the region identified as statistically

significant into Neurosynth (Yarkoni, 2011) for the second echo of Looping Star, the

peak coordinate of the most significant cluster was associated with the term "speech" for

a meta-analysis with a z-score = 7.48 and "spoken" for a meta-analysis with z-score =

10.10. For the peak coordinate of the most significant cluster in the optimally combined

Looping Star data, the term "speech" was affiliated for a meta-analysis with a z-score =

7.10.

There was also clear left lateralisation for Looping Star for the main effect of sound

and the main effect of word frequency. The latter was unsurprising given the former

and this was not produced by any tSNR assymetry. This lateralisation is characteristic

of speech-processing (Boatman et al., 1995; Hickok and Poeppel, 2007; Narain et al.,

2003), serving as a preliminary indicator that Looping Star may be more appropriate

to investigate auditory processing. This is since it could disentangle effects from the

background acoustic scanner noise that may mask the response of interest, driven by the
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presented stimulus. De-noising strategies and investigations with larger cohorts should

be explored to improve the specificity of these results.

7.3.2 Impact of Spatial Smoothing on Looping Star

7.3.2.1 Background

It was shown that Looping Star produces good functional sensitivity to an auditory speech-

processing paradigm (Section 7.3), however Looping Star has demonstrated inherent

smoothing characteristics that affect the results. The impact of spatial smoothing

was therefore evaluated to further validate the functional sensitivity to auditory speech-

processing.

7.3.2.2 Methods

The same acquisition, analysis and pre-processing was applied as in Section 7.3, however

different spatial smoothing levels were applied to the optimally combined data. These

included smoothing thresholds of 0 mm and 4 mm FWHM to evaluate the smoothness

of the Looping Star data (e.g. Section 7.2). Only the group level activity maps were

evaluated for the main effect of sound and the main effect of word frequency, analysed

as described in the previous section.

7.3.2.3 Results

Both Looping Star and GRE-EPI identified statistically significant activity across all

smoothing thresholds for the main effect of sound (Figure 7.18 and Table 7.8). This was

surprising as GRE-EPI previously did not demonstrate statistically significant activity at

this smoothing threshold for the visual paradigm (Section 7.2). However, this indicates
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the strength of the auditory response in GRE-EPI, which could be amplified by interactions

with the background acoustic noise.

Figure 7.18: Main effect of sound for GRE-EPI and LS with all echoes + FID combined with 0mm
and 4mm smoothing. Images produced using NiLearn (The Nilearn developers, 2021). The images
were thresholded at the appropriate cluster-extent threshold to demonstrate only significant voxels. The
T-statistics shown are thresholded at T = 2.

Table 7.8: Cluster-level statistical results of group level activity auditory paradigm for main effect of
sound at each smoothing threshold. Optimally-combined echoes were employed.

Acquisition

and Smooth-

ing

Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Looping Star, 0

mm

-36 -24 2 N/A 15.29 < 10−3 ** 91

Looping Star, 4

mm

-36 -24 2 N/A 14.70 < 10−3 ** 222

GRE-EPI, 0 mm -62 -10 4 41 (L) 13.09 < 10−3 ** 100

GRE-EPI, 4 mm 66 -28 10 22 (R) 15.03 < 10−3 ** 624

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas
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For the main effect of word frequency, both smoothing thresholds of Looping Star

identified significant auditory activity, whereas only GRE-EPI without any smoothing

identified a significant activity pattern, localised to the auditory cortex. Once again, this

was surprising as significant activity was not identified at 8 mm smoothing, though it

could indicate that a very spatially specific response is identifiable with GRE-EPI that is

masked upon smoothing (Mikl et al., 2008).

Figure 7.19: Main effect of word frequency for LS with all echoes + FID combined with 0 mm and 4
mm smoothing. Images produced using NiLearn (The Nilearn developers, 2021). Both images were
thresholded at appropriate extent threshold for significant clusters only. Thresholded at T = 2.

Table 7.9: Cluster-level statistical results for group level activity auditory paradigm for main effect of
word frequency at each smoothing threshold, for all echoes combined.

Acquisition

and Smooth-

ing

Peak MNI

coordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Looping Star, 0

mm

-52 -24 0 22 (L) 9.73 < 10−3 ** 86

Looping Star, 4

mm

-42 -20 0 41 (L) 10.47 < 10−3 ** 295

GRE-EPI, 0 mm -58 -16 10 1 (L) 7.61 0.006 * 31

GRE-EPI, 4 mm -58 -16 10 1 (L) 10.14 0.086 53

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Areas
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7.3.2.4 Discussion

Significant auditory activity for both auditory effect contrasts was found in Looping Star

across smoothing thresholds, further supporting its inherent smoothing. Curiously, this

was also true for the GRE-EPI acquisition without any smoothing, though the identified

cluster was smaller and produced a lower T-statistic. The significance of this response

was lost at higher smoothing thresholds. This was also seen by Mikl et al. (2008) for

the visual oddball task, who suggested that no spatial smoothing should be used if very

accurate spatial localisation is required at the expense of functional sensitivity. This

could suggest that a very specifically localised response is detectable with GRE-EPI, but

the sensitivity will be diminished at higher smoothing thresholds. On the other hand,

it remains difficult to disentangle this activity from interactions with the background

acoustic noise, therefore further study is required.

7.4 Chapter Discussion

The studies in this chapter sought to validate the use of Looping Star in vivo, compared

with GRE-EPI. For the first study, the robust visual checkerboard paradigm was employed

and it was found that Looping Star produced good functional sensitivity relative to

GRE-EPI. The first indicators towards benefits of the inherent smoothing of Looping Star

were found, with even a 0 mm FWHM smoothing kernel producing significant results.

Small differences in the group level activity maps were identified when applying the FAST

versus the AR(1) autocorrelation correction functions, though further study is required of

the temporal autocorrelation requirements of Looping Star. Additionally, Looping Star

demonstrated lower power compared with GRE-EPI, which was expected, therefore future

studies may need higher sample sizes.

The auditory paradigm study results provided the first indicator towards Looping Star

being able to distinguish auditory processing more specifically than GRE-EPI, through the

removal of acoustic noise. This was shown by left-lateralised significant auditory activity
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that was identified only for Looping Star for sensitivity to the speed at which words were

spoken, despite the tSNR being substantially lower for Looping Star relative to GRE-EPI.

This was also independent of any heterogeneities in tSNR. Though a left-lateralised active

cluster for GRE-EPI was also identified with no smoothing that disappears upon higher

smoothing, it was not possible to disentangle the strength of this effect from interactions

with the background acoustic noise. Furthermore, this result would not be valid under

the requirements of random field theory. This highlights a key benefit to Looping Star.
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Chapter 8

Chapter 8

In vivo Characterisation of

Looping Star: Resting-State
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Summary

In this chapter:

• Two core resting-state networks are selected for investigation with multi-echo

Looping Star

• The functional sensitivity of Looping Star to these two core resting-state networks

is compared with multi-echo GRE-EPI.

• Signal characteristics of multi-echo Looping Star in vivo are investigated using

independent component analysis.

• The impact of spatial smoothing and global signal regression on Looping Star

resting-state network identification is evaluated.

Overview

In vivo investigations are continued by exploring the capabilities of multi-echo Looping

Star for resting-state network identification using seed-based time series correlations, in

comparison with multi-echo GRE-EPI. The impact of spatial smoothing and global signal

regression on the identification of resting-state networks is characterised for both Looping

Star and GRE-EPI. Finally, the independent components identified for a single subject

at rest and at group level are examined to explore if these are spatially and temporally

consistent between GRE-EPI and Looping Star.
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8.1 Chapter Introduction

Though task stimuli are useful for identifying functional sensitivity via the BOLD response,

resting-state fMRI (i.e. in the absence of external stimuli) can provide further insight into

the spectral content of the MR signal. The core resting-state networks are well established,

with resting-state oscillations typically occurring between 0.01 - 0.1 Hz (Damoiseaux et al.,

2006; Fox and Raichle, 2007; Raichle et al., 2001). They are measured by assuming that

separate regions with linearly correlated time series are functionally connected (Fox and

Raichle, 2007; Friston et al., 1994; Hlinka et al., 2011). However, in order to accurately

identify the resting-state networks, sources of noise outside the resting-state frequency

range must be removed or filtered (Murphy et al., 2013).

Denoising of resting-state fMRI data has been extensively reviewed (De Blasi et al.,

2020; Dipasquale et al., 2017; Kundu et al., 2017). One method of removing noise from

resting-state fMRI data is global signal regression, whereby an average signal either from

a region or from the whole brain is regressed from all voxels. However, this method

is widely debated given that it could lead to loss of information from the signal (Liu

et al., 2017b). Alternatively, ICA separates spatially independent time courses from the

MR signal (Calhoun et al., 2001a, 2004; McKeown et al., 1998), allowing investigation

of collective spatial and temporal dynamics. Upon identification of these components,

they can be used to de-noise the MR signal to extract only resting-state correlations of

interest.

On the other hand, signals typically identified as noise in resting-state data may be

used to better understand underlying physiological processes occurring at rest (Chen

et al., 2020a; Liu, 2016). The origins of signal noise in resting-state fMRI can vary from

cerebral physiology to motion or non-neuronal sources, and can vary across participants

(Gonzalez-Castillo et al., 2021; Griffanti et al., 2017; Tong et al., 2019). Group-level ICA

can be used to identify consistent components across participants, although inferences

are difficult to obtain given that each subject will have a different time course and spatial

map across components (Erhardt et al., 2011). Temporal concatenation of the data is
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one of the most common techniques for group ICA (Calhoun et al., 2001b, 2009) which

involves performing one ICA that assumes common spatial maps for different temporal

signal characteristics across participants. This is used if the temporal variability is larger

than the spatial variability across subjects, which tends to be the case for fMRI data

(Erhardt et al., 2011).

Furthermore, having shown the robust functional sensitivity of Looping Star to block

design paradigms, Looping Star also presents an interesting new avenue for resting-

state fMRI as studies have shown that acoustic noise can affect resting-state functional

sensitivity (Andoh et al., 2017; Dionisio-Parra et al., 2020). This chapter therefore aims to

better understand the signal and noise characteristics of Looping Star using resting-state

fMRI. Two core resting-state networks are selected for investigation with seed-based time

series correlation analysis, including and excluding global signal regression, and their

appearance when identified with Looping Star is compared with GRE-EPI. Independent

component analysis is also used at single subject and group level to investigate the spatial

and temporal behaviour of resting-state components between modalities. The data used

for this chapter was collected using a 3 T MR750 GE Healthcare scanner based at the

Centre for Neuroimaging Sciences (Section 5.2).

8.2 Resting-State with Looping Star

8.2.1 Connectivity Analysis

8.2.1.1 Background

To investigate the spectral characteristics of Looping Star during rest, it is important to

validate its functional sensitivity to the core resting-state networks. Multi-echo Looping

Star for resting-state fMRI, with a standard pre-processing pipeline, was evaluated using

seed-based correlation analysis. The seeds employed in analysis were affiliated with regions
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that are part of two core resting-state networks. The resting state networks selected were

the default mode network and the auditory network, as these should be identifiable by

both Looping Star and GRE-EPI based on the literature (Andoh et al., 2017; Damoiseaux

et al., 2006; Dionisio-Parra et al., 2020; Gaab et al., 2008; Gonzalez-Castillo et al., 2016).

A comparison with multi-echo GRE-EPI was also computed. It was expected that

differences between modalities would be difficult to disentangle from effects of acoustic

noise from the inherent functional sensitivity of Looping Star but that both modalities

should identify correlated activity affiliated with the auditory and default mode networks.

Parts of this work were presented at the Organisation for Human Brain Mapping (OHBM)

Annual Meeting 2019 (Damestani et al., 2019a).

8.2.1.2 Methods

Eight healthy participants were recruited (6 male; mean age = 35 ± 12 years; 2 left-

handed) for scanning during rest. The participants were asked to keep their eyes open

and focused on a fixation cross centred on a screen, given that resting-state networks

can differ between eyes open and closed conditions (Patriat et al., 2013). For full details

of the paradigm set-up, see Section 5.3. A 12-channel receive-only head coil was used

(Section 5.2).

The acquisition parameters for multi-echo GRE-EPI included: TE = 17 ms, 34 ms, 51

ms, TR = 2.1 s, 184 volumes, matrix size = 64 x 64 x 32, slice thickness = 3 mm, 32

slices, slice gap = 1 mm, FOV = 24 cm, FA = 80◦.

For FID + 2 echo (multi-echo) Looping Star, the acquisition parameters were: TE = 0

ms, 17.4 ms, 34.8 ms, TR = 1.87 s, number of volumes = 180, matrix size = 64 x 64 x

64, isotropic resolution = 3 mm, FOV = 19.2 cm, 32 spokes per echo, 96 spokes per

segment, 960 spokes per volume, FA = 3 ◦.

An IR-SPGR image (TE = 3.016 ms, TR = 7.312 s, TI = 400 ms, matrix size = 256
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x 256, in-plane resolution = 1.055 mm, FOV = 27 cm, FA = 11◦, 196 slices) was

also acquired for spatial normalisation and co-registration. Image reconstruction was

performed as described in Section 5.2.

The first ten volumes from the Looping Star series and four volumes from GRE-EPI were

removed to ensure the longitudinal magnetisation had reached steady-state (Section 3.5).

Scan order was randomised between participants. The acquisition parameters were the

same as those from Section 7.3, therefore the acoustic noise measures were identical.

For pre-processing of both Looping Star and GRE-EPI, optimal echo combination involved

T2*-weighting of all echoes (including the FID for Looping Star) after realignment (Posse

et al., 1999). This was performed using z-concatenation of the FID and echoes with

AFNI (Cox, 1996), followed by employing the “opt _com” command from “tedana.py”

(Kundu et al., 2012).

An SPM-12 (FIL Methods Group, 2020) pre-processing pipeline was then used on the

optimally combined data, including bias field correction and segmentation of the T1 image,

co-registration of the optimally combined data with the T1 image, spatial normalisation

to MNI space with images saved at 2 mm spatial resolution, and 8 mm FWHM spatial

smoothing.

The pre-processed data was imported into the CONN toolbox (Whitfield-Gabrieli and

Nieto-Castanon, 2012). In the denoising step in CONN, only linear detrending was

used and the regressor inputs were the motion regressors and their first-order temporal

derivatives plus the effect of rest. The motion regressors were extracted from the FID for

Looping Star and the first echo of GRE-EPI, and the data were bandpass filtered after

regression between 0.01 – 0.1 Hz and no de-spiking was applied.

The extent of participant movement was evaluated using the motion regressors, derived

from the FID for Looping Star and the first echo of GRE-EPI. The framewise displacement

(FWD) was computed from the regressors, which produces a time series of the estimated

movement as seen in Equation (8.1) (Power et al., 2012).
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FWD(t) =
∑
|d(t− 1)− d(t)|+ 50 · (π/180) ·

∑
|r(t− 1)− r(t)| (8.1)

where FWD(t) is the framewise displacement at each time point t, d is the translation

distances in the x, y, z directions and r is the rotation angles for yaw, pitch and roll

for the surface of a sphere with radius 50 mm (considered as an average human head

size). The root mean square (RMS) displacement for each direction was also computed

for each participant. The average and the standard deviation across participants was

then computed. The threshold for high motion for this study was determined as 0.3 mm,

consistent with Power et al. (2012).

In the first level analysis in CONN, bivariate correlations were used. Both seed-to-voxel

and ROI-to-ROI analyses were performed. For seed-to-voxel analysis, parametric statistics

were employed (Worsley et al., 1996), with a two-sided uncorrected cluster-forming

threshold of p < 0.001 (Woo et al., 2014; Worsley et al., 1996). Only clusters surviving

cluster-level p < 0.05 were deemed significant, with the cluster-size p-FDR corrected.

The seed-based connectivity maps were evaluated from a seed placed in the right side of

Heschl’s gyrus, which forms part of the auditory resting-state network, and the posterior

cingulate, which is part of the default mode network (Damoiseaux et al., 2006). To

directly compare the identified networks linked to these seeds between modalities, the

group level correlation maps and correlation T-maps were subtracted from one another.

ROI-to-ROI analysis was computed in CONN between 25 atlas regions (described in Table

8.1), selected based on regions affiliated with the auditory and default mode network

(Andoh et al., 2017; Damoiseaux et al., 2006; Davies et al., 2014). The connectivity

wheels produced in CONN are thresholded for cluster-level inference using parametric

multivariate statistics (Jafri et al., 2008), with a cluster threshold of p < 0.05 cluster level

p-FDR corrected (MVPA omnibus test), and connection threshold p < 0.05 p-uncorrected.

Correlation matrix plots for the ROI-to-ROI analysis were produced using the ’conn tools’

toolbox (Vallat, 2017). h represents the beta values between ROIs, which corresponds to

the average Fischer transformed pairwise correlations of specified contrast, F represents
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the accompanying statistical values, and p represents the one-tailed p-values (Vallat,

2017).

Table 8.1: Key for the 25 atlas regions selected for ROI-to-ROI analysis in CONN

Acronym Definition Acronym Definition

AC Anterior Cingulate IFG oper l Inferior Frontal Gyrus, Op-

ercular Left

PC Posterior Cingulate IFG oper r Inferior Frontal Gyrus, Op-

ercular Right

SFG l Superior Frontal Gyrus

Left

IFG tri l Inferior Frontal Gyrus, Tri-

angular Left

SFG r Superior Frontal Gyrus

Right

IFG tri r Inferior Frontal Gyrus, Tri-

angular Right

LG l Lingual Gyrus Left pSTG r Posterior Superior Tempo-

ral Gyrus Right

LG r Lingual Gyrus Right aSTG r Anterior Superior Tempo-

ral Gyrus Right

PreCG l Precentral Gyrus Left pSTG l Posterior Superior Tempo-

ral Gyrus Left

PreCG r Precentral Gyrus Right aSTG l Anterior Superior Tempo-

ral Gyrus Left

aSMG r Anterior Supramarginal

Gyrus Right

IC l Insula Cortex Left

aSMG l Anterior Supramarginal

Gyrus Left

IC r Insular Cortex Right

pSMG r Posterior Supramarginal

Gyrus Right

HG r Heschl’s Gyrus Right

pSMG l Posterior Supramarginal

Gyrus Left

HG l Heschl’s Gyrus Left

Med FC Medial Frontal Cortex
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8.2.1.3 Results

As the acquisition parameters were the same as in Section 7.3, the tSNR and acoustic

noise measures were also identical. Figure 8.1 shows that, on average, participants

appeared to move slightly more during GRE-EPI than Looping Star, though no large

movements were detected on average across participants for either modality.

Figure 8.1: Framewise displacement (FWD) and root mean square (RMS) displacement on average
across participants for each modality (Power et al., 2012).

Figure 8.2 demonstrates the regions with functional connectivity affiliated with the

posterior cingulate and right Heschl’s gyrus seeds. GRE-EPI has more spatially extensive

statistically significant posterior cingulate connectivity, and both modalities identify

significant bilateral Heschl’s gyrus connectivity. The accompanying statistics can be seen

in Table 8.2.
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Table 8.2: Statistical results for 8 mm smoothing of resting-state acquisitions for right Heschl’s gyri
(HG (R) ) and posterior cingulate (PC) in CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012).

Acquisition and

ROI

MNI Co-

ordinates

(x,y,z mm)

Brodmann

Area

Peak pFWE Cluster

Size

Looping Star, HG

(R)

48 -16 6 41 (R) < 10−3 ** 5299

-50 -20 6 41 (L) 0.01 2604

GRE-EPI, HG (R) -22 28 -14 41 (L) < 10−3 ** 6427

42 -18 8 41 (R) 0.012 5323

Looping Star, PC -8 -40 34 23 (L) 0.022 * 2661

GRE-EPI, PC -10 -88 -22 N/A < 10−3 ** 87391

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

In the direct comparison of Looping Star and GRE-EPI (Figure 8.3 & Figure 8.4), it

can be seen that GRE-EPI had higher correlation coefficients between the posterior

cingulate and the anterior cingulate regions, indicative of a good functional sensitivity

to the default mode network. Looping Star, on the other hand, demonstrated higher

correlation coefficients between the posterior cingulate and the lingual gyrus. For the

connectivity with Heschl’s gyrus, Looping Star demonstrated higher correlations with the

lateral occipital cortex and middle temporal gyrus relative to GRE-EPI. However, Looping

Star produced higher correlations with the ventricles and white matter, indicating that

additional denoising steps may be required.

251



Fi
gu

re
8.

3:
D
iff
er
en
ce

be
tw
ee
n
m
od

al
iti
es

of
gr
ou

p
le
ve
lc

or
re
la
tio

n
(r
)
m
ap
s.

A
rr
ow

s
in
di
ca
te

re
gi
on

s
as

de
fin

ed
by

th
e
B
ro
dm

an
n
ar
ea
s
in

B
io
Im

ag
e
Su

ite
W
eb

(B
io
Im

ag
e
Su

ite
W
eb
,
20
21
).

252



Fi
gu

re
8.

4:
D
iff
er
en
ce

be
tw
ee
n
m
od

al
iti
es

of
gr
ou

p
le
ve
lT

-s
ta
tis
tic

m
ap
s
of

th
e
co
rr
el
at
io
ns
.
A
rr
ow

s
in
di
ca
te

re
gi
on

s
as

de
fin

ed
by

th
e
B
ro
dm

an
n
ar
ea
s
in

B
io
Im

ag
e
Su

ite
W
eb

(B
io
Im

ag
e
Su

ite
W
eb
,2

02
1)
.

253



Investigating the differences in connectivity further, both the connectivity wheel (Figure

8.5) and connectivity matrices (Figures 8.6 - 8.8) were plotted for 25 atlas regions. It

can be seen in the figures that GRE-EPI has a higher number of statistically significant

connections between atlas regions compared with Looping Star. However, focusing on

the connections with Heschl’s gyri (bottom left of connectivity matrix, Figure 8.6), it can

be seen that Looping Star produces statistically significant correlations with the lingual

gyri, anterior cingulate and posterior cingulate where GRE-EPI does not.

254



Fi
gu

re
8.

5:
C
on

ne
ct
iv
ity

w
he
el

fo
r
ea
ch

m
od

al
ity

ac
ro
ss

25
at
la
s
re
gi
on

s
(k
ey

fo
r
re
gi
on

na
m
es

ca
n
be

se
en

in
Ta

bl
e
8.
1)
.
Li
ne

th
ic
kn

es
s
an
d
co
lo
ur

ar
e
pr
op

or
ti
on

al
to

th
e

st
at
is
tic

s
(i
.e
.
m
or
e
re
d
=

hi
gh

er
co
rr
el
at
io
n,

th
ic
ke
r
=

hi
gh

er
co
rr
el
at
io
n)
.
Im

ag
es

pr
od

uc
ed

us
in
g
C
O
N
N

(W
hi
tfi
el
d-
G
ab
rie

li
an
d
N
ie
to
-C
as
ta
no

n,
20
12
).

255



Fi
gu

re
8.

6:
C
on

ne
ct
iv
ity

m
at
rix

fo
r
ea
ch

m
od

al
ity

ac
ro
ss

25
at
la
s
re
gi
on

s
(k
ey

fo
r
re
gi
on

na
m
es

ca
n
be

se
en

in
Ta

bl
e
8.
1)
.
p
re
pr
es
en
ts

th
e
on

e-
ta
ile
d
p-
va
lu
es
.
Im

ag
es

pr
od

uc
ed

us
in
g
’c
on

n
to
ol
s’
(V

al
la
t,
20
17
).

256



Fi
gu

re
8.

7:
C
on

ne
ct
iv
ity

m
at
rix

fo
r
ea
ch

m
od

al
ity

ac
ro
ss

25
at
la
s
re
gi
on

s
(k
ey

fo
r
re
gi
on

na
m
es

ca
n
be

se
en

in
Ta

bl
e
8.
1)
.
F
re
pr
es
en
ts

th
e
ac
co
m
pa
ny
in
g
st
at
is
tic

al
va
lu
es
.

Im
ag
es

pr
od

uc
ed

us
in
g
’c
on

n
to
ol
s’
(V

al
la
t,
20
17
).

257



Fi
gu

re
8.

8:
C
on

ne
ct
iv
ity

m
at
rix

fo
r
ea
ch

m
od

al
ity

ac
ro
ss

25
at
la
s
re
gi
on

s
(k
ey

fo
r
re
gi
on

na
m
es

ca
n
be

se
en

in
Ta

bl
e
8.
1)
.
h
re
pr
es
en
ts

th
e
be
ta

va
lu
es

be
tw
ee
n
R
O
Is
,
w
hi
ch

co
rr
es
po

nd
s
to

th
e
av
er
ag
e
Fi
sc
he
r
tr
an
sf
or
m
ed

pa
irw

is
e
co
rr
el
at
io
ns

of
sp
ec
ifi
ed

co
nt
ra
st
.
Im

ag
es

pr
od

uc
ed

us
in
g
’c
on

n
to
ol
s’
(V

al
la
t,
20
17
)

258



The accompanying statistics tables for the ROI-to-ROI connectivity with right Heschl’s

gyrus for the top 10 out of the 25 atlas regions are seen in Tables 8.3 - 8.4 for each

modality. GRE-EPI had the highest beta and T-statistic value for the connection between

the left and right Heschl’s gyrus. Looping Star not only had high beta and T-statistics

for this connection pathway but also for the pathway between right Heschl’s gyrus and

the right anterior superior temporal gyrus.

Table 8.3: GRE-EPI group level statistical results for 8 mm smoothing threshold, evaluating connectivity
with right Heschl’s gyri in CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012).

ROI Beta T-statistic pFDR-value

HG (L) 1.26 9.62 < 10−3 **

IFG tri (L) 0.32 6.94 0.002 *

pSTG (R) 0.53 6.82 0.002 *

IC(L) 0.74 6.21 0.002 *

IFG tri (R) 0.43 6.18 0.002 *

pSTG (L) 0.42 5.55 0.003 *

IFG oper (L) 0.34 5.43 0.003 *

MedFC 0.30 5.17 0.004 *

IFG oper (R) 0.34 5.01 0.004 *

IC (r) 0.66 4.47 0.007 *

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001
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Table 8.4: Looping Star group level statistical results for 8 mm smoothing threshold, evaluating
connectivity with right Heschl’s gyri in CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012).

ROI Beta T-statistic pFDR-value

aSTG (R) 0.51 10.71 < 10−3 **

HG (L) 0.60 9.18 < 10−3 **

pSTG (R) 0.64 6.99 0.002 *

PC 0.47 6.17 0.003 *

IC(R) 0.59 5.66 0.003 *

IFG oper (R) 0.23 5.46 0.003 *

pSTG( (L) 0.35 5.32 0.003 *

AC 0.51 4.96 0.004 *

pSMG (R) 0.37 4.95 0.004 *

aSMG (R) 0.47 4.90 0.004 *

aSTG(L) 0.45 4.80 0.004 *

IC (L) 0.47 4.52 0.005 *

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001

8.2.1.4 Discussion

The extracted motion regressors for Looping Star and GRE-EPI indicated that participants

moved slightly less during the silent acquisition. As motion regressors are derived from

the images, matching the volumes as closely as possible with the first volume using a

cost function (Poldrack et al., 2011), it is not expected that this is mistaken as the image

quality and contrast of the skull and background of the FID used was of a good standard.

However, future work could use advanced methods for head motion detection to better

evaluate the degree of motion in Looping Star (Fair et al., 2020; Power et al., 2020).

Both Looping Star and GRE-EPI could identify the default mode and auditory resting-

state networks from an atlas seed within the networks, although differences in connectivity

were found between techniques. GRE-EPI demonstrated the strongest default mode
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network correlation map, whereas Looping Star presented weaker correlations between the

anterior and posterior cingulate but higher correlations between the posterior cingulate

and the lingual gyrus. For the auditory network, Looping Star identified higher correlations

between Heschl’s gyrus and the middle temporal gyrus and lateral occipital gyrus compared

with GRE-EPI.

GRE-EPI also generally identified a higher number of statistically significant correlations

across the 25 atlas regions selected, however stronger correlations were found between

Heschl’s gyrus and the anterior and posterior cingulate as well as the anterior superior

temporal gyrus. Since there is evidence that auditory networks are lateralised (Andoh

et al., 2015), the right lateralisation of the connectivity with right Heschl’s gyrus identified

by Looping Star might indicate that Looping Star can reveal the inherent lateralisation

due to the removal of acoustic noise. However, high correlations were also found in

Looping Star between the seeds and the ventricles and white matter, which warrants

further investigation of denoising parameters.

8.2.2 Impact of Global Regression and Spatial Smoothing

on Resting-State Network Identification

8.2.2.1 Background

As seen in the previous section, Looping Star can identify two core resting-state networks

and detect clear functional correlations between atlas seeds. There were also subtle

differences between modalities that could link to the acoustic noise levels. To validate these

findings, the impact of different smoothing levels on resting-state network identification

was evaluated. Denoising is also a vital step in the pre-processing pipeline for resting-state

analysis, and one of the common regressors applied globally (i.e. to the whole brain) in

this step is that of the signal detected from white matter and CSF, though its use is

widely debated (Chai et al., 2012; Power, 2017; Vos De Wael et al., 2017; Weissenbacher

et al., 2009). As a result, the impact of white matter and CSF regression on the networks
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detect by both modalities was also explored.

8.2.2.2 Methods

The same Looping Star and GRE-EPI data from the previous section was employed,

and the same initial pre-processing steps were applied. The smoothing kernel in pre-

processing with SPM-12 (FIL Methods Group, 2020) was also evaluated at 3 mm and

5 mm FWHM for both modalities. These smoothing thresholds were selected to avoid

an unfair comparison with GRE-EPI, given that GRE-EPI was previously shown to lose

substantial functional sensitivity at 0mm FWHM smoothing (Section 7.2).

In the denoising step in CONN (Whitfield-Gabrieli and Nieto-Castanon, 2012), the impact

of excluding all regressors (i.e. removing motion) was explored. The impact of including

only the WM and CSF as regressors on analysis was also evaluated. Linear detrending

and modelling the effect of rest was retained as part of the denoising pipeline in both

cases. The data were bandpass filtered after regression between 0.01 – 0.1 Hz and no

de-spiking was applied.

In first level analysis, bivariate correlations were used investigating the seed-based con-

nectivity with the posterior cingulate and right Heschl’s gyri. For seed-to-voxel analysis,

parametric statistics were employed (Worsley et al., 1996), with a two-sided uncorrected

cluster-forming threshold of p < 0.001 (Woo et al., 2014; Worsley et al., 1996). Only

clusters surviving cluster-level p < 0.05 were deemed significant, with the cluster-size

p-FDR corrected. The spatial extent of the networks for both analyses was visually

qualitatively compared.

8.2.2.3 Results

Figure 8.9 shows the posterior cingulate and right Heschl’s gyrus connectivity maps for 3

mm and 5 mm smoothing thresholds, which increase in spatial extent and significance
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with increasing smoothing for both modalities. The spatial extent of GRE-EPI for the

posterior cingulate network is consistently higher than Looping Star across smoothing

thresholds. On the other hand, the spatial extent of the correlations with Heschl’s gyri is

higher for Looping Star. Tables 8.5 - 8.6 present the statistical results at each smoothing

threshold. This was expected, given the lower tSNR for Looping Star and the previous

findings for the task-based analysis.
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Table 8.5: Statistical results for 3 mm smoothing of resting-state maps in CONN (Whitfield-Gabrieli
and Nieto-Castanon, 2012), for seed-based connectivity with right Heschl’s gyrus (HG (R) ) and the
posterior cingulate (PC).

Acquisition MNI Co-

ordinates

(x,y,z mm)

Brodmann

Area

Cluster

size pFWE-

value

Peak

pFWE-

value

Cluster

Size

Looping

Star, HG

(R)

42 -16 4 41 (R) < 10−3 ** 0.001 * 1599

-46 -20 10 41 (L) < 10−3 ** 0.194 502

GRE-EPI,

HG (R)

42 -16 6 41 (R) < 10−3 ** 0.014 * 1060

-26 32 -12 47 (L) < 10−3 ** 0.035 * 578

Looping

Star, PC

-8 -40 24 23 (L) < 10−3 ** < 10−3 ** 9990

36 -20 0 13 (R) < 10−3 ** 0.044 * 486

GRE-EPI,

PC

22 22 50 8 (R) < 10−3 ** < 10−3 ** 27146

-52 -56 42 39 (L) < 10−3 ** 0.145 1238

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area
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Table 8.6: Statistical results for 5 mm smoothing of resting-state maps in CONN (Whitfield-Gabrieli
and Nieto-Castanon, 2012), for seed-based connectivity with right Heschl’s gyrus (HG (R) ) and the
posterior cingulate (PC).

Acquisition MNI Co-

ordinates

(x,y,z mm)

Brodmann

Area

Cluster

size pFWE-

value

Peak

pFWE-

value

Cluster

Size

Looping

Star, HG

(R)

46 -12 2 41 (R) < 10−3 ** < 10−3 ** 2555

-46 -20 8 41 (L) < 10−3 ** 0.008 * 1119

GRE-EPI,

HG (R)

42 -16 6 41 (R) < 10−3 ** 0.003 * 2703

-22 32 -16 11 (L) < 10−3 ** 0.012 * 2499

Looping

Star, PC

20 -44 26 N/A < 10−3 ** 0.004 * 22512

GRE-EPI,

PC

12 -70 40 7 (R) < 10−3 ** < 10−3 ** 52607

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

The impact of excluding the motion regressors, therefore having no regressors included in

analysis, was minimal for both modalities. However, white matter and CSF regression led

to the removal of most of the resting-state correlations, relative to the previous analysis,

for both modalities (Figure 8.10, Table 8.7). This suggests that the WM and CSF signals

follow similar patterns to the grey matter correlations of interest, therefore alternative

denoising strategies may be required in future work.
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Figure 8.10: Exclusion of the motion regressors (top) and inclusion of the WM and CSF regressors
(bottom) effect on the connectivity identified for the posterior cingulate seed

Table 8.7: Cluster-level statistical results for 8mm smoothing resting-state acquisitions with inclusion
(+) and exclusion (-) of different regressors

Regressors MNI Co-

ordinates (x,y,z

mm)

Brodmann

Area

Cluster

size pFWE-

value

Peak

pFWE-

value

Cluster

Size

Looping Star

- Motion -12 -36 16 N/A < 10−3 ** 0.002 * 18652

+ WM/CSF -8 -40 34 23 (L) < 10−3 ** 0.022 * 2661

GRE-EPI

- Motion -8 -44 38 31 (L) < 10−3 ** 0.002 * 62667

+ WM/CSF 2 -54 28 23 (R) < 10−3 ** < 10−3 ** 4264

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined
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Brodmann Area

8.2.2.4 Discussion

These results indicate that different regressors and smoothing thresholds can affect the

resultant resting-state networks, although this is not unique to Looping Star as it was

also the case for GRE-EPI. Higher smoothing levels are preferred for both modalities to

improve functional sensitivity, however alternative denoising strategies such as ICA may

be preferred to WM or CSF global regression.

8.3 Identifying Independent Components with

Looping Star

8.3.1 Introduction

The combination of principal and independent component analyses for noise detection is

promising for strategically denoising multi-echo resting-state data (Kundu et al., 2017).

This preliminary study involves qualitatively exploring the similarity of the spatial and

temporal characteristics of independent components identified using the TE Dependent

ANAlysis (TEDANA) software between Looping Star and GRE-EPI (tedana community

et al., 2021). The frequency spectra of spatial components at single subject level was

explored, as group level ICA methods only identify spatial patterns given that the time

courses of participants will differ across subjects (Erhardt et al., 2011). The group level

ICA spatial components identified in CONN were also investigated. The goal of this

study was to identify components affiliated with physiological noise to determine whether

denoising with TEDANA is feasible for Looping Star.
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8.3.2 Methods

The GRE-EPI and Looping Star datasets described from the previous connectivity analysis

were used, i.e. optimally-combined (Posse et al., 1999) FID + 2 echo Looping Star and

3-echo GRE-EPI resting-state acquisitions. The datasets were pre-processed as previously

described in SPM-12 (FIL Methods Group, 2020) with an 8 mm FWHM spatial smoothing

kernel. Group-level ICA was computed in CONN using voxel-to-voxel analysis with 15

components designated for G1 FastICA + GICA3 back-projection (Whitfield-Gabrieli and

Nieto-Castanon, 2012). This terminology refers to the specific ICA algorithms employed.

The number of 15 components was arbitrarily selected for group-level ICA though guided

by the literature to avoiding over-fitting of noise (Correa et al., 2007; Griffanti et al.,

2017; Li et al., 2007). Group-level ICA also included dimensionality reduction equal

to 64 for each subject to reduce computational demand. The group ICA outputs for

CONN include a spatial map of the components and a correlation plot of the identified

components with 8 different resting-state networks.

To explore the frequency composition of identified components at single subject level, the

independent components for one participant was extracted using the TEDANA software

for both modalities (tedana community et al., 2021). TEDANA involves inputting each

echo separately after realignment, and then computes optimal echo combination using

the same T2*-weighted combination method as applied previously (Posse et al., 1999).

TEDANA outputs the frequency spectra and spatial component maps, which can then be

used to guide denoising (tedana community et al., 2021). The TEDANA software includes

a mono-exponential fit to the data for each voxel across the echoes, using log-linear

regression to estimate T2* and signal maps (tedana community et al., 2021).

As described by the software, principal component analysis is performed as part of

the TEDANA pipeline using a moving average process Li et al. (2007), which reduces

the dimensionality of the data by removing the least statistically significant principal

components. This dimensionality reduction is performed to avoid overestimating the

dimensions of the data, leading to overfitting, which would cause a poor ICA estimation
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in the following step (Li et al., 2007; Ylipaavalniemi and Vigário, 2008). After PCA

component estimation, ICA is then performed on the reduced dimensionality dataset.

For each voxel within each ICA component, the component time series were evaluated for

TE-dependent signal changes (Kundu et al., 2012). This is determined by goodness of fit

summary statistics based on the model for multi-echo data, as described in Section 1.10.

The models for estimating BOLD changes (∆R2*) and noise changes (∆S0) are given as

∆S

S
=

∆S0

S0

(8.2)

∆S

S
= −∆R∗2 · TE (8.3)

The goodness of fit statistics are computed separately for each sub-model, using a

voxel-wise F-test that compares the residuals from the fit of a model with the null model

(Kundu et al., 2012).

From these F-tests, summary statistics are produced: κ, which represents the goodness of

fit to ∆R2*, and ρ, representing goodness of fit to ∆S0. A component with high κ and

low ρ is considered to be BOLD-related (i.e. due to changes in neuronal activity), and

vice versa if it is non-BOLD-related. Uncertain components are equivalent to low-variance

components, where it is not possible to determine whether the signal is BOLD nor

noise-related (Kundu et al., 2012).

Independent components can be rank-ordered based on their κ and ρ scores. A plot

can be produced of the κ rank versus κ value and ρ rank versus ρ value for the range

of identified components. In an ideal scenario, a clear "elbow" will exist in such plots,

defining the point at which components have high or low scores for each and therefore

being identified as noise-like or BOLD-like (Kundu et al., 2012).
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8.3.3 Results

For the single subject, the κ and ρ rank plots can be seen for each modality in Figure

8.11. It can be seen that Looping Star has a slightly more apparent "elbow" in both plots

(i.e. a clearer separation of ρ and κ), suggesting a clearer definition of BOLD versus

non-BOLD components, relative to GRE-EPI.
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Exploring the components identified in more detail, the results of the single subject

component analysis were grouped into spatially and temporally similar components, with

behaviours including spiking, drifting, high frequency oscillation and pulsation, determined

by eye based on the literature (Griffanti et al., 2017), as well as the components accepted

as BOLD-like.

Firstly, drifting appears more prominently in GRE-EPI, with correlations primarily localised

to the frontal cortex and edges of the brain. For Looping Star, the spatial distribution

of these correlations is broad across the brain rather than localised. Drifting is likely

related to scanner drift, and it could be of more benefit that this is present throughout

the brain in Looping Star as it would be removed more generally rather than localised to

a particular cortex (Figure 8.12).
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Spiking in the temporal signal has been affiliated with both motion and pulsing in the

veins (Griffanti et al., 2017), with the spatial component aiding clarification between

the two. It can be seen for GRE-EPI that the "downward" spiking is related to motion,

whereas "upward" spiking is related to pulsing in the base of the brain. For Looping Star,

predominantly "downward" spiking is seen, also localised to the base of the brain (Figure

8.13).
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Pulsating behaviour can be seen clearly in the ventricles and base of the brain for GRE-EPI,

whereas it manifests more spatially widespread in Looping Star (Figure 8.14).
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High frequency oscillation appears very specifically localised for GRE-EPI, but spatially

very broad and high amplitude spatial characteristics for Looping Star (Figure 8.15).
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The accepted components for GRE-EPI and Looping Star both demonstrate a clear

default mode network contribution, however once again there was also more spatial

localisation for GRE-EPI relative to Looping Star (Figure 8.16).
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Finally, the group level ICA maps for GRE-EPI demonstrated higher spatial correlation

values with the eight resting-state networks than Looping Star. However, Looping Star

components had a higher number of components with spatial correlations that were low

in value compared with GRE-EPI. This could be a result of the broad spatial distribution

of noise sources seen in the previous figures (Figure 8.17).
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8.3.4 Discussion

Looping Star and GRE-EPI identified some temporally and spatially similar physiological

components at single-subject level, however there were also entirely different spatial

characteristics of the components that may link to the sampling pattern of Looping

Star. For example, as mentioned previously, motion appears as general image blur and

therefore this may be one explanation for why motion-related components are not seen

with spatial localisation around the skull, typically seen in GRE-EPI. On the other hand,

motion was found to be low across participants in the previous study and its exclusion

from regression did not have a large affect on seed-based correlations; hence these signals

could originate from other non-BOLD-related processes. In general, GRE-EPI located

very spatially specific components, whereas Looping Star components were overall more

spatially broad.

This study indicates that Looping Star may be more sensitive to particular noise charac-

teristics, given that the four characteristics explored in this section were predominant

across the brain. It was clear that the components were noise-related as the temporal

characteristics between modalities were similar. This highlights that how these character-

istics manifest should be carefully considered to accurately manually identify component

sources, as removal of the more broadly spatially contributing components could lead to

substantial removal of the desired functional signal. One approach in future could be

to accurately retrieve the physiological measures and explore their correlation with the

temporal signals of resting-state fMRI with Looping Star (Chen et al., 2020a; Chu et al.,

2018).

In terms of group ICA, it was clear that the identified components were weakly correlated

with the resting-state networks for Looping Star compared with GRE-EPI. This was

expected given the lower tSNR of Looping Star, further indicating that it may benefit

from additional denoising to better resolve the networks.
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8.4 Chapter Discussion

Looping Star could extract the default mode and auditory networks from seed-based

analyses, though with fewer significant ROI-to-ROI correlations identified across a range

of atlas nodes. This could be due to the lower tSNR of Looping Star in this study, and

denoising or advanced image reconstruction approaches could be explored to address this.

Furthermore, the spatial characteristics of distinct noise-related components overlapped

substantially, which could further affect the sensitivity of Looping Star to functional

networks. Alternatively, this could be linked to the acoustic noise reduction of Looping

Star as resting-state networks have demonstrated dependence on background acoustic

noise (Andoh et al., 2017; Damoiseaux et al., 2006; Dionisio-Parra et al., 2020; Gaab

et al., 2008; Gonzalez-Castillo et al., 2016), therefore further study is required.

Similarities were found in the temporal characteristics of physiological noise for Looping

Star relative to GRE-EPI for a single subject. However, it was also found that the spatial

characteristics of the noise differed substantially, likely due to the 3D radial sampling

of Looping Star causing more image blur and therefore widespread spatial noise. This

likely also contributes to the weaker correlation of group level ICA components with

resting-state networks, as the spatial characteristics of components across the group will

differ. It would be vital to explore the degree of denoising with ICA that can be applied

without removing significant functional signals in future, particularly including accurate

measures of physiology to better characterise Looping Star signal characteristics (Murphy

et al., 2013). New directions in resting-state fMRI include novel analysis approaches that

could be applied with Looping Star (Yang et al., 2020).

286



Chapter 9

Chapter 9

In vivo Characterisation of

Looping Star: Event-related

Auditory Oddball Paradigm

287 of 475



Summary

This chapter includes:

• A peer-reviewed publication comparing Looping Star and GRE-EPI using an auditory

oddball paradigm that I first-authored.

• The supplementary material for said publication.

• Expanded analysis and commentary on the publication.

Overview

The first part of this chapter incorporates a published peer-reviewed journal article

(Damestani et al., 2021b), and is the exact copy of the publication. The title of the

publication is “Revealing the mechanisms behind novel auditory stimuli discrimination: An

evaluation of silent functional MRI using Looping Star.” published by the journal "Human

Brain Mapping" by Wiley Periodicals LLC, in which I, Nikou Louise Damestani, am listed

as the first author. The full DOI for the article is doi.org/10.1002/hbm.25407.

I was the primary author of this publication, writing the first draft independently,

and I declare this article as my own work. The full details of contributions by my-

self and my co-authors are listed in the following CRediT (Contributor Roles Tax-

onomy) authorship contribution statement (https://www.elsevier.com/authors/

policies-and-guidelines/credit-author-statement):

Nikou Louise Damestani: Conceptualisation, Methodology, Software, Formal Analysis,

Writing - Original Draft, Writing - Review & Editing, Project Administration, Visualisation,

Data Curation, Investigation, Validation
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Dr. Owen O’Daly: Methodology, Resources, Validation, Writing - Review & Editing

Dr. Ana Beatriz Solana: Methodology, Software, Resources, Writing - Review &

Editing

Dr. Florian Wiesinger: Methodology, Software, Resources, Writing - Review & Editing

Dr. David John Lythgoe: Supervision, Conceptualisation, Writing - Review & Editing

Simon Hill: Software, Resources

Alfonso de la Rubio: Software, Resources

Dr. Elena Makovac: Resources, Writing - Review & Editing

Prof. Steven Charles Rees Williams: Funding acquisition, Writing - Review &

Editing

Dr. Fernando Zelaya: Conceptualisation, Funding acquisition, Supervision, Writing -

Review & Editing

The following work is redistributed in this thesis under the CC BY 4.0 (Creative Commons

Attribution 4.0 International) copyright license under which the paper was published

as open access (Public License). The direct link to the article is as follows: https://

onlinelibrary.wiley.com/doi/full/10.1002/hbm.25407. The link to the license

is as follows: https://creativecommons.org/licenses/by/4.0/legalcode.

The material in the content of the publication, i.e. Section 9.2, has not been changed. I

have only added content around the paper for the purpose of contextualising its presence

in the thesis, and the formatting was adapted in order to embed the publication so

as to match the formatting of the rest of this thesis. Specifically, I include a chapter

introduction, a section of expanded commentary and analysis after the section including
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the publication, and chapter discussion.
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9.1 Chapter Introduction

Looping Star has demonstrated good sensitivity to block design paradigms and can

identify the resting-state networks in vivo (Sections 7.2, 7.3, 8.1). This chapter therefore

focuses on an auditory paradigm with higher cognitive demand, the auditory oddball task,

as we expect that Looping Star will be used for such studies in future. The functional

sensitivity of Looping Star to this task was evaluated compared with GRE-EPI. The

paradigm design and acquisition parameters for GRE-EPI were replicated from a previous

study for validity. The paradigm was repeated by the same participants in a second

session to evaluate the reliability of Looping Star. Further details on the background of

this study are provided in the manuscript. Some expanded analysis at the end of this

section to further support the content of the publication. The next section constitutes of

the manuscript (Section 9.2).

9.2 Revealing the Mechanisms behind Novel

Auditory Stimuli Discrimination: An

Evaluation of Silent Functional MRI using

Looping Star

9.2.1 Abstract

Looping Star is a near-silent, multi-echo, 3D functional magnetic resonance imaging

(fMRI) technique. It reduces acoustic noise by at least 25dBA, with respect to gradient-

recalled echo echo-planar imaging (GRE-EPI)-based fMRI. Looping Star has successfully

demonstrated sensitivity to the cerebral blood-oxygen-level-dependent (BOLD) response

during block design paradigms but has not been applied to event-related auditory percep-

tion tasks. Demonstrating Looping Star’s sensitivity to such tasks could 1) provide new
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insights into auditory processing studies, 2) minimise the need for invasive ear protection,

and 3) facilitate the translation of numerous fMRI studies to investigations in sound-averse

patients. We aimed to demonstrate, for the first time, that multi-echo Looping Star

has sufficient sensitivity to the BOLD response, compared to that of GRE-EPI, during a

well-established event-related auditory discrimination paradigm: the “oddball” task. We

also present the first quantitative evaluation of Looping Star’s test-retest reliability using

the intra-class correlation coefficient. Twelve participants were scanned using single-echo

GRE-EPI and multi-echo Looping Star fMRI in two sessions. Random-effects analyses

were performed, evaluating the overall response to tones and differential tone recognition,

and inter-modality analyses were computed. We found that multi-echo Looping Star

exhibited consistent sensitivity to auditory stimulation relative to GRE-EPI. However,

Looping Star demonstrated lower test-retest reliability in comparison with GRE-EPI. This

could reflect differences in functional sensitivity between the techniques, though further

study is necessary with additional cognitive paradigms as varying cognitive strategies

between sessions may arise from elimination of acoustic scanner noise.

9.2.2 Introduction

The inherent acoustic noise of conventional functional magnetic resonance imaging

(fMRI), carried out using gradient-recalled echo echo-planar imaging (GRE-EPI), is often

intolerably high, commonly achieving sound levels greater than 100dBA (Price et al.,

2001; Ravicz et al., 2000). At these levels, severe hearing damage can occur without

ear protection. During GRE-EPI, this acoustic noise originates primarily from the rapid

switching of the frequency encoding magnetic field gradient (from near maximum negative

to near maximum positive and vice-versa), necessary for fast two-dimensional slice-by-slice

imaging. This switching induces high-frequency mechanical vibrations in the scanner

hardware, which fall within the acoustic spectrum (Price et al., 2001).

This high acoustic scanner noise impacts the interpretation of the mechanisms behind

auditory processing in fMRI studies. For example, Yakunina et al. (2015) showed

that the auditory connectivity network differed during a music listening task when a
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quieter, sparse-sampling fMRI acquisition technique was used, in comparison with using

conventional, noisy, continuous acquisition. Langers et al. (2005b) also showed the

influence of background scanner noise on the haemodynamic response during auditory

tone presentation, using a variable-length silent gap fMRI acquisition method. Moreover,

Gaab et al. (2007a) demonstrated the masking effect of scanner background noise on

blood-oxygen-level-dependent (BOLD) signal in response to word stimuli. The impact of

acoustic scanner noise on auditory processes has been supported by further studies Healy

et al. (2007); Scarff et al. (2004); Shah et al. (1999).

Background scanner noise can also impose limitations to the generalisability of studies

across numerous cohorts. For example, conditions such as tinnitus can include symptoms

of hypersensitivity to sound (or hyperacusis) (Baguley, 2003; Chen et al., 2015). fMRI

studies have been performed with this cohort, however participants with hyperacusis are

often excluded (Araneda et al., 2018; Golm et al., 2013; Han et al., 2018; Hofmeier et al.,

2018; Leaver et al., 2011) and in some instances there is difficulty in disentangling whether

activity patterns result from the stimulus or the acoustic scanner noise Ghazaleh et al.

(2017); Gu et al. (2010); Husain and Schmidt (2014); Lanting et al. (2009); Leaver et al.

(2016); Seydell-Greenwald et al. (2012). Given that hyperacusis is also heterogeneously

prevalent in further cohorts, such as in individuals with autism spectrum disorder (Stiegler

and Davis, 2010) and in children (Rosing et al., 2016), mitigating background scanner

acoustic noise could greatly improve standardisation across numerous clinical groups.

To date, conventional methods for addressing this high acoustic scanner noise have

revolved around the retention of GRE-EPI acquisition sequences, due to their functional

sensitivity and spatiotemporal resolution. One example of this was presented by (Seifritz

et al., 2006), where they tuned the GRE-EPI pulse sequence to alter the characteristics

of the acoustic noise, but the noise amplitude remained comparable to conventional

GRE-EPI. The primary strategy is to ask participants to employ earplugs during scanning,

however effective sound attenuation relies on their correct application, hence there

remains a risk of hearing damage (Salvi and Sheppard, 2018; Sheppard et al., 2018).

Alternative strategies for scanner acoustic noise reduction involve adapting the GRE-EPI

pulse sequence, for example via band-limited gradient pulses (Hennel et al., 1999) and
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sparse temporal sampling (Hall et al., 1999). A number of early scanner noise reduction

techniques were reviewed by Moelker and Pattynama (2003). Hardware improvements

have also been explored, such as gradient coil isolation (Edelstein et al., 2002), and there

has recently been increased use of active noise-cancelling headphones (Dewey et al., 2018;

Gabrielsen et al., 2018), although these strategies can be financially costly and therefore

not widely applicable across studies. Ultimately, there is no specific optimal workflow

or acquisition technique applicable across sites and paradigms to reduce the potential

confound and limitations of acoustic scanner noise at its source.

To address these issues, we present the application of a recently developed silent pulse

sequence known as Looping Star (Wiesinger et al., 2019). This technique could mitigate

the need for earplugs, improve accessibility to the scanning environment and remove the

acoustic noise confound. Looping Star (LS) is based on a technique known as Rotating

Ultra-Fast Imaging Sequence (RUFIS) (Madio and Lowe, 1995), which reduces the effect

of vibrations induced by gradient switching by making small incremental changes in the

direction (but not the amplitude) of the frequency encoding gradients of the readout.

Looping Star is a modification of RUFIS in which a temporal-multiplexed gradient

refocusing mechanism is employed (Wiesinger et al., 2019), allowing the transverse

component of the magnetisation to evolve by returning periodically to the centre of

k-space. As a result, it remains sensitive to static T2* dephasing as in GRE-EPI and

can achieve multi-echo acquisition without the need for magnetisation preparation pulses

(Solana et al., 2016). A detailed description of the Looping Star methodology can be

found in Wiesinger et al. (2019).

To date, Looping Star has proven sensitive to the BOLD response evoked by periodic

blocks of sensory stimuli (Damestani et al., 2019b; Wiesinger et al., 2019), visual working

memory (Dionisio-Parra et al., 2020) and in the ‘resting’ state (Damestani et al., 2019a;

Dionisio-Parra et al., 2020). However, Looping Star has not been evaluated using event-

related fMRI paradigms, including those of an auditory nature, which are able to probe

aspects of cognition in a manner not possible using block-designs. One such paradigm

is the active “oddball” task (Squires et al., 1975), an important auditory discrimination

paradigm that has been used extensively in several studies using both EEG (Barry et al.,
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2000; Justen and Herbert, 2018; Wronka et al., 2008) and fMRI (Brázdil et al., 2005;

Mangalathu-Arumana et al., 2012). It is particularly relevant in the study of cognitive

deficits in participants with Autism Spectrum Disorder (ASD), as these individuals have

shown reduced performance during similar tasks when compared with healthy controls

(Dawson et al., 1986, 1988; Oades et al., 1988).

Importantly, a previous study also highlighted that alternative cognitive strategies were

employed by children with ASD during an auditory “oddball” tone discrimination fMRI

task (Gomot et al., 2006). This study used an adapted slice-onset version of conventional

GRE-EPI to account for the acoustic noise limitations. The characterisation of responses

to this task using Looping Star, in comparison with this adapted GRE-EPI acquisition,

therefore has clear advantages with respect to its translation to studies involving individuals

with ASD, as Looping Star would remove the acoustic noise confound. Demonstrating

comparable test-retest reliability of Looping Star would further facilitate this translation.

Furthermore, the multi-echo capabilities of Looping Star are worthy of investigation, given

the benefits of echo combination to BOLD signal noise reduction (Kundu et al., 2012).

These have not yet been evaluated for Looping Star using an event-related paradigm

design.

Hence, our specific aims were:

1. To investigate whether multi-echo Looping Star is sensitive to the BOLD response

elicited during the auditory “oddball” paradigm.

2. To quantitively compare the functional sensitivity of Looping Star with that of the

adapted slice-onset single-echo GRE-EPI acquisition used in the original auditory

tone discrimination study (Gomot et al., 2006).

3. To explore the test-retest reliability of the Looping Star and GRE-EPI acquisitions

using two sessions.

We performed the following analyses to address the aims: a) group-level conventional
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parametric general linear model (GLM) analyses b) inter-modality sensitivity comparisons

using percentage signal change and parameter estimates and c) test-retest reliability

analysis using intra-class correlation coefficients (ICC) for each modality between sessions.

9.2.3 Methods

9.2.3.1 Data Availability Statement

The scripts and toolboxes used in this research are available to download via the accom-

panying references. Please contact the corresponding author for access to specific scripts

and data access, if collaboration is of interest.

9.2.3.2 Participants

Twelve healthy participants (6 female; mean ± standard deviation age = 31.5 ± 8.0

years; range = 25 years - 54 years) were scanned in two sessions. This number of

participants was consistent with that of the healthy control group in the aforementioned

study using the same paradigm (Gomot et al., 2006). These sessions were separated by

at least one week and were no more than two weeks apart. All participants took part

in both scanning sessions and for the full duration of both sessions. Exclusion criteria

involved standard MRI contra-indications and participants were recruited from within

the university (King’s College London). Ethical approval was provided under London –

Camberwell St Giles REC reference 04/Q0706/72, and informed written consent was

obtained from all participants.
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9.2.3.3 Oddball Paradigm

For consistency with Gomot et al. (2006), we decided to employ a paradigm with a design

identical to that used in their study. The stimuli were presented through the pneumatic

MR-compatible headphones (MR Confon, Cambridge Research Systems). The paradigm

involved three tone types (P = probability of occurrence), Deviant (P = 0.09), Novel (P

= 0.07) and Standard (P = 0.84), played with event duration 80ms and inter-stimulus

interval 625ms. Deviant tones were simply frequency-shifted Standard tones, whereas

Novel tones were completely Novel (in terms of pitch and frequency) relative to Standard

and Deviant tones (Müller et al., 2002). The beginning of the paradigm was silent for a

duration of ten volumes, then five Standard tones were played. After this, Novel and

Deviant tones were played in random order with a minimum of three Standard tones

between onsets.

Participants indicated with a button-box, in the right hand, when either a Deviant or

Novel tone was detected, using the same button for both tones. Six silent rest blocks

of 10-second duration were evenly distributed throughout the paradigm; and a video of

neutral visual distractors, involving animals in natural habitats, was played throughout

the paradigm as performed in the original study (Gomot et al., 2006). Deviant and

Standard tones were swapped halfway through, as indicated by a screen displaying the

command “Swap”, whereby Standard tones became Deviant tones and vice versa, to

prevent tone habituation and boredom. Although the Deviant and Standard tones were

consistently the same tones when applied, the Novel tones differed for every onset. For

further information on the paradigm and characteristics of the tones, we point towards the

original study by Gomot et al. (2006), who kindly provided help with the implementation

of the paradigm.

Participants’ comprehension of the paradigm and hearing ability were tested outside of

the scanning facility prior to the first session using a shorter version of the paradigm

of frequency-shifted tones Standard and Deviant tones, to avoid conditioning effects.

These tones were frequency-shifted by three semitones down from the original tone using
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version 2.2.2. of the Audacity R©recording and editing software (Audacity Team, 2020).

Within the scanning sessions, earplugs were provided beneath pneumatic MR-compatible

headphones (MR Confon, Cambridge Research Systems). This was to prevent hearing

damage during the loud GRE-EPI acquisition.

Participants self-reported whether they could hear stimuli presented through the pneumatic

MR-compatible headphones based on whether they could clearly hear the voices of the

radiographers through the headphones. The paradigm was then also played through

these headphones. To avoid conditioning effects within the session, the tone order in

the paradigm differed between Looping Star and GRE-EPI acquisitions (i.e. a unique

paradigm was assigned to each modality, but not to each session nor each participant).

Otherwise, the same paradigms were used for all participants and for both sessions.

Participant responses were also monitored via a paradigm-linked computer to ensure they

could consistently hear the paradigm.

9.2.3.4 fMRI Acquisition

Participants wore a pulse oximeter on their forefinger and respiratory belt around their

waist to probe any possible differences in physiological parameters (heart rate and

respiration rate). A 3T General Electric MR750 Discovery scanner (GE Healthcare,

Chicago, IL) with a General Electric 12-channel receive-only head coil was used. A

standard ADNI (Leung et al., 2015) 1.09 mm in-plane resolution structural IR-SPGR

image was collected with acquisition parameters: TE = 3.016 ms, TR = 7.312 ms; TI =

400 ms, number of slices = 196, slice-gap = 1.2 mm, flip-angle = 11◦.

For the fMRI modalities, the same acquisition parameters were used between sessions, and

sequence order was pseudo-randomised between participants and sessions. Acquisition

parameters for single-echo GRE-EPI were as follows: TE = 27.5 ms, TR = 2.5 s; slice

thickness = 4 mm, number of slices = 20, slice-gap = 1 mm, in-plane resolution =

3.125 mm, flip-angle = 82◦, 240 volumes, duration = 10 minutes. As in the case of the

study of Gomot et al. (2006), our tone duration (80 ms) and the inter-trial time of 625
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ms, ensured that the stimuli were audible in the time gap between slice read-outs of the

multi-slice GRE-EPI scans. The field of view for the GRE-EPI acquisition did not cover

the cerebellum.

To ensure k-space sampling uniformity in Looping Star, a pseudo-randomly ordered

trajectory was applied (Dionisio-Parra et al., 2020; Wiesinger et al., 2019). The trajectory

was calculated for a nominal spatial resolution of 3.2mm, including an acceleration factor

to produce comparable TR with GRE-EPI (see Supplementary Material 9.3.1). This

acceleration factor introduces blurring, reducing the effective resolution of the images

(Maier et al., 2021), however this pattern is sufficient for fMRI as the centre of k-space

is densely sampled (Kasper et al., 2014). This highlights a benefit of radial acquisition,

as other artefacts typical of Cartesian under-sampling are not introduced.

As a result, the multi-echo Looping Star acquisition parameters were as follows: multi-

echo TEs = 0 ms, 16.1 ms, 32.2 ms, TR = 2.648 s, equivalent spatial resolution = 3.2

mm, flip-angle = 3◦, readout bandwidth = ±46.875 kHz, 24 spokes per loop, 72 spokes

per segment, 1080 spokes per volume, 240 volumes, duration = 10 minutes 35 s. For

reconstruction of the FID image (TE = 0 ms), missing centre of k-space samples due to

the dead-time of the receiver were reacquired at the end of the scan by repeating the

Looping Star k-space trajectory at reduced readout gradient amplitude, as described by

(Wu et al., 2007) and Wiesinger et al. (2016), Wiesinger et al. (2019).

9.2.3.5 fMRI Pre-processing

Image reconstruction for Looping Star was conducted offline using a ‘nearest-neighbour

gridding’ approach (Wiesinger et al., 2019), as the fast Fourier transform cannot be

applied directly to non-Cartesian data. This included density compensation to account

for oversampling of the centre of k-space (Hoge et al., 1997). Furthermore, an inherent

property of Looping Star is that the signal from the spoke dephasing outwards is contami-

nated by the signal from the spoke refocusing inward. This is known as echo-in/echo-out

interference (Wiesinger et al., 2019). Dionisio-Parra et al. (2020) demonstrated that
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addressing this interference by applying a Fermi filter reduced the image resolution, and

RF phase-cycling doubled acquisition time. Instead, optimal combination of the echoes

was used to improve the temporal signal-to-noise ratio (tSNR) (Kundu et al., 2012).

After reconstruction, the first ten volumes were removed for both modalities to avoid

the influence of effects due to non-steady state magnetisation. Looping Star images

were rescaled by a factor of 105 post-reconstruction to avoid intensity capping. Looping

Star images were cropped using the FSL (Jenkinson et al., 2012) command “fslroi” and

re-oriented using SPM-12 (fil.ion.ucl.ac.uk/spm/). The origins were centred for

the FID and echo images to lie on the anterior commissure. Looping Star and GRE-EPI

pre-processing pipelines were almost identical: for single-echoes they followed the same

pipeline, with Looping Star excluding slice-timing correction since it is a three-dimensional

acquisition technique. For Looping Star, optimal echo-combination was included in the

pipeline but TE-dependent denoising (DuPre et al., 2019; Kundu et al., 2012) was not

applied to Looping Star to ensure consistency of the pre-processing pipelines between

modalities. The pipelines are visualised in Supplementary Material 9.3.2, with further

detail provided below.

Looping Star images were bias-field corrected with ANTS N4-ITK (Tustison et al., 2010).

The high tSNR FID image was used to estimate the motion correction parameters,

which were then applied to the multi-echo image time series. High frequency artefacts

were removed from all of the time series, and concatenation of the FID and echoes

was performed in the z-direction using AFNI (Cox, 1996). Optimal echo combination

was applied using the “opt _com” command from “tedana.py” in the MEICA (Kundu

et al., 2012) pipeline. The pipeline then continued with co-registration of the FID to the

subject’s own high-resolution T1-weighted scan, which was then applied to the optimally

combined dataset, spatial normalisation using unified segmentation (as implemented in

SPM-12) with images saved at 4mm isotropic resolution and smoothing with an 8 mm

FWHM kernel. This smoothing kernel was used to ensure adequate signal-to-noise ratio

for the Looping Star dataset and as a compromise between the minimum identifiable

cluster size and satisfying the Gaussian random field approximation.
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Following the same bias-field correction, the same standard SPM-12 pre-processing pipeline

was applied adjusted for GRE-EPI, including slice-timing correction, co-registration to the

subject high-resolution T1-weighted scan, spatial normalisation using unified segmentation

(as implemented in SPM-12) with images normalised at 4mm isotropic resolution and

smoothing with an 8 mm FWHM kernel.

9.2.3.6 fMRI Analysis - Group Level SPM

Single-subject fixed-effects and group-level random-effects analyses were conducted in

SPM-12 with cluster-level inference using a primary uncorrected cluster-forming threshold

of p < 0.001 (Woo et al., 2014; Worsley et al., 1996). Only results surviving family-wise

error correction based on cluster extent (i.e. cluster-level p(FWE) < 0.05) were deemed

significant. The baseline condition (Standard tones) was not modelled explicitly to avoid

over-parameterisation of the general linear model (GLM) and thereby served as an implicit

baseline. The first level GLM included modelling the motion parameters as nuisance

regressors and modelling three conditions: Deviant, Novel and Silent periods, constructed

by convolving regressors encoding the relevant trials with the standard canonical double-

gamma hemodynamic response function. An autoregressive AR(1) model was also used

for ReML parameter estimation, used as standard in SPM-12.

The contrasts interrogated in the first level model were:

i. Activity greater during both Novel and Deviant tones over Silent periods (Dev + Nov

> Silent)

ii. Activity greater during both Novel and Deviant tones over Standard tones and Rest

(Dev + Nov > All)

iii. Activity greater for Novel tones than Deviant tones (Nov > Dev) and vice versa (Dev

> Nov)
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iv. Activity greater for Novel tones over Deviant, Standard and Rest (Nov > All)

v. Activity greater for Deviant tones over Novel, Standard and Rest (Dev > All)

A 128s high-pass filter was applied during analysis. MNI co-ordinates, from the output

of SPM-12, and Brodmann areas were compared using BioImage Suite (Lacadie et al.,

2008).

9.2.3.7 fMRI Analysis - Between Modality Comparison

To quantitatively compare, in a general fashion, the functional sensitivity between

techniques, a paired t-test was computed in SPM-12 between the first level contrast

maps of Dev + Nov > Silent (contrast i., Section 9.2.3.6) in each session.

To further explore the inter-modality difference in functional sensitivity in auditory regions,

given the nature of the task and the difference in acoustic load between acquisitions, a

Neurosynth (Yarkoni, 2011)-derived auditory region of interest (ROI), using the term

“auditory” thresholded at z = 8, was used as a mask. This mask was applied to the first

level contrast maps of Dev + Nov > Silent (i, Section 9.2.3.6). The mean parameter

estimates, or betas, of the Novel and Deviant tones modelled, as well as the T-scores of

the activity maps (See Supplementary Material 9.3.3) were calculated in this region. The

mean T-score and mean Novel and Deviant parameter estimates were computed across

participants. The percentage signal change was also computed within this ROI using the

MarsBaR toolbox of SPM-12; and its accompanying guidance for batch calculation of

the percentage signal change (Brett et al., 2002). The event duration used was zero, and

the computed scaling factor within the MarsBaR batch was dependent on the time-bin

used for each modality as detailed in the aforementioned batch.

Normality was tested on the T-scores, beta parameters and percentage signal change

values across participants via a Shapiro-Wilk test in version 27.0 of IBM SPSS Statistics.

The percentage signal change results were therefore quantitatively compared using
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Spearman’s correlation in SPSS to evaluate the consistency of the participant responses

between modalities. A Wilcoxon Signed Rank test was also computed in SPSS between

modalities for the percentage signal change of each tone between modalities. For the

beta parameters of each tone in the auditory ROI and the mean T-score in the auditory

ROI, either a Wilcoxon Signed Rank or Paired T-test was computed based on the output

of the normality test. All T-tests included a hypothesised mean/median difference of zero

and α = 0.05. Statistical significance was determined by a two-tailed test at a p-value

threshold < 0.05.

9.2.3.8 fMRI Analysis - Between Session Differences

9.2.3.8.1 Group level Intra-class Correlation - Within Modality As is cus-

tomary in quantitative assessments of reliability, the voxel-wise intra-class correlation

(ICC) analysis (Caceres et al., 2009), using ICC index (3,1), was employed to evaluate

between session characteristics for the contrast maps of Deviant + Novel > Silent

at group level (i.e. across participants, between sessions, within modality). This was

performed to establish the reliability of the activity maps between the scanning sessions,

as this method is not sensitive to the mean difference between sessions but rather sheds

light on the variability between sessions. The ICC (3,1) (Shrout and Fleiss, 1979) has

been proposed specifically for this type of comparison. Its magnitude is calculated using

the sum of squares between subjects (BMS) and between sessions (EMS), with k as the

number of repeated sessions (Caceres et al., 2009), seen in Equation (1).

ICC(3, 1) =
BMS − EMS

BMS + (k − 1)EMS
(9.1)

An ICC of 1 indicates exceptionally high reliability between sessions as the between session

variability would be close to zero (i.e. the error sum of squares would be negligible). On

the other hand, the ICC becomes negative as the size of the between-sessions variance

regression becomes larger than the between-subject variance. An ICC close to -1 therefore,
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(the other extreme), indicates exceptionally poor between session reliability; and that

this term would be significantly larger than the variability between subjects (i.e. the

between-subject sum of squares is close to zero).

The contrast maps were first masked with a grey matter mask (grey matter tissue prior

from SPM-12, see Supplementary Material 9.3.3). A task-related network mask was then

defined from the first session for each modality, by means of a low T-score threshold of

1. A low threshold was used to account for the difference in amplitude of the T-scores

between techniques, preventing large clusters from being more prevalent in one modality

than another. The median ICC score for all voxels within the mask was calculated. When

calculating the network mask, grand mean scaling and global calculation were omitted.

9.2.3.8.2 Intra-voxel Reliability - Within Modality The ICC toolbox can also

be applied to test the consistency of the signal distribution within an ROI across sessions.

This produces a region ICC for each subject (i.e. across sessions, within modality) and is

known as the intra-voxel reliability (ICCv). This differs from a typical voxel-wise ICC

where the reliability of the signal across sessions is determined separately for each voxel.

The intra-voxel reliability was calculated for each subject within an auditory ROI, gener-

ating an intra-voxel ICCv value for each participant. This auditory ROI was computed

across a Neurosynth (Yarkoni, 2011) -derived auditory ROI (See Supplementary Material

9.3.3), using the term “auditory” and thresholded at z = 5. In this case, Equation (1)

is applied for each individual subject using the contrast values of the voxels within this

auditory ROI as stated by Caceres et al. (2009). As this work suggests, the intra-voxel

reliability then measures the total variance explained by the intra-voxel variance, testing

the consistency of the spatial characteristics of the BOLD signal distribution in this ROI

to infer differences between subjects. The ROI was applied to the contrast maps for

Deviant + Novel > Silent for each participant and across sessions.
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9.2.3.8.3 Comparison of Intra-voxel Reliability - Between Modality To eval-

uate the differences in ICCv between modalities, the mean and standard deviation of

the outputted ICCv from the intra-voxel reliability calculation was computed across

participants. Upon computing a Shapiro-Wilk normality test, a Wilcoxon Signed Rank

Test was computed between modalities to compare medians of the ICCv values , given

that the same population produced ICCv scores for the two modalities, using SPSS.

Statistical significance was determined by a two-tailed test at a p-value threshold < 0.05.

Although Bland-Altman plots (Bland and Altman, 1999) have been used in some studies

to explore reliability, these were not used in our work as the literature indicates that they

are more appropriate when assessing direct replication of quantitative absolute measures,

which is not the case of beta parameters in fMRI analysis.

9.2.3.9 Image Quality Measures

Temporal signal-to-noise ratio (tSNR) was calculated as outlined by (Friedman et al., 2006).

The mean signal across time per voxel was computed and divided by its corresponding

standard deviation after second-order polynomial de-trending (i.e. the standard deviation

of the residuals). The images used were those pre-processed including all steps up to

spatial normalisation (i.e. excluding smoothing), to produce the average tSNR value

across participants. The tSNR was also calculated within a grey matter mask (grey

matter tissue prior from SPM-12, see Supplementary Material Figure 9.3.3). This

measure avoided artefacts in the average tSNR images that result from differences in

brain structure. A difference map was produced by dividing the difference between the

modality tSNR maps within-session by the sum of the maps and multiplying this result

by 100.

9.2.3.10 Sound Level Measurements

A direct sound level measurement was taken by attaching the Casella 62X (Casella

Solutions, UK) sound meter on a cylindrical phantom at the axial isocentre of the magnet
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bore and taking the mean LCpeak and LAeq values across 15 seconds (approximately 5

volumes) for each scanning sequence.

9.2.4 Results

9.2.4.1 Looping Star Acoustic Noise and Image Quality Characteristics

Table 9.1 shows the in-bore sound amplitude measures inside the scanner, indicating that

Looping Star was less than 10dBA louder than the ambient scan room noise and 27dBA

quieter than GRE-EPI. This is a substantial difference, particularly since acoustic noise is

measured on a logarithmic scale.

Table 9.1: Average sound level measures over a duration of 15 seconds of scanning from bore isocentre
of each acquisition modality.

Acquisition LAeq (dBA) LCpeak (dBC)

GRE-EPI 98 112.9

Looping Star 71 102.8

Ambient scanner room,

no scan

64 85.7

The tSNR results can be seen in Figure 9.1 for each individual echo and for the optimally

combined temporal series from Looping Star, compared with GRE-EPI. tSNR overall was

lower in Looping Star compared with GRE-EPI, evident both visually in the whole brain

(Figure 9.1, top) and in the quantitative values in grey matter (Figure 9.1, bottom). The

distribution of tSNR values was narrower for the echoes and optimally combined echoes

of Looping Star than in GRE-EPI. The percentage difference map indicated less than

50% difference between optimally combined Looping Star and GRE-EPI, whereas higher

differences could be seen in white matter, which is likely driven by the different tissue

relaxation characteristics between techniques. A figure of the raw images has also been

provided (Supplementary Material Figure 9.3.4).
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Figure 9.1: (top) Mean temporal signal-to-noise-ratio (tSNR) maps, calculated across participants for
each modality and for separate echoes (free induction decay - FID, Echo 1 – GRE, Echo 2 – GRE2)
and the optimally combined echoes (OptCom) in Looping Star (LS). Datasets have been realigned and
spatially normalised prior to computation of the tSNR. Percentage difference maps between optimally
combined Looping Star and GRE-EPI for each session are also shown at the bottom right. (bottom)
tSNR values across subjects and both sessions within grey matter mask. S1 = Session 1, S2 = Session
2. Slice (mm = millimetres) in MNI space provided.
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9.2.4.2 Physiological & Behavioural Responses

The mean heart rate and respiratory volume per time across the acquisition did not

demonstrate any significant differences between modalities (Supplementary Material

9.3.5). Participants were over 86% accurate on average for both modalities and sessions,

indicating satisfactory cognitive engagement with the paradigm. Only one participant

had a lower than 86% accuracy during GRE-EPI Session 2, but they were still over 76%

accurate. There was no evidence of poorer performance accuracy after the tones were

swapped (Supplementary Material 9.3.5).

9.2.4.3 Whole-brain Voxel-wise GLM Random-effects Analysis

Since the Standard tone events served as an implicit baseline, we evaluated the overall

sensitivity to auditory stimuli between modalities, using the contrasts: Deviant + Novel >

Silent (rest blocks) and Deviant + Novel > All other blocks. Figures 9.2A and 9.2B show

that Looping Star and GRE-EPI were both sensitive to the responses to non-Standard

tones. Activation was observed in the same Brodmann areas (BA) identified by the

original study (Gomot et al., 2006), namely the anterior transverse temporal area (BA

41) and the posterior superior temporal gyrus (BA 22) (Table 9.2). Significant activity

was also identified in both modalities within the motor cortex (BA 6) and somatosensory

cortex (BA 1). No significant results were identified for the contrast Deviant > Novel

with either technique, however Figure 9.2C demonstrates the regions more responsive

to Novel trials than Deviant trials. Only the Looping Star Session 1 data yielded a

statistically significant BOLD response to this contrast in an auditory region.
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Figure 9.2: Parametric activity maps for the contrasts A) Deviant + Novel > Silent B) Deviant +
Novel > All other onsets and C) Novel > Deviant. Comparable activity maps can be seen for A) and B),
whereas C) highlights that only Looping Star Session 1 detects an auditory response for the contrast.
Slices shown are also visualised in top left corner of images. Overlaid on ch2 image (Holmes et al., 1998)
in MRICRON (Rorden and Brett, 2000). Statistics at p < 0.001 uncorrected can be seen in Table 9.2.
Slice (mm = millimetres) in MNI space provided.
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* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area, NSC = no significant clusters

9.2.4.4 Quantitative comparison between modalities (within session)

Figure 9.3 demonstrates the results of the quantitative comparisons between modalities,

within each session. The inter-modality paired t-tests of the statistical maps for each

session (Figures 9.3A & 9.3B) highlight regions of differences in activity. Table 9.3

provides the accompanying statistics. Within Session 1, only motor cortices (i.e. BA

4 and BA 6) presented statistically significant higher activity for GRE-EPI relative to

Looping Star.

The statistical comparisons of the different measures in an auditory ROI presented in

Figures 9.3C-E are shown in Table 9.4. We found a statistically significant difference in

the mean T-score within the auditory ROI between GRE-EPI and Looping Star for both

sessions. We also found a statistically significant difference within the auditory ROI for

the mean parameter estimates of the Deviant tones in Session 1. There was no significant

difference for the parameter estimates of the Novel tones. This was also consistent with

the percentage signal change results (Figures 9.3F-G). Table 9.5 shows the results of the

inter-modality Spearman’s correlation, which was between 0.08 < r < 0.32, as well as

the T-tests between the percentage signal change values. Only Deviant tones in Session

1 provided a statistically significant inter-modality difference in percentage signal change.
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Figure 9.3: Between modality analyses using Deviant + Novel > Silent contrast maps. (top) Bidi-
rectional results of paired T-test between first level contrast maps of all participants. a) Session 1
comparison and b) Session 2 comparison. Overlaid on ch2 image (Holmes et al., 1998) in MRICRON
(Rorden and Brett, 2000). (middle) Auditory ROI was used to mask parameter estimate (beta) maps
and mean parameter estimate calculated for regressors of c) Deviant onsets and d) Novel onsets as
plotted for all participants. e) Mean T-score calculated from first level T-maps for the contrast, plotted
for each participant after auditory ROI masking. (bottom) Percentage signal change computation based
on parameter estimates in auditory ROI. All sessions included and plotted for each modality. Pattern
of difference between modality shown for f) Deviant and g) Novel tones. LS = Looping Star. ** =
p(two-tailed) < 0.05. Accompanying statistics seen in Tables 9.3-9.5.
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Table 9.4: Wilcoxon Signed Rank Test or Paired T-test results across different inter-modality measures
within the auditory ROI.

Test Variables Wilcoxon Signed

Rank/Paired T-test

two-tailed p-value

Wilcoxon Signed

Rank/Paired T-test

T-score

Mean T-Score in auditory ROI

†, GRE-EPI - LS, Session 1

0.004 * 3.648

Mean T-Score in auditory ROI

†, GRE-EPI - LS, Session 2

0.043 * 2.284

Mean Deviant beta parameter in

auditory ROI †, GRE-EPI - LS,

Session 1

0.022 * 2.677

Mean Deviant beta parameter

in auditory ROI, GRE-EPI - LS,

Session 2

0.060 -1.883

Mean Novel beta parameter in

auditory ROI †, GRE-EPI - LS,

Session 1

0.442 0.798

Mean Novel beta parameter in

auditory ROI, GRE-EPI - LS,

Session 2

0.814 -0.235

* = p < 0.05, † = Parametric paired T-test
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Table 9.5: Inter-modality Spearman’s correlation and Wilcoxon Signed Rank Test results between
percentage signal change values within the auditory ROI

Correlation Pair Spearman’s r Wilcoxon Signed

Rank T-score

Wilcoxon Signed

Rank two-tailed

p-value

GRE-EPI - LS, Session 1,

Deviant Tones

0.252 -2.510 0.012 *

GRE-EPI - LS, Session 2,

Deviant Tones

0.133 -2.197 0.028

GRE-EPI - LS, Session 1,

Novel Tones

-0.056 -1.334 0.182

GRE-EPI - LS, Session 2,

Novel Tones

0.315 -0.471 0.638

GRE-EPI - LS, All Ses-

sions, Deviant Tones

0.320 -3.343 < 10−3 **

GRE-EPI - LS, All Ses-

sions, Novel Tones

0.088 -1.257 0.209

* = p < 0.05, ** = p < 0.001

9.2.4.5 Quantitative comparison between sessions (within modality)

Inter-session differences, evident in the random-effects analyses, were more specifically

characterised with an ICC analysis. Figure 9.4 (top) summarises the group level ICC

results within modality, where the ICC values are consistently high in task-related regions,

such as the auditory and motor cortices, in both modalities for the contrast maps of

Deviant + Novel > Silent. However, the spatial extent with high ICC, in the regions

detected with Looping Star, was much smaller than in GRE-EPI and negative ICC values

were seen in regions from the Looping Star data, outside of task-related regions. This

was not the case in GRE-EPI data. A more skewed joint distribution (towards higher ICC

values) was seen in GRE-EPI between activation T-score and ICC score in comparison
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with Looping Star.

An independently derived functional ROI of the auditory cortex (Supplementary Material

9.3.3), was used to calculate the intra-voxel reliability (ICCv) between sessions for

each subject, specifically testing between session consistency in an auditory region in

each individual. Significantly higher ICCv values were identified using this method on

average across subjects in this auditory ROI for GRE-EPI than Looping Star (Figure

9.4, centre), where p(two-tail) = 0.002. There was no evidence of one participant

producing particularly low ICCv values in both modalities (i.e. having low ICCv in both

modalities).

To further evaluate the ICC results, the between-subject sum of squares and between-

session sum of squares outputs from the ICC analysis, which are calculated from the

activity maps, were explored (Figure 9.4, bottom). Both modalities demonstrated clusters

of low spatial extent with high between-session variance in the visual and auditory cortices.

Although both modalities demonstrated high between-subject variance within the frontal

lobe and auditory cortex, GRE-EPI demonstrated higher between-subject variance than

Looping Star in the auditory cortex and along the longitudinal fissure.
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Figure 9.4: (top) Plots of intra-class correlation coefficient (ICC) vs T-score, relative voxel frequency
vs ICC and ICC z-score map for each modality. (centre) Intra-voxel reliability (ICCv) calculations with
outputted score for each participant in an auditory region-of-interest (ROI) (overlaid on grey matter
mask on top right) can be seen with accompanying box-and-whisker plot of the outputted ICCv value
for the auditory ROI across participants. Significant differences between inter-modality intra-voxel
reliability was identified, where p(two-tailed) = 0.002 (** = p < 0.05). (bottom) Between-session and
between-subject difference maps outputted from ICC analysis. Overlaid on ch2 image (Holmes et al.,
1998) in MRICRON (Rorden and Brett, 2000). Slice (mm = millimetres) in MNI space provided. Scale
of ICC z-score adjusted to account for functional sensitivity differences between modalities.

9.2.5 Discussion

9.2.5.1 Summary of Results

With respect to our key aims, we demonstrated that 1) multi-echo Looping Star is

sensitive to the BOLD response elicited during the auditory oddball paradigm, 2) multi-

echo Looping Star has comparable sensitivity for novel tone discrimination in auditory

regions, relative to the GRE-EPI acquisition performed by Gomot et al. (2006), though

inter-modality differences were also identified, and 3) multi-echo Looping Star has lower
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test-retest reliability than GRE-EPI. We also observed some limitations in the Looping

Star technique, such as its reduced tSNR, driven in part by the need to employ a very

low excitation flip angle in this modality.

9.2.5.2 Physiological & Behavioural Data

On average, there were no differences in the mean heart rate and respiration volume per

sampling time across participants for the duration of the different scans. This suggests

that overall there were no additional systemic effects imposed by either imaging modality

across the paradigm duration. Behaviourally, participants performed very well with regards

to detecting the Deviant and Novel tones during both modalities. This is unsurprising as

the GRE-EPI pulse sequence design used was identical to that used in the original study

by Gomot et al. (2006), especially ensuring that the EPI slice acquisition train contained

the appropriate delays for the tones to be heard by the participants. Our behavioural

data also indicated that subjects remained attentive and alert throughout the scans.

9.2.5.3 Whole-brain Voxel-wise GLM Random-effects Analysis

In general, our results demonstrated good agreement with those of Gomot et al. (2006).

The main effect of Deviant and Novel tones versus Silence demonstrated consistent

bilateral activity in both GRE-EPI and Looping Star sessions, providing evidence that

Looping Star is sensitive to the BOLD response in event-related auditory paradigms.

Right hemisphere involvement of BA 41 was seen in both modalities, which may be linked

to the right hemisphere involvement in attention processes (Müller et al., 2002; Stevens

et al., 2005). Similar activity patterns were also seen in the response to Deviant + Novel

> All, which addressed potential issues with the Silent condition likely being an unstable

baseline due to its short duration.

The separate contrasts of Deviant > All and Novel > All also demonstrated significant

results in auditory regions for both modalities, but there were no significant results for
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the contrast Deviant > Novel. This could indicate that higher attention was paid to the

Novel tones, eliciting a higher amplitude response in spatially overlapping regions relative

to Deviant tones. This is supported by the functional overlap for Deviant and Novel tones

seen here and by Gomot et al. (2006), alongside the proximity of the overlap of auditory

loci and the prevalence of attention-driven modulations observed in a meta-analysis by

(Alho et al., 2014). A key inter-modality difference that should be explored in depth

with a larger cohort was that only Looping Star Session 1 revealed significantly greater

activity in response to Novel trials compared to Deviant stimuli in the auditory regions.

There were no behavioural motivations for this to be the case, therefore future studies

may benefit from exploring potential differences in cognitive engagement, perhaps using

a different oddball paradigm. This would inform whether the differences we observed are

linked to the reduced auditory load in Looping Star.

9.2.5.4 Measurement of between modality differences

The inter-modality paired t-test for the contrast of Deviant and Novel tones over Silence

indicated that there were no statistically significant differences in activity in auditory

regions, but differences were present in motor cortices. However, significant activity in

the motor cortex was indeed identified in both modalities, therefore these differences are

likely related to functional sensitivity differences between techniques that lead to more

localised responses in Looping Star. Significant differences in percentage signal change

were only identified for the parameter estimate of the Deviant stimuli, which were much

lower in Looping Star compared to GRE-EPI. To verify whether this could be linked to

the difference in auditory demand, application of Looping Star with a paradigm exploring

repetition priming (Bergerbest et al., 2004) may be of benefit.

9.2.5.5 Measurement of between-session reliability

The ICC results overall indicated lower reliability of Looping Star activity maps for

the contrast Deviant + Novel > Silent compared with those of GRE-EPI. This was
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demonstrated by the following: 1) the joint distribution indicated a strong relationship

between T-score and ICC for GRE-EPI, i.e. a strong relationship between activity and

repeatability, that was not apparent for Looping Star, 2) higher ICC values were seen in

the auditory and motor cortex for GRE-EPI and Looping Star relative to the rest of the

brain, though Looping Star demonstrated negative ICC values across the cortex, outside

of the auditory regions, unlike GRE-EPI, suggesting high between-session variance, and

3) higher intra-voxel reliability (ICCv) was seen in the auditory ROI for GRE-EPI than

Looping Star on average across participants, therefore the signal distribution is more

consistent in GRE-EPI than Looping Star within the auditory ROI. The lower tSNR

and smaller identified clusters in Looping Star could be a contributing factor to this

inter-session difference, though cognitive links to acoustic background noise have been

identified in previous studies that could also contribute (Cho et al., 1998a; Kiehl and

Liddle, 2003; Novitski et al., 2003; Seifritz et al., 2006; Wolak et al., 2016). Future

replicability and repeatability studies should aim to disentangle these effects.

9.2.5.6 Limitations & Future Work

It is important to emphasise that our intention was to perform the first evaluation of

multi-echo silent fMRI in an event-related context, and we acknowledge that a larger

cohort would improve the generalisation of these findings. Limitations regarding the

paradigm design, such as the duration of the resting blocks being barely longer than the

haemodynamic response, were unavoidable as we aimed to replicate the paradigm used by

Gomot et al. (2006). We did, however, adapt the original general linear model by deciding

against modelling the Standard tones (Gomot et al., 2006) to avoid over-parametrisation.

Our desire to reproduce the conditions of the study of Gomot et al. (2006) as much as

possible, also meant that we did not acquire multi-echo GRE-EPI data and so were limited

in our comparisons. There were also some inherent limitations in the pulse sequence

design of the version of Looping Star that we employed, which prevented both faster

imaging and higher tSNR. These have been outlined in detail by (Dionisio-Parra et al.,

2020).
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There is scope to further characterise Looping Star for targeting specific optimisation

strategies. Such avenues include evaluating the impact of spatial blurring induced during

acquisition, assessing whether anatomical configuration interacts with certain acquisition

parameters, and exploring the impact of physiology on this three-dimensional acquisition.

Future studies could also capitalise on the reduced impact of inflow effects in Looping

Star given the absence of slice selection. Furthermore, alternative reconstruction schemes,

beyond the one employed here for Looping Star, may be more appropriate in future

studies. Such techniques include compressed sensing and low-rank reconstruction, which

employ under-sampled k-space trajectories (Chiew et al., 2015; Holland et al., 2013; Zong

et al., 2014).

9.2.6 Conclusions

Looping Star provides a useful, near-silent MRI acquisition alternative that mitigates the

limitations produced by the high acoustic noise of GRE-EPI, providing a "real-world"

scenario for functional neuroimaging. It also removes the reliance on strong ear protection

and noise cancellation hardware by minimising acoustic noise at its source. Looping Star

demonstrated sensitivity to the BOLD response in a complex, event-related auditory fMRI

paradigm, supporting its extension from simple blocked designs to complex cognitive

tasks that are more widely used across studies. Optimisation and further characterisation

with a range of paradigms and acquisition parameters is required to identify whether

it indeed reveals additional information on cognitive processes involved in auditory

processing.Furthermore, our study evaluated, for the first time, the test-retest reliability

of Looping Star, which warrants further study to understand the impact of reduced

scanner acoustic noise on cognitive strategies between sessions. Ultimately, Looping Star

is a promising technique that offers a useful alternative to study the mechanisms of brain

activity in sound averse populations.
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9.3 Supplementary Material

9.3.1 A: Under-sampling the multi-echo fMRI Looping Star

trajectory

Figure 9.5: Under-sampled 1080 spoke per volume (top) vs fully sampled 3600 spokes per volume
(bottom) trajectories that can be used for a 3.2 mm resolution and 19.2 cm field-of-view in Looping
Star. kx, ky and kz indicate the three dimensions of k-space. The under-sampled trajectory was used in
this study for Looping Star fMRI to reduce repetition time.
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9.3.2 B: Pre-processing Pipeline

Figure 9.6: Pre-processing pipeline workflow for each modality, also detailed with accompanying
references for software used in Methods (Section 9.2.3.5). FID = free induction decay, FWHM =
full-width, half-maximum.

9.3.3 C: Regions of Interest Visualisation

Figure 9.7: Grey matter mask (tissue prior template from SPM-12 software) with auditory region-of-
interest (ROI) from Neurosynth for term “auditory” thresholded at z = 5 (Yarkoni, 2011) overlaid in
red.
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Figure 9.8: Grey matter mask (tissue prior template from SPM-12 software) with auditory region-of-
interest (ROI) from Neurosynth for term “auditory” thresholded at z = 8 (Yarkoni, 2011) overlaid in
red.

Figure 9.9: Grey matter mask (tissue prior template from SPM-12 software).

9.3.4 D: Raw Data Images

Figure 9.10: Raw images of Looping Star individual echoes (free induction decay – FID, echo 1 – GRE,
echo 2 – GRE2) and GRE-EPI data for one participant.
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9.3.5 E: Behavioural & Physiological Results

Methods - Physiology The physiological data from one participant in the second session

was excluded due to severe artefacts in the pulse oximeter recording. First, an in-house

MATLAB (Mathworks, 2021) script was used to locate the peaks in the pulse oximeter

data and identify the inter-beat interval (IBI). The Kubios software (Tarvainen et al.,

2014) was then used for threshold-based artefact correction, during which every IBI value

is compared against a local average interval. If the IBI differed from the local average

by more than 0.45 seconds (‘very low’ threshold in software), then it was identified as

an artefact (Tarvainen et al., 2019). Kubios was also used to calculate the mean heart

rate over a duration of 10 minutes, given these IBI values. The measure of interest was

the mean heart rate over this duration, representative of the length of the paradigm, to

identify any global changes in exertion.

Time per respiratory volume (or sampling period) was derived using the PhysIO toolbox

within the TAPAS software in SPM-12 (Kasper et al., 2017). As stated in the software

scripts and by Birn et al. (2006), this is computed using filtered respiratory readings;

interpolating the maximum and minimum breathing amplitudes between detected peaks

and dividing them by interpolated durations between the maximum amplitudes of the

breathing signals. The inputs included the TR, sampling interval of the physiological

recording and number of scans per modality, with the slice to slice timing set as the

TR for Looping Star given its three-dimensional acquisition. The mean and standard

deviation for the sampling period were computed across the time series. Differences in

the mean physiological measures from the different modalities and sessions were deemed

statistically significant based on a two-sample T-test with equal variances assumed and

alpha = 0.05, if the p-value (one-tailed) < 0.05.

Methods - Behaviour Task performance accuracy was defined as whether a Novel or

Deviant tone was correctly detected, according to the responses measured from the

button box. Reaction time, between the onset of the tone and button press, was also

recorded. The number of responses to Novel and Deviant tones that were accurate (<
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625ms from onset) were summed with those that were late (> 625ms but < 1250ms).

This was performed as the interval between tone onsets was very short, meaning fast

reaction times were required: upon inspection of the behavioural data, we found many

responses that appeared within the following onset (i.e. between 625ms and 1250ms

after the previous onset), therefore indicating an accurate but delayed response. We also

explored the accuracy before and after the Standard and Deviant tones were swapped.

Figure 9.11: Physiology results for Looping Star (LS) and GRE-EPI. (top) Mean heart rate across
modality for duration 10 minutes. (bottom) Average respiratory volume per time point for each modality.
No significant differences identified. Methods for physiology measures available above.
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Figure 9.12: Behavioural results summarised for Looping Star and GRE-EPI. A) Between modality and
between session tests are summarised. B) Between tone (Novel and Deviant) differences within session
and within modality tests are summarised. No significant differences were found for any groups of tests
(represented by parentheses).
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9.4 Expanded Analysis and Further Commentary

This section includes analyses excluded from the manuscript that compares GRE-EPI and

Looping Star, further establishing the validity of the results from the above manuscript.

9.4.1 Hyperintensities and tSNR

9.4.1.1 Background

Although tSNR is a helpful measure to evaluate the temporal stability of the fMRI signal, it

can also be affected by regions having higher mean signal due to regional hyperintensities.

In regions where the tSNR may be high, the functional response could be subject to

exaggeration as the peak signal will be higher relative to other regions. To evaluate if there

were hyperintensities of tSNR, as well as ensuring functional sensitivity was unaffected by

the tSNR in our regions of interest, for both modalities, the relationship between tSNR

and statistical T-scores was evaluated. The beta parameters within modality for the

regions of interest in this study were also explored, particularly in the auditory and motor

regions, to ensure that there was no differential sensitivity based on location.

9.4.1.2 Methods

tSNR images, as described in Section 9.2.3, were computed after pre-processing (up to

spatial normalisation) but prior to smoothing. The resultant single-subject T-statistic

maps were overlaid on the single-subject tSNR images to ascertain if the resultant tSNR

related to the functional sensitivity, comparing the maps visually. To quantify this, a mask

of each region of interest (motor and auditory) was computed using a functional ROI

derived from Neurosynth Yarkoni (2011) to determine any patterns between T-statistics,

tSNR and location.
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The T-statistic maps for the contrast of Deviant + Novel > Silent were employed,

assuming T-statistics as a measure of functional sensitivity given that they represent the

best fit of the data to the GLM. The average T-statistic for the region was then plotted

against the average tSNR for the region. The beta parameter measures for Looping Star

and GRE-EPI were also extracted for the motor and auditory regions using MarsBaR

(Section 5.7.2). A paired T-test was used (after normality testing) in IBM SPSS 27.0

(IBM Corp, 2020) to identify any statistically significant difference in beta parameters

between regions of interest.

9.4.1.3 Results

Figure 9.13 shows an example of the T-statistics overlaid on the tSNR map for a single-

subject, whereby there were no visible correlations between the tSNR and T-statistics.

This was the case across all participants.
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As expected, Figure 9.14 showed that tSNR did not impact the T-statistics of significant

activity for either region of interest, as no correlations were found between tSNR and

T-statistics for the ROIs.

Investigating the extracted beta parameter measures for each ROI, it can be seen that the

beta parameters in general are lower in Looping Star, which is expected as our functional

sensitivity is lower as described in Section 9.2.4. The result of the paired T-test showed

that there was not a statistically significant difference in Deviant beta parameters within

modality between regions but there was for Novel beta parameters for both modalities

(Table 9.8). This does not indicate that Looping Star has differential sensitivity between

regions any more so than GRE-EPI.
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Table 9.8: Paired T-test results between ROIs for each modality and beta parameter.

Within-modality Paired T-

test (Auditory ROI - Motor

ROI)

T-score p-value (two-tailed)

Looping Star Deviant Betas -1.661 0.110

GRE-EPI Deviant Betas 1.777 0.089

Looping Star Novel Betas 2.615 0.015 *

GRE-EPI Novel Betas 2.387 0.026 *

* = p < 0.05

9.4.1.4 Discussion

Despite the hyperintensities seen in the raw images of Looping Star, visible in Supplemen-

tary Material Figure 9.10, regional tSNR did not appear to influence the resultant T-score.

A possible explanation for the pattern of hyperintensities in the raw image may stem

from motion as the patterns were not consistent across participants. Furthermore, the

differences in the extracted beta parameters between regions of interest were consistent

between GRE-EPI and Looping Star, supporting that there is no relationship between

specific regions and having a higher beta parameter based on modality.

9.4.2 Impact of Smoothing

9.4.2.1 Background

As illustrated in Section 7.2, smoothing can affect the GRE-EPI acquisition however

it tends not to affect Looping Star. The impact of lowering the smoothing threshold

from 8 mm to 6 mm smoothing for both modalities was evaluated to investigate the

robustness of the effects identified. The smoothing threshold was not lowered further
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as this would likely lead to an unfair comparison with GRE-EPI given the voxel size and

requirements for random field theory to hold (Worsley et al., 1996) alongside the findings

of our previous investigations (Section 7.2).

9.4.2.2 Methods

The smoothing threshold for the data was lowered from 8 mm FWHM to 6 mm FWHM

for both modalities; all other pre-processing and analysis remained consistent with Section

9.2.3. Only the statistical results for two contrasts are presented: Deviant + Novel >

Silent and Novel > Deviant

9.4.2.3 Results

Robust results were found for Looping Star and GRE-EPI when lowering the smoothing

threshold, whereby differential activation with Looping Star between tones was statistically

significant in Session 1 but not in Session 2 or for GRE-EPI.
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* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area, NSC = no significant clusters

9.4.2.4 Discussion

These results support the robustness of the Looping Star results to differentiating between

auditory tones when using a different spatial smoothing kernel.

9.5 Chapter Discussion

This event-related design study, replicating a paradigm employed by Gomot et al. (2006),

further indicates that despite the lower tSNR relative to GRE-EPI, Looping Star can be

useful for auditory processing studies. The reliability requires further investigation to

establish whether differences between sessions result from cognitive effects or acquisition

effects. One promising avenue would be to compare with novel 3D radial GRE-EPI

acquisition methods (Lee et al., 2010; Rettenmeier et al., 2021) to rule out the impact of

non-Cartesian versus Cartesian sampling. The additional investigations and commentary

showed that the results are robust to a lower smoothing threshold and are supported by

inter-subject correlation analysis. It was also found that tSNR did not affect T-scores,

with similar differences in T-scores between regions seen for both Looping Star and

GRE-EPI.
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In this chapter:

Summary

• A novel development of Looping Star is presented, involving temporally resolving

the excited coherences in Looping Star.

• This technique is characterised in a phantom in comparison with original Looping

Star.

• The application of this method is shown using an auditory speech processing task

in a small cohort in comparison with original Looping Star.

Overview

This chapter describes the background and application of coherence-resolved Looping

Star, a novel extension to Looping Star that involves temporally separating the excited

coherences to reduce noise in the fMRI signal. This technique was characterised in

phantoms and in vivo using an auditory speech processing paradigm. Its functional

sensitivity and temporal stability were compared with original Looping Star.

349



10.1 Chapter Introduction

The original version of Looping Star, published by Wiesinger et al. (2019), exhibited

echo-in echo-out mixing. This is caused by signal interference from the inwards refocusing

and outwards dephasing coherences produced from the inherent ‘looping’ nature of the

technique (Figure 10.1). In other words, the incoming echo and the start of the next

echo overlap in the same acquisition window, which leads to artefacts in the MR signal.

Figure 10.1: Conventional Looping Star in k-space with echo-in echo-out mixing (left), and short
version of pulse sequence illustrating gradient (Gx, Gy) and RF application (i.e. first two spokes) at
numbered time points (right). Overlapping coherences can be seen within the maximum k-space field of
view (kmax), or acquisition window. This temporal interference is shown for the first two excitation
loops (purple, green) in an 8 spokes per loop acquisition. At time point 9 there is signal present in the
field of view from both the refocused incoming and excited outgoing coherences.

Initially, the main approaches for addressing this echo-in echo-out mixing have been

focused on minimising the effects of this coherence overlap on the MR signal, for example

by applying a Fermi filter (Wiesinger et al., 2019). As described by Caparelli and Tomasi

(2008), Fermi filters smooth the fMRI data such that the high frequency components of

k-space are attenuated. Therefore, they primarily eliminate noise in the MR signal but

they can also remove signals of interest and reduce the SNR.

Although inappropriate for fMRI scanning as it doubles the scan time, RF phase cycling
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is another method of addressing signal noise, whereby two volumes are acquired per

required volume, with alternating transmit RF phases (by a factor of π). The two volumes

acquired with alternating π phases are then linearly combined. This suppresses unwanted

phase-dependent signal contributions (Tseytlin, 2017).

To improve the SNR and tSNR of the images, reducing the impact of noise in the MR

signal, the multi-echo capability of Looping Star has primarily been exploited. Optimal

multi-echo echo combination avoids removing signal or doubling the scan time, but does

not address the signal noise from echo-interference unless de-noising strategies are then

applied.

The signal interference has been effectively resolved by our collaborators at GE Healthcare

through implementing temporal spaces between the RF excitations, producing diametric,

rather than radial, spokes in k-space (Wiesinger and Solana, 2020). This means that

although it reduces the number of overall excited coherences by half, the spokes are

refocused with twice the length of the FID. This method is known as coherence-resolved

Looping Star (CRLS).

Relative to the original Looping Star methodology, this can also be visualised as exciting

every second radial spoke (Figure 10.2), allowing the cumulative trajectory to continue

to develop via the next gradient application and therefore elongating the spoke. The

coherences are therefore separated in time, preventing signal overlap.
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Figure 10.2: Coherence-resolved Looping Star in k-space (left), and pulse sequence illustrating gradient
(Gx, Gy) and RF application of first two spokes (right) with numbered time points. Echo separation
via coherence resolution can be seen for the first two excitations (purple, green), where each excitation
has two accompanying gradient steps (right) and therefore produces diametric spokes, visible as the
arrowheads (left). Since the second excitation (green) is applied at a later time point, temporal signal
overlap in the field of view is avoided as indicated by the absence of overlapping time points. Although
the FID is now only 4 spokes, the number of spokes per loop remains as 8 based on the number of
gradient steps remaining the same.

The point spread function of CRLS after nearest-neighbour gridding and density compen-

sation for a 24 spokes per loop fMRI acquisition can be seen in Figure 10.3, compared

with a 32 spokes per loop acquisition with original Looping Star. The different spokes

per loop were implemented as these parameters produce the same echo times in practice.

CRLS produces a smaller FWHM compared with original Looping Star (Section 3.10),

indicating improved spatial localisation.
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Figure 10.3: (top) Point spread function in k-space and image space, (bottom) profile of point spread
function. (left) Original Looping Star with FWHMx = 3 pixels, FWHMy = 3 pixels, acquired with
parameters 32 spokes per loop, 1024 spokes per volume, ± 31.25 kHz BW and (right) Coherence-resolved
Looping Star with FWHMx = 1 pixels, FWHMy = 2 pixels, acquired with parameters 24 spokes per
loop, 504 diametric spokes per volume, ± 31.25 kHz BW.

This chapter demonstrates the application of coherence-resolved Looping Star to an

auditory speech-processing paradigm in vivo, including comparisons with conventional

Looping Star. The sequence is also characterised in a phantom using temporal stability

measures (Section 5.7.1). These studies were performed using the GE 3 T MR750

scanner at the Clinical Research Facility (Section 5.2). The original pseudo-random

sampling trajectory generation method was used for both modalities (Wiesinger et al.,

2019) (Section 3.3), and the trajectories used were produced by Dr Anabea Solana (GE

Healthcare). Parts of this work were presented at the ISMRM Annual Meeting 2021

(Damestani et al., 2021c).
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10.2 Phantom Characterisation of

Coherence-Resolved Looping Star

10.2.1 Background

As discussed earlier, measuring the temporal stability of a pulse sequence in a phantom is

key for identifying signal characteristics independent of tissue properties. High amplitude

signal instabilities could mask the BOLD response in vivo, therefore it is important to

characterise the pulse sequence in the phantom prior to in vivo evaluation. The impact

of coherence resolution on temporal stability was evaluated in comparison with original

Looping Star to identify whether noise in the MR signal was reduced in a phantom.

10.2.2 Methods

The spherical phantom previously described (Section 5.7.1) was used to evaluate the

temporal stability. The data was collected using the parameters in Table 10.1, with the

32-channel coil (Section 5.2). The echo times were matched as closely as possible for the

different parameters. Nearest neighbour gridding was used for both modalities (Section

5.2), and the stability measures from Section 5.7.1 were implemented. The first four

volumes from analysis were neglected to allow the longitudinal magnetisation to reach

steady-state.
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Table 10.1: Acquisition parameters for single-echo coherence-resolved Looping Star

Acquisition Parameters

CRLS: 24 spokes per loop, FID + echo, ±31.25 kHz, GSF 14, 3 mm isotropic resolution,

TR = 2.47 s, TE = 26.88 ms, factor of 2.5 undersampling, FOV = 19.2 cm, FA = 3◦,

816 diametric spokes per echo volume, 100 volumes, 4 mins 24 s

CRLS: 24 spokes per loop, FID + echo, ±31.25 kHz, GSF 14, 3 mm isotropic resolution,

TR = 1.53 s, TE = 26.88 ms, factor of 4 undersampling, FOV = 19.2 cm, FA = 3◦,

504 diametric spokes per echo volume, 100 volumes, 2 mins 39 s

Original LS: 32 spokes per loop, FID + echo, ±31.25 kHz, GSF 14, 3 mm isotropic

resolution, TR = 2.33 s, TE = 26.88 ms, factor of 4 undersampling, FOV = 19.2 cm,

FA = 3◦, 1024 spokes per echo volume, 100 volumes, 3 mins 52 s

10.2.3 Results

Table 10.2 shows the stability measures for each acquisition. It can be seen that the 24

spokes per loop CRLS acquisition with lower undersampling produces higher SNR and

tSNR values than original Looping Star, which is expected, however it also produces the

lowest RDC value. The amount of signal fluctuation and drift is similar across acquisitions.

For the same undersampling factor, CRLS produces a lower tSNR and SNR, which is

expected as the number of spokes per volume is lower.

Table 10.2: Temporal stability analysis of 2D ROI (15 x 15 pixel) for gradient echo of original (LS)
and coherence-resolved Looping Star (CRLS). US = undersampling factor.

Acquisition SNR tSNR PSF (%) PSD (%) RDC (pixels)

CRLS: 24 spl, x

2.5 US

268.49 248.98 0.108 -0.15 3.42

CRLS: 24 spl, x 4

US

195.72 200.69 -0.091 -0.13 5.70

Original LS: 32

spl, x 4 US

236.02 229.86 0.088 -0.07 5.16
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Figure 10.4 demonstrates comparable SSN, Weiskoff curves and frequency profiles between

acquisitions, with higher tSNR across the phantom for the 24 spokes per loop acquisition.

The lower tSNR in the centre of the phantom was found to be related to lower average

signal, which is likely linked to inhomogeneities in the spherical phantom as discussed

previously (Section 6.1).
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10.2.4 Discussion

Coherence-resolved Looping Star demonstrated good tSNR and SNR for both acquisitions

relative to original Looping Star, and a lower number of spokes per volume for coherence-

resolved Looping Star can produce higher tSNR than original Looping Star, likely due to

its diametric characteristics. Furthermore, the signal characteristics and temporal stability

were similar between techniques, demonstrated by the power spectra and Weisskoff

analysis. No significant pulse sequence-induced instabilities for CRLS were found and

therefore in vivo characterisation of the functional sensitivity may be explored.

10.3 Comparing Conventional and

Coherence-Resolved Looping Star In vivo

10.3.1 Background

This section directly compares conventional and coherence-resolved Looping Star using

an auditory speech processing paradigm in a small cohort. Using an auditory paradigm for

validation of both techniques is important given that their core benefit is acoustic noise

reduction. This work can be used to evaluate whether future studies should prioritise the

use of coherence-resolved Looping Star over its original iteration.

10.3.2 Methods

Five participants volunteered for this study. English words were played through MR-

compatible headphones during blocks of 24 second durations. The speed at which the

words were played was different for each block (30, 60, 90 and 120 words per minute),

and the order of the block was randomised (i.e. the speed did not steadily increase or
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decrease with consecutive blocks, but randomly changed). A fixation cross was displayed

during the paradigm and participants were asked to keep their eyes open. Rest blocks of

24 seconds duration involved a fixation cross with no auditory stimulation (Figure 10.5).

The paradigm set up is described in Section 5.3.

Figure 10.5: Auditory speech processing paradigm, wpm = words per minute. The fixation cross was
displayed throughout the paradigm, the speech bubble in this visualisation indicates auditory words being
spoken.

The acquisition parameters are detailed in Table 10.3, and were selected to closely match

the TR and TE values between acquisitions. The number of volumes was selected

to equalise the scan times for the two scans. The acoustic noise of each acquisition

was measured in the centre of the scanner bore for a duration of 15 seconds (Section

5.5). Image reconstruction of both Looping Star datasets was performed using nearest-

neighbour gridding. The scan order was randomised between participants to avoid order

effects.

Table 10.3: Acquisition parameters for original and coherence-resolved Looping Star for fMRI.

Acquisition Parameters

Coherence-resolved Looping Star: FID + echo, ±31.25 kHz BW, 24 spokes per loop,

816 spokes per volume, GSF = 14, TR = 2.47 s, TE = 26.9 ms, isotropic voxel

resolution = 3 mm, FOV = 19.2 cm, FA = 3◦, 142 volumes

Original Looping Star: FID + echo, ±31.25 kHz BW, 32 spokes per loop, 1024 spokes

per volume, GSF = 14, TR = 2.33 s, TE = 26.9 ms, isotropic voxel resolution = 3

mm, FOV = 19.2 cm, FA = 3◦, 151 volumes

An anatomical image was acquired for each participant using a silent T1 weighted
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inversion recovery-prepared RUFIS acquisition for spatial normalisation of the fMRI

datasets (Hollingsworth, 2015), with parameters: TI = 450 ms, 1 mm isotropic resolution,

FOV = 22 cm, FA = 2◦, ±15.6 kHz (Figure 10.6).

Figure 10.6: Example of single subject T1 weighted inversion recovery-prepared RUFIS acquisition.
Image presented using FSL (Jenkinson et al., 2012).

For one participant, a single volume with high number of spokes was additionally acquired

to qualitatively compare image quality between coherence-resolved, original, RF cycled

and filtered Looping Star acquisitions, highlighting whether benefits are clear when no

additional undersampling effects are taking place. The acquisition parameters are given

in Table 10.4. Both acquisitions were reconstructed with nearest-neighbour gridding, and

the conventional Looping Star scans were also reconstructed with Fermi filtering and use

of the RF-phase cycling for comparison with coherence-resolved Looping Star.

Table 10.4: Acquisition parameters for single-volume original and coherence-resolved Looping Star

Acquisition Parameters

Coherence-resolved Looping Star: FID + echo, ±31.25 kHz, 24 spokes per loop, 4176

spokes per volume, GSF = 14, TR = 7 s, TE = 26.88 ms, isotropic voxel resolution =

3 mm, FOV = 19.2 cm, FA = 3◦, one volume

Original Looping Star: FID + echo, ±31.25 kHz, 32 spokes per loop, 4160 spokes per

volume, GSF = 14, TR = 14 s, TE = 26.88 ms, isotropic voxel resolution = 3 mm,

FOV = 19.2 cm, FA = 3◦, RF phase cycling on, two volumes.

Steady-state signal stabilisation was ensured by removing the first four volumes of both
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Looping Star datasets. tSNR was computed using second-order polynomial de-trending

of the mean signal from the normalised datasets (Friedman and Glover, 2006), followed

by averaging across participants.

The dataset was pre-processed with a standard SPM-12 pipeline (FIL Methods Group,

2020), including bias field correction and segmentation of the T1-weighted RUFIS scan,

realignment, co-registration of the FID and the T1 image and application of the same

transformation matrix to the other echo images, spatial normalisation to MNI space with

images saved at 2 mm spatial resolution, and 6 mm FWHM smoothing.

First level and group level analyses were also performed in SPM-12. A 128 s high-pass

filter was applied with motion regressors and the auditory stimuli modelled in the general

linear model. The standard canonical double-gamma hemodynamic response function

was employed. The AR(1) autocorrelation correction function was also employed for

ReML parameter estimation (Poldrack et al., 2011). A first-order polynomial expansion

of the parametric modulation for the speed at which words were spoken was also included

in the general linear model. This model was used as the required activation was expected

to increase with speed, though the volume of the words spoken remains the same. The

contrast for the main effect of sound and the main effect of word frequency were modelled,

as in Section 7.3.

Cluster-level inference using a primary uncorrected cluster-forming threshold of p <

0.001 uncorrected (Woo et al., 2014; Worsley et al., 1996) was employed. Only clusters

surviving family-wise error correction at the cluster-level (i.e., pFWEc < 0.05) were deemed

significant. A paired T-test between the contrast maps for the main effect of sound was

also computed to directly compare modalities.

The normalised (i.e. scaling the signal to have a mean = 0 and standard deviation = 1)

signal time series was extracted from the a 10 mm radius spherical ROI centred on the

highest peak T-statistic within the most significant cluster (i.e. highest T-statistic in the

cluster of pFWEc < 0.005) for each participant using MarsBaR (Brett, 2016; Brett et al.,

2002). The percentage signal change was computed in this ROI for each participant as
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described in Section 5.7.2.

10.3.3 Results

The improvements to image quality are qualitatively seen in Figure 10.7, whereby

coherence-resolution can be seen to improve the identification of the ventricles relative

to conventional Looping Star, regardless of filtering.

Figure 10.7: Image quality of single volume for the echo of acquisitions in Table 10.4, with reconstruction
including averaging of the RF phases (+ SPGR) or Fermi filtering (+ filter). Image presented using FSL
(Jenkinson et al., 2012).

The acoustic noise (LAeq) for conventional Looping Star fMRI was 66.4 dB(A) and 66.3

dB(A) for CRLS fMRI, compared with the ambient scan room noise at 65 dB(A). The

average tSNR across participants for conventional and coherence-resolved Looping Star

was similar (Figure 10.8).

Figure 10.8: tSNR for original (left) and coherence-resolved (right) Looping Star echo data averaged
across participants. Image presented using FSL (Jenkinson et al., 2012).
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Both modalities identified significant activity related to the main effect of sound, with

coherence-resolved Looping Star identifying more significant clusters of smaller spatial

extent relative to the single larger cluster identified by original Looping Star (Figure 10.9,

top). The statistics table accompanying these results can be seen in Table 10.5, where

coherence-resolved Looping Star provided much higher T-scores but smaller cluster extent

relative to original Looping Star. When investigating the single-subject statistical maps,

varying lateralisation of the activity across participants was found for both modalities

(Figure 10.9, bottom).

Figure 10.9: (top) Group-level T-statistic maps for the main effect of sound, thresholded at the
appropriate cluster-extent for statistical significance. Visually demonstrated at 2 < T < 10. Image
produced using NiLearn (The Nilearn developers, 2021). (bottom) Single-subject T-statistic maps
overlaid on for all participants, thresholded at 3 < T < 10 without cluster-extent correction. Image
presented using FSL (Jenkinson et al., 2012).
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* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

For the speed at which words were spoken, only original Looping Star identified significant

activity and this was once again left-lateralised as in Section 7.3. Coherence-resolved

Looping Star identified a left-lateralised non-significant cluster in the auditory cortex

(Figure 10.10). A larger sample size may be required to better resolve this effect, given

that Looping Star has demonstrated low power (Section 7.2.3). The accompanying

statistical results can be seen in Table 10.6, where once again it can be seen that the

cluster extent was lower but with a much higher T-statistic for coherence-resolved Looping

Star.

Figure 10.10: Main effect of word frequency for both modalities, thresholded at appropriate cluster-
extent for statistical significance of original Looping Star. For coherence-resolved Looping Star, no
significant activity was found so thresholding was performed for the cluster-extent of nearest statistical
significance. The T-statistics were between 2 < T < 10. Images were produced in Nilearn (The Nilearn
developers, 2021).
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* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

Figure 10.11 demonstrates the time series extracted from the 10 mm radius spherical auditory

ROI with the highest peak T-statistic for both modalities. Clear paradigm-related time series

are seen in both modalities, with one participant demonstrating poor signal quality.

Figure 10.11: Extracted time series from 10 mm radius spherical ROIs in auditory cortex for each
participant. (top) Original Looping Star, (bottom) Coherence-resolved Looping Star. Blue indicates the
extracted signal and black indicates the task onsets.
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Figure 10.12 demonstrates the range of percentage signal change extracted from the 10 mm

radius auditory ROI with the highest peak T-statistic for both modalities. Table 10.7 details

the mean beta and percentage signal change values, highlighting higher values for both from

coherence-resolved Looping Star. However, the paired T-test between techniques indicated no

statistically significant differences between modalities.

Figure 10.12: Percentage signal change violin plots across subjects from 10 mm radius spherical ROIs
(Bechtold, 2016).
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Table 10.7: Mean percentage signal change and mean beta parameter in spherical ROI for both
modalities, extracted with MarsBaR (Brett, 2016; Brett et al., 2002).

Acquisition Mean Beta in Spherical ROI Mean PSC in Spherical ROI

Coherence-

resolved Looping

Star

2.14 1.39

Original Looping

Star

1.79 1.28

10.3.4 Discussion

These results indicate that coherence-resolved Looping Star and original Looping Star

produce similar results, with the key difference being that original Looping Star produces

spatially larger clusters with lower T-scores whereas in coherence-resolved Looping Star the

clusters are smaller with very high T-scores. As T-values result from the ratio between the

parameter estimate and error variance (Pernet, 2014), this could indicate that coherence-

resolved Looping Star has an advantage of smaller error variance, potentially due to

reduced noise, although this requires validation in a larger cohort.

Interestingly, participants produced the distinct between-subject lateralisation, supporting

studies of unique lateralisation of the auditory cortex between individuals (Burton et al.,

2001; Langers et al., 2005a; Tervaniemi and Hugdahl, 2003). However, given that one

participant demonstrated high noise in this small cohort and due to the low power of

Looping Star, a larger cohort is crucial for better interpreting the benefits of coherence-

resolved Looping Star.
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10.4 Chapter Discussion

This chapter presented the successful application of coherence-resolved Looping Star,

demonstrating improved image quality and good functional sensitivity relative to original

Looping Star. The temporal stability of coherence-resolved Looping Star was also similar

to original Looping Star, though coherence-resolved Looping Star was also capable of

producing higher tSNR and SNR values for fewer spokes per volume. Though differences

were not significant between techniques, the subtle difference at group level was that

coherence-resolved Looping Star produces smaller clusters of higher peak T-statistic

values in comparison with original Looping Star. This would be an important consideration

for effect size calculations in future, if replicated in a larger cohort.
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Chapter 11

Taking Looping Star Further
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Summary

This chapter describes avenues for taking Looping Star further, including:

• A collaborative project involving a novel image reconstruction framework for accel-

erated coherence-resolved Looping Star

• Proof-of concept quantitative susceptibility mapping with coherence-resolved Loop-

ing Star

• Exploration of the functional sensitivity in free-induction decay images

Overview

This chapter highlights interesting future directions of Looping Star. A novel method

for improving coherence-resolved Looping Star image quality and temporal resolution is

demonstrated as a proof-of-concept study. A preliminary single subject investigation into

susceptibility-weighted imaging with coherence-resolved Looping Star, compared for the

first time with conventional MRI, is performed. Evaluation of the free-induction decay

functional sensitivity is also explored with both original and coherence-resolved Looping

Star.
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11.1 Chapter Introduction

This thesis has so far demonstrated the successful applications of both original and

coherence-resolved Looping Star across numerous functional paradigms and at rest.

One of the primary limitations of Looping Star is the image quality, as Looping Star

is susceptible to blurring due to its k-space sampling trajectory (i.e. the high spatial

frequency regions of k-space are not densely sampled).

When the Looping Star trajectory is highly sampled, the presence of image blur is lower.

However, the edges of k-space are always missed due to the spherical nature of acquisition

(See Section 3.4). Blur is also further induced by motion, as motion manifests as radial

smearing (Madio and Lowe, 1995).

High k-space sampling is not compatible with fMRI as further samples increase the

acquisition time. The primary method for reducing the acquisition time is therefore to

decrease the sampling density, which further affects the image quality. The impact of

undersampling in original Looping Star is visualised both in vivo and in a phantom in

Figure 11.1, where it can be seen that higher undersampling produces more image blur

and streaking.

When undersampling is employed in Looping Star, entire segments (or conical planes)

of k-space are not sampled, affecting both the image contrast and the resolution of

finer details in the image. This could pose issues for future studies that require shorter

repetition times, which are growing in popularity due to the benefits for detecting and

removing physiological noise (Agrawal et al., 2020), gains in statistical power (Dowdle

et al., 2021), as well as resolving neural activity (Lewis et al., 2016).
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A novel reconstruction method for accelerated non-Cartesian imaging is ‘Extreme MRI’,

which is a low-rank image reconstruction technique. Low-rank methods have gained

interest in recent years due to their potential for recovering fMRI signals from highly

under-sampled data (Chiew et al., 2015, 2016; Mason et al., 2021). Extreme MRI

involves adapting the Looping Star acquisition such that a single high resolution volume

is acquired, and this volume is then separated into an fMRI time series consisting of

randomly selected variable samples across the number of volumes of interest (Leynes

et al., 2021; Ong et al., 2020). The redundancy present in fMRI data is exploited to fill

missing k-space samples across volumes. To date, it has shown promising single subject

results for fMRI with coherence-resolved Looping Star (Leynes et al., 2021), however the

limitations of this method in terms of the accuracy of the signal detected with rapidly

accelerated Looping Star data has not been thoroughly investigated.

Beyond improving image reconstruction, the application of coherence-resolved Looping

Star to susceptibility-weighted imaging or quantitative susceptibility mapping has yet to be

explored. Furthermore, the majority of this thesis has focused on the gradient echo, given

its inherent T2* sensitivity and therefore sensitivity to the BOLD contrast, in combination

with its comparability with conventional GRE-EPI. However, there has been growing

interest in the use of the free-induction decay image for fMRI acquisition, as some studies

suggest that it may contain functional sensitivity to alternative physiological mechanisms

linked to neural activity such as inflow effects (Lehto et al., 2017) and aspects of oxygen

extraction (MacKinnon et al., 2020). It may therefore be of interest to investigate the

functional sensitivity of the FID signal in Looping Star acquisitions to explore these

findings. This chapter includes proof-of-concept and preliminary investigations into these

future directions for Looping Star.
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11.2 Extreme MRI with Coherence-Resolved

Looping Star

11.2.1 Background

Extreme MRI is a low-rank image reconstruction method (Ong et al., 2020), where

low-rank is a mathematical definition for a matrix structure that can be constrained (i.e.

simplified). For fMRI, the data is considered low-rank as it is composed of a relatively

small number of spatially coherent temporal processes (Chiew et al., 2015). In other

words, fMRI data can be considered as a linear combination of a small number of principal

components. This means there is a redundancy in fMRI data that can be exploited: as

fMRI volumes contain generally similar information, the information in different volumes

can fill missing information in other volumes.

By variably sampling the fMRI data, i.e. intentionally missing data but in a different

way for each volume, low-rank reconstruction methods have been used to significantly

accelerate fMRI acquisition without substantial loss of functional sensitivity (Chiew et al.,

2015; Mason et al., 2021). For Extreme MRI with coherence-resolved Looping Star,

rather than acquiring a variably sampled time series, a single trajectory is used to acquire

one fully sampled volume (Feng et al., 2014), and this is then split into the number of

volumes for the desired TR. The method therefore relies on the assumption that the

participant remains still during scanning.

The Extreme MRI reconstruction framework also differs from other low-rank techniques

as it employs a multi-scale representation of the data. This is useful as the underlying

dynamics of the fMRI signal differ across spatial scales, so to capture these dynamics the

acquired data is modelled by blocks of a range of sizes (Ong et al., 2020). To limit the

amount of noise in the extracted time series during reconstruction, Extreme MRI relies

on the specification of a low-rank regularisation parameter, which thresholds the signal

noise in a manner similar to principal component analysis (i.e. by truncating the signal
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components based on the threshold selected). This can be flexibly selected.

In the interest of relevance to this thesis, for further details on the technical functionality

of the Extreme MRI framework I recommend the original paper (Ong et al., 2020) and our

recent collaborative single subject study (Leynes et al., 2021). In our collaboration, we

showed that Extreme MRI with coherence-resolved Looping Star could produce significant

single-subject activity at high spatial and temporal resolution (Leynes et al., 2021).

In this section, a preliminary study investigating the limits of Extreme MRI by employing

a heavily prospectively under-sampled multi-echo coherence-resolved Looping Star ac-

quisition is presented. Parts of this work were presented at the OHBM Annual Meeting

2021 (Damestani et al., 2021a). Andrew P. Leynes developed and provided the Extreme

MRI with CRLS reconstruction pipeline and also provided expertise on its functionality. I

ran the reconstruction scheme on data that I collected and subsequently analysed in the

following study.

11.2.2 Methods

Five participants (age range 25 – 58 years, one female) were scanned using the 3 T MR750

Clinical Research Facility scanner and 32-channel head coil (Section 5.2). The paradigm

was a simple block design including an 8 Hz visual checkerboard, with the duration

of the checkerboard as 10 s followed by 20 s rest consisting of a fixation cross. The

shorter duration of the checkerboard allows us to explore the capabilities of a substantially

accelerated acquisition.

The acquisition parameters for Extreme MRI with CRLS were 8 spokes per loop, FID + 3

echoes, ±31.25 kHz readout bandwidth, FOV = 19.2 cm, 3 mm isotropic resolution, TE

(ms) = 0, 8.96, 17.92, 26.88, scan duration 3 mins 49 s, FA = 2◦, GSF = 20. The echo

data was reconstructed with 1280 volumes, producing a TR = 0.18 s and approximate

undersampling per volume of 0.01. The low-rank regularisation parameter that limits the

amount of signal removed from the already under-sampled dataset λ(LR) was selected
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as 0.01. The block sizes were 16, 32, 64, representing the range of spatial scales to

reconstruct where a "block" is a smaller sub-matrix. In the case of a block size of 16,

the image matrix is decomposed into a number of 16 x 16 x 16 voxel matrices. This is

repeated for a range of block sizes to better explore the data across space. JSENSE and

SENSE were retained to iteratively reconstruct the images including coil combination with

accompanying parameter λ(JSENSE) = 1x10−12 (Leynes et al., 2021). An anatomical

T1-weighted RUFIS acquisition was also collected for each subject, with 1 mm slice

thickness, TI = 450 ms, FA = 3◦, FOV = 22 cm.

The first ten seconds worth of volumes were removed (i.e. 56 volumes), approximately

equating to the first 2000 spokes. Upon investigation of the times series, it was found

that the signal did not require any further volume removal as the signal appeared

stable. Pre-processing in SPM-12 of each echo (FIL Methods Group, 2020) involved bias

field correction and segmentation of the T1-weighted RUFIS acquisition, re-centring of

the origin, realignment, co-registration to the T1-weighted RUFIS acquisition, spatial

normalisation to MNI space with images saved at 2 mm spatial resolution and 6 mm

FWHM smoothing.

The first-level GLM in SPM-12 included the visual onsets and motion regressors, as well

as a 128 s high-pass filter and autocorrelation correction using the AR(1) function for

ReML parameter estimation (Poldrack et al., 2011). The standard canonical double-

gamma hemodynamic response function was used. Cluster-level inference using a primary

uncorrected cluster-forming threshold of p < 0.001. (Woo et al., 2014; Worsley et al.,

1996) was employed at group level. Only clusters surviving FWE correction at the

cluster-level (i.e., pFWEc < 0.05) were deemed significant. Group level analyses were

performed for each echo in SPM-12. The signal from the cluster with the highest peak

T-statistic was extracted for each subject for the third echo, as it was expected to have

highest functional sensitivity given its echo time. The tSNR for each participant was

calculated from their spatially normalised image.
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11.2.3 Results

The acoustic noise (LAeq) of Extreme CRLS was 73 dB(A), compared with ambient noise

at 64 dB(A). This is consistent with the acoustic noise expected from a single-volume

acquisition (see Section 6.3). The image quality of an fMRI volume reconstructed with

Extreme MRI image reconstruction in comparison with the fully sampled single-volume

image can be seen in Figure 11.2 for a single subject. The heavily under-sampled

dataset presents comparable image quality regarding anatomical detail, relative to the

fully-sampled single volume CRLS with nearest-neighbour gridding.

Figure 11.2: Image quality of each echo after reconstruction with Extreme MRI for a single volume
of the fMRI time series (left) in comparison with the fully-sampled single volume reconstructed with
nearest neighbour gridding (right) for a single subject (Damestani et al., 2021a).

No significant group level activity in response to the task was identified for any echo.

This was unexpected, hence this outcome was investigated further by exploring the single

subject results for the third echo. Figure 11.3 shows the single-subject tSNR and fMRI

first-level results for two participants, with accompanying extracted time series. The

tSNR pattern peaks at the centre of the image, which is the opposite to what is expected

for the 32-channel coil.

The blocks are reconstructed individually; hence the blocking artefact in the tSNR can
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be seen (Figure 11.3, left), produced by the spatially-dependent noise characteristics

per block. Statistically significant visual voxels were found (Table 11.1), but not in

the same spatial location between participants. The extracted time series does indicate

task-correlated activity (Figure 11.3, right), however there is substantial high-frequency

signal noise and an obvious loss of activity-related signal change.
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Table 11.1: Statistical results for activity of each subject during visual checkerboard paradigm

Subject Peak MNI

Co-ordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

1 -10 -90 6 17 (L) 6.27 0.001 * 694

2 -22 -100 14 18 (L) 7.62 0.033∗ 374

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

11.2.4 Discussion

Although significant single subject functional activity was identified, in agreement with our

previous study (Leynes et al., 2021), the spatial localisation was not consistent between

participants and hence no significant activity at group level was found. Substantial signal

noise in participant time series was also seen, as well as a blocking pattern in the tSNR

originating from the standard deviation from the signal, related to the spatial scales of

reconstruction. Low-rank reconstruction has parallels with PCA denoising, whereby a

larger low-rank regularisation parameter removes additional noise as it effectively truncates

the signal “components” according to the threshold used. It is therefore likely that the

low-rank regularisation parameter needs optimising for each participant.

The tSNR pattern also indicated that there was higher signal noise removal in the centre

of the image, causing a hyperintensity at the centre, further supporting that optimisation

of the low-rank parameter is required. Despite being a promising method, there remains

substantial loss in functional sensitivity and susceptibility to high frequency noise when

heavily undersampling. This preliminary work indicates that further investigation is

required into the parameter specification and functional limits of Extreme MRI image

reconstruction.

382



11.3 Quantitative Susceptibility Mapping with

Coherence-Resolved Looping Star

11.3.1 Background

Looping Star is a T2*-weighted multi-gradient echo technique, which is not only of benefit

to functional imaging but also for QSM and susceptibility-weighted imaging (SWI). This

is because T2*-weighted imaging provides sensitivity to magnetic field-induced de-phasing,

the primary mechanism behind mapping the magnetic susceptibility of tissues in the brain.

The original iteration of Looping Star demonstrated its capabilities of producing QSM

and SWI images (Wiesinger et al., 2019), but this has not been carried out using CRLS.

QSM measures the magnetic field heterogeneity induced by the magnetic susceptibility of

brain tissues, based on the phase of gradient echo data. As paramagnetic tissues locally

enhance the magnetic field and diamagnetic tissues locally reduce the magnetic field,

with different brain tissues housing different magnetic properties (Pauling and Coryell,

1936), the overall inhomogeneities that occur in the brain can be mapped. This is

done by ultimately measuring the frequency shifts (and therefore the difference in phase

accumulation) from the MR signal at different echo times (Chan and Marques, 2021).

Amongst many applications, QSM has been used to quantify the presence of iron in the

brain, potentially induced by microbleeds (Wang and Liu, 2015). It can also be used

to identify calcifications based on their diamagnetic properties (Wang and Liu, 2015).

SWI is more commonly used to investigate intracranial haemorrhages or stroke. Various

reviews have been conducted of both methods (Deistung et al., 2017; Haacke et al.,

2015; Halefoglu and Yousem, 2018; Liu et al., 2015a), with applications demonstrated in

multiple sclerosis (Barkhof and Thomas, 2018), Alzheimer’s disease (Acosta-Cabronero

et al., 2013), and brain arteriovenous malformations (Biondetti et al., 2019).

Imaging magnetic biomarkers with CRLS is therefore a vital development for facilitating
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its clinical translatability for the benefit of patients who may be sound averse. This

study is a proof-of-concept investigation demonstrating the use of CRLS for susceptibility-

based imaging in a single subject in comparison with a conventional gradient echo

susceptibility-weighted acquisition (SWAN).

11.3.2 Methods

A single-subject was scanned using a 12-channel coil with CRLS acquisition parameters:

2 spokes per loop, FID + 9 echoes, ±31.25 kHz readout bandwidth, GSF = 40, 1 mm

isotropic resolution, no undersampling factor, FOV = 19.2 cm, ∆TE (ms) = 6.4 ms, FA

= 2◦, scan time 12 mins 58s. The gradient echo susceptibility-weighted angiography

(SWAN) acquisition parameters were: 256 x 256 matrix size, ±62.5 kHz BW, 138 slices,

1 mm isotropic resolution, 13 echoes, FA = 20◦, ∆TE (ms) = 3.3ms, scan time 9 mins

58 s.

Nearest-neighbour reconstruction was employed for CRLS, including coil combination

using a simple sum of squares technique with the sensitivity maps calculated from a

calibration region in the centre of k-space (McKenzie et al., 2002). The SWAN data

were reconstructed using standard GE Healthcare online reconstruction.

The acoustic noise was measured at the centre of the scanner (see Section 5.5). Both

datasets were processed using a pipeline in SuscEptibility mapping PIpeline tool for phAse

images (SEPIA) (Chan and Marques, 2021), based on the recommended QSM pipeline

by Wang et al. (2021). SEPIA is a novel post-processing pipeline tool for susceptibility

imaging (Chan and Marques, 2021), connecting numerous toolboxes under one workflow.

The workflow employed for this study included:

• Echo phase combination using optimum weights, meaning echo combination is

based on SNR weighting

• Laplacian phase unwrapping via susceptibility tensor imaging (STI) suite Li et al.
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(2014) to remove wrapping artefacts and obtain the true phase evolution

• Bipolar readout correction for CRLS, but not for SWAN as it is a unipolar acquisition,

to correct for any eddy current-induced phase offsets

• Background field removal with VSHARP, a sophisticated harmonic artifact reduction

for phase data (SHARP) method (Schweser et al., 2011) with a variable radius

of the spherical kernel at the brain boundary, via STI suite Li et al. (2014), with

spherical mean value (SMV) size 5mm to preserve the spatial boundaries, for

removing magnetic fields contributed from external sources

• Removal of the residual using a 3D polynomial of order 4 to further correct any

phase offsets

• QSM using iterative least squares (ILSQR) in STI suite for mapping the susceptibility

sources based on the tissue fields computed via dipole inversion Li et al. (2015)

For the QSM, the default values provided by the software were used: a threshold on

the dipole response of 0.01 (to avoid division by zeroes of the dipole kernel in k-space),

maximum of 100 iterations with tolerances for error (i.e. streaking artefacts) specified at

the first level as 0.01 and second level as 0.001. Two levels of least squares are performed

to reduce the amount of streaking, first applied to the phase computation and then

applied to the susceptibility computation Li et al. (2011b)

The zero-padding pad size was 5 x 5 x 5, which theoretically improves the numerical

stability of the maps. CSF was used as the reference tissue. A mask was produced using

FSL Brain Extraction Tool (Jenkinson et al., 2012). The inverse problem relating suscep-

tibility to phase data was solved. The R2* map was computed using the MEDI toolbox

(Liu et al., 2011), which uses auto-regression on linear operations mono-exponential

decay fitting function (ARLO; Pei et al. (2015)).

SEPIA was also used to produce the SWI images from the dataset, including contrast 4,
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i.e. the power applied to the weighting maps prior to multiplying it to the magnitude

data (Chan and Marques, 2021). The SWI implementation uses high-pass homodyne

filtering (Chan and Marques, 2021; Noll et al., 1991), with the Hamming filter employed

specified with kernel size 12 and the image contrast was specified at a threshold of π

radians.

11.3.3 Results

The acoustic noise measures (LAeq) for CRLS QSM were 81.9 dB(A) and for SWAN

were 110.4 dB(A), compared with the ambient scan room noise at 65 dB(A). Figure

11.4 shows the raw magnitude and phase images at the specified echo time for each

acquisition, as well as the susceptibility-weighted image.

There was good agreement between the SWAN and CRLS SWI images, although some

frontal lobe dropout is visible in CRLS that may have affected the phase at the brain

boundaries as indicated by the arrows. This was also indicated in the wrapped phase

images, where there were some differences in phase jumps visible around the frontal lobe

that propagate into the cortex. Equally, the acquisitions were collected at different echo

times therefore different phase jumps can be expected.
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Figure 11.5 shows the QSM, R2* map and local field image for coherence-resolved

Looping Star and the SWAN acquisition. The local field map shows the magnetic field

induced by the tissues, and the maps are consistent between modalities. Signal dropout is

again seen in the frontal lobe of the CRLS acquisition, but otherwise good agreement is

seen between techniques. The R2* maps also show good consistency between techniques,

with the arrow indicating a thalamic region in particular with similar values.
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To investigate in more depth, Figure 11.6 shows the QSM and R2* maps for the basal

ganglia. Figure 11.6 specifically highlights the putamen as it contains the highest iron

concentrations (Péran et al., 2009), which has good visibility and comparable R2* and

QSM values between both acquisitions. The substantia nigra and red nuclei are more

visible in the SWAN acquisition than CRLS, though a potential artefact seen in SWAN is

not seen in CRLS. The measurements agreed with those reported previously (Cohen-Adad,

2014).
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11.3.4 Discussion

This study has shown that coherence-resolved Looping Star can undoubtedly be used for

QSM, SWI and R2* mapping, and it is compatible with an exemplar SEPIA processing

pipeline (Chan and Marques, 2021). Improvements to image quality via image recon-

struction should be explored to improve the resolution of subcortical structures. Further

optimisation of the QSM pre-processing pipeline should be explored. Upon optimisation,

this work could also be extended to implementing Looping Star for functional QSM (Balla

et al., 2014), given its multi-echo capability, or for biomarker detection.

11.4 Free-induction Decay fMRI

11.4.1 Background

The majority of this thesis has focused on comparing the gradient echoes of Looping Star

and GRE-EPI, given that the BOLD contrast is produced from changes in T2* (Section

1.7). However, Looping Star conveniently also collects the FID image, and recent studies

have indicated that alternative mechanisms behind functional activity, such as inflow

effects and oxygen extraction, can be detected from fMRI using the FID images (Lehto

et al., 2017; MacKinnon et al., 2020; Paasonen et al., 2020).

This section details a preliminary investigation into the use of the FID for fMRI in both

original and coherence-resolved Looping Star. The simultaneous collection of the FID

and the echo allows direct comparison at the different echo times; hence Looping Star

could be a promising technique for future FID functional sensitivity investigations.
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11.4.2 Methods

Five participants volunteered for this study, which is the same study as in Section 10.3.

As described previously, English words were played through pneumatic MR-compatible

headphones during blocks of 24 second durations. The speed at which the words were

played was different for each block (30, 60, 90 and 120 words per minute), and the

order of the block was randomised (i.e. the speed did not steadily increase or decrease

with consecutive blocks, but randomly changed). A fixation cross was displayed during

the paradigm and participants were asked to keep their eyes open. Rest blocks of 24

second duration involved a fixation cross with no auditory stimulation (Figure 10.5). The

paradigm set up is described in Section 5.3.

The acquisition parameters are detailed in Table 11.2, and were selected to closely match

the TR and TE values between acquisitions and the number of volumes was selected

to equalise the scan times for the two scans. The scan order was randomised between

participants to avoid order effects. It can be seen that the coherence-resolved Looping

Star FID acquisition produced half the number of spokes per volume relative to the echo

due to the temporal excitation spacing (Wiesinger and Solana, 2020). An anatomical

image was also acquired for each participant using a silent T1 weighted IR-prepared

RUFIS acquisition for spatial normalisation of the fMRI datasets, with parameters: TI =

450 ms, 1mm isotropic resolution, FOV = 22 cm, FA = 2◦, ±15.6 kHz.

Table 11.2: Acquisition parameters for original and coherence-resolved Looping Star

Acquisition Parameters

Coherence-resolved Looping Star: FID + echo, ±31.25 kHz BW, 24 spokes per loop,

408 spokes per volume, GSF = 14, TR = 2.47 s, TE = 0 ms, isotropic voxel resolution

= 3 mm, FOV = 19.2 cm, FA = 3◦, 142 volumes

Original Looping Star: FID + echo, ±31.25 kHz BW, 32 spokes per loop, 1024 spokes

per volume, GSF = 14, TR = 2.33 s, TE = 0 ms, isotropic voxel resolution = 3 mm,

FOV = 19.2 cm, FA = 3◦, 151 volumes
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Image reconstruction of both Looping Star datasets was performed using nearest-neighbour

gridding. The first four volumes of the Looping Star fMRI dataset were removed to

facilitate the longitudinal magnetisation reaching the steady state. The FID datasets were

pre-processed with a standard SPM-12 pipeline (FIL Methods Group, 2020), including

segmentation of the T1-weighted RUFIS scan, realignment, co-registration to the T1

image, spatial normalisation to MNI space with images saved at 2mm spatial resolution

and 6 mm FWHM smoothing.

First level and group level analyses were performed in SPM-12 (FIL Methods Group,

2020). A 128 s high-pass filter was applied with motion regressors and the auditory

stimuli modelled in the general linear model. The standard canonical double-gamma

hemodynamic response function was employed. The AR(1) autocorrelation correction

function was also employed for ReML parameter estimation (Poldrack et al., 2011).

The contrast for the main effect of sound was modelled. Cluster-level inference using

a primary uncorrected cluster-forming threshold of p < 0.001 unc. (Woo et al., 2014;

Worsley et al., 1996) was employed. Only clusters surviving family-wise error correction

at the cluster-level (i.e., pFWEc < 0.05) were deemed significant. The time series was

extracted from a 5 mm radius spherical cluster centred on the peak voxel from the most

significant cluster within the auditory cortex for each participant, or the cluster nearest

to the auditory cortex in the event no significant responses were found.

11.4.3 Results

The group level activity maps can be seen in Figure 11.7 with accompanying statistics in

Table 11.3. No significant auditory group level activity for coherence-resolved Looping

Star was found, but significant auditory activity was identified with original Looping Star.

Given that original Looping Star contains echo-in echo-out mixing, this could be due to

signal interference.
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Figure 11.7: Group level results of FID datasets for each modality, thresholded for the appropriate
cluster extent of significant voxels for original Looping Star and the cluster size near the auditory cortex
for CRLS, and visualised between 2 < T < 10. Visualised using Nilearn (The Nilearn developers, 2021).

Table 11.3: Statistical results of FID datasets

Acquisition Peak MNI

Co-ordinates

(x,y,z mm)

Brodmann

Area

Peak-level

T-statistics

Cluster-

level pFWE-

value

Cluster

Size

Original LS -36 -22 6 13 (L) 27.32 < 10−3 ** 81

CRLS 2 56 8 10 (R) 48.50 0.042 * 27

-58 -36 10 22 (L) 15.14 0.079 24

* = cluster-level p(FWE) < 0.05, ** = cluster-level p(FWE) < 0.001, N/A = outside of defined

Brodmann Area

Upon further investigation, significant activity at single-subject level was present in some

participants but not in others, with varying spatial localisation (Figure 11.8).

Figure 11.8: First level statistical maps overlaid for FID-only data for both modalities, thresholded at
T > 2. Visualised in FSL (Jenkinson et al., 2012).

Furthermore, clear task-related time series correlations in the auditory ROI were only

found for a few subjects (Figure 11.9).
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11.4.4 Discussion

Only original Looping Star identified significant peak auditory activity at group level, which

could be confounded by echo-in echo-out signal interference. Furthermore, significant

functional activity was not identified for all participants at single subject level in both

original and coherence-resolved Looping Star. Further investigations should take place in

coherence-resolved Looping Star in a bigger cohort to evaluate the reliability of functional

sensitivity and the spatial localisation of activity in the FID image, particularly given the

differences in lateralisation and image quality previously identified in this data (Section

10.3). Inflow effects are one potential mechanism behind this activity, though the presence

of these effects are expected to be lower in Looping Star as it is not slice-selective and very

small flip angles are employed, leading to a much smaller component of the longitudinal

magnetisation (Duyn et al., 1994).

11.5 Chapter Discussion

This chapter highlighted a few interesting future directions for Looping Star that warrant

further study. It was found that the Extreme MRI image reconstruction framework is

compatible with heavily undersampled coherence-resolved Looping star, producing impres-

sive image quality relative to fully-sampled coherence-resolved Looping Star. However, it

also requires further evaluation and optimisation of the threshold at which noise removal

is applied, via the low-rank parameter, as functional activity could be masked by the high

noise present when using very high undersampling.

The viability for coherence-resolved Looping Star to be used in quantitative susceptibility

mapping was also demonstrated, with good agreement demonstrated in comparison

with conventional gradient echo imaging. Methods of improving the spatial resolution

via image reconstruction is a further means to improve the identification of subcortical

structures, for example by using alternative reconstruction tools such as the RIESLING
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toolbox (Wood et al., 2021) being one promising avenue for future investigations. Finally,

preliminary investigations were begun into the functional sensitivity of the free-induction

decay image and initial indications that very localised activity may be identified were

found, however a larger cohort is required to validate this finding.
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Chapter 12

Chapter 12

Thesis Discussion

This thesis sought to evaluate, optimise and apply a novel fMRI acquisition technique

known as Looping Star. Looping Star was successfully characterised in a phantom, as

well as across various task-based paradigms and resting-state in vivo. Looping Star was

found to be capable of producing adequate functional sensitivity in both single-echo and

multi-echo modes. Its use alongside different pre-processing and analysis schemes was

also evaluated, determining that Looping Star is compatible with conventional pipelines.

Differences in functional sensitivity and image quality between Looping Star and GRE-EPI

were identified, explained in part by the reduced tSNR achievable with Looping Star.

However, questions remain regarding the degree to which reduced acoustic noise affects

the functional responses measured and whether advanced reconstruction methods for 3D

radial sampling are required to improve the quality of this method. Finally, areas were

identified for further optimising the technique, including preliminary investigations into

interesting routes for future research. This section returns to the five key aims outlined

earlier that were addressed within the thesis, alongside the limitations of this work and

avenues for future research.
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Aim 1: Evaluate the acoustic noise and MR signal characteristics of single-echo and

multi-echo Looping Star relative to GRE-EPI in phantoms.

The first evaluation performed was of the acoustic noise levels of Looping Star, where it

was found that Looping Star consistently produced significantly lower peak acoustic noise

amplitude and a lower peak frequency of acoustic noise relative to GRE-EPI, regardless

of the parameters chosen. Any change of a parameter that led to a larger gradient step

between samples also led to an increase in acoustic noise, as expected. It was crucial to

evaluate the impact of these parameters on the acoustic noise as they are entangled with

the timings of the sequence (i.e. the echo time and repetition time). These factors must

be taken into account in future applications of this sequence.

In terms of the spatial characteristics of Looping Star, the initial evaluations showed

that its point spread function was primarily affected by the density compensation step

in reconstruction. This was expected as density compensation changes the MR signal

intensity distribution in k-space as part of non-Cartesian gridding image reconstruction. It

was also found that the full-width half-maximum of the point spread function of Looping

Star was approximately 3 pixels, indicating image blur (Robson et al., 1997). This was

expected based on the raw images produced by Looping Star. Image blur is typical of

non-Cartesian methods due to the combination of the differing sampling characteristics

employed and image reconstruction required (Hoge et al., 1997; Lee et al., 2010; Maier

et al., 2021). Alternative methods to evaluate image quality and image blur could explore

these findings in more depth (Chaimow and Shmuel, 2016).

The temporal stability of Looping Star was consistent with that of GRE-EPI in the

spherical phantom employed. For example, similar spectral content of the time series in

a central region of interest was seen between modalities, whereby Looping Star did not

demonstrate any frequency bands with substantially higher amplitude relative to GRE-EPI.

For the Weisskoff analysis (Weisskoff, 1996), the point at which the Weisskoff curves

diverged (i.e. the RDC) was also consistent between techniques. This analysis suggested

that Looping Star was not affected by different sources of noise when compared with

GRE-EPI. Significant deviations in percentage signal drift or signal fluctuation between
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techniques were also absent. However, Looping Star consistently demonstrated lower

tSNR and SNR, likely related to the lower flip angles employed by the technique.

Evaluating the effect of flip angles, it was found that higher flip angles did not affect the

temporal stability of Looping Star, as expected. Evaluating the impact of the number

of spokes per loop and readout bandwidth in isolation proved difficult, given that these

parameters inherently affect the echo time produced by Looping Star. It was expected

that higher spokes per loop may be more susceptible to gradient imperfections, and that

a higher readout bandwidth would introduce more noise, but minimal differences in image

quality or temporal stability were seen in both cases. On the one hand, this is difficult to

disentangle from the higher signal amplitude produced by shorter echo times, though

on the other hand it also demonstrates a potential benefit of the entanglement of these

parameters with the echo time.

Extracting the temporal stability based solely on the pulse sequence is not straightforward

to evaluate as it is inherently entangled with scanner stability. For example, Greve et al.

(2011) showed that system instabilities, i.e. multiplicative noise that originates from

natural fluctuations in the gradients or RF pulses, produce lower magnitude noise in the

image compared with background noise, i.e. additive noise from the phantom or external

RF interference signals, and both produce noise within phantoms and different cortical

tissues. Further investigations of temporal stability could include comparisons across

different phantoms, including active phantoms that simulate functional activity (Chen

et al., 2020b; Mattila et al., 2007; Olsrud et al., 2008; Renvall, 2009).

With wider use of Looping Star, it would be vital to explore the temporal stability across

sites to establish a threshold for scanner stability at which it can be reliably used (Glover

et al., 2012; Marcus et al., 2013; Stöcker et al., 2005). Future work may also consider

estimating the noise-only image in order to obtain additional measures of SNR for further

investigations (Bodurka et al., 2007; Hutton et al., 2012; Kellman and McVeigh, 2005;

Triantafyllou et al., 2011).
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Aim 2: Quantify the signal characteristics and functional sensitivity of single-echo

and multi-echo Looping Star in vivo using a simple paradigm.

The functional sensitivity of single-echo Looping Star was evaluated qualitatively using

a visual checkerboard block-design paradigm. Clear temporal correlations between the

BOLD response detected by Looping Star and the paradigm onsets were found. Though

this study could not directly compare the results quantitatively with those of the GRE-EPI

acquisition due to limitations in the experimental design, this was a clear indicator towards

good functional sensitivity of Looping Star. The power calculation for the task indicated

that more participants would be needed for Looping Star than GRE-EPI due to the lower

effect size calculated, which was expected given the lower tSNR.

For an auditory word-processing block-design paradigm, the comparison of multi-echo

Looping Star with multi-echo GRE-EPI was quantified. It was found that Looping Star,

though functionally sensitive, produced lower average percentage signal change compared

with GRE-EPI for the main effect of sound. The study also found different lateralisation

of the significant activity between modalities for the main effect of sound, which merits

further investigation. Disentangling whether this originates from the acoustic noise or

the lower tSNR of Looping Star is complex, however previous studies have supported

asymmetry and lateralisation of the auditory cortex in response to auditory stimuli (Andoh

et al., 2015; Brechmann et al., 2002; Devlin et al., 2003; Ren et al., 2020). Furthermore,

the acoustic noise produced by GRE-EPI has been shown to interact with acoustic word

stimuli (Mohr et al., 1999; Peelle et al., 2010; Schmidt et al., 2008). A future study could

record the GRE-EPI acoustic noise and play this noise alongside an auditory stimulus

during a Looping Star acquisition to further explore this interaction.

Interestingly, this study only found significant activity for the parametric modulation of the

speed at which words were spoken when using Looping Star and not when using GRE-EPI.

This activation was left lateralised and localised to the primary auditory cortex and medial

temporal gyrus. Davis and Johnsrude (2003) found that the left lateral temporal cortex

was related to the processing of degraded speech, which supports the findings as word

comprehension is more difficult at higher speeds. This has also been supported by further
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studies of degraded speech (Erb et al., 2013; Wild et al., 2012) as well as studies of the

hierarchy of speech processing (Abrams et al., 2020; Zatorre et al., 2002). The findings

for original Looping Star were also replicated using different acquisition parameters in a

later study in this thesis, when comparing with coherence-resolved Looping Star. Further

study with a larger cohort would enable the exploration of the auditory network in more

depth, particularly given the importance of cognition in auditory processing (Peelle, 2018).

Larger group sizes would also greatly benefit the statistical relevance of these results

(Button et al., 2013).

Aim 3: Explore the capabilities of Looping Star with auditory and resting-state

paradigms in comparison with GRE-EPI.

Looping Star identified the auditory resting-state network using a seed placed in Heschl’s

gyrus, as well as the default mode network using a seed placed in the posterior cingulate.

Differences were found between Looping Star and GRE-EPI for these networks, most

notably that GRE-EPI identified higher correlations between the posterior and anterior

cingulate than Looping Star in the default mode network. On the other hand, Looping

Star identified higher correlations bilaterally across the auditory cortices in the auditory

network. The findings support those of Rondinoni et al. (2013), who showed that acoustic

noise could suppress the auditory network and enhance the default mode network using

a soft-tone parameter for imaging, although this was not supported by findings using

sparse sampling (Gaab et al., 2008).

Exploring the ROI-to-ROI connectivity matrix, Looping Star produced fewer statistically

significant inter-region correlations compared with GRE-EPI, supported by Dionisio-Parra

et al. (2020). However, when focusing on correlations with Heschl’s gyrus, it was seen

that Looping Star had a higher number of regions with statistically significant correlations

than GRE-EPI, which supports the findings of Andoh et al. (2017) using ISSS. One

method of comparing these findings further would be to compute a comparison such as

the receiver-operating characteristic curve Sorenson and Wang (1996) with an established

network map, for example from Neurosynth (Yarkoni, 2011). However, the expectation

would be for Looping Star to inherently differ more from such a map compared with
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GRE-EPI given it is acoustically silent and the maps are derived from GRE-EPI data.

A better alternative would be to replicate these findings in a separate larger cohort,

particularly using a technique to improve the tSNR of Looping Star such as alternative

acquisition parameters.

Furthermore, the noise components extracted using ICA (tedana community et al., 2021)

for Looping Star were explored. Similar temporal characteristics of the independent

components was found relative to GRE-EPI. However, the spatial distribution of the

components for these temporal characteristics was different between modalities. This

may be linked to the non-Cartesian sampling pattern of Looping Star, whereby noise

sources affect the whole image via streaking rather than specific regions. This would

be a core consideration for denoising pipelines, as component regression could lead to

substantial signal removal across the brain.

Interestingly, signal regression using white matter and CSF regressors led to significant

signal reduction for both modalities. Global signal regression, be it with the mean signal

or from particular tissues, is extensively debated (Murphy and Fox, 2017); hence this

is not unique to Looping Star. Equally, studies suggest that appropriate deconvolution

models for the haemodynamic response are necessary for resting-state investigations,

which would be one avenue for future research (Lanka et al., 2020; Rangaprakash et al.,

2018; Wu et al., 2013). NOise reduction with DIstribution Corrected (NORDIC) PCA is

another novel technique that should be explored for denoising Looping Star data, as it

has been shown to substantially reduce the influence of thermal noise in fMRI (Moeller

et al., 2021; Vizioli et al., 2021).

Using an event-related auditory paradigm in once-repeated sessions, it was shown that

Looping Star could produce adequate functional sensitivity in comparison with GRE-EPI,

though inter-session differences were apparent. The supporting analysis showed that the

T-scores and beta parameters identified were independent of the tSNR of the modality.

fMRI reliability can be affected by numerous factors, ranging from paradigm design to the

duration of the interval between which the scans are performed, with the mean expected

ICC for GRE-EPI being calculated as 0.5 (Bennett and Miller, 2010, 2013). The range
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of ICC values for Looping Star in the study was between ≈ 0.1 − 0.6, therefore some

participants produced values within the range of adequate reliability. It could be that

the lower mean ICC for Looping Star was driven by the tSNR, though this cannot be

disentangled from cognitive differences due to reduced acoustic noise, therefore further

study is warranted.

It would also be crucial to further explore the inter-modality differences of the auditory

oddball paradigm, such as the significant activity identified by Looping Star in response

to tone discrimination, in a larger cohort. Such a study could support the findings of

auditory processing seen in previous auditory oddball studies (Justen and Herbert, 2018;

Stevens et al., 2005). Additionally, higher spatial resolution acquisition could benefit

identifying subcortical components of the auditory network such as the inferior colliculus

(Gao et al., 2014).

Aim 4: Investigate the compatibility of Looping Star with conventional analysis and

pre-processing techniques.

The compatibility of Looping Star with various conventional pre-processing and analysis

software packages for both task and resting-state data was successfully demonstrated.

The primary requirement when using conventional fMRI pre-processing pipelines with

Looping Star is to remove slice timing correction, given that it is a non-slice selective

technique. As mentioned previously, careful consideration should be taken for denoising

via signal regression in analysis, given the differences in spatial characteristics of noise

components found for Looping Star.

It was found that the average spectral profile of the residuals after GLM model estimation,

using both FAST and AR(1) autocorrelation models, for Looping Star differed from that

of GRE-EPI, though neither produced a completely pre-whitened power spectrum. This

indicated that there might be more appropriate models for addressing serial correlations

for Looping Star. Furthermore, Looping Star produced differences between the results

from the FAST and AR(1) autocorrelation methods at all smoothing thresholds, with

the differences increasing with smoothing level. This is not unique to Looping Star, as
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Olszowy et al. (2019) also commented that smoothing confounds the autocorrelation

result in GRE-EPI. In general, the area of autocorrelation in Looping Star requires further

study with additional methods (Eklund et al., 2012; Friston et al., 2000a; Olszowy et al.,

2019). Furthermore, if a study plans to accelerate Looping Star to sub-second temporal

resolution, alternative temporal autocorrelation functions may be required (Bollmann

et al., 2018; Chen et al., 2019; Corbin et al., 2018).

One of the core findings that was consistent across the studies in this thesis was that

lower or no spatial smoothing in pre-processing can be applied to Looping Star without

substantially affecting the significance of functional activity detected. The only effect

seen was that of slightly reduced cluster sizes with lower smoothing levels. This is likely

a result of the non-Cartesian characteristics of Looping Star that lead to signal blur

discussed earlier. The production of spatial blur is also seen across spiral imaging methods,

and improved density compensation functions have been shown to partly address this

(Glover et al., 2012; Holland et al., 2013; Maier et al., 2021). Advanced techniques such

as deep learning can also produce improvements (Jimeno et al., 2021).

Smoothing was retained in all of the studies for accurate comparisons with GRE-EPI

(Worsley et al., 1996), though further study of the optimal size of the smoothing filter,

as performed by Mikl et al. (2008), would be interesting to evaluate for a range of

parameters. Such studies might reveal a preference for retaining the spatial blur and

remove spatial smoothing in pre-processing, as performed by the "matched-filter theorem"

(Kasper et al., 2014). As spatial averaging suppresses the thermal noise in conventional

fMRI (Bodurka et al., 2007), future work could also explore the optimal voxel size at

which physiological noise equates to thermal noise in Looping Star to better understand

the impact of smoothing, particularly at higher spatial resolutions (Molloy et al., 2014).

A more appropriate EPI-based comparison with Looping Star might be the use of 3D

radial GRE-EPI techniques that produce good functional sensitivity without significant

time penalty (Rettenmeier et al., 2021). Alternatively, there are also numerous novel

acquisition schemes, such as Oscillating Steady State Imaging (OSSI) (Guo and Noll,

2020), that have shown substantial boosts in SNR and tSNR with good functional
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sensitivity, which would be interesting to compare with Looping Star.

Aim 5: Evaluate further applications and areas of optimisation for Looping Star for

future work.

It was found that coherence-resolved Looping Star is one promising sequence modification,

as it effectively temporally resolves the coherences that lead to the echo-in and echo-out

signal interferences of Looping Star signals. However, it was interesting that although

substantial improvements in the image quality were seen, huge differences were not seen

for in vivo tSNR. It could be that the overlap between echoes of original Looping Star

fortuitously boosts the tSNR. Coherence-resolved Looping Star also identified smaller

clusters with larger T-scores compared with original Looping Star, which could be

indicative of improved spatial localisation. This was supported by the smaller full-width

half-maximum of the point spread function for coherence-resolved Looping Star.

The first main future direction of fMRI research is to produce higher spatial resolution,

lowering the physiological-to-thermal noise ratio and improving statistical accuracy

(Bollmann and Barth, 2020; Molloy et al., 2014). The second is to produce images at

higher temporal resolution, acquiring more images at a faster rate to better characterise

the haemodynamic response of interest and boost statistical power (Bollmann and Barth,

2020; Murphy et al., 2007). Advanced image reconstruction schemes, including low-

rank methods such as Extreme MRI, can significantly boost the temporal and spatial

resolution of Looping Star, though substantial work is required to improve its functional

sensitivity and reduce reconstruction artefacts of the technique. Improvements to image

reconstruction via parallel imaging could further facilitate accelerated, undersampled

Looping Star acquisitions (Maier et al., 2021; Wright et al., 2014). The Radial Interstices

Enable Speedy Low-Volume imagING (RIESLING) toolbox is of particular interest given

that it has been optimised for centre-out radial imaging and includes flexible regularisation

and density compensation methods (Wood et al., 2021).

Quantitative susceptibility mapping is an exciting new avenue for Looping Star, particularly

as comparable resolution is achievable between Looping Star and conventional methods.
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However, such mapping would also benefit from advanced image reconstruction to further

improve the spatial resolution of subcortical structures. Motion navigators could also be

used to limit the presence of motion artefacts in the images (Ljungberg et al., 2021b;

Wallace et al., 2019, 2021).

There is also increasing interest in the neurobiological mechanisms behind functional

activity detected with the free-induction decay especially in preclinical studies (MacKinnon

et al., 2020), for which Looping Star could be a vital tool as it inherently collects the

FID and the echo and therefore facilitates a direct comparison between the functional

sensitivity of both echo times. Furthermore, Looping Star is inherently less sensitive to

inflow effects, given the low flip angles and therefore minimal impact of T1 on signal

decay (Duyn et al., 1994; Gao and Liu, 2012; Kim and Ogawa, 2012). Promising

indications towards functional sensitivity in the FID images were found, that could also

be amplified with preparation pulses. In particular, Schulz et al. (2020) showed that

magnetisation-preparation with GRE-EPI fMRI could localise arterial blood contributions

to neural activity.

One useful application of Looping Star would be its integration with EEG-fMRI (Solana

et al., 2014) due to the reduced influence of acoustic noise and gradient switching

artefacts. It would also be particularly interesting to further explore the auditory oddball

task with such a technique (Brázdil et al., 2005; Mangalathu-Arumana et al., 2012).

Additionally, Looping Star is inherently more efficient than GRE-EPI given the higher

number of points sampled per unit time, which could have interesting applications for

further dynamic imaging. Finally, as discussed in previous chapters, the key application

of Looping Star would be for clinical cohorts who are hypersensitive to acoustic noise in

the hope of improving the accessibility of fMRI research across studies.

To conclude, confirming the hypotheses, I have successfully demonstrated adequate

functional sensitivity of Looping Star relative to conventional GRE-EPI fMRI. I did so

across a range of paradigms, including both tasks and rest. I have highlighted the core

advantage of Looping Star, which is that its reduced background noise better represents

"real-world" scenarios for fMRI research. I conclude that Looping Star is a promising new
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imaging technique for functional MRI, with many avenues present for further improvement.

These avenues include, but are not limited to, further validation in comparison with radial

3D GRE-EPI techniques, studies in larger cohorts, evaluation in more complex cognitive

paradigms and in clinical groups, and technical advances in image reconstruction.
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